1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/cleanup.h> 10 #include <linux/spinlock.h> 11 #include <linux/rbtree.h> 12 #include <linux/mutex.h> 13 #include <linux/wait.h> 14 #include <linux/list.h> 15 #include <linux/atomic.h> 16 #include <linux/xarray.h> 17 #include <linux/refcount.h> 18 #include <uapi/linux/btrfs_tree.h> 19 #include "locking.h" 20 #include "fs.h" 21 #include "accessors.h" 22 #include "extent-io-tree.h" 23 24 struct extent_buffer; 25 struct btrfs_block_rsv; 26 struct btrfs_trans_handle; 27 struct btrfs_block_group; 28 29 /* Read ahead values for struct btrfs_path.reada */ 30 enum { 31 READA_NONE, 32 READA_BACK, 33 READA_FORWARD, 34 /* 35 * Similar to READA_FORWARD but unlike it: 36 * 37 * 1) It will trigger readahead even for leaves that are not close to 38 * each other on disk; 39 * 2) It also triggers readahead for nodes; 40 * 3) During a search, even when a node or leaf is already in memory, it 41 * will still trigger readahead for other nodes and leaves that follow 42 * it. 43 * 44 * This is meant to be used only when we know we are iterating over the 45 * entire tree or a very large part of it. 46 */ 47 READA_FORWARD_ALWAYS, 48 }; 49 50 /* 51 * btrfs_paths remember the path taken from the root down to the leaf. 52 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 53 * to any other levels that are present. 54 * 55 * The slots array records the index of the item or block pointer 56 * used while walking the tree. 57 */ 58 struct btrfs_path { 59 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 60 int slots[BTRFS_MAX_LEVEL]; 61 /* if there is real range locking, this locks field will change */ 62 u8 locks[BTRFS_MAX_LEVEL]; 63 u8 reada; 64 u8 lowest_level; 65 66 /* 67 * set by btrfs_split_item, tells search_slot to keep all locks 68 * and to force calls to keep space in the nodes 69 */ 70 unsigned int search_for_split:1; 71 /* Keep some upper locks as we walk down. */ 72 unsigned int keep_locks:1; 73 unsigned int skip_locking:1; 74 unsigned int search_commit_root:1; 75 unsigned int need_commit_sem:1; 76 unsigned int skip_release_on_error:1; 77 /* 78 * Indicate that new item (btrfs_search_slot) is extending already 79 * existing item and ins_len contains only the data size and not item 80 * header (ie. sizeof(struct btrfs_item) is not included). 81 */ 82 unsigned int search_for_extension:1; 83 /* Stop search if any locks need to be taken (for read) */ 84 unsigned int nowait:1; 85 }; 86 87 #define BTRFS_PATH_AUTO_FREE(path_name) \ 88 struct btrfs_path *path_name __free(btrfs_free_path) = NULL 89 90 /* 91 * The state of btrfs root 92 */ 93 enum { 94 /* 95 * btrfs_record_root_in_trans is a multi-step process, and it can race 96 * with the balancing code. But the race is very small, and only the 97 * first time the root is added to each transaction. So IN_TRANS_SETUP 98 * is used to tell us when more checks are required 99 */ 100 BTRFS_ROOT_IN_TRANS_SETUP, 101 102 /* 103 * Set if tree blocks of this root can be shared by other roots. 104 * Only subvolume trees and their reloc trees have this bit set. 105 * Conflicts with TRACK_DIRTY bit. 106 * 107 * This affects two things: 108 * 109 * - How balance works 110 * For shareable roots, we need to use reloc tree and do path 111 * replacement for balance, and need various pre/post hooks for 112 * snapshot creation to handle them. 113 * 114 * While for non-shareable trees, we just simply do a tree search 115 * with COW. 116 * 117 * - How dirty roots are tracked 118 * For shareable roots, btrfs_record_root_in_trans() is needed to 119 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 120 * don't need to set this manually. 121 */ 122 BTRFS_ROOT_SHAREABLE, 123 BTRFS_ROOT_TRACK_DIRTY, 124 BTRFS_ROOT_IN_RADIX, 125 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 126 BTRFS_ROOT_DEFRAG_RUNNING, 127 BTRFS_ROOT_FORCE_COW, 128 BTRFS_ROOT_MULTI_LOG_TASKS, 129 BTRFS_ROOT_DIRTY, 130 BTRFS_ROOT_DELETING, 131 132 /* 133 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 134 * 135 * Set for the subvolume tree owning the reloc tree. 136 */ 137 BTRFS_ROOT_DEAD_RELOC_TREE, 138 /* Mark dead root stored on device whose cleanup needs to be resumed */ 139 BTRFS_ROOT_DEAD_TREE, 140 /* The root has a log tree. Used for subvolume roots and the tree root. */ 141 BTRFS_ROOT_HAS_LOG_TREE, 142 /* Qgroup flushing is in progress */ 143 BTRFS_ROOT_QGROUP_FLUSHING, 144 /* We started the orphan cleanup for this root. */ 145 BTRFS_ROOT_ORPHAN_CLEANUP, 146 /* This root has a drop operation that was started previously. */ 147 BTRFS_ROOT_UNFINISHED_DROP, 148 /* This reloc root needs to have its buffers lockdep class reset. */ 149 BTRFS_ROOT_RESET_LOCKDEP_CLASS, 150 }; 151 152 /* 153 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 154 * code. For detail check comment in fs/btrfs/qgroup.c. 155 */ 156 struct btrfs_qgroup_swapped_blocks { 157 spinlock_t lock; 158 /* RM_EMPTY_ROOT() of above blocks[] */ 159 bool swapped; 160 struct rb_root blocks[BTRFS_MAX_LEVEL]; 161 }; 162 163 /* 164 * in ram representation of the tree. extent_root is used for all allocations 165 * and for the extent tree extent_root root. 166 */ 167 struct btrfs_root { 168 struct rb_node rb_node; 169 170 struct extent_buffer *node; 171 172 struct extent_buffer *commit_root; 173 struct btrfs_root *log_root; 174 struct btrfs_root *reloc_root; 175 176 unsigned long state; 177 struct btrfs_root_item root_item; 178 struct btrfs_key root_key; 179 struct btrfs_fs_info *fs_info; 180 struct extent_io_tree dirty_log_pages; 181 182 struct mutex objectid_mutex; 183 184 spinlock_t accounting_lock; 185 struct btrfs_block_rsv *block_rsv; 186 187 struct mutex log_mutex; 188 wait_queue_head_t log_writer_wait; 189 wait_queue_head_t log_commit_wait[2]; 190 struct list_head log_ctxs[2]; 191 /* Used only for log trees of subvolumes, not for the log root tree */ 192 atomic_t log_writers; 193 atomic_t log_commit[2]; 194 /* Used only for log trees of subvolumes, not for the log root tree */ 195 atomic_t log_batch; 196 /* 197 * Protected by the 'log_mutex' lock but can be read without holding 198 * that lock to avoid unnecessary lock contention, in which case it 199 * should be read using btrfs_get_root_log_transid() except if it's a 200 * log tree in which case it can be directly accessed. Updates to this 201 * field should always use btrfs_set_root_log_transid(), except for log 202 * trees where the field can be updated directly. 203 */ 204 int log_transid; 205 /* No matter the commit succeeds or not*/ 206 int log_transid_committed; 207 /* 208 * Just be updated when the commit succeeds. Use 209 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit() 210 * to access this field. 211 */ 212 int last_log_commit; 213 pid_t log_start_pid; 214 215 u64 last_trans; 216 217 u64 free_objectid; 218 219 struct btrfs_key defrag_progress; 220 struct btrfs_key defrag_max; 221 222 /* The dirty list is only used by non-shareable roots */ 223 struct list_head dirty_list; 224 225 struct list_head root_list; 226 227 /* Xarray that keeps track of in-memory inodes. */ 228 struct xarray inodes; 229 230 /* Xarray that keeps track of delayed nodes of every inode. */ 231 struct xarray delayed_nodes; 232 /* 233 * right now this just gets used so that a root has its own devid 234 * for stat. It may be used for more later 235 */ 236 dev_t anon_dev; 237 238 spinlock_t root_item_lock; 239 refcount_t refs; 240 241 struct mutex delalloc_mutex; 242 spinlock_t delalloc_lock; 243 /* 244 * all of the inodes that have delalloc bytes. It is possible for 245 * this list to be empty even when there is still dirty data=ordered 246 * extents waiting to finish IO. 247 */ 248 struct list_head delalloc_inodes; 249 struct list_head delalloc_root; 250 u64 nr_delalloc_inodes; 251 252 struct mutex ordered_extent_mutex; 253 /* 254 * this is used by the balancing code to wait for all the pending 255 * ordered extents 256 */ 257 spinlock_t ordered_extent_lock; 258 259 /* 260 * all of the data=ordered extents pending writeback 261 * these can span multiple transactions and basically include 262 * every dirty data page that isn't from nodatacow 263 */ 264 struct list_head ordered_extents; 265 struct list_head ordered_root; 266 u64 nr_ordered_extents; 267 268 /* 269 * Not empty if this subvolume root has gone through tree block swap 270 * (relocation) 271 * 272 * Will be used by reloc_control::dirty_subvol_roots. 273 */ 274 struct list_head reloc_dirty_list; 275 276 /* 277 * Number of currently running SEND ioctls to prevent 278 * manipulation with the read-only status via SUBVOL_SETFLAGS 279 */ 280 int send_in_progress; 281 /* 282 * Number of currently running deduplication operations that have a 283 * destination inode belonging to this root. Protected by the lock 284 * root_item_lock. 285 */ 286 int dedupe_in_progress; 287 /* For exclusion of snapshot creation and nocow writes */ 288 struct btrfs_drew_lock snapshot_lock; 289 290 atomic_t snapshot_force_cow; 291 292 /* For qgroup metadata reserved space */ 293 spinlock_t qgroup_meta_rsv_lock; 294 u64 qgroup_meta_rsv_pertrans; 295 u64 qgroup_meta_rsv_prealloc; 296 wait_queue_head_t qgroup_flush_wait; 297 298 /* Number of active swapfiles */ 299 atomic_t nr_swapfiles; 300 301 /* Record pairs of swapped blocks for qgroup */ 302 struct btrfs_qgroup_swapped_blocks swapped_blocks; 303 304 /* Used only by log trees, when logging csum items */ 305 struct extent_io_tree log_csum_range; 306 307 /* Used in simple quotas, track root during relocation. */ 308 u64 relocation_src_root; 309 310 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 311 u64 alloc_bytenr; 312 #endif 313 314 #ifdef CONFIG_BTRFS_DEBUG 315 struct list_head leak_list; 316 #endif 317 }; 318 319 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 320 { 321 /* Byte-swap the constant at compile time, root_item::flags is LE */ 322 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 323 } 324 325 static inline bool btrfs_root_dead(const struct btrfs_root *root) 326 { 327 /* Byte-swap the constant at compile time, root_item::flags is LE */ 328 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 329 } 330 331 static inline u64 btrfs_root_id(const struct btrfs_root *root) 332 { 333 return root->root_key.objectid; 334 } 335 336 static inline int btrfs_get_root_log_transid(const struct btrfs_root *root) 337 { 338 return READ_ONCE(root->log_transid); 339 } 340 341 static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid) 342 { 343 WRITE_ONCE(root->log_transid, log_transid); 344 } 345 346 static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root) 347 { 348 return READ_ONCE(root->last_log_commit); 349 } 350 351 static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id) 352 { 353 WRITE_ONCE(root->last_log_commit, commit_id); 354 } 355 356 static inline u64 btrfs_get_root_last_trans(const struct btrfs_root *root) 357 { 358 return READ_ONCE(root->last_trans); 359 } 360 361 static inline void btrfs_set_root_last_trans(struct btrfs_root *root, u64 transid) 362 { 363 WRITE_ONCE(root->last_trans, transid); 364 } 365 366 /* 367 * Return the generation this root started with. 368 * 369 * Every normal root that is created with root->root_key.offset set to it's 370 * originating generation. If it is a snapshot it is the generation when the 371 * snapshot was created. 372 * 373 * However for TREE_RELOC roots root_key.offset is the objectid of the owning 374 * tree root. Thankfully we copy the root item of the owning tree root, which 375 * has it's last_snapshot set to what we would have root_key.offset set to, so 376 * return that if this is a TREE_RELOC root. 377 */ 378 static inline u64 btrfs_root_origin_generation(const struct btrfs_root *root) 379 { 380 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 381 return btrfs_root_last_snapshot(&root->root_item); 382 return root->root_key.offset; 383 } 384 385 /* 386 * Structure that conveys information about an extent that is going to replace 387 * all the extents in a file range. 388 */ 389 struct btrfs_replace_extent_info { 390 u64 disk_offset; 391 u64 disk_len; 392 u64 data_offset; 393 u64 data_len; 394 u64 file_offset; 395 /* Pointer to a file extent item of type regular or prealloc. */ 396 char *extent_buf; 397 /* 398 * Set to true when attempting to replace a file range with a new extent 399 * described by this structure, set to false when attempting to clone an 400 * existing extent into a file range. 401 */ 402 bool is_new_extent; 403 /* Indicate if we should update the inode's mtime and ctime. */ 404 bool update_times; 405 /* Meaningful only if is_new_extent is true. */ 406 int qgroup_reserved; 407 /* 408 * Meaningful only if is_new_extent is true. 409 * Used to track how many extent items we have already inserted in a 410 * subvolume tree that refer to the extent described by this structure, 411 * so that we know when to create a new delayed ref or update an existing 412 * one. 413 */ 414 int insertions; 415 }; 416 417 /* Arguments for btrfs_drop_extents() */ 418 struct btrfs_drop_extents_args { 419 /* Input parameters */ 420 421 /* 422 * If NULL, btrfs_drop_extents() will allocate and free its own path. 423 * If 'replace_extent' is true, this must not be NULL. Also the path 424 * is always released except if 'replace_extent' is true and 425 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 426 * the path is kept locked. 427 */ 428 struct btrfs_path *path; 429 /* Start offset of the range to drop extents from */ 430 u64 start; 431 /* End (exclusive, last byte + 1) of the range to drop extents from */ 432 u64 end; 433 /* If true drop all the extent maps in the range */ 434 bool drop_cache; 435 /* 436 * If true it means we want to insert a new extent after dropping all 437 * the extents in the range. If this is true, the 'extent_item_size' 438 * parameter must be set as well and the 'extent_inserted' field will 439 * be set to true by btrfs_drop_extents() if it could insert the new 440 * extent. 441 * Note: when this is set to true the path must not be NULL. 442 */ 443 bool replace_extent; 444 /* 445 * Used if 'replace_extent' is true. Size of the file extent item to 446 * insert after dropping all existing extents in the range 447 */ 448 u32 extent_item_size; 449 450 /* Output parameters */ 451 452 /* 453 * Set to the minimum between the input parameter 'end' and the end 454 * (exclusive, last byte + 1) of the last dropped extent. This is always 455 * set even if btrfs_drop_extents() returns an error. 456 */ 457 u64 drop_end; 458 /* 459 * The number of allocated bytes found in the range. This can be smaller 460 * than the range's length when there are holes in the range. 461 */ 462 u64 bytes_found; 463 /* 464 * Only set if 'replace_extent' is true. Set to true if we were able 465 * to insert a replacement extent after dropping all extents in the 466 * range, otherwise set to false by btrfs_drop_extents(). 467 * Also, if btrfs_drop_extents() has set this to true it means it 468 * returned with the path locked, otherwise if it has set this to 469 * false it has returned with the path released. 470 */ 471 bool extent_inserted; 472 }; 473 474 struct btrfs_file_private { 475 void *filldir_buf; 476 u64 last_index; 477 struct extent_state *llseek_cached_state; 478 /* Task that allocated this structure. */ 479 struct task_struct *owner_task; 480 }; 481 482 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 483 { 484 return info->nodesize - sizeof(struct btrfs_header); 485 } 486 487 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 488 { 489 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 490 } 491 492 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 493 { 494 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 495 } 496 497 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 498 { 499 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 500 } 501 502 int __init btrfs_ctree_init(void); 503 void __cold btrfs_ctree_exit(void); 504 505 int btrfs_bin_search(const struct extent_buffer *eb, int first_slot, 506 const struct btrfs_key *key, int *slot); 507 508 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 509 510 #ifdef __LITTLE_ENDIAN 511 512 /* 513 * Compare two keys, on little-endian the disk order is same as CPU order and 514 * we can avoid the conversion. 515 */ 516 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key, 517 const struct btrfs_key *k2) 518 { 519 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 520 521 return btrfs_comp_cpu_keys(k1, k2); 522 } 523 524 #else 525 526 /* Compare two keys in a memcmp fashion. */ 527 static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk, 528 const struct btrfs_key *k2) 529 { 530 struct btrfs_key k1; 531 532 btrfs_disk_key_to_cpu(&k1, disk); 533 534 return btrfs_comp_cpu_keys(&k1, k2); 535 } 536 537 #endif 538 539 int btrfs_previous_item(struct btrfs_root *root, 540 struct btrfs_path *path, u64 min_objectid, 541 int type); 542 int btrfs_previous_extent_item(struct btrfs_root *root, 543 struct btrfs_path *path, u64 min_objectid); 544 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 545 const struct btrfs_path *path, 546 const struct btrfs_key *new_key); 547 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 548 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 549 struct btrfs_key *key, int lowest_level, 550 u64 min_trans); 551 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 552 struct btrfs_path *path, 553 u64 min_trans); 554 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 555 int slot); 556 557 int btrfs_cow_block(struct btrfs_trans_handle *trans, 558 struct btrfs_root *root, struct extent_buffer *buf, 559 struct extent_buffer *parent, int parent_slot, 560 struct extent_buffer **cow_ret, 561 enum btrfs_lock_nesting nest); 562 int btrfs_force_cow_block(struct btrfs_trans_handle *trans, 563 struct btrfs_root *root, 564 struct extent_buffer *buf, 565 struct extent_buffer *parent, int parent_slot, 566 struct extent_buffer **cow_ret, 567 u64 search_start, u64 empty_size, 568 enum btrfs_lock_nesting nest); 569 int btrfs_copy_root(struct btrfs_trans_handle *trans, 570 struct btrfs_root *root, 571 struct extent_buffer *buf, 572 struct extent_buffer **cow_ret, u64 new_root_objectid); 573 bool btrfs_block_can_be_shared(const struct btrfs_trans_handle *trans, 574 const struct btrfs_root *root, 575 const struct extent_buffer *buf); 576 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 577 struct btrfs_path *path, int level, int slot); 578 void btrfs_extend_item(struct btrfs_trans_handle *trans, 579 const struct btrfs_path *path, u32 data_size); 580 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 581 const struct btrfs_path *path, u32 new_size, int from_end); 582 int btrfs_split_item(struct btrfs_trans_handle *trans, 583 struct btrfs_root *root, 584 struct btrfs_path *path, 585 const struct btrfs_key *new_key, 586 unsigned long split_offset); 587 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 588 struct btrfs_root *root, 589 struct btrfs_path *path, 590 const struct btrfs_key *new_key); 591 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 592 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 593 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 594 const struct btrfs_key *key, struct btrfs_path *p, 595 int ins_len, int cow); 596 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 597 struct btrfs_path *p, u64 time_seq); 598 int btrfs_search_slot_for_read(struct btrfs_root *root, 599 const struct btrfs_key *key, 600 struct btrfs_path *p, int find_higher, 601 int return_any); 602 void btrfs_release_path(struct btrfs_path *p); 603 struct btrfs_path *btrfs_alloc_path(void); 604 void btrfs_free_path(struct btrfs_path *p); 605 DEFINE_FREE(btrfs_free_path, struct btrfs_path *, btrfs_free_path(_T)) 606 607 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 608 struct btrfs_path *path, int slot, int nr); 609 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 610 struct btrfs_root *root, 611 struct btrfs_path *path) 612 { 613 return btrfs_del_items(trans, root, path, path->slots[0], 1); 614 } 615 616 /* 617 * Describes a batch of items to insert in a btree. This is used by 618 * btrfs_insert_empty_items(). 619 */ 620 struct btrfs_item_batch { 621 /* 622 * Pointer to an array containing the keys of the items to insert (in 623 * sorted order). 624 */ 625 const struct btrfs_key *keys; 626 /* Pointer to an array containing the data size for each item to insert. */ 627 const u32 *data_sizes; 628 /* 629 * The sum of data sizes for all items. The caller can compute this while 630 * setting up the data_sizes array, so it ends up being more efficient 631 * than having btrfs_insert_empty_items() or setup_item_for_insert() 632 * doing it, as it would avoid an extra loop over a potentially large 633 * array, and in the case of setup_item_for_insert(), we would be doing 634 * it while holding a write lock on a leaf and often on upper level nodes 635 * too, unnecessarily increasing the size of a critical section. 636 */ 637 u32 total_data_size; 638 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 639 int nr; 640 }; 641 642 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans, 643 struct btrfs_root *root, 644 struct btrfs_path *path, 645 const struct btrfs_key *key, 646 u32 data_size); 647 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 648 const struct btrfs_key *key, void *data, u32 data_size); 649 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 650 struct btrfs_root *root, 651 struct btrfs_path *path, 652 const struct btrfs_item_batch *batch); 653 654 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 655 struct btrfs_root *root, 656 struct btrfs_path *path, 657 const struct btrfs_key *key, 658 u32 data_size) 659 { 660 struct btrfs_item_batch batch; 661 662 batch.keys = key; 663 batch.data_sizes = &data_size; 664 batch.total_data_size = data_size; 665 batch.nr = 1; 666 667 return btrfs_insert_empty_items(trans, root, path, &batch); 668 } 669 670 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 671 u64 time_seq); 672 673 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 674 struct btrfs_path *path); 675 676 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 677 struct btrfs_path *path); 678 679 /* 680 * Search in @root for a given @key, and store the slot found in @found_key. 681 * 682 * @root: The root node of the tree. 683 * @key: The key we are looking for. 684 * @found_key: Will hold the found item. 685 * @path: Holds the current slot/leaf. 686 * @iter_ret: Contains the value returned from btrfs_search_slot or 687 * btrfs_get_next_valid_item, whichever was executed last. 688 * 689 * The @iter_ret is an output variable that will contain the return value of 690 * btrfs_search_slot, if it encountered an error, or the value returned from 691 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid 692 * slot was found, 1 if there were no more leaves, and <0 if there was an error. 693 * 694 * It's recommended to use a separate variable for iter_ret and then use it to 695 * set the function return value so there's no confusion of the 0/1/errno 696 * values stemming from btrfs_search_slot. 697 */ 698 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \ 699 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \ 700 (iter_ret) >= 0 && \ 701 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \ 702 (path)->slots[0]++ \ 703 ) 704 705 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq); 706 707 /* 708 * Search the tree again to find a leaf with greater keys. 709 * 710 * Returns 0 if it found something or 1 if there are no greater leaves. 711 * Returns < 0 on error. 712 */ 713 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 714 { 715 return btrfs_next_old_leaf(root, path, 0); 716 } 717 718 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 719 { 720 return btrfs_next_old_item(root, p, 0); 721 } 722 int btrfs_leaf_free_space(const struct extent_buffer *leaf); 723 724 static inline bool btrfs_is_fstree(u64 rootid) 725 { 726 if (rootid == BTRFS_FS_TREE_OBJECTID) 727 return true; 728 729 if ((s64)rootid < (s64)BTRFS_FIRST_FREE_OBJECTID) 730 return false; 731 732 if (btrfs_qgroup_level(rootid) != 0) 733 return false; 734 735 return true; 736 } 737 738 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 739 { 740 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 741 } 742 743 #endif 744