xref: /linux/fs/btrfs/ctree.h (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #ifndef __BTRFS_CTREE__
20 #define __BTRFS_CTREE__
21 
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/fs.h>
25 #include <linux/rwsem.h>
26 #include <linux/semaphore.h>
27 #include <linux/completion.h>
28 #include <linux/backing-dev.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/kobject.h>
32 #include <trace/events/btrfs.h>
33 #include <asm/kmap_types.h>
34 #include <linux/pagemap.h>
35 #include <linux/btrfs.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include "extent_io.h"
39 #include "extent_map.h"
40 #include "async-thread.h"
41 
42 struct btrfs_trans_handle;
43 struct btrfs_transaction;
44 struct btrfs_pending_snapshot;
45 extern struct kmem_cache *btrfs_trans_handle_cachep;
46 extern struct kmem_cache *btrfs_transaction_cachep;
47 extern struct kmem_cache *btrfs_bit_radix_cachep;
48 extern struct kmem_cache *btrfs_path_cachep;
49 extern struct kmem_cache *btrfs_free_space_cachep;
50 struct btrfs_ordered_sum;
51 
52 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
53 #define STATIC noinline
54 #else
55 #define STATIC static noinline
56 #endif
57 
58 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
59 
60 #define BTRFS_MAX_MIRRORS 3
61 
62 #define BTRFS_MAX_LEVEL 8
63 
64 #define BTRFS_COMPAT_EXTENT_TREE_V0
65 
66 /* holds pointers to all of the tree roots */
67 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
68 
69 /* stores information about which extents are in use, and reference counts */
70 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
71 
72 /*
73  * chunk tree stores translations from logical -> physical block numbering
74  * the super block points to the chunk tree
75  */
76 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
77 
78 /*
79  * stores information about which areas of a given device are in use.
80  * one per device.  The tree of tree roots points to the device tree
81  */
82 #define BTRFS_DEV_TREE_OBJECTID 4ULL
83 
84 /* one per subvolume, storing files and directories */
85 #define BTRFS_FS_TREE_OBJECTID 5ULL
86 
87 /* directory objectid inside the root tree */
88 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
89 
90 /* holds checksums of all the data extents */
91 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
92 
93 /* holds quota configuration and tracking */
94 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
95 
96 /* for storing items that use the BTRFS_UUID_KEY* types */
97 #define BTRFS_UUID_TREE_OBJECTID 9ULL
98 
99 /* for storing balance parameters in the root tree */
100 #define BTRFS_BALANCE_OBJECTID -4ULL
101 
102 /* orhpan objectid for tracking unlinked/truncated files */
103 #define BTRFS_ORPHAN_OBJECTID -5ULL
104 
105 /* does write ahead logging to speed up fsyncs */
106 #define BTRFS_TREE_LOG_OBJECTID -6ULL
107 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
108 
109 /* for space balancing */
110 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
111 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
112 
113 /*
114  * extent checksums all have this objectid
115  * this allows them to share the logging tree
116  * for fsyncs
117  */
118 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
119 
120 /* For storing free space cache */
121 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
122 
123 /*
124  * The inode number assigned to the special inode for storing
125  * free ino cache
126  */
127 #define BTRFS_FREE_INO_OBJECTID -12ULL
128 
129 /* dummy objectid represents multiple objectids */
130 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
131 
132 /*
133  * All files have objectids in this range.
134  */
135 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
136 #define BTRFS_LAST_FREE_OBJECTID -256ULL
137 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
138 
139 
140 /*
141  * the device items go into the chunk tree.  The key is in the form
142  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
143  */
144 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
145 
146 #define BTRFS_BTREE_INODE_OBJECTID 1
147 
148 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
149 
150 #define BTRFS_DEV_REPLACE_DEVID 0ULL
151 
152 /*
153  * the max metadata block size.  This limit is somewhat artificial,
154  * but the memmove costs go through the roof for larger blocks.
155  */
156 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536
157 
158 /*
159  * we can actually store much bigger names, but lets not confuse the rest
160  * of linux
161  */
162 #define BTRFS_NAME_LEN 255
163 
164 /*
165  * Theoretical limit is larger, but we keep this down to a sane
166  * value. That should limit greatly the possibility of collisions on
167  * inode ref items.
168  */
169 #define BTRFS_LINK_MAX 65535U
170 
171 /* 32 bytes in various csum fields */
172 #define BTRFS_CSUM_SIZE 32
173 
174 /* csum types */
175 #define BTRFS_CSUM_TYPE_CRC32	0
176 
177 static int btrfs_csum_sizes[] = { 4 };
178 
179 /* four bytes for CRC32 */
180 #define BTRFS_EMPTY_DIR_SIZE 0
181 
182 /* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */
183 #define REQ_GET_READ_MIRRORS	(1 << 30)
184 
185 #define BTRFS_FT_UNKNOWN	0
186 #define BTRFS_FT_REG_FILE	1
187 #define BTRFS_FT_DIR		2
188 #define BTRFS_FT_CHRDEV		3
189 #define BTRFS_FT_BLKDEV		4
190 #define BTRFS_FT_FIFO		5
191 #define BTRFS_FT_SOCK		6
192 #define BTRFS_FT_SYMLINK	7
193 #define BTRFS_FT_XATTR		8
194 #define BTRFS_FT_MAX		9
195 
196 /* ioprio of readahead is set to idle */
197 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
198 
199 #define BTRFS_DIRTY_METADATA_THRESH	(32 * 1024 * 1024)
200 
201 #define BTRFS_MAX_EXTENT_SIZE (128 * 1024 * 1024)
202 
203 /*
204  * The key defines the order in the tree, and so it also defines (optimal)
205  * block layout.
206  *
207  * objectid corresponds to the inode number.
208  *
209  * type tells us things about the object, and is a kind of stream selector.
210  * so for a given inode, keys with type of 1 might refer to the inode data,
211  * type of 2 may point to file data in the btree and type == 3 may point to
212  * extents.
213  *
214  * offset is the starting byte offset for this key in the stream.
215  *
216  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
217  * in cpu native order.  Otherwise they are identical and their sizes
218  * should be the same (ie both packed)
219  */
220 struct btrfs_disk_key {
221 	__le64 objectid;
222 	u8 type;
223 	__le64 offset;
224 } __attribute__ ((__packed__));
225 
226 struct btrfs_key {
227 	u64 objectid;
228 	u8 type;
229 	u64 offset;
230 } __attribute__ ((__packed__));
231 
232 struct btrfs_mapping_tree {
233 	struct extent_map_tree map_tree;
234 };
235 
236 struct btrfs_dev_item {
237 	/* the internal btrfs device id */
238 	__le64 devid;
239 
240 	/* size of the device */
241 	__le64 total_bytes;
242 
243 	/* bytes used */
244 	__le64 bytes_used;
245 
246 	/* optimal io alignment for this device */
247 	__le32 io_align;
248 
249 	/* optimal io width for this device */
250 	__le32 io_width;
251 
252 	/* minimal io size for this device */
253 	__le32 sector_size;
254 
255 	/* type and info about this device */
256 	__le64 type;
257 
258 	/* expected generation for this device */
259 	__le64 generation;
260 
261 	/*
262 	 * starting byte of this partition on the device,
263 	 * to allow for stripe alignment in the future
264 	 */
265 	__le64 start_offset;
266 
267 	/* grouping information for allocation decisions */
268 	__le32 dev_group;
269 
270 	/* seek speed 0-100 where 100 is fastest */
271 	u8 seek_speed;
272 
273 	/* bandwidth 0-100 where 100 is fastest */
274 	u8 bandwidth;
275 
276 	/* btrfs generated uuid for this device */
277 	u8 uuid[BTRFS_UUID_SIZE];
278 
279 	/* uuid of FS who owns this device */
280 	u8 fsid[BTRFS_UUID_SIZE];
281 } __attribute__ ((__packed__));
282 
283 struct btrfs_stripe {
284 	__le64 devid;
285 	__le64 offset;
286 	u8 dev_uuid[BTRFS_UUID_SIZE];
287 } __attribute__ ((__packed__));
288 
289 struct btrfs_chunk {
290 	/* size of this chunk in bytes */
291 	__le64 length;
292 
293 	/* objectid of the root referencing this chunk */
294 	__le64 owner;
295 
296 	__le64 stripe_len;
297 	__le64 type;
298 
299 	/* optimal io alignment for this chunk */
300 	__le32 io_align;
301 
302 	/* optimal io width for this chunk */
303 	__le32 io_width;
304 
305 	/* minimal io size for this chunk */
306 	__le32 sector_size;
307 
308 	/* 2^16 stripes is quite a lot, a second limit is the size of a single
309 	 * item in the btree
310 	 */
311 	__le16 num_stripes;
312 
313 	/* sub stripes only matter for raid10 */
314 	__le16 sub_stripes;
315 	struct btrfs_stripe stripe;
316 	/* additional stripes go here */
317 } __attribute__ ((__packed__));
318 
319 #define BTRFS_FREE_SPACE_EXTENT	1
320 #define BTRFS_FREE_SPACE_BITMAP	2
321 
322 struct btrfs_free_space_entry {
323 	__le64 offset;
324 	__le64 bytes;
325 	u8 type;
326 } __attribute__ ((__packed__));
327 
328 struct btrfs_free_space_header {
329 	struct btrfs_disk_key location;
330 	__le64 generation;
331 	__le64 num_entries;
332 	__le64 num_bitmaps;
333 } __attribute__ ((__packed__));
334 
335 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
336 {
337 	BUG_ON(num_stripes == 0);
338 	return sizeof(struct btrfs_chunk) +
339 		sizeof(struct btrfs_stripe) * (num_stripes - 1);
340 }
341 
342 #define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
343 #define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
344 
345 /*
346  * File system states
347  */
348 #define BTRFS_FS_STATE_ERROR		0
349 #define BTRFS_FS_STATE_REMOUNTING	1
350 #define BTRFS_FS_STATE_TRANS_ABORTED	2
351 #define BTRFS_FS_STATE_DEV_REPLACING	3
352 
353 /* Super block flags */
354 /* Errors detected */
355 #define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
356 
357 #define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
358 #define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
359 
360 #define BTRFS_BACKREF_REV_MAX		256
361 #define BTRFS_BACKREF_REV_SHIFT		56
362 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
363 					 BTRFS_BACKREF_REV_SHIFT)
364 
365 #define BTRFS_OLD_BACKREF_REV		0
366 #define BTRFS_MIXED_BACKREF_REV		1
367 
368 /*
369  * every tree block (leaf or node) starts with this header.
370  */
371 struct btrfs_header {
372 	/* these first four must match the super block */
373 	u8 csum[BTRFS_CSUM_SIZE];
374 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
375 	__le64 bytenr; /* which block this node is supposed to live in */
376 	__le64 flags;
377 
378 	/* allowed to be different from the super from here on down */
379 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
380 	__le64 generation;
381 	__le64 owner;
382 	__le32 nritems;
383 	u8 level;
384 } __attribute__ ((__packed__));
385 
386 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
387 				      sizeof(struct btrfs_header)) / \
388 				     sizeof(struct btrfs_key_ptr))
389 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
390 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->nodesize))
391 #define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
392 		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
393 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
394 					sizeof(struct btrfs_item) - \
395 					BTRFS_FILE_EXTENT_INLINE_DATA_START)
396 #define BTRFS_MAX_XATTR_SIZE(r)	(BTRFS_LEAF_DATA_SIZE(r) - \
397 				 sizeof(struct btrfs_item) -\
398 				 sizeof(struct btrfs_dir_item))
399 
400 
401 /*
402  * this is a very generous portion of the super block, giving us
403  * room to translate 14 chunks with 3 stripes each.
404  */
405 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
406 #define BTRFS_LABEL_SIZE 256
407 
408 /*
409  * just in case we somehow lose the roots and are not able to mount,
410  * we store an array of the roots from previous transactions
411  * in the super.
412  */
413 #define BTRFS_NUM_BACKUP_ROOTS 4
414 struct btrfs_root_backup {
415 	__le64 tree_root;
416 	__le64 tree_root_gen;
417 
418 	__le64 chunk_root;
419 	__le64 chunk_root_gen;
420 
421 	__le64 extent_root;
422 	__le64 extent_root_gen;
423 
424 	__le64 fs_root;
425 	__le64 fs_root_gen;
426 
427 	__le64 dev_root;
428 	__le64 dev_root_gen;
429 
430 	__le64 csum_root;
431 	__le64 csum_root_gen;
432 
433 	__le64 total_bytes;
434 	__le64 bytes_used;
435 	__le64 num_devices;
436 	/* future */
437 	__le64 unused_64[4];
438 
439 	u8 tree_root_level;
440 	u8 chunk_root_level;
441 	u8 extent_root_level;
442 	u8 fs_root_level;
443 	u8 dev_root_level;
444 	u8 csum_root_level;
445 	/* future and to align */
446 	u8 unused_8[10];
447 } __attribute__ ((__packed__));
448 
449 /*
450  * the super block basically lists the main trees of the FS
451  * it currently lacks any block count etc etc
452  */
453 struct btrfs_super_block {
454 	u8 csum[BTRFS_CSUM_SIZE];
455 	/* the first 4 fields must match struct btrfs_header */
456 	u8 fsid[BTRFS_FSID_SIZE];    /* FS specific uuid */
457 	__le64 bytenr; /* this block number */
458 	__le64 flags;
459 
460 	/* allowed to be different from the btrfs_header from here own down */
461 	__le64 magic;
462 	__le64 generation;
463 	__le64 root;
464 	__le64 chunk_root;
465 	__le64 log_root;
466 
467 	/* this will help find the new super based on the log root */
468 	__le64 log_root_transid;
469 	__le64 total_bytes;
470 	__le64 bytes_used;
471 	__le64 root_dir_objectid;
472 	__le64 num_devices;
473 	__le32 sectorsize;
474 	__le32 nodesize;
475 	__le32 __unused_leafsize;
476 	__le32 stripesize;
477 	__le32 sys_chunk_array_size;
478 	__le64 chunk_root_generation;
479 	__le64 compat_flags;
480 	__le64 compat_ro_flags;
481 	__le64 incompat_flags;
482 	__le16 csum_type;
483 	u8 root_level;
484 	u8 chunk_root_level;
485 	u8 log_root_level;
486 	struct btrfs_dev_item dev_item;
487 
488 	char label[BTRFS_LABEL_SIZE];
489 
490 	__le64 cache_generation;
491 	__le64 uuid_tree_generation;
492 
493 	/* future expansion */
494 	__le64 reserved[30];
495 	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
496 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
497 } __attribute__ ((__packed__));
498 
499 /*
500  * Compat flags that we support.  If any incompat flags are set other than the
501  * ones specified below then we will fail to mount
502  */
503 #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF	(1ULL << 0)
504 #define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL	(1ULL << 1)
505 #define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS	(1ULL << 2)
506 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO	(1ULL << 3)
507 /*
508  * some patches floated around with a second compression method
509  * lets save that incompat here for when they do get in
510  * Note we don't actually support it, we're just reserving the
511  * number
512  */
513 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2	(1ULL << 4)
514 
515 /*
516  * older kernels tried to do bigger metadata blocks, but the
517  * code was pretty buggy.  Lets not let them try anymore.
518  */
519 #define BTRFS_FEATURE_INCOMPAT_BIG_METADATA	(1ULL << 5)
520 
521 #define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF	(1ULL << 6)
522 #define BTRFS_FEATURE_INCOMPAT_RAID56		(1ULL << 7)
523 #define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA	(1ULL << 8)
524 #define BTRFS_FEATURE_INCOMPAT_NO_HOLES		(1ULL << 9)
525 
526 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
527 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
528 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
529 #define BTRFS_FEATURE_COMPAT_RO_SUPP		0ULL
530 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
531 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
532 
533 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
534 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
535 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
536 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
537 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
538 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
539 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
540 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
541 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
542 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
543 
544 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
545 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
546 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
547 
548 /*
549  * A leaf is full of items. offset and size tell us where to find
550  * the item in the leaf (relative to the start of the data area)
551  */
552 struct btrfs_item {
553 	struct btrfs_disk_key key;
554 	__le32 offset;
555 	__le32 size;
556 } __attribute__ ((__packed__));
557 
558 /*
559  * leaves have an item area and a data area:
560  * [item0, item1....itemN] [free space] [dataN...data1, data0]
561  *
562  * The data is separate from the items to get the keys closer together
563  * during searches.
564  */
565 struct btrfs_leaf {
566 	struct btrfs_header header;
567 	struct btrfs_item items[];
568 } __attribute__ ((__packed__));
569 
570 /*
571  * all non-leaf blocks are nodes, they hold only keys and pointers to
572  * other blocks
573  */
574 struct btrfs_key_ptr {
575 	struct btrfs_disk_key key;
576 	__le64 blockptr;
577 	__le64 generation;
578 } __attribute__ ((__packed__));
579 
580 struct btrfs_node {
581 	struct btrfs_header header;
582 	struct btrfs_key_ptr ptrs[];
583 } __attribute__ ((__packed__));
584 
585 /*
586  * btrfs_paths remember the path taken from the root down to the leaf.
587  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
588  * to any other levels that are present.
589  *
590  * The slots array records the index of the item or block pointer
591  * used while walking the tree.
592  */
593 struct btrfs_path {
594 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
595 	int slots[BTRFS_MAX_LEVEL];
596 	/* if there is real range locking, this locks field will change */
597 	int locks[BTRFS_MAX_LEVEL];
598 	int reada;
599 	/* keep some upper locks as we walk down */
600 	int lowest_level;
601 
602 	/*
603 	 * set by btrfs_split_item, tells search_slot to keep all locks
604 	 * and to force calls to keep space in the nodes
605 	 */
606 	unsigned int search_for_split:1;
607 	unsigned int keep_locks:1;
608 	unsigned int skip_locking:1;
609 	unsigned int leave_spinning:1;
610 	unsigned int search_commit_root:1;
611 	unsigned int need_commit_sem:1;
612 	unsigned int skip_release_on_error:1;
613 };
614 
615 /*
616  * items in the extent btree are used to record the objectid of the
617  * owner of the block and the number of references
618  */
619 
620 struct btrfs_extent_item {
621 	__le64 refs;
622 	__le64 generation;
623 	__le64 flags;
624 } __attribute__ ((__packed__));
625 
626 struct btrfs_extent_item_v0 {
627 	__le32 refs;
628 } __attribute__ ((__packed__));
629 
630 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
631 					sizeof(struct btrfs_item))
632 
633 #define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
634 #define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
635 
636 /* following flags only apply to tree blocks */
637 
638 /* use full backrefs for extent pointers in the block */
639 #define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
640 
641 /*
642  * this flag is only used internally by scrub and may be changed at any time
643  * it is only declared here to avoid collisions
644  */
645 #define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
646 
647 struct btrfs_tree_block_info {
648 	struct btrfs_disk_key key;
649 	u8 level;
650 } __attribute__ ((__packed__));
651 
652 struct btrfs_extent_data_ref {
653 	__le64 root;
654 	__le64 objectid;
655 	__le64 offset;
656 	__le32 count;
657 } __attribute__ ((__packed__));
658 
659 struct btrfs_shared_data_ref {
660 	__le32 count;
661 } __attribute__ ((__packed__));
662 
663 struct btrfs_extent_inline_ref {
664 	u8 type;
665 	__le64 offset;
666 } __attribute__ ((__packed__));
667 
668 /* old style backrefs item */
669 struct btrfs_extent_ref_v0 {
670 	__le64 root;
671 	__le64 generation;
672 	__le64 objectid;
673 	__le32 count;
674 } __attribute__ ((__packed__));
675 
676 
677 /* dev extents record free space on individual devices.  The owner
678  * field points back to the chunk allocation mapping tree that allocated
679  * the extent.  The chunk tree uuid field is a way to double check the owner
680  */
681 struct btrfs_dev_extent {
682 	__le64 chunk_tree;
683 	__le64 chunk_objectid;
684 	__le64 chunk_offset;
685 	__le64 length;
686 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
687 } __attribute__ ((__packed__));
688 
689 struct btrfs_inode_ref {
690 	__le64 index;
691 	__le16 name_len;
692 	/* name goes here */
693 } __attribute__ ((__packed__));
694 
695 struct btrfs_inode_extref {
696 	__le64 parent_objectid;
697 	__le64 index;
698 	__le16 name_len;
699 	__u8   name[0];
700 	/* name goes here */
701 } __attribute__ ((__packed__));
702 
703 struct btrfs_timespec {
704 	__le64 sec;
705 	__le32 nsec;
706 } __attribute__ ((__packed__));
707 
708 enum btrfs_compression_type {
709 	BTRFS_COMPRESS_NONE  = 0,
710 	BTRFS_COMPRESS_ZLIB  = 1,
711 	BTRFS_COMPRESS_LZO   = 2,
712 	BTRFS_COMPRESS_TYPES = 2,
713 	BTRFS_COMPRESS_LAST  = 3,
714 };
715 
716 struct btrfs_inode_item {
717 	/* nfs style generation number */
718 	__le64 generation;
719 	/* transid that last touched this inode */
720 	__le64 transid;
721 	__le64 size;
722 	__le64 nbytes;
723 	__le64 block_group;
724 	__le32 nlink;
725 	__le32 uid;
726 	__le32 gid;
727 	__le32 mode;
728 	__le64 rdev;
729 	__le64 flags;
730 
731 	/* modification sequence number for NFS */
732 	__le64 sequence;
733 
734 	/*
735 	 * a little future expansion, for more than this we can
736 	 * just grow the inode item and version it
737 	 */
738 	__le64 reserved[4];
739 	struct btrfs_timespec atime;
740 	struct btrfs_timespec ctime;
741 	struct btrfs_timespec mtime;
742 	struct btrfs_timespec otime;
743 } __attribute__ ((__packed__));
744 
745 struct btrfs_dir_log_item {
746 	__le64 end;
747 } __attribute__ ((__packed__));
748 
749 struct btrfs_dir_item {
750 	struct btrfs_disk_key location;
751 	__le64 transid;
752 	__le16 data_len;
753 	__le16 name_len;
754 	u8 type;
755 } __attribute__ ((__packed__));
756 
757 #define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
758 
759 /*
760  * Internal in-memory flag that a subvolume has been marked for deletion but
761  * still visible as a directory
762  */
763 #define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
764 
765 struct btrfs_root_item {
766 	struct btrfs_inode_item inode;
767 	__le64 generation;
768 	__le64 root_dirid;
769 	__le64 bytenr;
770 	__le64 byte_limit;
771 	__le64 bytes_used;
772 	__le64 last_snapshot;
773 	__le64 flags;
774 	__le32 refs;
775 	struct btrfs_disk_key drop_progress;
776 	u8 drop_level;
777 	u8 level;
778 
779 	/*
780 	 * The following fields appear after subvol_uuids+subvol_times
781 	 * were introduced.
782 	 */
783 
784 	/*
785 	 * This generation number is used to test if the new fields are valid
786 	 * and up to date while reading the root item. Everytime the root item
787 	 * is written out, the "generation" field is copied into this field. If
788 	 * anyone ever mounted the fs with an older kernel, we will have
789 	 * mismatching generation values here and thus must invalidate the
790 	 * new fields. See btrfs_update_root and btrfs_find_last_root for
791 	 * details.
792 	 * the offset of generation_v2 is also used as the start for the memset
793 	 * when invalidating the fields.
794 	 */
795 	__le64 generation_v2;
796 	u8 uuid[BTRFS_UUID_SIZE];
797 	u8 parent_uuid[BTRFS_UUID_SIZE];
798 	u8 received_uuid[BTRFS_UUID_SIZE];
799 	__le64 ctransid; /* updated when an inode changes */
800 	__le64 otransid; /* trans when created */
801 	__le64 stransid; /* trans when sent. non-zero for received subvol */
802 	__le64 rtransid; /* trans when received. non-zero for received subvol */
803 	struct btrfs_timespec ctime;
804 	struct btrfs_timespec otime;
805 	struct btrfs_timespec stime;
806 	struct btrfs_timespec rtime;
807 	__le64 reserved[8]; /* for future */
808 } __attribute__ ((__packed__));
809 
810 /*
811  * this is used for both forward and backward root refs
812  */
813 struct btrfs_root_ref {
814 	__le64 dirid;
815 	__le64 sequence;
816 	__le16 name_len;
817 } __attribute__ ((__packed__));
818 
819 struct btrfs_disk_balance_args {
820 	/*
821 	 * profiles to operate on, single is denoted by
822 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
823 	 */
824 	__le64 profiles;
825 
826 	/* usage filter */
827 	__le64 usage;
828 
829 	/* devid filter */
830 	__le64 devid;
831 
832 	/* devid subset filter [pstart..pend) */
833 	__le64 pstart;
834 	__le64 pend;
835 
836 	/* btrfs virtual address space subset filter [vstart..vend) */
837 	__le64 vstart;
838 	__le64 vend;
839 
840 	/*
841 	 * profile to convert to, single is denoted by
842 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
843 	 */
844 	__le64 target;
845 
846 	/* BTRFS_BALANCE_ARGS_* */
847 	__le64 flags;
848 
849 	/* BTRFS_BALANCE_ARGS_LIMIT value */
850 	__le64 limit;
851 
852 	__le64 unused[7];
853 } __attribute__ ((__packed__));
854 
855 /*
856  * store balance parameters to disk so that balance can be properly
857  * resumed after crash or unmount
858  */
859 struct btrfs_balance_item {
860 	/* BTRFS_BALANCE_* */
861 	__le64 flags;
862 
863 	struct btrfs_disk_balance_args data;
864 	struct btrfs_disk_balance_args meta;
865 	struct btrfs_disk_balance_args sys;
866 
867 	__le64 unused[4];
868 } __attribute__ ((__packed__));
869 
870 #define BTRFS_FILE_EXTENT_INLINE 0
871 #define BTRFS_FILE_EXTENT_REG 1
872 #define BTRFS_FILE_EXTENT_PREALLOC 2
873 
874 struct btrfs_file_extent_item {
875 	/*
876 	 * transaction id that created this extent
877 	 */
878 	__le64 generation;
879 	/*
880 	 * max number of bytes to hold this extent in ram
881 	 * when we split a compressed extent we can't know how big
882 	 * each of the resulting pieces will be.  So, this is
883 	 * an upper limit on the size of the extent in ram instead of
884 	 * an exact limit.
885 	 */
886 	__le64 ram_bytes;
887 
888 	/*
889 	 * 32 bits for the various ways we might encode the data,
890 	 * including compression and encryption.  If any of these
891 	 * are set to something a given disk format doesn't understand
892 	 * it is treated like an incompat flag for reading and writing,
893 	 * but not for stat.
894 	 */
895 	u8 compression;
896 	u8 encryption;
897 	__le16 other_encoding; /* spare for later use */
898 
899 	/* are we inline data or a real extent? */
900 	u8 type;
901 
902 	/*
903 	 * disk space consumed by the extent, checksum blocks are included
904 	 * in these numbers
905 	 *
906 	 * At this offset in the structure, the inline extent data start.
907 	 */
908 	__le64 disk_bytenr;
909 	__le64 disk_num_bytes;
910 	/*
911 	 * the logical offset in file blocks (no csums)
912 	 * this extent record is for.  This allows a file extent to point
913 	 * into the middle of an existing extent on disk, sharing it
914 	 * between two snapshots (useful if some bytes in the middle of the
915 	 * extent have changed
916 	 */
917 	__le64 offset;
918 	/*
919 	 * the logical number of file blocks (no csums included).  This
920 	 * always reflects the size uncompressed and without encoding.
921 	 */
922 	__le64 num_bytes;
923 
924 } __attribute__ ((__packed__));
925 
926 struct btrfs_csum_item {
927 	u8 csum;
928 } __attribute__ ((__packed__));
929 
930 struct btrfs_dev_stats_item {
931 	/*
932 	 * grow this item struct at the end for future enhancements and keep
933 	 * the existing values unchanged
934 	 */
935 	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
936 } __attribute__ ((__packed__));
937 
938 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
939 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
940 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED	0
941 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED		1
942 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED		2
943 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED		3
944 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED		4
945 
946 struct btrfs_dev_replace {
947 	u64 replace_state;	/* see #define above */
948 	u64 time_started;	/* seconds since 1-Jan-1970 */
949 	u64 time_stopped;	/* seconds since 1-Jan-1970 */
950 	atomic64_t num_write_errors;
951 	atomic64_t num_uncorrectable_read_errors;
952 
953 	u64 cursor_left;
954 	u64 committed_cursor_left;
955 	u64 cursor_left_last_write_of_item;
956 	u64 cursor_right;
957 
958 	u64 cont_reading_from_srcdev_mode;	/* see #define above */
959 
960 	int is_valid;
961 	int item_needs_writeback;
962 	struct btrfs_device *srcdev;
963 	struct btrfs_device *tgtdev;
964 
965 	pid_t lock_owner;
966 	atomic_t nesting_level;
967 	struct mutex lock_finishing_cancel_unmount;
968 	struct mutex lock_management_lock;
969 	struct mutex lock;
970 
971 	struct btrfs_scrub_progress scrub_progress;
972 };
973 
974 struct btrfs_dev_replace_item {
975 	/*
976 	 * grow this item struct at the end for future enhancements and keep
977 	 * the existing values unchanged
978 	 */
979 	__le64 src_devid;
980 	__le64 cursor_left;
981 	__le64 cursor_right;
982 	__le64 cont_reading_from_srcdev_mode;
983 
984 	__le64 replace_state;
985 	__le64 time_started;
986 	__le64 time_stopped;
987 	__le64 num_write_errors;
988 	__le64 num_uncorrectable_read_errors;
989 } __attribute__ ((__packed__));
990 
991 /* different types of block groups (and chunks) */
992 #define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
993 #define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
994 #define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
995 #define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
996 #define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
997 #define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
998 #define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
999 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
1000 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
1001 #define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
1002 					 BTRFS_SPACE_INFO_GLOBAL_RSV)
1003 
1004 enum btrfs_raid_types {
1005 	BTRFS_RAID_RAID10,
1006 	BTRFS_RAID_RAID1,
1007 	BTRFS_RAID_DUP,
1008 	BTRFS_RAID_RAID0,
1009 	BTRFS_RAID_SINGLE,
1010 	BTRFS_RAID_RAID5,
1011 	BTRFS_RAID_RAID6,
1012 	BTRFS_NR_RAID_TYPES
1013 };
1014 
1015 #define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
1016 					 BTRFS_BLOCK_GROUP_SYSTEM |  \
1017 					 BTRFS_BLOCK_GROUP_METADATA)
1018 
1019 #define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
1020 					 BTRFS_BLOCK_GROUP_RAID1 |   \
1021 					 BTRFS_BLOCK_GROUP_RAID5 |   \
1022 					 BTRFS_BLOCK_GROUP_RAID6 |   \
1023 					 BTRFS_BLOCK_GROUP_DUP |     \
1024 					 BTRFS_BLOCK_GROUP_RAID10)
1025 #define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
1026 					 BTRFS_BLOCK_GROUP_RAID6)
1027 
1028 /*
1029  * We need a bit for restriper to be able to tell when chunks of type
1030  * SINGLE are available.  This "extended" profile format is used in
1031  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1032  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
1033  * to avoid remappings between two formats in future.
1034  */
1035 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
1036 
1037 /*
1038  * A fake block group type that is used to communicate global block reserve
1039  * size to userspace via the SPACE_INFO ioctl.
1040  */
1041 #define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
1042 
1043 #define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1044 					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1045 
1046 static inline u64 chunk_to_extended(u64 flags)
1047 {
1048 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1049 		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1050 
1051 	return flags;
1052 }
1053 static inline u64 extended_to_chunk(u64 flags)
1054 {
1055 	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1056 }
1057 
1058 struct btrfs_block_group_item {
1059 	__le64 used;
1060 	__le64 chunk_objectid;
1061 	__le64 flags;
1062 } __attribute__ ((__packed__));
1063 
1064 #define BTRFS_QGROUP_LEVEL_SHIFT		48
1065 static inline u64 btrfs_qgroup_level(u64 qgroupid)
1066 {
1067 	return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
1068 }
1069 
1070 /*
1071  * is subvolume quota turned on?
1072  */
1073 #define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
1074 /*
1075  * RESCAN is set during the initialization phase
1076  */
1077 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
1078 /*
1079  * Some qgroup entries are known to be out of date,
1080  * either because the configuration has changed in a way that
1081  * makes a rescan necessary, or because the fs has been mounted
1082  * with a non-qgroup-aware version.
1083  * Turning qouta off and on again makes it inconsistent, too.
1084  */
1085 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
1086 
1087 #define BTRFS_QGROUP_STATUS_VERSION        1
1088 
1089 struct btrfs_qgroup_status_item {
1090 	__le64 version;
1091 	/*
1092 	 * the generation is updated during every commit. As older
1093 	 * versions of btrfs are not aware of qgroups, it will be
1094 	 * possible to detect inconsistencies by checking the
1095 	 * generation on mount time
1096 	 */
1097 	__le64 generation;
1098 
1099 	/* flag definitions see above */
1100 	__le64 flags;
1101 
1102 	/*
1103 	 * only used during scanning to record the progress
1104 	 * of the scan. It contains a logical address
1105 	 */
1106 	__le64 rescan;
1107 } __attribute__ ((__packed__));
1108 
1109 struct btrfs_qgroup_info_item {
1110 	__le64 generation;
1111 	__le64 rfer;
1112 	__le64 rfer_cmpr;
1113 	__le64 excl;
1114 	__le64 excl_cmpr;
1115 } __attribute__ ((__packed__));
1116 
1117 /* flags definition for qgroup limits */
1118 #define BTRFS_QGROUP_LIMIT_MAX_RFER	(1ULL << 0)
1119 #define BTRFS_QGROUP_LIMIT_MAX_EXCL	(1ULL << 1)
1120 #define BTRFS_QGROUP_LIMIT_RSV_RFER	(1ULL << 2)
1121 #define BTRFS_QGROUP_LIMIT_RSV_EXCL	(1ULL << 3)
1122 #define BTRFS_QGROUP_LIMIT_RFER_CMPR	(1ULL << 4)
1123 #define BTRFS_QGROUP_LIMIT_EXCL_CMPR	(1ULL << 5)
1124 
1125 struct btrfs_qgroup_limit_item {
1126 	/*
1127 	 * only updated when any of the other values change
1128 	 */
1129 	__le64 flags;
1130 	__le64 max_rfer;
1131 	__le64 max_excl;
1132 	__le64 rsv_rfer;
1133 	__le64 rsv_excl;
1134 } __attribute__ ((__packed__));
1135 
1136 /* For raid type sysfs entries */
1137 struct raid_kobject {
1138 	int raid_type;
1139 	struct kobject kobj;
1140 };
1141 
1142 struct btrfs_space_info {
1143 	spinlock_t lock;
1144 
1145 	u64 total_bytes;	/* total bytes in the space,
1146 				   this doesn't take mirrors into account */
1147 	u64 bytes_used;		/* total bytes used,
1148 				   this doesn't take mirrors into account */
1149 	u64 bytes_pinned;	/* total bytes pinned, will be freed when the
1150 				   transaction finishes */
1151 	u64 bytes_reserved;	/* total bytes the allocator has reserved for
1152 				   current allocations */
1153 	u64 bytes_may_use;	/* number of bytes that may be used for
1154 				   delalloc/allocations */
1155 	u64 bytes_readonly;	/* total bytes that are read only */
1156 
1157 	unsigned int full:1;	/* indicates that we cannot allocate any more
1158 				   chunks for this space */
1159 	unsigned int chunk_alloc:1;	/* set if we are allocating a chunk */
1160 
1161 	unsigned int flush:1;		/* set if we are trying to make space */
1162 
1163 	unsigned int force_alloc;	/* set if we need to force a chunk
1164 					   alloc for this space */
1165 
1166 	u64 disk_used;		/* total bytes used on disk */
1167 	u64 disk_total;		/* total bytes on disk, takes mirrors into
1168 				   account */
1169 
1170 	u64 flags;
1171 
1172 	/*
1173 	 * bytes_pinned is kept in line with what is actually pinned, as in
1174 	 * we've called update_block_group and dropped the bytes_used counter
1175 	 * and increased the bytes_pinned counter.  However this means that
1176 	 * bytes_pinned does not reflect the bytes that will be pinned once the
1177 	 * delayed refs are flushed, so this counter is inc'ed everytime we call
1178 	 * btrfs_free_extent so it is a realtime count of what will be freed
1179 	 * once the transaction is committed.  It will be zero'ed everytime the
1180 	 * transaction commits.
1181 	 */
1182 	struct percpu_counter total_bytes_pinned;
1183 
1184 	struct list_head list;
1185 	/* Protected by the spinlock 'lock'. */
1186 	struct list_head ro_bgs;
1187 
1188 	struct rw_semaphore groups_sem;
1189 	/* for block groups in our same type */
1190 	struct list_head block_groups[BTRFS_NR_RAID_TYPES];
1191 	wait_queue_head_t wait;
1192 
1193 	struct kobject kobj;
1194 	struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES];
1195 };
1196 
1197 #define	BTRFS_BLOCK_RSV_GLOBAL		1
1198 #define	BTRFS_BLOCK_RSV_DELALLOC	2
1199 #define	BTRFS_BLOCK_RSV_TRANS		3
1200 #define	BTRFS_BLOCK_RSV_CHUNK		4
1201 #define	BTRFS_BLOCK_RSV_DELOPS		5
1202 #define	BTRFS_BLOCK_RSV_EMPTY		6
1203 #define	BTRFS_BLOCK_RSV_TEMP		7
1204 
1205 struct btrfs_block_rsv {
1206 	u64 size;
1207 	u64 reserved;
1208 	struct btrfs_space_info *space_info;
1209 	spinlock_t lock;
1210 	unsigned short full;
1211 	unsigned short type;
1212 	unsigned short failfast;
1213 };
1214 
1215 /*
1216  * free clusters are used to claim free space in relatively large chunks,
1217  * allowing us to do less seeky writes.  They are used for all metadata
1218  * allocations and data allocations in ssd mode.
1219  */
1220 struct btrfs_free_cluster {
1221 	spinlock_t lock;
1222 	spinlock_t refill_lock;
1223 	struct rb_root root;
1224 
1225 	/* largest extent in this cluster */
1226 	u64 max_size;
1227 
1228 	/* first extent starting offset */
1229 	u64 window_start;
1230 
1231 	struct btrfs_block_group_cache *block_group;
1232 	/*
1233 	 * when a cluster is allocated from a block group, we put the
1234 	 * cluster onto a list in the block group so that it can
1235 	 * be freed before the block group is freed.
1236 	 */
1237 	struct list_head block_group_list;
1238 };
1239 
1240 enum btrfs_caching_type {
1241 	BTRFS_CACHE_NO		= 0,
1242 	BTRFS_CACHE_STARTED	= 1,
1243 	BTRFS_CACHE_FAST	= 2,
1244 	BTRFS_CACHE_FINISHED	= 3,
1245 	BTRFS_CACHE_ERROR	= 4,
1246 };
1247 
1248 enum btrfs_disk_cache_state {
1249 	BTRFS_DC_WRITTEN	= 0,
1250 	BTRFS_DC_ERROR		= 1,
1251 	BTRFS_DC_CLEAR		= 2,
1252 	BTRFS_DC_SETUP		= 3,
1253 };
1254 
1255 struct btrfs_caching_control {
1256 	struct list_head list;
1257 	struct mutex mutex;
1258 	wait_queue_head_t wait;
1259 	struct btrfs_work work;
1260 	struct btrfs_block_group_cache *block_group;
1261 	u64 progress;
1262 	atomic_t count;
1263 };
1264 
1265 struct btrfs_io_ctl {
1266 	void *cur, *orig;
1267 	struct page *page;
1268 	struct page **pages;
1269 	struct btrfs_root *root;
1270 	struct inode *inode;
1271 	unsigned long size;
1272 	int index;
1273 	int num_pages;
1274 	int entries;
1275 	int bitmaps;
1276 	unsigned check_crcs:1;
1277 };
1278 
1279 struct btrfs_block_group_cache {
1280 	struct btrfs_key key;
1281 	struct btrfs_block_group_item item;
1282 	struct btrfs_fs_info *fs_info;
1283 	struct inode *inode;
1284 	spinlock_t lock;
1285 	u64 pinned;
1286 	u64 reserved;
1287 	u64 delalloc_bytes;
1288 	u64 bytes_super;
1289 	u64 flags;
1290 	u64 sectorsize;
1291 	u64 cache_generation;
1292 
1293 	/*
1294 	 * It is just used for the delayed data space allocation because
1295 	 * only the data space allocation and the relative metadata update
1296 	 * can be done cross the transaction.
1297 	 */
1298 	struct rw_semaphore data_rwsem;
1299 
1300 	/* for raid56, this is a full stripe, without parity */
1301 	unsigned long full_stripe_len;
1302 
1303 	unsigned int ro:1;
1304 	unsigned int iref:1;
1305 	unsigned int has_caching_ctl:1;
1306 	unsigned int removed:1;
1307 
1308 	int disk_cache_state;
1309 
1310 	/* cache tracking stuff */
1311 	int cached;
1312 	struct btrfs_caching_control *caching_ctl;
1313 	u64 last_byte_to_unpin;
1314 
1315 	struct btrfs_space_info *space_info;
1316 
1317 	/* free space cache stuff */
1318 	struct btrfs_free_space_ctl *free_space_ctl;
1319 
1320 	/* block group cache stuff */
1321 	struct rb_node cache_node;
1322 
1323 	/* for block groups in the same raid type */
1324 	struct list_head list;
1325 
1326 	/* usage count */
1327 	atomic_t count;
1328 
1329 	/* List of struct btrfs_free_clusters for this block group.
1330 	 * Today it will only have one thing on it, but that may change
1331 	 */
1332 	struct list_head cluster_list;
1333 
1334 	/* For delayed block group creation or deletion of empty block groups */
1335 	struct list_head bg_list;
1336 
1337 	/* For read-only block groups */
1338 	struct list_head ro_list;
1339 
1340 	atomic_t trimming;
1341 
1342 	/* For dirty block groups */
1343 	struct list_head dirty_list;
1344 	struct list_head io_list;
1345 
1346 	struct btrfs_io_ctl io_ctl;
1347 };
1348 
1349 /* delayed seq elem */
1350 struct seq_list {
1351 	struct list_head list;
1352 	u64 seq;
1353 };
1354 
1355 #define SEQ_LIST_INIT(name)	{ .list = LIST_HEAD_INIT((name).list), .seq = 0 }
1356 
1357 enum btrfs_orphan_cleanup_state {
1358 	ORPHAN_CLEANUP_STARTED	= 1,
1359 	ORPHAN_CLEANUP_DONE	= 2,
1360 };
1361 
1362 /* used by the raid56 code to lock stripes for read/modify/write */
1363 struct btrfs_stripe_hash {
1364 	struct list_head hash_list;
1365 	wait_queue_head_t wait;
1366 	spinlock_t lock;
1367 };
1368 
1369 /* used by the raid56 code to lock stripes for read/modify/write */
1370 struct btrfs_stripe_hash_table {
1371 	struct list_head stripe_cache;
1372 	spinlock_t cache_lock;
1373 	int cache_size;
1374 	struct btrfs_stripe_hash table[];
1375 };
1376 
1377 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
1378 
1379 void btrfs_init_async_reclaim_work(struct work_struct *work);
1380 
1381 /* fs_info */
1382 struct reloc_control;
1383 struct btrfs_device;
1384 struct btrfs_fs_devices;
1385 struct btrfs_balance_control;
1386 struct btrfs_delayed_root;
1387 struct btrfs_fs_info {
1388 	u8 fsid[BTRFS_FSID_SIZE];
1389 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1390 	struct btrfs_root *extent_root;
1391 	struct btrfs_root *tree_root;
1392 	struct btrfs_root *chunk_root;
1393 	struct btrfs_root *dev_root;
1394 	struct btrfs_root *fs_root;
1395 	struct btrfs_root *csum_root;
1396 	struct btrfs_root *quota_root;
1397 	struct btrfs_root *uuid_root;
1398 
1399 	/* the log root tree is a directory of all the other log roots */
1400 	struct btrfs_root *log_root_tree;
1401 
1402 	spinlock_t fs_roots_radix_lock;
1403 	struct radix_tree_root fs_roots_radix;
1404 
1405 	/* block group cache stuff */
1406 	spinlock_t block_group_cache_lock;
1407 	u64 first_logical_byte;
1408 	struct rb_root block_group_cache_tree;
1409 
1410 	/* keep track of unallocated space */
1411 	spinlock_t free_chunk_lock;
1412 	u64 free_chunk_space;
1413 
1414 	struct extent_io_tree freed_extents[2];
1415 	struct extent_io_tree *pinned_extents;
1416 
1417 	/* logical->physical extent mapping */
1418 	struct btrfs_mapping_tree mapping_tree;
1419 
1420 	/*
1421 	 * block reservation for extent, checksum, root tree and
1422 	 * delayed dir index item
1423 	 */
1424 	struct btrfs_block_rsv global_block_rsv;
1425 	/* block reservation for delay allocation */
1426 	struct btrfs_block_rsv delalloc_block_rsv;
1427 	/* block reservation for metadata operations */
1428 	struct btrfs_block_rsv trans_block_rsv;
1429 	/* block reservation for chunk tree */
1430 	struct btrfs_block_rsv chunk_block_rsv;
1431 	/* block reservation for delayed operations */
1432 	struct btrfs_block_rsv delayed_block_rsv;
1433 
1434 	struct btrfs_block_rsv empty_block_rsv;
1435 
1436 	u64 generation;
1437 	u64 last_trans_committed;
1438 	u64 avg_delayed_ref_runtime;
1439 
1440 	/*
1441 	 * this is updated to the current trans every time a full commit
1442 	 * is required instead of the faster short fsync log commits
1443 	 */
1444 	u64 last_trans_log_full_commit;
1445 	unsigned long mount_opt;
1446 	/*
1447 	 * Track requests for actions that need to be done during transaction
1448 	 * commit (like for some mount options).
1449 	 */
1450 	unsigned long pending_changes;
1451 	unsigned long compress_type:4;
1452 	int commit_interval;
1453 	/*
1454 	 * It is a suggestive number, the read side is safe even it gets a
1455 	 * wrong number because we will write out the data into a regular
1456 	 * extent. The write side(mount/remount) is under ->s_umount lock,
1457 	 * so it is also safe.
1458 	 */
1459 	u64 max_inline;
1460 	/*
1461 	 * Protected by ->chunk_mutex and sb->s_umount.
1462 	 *
1463 	 * The reason that we use two lock to protect it is because only
1464 	 * remount and mount operations can change it and these two operations
1465 	 * are under sb->s_umount, but the read side (chunk allocation) can not
1466 	 * acquire sb->s_umount or the deadlock would happen. So we use two
1467 	 * locks to protect it. On the write side, we must acquire two locks,
1468 	 * and on the read side, we just need acquire one of them.
1469 	 */
1470 	u64 alloc_start;
1471 	struct btrfs_transaction *running_transaction;
1472 	wait_queue_head_t transaction_throttle;
1473 	wait_queue_head_t transaction_wait;
1474 	wait_queue_head_t transaction_blocked_wait;
1475 	wait_queue_head_t async_submit_wait;
1476 
1477 	/*
1478 	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
1479 	 * when they are updated.
1480 	 *
1481 	 * Because we do not clear the flags for ever, so we needn't use
1482 	 * the lock on the read side.
1483 	 *
1484 	 * We also needn't use the lock when we mount the fs, because
1485 	 * there is no other task which will update the flag.
1486 	 */
1487 	spinlock_t super_lock;
1488 	struct btrfs_super_block *super_copy;
1489 	struct btrfs_super_block *super_for_commit;
1490 	struct block_device *__bdev;
1491 	struct super_block *sb;
1492 	struct inode *btree_inode;
1493 	struct backing_dev_info bdi;
1494 	struct mutex tree_log_mutex;
1495 	struct mutex transaction_kthread_mutex;
1496 	struct mutex cleaner_mutex;
1497 	struct mutex chunk_mutex;
1498 	struct mutex volume_mutex;
1499 
1500 	/*
1501 	 * this is taken to make sure we don't set block groups ro after
1502 	 * the free space cache has been allocated on them
1503 	 */
1504 	struct mutex ro_block_group_mutex;
1505 
1506 	/* this is used during read/modify/write to make sure
1507 	 * no two ios are trying to mod the same stripe at the same
1508 	 * time
1509 	 */
1510 	struct btrfs_stripe_hash_table *stripe_hash_table;
1511 
1512 	/*
1513 	 * this protects the ordered operations list only while we are
1514 	 * processing all of the entries on it.  This way we make
1515 	 * sure the commit code doesn't find the list temporarily empty
1516 	 * because another function happens to be doing non-waiting preflush
1517 	 * before jumping into the main commit.
1518 	 */
1519 	struct mutex ordered_operations_mutex;
1520 
1521 	/*
1522 	 * Same as ordered_operations_mutex except this is for ordered extents
1523 	 * and not the operations.
1524 	 */
1525 	struct mutex ordered_extent_flush_mutex;
1526 
1527 	struct rw_semaphore commit_root_sem;
1528 
1529 	struct rw_semaphore cleanup_work_sem;
1530 
1531 	struct rw_semaphore subvol_sem;
1532 	struct srcu_struct subvol_srcu;
1533 
1534 	spinlock_t trans_lock;
1535 	/*
1536 	 * the reloc mutex goes with the trans lock, it is taken
1537 	 * during commit to protect us from the relocation code
1538 	 */
1539 	struct mutex reloc_mutex;
1540 
1541 	struct list_head trans_list;
1542 	struct list_head dead_roots;
1543 	struct list_head caching_block_groups;
1544 
1545 	spinlock_t delayed_iput_lock;
1546 	struct list_head delayed_iputs;
1547 	struct rw_semaphore delayed_iput_sem;
1548 
1549 	/* this protects tree_mod_seq_list */
1550 	spinlock_t tree_mod_seq_lock;
1551 	atomic64_t tree_mod_seq;
1552 	struct list_head tree_mod_seq_list;
1553 
1554 	/* this protects tree_mod_log */
1555 	rwlock_t tree_mod_log_lock;
1556 	struct rb_root tree_mod_log;
1557 
1558 	atomic_t nr_async_submits;
1559 	atomic_t async_submit_draining;
1560 	atomic_t nr_async_bios;
1561 	atomic_t async_delalloc_pages;
1562 	atomic_t open_ioctl_trans;
1563 
1564 	/*
1565 	 * this is used to protect the following list -- ordered_roots.
1566 	 */
1567 	spinlock_t ordered_root_lock;
1568 
1569 	/*
1570 	 * all fs/file tree roots in which there are data=ordered extents
1571 	 * pending writeback are added into this list.
1572 	 *
1573 	 * these can span multiple transactions and basically include
1574 	 * every dirty data page that isn't from nodatacow
1575 	 */
1576 	struct list_head ordered_roots;
1577 
1578 	struct mutex delalloc_root_mutex;
1579 	spinlock_t delalloc_root_lock;
1580 	/* all fs/file tree roots that have delalloc inodes. */
1581 	struct list_head delalloc_roots;
1582 
1583 	/*
1584 	 * there is a pool of worker threads for checksumming during writes
1585 	 * and a pool for checksumming after reads.  This is because readers
1586 	 * can run with FS locks held, and the writers may be waiting for
1587 	 * those locks.  We don't want ordering in the pending list to cause
1588 	 * deadlocks, and so the two are serviced separately.
1589 	 *
1590 	 * A third pool does submit_bio to avoid deadlocking with the other
1591 	 * two
1592 	 */
1593 	struct btrfs_workqueue *workers;
1594 	struct btrfs_workqueue *delalloc_workers;
1595 	struct btrfs_workqueue *flush_workers;
1596 	struct btrfs_workqueue *endio_workers;
1597 	struct btrfs_workqueue *endio_meta_workers;
1598 	struct btrfs_workqueue *endio_raid56_workers;
1599 	struct btrfs_workqueue *endio_repair_workers;
1600 	struct btrfs_workqueue *rmw_workers;
1601 	struct btrfs_workqueue *endio_meta_write_workers;
1602 	struct btrfs_workqueue *endio_write_workers;
1603 	struct btrfs_workqueue *endio_freespace_worker;
1604 	struct btrfs_workqueue *submit_workers;
1605 	struct btrfs_workqueue *caching_workers;
1606 	struct btrfs_workqueue *readahead_workers;
1607 
1608 	/*
1609 	 * fixup workers take dirty pages that didn't properly go through
1610 	 * the cow mechanism and make them safe to write.  It happens
1611 	 * for the sys_munmap function call path
1612 	 */
1613 	struct btrfs_workqueue *fixup_workers;
1614 	struct btrfs_workqueue *delayed_workers;
1615 
1616 	/* the extent workers do delayed refs on the extent allocation tree */
1617 	struct btrfs_workqueue *extent_workers;
1618 	struct task_struct *transaction_kthread;
1619 	struct task_struct *cleaner_kthread;
1620 	int thread_pool_size;
1621 
1622 	struct kobject *space_info_kobj;
1623 	int do_barriers;
1624 	int closing;
1625 	int log_root_recovering;
1626 	int open;
1627 
1628 	u64 total_pinned;
1629 
1630 	/* used to keep from writing metadata until there is a nice batch */
1631 	struct percpu_counter dirty_metadata_bytes;
1632 	struct percpu_counter delalloc_bytes;
1633 	s32 dirty_metadata_batch;
1634 	s32 delalloc_batch;
1635 
1636 	struct list_head dirty_cowonly_roots;
1637 
1638 	struct btrfs_fs_devices *fs_devices;
1639 
1640 	/*
1641 	 * the space_info list is almost entirely read only.  It only changes
1642 	 * when we add a new raid type to the FS, and that happens
1643 	 * very rarely.  RCU is used to protect it.
1644 	 */
1645 	struct list_head space_info;
1646 
1647 	struct btrfs_space_info *data_sinfo;
1648 
1649 	struct reloc_control *reloc_ctl;
1650 
1651 	/* data_alloc_cluster is only used in ssd mode */
1652 	struct btrfs_free_cluster data_alloc_cluster;
1653 
1654 	/* all metadata allocations go through this cluster */
1655 	struct btrfs_free_cluster meta_alloc_cluster;
1656 
1657 	/* auto defrag inodes go here */
1658 	spinlock_t defrag_inodes_lock;
1659 	struct rb_root defrag_inodes;
1660 	atomic_t defrag_running;
1661 
1662 	/* Used to protect avail_{data, metadata, system}_alloc_bits */
1663 	seqlock_t profiles_lock;
1664 	/*
1665 	 * these three are in extended format (availability of single
1666 	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
1667 	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
1668 	 */
1669 	u64 avail_data_alloc_bits;
1670 	u64 avail_metadata_alloc_bits;
1671 	u64 avail_system_alloc_bits;
1672 
1673 	/* restriper state */
1674 	spinlock_t balance_lock;
1675 	struct mutex balance_mutex;
1676 	atomic_t balance_running;
1677 	atomic_t balance_pause_req;
1678 	atomic_t balance_cancel_req;
1679 	struct btrfs_balance_control *balance_ctl;
1680 	wait_queue_head_t balance_wait_q;
1681 
1682 	unsigned data_chunk_allocations;
1683 	unsigned metadata_ratio;
1684 
1685 	void *bdev_holder;
1686 
1687 	/* private scrub information */
1688 	struct mutex scrub_lock;
1689 	atomic_t scrubs_running;
1690 	atomic_t scrub_pause_req;
1691 	atomic_t scrubs_paused;
1692 	atomic_t scrub_cancel_req;
1693 	wait_queue_head_t scrub_pause_wait;
1694 	int scrub_workers_refcnt;
1695 	struct btrfs_workqueue *scrub_workers;
1696 	struct btrfs_workqueue *scrub_wr_completion_workers;
1697 	struct btrfs_workqueue *scrub_nocow_workers;
1698 	struct btrfs_workqueue *scrub_parity_workers;
1699 
1700 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1701 	u32 check_integrity_print_mask;
1702 #endif
1703 	/*
1704 	 * quota information
1705 	 */
1706 	unsigned int quota_enabled:1;
1707 
1708 	/*
1709 	 * quota_enabled only changes state after a commit. This holds the
1710 	 * next state.
1711 	 */
1712 	unsigned int pending_quota_state:1;
1713 
1714 	/* is qgroup tracking in a consistent state? */
1715 	u64 qgroup_flags;
1716 
1717 	/* holds configuration and tracking. Protected by qgroup_lock */
1718 	struct rb_root qgroup_tree;
1719 	struct rb_root qgroup_op_tree;
1720 	spinlock_t qgroup_lock;
1721 	spinlock_t qgroup_op_lock;
1722 	atomic_t qgroup_op_seq;
1723 
1724 	/*
1725 	 * used to avoid frequently calling ulist_alloc()/ulist_free()
1726 	 * when doing qgroup accounting, it must be protected by qgroup_lock.
1727 	 */
1728 	struct ulist *qgroup_ulist;
1729 
1730 	/* protect user change for quota operations */
1731 	struct mutex qgroup_ioctl_lock;
1732 
1733 	/* list of dirty qgroups to be written at next commit */
1734 	struct list_head dirty_qgroups;
1735 
1736 	/* used by qgroup for an efficient tree traversal */
1737 	u64 qgroup_seq;
1738 
1739 	/* qgroup rescan items */
1740 	struct mutex qgroup_rescan_lock; /* protects the progress item */
1741 	struct btrfs_key qgroup_rescan_progress;
1742 	struct btrfs_workqueue *qgroup_rescan_workers;
1743 	struct completion qgroup_rescan_completion;
1744 	struct btrfs_work qgroup_rescan_work;
1745 
1746 	/* filesystem state */
1747 	unsigned long fs_state;
1748 
1749 	struct btrfs_delayed_root *delayed_root;
1750 
1751 	/* readahead tree */
1752 	spinlock_t reada_lock;
1753 	struct radix_tree_root reada_tree;
1754 
1755 	/* Extent buffer radix tree */
1756 	spinlock_t buffer_lock;
1757 	struct radix_tree_root buffer_radix;
1758 
1759 	/* next backup root to be overwritten */
1760 	int backup_root_index;
1761 
1762 	int num_tolerated_disk_barrier_failures;
1763 
1764 	/* device replace state */
1765 	struct btrfs_dev_replace dev_replace;
1766 
1767 	atomic_t mutually_exclusive_operation_running;
1768 
1769 	struct percpu_counter bio_counter;
1770 	wait_queue_head_t replace_wait;
1771 
1772 	struct semaphore uuid_tree_rescan_sem;
1773 	unsigned int update_uuid_tree_gen:1;
1774 
1775 	/* Used to reclaim the metadata space in the background. */
1776 	struct work_struct async_reclaim_work;
1777 
1778 	spinlock_t unused_bgs_lock;
1779 	struct list_head unused_bgs;
1780 	struct mutex unused_bg_unpin_mutex;
1781 
1782 	/* For btrfs to record security options */
1783 	struct security_mnt_opts security_opts;
1784 
1785 	/*
1786 	 * Chunks that can't be freed yet (under a trim/discard operation)
1787 	 * and will be latter freed. Protected by fs_info->chunk_mutex.
1788 	 */
1789 	struct list_head pinned_chunks;
1790 };
1791 
1792 struct btrfs_subvolume_writers {
1793 	struct percpu_counter	counter;
1794 	wait_queue_head_t	wait;
1795 };
1796 
1797 /*
1798  * The state of btrfs root
1799  */
1800 /*
1801  * btrfs_record_root_in_trans is a multi-step process,
1802  * and it can race with the balancing code.   But the
1803  * race is very small, and only the first time the root
1804  * is added to each transaction.  So IN_TRANS_SETUP
1805  * is used to tell us when more checks are required
1806  */
1807 #define BTRFS_ROOT_IN_TRANS_SETUP	0
1808 #define BTRFS_ROOT_REF_COWS		1
1809 #define BTRFS_ROOT_TRACK_DIRTY		2
1810 #define BTRFS_ROOT_IN_RADIX		3
1811 #define BTRFS_ROOT_DUMMY_ROOT		4
1812 #define BTRFS_ROOT_ORPHAN_ITEM_INSERTED	5
1813 #define BTRFS_ROOT_DEFRAG_RUNNING	6
1814 #define BTRFS_ROOT_FORCE_COW		7
1815 #define BTRFS_ROOT_MULTI_LOG_TASKS	8
1816 #define BTRFS_ROOT_DIRTY		9
1817 
1818 /*
1819  * in ram representation of the tree.  extent_root is used for all allocations
1820  * and for the extent tree extent_root root.
1821  */
1822 struct btrfs_root {
1823 	struct extent_buffer *node;
1824 
1825 	struct extent_buffer *commit_root;
1826 	struct btrfs_root *log_root;
1827 	struct btrfs_root *reloc_root;
1828 
1829 	unsigned long state;
1830 	struct btrfs_root_item root_item;
1831 	struct btrfs_key root_key;
1832 	struct btrfs_fs_info *fs_info;
1833 	struct extent_io_tree dirty_log_pages;
1834 
1835 	struct mutex objectid_mutex;
1836 
1837 	spinlock_t accounting_lock;
1838 	struct btrfs_block_rsv *block_rsv;
1839 
1840 	/* free ino cache stuff */
1841 	struct btrfs_free_space_ctl *free_ino_ctl;
1842 	enum btrfs_caching_type ino_cache_state;
1843 	spinlock_t ino_cache_lock;
1844 	wait_queue_head_t ino_cache_wait;
1845 	struct btrfs_free_space_ctl *free_ino_pinned;
1846 	u64 ino_cache_progress;
1847 	struct inode *ino_cache_inode;
1848 
1849 	struct mutex log_mutex;
1850 	wait_queue_head_t log_writer_wait;
1851 	wait_queue_head_t log_commit_wait[2];
1852 	struct list_head log_ctxs[2];
1853 	atomic_t log_writers;
1854 	atomic_t log_commit[2];
1855 	atomic_t log_batch;
1856 	int log_transid;
1857 	/* No matter the commit succeeds or not*/
1858 	int log_transid_committed;
1859 	/* Just be updated when the commit succeeds. */
1860 	int last_log_commit;
1861 	pid_t log_start_pid;
1862 
1863 	u64 objectid;
1864 	u64 last_trans;
1865 
1866 	/* data allocations are done in sectorsize units */
1867 	u32 sectorsize;
1868 
1869 	/* node allocations are done in nodesize units */
1870 	u32 nodesize;
1871 
1872 	u32 stripesize;
1873 
1874 	u32 type;
1875 
1876 	u64 highest_objectid;
1877 
1878 	/* only used with CONFIG_BTRFS_FS_RUN_SANITY_TESTS is enabled */
1879 	u64 alloc_bytenr;
1880 
1881 	u64 defrag_trans_start;
1882 	struct btrfs_key defrag_progress;
1883 	struct btrfs_key defrag_max;
1884 	char *name;
1885 
1886 	/* the dirty list is only used by non-reference counted roots */
1887 	struct list_head dirty_list;
1888 
1889 	struct list_head root_list;
1890 
1891 	spinlock_t log_extents_lock[2];
1892 	struct list_head logged_list[2];
1893 
1894 	spinlock_t orphan_lock;
1895 	atomic_t orphan_inodes;
1896 	struct btrfs_block_rsv *orphan_block_rsv;
1897 	int orphan_cleanup_state;
1898 
1899 	spinlock_t inode_lock;
1900 	/* red-black tree that keeps track of in-memory inodes */
1901 	struct rb_root inode_tree;
1902 
1903 	/*
1904 	 * radix tree that keeps track of delayed nodes of every inode,
1905 	 * protected by inode_lock
1906 	 */
1907 	struct radix_tree_root delayed_nodes_tree;
1908 	/*
1909 	 * right now this just gets used so that a root has its own devid
1910 	 * for stat.  It may be used for more later
1911 	 */
1912 	dev_t anon_dev;
1913 
1914 	spinlock_t root_item_lock;
1915 	atomic_t refs;
1916 
1917 	struct mutex delalloc_mutex;
1918 	spinlock_t delalloc_lock;
1919 	/*
1920 	 * all of the inodes that have delalloc bytes.  It is possible for
1921 	 * this list to be empty even when there is still dirty data=ordered
1922 	 * extents waiting to finish IO.
1923 	 */
1924 	struct list_head delalloc_inodes;
1925 	struct list_head delalloc_root;
1926 	u64 nr_delalloc_inodes;
1927 
1928 	struct mutex ordered_extent_mutex;
1929 	/*
1930 	 * this is used by the balancing code to wait for all the pending
1931 	 * ordered extents
1932 	 */
1933 	spinlock_t ordered_extent_lock;
1934 
1935 	/*
1936 	 * all of the data=ordered extents pending writeback
1937 	 * these can span multiple transactions and basically include
1938 	 * every dirty data page that isn't from nodatacow
1939 	 */
1940 	struct list_head ordered_extents;
1941 	struct list_head ordered_root;
1942 	u64 nr_ordered_extents;
1943 
1944 	/*
1945 	 * Number of currently running SEND ioctls to prevent
1946 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1947 	 */
1948 	int send_in_progress;
1949 	struct btrfs_subvolume_writers *subv_writers;
1950 	atomic_t will_be_snapshoted;
1951 };
1952 
1953 struct btrfs_ioctl_defrag_range_args {
1954 	/* start of the defrag operation */
1955 	__u64 start;
1956 
1957 	/* number of bytes to defrag, use (u64)-1 to say all */
1958 	__u64 len;
1959 
1960 	/*
1961 	 * flags for the operation, which can include turning
1962 	 * on compression for this one defrag
1963 	 */
1964 	__u64 flags;
1965 
1966 	/*
1967 	 * any extent bigger than this will be considered
1968 	 * already defragged.  Use 0 to take the kernel default
1969 	 * Use 1 to say every single extent must be rewritten
1970 	 */
1971 	__u32 extent_thresh;
1972 
1973 	/*
1974 	 * which compression method to use if turning on compression
1975 	 * for this defrag operation.  If unspecified, zlib will
1976 	 * be used
1977 	 */
1978 	__u32 compress_type;
1979 
1980 	/* spare for later */
1981 	__u32 unused[4];
1982 };
1983 
1984 
1985 /*
1986  * inode items have the data typically returned from stat and store other
1987  * info about object characteristics.  There is one for every file and dir in
1988  * the FS
1989  */
1990 #define BTRFS_INODE_ITEM_KEY		1
1991 #define BTRFS_INODE_REF_KEY		12
1992 #define BTRFS_INODE_EXTREF_KEY		13
1993 #define BTRFS_XATTR_ITEM_KEY		24
1994 #define BTRFS_ORPHAN_ITEM_KEY		48
1995 /* reserve 2-15 close to the inode for later flexibility */
1996 
1997 /*
1998  * dir items are the name -> inode pointers in a directory.  There is one
1999  * for every name in a directory.
2000  */
2001 #define BTRFS_DIR_LOG_ITEM_KEY  60
2002 #define BTRFS_DIR_LOG_INDEX_KEY 72
2003 #define BTRFS_DIR_ITEM_KEY	84
2004 #define BTRFS_DIR_INDEX_KEY	96
2005 /*
2006  * extent data is for file data
2007  */
2008 #define BTRFS_EXTENT_DATA_KEY	108
2009 
2010 /*
2011  * extent csums are stored in a separate tree and hold csums for
2012  * an entire extent on disk.
2013  */
2014 #define BTRFS_EXTENT_CSUM_KEY	128
2015 
2016 /*
2017  * root items point to tree roots.  They are typically in the root
2018  * tree used by the super block to find all the other trees
2019  */
2020 #define BTRFS_ROOT_ITEM_KEY	132
2021 
2022 /*
2023  * root backrefs tie subvols and snapshots to the directory entries that
2024  * reference them
2025  */
2026 #define BTRFS_ROOT_BACKREF_KEY	144
2027 
2028 /*
2029  * root refs make a fast index for listing all of the snapshots and
2030  * subvolumes referenced by a given root.  They point directly to the
2031  * directory item in the root that references the subvol
2032  */
2033 #define BTRFS_ROOT_REF_KEY	156
2034 
2035 /*
2036  * extent items are in the extent map tree.  These record which blocks
2037  * are used, and how many references there are to each block
2038  */
2039 #define BTRFS_EXTENT_ITEM_KEY	168
2040 
2041 /*
2042  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
2043  * the length, so we save the level in key->offset instead of the length.
2044  */
2045 #define BTRFS_METADATA_ITEM_KEY	169
2046 
2047 #define BTRFS_TREE_BLOCK_REF_KEY	176
2048 
2049 #define BTRFS_EXTENT_DATA_REF_KEY	178
2050 
2051 #define BTRFS_EXTENT_REF_V0_KEY		180
2052 
2053 #define BTRFS_SHARED_BLOCK_REF_KEY	182
2054 
2055 #define BTRFS_SHARED_DATA_REF_KEY	184
2056 
2057 /*
2058  * block groups give us hints into the extent allocation trees.  Which
2059  * blocks are free etc etc
2060  */
2061 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
2062 
2063 #define BTRFS_DEV_EXTENT_KEY	204
2064 #define BTRFS_DEV_ITEM_KEY	216
2065 #define BTRFS_CHUNK_ITEM_KEY	228
2066 
2067 /*
2068  * Records the overall state of the qgroups.
2069  * There's only one instance of this key present,
2070  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
2071  */
2072 #define BTRFS_QGROUP_STATUS_KEY         240
2073 /*
2074  * Records the currently used space of the qgroup.
2075  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
2076  */
2077 #define BTRFS_QGROUP_INFO_KEY           242
2078 /*
2079  * Contains the user configured limits for the qgroup.
2080  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
2081  */
2082 #define BTRFS_QGROUP_LIMIT_KEY          244
2083 /*
2084  * Records the child-parent relationship of qgroups. For
2085  * each relation, 2 keys are present:
2086  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
2087  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
2088  */
2089 #define BTRFS_QGROUP_RELATION_KEY       246
2090 
2091 #define BTRFS_BALANCE_ITEM_KEY	248
2092 
2093 /*
2094  * Persistantly stores the io stats in the device tree.
2095  * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid).
2096  */
2097 #define BTRFS_DEV_STATS_KEY	249
2098 
2099 /*
2100  * Persistantly stores the device replace state in the device tree.
2101  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
2102  */
2103 #define BTRFS_DEV_REPLACE_KEY	250
2104 
2105 /*
2106  * Stores items that allow to quickly map UUIDs to something else.
2107  * These items are part of the filesystem UUID tree.
2108  * The key is built like this:
2109  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
2110  */
2111 #if BTRFS_UUID_SIZE != 16
2112 #error "UUID items require BTRFS_UUID_SIZE == 16!"
2113 #endif
2114 #define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
2115 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
2116 						 * received subvols */
2117 
2118 /*
2119  * string items are for debugging.  They just store a short string of
2120  * data in the FS
2121  */
2122 #define BTRFS_STRING_ITEM_KEY	253
2123 
2124 /*
2125  * Flags for mount options.
2126  *
2127  * Note: don't forget to add new options to btrfs_show_options()
2128  */
2129 #define BTRFS_MOUNT_NODATASUM		(1 << 0)
2130 #define BTRFS_MOUNT_NODATACOW		(1 << 1)
2131 #define BTRFS_MOUNT_NOBARRIER		(1 << 2)
2132 #define BTRFS_MOUNT_SSD			(1 << 3)
2133 #define BTRFS_MOUNT_DEGRADED		(1 << 4)
2134 #define BTRFS_MOUNT_COMPRESS		(1 << 5)
2135 #define BTRFS_MOUNT_NOTREELOG           (1 << 6)
2136 #define BTRFS_MOUNT_FLUSHONCOMMIT       (1 << 7)
2137 #define BTRFS_MOUNT_SSD_SPREAD		(1 << 8)
2138 #define BTRFS_MOUNT_NOSSD		(1 << 9)
2139 #define BTRFS_MOUNT_DISCARD		(1 << 10)
2140 #define BTRFS_MOUNT_FORCE_COMPRESS      (1 << 11)
2141 #define BTRFS_MOUNT_SPACE_CACHE		(1 << 12)
2142 #define BTRFS_MOUNT_CLEAR_CACHE		(1 << 13)
2143 #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
2144 #define BTRFS_MOUNT_ENOSPC_DEBUG	 (1 << 15)
2145 #define BTRFS_MOUNT_AUTO_DEFRAG		(1 << 16)
2146 #define BTRFS_MOUNT_INODE_MAP_CACHE	(1 << 17)
2147 #define BTRFS_MOUNT_RECOVERY		(1 << 18)
2148 #define BTRFS_MOUNT_SKIP_BALANCE	(1 << 19)
2149 #define BTRFS_MOUNT_CHECK_INTEGRITY	(1 << 20)
2150 #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
2151 #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	(1 << 22)
2152 #define BTRFS_MOUNT_RESCAN_UUID_TREE	(1 << 23)
2153 
2154 #define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
2155 #define BTRFS_DEFAULT_MAX_INLINE	(8192)
2156 
2157 #define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
2158 #define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
2159 #define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
2160 #define btrfs_test_opt(root, opt)	((root)->fs_info->mount_opt & \
2161 					 BTRFS_MOUNT_##opt)
2162 
2163 #define btrfs_set_and_info(root, opt, fmt, args...)			\
2164 {									\
2165 	if (!btrfs_test_opt(root, opt))					\
2166 		btrfs_info(root->fs_info, fmt, ##args);			\
2167 	btrfs_set_opt(root->fs_info->mount_opt, opt);			\
2168 }
2169 
2170 #define btrfs_clear_and_info(root, opt, fmt, args...)			\
2171 {									\
2172 	if (btrfs_test_opt(root, opt))					\
2173 		btrfs_info(root->fs_info, fmt, ##args);			\
2174 	btrfs_clear_opt(root->fs_info->mount_opt, opt);			\
2175 }
2176 
2177 /*
2178  * Requests for changes that need to be done during transaction commit.
2179  *
2180  * Internal mount options that are used for special handling of the real
2181  * mount options (eg. cannot be set during remount and have to be set during
2182  * transaction commit)
2183  */
2184 
2185 #define BTRFS_PENDING_SET_INODE_MAP_CACHE	(0)
2186 #define BTRFS_PENDING_CLEAR_INODE_MAP_CACHE	(1)
2187 #define BTRFS_PENDING_COMMIT			(2)
2188 
2189 #define btrfs_test_pending(info, opt)	\
2190 	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2191 #define btrfs_set_pending(info, opt)	\
2192 	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2193 #define btrfs_clear_pending(info, opt)	\
2194 	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
2195 
2196 /*
2197  * Helpers for setting pending mount option changes.
2198  *
2199  * Expects corresponding macros
2200  * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
2201  */
2202 #define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
2203 do {                                                                   \
2204        if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
2205                btrfs_info((info), fmt, ##args);                        \
2206                btrfs_set_pending((info), SET_##opt);                   \
2207                btrfs_clear_pending((info), CLEAR_##opt);               \
2208        }                                                               \
2209 } while(0)
2210 
2211 #define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
2212 do {                                                                   \
2213        if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
2214                btrfs_info((info), fmt, ##args);                        \
2215                btrfs_set_pending((info), CLEAR_##opt);                 \
2216                btrfs_clear_pending((info), SET_##opt);                 \
2217        }                                                               \
2218 } while(0)
2219 
2220 /*
2221  * Inode flags
2222  */
2223 #define BTRFS_INODE_NODATASUM		(1 << 0)
2224 #define BTRFS_INODE_NODATACOW		(1 << 1)
2225 #define BTRFS_INODE_READONLY		(1 << 2)
2226 #define BTRFS_INODE_NOCOMPRESS		(1 << 3)
2227 #define BTRFS_INODE_PREALLOC		(1 << 4)
2228 #define BTRFS_INODE_SYNC		(1 << 5)
2229 #define BTRFS_INODE_IMMUTABLE		(1 << 6)
2230 #define BTRFS_INODE_APPEND		(1 << 7)
2231 #define BTRFS_INODE_NODUMP		(1 << 8)
2232 #define BTRFS_INODE_NOATIME		(1 << 9)
2233 #define BTRFS_INODE_DIRSYNC		(1 << 10)
2234 #define BTRFS_INODE_COMPRESS		(1 << 11)
2235 
2236 #define BTRFS_INODE_ROOT_ITEM_INIT	(1 << 31)
2237 
2238 struct btrfs_map_token {
2239 	struct extent_buffer *eb;
2240 	char *kaddr;
2241 	unsigned long offset;
2242 };
2243 
2244 static inline void btrfs_init_map_token (struct btrfs_map_token *token)
2245 {
2246 	token->kaddr = NULL;
2247 }
2248 
2249 /* some macros to generate set/get funcs for the struct fields.  This
2250  * assumes there is a lefoo_to_cpu for every type, so lets make a simple
2251  * one for u8:
2252  */
2253 #define le8_to_cpu(v) (v)
2254 #define cpu_to_le8(v) (v)
2255 #define __le8 u8
2256 
2257 #define read_eb_member(eb, ptr, type, member, result) (			\
2258 	read_extent_buffer(eb, (char *)(result),			\
2259 			   ((unsigned long)(ptr)) +			\
2260 			    offsetof(type, member),			\
2261 			   sizeof(((type *)0)->member)))
2262 
2263 #define write_eb_member(eb, ptr, type, member, result) (		\
2264 	write_extent_buffer(eb, (char *)(result),			\
2265 			   ((unsigned long)(ptr)) +			\
2266 			    offsetof(type, member),			\
2267 			   sizeof(((type *)0)->member)))
2268 
2269 #define DECLARE_BTRFS_SETGET_BITS(bits)					\
2270 u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr,	\
2271 			       unsigned long off,			\
2272                               struct btrfs_map_token *token);		\
2273 void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr,	\
2274 			    unsigned long off, u##bits val,		\
2275 			    struct btrfs_map_token *token);		\
2276 static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
2277 				       unsigned long off)		\
2278 {									\
2279 	return btrfs_get_token_##bits(eb, ptr, off, NULL);		\
2280 }									\
2281 static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
2282 				    unsigned long off, u##bits val)	\
2283 {									\
2284        btrfs_set_token_##bits(eb, ptr, off, val, NULL);			\
2285 }
2286 
2287 DECLARE_BTRFS_SETGET_BITS(8)
2288 DECLARE_BTRFS_SETGET_BITS(16)
2289 DECLARE_BTRFS_SETGET_BITS(32)
2290 DECLARE_BTRFS_SETGET_BITS(64)
2291 
2292 #define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
2293 static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s)	\
2294 {									\
2295 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
2296 	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
2297 }									\
2298 static inline void btrfs_set_##name(struct extent_buffer *eb, type *s,	\
2299 				    u##bits val)			\
2300 {									\
2301 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
2302 	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
2303 }									\
2304 static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
2305 					 struct btrfs_map_token *token)	\
2306 {									\
2307 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
2308 	return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
2309 }									\
2310 static inline void btrfs_set_token_##name(struct extent_buffer *eb,	\
2311 					  type *s, u##bits val,		\
2312                                          struct btrfs_map_token *token)	\
2313 {									\
2314 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
2315 	btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
2316 }
2317 
2318 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
2319 static inline u##bits btrfs_##name(struct extent_buffer *eb)		\
2320 {									\
2321 	type *p = page_address(eb->pages[0]);				\
2322 	u##bits res = le##bits##_to_cpu(p->member);			\
2323 	return res;							\
2324 }									\
2325 static inline void btrfs_set_##name(struct extent_buffer *eb,		\
2326 				    u##bits val)			\
2327 {									\
2328 	type *p = page_address(eb->pages[0]);				\
2329 	p->member = cpu_to_le##bits(val);				\
2330 }
2331 
2332 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
2333 static inline u##bits btrfs_##name(type *s)				\
2334 {									\
2335 	return le##bits##_to_cpu(s->member);				\
2336 }									\
2337 static inline void btrfs_set_##name(type *s, u##bits val)		\
2338 {									\
2339 	s->member = cpu_to_le##bits(val);				\
2340 }
2341 
2342 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
2343 BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
2344 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
2345 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
2346 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
2347 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
2348 		   start_offset, 64);
2349 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
2350 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
2351 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
2352 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
2353 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
2354 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
2355 
2356 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
2357 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
2358 			 total_bytes, 64);
2359 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
2360 			 bytes_used, 64);
2361 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
2362 			 io_align, 32);
2363 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
2364 			 io_width, 32);
2365 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
2366 			 sector_size, 32);
2367 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
2368 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
2369 			 dev_group, 32);
2370 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
2371 			 seek_speed, 8);
2372 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
2373 			 bandwidth, 8);
2374 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
2375 			 generation, 64);
2376 
2377 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
2378 {
2379 	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
2380 }
2381 
2382 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
2383 {
2384 	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
2385 }
2386 
2387 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
2388 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
2389 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
2390 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
2391 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
2392 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
2393 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
2394 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
2395 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
2396 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
2397 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
2398 
2399 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
2400 {
2401 	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
2402 }
2403 
2404 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
2405 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
2406 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
2407 			 stripe_len, 64);
2408 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
2409 			 io_align, 32);
2410 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
2411 			 io_width, 32);
2412 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
2413 			 sector_size, 32);
2414 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
2415 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
2416 			 num_stripes, 16);
2417 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
2418 			 sub_stripes, 16);
2419 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
2420 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
2421 
2422 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
2423 						   int nr)
2424 {
2425 	unsigned long offset = (unsigned long)c;
2426 	offset += offsetof(struct btrfs_chunk, stripe);
2427 	offset += nr * sizeof(struct btrfs_stripe);
2428 	return (struct btrfs_stripe *)offset;
2429 }
2430 
2431 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
2432 {
2433 	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
2434 }
2435 
2436 static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
2437 					 struct btrfs_chunk *c, int nr)
2438 {
2439 	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
2440 }
2441 
2442 static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
2443 					 struct btrfs_chunk *c, int nr)
2444 {
2445 	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
2446 }
2447 
2448 /* struct btrfs_block_group_item */
2449 BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
2450 			 used, 64);
2451 BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
2452 			 used, 64);
2453 BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
2454 			struct btrfs_block_group_item, chunk_objectid, 64);
2455 
2456 BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
2457 		   struct btrfs_block_group_item, chunk_objectid, 64);
2458 BTRFS_SETGET_FUNCS(disk_block_group_flags,
2459 		   struct btrfs_block_group_item, flags, 64);
2460 BTRFS_SETGET_STACK_FUNCS(block_group_flags,
2461 			struct btrfs_block_group_item, flags, 64);
2462 
2463 /* struct btrfs_inode_ref */
2464 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
2465 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
2466 
2467 /* struct btrfs_inode_extref */
2468 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
2469 		   parent_objectid, 64);
2470 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
2471 		   name_len, 16);
2472 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
2473 
2474 /* struct btrfs_inode_item */
2475 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
2476 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
2477 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
2478 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
2479 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
2480 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
2481 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
2482 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
2483 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
2484 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
2485 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
2486 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
2487 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
2488 			 generation, 64);
2489 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
2490 			 sequence, 64);
2491 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
2492 			 transid, 64);
2493 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
2494 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
2495 			 nbytes, 64);
2496 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
2497 			 block_group, 64);
2498 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
2499 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
2500 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
2501 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
2502 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
2503 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
2504 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
2505 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
2506 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
2507 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
2508 
2509 /* struct btrfs_dev_extent */
2510 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
2511 		   chunk_tree, 64);
2512 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
2513 		   chunk_objectid, 64);
2514 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
2515 		   chunk_offset, 64);
2516 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
2517 
2518 static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
2519 {
2520 	unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
2521 	return (unsigned long)dev + ptr;
2522 }
2523 
2524 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
2525 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
2526 		   generation, 64);
2527 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
2528 
2529 BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
2530 
2531 
2532 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
2533 
2534 static inline void btrfs_tree_block_key(struct extent_buffer *eb,
2535 					struct btrfs_tree_block_info *item,
2536 					struct btrfs_disk_key *key)
2537 {
2538 	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2539 }
2540 
2541 static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
2542 					    struct btrfs_tree_block_info *item,
2543 					    struct btrfs_disk_key *key)
2544 {
2545 	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
2546 }
2547 
2548 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
2549 		   root, 64);
2550 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
2551 		   objectid, 64);
2552 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
2553 		   offset, 64);
2554 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
2555 		   count, 32);
2556 
2557 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
2558 		   count, 32);
2559 
2560 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
2561 		   type, 8);
2562 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
2563 		   offset, 64);
2564 
2565 static inline u32 btrfs_extent_inline_ref_size(int type)
2566 {
2567 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
2568 	    type == BTRFS_SHARED_BLOCK_REF_KEY)
2569 		return sizeof(struct btrfs_extent_inline_ref);
2570 	if (type == BTRFS_SHARED_DATA_REF_KEY)
2571 		return sizeof(struct btrfs_shared_data_ref) +
2572 		       sizeof(struct btrfs_extent_inline_ref);
2573 	if (type == BTRFS_EXTENT_DATA_REF_KEY)
2574 		return sizeof(struct btrfs_extent_data_ref) +
2575 		       offsetof(struct btrfs_extent_inline_ref, offset);
2576 	BUG();
2577 	return 0;
2578 }
2579 
2580 BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
2581 BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
2582 		   generation, 64);
2583 BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
2584 BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
2585 
2586 /* struct btrfs_node */
2587 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
2588 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
2589 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
2590 			 blockptr, 64);
2591 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
2592 			 generation, 64);
2593 
2594 static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
2595 {
2596 	unsigned long ptr;
2597 	ptr = offsetof(struct btrfs_node, ptrs) +
2598 		sizeof(struct btrfs_key_ptr) * nr;
2599 	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
2600 }
2601 
2602 static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
2603 					   int nr, u64 val)
2604 {
2605 	unsigned long ptr;
2606 	ptr = offsetof(struct btrfs_node, ptrs) +
2607 		sizeof(struct btrfs_key_ptr) * nr;
2608 	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
2609 }
2610 
2611 static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
2612 {
2613 	unsigned long ptr;
2614 	ptr = offsetof(struct btrfs_node, ptrs) +
2615 		sizeof(struct btrfs_key_ptr) * nr;
2616 	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2617 }
2618 
2619 static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
2620 						 int nr, u64 val)
2621 {
2622 	unsigned long ptr;
2623 	ptr = offsetof(struct btrfs_node, ptrs) +
2624 		sizeof(struct btrfs_key_ptr) * nr;
2625 	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2626 }
2627 
2628 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2629 {
2630 	return offsetof(struct btrfs_node, ptrs) +
2631 		sizeof(struct btrfs_key_ptr) * nr;
2632 }
2633 
2634 void btrfs_node_key(struct extent_buffer *eb,
2635 		    struct btrfs_disk_key *disk_key, int nr);
2636 
2637 static inline void btrfs_set_node_key(struct extent_buffer *eb,
2638 				      struct btrfs_disk_key *disk_key, int nr)
2639 {
2640 	unsigned long ptr;
2641 	ptr = btrfs_node_key_ptr_offset(nr);
2642 	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2643 		       struct btrfs_key_ptr, key, disk_key);
2644 }
2645 
2646 /* struct btrfs_item */
2647 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
2648 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
2649 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2650 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2651 
2652 static inline unsigned long btrfs_item_nr_offset(int nr)
2653 {
2654 	return offsetof(struct btrfs_leaf, items) +
2655 		sizeof(struct btrfs_item) * nr;
2656 }
2657 
2658 static inline struct btrfs_item *btrfs_item_nr(int nr)
2659 {
2660 	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2661 }
2662 
2663 static inline u32 btrfs_item_end(struct extent_buffer *eb,
2664 				 struct btrfs_item *item)
2665 {
2666 	return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
2667 }
2668 
2669 static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
2670 {
2671 	return btrfs_item_end(eb, btrfs_item_nr(nr));
2672 }
2673 
2674 static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
2675 {
2676 	return btrfs_item_offset(eb, btrfs_item_nr(nr));
2677 }
2678 
2679 static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
2680 {
2681 	return btrfs_item_size(eb, btrfs_item_nr(nr));
2682 }
2683 
2684 static inline void btrfs_item_key(struct extent_buffer *eb,
2685 			   struct btrfs_disk_key *disk_key, int nr)
2686 {
2687 	struct btrfs_item *item = btrfs_item_nr(nr);
2688 	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2689 }
2690 
2691 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2692 			       struct btrfs_disk_key *disk_key, int nr)
2693 {
2694 	struct btrfs_item *item = btrfs_item_nr(nr);
2695 	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2696 }
2697 
2698 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2699 
2700 /*
2701  * struct btrfs_root_ref
2702  */
2703 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2704 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2705 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2706 
2707 /* struct btrfs_dir_item */
2708 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2709 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2710 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2711 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2712 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2713 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2714 			 data_len, 16);
2715 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2716 			 name_len, 16);
2717 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2718 			 transid, 64);
2719 
2720 static inline void btrfs_dir_item_key(struct extent_buffer *eb,
2721 				      struct btrfs_dir_item *item,
2722 				      struct btrfs_disk_key *key)
2723 {
2724 	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2725 }
2726 
2727 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2728 					  struct btrfs_dir_item *item,
2729 					  struct btrfs_disk_key *key)
2730 {
2731 	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2732 }
2733 
2734 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2735 		   num_entries, 64);
2736 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2737 		   num_bitmaps, 64);
2738 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2739 		   generation, 64);
2740 
2741 static inline void btrfs_free_space_key(struct extent_buffer *eb,
2742 					struct btrfs_free_space_header *h,
2743 					struct btrfs_disk_key *key)
2744 {
2745 	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2746 }
2747 
2748 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2749 					    struct btrfs_free_space_header *h,
2750 					    struct btrfs_disk_key *key)
2751 {
2752 	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2753 }
2754 
2755 /* struct btrfs_disk_key */
2756 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2757 			 objectid, 64);
2758 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2759 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2760 
2761 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2762 					 struct btrfs_disk_key *disk)
2763 {
2764 	cpu->offset = le64_to_cpu(disk->offset);
2765 	cpu->type = disk->type;
2766 	cpu->objectid = le64_to_cpu(disk->objectid);
2767 }
2768 
2769 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2770 					 struct btrfs_key *cpu)
2771 {
2772 	disk->offset = cpu_to_le64(cpu->offset);
2773 	disk->type = cpu->type;
2774 	disk->objectid = cpu_to_le64(cpu->objectid);
2775 }
2776 
2777 static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
2778 				  struct btrfs_key *key, int nr)
2779 {
2780 	struct btrfs_disk_key disk_key;
2781 	btrfs_node_key(eb, &disk_key, nr);
2782 	btrfs_disk_key_to_cpu(key, &disk_key);
2783 }
2784 
2785 static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
2786 				  struct btrfs_key *key, int nr)
2787 {
2788 	struct btrfs_disk_key disk_key;
2789 	btrfs_item_key(eb, &disk_key, nr);
2790 	btrfs_disk_key_to_cpu(key, &disk_key);
2791 }
2792 
2793 static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
2794 				      struct btrfs_dir_item *item,
2795 				      struct btrfs_key *key)
2796 {
2797 	struct btrfs_disk_key disk_key;
2798 	btrfs_dir_item_key(eb, item, &disk_key);
2799 	btrfs_disk_key_to_cpu(key, &disk_key);
2800 }
2801 
2802 
2803 static inline u8 btrfs_key_type(struct btrfs_key *key)
2804 {
2805 	return key->type;
2806 }
2807 
2808 static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2809 {
2810 	key->type = val;
2811 }
2812 
2813 /* struct btrfs_header */
2814 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2815 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2816 			  generation, 64);
2817 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2818 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2819 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2820 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2821 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2822 			 generation, 64);
2823 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2824 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2825 			 nritems, 32);
2826 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2827 
2828 static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2829 {
2830 	return (btrfs_header_flags(eb) & flag) == flag;
2831 }
2832 
2833 static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2834 {
2835 	u64 flags = btrfs_header_flags(eb);
2836 	btrfs_set_header_flags(eb, flags | flag);
2837 	return (flags & flag) == flag;
2838 }
2839 
2840 static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2841 {
2842 	u64 flags = btrfs_header_flags(eb);
2843 	btrfs_set_header_flags(eb, flags & ~flag);
2844 	return (flags & flag) == flag;
2845 }
2846 
2847 static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
2848 {
2849 	u64 flags = btrfs_header_flags(eb);
2850 	return flags >> BTRFS_BACKREF_REV_SHIFT;
2851 }
2852 
2853 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2854 						int rev)
2855 {
2856 	u64 flags = btrfs_header_flags(eb);
2857 	flags &= ~BTRFS_BACKREF_REV_MASK;
2858 	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2859 	btrfs_set_header_flags(eb, flags);
2860 }
2861 
2862 static inline unsigned long btrfs_header_fsid(void)
2863 {
2864 	return offsetof(struct btrfs_header, fsid);
2865 }
2866 
2867 static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
2868 {
2869 	return offsetof(struct btrfs_header, chunk_tree_uuid);
2870 }
2871 
2872 static inline int btrfs_is_leaf(struct extent_buffer *eb)
2873 {
2874 	return btrfs_header_level(eb) == 0;
2875 }
2876 
2877 /* struct btrfs_root_item */
2878 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2879 		   generation, 64);
2880 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2881 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2882 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2883 
2884 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2885 			 generation, 64);
2886 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2887 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2888 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2889 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2890 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2891 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2892 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2893 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2894 			 last_snapshot, 64);
2895 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2896 			 generation_v2, 64);
2897 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2898 			 ctransid, 64);
2899 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2900 			 otransid, 64);
2901 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2902 			 stransid, 64);
2903 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2904 			 rtransid, 64);
2905 
2906 static inline bool btrfs_root_readonly(struct btrfs_root *root)
2907 {
2908 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2909 }
2910 
2911 static inline bool btrfs_root_dead(struct btrfs_root *root)
2912 {
2913 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2914 }
2915 
2916 /* struct btrfs_root_backup */
2917 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2918 		   tree_root, 64);
2919 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2920 		   tree_root_gen, 64);
2921 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2922 		   tree_root_level, 8);
2923 
2924 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2925 		   chunk_root, 64);
2926 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2927 		   chunk_root_gen, 64);
2928 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2929 		   chunk_root_level, 8);
2930 
2931 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2932 		   extent_root, 64);
2933 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2934 		   extent_root_gen, 64);
2935 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2936 		   extent_root_level, 8);
2937 
2938 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2939 		   fs_root, 64);
2940 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2941 		   fs_root_gen, 64);
2942 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2943 		   fs_root_level, 8);
2944 
2945 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2946 		   dev_root, 64);
2947 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2948 		   dev_root_gen, 64);
2949 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2950 		   dev_root_level, 8);
2951 
2952 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2953 		   csum_root, 64);
2954 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2955 		   csum_root_gen, 64);
2956 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2957 		   csum_root_level, 8);
2958 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2959 		   total_bytes, 64);
2960 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2961 		   bytes_used, 64);
2962 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2963 		   num_devices, 64);
2964 
2965 /* struct btrfs_balance_item */
2966 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2967 
2968 static inline void btrfs_balance_data(struct extent_buffer *eb,
2969 				      struct btrfs_balance_item *bi,
2970 				      struct btrfs_disk_balance_args *ba)
2971 {
2972 	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2973 }
2974 
2975 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2976 					  struct btrfs_balance_item *bi,
2977 					  struct btrfs_disk_balance_args *ba)
2978 {
2979 	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2980 }
2981 
2982 static inline void btrfs_balance_meta(struct extent_buffer *eb,
2983 				      struct btrfs_balance_item *bi,
2984 				      struct btrfs_disk_balance_args *ba)
2985 {
2986 	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2987 }
2988 
2989 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2990 					  struct btrfs_balance_item *bi,
2991 					  struct btrfs_disk_balance_args *ba)
2992 {
2993 	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2994 }
2995 
2996 static inline void btrfs_balance_sys(struct extent_buffer *eb,
2997 				     struct btrfs_balance_item *bi,
2998 				     struct btrfs_disk_balance_args *ba)
2999 {
3000 	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
3001 }
3002 
3003 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
3004 					 struct btrfs_balance_item *bi,
3005 					 struct btrfs_disk_balance_args *ba)
3006 {
3007 	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
3008 }
3009 
3010 static inline void
3011 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3012 			       struct btrfs_disk_balance_args *disk)
3013 {
3014 	memset(cpu, 0, sizeof(*cpu));
3015 
3016 	cpu->profiles = le64_to_cpu(disk->profiles);
3017 	cpu->usage = le64_to_cpu(disk->usage);
3018 	cpu->devid = le64_to_cpu(disk->devid);
3019 	cpu->pstart = le64_to_cpu(disk->pstart);
3020 	cpu->pend = le64_to_cpu(disk->pend);
3021 	cpu->vstart = le64_to_cpu(disk->vstart);
3022 	cpu->vend = le64_to_cpu(disk->vend);
3023 	cpu->target = le64_to_cpu(disk->target);
3024 	cpu->flags = le64_to_cpu(disk->flags);
3025 	cpu->limit = le64_to_cpu(disk->limit);
3026 }
3027 
3028 static inline void
3029 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3030 			       struct btrfs_balance_args *cpu)
3031 {
3032 	memset(disk, 0, sizeof(*disk));
3033 
3034 	disk->profiles = cpu_to_le64(cpu->profiles);
3035 	disk->usage = cpu_to_le64(cpu->usage);
3036 	disk->devid = cpu_to_le64(cpu->devid);
3037 	disk->pstart = cpu_to_le64(cpu->pstart);
3038 	disk->pend = cpu_to_le64(cpu->pend);
3039 	disk->vstart = cpu_to_le64(cpu->vstart);
3040 	disk->vend = cpu_to_le64(cpu->vend);
3041 	disk->target = cpu_to_le64(cpu->target);
3042 	disk->flags = cpu_to_le64(cpu->flags);
3043 	disk->limit = cpu_to_le64(cpu->limit);
3044 }
3045 
3046 /* struct btrfs_super_block */
3047 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
3048 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
3049 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
3050 			 generation, 64);
3051 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
3052 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
3053 			 struct btrfs_super_block, sys_chunk_array_size, 32);
3054 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
3055 			 struct btrfs_super_block, chunk_root_generation, 64);
3056 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
3057 			 root_level, 8);
3058 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
3059 			 chunk_root, 64);
3060 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
3061 			 chunk_root_level, 8);
3062 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
3063 			 log_root, 64);
3064 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
3065 			 log_root_transid, 64);
3066 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
3067 			 log_root_level, 8);
3068 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
3069 			 total_bytes, 64);
3070 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
3071 			 bytes_used, 64);
3072 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
3073 			 sectorsize, 32);
3074 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
3075 			 nodesize, 32);
3076 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
3077 			 stripesize, 32);
3078 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
3079 			 root_dir_objectid, 64);
3080 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
3081 			 num_devices, 64);
3082 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
3083 			 compat_flags, 64);
3084 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
3085 			 compat_ro_flags, 64);
3086 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
3087 			 incompat_flags, 64);
3088 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
3089 			 csum_type, 16);
3090 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
3091 			 cache_generation, 64);
3092 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
3093 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
3094 			 uuid_tree_generation, 64);
3095 
3096 static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
3097 {
3098 	u16 t = btrfs_super_csum_type(s);
3099 	/*
3100 	 * csum type is validated at mount time
3101 	 */
3102 	return btrfs_csum_sizes[t];
3103 }
3104 
3105 static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
3106 {
3107 	return offsetof(struct btrfs_leaf, items);
3108 }
3109 
3110 /* struct btrfs_file_extent_item */
3111 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
3112 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
3113 			 struct btrfs_file_extent_item, disk_bytenr, 64);
3114 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
3115 			 struct btrfs_file_extent_item, offset, 64);
3116 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
3117 			 struct btrfs_file_extent_item, generation, 64);
3118 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
3119 			 struct btrfs_file_extent_item, num_bytes, 64);
3120 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
3121 			 struct btrfs_file_extent_item, disk_num_bytes, 64);
3122 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
3123 			 struct btrfs_file_extent_item, compression, 8);
3124 
3125 static inline unsigned long
3126 btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
3127 {
3128 	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
3129 }
3130 
3131 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
3132 {
3133 	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
3134 }
3135 
3136 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
3137 		   disk_bytenr, 64);
3138 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
3139 		   generation, 64);
3140 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
3141 		   disk_num_bytes, 64);
3142 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
3143 		  offset, 64);
3144 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
3145 		   num_bytes, 64);
3146 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
3147 		   ram_bytes, 64);
3148 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
3149 		   compression, 8);
3150 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
3151 		   encryption, 8);
3152 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
3153 		   other_encoding, 16);
3154 
3155 /*
3156  * this returns the number of bytes used by the item on disk, minus the
3157  * size of any extent headers.  If a file is compressed on disk, this is
3158  * the compressed size
3159  */
3160 static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
3161 						    struct btrfs_item *e)
3162 {
3163 	return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
3164 }
3165 
3166 /* this returns the number of file bytes represented by the inline item.
3167  * If an item is compressed, this is the uncompressed size
3168  */
3169 static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
3170 					       int slot,
3171 					       struct btrfs_file_extent_item *fi)
3172 {
3173 	struct btrfs_map_token token;
3174 
3175 	btrfs_init_map_token(&token);
3176 	/*
3177 	 * return the space used on disk if this item isn't
3178 	 * compressed or encoded
3179 	 */
3180 	if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
3181 	    btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
3182 	    btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
3183 		return btrfs_file_extent_inline_item_len(eb,
3184 							 btrfs_item_nr(slot));
3185 	}
3186 
3187 	/* otherwise use the ram bytes field */
3188 	return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
3189 }
3190 
3191 
3192 /* btrfs_dev_stats_item */
3193 static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
3194 					struct btrfs_dev_stats_item *ptr,
3195 					int index)
3196 {
3197 	u64 val;
3198 
3199 	read_extent_buffer(eb, &val,
3200 			   offsetof(struct btrfs_dev_stats_item, values) +
3201 			    ((unsigned long)ptr) + (index * sizeof(u64)),
3202 			   sizeof(val));
3203 	return val;
3204 }
3205 
3206 static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
3207 					     struct btrfs_dev_stats_item *ptr,
3208 					     int index, u64 val)
3209 {
3210 	write_extent_buffer(eb, &val,
3211 			    offsetof(struct btrfs_dev_stats_item, values) +
3212 			     ((unsigned long)ptr) + (index * sizeof(u64)),
3213 			    sizeof(val));
3214 }
3215 
3216 /* btrfs_qgroup_status_item */
3217 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
3218 		   generation, 64);
3219 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
3220 		   version, 64);
3221 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
3222 		   flags, 64);
3223 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
3224 		   rescan, 64);
3225 
3226 /* btrfs_qgroup_info_item */
3227 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
3228 		   generation, 64);
3229 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
3230 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
3231 		   rfer_cmpr, 64);
3232 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
3233 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
3234 		   excl_cmpr, 64);
3235 
3236 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
3237 			 struct btrfs_qgroup_info_item, generation, 64);
3238 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
3239 			 rfer, 64);
3240 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
3241 			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
3242 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
3243 			 excl, 64);
3244 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
3245 			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
3246 
3247 /* btrfs_qgroup_limit_item */
3248 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
3249 		   flags, 64);
3250 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
3251 		   max_rfer, 64);
3252 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
3253 		   max_excl, 64);
3254 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
3255 		   rsv_rfer, 64);
3256 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
3257 		   rsv_excl, 64);
3258 
3259 /* btrfs_dev_replace_item */
3260 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
3261 		   struct btrfs_dev_replace_item, src_devid, 64);
3262 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
3263 		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
3264 		   64);
3265 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
3266 		   replace_state, 64);
3267 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
3268 		   time_started, 64);
3269 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
3270 		   time_stopped, 64);
3271 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
3272 		   num_write_errors, 64);
3273 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
3274 		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
3275 		   64);
3276 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
3277 		   cursor_left, 64);
3278 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
3279 		   cursor_right, 64);
3280 
3281 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
3282 			 struct btrfs_dev_replace_item, src_devid, 64);
3283 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
3284 			 struct btrfs_dev_replace_item,
3285 			 cont_reading_from_srcdev_mode, 64);
3286 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
3287 			 struct btrfs_dev_replace_item, replace_state, 64);
3288 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
3289 			 struct btrfs_dev_replace_item, time_started, 64);
3290 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
3291 			 struct btrfs_dev_replace_item, time_stopped, 64);
3292 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
3293 			 struct btrfs_dev_replace_item, num_write_errors, 64);
3294 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
3295 			 struct btrfs_dev_replace_item,
3296 			 num_uncorrectable_read_errors, 64);
3297 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
3298 			 struct btrfs_dev_replace_item, cursor_left, 64);
3299 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
3300 			 struct btrfs_dev_replace_item, cursor_right, 64);
3301 
3302 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
3303 {
3304 	return sb->s_fs_info;
3305 }
3306 
3307 /* helper function to cast into the data area of the leaf. */
3308 #define btrfs_item_ptr(leaf, slot, type) \
3309 	((type *)(btrfs_leaf_data(leaf) + \
3310 	btrfs_item_offset_nr(leaf, slot)))
3311 
3312 #define btrfs_item_ptr_offset(leaf, slot) \
3313 	((unsigned long)(btrfs_leaf_data(leaf) + \
3314 	btrfs_item_offset_nr(leaf, slot)))
3315 
3316 static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
3317 {
3318 	return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
3319 		(space_info->flags & BTRFS_BLOCK_GROUP_DATA));
3320 }
3321 
3322 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
3323 {
3324 	return mapping_gfp_mask(mapping) & ~__GFP_FS;
3325 }
3326 
3327 /* extent-tree.c */
3328 
3329 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes);
3330 
3331 static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
3332 						 unsigned num_items)
3333 {
3334 	return (root->nodesize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
3335 		2 * num_items;
3336 }
3337 
3338 /*
3339  * Doing a truncate won't result in new nodes or leaves, just what we need for
3340  * COW.
3341  */
3342 static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
3343 						 unsigned num_items)
3344 {
3345 	return root->nodesize * BTRFS_MAX_LEVEL * num_items;
3346 }
3347 
3348 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
3349 				       struct btrfs_root *root);
3350 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
3351 				       struct btrfs_root *root);
3352 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3353 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3354 			   struct btrfs_root *root, unsigned long count);
3355 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
3356 				 unsigned long count, int wait);
3357 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len);
3358 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
3359 			     struct btrfs_root *root, u64 bytenr,
3360 			     u64 offset, int metadata, u64 *refs, u64 *flags);
3361 int btrfs_pin_extent(struct btrfs_root *root,
3362 		     u64 bytenr, u64 num, int reserved);
3363 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
3364 				    u64 bytenr, u64 num_bytes);
3365 int btrfs_exclude_logged_extents(struct btrfs_root *root,
3366 				 struct extent_buffer *eb);
3367 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3368 			  struct btrfs_root *root,
3369 			  u64 objectid, u64 offset, u64 bytenr);
3370 struct btrfs_block_group_cache *btrfs_lookup_block_group(
3371 						 struct btrfs_fs_info *info,
3372 						 u64 bytenr);
3373 void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
3374 int get_block_group_index(struct btrfs_block_group_cache *cache);
3375 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
3376 					struct btrfs_root *root, u64 parent,
3377 					u64 root_objectid,
3378 					struct btrfs_disk_key *key, int level,
3379 					u64 hint, u64 empty_size);
3380 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3381 			   struct btrfs_root *root,
3382 			   struct extent_buffer *buf,
3383 			   u64 parent, int last_ref);
3384 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
3385 				     struct btrfs_root *root,
3386 				     u64 root_objectid, u64 owner,
3387 				     u64 offset, struct btrfs_key *ins);
3388 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
3389 				   struct btrfs_root *root,
3390 				   u64 root_objectid, u64 owner, u64 offset,
3391 				   struct btrfs_key *ins);
3392 int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes,
3393 			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
3394 			 struct btrfs_key *ins, int is_data, int delalloc);
3395 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3396 		  struct extent_buffer *buf, int full_backref);
3397 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3398 		  struct extent_buffer *buf, int full_backref);
3399 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3400 				struct btrfs_root *root,
3401 				u64 bytenr, u64 num_bytes, u64 flags,
3402 				int level, int is_data);
3403 int btrfs_free_extent(struct btrfs_trans_handle *trans,
3404 		      struct btrfs_root *root,
3405 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
3406 		      u64 owner, u64 offset, int no_quota);
3407 
3408 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len,
3409 			       int delalloc);
3410 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
3411 				       u64 start, u64 len);
3412 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
3413 				 struct btrfs_root *root);
3414 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
3415 			       struct btrfs_root *root);
3416 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
3417 			 struct btrfs_root *root,
3418 			 u64 bytenr, u64 num_bytes, u64 parent,
3419 			 u64 root_objectid, u64 owner, u64 offset, int no_quota);
3420 
3421 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3422 				   struct btrfs_root *root);
3423 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3424 				    struct btrfs_root *root);
3425 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3426 			    struct btrfs_root *root);
3427 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
3428 int btrfs_free_block_groups(struct btrfs_fs_info *info);
3429 int btrfs_read_block_groups(struct btrfs_root *root);
3430 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
3431 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
3432 			   struct btrfs_root *root, u64 bytes_used,
3433 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
3434 			   u64 size);
3435 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
3436 			     struct btrfs_root *root, u64 group_start,
3437 			     struct extent_map *em);
3438 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
3439 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
3440 				       struct btrfs_root *root);
3441 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
3442 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
3443 
3444 enum btrfs_reserve_flush_enum {
3445 	/* If we are in the transaction, we can't flush anything.*/
3446 	BTRFS_RESERVE_NO_FLUSH,
3447 	/*
3448 	 * Flushing delalloc may cause deadlock somewhere, in this
3449 	 * case, use FLUSH LIMIT
3450 	 */
3451 	BTRFS_RESERVE_FLUSH_LIMIT,
3452 	BTRFS_RESERVE_FLUSH_ALL,
3453 };
3454 
3455 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes);
3456 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
3457 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3458 				struct btrfs_root *root);
3459 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans);
3460 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3461 				  struct inode *inode);
3462 void btrfs_orphan_release_metadata(struct inode *inode);
3463 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
3464 				     struct btrfs_block_rsv *rsv,
3465 				     int nitems,
3466 				     u64 *qgroup_reserved, bool use_global_rsv);
3467 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
3468 				      struct btrfs_block_rsv *rsv,
3469 				      u64 qgroup_reserved);
3470 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
3471 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
3472 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
3473 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
3474 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
3475 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
3476 					      unsigned short type);
3477 void btrfs_free_block_rsv(struct btrfs_root *root,
3478 			  struct btrfs_block_rsv *rsv);
3479 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv);
3480 int btrfs_block_rsv_add(struct btrfs_root *root,
3481 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
3482 			enum btrfs_reserve_flush_enum flush);
3483 int btrfs_block_rsv_check(struct btrfs_root *root,
3484 			  struct btrfs_block_rsv *block_rsv, int min_factor);
3485 int btrfs_block_rsv_refill(struct btrfs_root *root,
3486 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
3487 			   enum btrfs_reserve_flush_enum flush);
3488 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3489 			    struct btrfs_block_rsv *dst_rsv,
3490 			    u64 num_bytes);
3491 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
3492 			     struct btrfs_block_rsv *dest, u64 num_bytes,
3493 			     int min_factor);
3494 void btrfs_block_rsv_release(struct btrfs_root *root,
3495 			     struct btrfs_block_rsv *block_rsv,
3496 			     u64 num_bytes);
3497 int btrfs_set_block_group_ro(struct btrfs_root *root,
3498 			     struct btrfs_block_group_cache *cache);
3499 void btrfs_set_block_group_rw(struct btrfs_root *root,
3500 			      struct btrfs_block_group_cache *cache);
3501 void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
3502 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
3503 int btrfs_error_unpin_extent_range(struct btrfs_root *root,
3504 				   u64 start, u64 end);
3505 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
3506 			 u64 num_bytes, u64 *actual_bytes);
3507 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
3508 			    struct btrfs_root *root, u64 type);
3509 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
3510 
3511 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
3512 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
3513 					 struct btrfs_fs_info *fs_info);
3514 int __get_raid_index(u64 flags);
3515 int btrfs_start_write_no_snapshoting(struct btrfs_root *root);
3516 void btrfs_end_write_no_snapshoting(struct btrfs_root *root);
3517 void check_system_chunk(struct btrfs_trans_handle *trans,
3518 			struct btrfs_root *root,
3519 			const u64 type);
3520 /* ctree.c */
3521 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
3522 		     int level, int *slot);
3523 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
3524 int btrfs_previous_item(struct btrfs_root *root,
3525 			struct btrfs_path *path, u64 min_objectid,
3526 			int type);
3527 int btrfs_previous_extent_item(struct btrfs_root *root,
3528 			struct btrfs_path *path, u64 min_objectid);
3529 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3530 			     struct btrfs_path *path,
3531 			     struct btrfs_key *new_key);
3532 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
3533 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
3534 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3535 			struct btrfs_key *key, int lowest_level,
3536 			u64 min_trans);
3537 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3538 			 struct btrfs_path *path,
3539 			 u64 min_trans);
3540 enum btrfs_compare_tree_result {
3541 	BTRFS_COMPARE_TREE_NEW,
3542 	BTRFS_COMPARE_TREE_DELETED,
3543 	BTRFS_COMPARE_TREE_CHANGED,
3544 	BTRFS_COMPARE_TREE_SAME,
3545 };
3546 typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
3547 				  struct btrfs_root *right_root,
3548 				  struct btrfs_path *left_path,
3549 				  struct btrfs_path *right_path,
3550 				  struct btrfs_key *key,
3551 				  enum btrfs_compare_tree_result result,
3552 				  void *ctx);
3553 int btrfs_compare_trees(struct btrfs_root *left_root,
3554 			struct btrfs_root *right_root,
3555 			btrfs_changed_cb_t cb, void *ctx);
3556 int btrfs_cow_block(struct btrfs_trans_handle *trans,
3557 		    struct btrfs_root *root, struct extent_buffer *buf,
3558 		    struct extent_buffer *parent, int parent_slot,
3559 		    struct extent_buffer **cow_ret);
3560 int btrfs_copy_root(struct btrfs_trans_handle *trans,
3561 		      struct btrfs_root *root,
3562 		      struct extent_buffer *buf,
3563 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
3564 int btrfs_block_can_be_shared(struct btrfs_root *root,
3565 			      struct extent_buffer *buf);
3566 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
3567 		       u32 data_size);
3568 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
3569 			 u32 new_size, int from_end);
3570 int btrfs_split_item(struct btrfs_trans_handle *trans,
3571 		     struct btrfs_root *root,
3572 		     struct btrfs_path *path,
3573 		     struct btrfs_key *new_key,
3574 		     unsigned long split_offset);
3575 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3576 			 struct btrfs_root *root,
3577 			 struct btrfs_path *path,
3578 			 struct btrfs_key *new_key);
3579 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
3580 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
3581 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
3582 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
3583 		      ins_len, int cow);
3584 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
3585 			  struct btrfs_path *p, u64 time_seq);
3586 int btrfs_search_slot_for_read(struct btrfs_root *root,
3587 			       struct btrfs_key *key, struct btrfs_path *p,
3588 			       int find_higher, int return_any);
3589 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3590 		       struct btrfs_root *root, struct extent_buffer *parent,
3591 		       int start_slot, u64 *last_ret,
3592 		       struct btrfs_key *progress);
3593 void btrfs_release_path(struct btrfs_path *p);
3594 struct btrfs_path *btrfs_alloc_path(void);
3595 void btrfs_free_path(struct btrfs_path *p);
3596 void btrfs_set_path_blocking(struct btrfs_path *p);
3597 void btrfs_clear_path_blocking(struct btrfs_path *p,
3598 			       struct extent_buffer *held, int held_rw);
3599 void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
3600 
3601 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3602 		   struct btrfs_path *path, int slot, int nr);
3603 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3604 				 struct btrfs_root *root,
3605 				 struct btrfs_path *path)
3606 {
3607 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
3608 }
3609 
3610 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3611 			    struct btrfs_key *cpu_key, u32 *data_size,
3612 			    u32 total_data, u32 total_size, int nr);
3613 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3614 		      *root, struct btrfs_key *key, void *data, u32 data_size);
3615 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3616 			     struct btrfs_root *root,
3617 			     struct btrfs_path *path,
3618 			     struct btrfs_key *cpu_key, u32 *data_size, int nr);
3619 
3620 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3621 					  struct btrfs_root *root,
3622 					  struct btrfs_path *path,
3623 					  struct btrfs_key *key,
3624 					  u32 data_size)
3625 {
3626 	return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
3627 }
3628 
3629 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
3630 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3631 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3632 			u64 time_seq);
3633 static inline int btrfs_next_old_item(struct btrfs_root *root,
3634 				      struct btrfs_path *p, u64 time_seq)
3635 {
3636 	++p->slots[0];
3637 	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3638 		return btrfs_next_old_leaf(root, p, time_seq);
3639 	return 0;
3640 }
3641 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3642 {
3643 	return btrfs_next_old_item(root, p, 0);
3644 }
3645 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
3646 int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
3647 				     struct btrfs_block_rsv *block_rsv,
3648 				     int update_ref, int for_reloc);
3649 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3650 			struct btrfs_root *root,
3651 			struct extent_buffer *node,
3652 			struct extent_buffer *parent);
3653 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3654 {
3655 	/*
3656 	 * Get synced with close_ctree()
3657 	 */
3658 	smp_mb();
3659 	return fs_info->closing;
3660 }
3661 
3662 /*
3663  * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3664  * anything except sleeping. This function is used to check the status of
3665  * the fs.
3666  */
3667 static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root)
3668 {
3669 	return (root->fs_info->sb->s_flags & MS_RDONLY ||
3670 		btrfs_fs_closing(root->fs_info));
3671 }
3672 
3673 static inline void free_fs_info(struct btrfs_fs_info *fs_info)
3674 {
3675 	kfree(fs_info->balance_ctl);
3676 	kfree(fs_info->delayed_root);
3677 	kfree(fs_info->extent_root);
3678 	kfree(fs_info->tree_root);
3679 	kfree(fs_info->chunk_root);
3680 	kfree(fs_info->dev_root);
3681 	kfree(fs_info->csum_root);
3682 	kfree(fs_info->quota_root);
3683 	kfree(fs_info->uuid_root);
3684 	kfree(fs_info->super_copy);
3685 	kfree(fs_info->super_for_commit);
3686 	security_free_mnt_opts(&fs_info->security_opts);
3687 	kfree(fs_info);
3688 }
3689 
3690 /* tree mod log functions from ctree.c */
3691 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3692 			   struct seq_list *elem);
3693 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3694 			    struct seq_list *elem);
3695 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
3696 
3697 /* root-item.c */
3698 int btrfs_find_root_ref(struct btrfs_root *tree_root,
3699 			struct btrfs_path *path,
3700 			u64 root_id, u64 ref_id);
3701 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
3702 		       struct btrfs_root *tree_root,
3703 		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
3704 		       const char *name, int name_len);
3705 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
3706 		       struct btrfs_root *tree_root,
3707 		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
3708 		       const char *name, int name_len);
3709 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3710 		   struct btrfs_key *key);
3711 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
3712 		      *root, struct btrfs_key *key, struct btrfs_root_item
3713 		      *item);
3714 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3715 				   struct btrfs_root *root,
3716 				   struct btrfs_key *key,
3717 				   struct btrfs_root_item *item);
3718 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
3719 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3720 		    struct btrfs_key *root_key);
3721 int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
3722 void btrfs_set_root_node(struct btrfs_root_item *item,
3723 			 struct extent_buffer *node);
3724 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3725 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3726 			     struct btrfs_root *root);
3727 
3728 /* uuid-tree.c */
3729 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
3730 			struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3731 			u64 subid);
3732 int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
3733 			struct btrfs_root *uuid_root, u8 *uuid, u8 type,
3734 			u64 subid);
3735 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
3736 			    int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
3737 					      u64));
3738 
3739 /* dir-item.c */
3740 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3741 			  const char *name, int name_len);
3742 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
3743 			  struct btrfs_root *root, const char *name,
3744 			  int name_len, struct inode *dir,
3745 			  struct btrfs_key *location, u8 type, u64 index);
3746 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3747 					     struct btrfs_root *root,
3748 					     struct btrfs_path *path, u64 dir,
3749 					     const char *name, int name_len,
3750 					     int mod);
3751 struct btrfs_dir_item *
3752 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3753 			    struct btrfs_root *root,
3754 			    struct btrfs_path *path, u64 dir,
3755 			    u64 objectid, const char *name, int name_len,
3756 			    int mod);
3757 struct btrfs_dir_item *
3758 btrfs_search_dir_index_item(struct btrfs_root *root,
3759 			    struct btrfs_path *path, u64 dirid,
3760 			    const char *name, int name_len);
3761 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3762 			      struct btrfs_root *root,
3763 			      struct btrfs_path *path,
3764 			      struct btrfs_dir_item *di);
3765 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3766 			    struct btrfs_root *root,
3767 			    struct btrfs_path *path, u64 objectid,
3768 			    const char *name, u16 name_len,
3769 			    const void *data, u16 data_len);
3770 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3771 					  struct btrfs_root *root,
3772 					  struct btrfs_path *path, u64 dir,
3773 					  const char *name, u16 name_len,
3774 					  int mod);
3775 int verify_dir_item(struct btrfs_root *root,
3776 		    struct extent_buffer *leaf,
3777 		    struct btrfs_dir_item *dir_item);
3778 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
3779 						 struct btrfs_path *path,
3780 						 const char *name,
3781 						 int name_len);
3782 
3783 /* orphan.c */
3784 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3785 			     struct btrfs_root *root, u64 offset);
3786 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3787 			  struct btrfs_root *root, u64 offset);
3788 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3789 
3790 /* inode-item.c */
3791 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3792 			   struct btrfs_root *root,
3793 			   const char *name, int name_len,
3794 			   u64 inode_objectid, u64 ref_objectid, u64 index);
3795 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3796 			   struct btrfs_root *root,
3797 			   const char *name, int name_len,
3798 			   u64 inode_objectid, u64 ref_objectid, u64 *index);
3799 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3800 			     struct btrfs_root *root,
3801 			     struct btrfs_path *path, u64 objectid);
3802 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3803 		       *root, struct btrfs_path *path,
3804 		       struct btrfs_key *location, int mod);
3805 
3806 struct btrfs_inode_extref *
3807 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3808 			  struct btrfs_root *root,
3809 			  struct btrfs_path *path,
3810 			  const char *name, int name_len,
3811 			  u64 inode_objectid, u64 ref_objectid, int ins_len,
3812 			  int cow);
3813 
3814 int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
3815 				   u64 ref_objectid, const char *name,
3816 				   int name_len,
3817 				   struct btrfs_inode_extref **extref_ret);
3818 
3819 /* file-item.c */
3820 struct btrfs_dio_private;
3821 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3822 		    struct btrfs_root *root, u64 bytenr, u64 len);
3823 int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
3824 			  struct bio *bio, u32 *dst);
3825 int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
3826 			      struct bio *bio, u64 logical_offset);
3827 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3828 			     struct btrfs_root *root,
3829 			     u64 objectid, u64 pos,
3830 			     u64 disk_offset, u64 disk_num_bytes,
3831 			     u64 num_bytes, u64 offset, u64 ram_bytes,
3832 			     u8 compression, u8 encryption, u16 other_encoding);
3833 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3834 			     struct btrfs_root *root,
3835 			     struct btrfs_path *path, u64 objectid,
3836 			     u64 bytenr, int mod);
3837 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3838 			   struct btrfs_root *root,
3839 			   struct btrfs_ordered_sum *sums);
3840 int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
3841 		       struct bio *bio, u64 file_start, int contig);
3842 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3843 			     struct list_head *list, int search_commit);
3844 void btrfs_extent_item_to_extent_map(struct inode *inode,
3845 				     const struct btrfs_path *path,
3846 				     struct btrfs_file_extent_item *fi,
3847 				     const bool new_inline,
3848 				     struct extent_map *em);
3849 
3850 /* inode.c */
3851 struct btrfs_delalloc_work {
3852 	struct inode *inode;
3853 	int wait;
3854 	int delay_iput;
3855 	struct completion completion;
3856 	struct list_head list;
3857 	struct btrfs_work work;
3858 };
3859 
3860 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
3861 						    int wait, int delay_iput);
3862 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
3863 
3864 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
3865 					   size_t pg_offset, u64 start, u64 len,
3866 					   int create);
3867 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3868 			      u64 *orig_start, u64 *orig_block_len,
3869 			      u64 *ram_bytes);
3870 
3871 /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
3872 #if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
3873 #define ClearPageChecked ClearPageFsMisc
3874 #define SetPageChecked SetPageFsMisc
3875 #define PageChecked PageFsMisc
3876 #endif
3877 
3878 /* This forces readahead on a given range of bytes in an inode */
3879 static inline void btrfs_force_ra(struct address_space *mapping,
3880 				  struct file_ra_state *ra, struct file *file,
3881 				  pgoff_t offset, unsigned long req_size)
3882 {
3883 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3884 }
3885 
3886 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3887 int btrfs_set_inode_index(struct inode *dir, u64 *index);
3888 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3889 		       struct btrfs_root *root,
3890 		       struct inode *dir, struct inode *inode,
3891 		       const char *name, int name_len);
3892 int btrfs_add_link(struct btrfs_trans_handle *trans,
3893 		   struct inode *parent_inode, struct inode *inode,
3894 		   const char *name, int name_len, int add_backref, u64 index);
3895 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3896 			struct btrfs_root *root,
3897 			struct inode *dir, u64 objectid,
3898 			const char *name, int name_len);
3899 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3900 			int front);
3901 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3902 			       struct btrfs_root *root,
3903 			       struct inode *inode, u64 new_size,
3904 			       u32 min_type);
3905 
3906 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
3907 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
3908 			       int nr);
3909 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
3910 			      struct extent_state **cached_state);
3911 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3912 			     struct btrfs_root *new_root,
3913 			     struct btrfs_root *parent_root,
3914 			     u64 new_dirid);
3915 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
3916 			 size_t size, struct bio *bio,
3917 			 unsigned long bio_flags);
3918 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
3919 int btrfs_readpage(struct file *file, struct page *page);
3920 void btrfs_evict_inode(struct inode *inode);
3921 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3922 struct inode *btrfs_alloc_inode(struct super_block *sb);
3923 void btrfs_destroy_inode(struct inode *inode);
3924 int btrfs_drop_inode(struct inode *inode);
3925 int btrfs_init_cachep(void);
3926 void btrfs_destroy_cachep(void);
3927 long btrfs_ioctl_trans_end(struct file *file);
3928 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3929 			 struct btrfs_root *root, int *was_new);
3930 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3931 				    size_t pg_offset, u64 start, u64 end,
3932 				    int create);
3933 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3934 			      struct btrfs_root *root,
3935 			      struct inode *inode);
3936 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3937 				struct btrfs_root *root, struct inode *inode);
3938 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
3939 int btrfs_orphan_cleanup(struct btrfs_root *root);
3940 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3941 			      struct btrfs_root *root);
3942 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3943 void btrfs_invalidate_inodes(struct btrfs_root *root);
3944 void btrfs_add_delayed_iput(struct inode *inode);
3945 void btrfs_run_delayed_iputs(struct btrfs_root *root);
3946 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3947 			      u64 start, u64 num_bytes, u64 min_size,
3948 			      loff_t actual_len, u64 *alloc_hint);
3949 int btrfs_prealloc_file_range_trans(struct inode *inode,
3950 				    struct btrfs_trans_handle *trans, int mode,
3951 				    u64 start, u64 num_bytes, u64 min_size,
3952 				    loff_t actual_len, u64 *alloc_hint);
3953 int btrfs_inode_check_errors(struct inode *inode);
3954 extern const struct dentry_operations btrfs_dentry_operations;
3955 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3956 void btrfs_test_inode_set_ops(struct inode *inode);
3957 #endif
3958 
3959 /* ioctl.c */
3960 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3961 void btrfs_update_iflags(struct inode *inode);
3962 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
3963 int btrfs_is_empty_uuid(u8 *uuid);
3964 int btrfs_defrag_file(struct inode *inode, struct file *file,
3965 		      struct btrfs_ioctl_defrag_range_args *range,
3966 		      u64 newer_than, unsigned long max_pages);
3967 void btrfs_get_block_group_info(struct list_head *groups_list,
3968 				struct btrfs_ioctl_space_info *space);
3969 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3970 			       struct btrfs_ioctl_balance_args *bargs);
3971 
3972 
3973 /* file.c */
3974 int btrfs_auto_defrag_init(void);
3975 void btrfs_auto_defrag_exit(void);
3976 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3977 			   struct inode *inode);
3978 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3979 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3980 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3981 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
3982 			     int skip_pinned);
3983 extern const struct file_operations btrfs_file_operations;
3984 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
3985 			 struct btrfs_root *root, struct inode *inode,
3986 			 struct btrfs_path *path, u64 start, u64 end,
3987 			 u64 *drop_end, int drop_cache,
3988 			 int replace_extent,
3989 			 u32 extent_item_size,
3990 			 int *key_inserted);
3991 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3992 		       struct btrfs_root *root, struct inode *inode, u64 start,
3993 		       u64 end, int drop_cache);
3994 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3995 			      struct inode *inode, u64 start, u64 end);
3996 int btrfs_release_file(struct inode *inode, struct file *file);
3997 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
3998 		      struct page **pages, size_t num_pages,
3999 		      loff_t pos, size_t write_bytes,
4000 		      struct extent_state **cached);
4001 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
4002 
4003 /* tree-defrag.c */
4004 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
4005 			struct btrfs_root *root);
4006 
4007 /* sysfs.c */
4008 int btrfs_init_sysfs(void);
4009 void btrfs_exit_sysfs(void);
4010 int btrfs_sysfs_add_one(struct btrfs_fs_info *fs_info);
4011 void btrfs_sysfs_remove_one(struct btrfs_fs_info *fs_info);
4012 
4013 /* xattr.c */
4014 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
4015 
4016 /* super.c */
4017 int btrfs_parse_options(struct btrfs_root *root, char *options);
4018 int btrfs_sync_fs(struct super_block *sb, int wait);
4019 
4020 #ifdef CONFIG_PRINTK
4021 __printf(2, 3)
4022 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
4023 #else
4024 static inline __printf(2, 3)
4025 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
4026 {
4027 }
4028 #endif
4029 
4030 #define btrfs_emerg(fs_info, fmt, args...) \
4031 	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
4032 #define btrfs_alert(fs_info, fmt, args...) \
4033 	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
4034 #define btrfs_crit(fs_info, fmt, args...) \
4035 	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
4036 #define btrfs_err(fs_info, fmt, args...) \
4037 	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
4038 #define btrfs_warn(fs_info, fmt, args...) \
4039 	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
4040 #define btrfs_notice(fs_info, fmt, args...) \
4041 	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
4042 #define btrfs_info(fs_info, fmt, args...) \
4043 	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
4044 
4045 #ifdef DEBUG
4046 #define btrfs_debug(fs_info, fmt, args...) \
4047 	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
4048 #else
4049 #define btrfs_debug(fs_info, fmt, args...) \
4050     no_printk(KERN_DEBUG fmt, ##args)
4051 #endif
4052 
4053 #ifdef CONFIG_BTRFS_ASSERT
4054 
4055 __cold
4056 static inline void assfail(char *expr, char *file, int line)
4057 {
4058 	pr_err("BTRFS: assertion failed: %s, file: %s, line: %d",
4059 	       expr, file, line);
4060 	BUG();
4061 }
4062 
4063 #define ASSERT(expr)	\
4064 	(likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
4065 #else
4066 #define ASSERT(expr)	((void)0)
4067 #endif
4068 
4069 #define btrfs_assert()
4070 __printf(5, 6)
4071 __cold
4072 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
4073 		     unsigned int line, int errno, const char *fmt, ...);
4074 
4075 
4076 __cold
4077 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
4078 			       struct btrfs_root *root, const char *function,
4079 			       unsigned int line, int errno);
4080 
4081 #define btrfs_set_fs_incompat(__fs_info, opt) \
4082 	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4083 
4084 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
4085 					   u64 flag)
4086 {
4087 	struct btrfs_super_block *disk_super;
4088 	u64 features;
4089 
4090 	disk_super = fs_info->super_copy;
4091 	features = btrfs_super_incompat_flags(disk_super);
4092 	if (!(features & flag)) {
4093 		spin_lock(&fs_info->super_lock);
4094 		features = btrfs_super_incompat_flags(disk_super);
4095 		if (!(features & flag)) {
4096 			features |= flag;
4097 			btrfs_set_super_incompat_flags(disk_super, features);
4098 			btrfs_info(fs_info, "setting %llu feature flag",
4099 					 flag);
4100 		}
4101 		spin_unlock(&fs_info->super_lock);
4102 	}
4103 }
4104 
4105 #define btrfs_fs_incompat(fs_info, opt) \
4106 	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
4107 
4108 static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
4109 {
4110 	struct btrfs_super_block *disk_super;
4111 	disk_super = fs_info->super_copy;
4112 	return !!(btrfs_super_incompat_flags(disk_super) & flag);
4113 }
4114 
4115 /*
4116  * Call btrfs_abort_transaction as early as possible when an error condition is
4117  * detected, that way the exact line number is reported.
4118  */
4119 #define btrfs_abort_transaction(trans, root, errno)		\
4120 do {								\
4121 	/* Report first abort since mount */			\
4122 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
4123 			&((root)->fs_info->fs_state))) {	\
4124 		WARN(1, KERN_DEBUG				\
4125 		"BTRFS: Transaction aborted (error %d)\n",	\
4126 		(errno));					\
4127 	}							\
4128 	__btrfs_abort_transaction((trans), (root), __func__,	\
4129 				  __LINE__, (errno));		\
4130 } while (0)
4131 
4132 #define btrfs_std_error(fs_info, errno)				\
4133 do {								\
4134 	if ((errno))						\
4135 		__btrfs_std_error((fs_info), __func__,		\
4136 				   __LINE__, (errno), NULL);	\
4137 } while (0)
4138 
4139 #define btrfs_error(fs_info, errno, fmt, args...)		\
4140 do {								\
4141 	__btrfs_std_error((fs_info), __func__, __LINE__,	\
4142 			  (errno), fmt, ##args);		\
4143 } while (0)
4144 
4145 __printf(5, 6)
4146 __cold
4147 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
4148 		   unsigned int line, int errno, const char *fmt, ...);
4149 
4150 /*
4151  * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
4152  * will panic().  Otherwise we BUG() here.
4153  */
4154 #define btrfs_panic(fs_info, errno, fmt, args...)			\
4155 do {									\
4156 	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
4157 	BUG();								\
4158 } while (0)
4159 
4160 /* acl.c */
4161 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
4162 struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
4163 int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
4164 int btrfs_init_acl(struct btrfs_trans_handle *trans,
4165 		   struct inode *inode, struct inode *dir);
4166 #else
4167 #define btrfs_get_acl NULL
4168 #define btrfs_set_acl NULL
4169 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
4170 				 struct inode *inode, struct inode *dir)
4171 {
4172 	return 0;
4173 }
4174 #endif
4175 
4176 /* relocation.c */
4177 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
4178 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
4179 			  struct btrfs_root *root);
4180 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
4181 			    struct btrfs_root *root);
4182 int btrfs_recover_relocation(struct btrfs_root *root);
4183 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
4184 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4185 			  struct btrfs_root *root, struct extent_buffer *buf,
4186 			  struct extent_buffer *cow);
4187 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4188 			      struct btrfs_pending_snapshot *pending,
4189 			      u64 *bytes_to_reserve);
4190 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4191 			      struct btrfs_pending_snapshot *pending);
4192 
4193 /* scrub.c */
4194 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4195 		    u64 end, struct btrfs_scrub_progress *progress,
4196 		    int readonly, int is_dev_replace);
4197 void btrfs_scrub_pause(struct btrfs_root *root);
4198 void btrfs_scrub_continue(struct btrfs_root *root);
4199 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
4200 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
4201 			   struct btrfs_device *dev);
4202 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
4203 			 struct btrfs_scrub_progress *progress);
4204 
4205 /* dev-replace.c */
4206 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
4207 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
4208 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
4209 
4210 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
4211 {
4212 	btrfs_bio_counter_sub(fs_info, 1);
4213 }
4214 
4215 /* reada.c */
4216 struct reada_control {
4217 	struct btrfs_root	*root;		/* tree to prefetch */
4218 	struct btrfs_key	key_start;
4219 	struct btrfs_key	key_end;	/* exclusive */
4220 	atomic_t		elems;
4221 	struct kref		refcnt;
4222 	wait_queue_head_t	wait;
4223 };
4224 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
4225 			      struct btrfs_key *start, struct btrfs_key *end);
4226 int btrfs_reada_wait(void *handle);
4227 void btrfs_reada_detach(void *handle);
4228 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
4229 			 u64 start, int err);
4230 
4231 static inline int is_fstree(u64 rootid)
4232 {
4233 	if (rootid == BTRFS_FS_TREE_OBJECTID ||
4234 	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
4235 	      !btrfs_qgroup_level(rootid)))
4236 		return 1;
4237 	return 0;
4238 }
4239 
4240 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4241 {
4242 	return signal_pending(current);
4243 }
4244 
4245 /* Sanity test specific functions */
4246 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4247 void btrfs_test_destroy_inode(struct inode *inode);
4248 #endif
4249 
4250 static inline int btrfs_test_is_dummy_root(struct btrfs_root *root)
4251 {
4252 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4253 	if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
4254 		return 1;
4255 #endif
4256 	return 0;
4257 }
4258 
4259 #endif
4260