1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 16 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 17 *root, struct btrfs_path *path, int level); 18 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 19 const struct btrfs_key *ins_key, struct btrfs_path *path, 20 int data_size, int extend); 21 static int push_node_left(struct btrfs_trans_handle *trans, 22 struct btrfs_fs_info *fs_info, 23 struct extent_buffer *dst, 24 struct extent_buffer *src, int empty); 25 static int balance_node_right(struct btrfs_trans_handle *trans, 26 struct btrfs_fs_info *fs_info, 27 struct extent_buffer *dst_buf, 28 struct extent_buffer *src_buf); 29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 30 int level, int slot); 31 32 struct btrfs_path *btrfs_alloc_path(void) 33 { 34 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 35 } 36 37 /* 38 * set all locked nodes in the path to blocking locks. This should 39 * be done before scheduling 40 */ 41 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 42 { 43 int i; 44 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 45 if (!p->nodes[i] || !p->locks[i]) 46 continue; 47 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 48 if (p->locks[i] == BTRFS_READ_LOCK) 49 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 50 else if (p->locks[i] == BTRFS_WRITE_LOCK) 51 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 52 } 53 } 54 55 /* 56 * reset all the locked nodes in the patch to spinning locks. 57 * 58 * held is used to keep lockdep happy, when lockdep is enabled 59 * we set held to a blocking lock before we go around and 60 * retake all the spinlocks in the path. You can safely use NULL 61 * for held 62 */ 63 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 64 struct extent_buffer *held, int held_rw) 65 { 66 int i; 67 68 if (held) { 69 btrfs_set_lock_blocking_rw(held, held_rw); 70 if (held_rw == BTRFS_WRITE_LOCK) 71 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 72 else if (held_rw == BTRFS_READ_LOCK) 73 held_rw = BTRFS_READ_LOCK_BLOCKING; 74 } 75 btrfs_set_path_blocking(p); 76 77 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 78 if (p->nodes[i] && p->locks[i]) { 79 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 80 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 81 p->locks[i] = BTRFS_WRITE_LOCK; 82 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 83 p->locks[i] = BTRFS_READ_LOCK; 84 } 85 } 86 87 if (held) 88 btrfs_clear_lock_blocking_rw(held, held_rw); 89 } 90 91 /* this also releases the path */ 92 void btrfs_free_path(struct btrfs_path *p) 93 { 94 if (!p) 95 return; 96 btrfs_release_path(p); 97 kmem_cache_free(btrfs_path_cachep, p); 98 } 99 100 /* 101 * path release drops references on the extent buffers in the path 102 * and it drops any locks held by this path 103 * 104 * It is safe to call this on paths that no locks or extent buffers held. 105 */ 106 noinline void btrfs_release_path(struct btrfs_path *p) 107 { 108 int i; 109 110 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 111 p->slots[i] = 0; 112 if (!p->nodes[i]) 113 continue; 114 if (p->locks[i]) { 115 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 116 p->locks[i] = 0; 117 } 118 free_extent_buffer(p->nodes[i]); 119 p->nodes[i] = NULL; 120 } 121 } 122 123 /* 124 * safely gets a reference on the root node of a tree. A lock 125 * is not taken, so a concurrent writer may put a different node 126 * at the root of the tree. See btrfs_lock_root_node for the 127 * looping required. 128 * 129 * The extent buffer returned by this has a reference taken, so 130 * it won't disappear. It may stop being the root of the tree 131 * at any time because there are no locks held. 132 */ 133 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 134 { 135 struct extent_buffer *eb; 136 137 while (1) { 138 rcu_read_lock(); 139 eb = rcu_dereference(root->node); 140 141 /* 142 * RCU really hurts here, we could free up the root node because 143 * it was COWed but we may not get the new root node yet so do 144 * the inc_not_zero dance and if it doesn't work then 145 * synchronize_rcu and try again. 146 */ 147 if (atomic_inc_not_zero(&eb->refs)) { 148 rcu_read_unlock(); 149 break; 150 } 151 rcu_read_unlock(); 152 synchronize_rcu(); 153 } 154 return eb; 155 } 156 157 /* loop around taking references on and locking the root node of the 158 * tree until you end up with a lock on the root. A locked buffer 159 * is returned, with a reference held. 160 */ 161 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 162 { 163 struct extent_buffer *eb; 164 165 while (1) { 166 eb = btrfs_root_node(root); 167 btrfs_tree_lock(eb); 168 if (eb == root->node) 169 break; 170 btrfs_tree_unlock(eb); 171 free_extent_buffer(eb); 172 } 173 return eb; 174 } 175 176 /* loop around taking references on and locking the root node of the 177 * tree until you end up with a lock on the root. A locked buffer 178 * is returned, with a reference held. 179 */ 180 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 181 { 182 struct extent_buffer *eb; 183 184 while (1) { 185 eb = btrfs_root_node(root); 186 btrfs_tree_read_lock(eb); 187 if (eb == root->node) 188 break; 189 btrfs_tree_read_unlock(eb); 190 free_extent_buffer(eb); 191 } 192 return eb; 193 } 194 195 /* cowonly root (everything not a reference counted cow subvolume), just get 196 * put onto a simple dirty list. transaction.c walks this to make sure they 197 * get properly updated on disk. 198 */ 199 static void add_root_to_dirty_list(struct btrfs_root *root) 200 { 201 struct btrfs_fs_info *fs_info = root->fs_info; 202 203 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 204 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 205 return; 206 207 spin_lock(&fs_info->trans_lock); 208 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 209 /* Want the extent tree to be the last on the list */ 210 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID) 211 list_move_tail(&root->dirty_list, 212 &fs_info->dirty_cowonly_roots); 213 else 214 list_move(&root->dirty_list, 215 &fs_info->dirty_cowonly_roots); 216 } 217 spin_unlock(&fs_info->trans_lock); 218 } 219 220 /* 221 * used by snapshot creation to make a copy of a root for a tree with 222 * a given objectid. The buffer with the new root node is returned in 223 * cow_ret, and this func returns zero on success or a negative error code. 224 */ 225 int btrfs_copy_root(struct btrfs_trans_handle *trans, 226 struct btrfs_root *root, 227 struct extent_buffer *buf, 228 struct extent_buffer **cow_ret, u64 new_root_objectid) 229 { 230 struct btrfs_fs_info *fs_info = root->fs_info; 231 struct extent_buffer *cow; 232 int ret = 0; 233 int level; 234 struct btrfs_disk_key disk_key; 235 236 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 237 trans->transid != fs_info->running_transaction->transid); 238 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 239 trans->transid != root->last_trans); 240 241 level = btrfs_header_level(buf); 242 if (level == 0) 243 btrfs_item_key(buf, &disk_key, 0); 244 else 245 btrfs_node_key(buf, &disk_key, 0); 246 247 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 248 &disk_key, level, buf->start, 0); 249 if (IS_ERR(cow)) 250 return PTR_ERR(cow); 251 252 copy_extent_buffer_full(cow, buf); 253 btrfs_set_header_bytenr(cow, cow->start); 254 btrfs_set_header_generation(cow, trans->transid); 255 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 256 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 257 BTRFS_HEADER_FLAG_RELOC); 258 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 259 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 260 else 261 btrfs_set_header_owner(cow, new_root_objectid); 262 263 write_extent_buffer_fsid(cow, fs_info->fsid); 264 265 WARN_ON(btrfs_header_generation(buf) > trans->transid); 266 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 267 ret = btrfs_inc_ref(trans, root, cow, 1); 268 else 269 ret = btrfs_inc_ref(trans, root, cow, 0); 270 271 if (ret) 272 return ret; 273 274 btrfs_mark_buffer_dirty(cow); 275 *cow_ret = cow; 276 return 0; 277 } 278 279 enum mod_log_op { 280 MOD_LOG_KEY_REPLACE, 281 MOD_LOG_KEY_ADD, 282 MOD_LOG_KEY_REMOVE, 283 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 284 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 285 MOD_LOG_MOVE_KEYS, 286 MOD_LOG_ROOT_REPLACE, 287 }; 288 289 struct tree_mod_root { 290 u64 logical; 291 u8 level; 292 }; 293 294 struct tree_mod_elem { 295 struct rb_node node; 296 u64 logical; 297 u64 seq; 298 enum mod_log_op op; 299 300 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 301 int slot; 302 303 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 304 u64 generation; 305 306 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 307 struct btrfs_disk_key key; 308 u64 blockptr; 309 310 /* this is used for op == MOD_LOG_MOVE_KEYS */ 311 struct { 312 int dst_slot; 313 int nr_items; 314 } move; 315 316 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 317 struct tree_mod_root old_root; 318 }; 319 320 /* 321 * Pull a new tree mod seq number for our operation. 322 */ 323 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 324 { 325 return atomic64_inc_return(&fs_info->tree_mod_seq); 326 } 327 328 /* 329 * This adds a new blocker to the tree mod log's blocker list if the @elem 330 * passed does not already have a sequence number set. So when a caller expects 331 * to record tree modifications, it should ensure to set elem->seq to zero 332 * before calling btrfs_get_tree_mod_seq. 333 * Returns a fresh, unused tree log modification sequence number, even if no new 334 * blocker was added. 335 */ 336 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 337 struct seq_list *elem) 338 { 339 write_lock(&fs_info->tree_mod_log_lock); 340 spin_lock(&fs_info->tree_mod_seq_lock); 341 if (!elem->seq) { 342 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 343 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 344 } 345 spin_unlock(&fs_info->tree_mod_seq_lock); 346 write_unlock(&fs_info->tree_mod_log_lock); 347 348 return elem->seq; 349 } 350 351 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 352 struct seq_list *elem) 353 { 354 struct rb_root *tm_root; 355 struct rb_node *node; 356 struct rb_node *next; 357 struct seq_list *cur_elem; 358 struct tree_mod_elem *tm; 359 u64 min_seq = (u64)-1; 360 u64 seq_putting = elem->seq; 361 362 if (!seq_putting) 363 return; 364 365 spin_lock(&fs_info->tree_mod_seq_lock); 366 list_del(&elem->list); 367 elem->seq = 0; 368 369 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 370 if (cur_elem->seq < min_seq) { 371 if (seq_putting > cur_elem->seq) { 372 /* 373 * blocker with lower sequence number exists, we 374 * cannot remove anything from the log 375 */ 376 spin_unlock(&fs_info->tree_mod_seq_lock); 377 return; 378 } 379 min_seq = cur_elem->seq; 380 } 381 } 382 spin_unlock(&fs_info->tree_mod_seq_lock); 383 384 /* 385 * anything that's lower than the lowest existing (read: blocked) 386 * sequence number can be removed from the tree. 387 */ 388 write_lock(&fs_info->tree_mod_log_lock); 389 tm_root = &fs_info->tree_mod_log; 390 for (node = rb_first(tm_root); node; node = next) { 391 next = rb_next(node); 392 tm = rb_entry(node, struct tree_mod_elem, node); 393 if (tm->seq > min_seq) 394 continue; 395 rb_erase(node, tm_root); 396 kfree(tm); 397 } 398 write_unlock(&fs_info->tree_mod_log_lock); 399 } 400 401 /* 402 * key order of the log: 403 * node/leaf start address -> sequence 404 * 405 * The 'start address' is the logical address of the *new* root node 406 * for root replace operations, or the logical address of the affected 407 * block for all other operations. 408 * 409 * Note: must be called with write lock for fs_info::tree_mod_log_lock. 410 */ 411 static noinline int 412 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 413 { 414 struct rb_root *tm_root; 415 struct rb_node **new; 416 struct rb_node *parent = NULL; 417 struct tree_mod_elem *cur; 418 419 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 420 421 tm_root = &fs_info->tree_mod_log; 422 new = &tm_root->rb_node; 423 while (*new) { 424 cur = rb_entry(*new, struct tree_mod_elem, node); 425 parent = *new; 426 if (cur->logical < tm->logical) 427 new = &((*new)->rb_left); 428 else if (cur->logical > tm->logical) 429 new = &((*new)->rb_right); 430 else if (cur->seq < tm->seq) 431 new = &((*new)->rb_left); 432 else if (cur->seq > tm->seq) 433 new = &((*new)->rb_right); 434 else 435 return -EEXIST; 436 } 437 438 rb_link_node(&tm->node, parent, new); 439 rb_insert_color(&tm->node, tm_root); 440 return 0; 441 } 442 443 /* 444 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 445 * returns zero with the tree_mod_log_lock acquired. The caller must hold 446 * this until all tree mod log insertions are recorded in the rb tree and then 447 * write unlock fs_info::tree_mod_log_lock. 448 */ 449 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 450 struct extent_buffer *eb) { 451 smp_mb(); 452 if (list_empty(&(fs_info)->tree_mod_seq_list)) 453 return 1; 454 if (eb && btrfs_header_level(eb) == 0) 455 return 1; 456 457 write_lock(&fs_info->tree_mod_log_lock); 458 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 459 write_unlock(&fs_info->tree_mod_log_lock); 460 return 1; 461 } 462 463 return 0; 464 } 465 466 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 467 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 468 struct extent_buffer *eb) 469 { 470 smp_mb(); 471 if (list_empty(&(fs_info)->tree_mod_seq_list)) 472 return 0; 473 if (eb && btrfs_header_level(eb) == 0) 474 return 0; 475 476 return 1; 477 } 478 479 static struct tree_mod_elem * 480 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 481 enum mod_log_op op, gfp_t flags) 482 { 483 struct tree_mod_elem *tm; 484 485 tm = kzalloc(sizeof(*tm), flags); 486 if (!tm) 487 return NULL; 488 489 tm->logical = eb->start; 490 if (op != MOD_LOG_KEY_ADD) { 491 btrfs_node_key(eb, &tm->key, slot); 492 tm->blockptr = btrfs_node_blockptr(eb, slot); 493 } 494 tm->op = op; 495 tm->slot = slot; 496 tm->generation = btrfs_node_ptr_generation(eb, slot); 497 RB_CLEAR_NODE(&tm->node); 498 499 return tm; 500 } 501 502 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 503 enum mod_log_op op, gfp_t flags) 504 { 505 struct tree_mod_elem *tm; 506 int ret; 507 508 if (!tree_mod_need_log(eb->fs_info, eb)) 509 return 0; 510 511 tm = alloc_tree_mod_elem(eb, slot, op, flags); 512 if (!tm) 513 return -ENOMEM; 514 515 if (tree_mod_dont_log(eb->fs_info, eb)) { 516 kfree(tm); 517 return 0; 518 } 519 520 ret = __tree_mod_log_insert(eb->fs_info, tm); 521 write_unlock(&eb->fs_info->tree_mod_log_lock); 522 if (ret) 523 kfree(tm); 524 525 return ret; 526 } 527 528 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 529 int dst_slot, int src_slot, int nr_items) 530 { 531 struct tree_mod_elem *tm = NULL; 532 struct tree_mod_elem **tm_list = NULL; 533 int ret = 0; 534 int i; 535 int locked = 0; 536 537 if (!tree_mod_need_log(eb->fs_info, eb)) 538 return 0; 539 540 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 541 if (!tm_list) 542 return -ENOMEM; 543 544 tm = kzalloc(sizeof(*tm), GFP_NOFS); 545 if (!tm) { 546 ret = -ENOMEM; 547 goto free_tms; 548 } 549 550 tm->logical = eb->start; 551 tm->slot = src_slot; 552 tm->move.dst_slot = dst_slot; 553 tm->move.nr_items = nr_items; 554 tm->op = MOD_LOG_MOVE_KEYS; 555 556 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 557 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 558 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 559 if (!tm_list[i]) { 560 ret = -ENOMEM; 561 goto free_tms; 562 } 563 } 564 565 if (tree_mod_dont_log(eb->fs_info, eb)) 566 goto free_tms; 567 locked = 1; 568 569 /* 570 * When we override something during the move, we log these removals. 571 * This can only happen when we move towards the beginning of the 572 * buffer, i.e. dst_slot < src_slot. 573 */ 574 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 575 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 576 if (ret) 577 goto free_tms; 578 } 579 580 ret = __tree_mod_log_insert(eb->fs_info, tm); 581 if (ret) 582 goto free_tms; 583 write_unlock(&eb->fs_info->tree_mod_log_lock); 584 kfree(tm_list); 585 586 return 0; 587 free_tms: 588 for (i = 0; i < nr_items; i++) { 589 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 590 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 591 kfree(tm_list[i]); 592 } 593 if (locked) 594 write_unlock(&eb->fs_info->tree_mod_log_lock); 595 kfree(tm_list); 596 kfree(tm); 597 598 return ret; 599 } 600 601 static inline int 602 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 603 struct tree_mod_elem **tm_list, 604 int nritems) 605 { 606 int i, j; 607 int ret; 608 609 for (i = nritems - 1; i >= 0; i--) { 610 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 611 if (ret) { 612 for (j = nritems - 1; j > i; j--) 613 rb_erase(&tm_list[j]->node, 614 &fs_info->tree_mod_log); 615 return ret; 616 } 617 } 618 619 return 0; 620 } 621 622 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 623 struct extent_buffer *new_root, int log_removal) 624 { 625 struct btrfs_fs_info *fs_info = old_root->fs_info; 626 struct tree_mod_elem *tm = NULL; 627 struct tree_mod_elem **tm_list = NULL; 628 int nritems = 0; 629 int ret = 0; 630 int i; 631 632 if (!tree_mod_need_log(fs_info, NULL)) 633 return 0; 634 635 if (log_removal && btrfs_header_level(old_root) > 0) { 636 nritems = btrfs_header_nritems(old_root); 637 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 638 GFP_NOFS); 639 if (!tm_list) { 640 ret = -ENOMEM; 641 goto free_tms; 642 } 643 for (i = 0; i < nritems; i++) { 644 tm_list[i] = alloc_tree_mod_elem(old_root, i, 645 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 646 if (!tm_list[i]) { 647 ret = -ENOMEM; 648 goto free_tms; 649 } 650 } 651 } 652 653 tm = kzalloc(sizeof(*tm), GFP_NOFS); 654 if (!tm) { 655 ret = -ENOMEM; 656 goto free_tms; 657 } 658 659 tm->logical = new_root->start; 660 tm->old_root.logical = old_root->start; 661 tm->old_root.level = btrfs_header_level(old_root); 662 tm->generation = btrfs_header_generation(old_root); 663 tm->op = MOD_LOG_ROOT_REPLACE; 664 665 if (tree_mod_dont_log(fs_info, NULL)) 666 goto free_tms; 667 668 if (tm_list) 669 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 670 if (!ret) 671 ret = __tree_mod_log_insert(fs_info, tm); 672 673 write_unlock(&fs_info->tree_mod_log_lock); 674 if (ret) 675 goto free_tms; 676 kfree(tm_list); 677 678 return ret; 679 680 free_tms: 681 if (tm_list) { 682 for (i = 0; i < nritems; i++) 683 kfree(tm_list[i]); 684 kfree(tm_list); 685 } 686 kfree(tm); 687 688 return ret; 689 } 690 691 static struct tree_mod_elem * 692 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 693 int smallest) 694 { 695 struct rb_root *tm_root; 696 struct rb_node *node; 697 struct tree_mod_elem *cur = NULL; 698 struct tree_mod_elem *found = NULL; 699 700 read_lock(&fs_info->tree_mod_log_lock); 701 tm_root = &fs_info->tree_mod_log; 702 node = tm_root->rb_node; 703 while (node) { 704 cur = rb_entry(node, struct tree_mod_elem, node); 705 if (cur->logical < start) { 706 node = node->rb_left; 707 } else if (cur->logical > start) { 708 node = node->rb_right; 709 } else if (cur->seq < min_seq) { 710 node = node->rb_left; 711 } else if (!smallest) { 712 /* we want the node with the highest seq */ 713 if (found) 714 BUG_ON(found->seq > cur->seq); 715 found = cur; 716 node = node->rb_left; 717 } else if (cur->seq > min_seq) { 718 /* we want the node with the smallest seq */ 719 if (found) 720 BUG_ON(found->seq < cur->seq); 721 found = cur; 722 node = node->rb_right; 723 } else { 724 found = cur; 725 break; 726 } 727 } 728 read_unlock(&fs_info->tree_mod_log_lock); 729 730 return found; 731 } 732 733 /* 734 * this returns the element from the log with the smallest time sequence 735 * value that's in the log (the oldest log item). any element with a time 736 * sequence lower than min_seq will be ignored. 737 */ 738 static struct tree_mod_elem * 739 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 740 u64 min_seq) 741 { 742 return __tree_mod_log_search(fs_info, start, min_seq, 1); 743 } 744 745 /* 746 * this returns the element from the log with the largest time sequence 747 * value that's in the log (the most recent log item). any element with 748 * a time sequence lower than min_seq will be ignored. 749 */ 750 static struct tree_mod_elem * 751 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 752 { 753 return __tree_mod_log_search(fs_info, start, min_seq, 0); 754 } 755 756 static noinline int 757 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 758 struct extent_buffer *src, unsigned long dst_offset, 759 unsigned long src_offset, int nr_items) 760 { 761 int ret = 0; 762 struct tree_mod_elem **tm_list = NULL; 763 struct tree_mod_elem **tm_list_add, **tm_list_rem; 764 int i; 765 int locked = 0; 766 767 if (!tree_mod_need_log(fs_info, NULL)) 768 return 0; 769 770 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 771 return 0; 772 773 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 774 GFP_NOFS); 775 if (!tm_list) 776 return -ENOMEM; 777 778 tm_list_add = tm_list; 779 tm_list_rem = tm_list + nr_items; 780 for (i = 0; i < nr_items; i++) { 781 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 782 MOD_LOG_KEY_REMOVE, GFP_NOFS); 783 if (!tm_list_rem[i]) { 784 ret = -ENOMEM; 785 goto free_tms; 786 } 787 788 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 789 MOD_LOG_KEY_ADD, GFP_NOFS); 790 if (!tm_list_add[i]) { 791 ret = -ENOMEM; 792 goto free_tms; 793 } 794 } 795 796 if (tree_mod_dont_log(fs_info, NULL)) 797 goto free_tms; 798 locked = 1; 799 800 for (i = 0; i < nr_items; i++) { 801 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 802 if (ret) 803 goto free_tms; 804 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 805 if (ret) 806 goto free_tms; 807 } 808 809 write_unlock(&fs_info->tree_mod_log_lock); 810 kfree(tm_list); 811 812 return 0; 813 814 free_tms: 815 for (i = 0; i < nr_items * 2; i++) { 816 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 817 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 818 kfree(tm_list[i]); 819 } 820 if (locked) 821 write_unlock(&fs_info->tree_mod_log_lock); 822 kfree(tm_list); 823 824 return ret; 825 } 826 827 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 828 { 829 struct tree_mod_elem **tm_list = NULL; 830 int nritems = 0; 831 int i; 832 int ret = 0; 833 834 if (btrfs_header_level(eb) == 0) 835 return 0; 836 837 if (!tree_mod_need_log(eb->fs_info, NULL)) 838 return 0; 839 840 nritems = btrfs_header_nritems(eb); 841 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 842 if (!tm_list) 843 return -ENOMEM; 844 845 for (i = 0; i < nritems; i++) { 846 tm_list[i] = alloc_tree_mod_elem(eb, i, 847 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 848 if (!tm_list[i]) { 849 ret = -ENOMEM; 850 goto free_tms; 851 } 852 } 853 854 if (tree_mod_dont_log(eb->fs_info, eb)) 855 goto free_tms; 856 857 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 858 write_unlock(&eb->fs_info->tree_mod_log_lock); 859 if (ret) 860 goto free_tms; 861 kfree(tm_list); 862 863 return 0; 864 865 free_tms: 866 for (i = 0; i < nritems; i++) 867 kfree(tm_list[i]); 868 kfree(tm_list); 869 870 return ret; 871 } 872 873 /* 874 * check if the tree block can be shared by multiple trees 875 */ 876 int btrfs_block_can_be_shared(struct btrfs_root *root, 877 struct extent_buffer *buf) 878 { 879 /* 880 * Tree blocks not in reference counted trees and tree roots 881 * are never shared. If a block was allocated after the last 882 * snapshot and the block was not allocated by tree relocation, 883 * we know the block is not shared. 884 */ 885 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 886 buf != root->node && buf != root->commit_root && 887 (btrfs_header_generation(buf) <= 888 btrfs_root_last_snapshot(&root->root_item) || 889 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 890 return 1; 891 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 892 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 893 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 894 return 1; 895 #endif 896 return 0; 897 } 898 899 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 900 struct btrfs_root *root, 901 struct extent_buffer *buf, 902 struct extent_buffer *cow, 903 int *last_ref) 904 { 905 struct btrfs_fs_info *fs_info = root->fs_info; 906 u64 refs; 907 u64 owner; 908 u64 flags; 909 u64 new_flags = 0; 910 int ret; 911 912 /* 913 * Backrefs update rules: 914 * 915 * Always use full backrefs for extent pointers in tree block 916 * allocated by tree relocation. 917 * 918 * If a shared tree block is no longer referenced by its owner 919 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 920 * use full backrefs for extent pointers in tree block. 921 * 922 * If a tree block is been relocating 923 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 924 * use full backrefs for extent pointers in tree block. 925 * The reason for this is some operations (such as drop tree) 926 * are only allowed for blocks use full backrefs. 927 */ 928 929 if (btrfs_block_can_be_shared(root, buf)) { 930 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 931 btrfs_header_level(buf), 1, 932 &refs, &flags); 933 if (ret) 934 return ret; 935 if (refs == 0) { 936 ret = -EROFS; 937 btrfs_handle_fs_error(fs_info, ret, NULL); 938 return ret; 939 } 940 } else { 941 refs = 1; 942 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 943 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 944 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 945 else 946 flags = 0; 947 } 948 949 owner = btrfs_header_owner(buf); 950 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 951 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 952 953 if (refs > 1) { 954 if ((owner == root->root_key.objectid || 955 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 956 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 957 ret = btrfs_inc_ref(trans, root, buf, 1); 958 if (ret) 959 return ret; 960 961 if (root->root_key.objectid == 962 BTRFS_TREE_RELOC_OBJECTID) { 963 ret = btrfs_dec_ref(trans, root, buf, 0); 964 if (ret) 965 return ret; 966 ret = btrfs_inc_ref(trans, root, cow, 1); 967 if (ret) 968 return ret; 969 } 970 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 971 } else { 972 973 if (root->root_key.objectid == 974 BTRFS_TREE_RELOC_OBJECTID) 975 ret = btrfs_inc_ref(trans, root, cow, 1); 976 else 977 ret = btrfs_inc_ref(trans, root, cow, 0); 978 if (ret) 979 return ret; 980 } 981 if (new_flags != 0) { 982 int level = btrfs_header_level(buf); 983 984 ret = btrfs_set_disk_extent_flags(trans, fs_info, 985 buf->start, 986 buf->len, 987 new_flags, level, 0); 988 if (ret) 989 return ret; 990 } 991 } else { 992 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 993 if (root->root_key.objectid == 994 BTRFS_TREE_RELOC_OBJECTID) 995 ret = btrfs_inc_ref(trans, root, cow, 1); 996 else 997 ret = btrfs_inc_ref(trans, root, cow, 0); 998 if (ret) 999 return ret; 1000 ret = btrfs_dec_ref(trans, root, buf, 1); 1001 if (ret) 1002 return ret; 1003 } 1004 clean_tree_block(fs_info, buf); 1005 *last_ref = 1; 1006 } 1007 return 0; 1008 } 1009 1010 /* 1011 * does the dirty work in cow of a single block. The parent block (if 1012 * supplied) is updated to point to the new cow copy. The new buffer is marked 1013 * dirty and returned locked. If you modify the block it needs to be marked 1014 * dirty again. 1015 * 1016 * search_start -- an allocation hint for the new block 1017 * 1018 * empty_size -- a hint that you plan on doing more cow. This is the size in 1019 * bytes the allocator should try to find free next to the block it returns. 1020 * This is just a hint and may be ignored by the allocator. 1021 */ 1022 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1023 struct btrfs_root *root, 1024 struct extent_buffer *buf, 1025 struct extent_buffer *parent, int parent_slot, 1026 struct extent_buffer **cow_ret, 1027 u64 search_start, u64 empty_size) 1028 { 1029 struct btrfs_fs_info *fs_info = root->fs_info; 1030 struct btrfs_disk_key disk_key; 1031 struct extent_buffer *cow; 1032 int level, ret; 1033 int last_ref = 0; 1034 int unlock_orig = 0; 1035 u64 parent_start = 0; 1036 1037 if (*cow_ret == buf) 1038 unlock_orig = 1; 1039 1040 btrfs_assert_tree_locked(buf); 1041 1042 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1043 trans->transid != fs_info->running_transaction->transid); 1044 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1045 trans->transid != root->last_trans); 1046 1047 level = btrfs_header_level(buf); 1048 1049 if (level == 0) 1050 btrfs_item_key(buf, &disk_key, 0); 1051 else 1052 btrfs_node_key(buf, &disk_key, 0); 1053 1054 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1055 parent_start = parent->start; 1056 1057 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1058 root->root_key.objectid, &disk_key, level, 1059 search_start, empty_size); 1060 if (IS_ERR(cow)) 1061 return PTR_ERR(cow); 1062 1063 /* cow is set to blocking by btrfs_init_new_buffer */ 1064 1065 copy_extent_buffer_full(cow, buf); 1066 btrfs_set_header_bytenr(cow, cow->start); 1067 btrfs_set_header_generation(cow, trans->transid); 1068 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1069 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1070 BTRFS_HEADER_FLAG_RELOC); 1071 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1072 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1073 else 1074 btrfs_set_header_owner(cow, root->root_key.objectid); 1075 1076 write_extent_buffer_fsid(cow, fs_info->fsid); 1077 1078 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1079 if (ret) { 1080 btrfs_abort_transaction(trans, ret); 1081 return ret; 1082 } 1083 1084 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1085 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1086 if (ret) { 1087 btrfs_abort_transaction(trans, ret); 1088 return ret; 1089 } 1090 } 1091 1092 if (buf == root->node) { 1093 WARN_ON(parent && parent != buf); 1094 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1095 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1096 parent_start = buf->start; 1097 1098 extent_buffer_get(cow); 1099 ret = tree_mod_log_insert_root(root->node, cow, 1); 1100 BUG_ON(ret < 0); 1101 rcu_assign_pointer(root->node, cow); 1102 1103 btrfs_free_tree_block(trans, root, buf, parent_start, 1104 last_ref); 1105 free_extent_buffer(buf); 1106 add_root_to_dirty_list(root); 1107 } else { 1108 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1109 tree_mod_log_insert_key(parent, parent_slot, 1110 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1111 btrfs_set_node_blockptr(parent, parent_slot, 1112 cow->start); 1113 btrfs_set_node_ptr_generation(parent, parent_slot, 1114 trans->transid); 1115 btrfs_mark_buffer_dirty(parent); 1116 if (last_ref) { 1117 ret = tree_mod_log_free_eb(buf); 1118 if (ret) { 1119 btrfs_abort_transaction(trans, ret); 1120 return ret; 1121 } 1122 } 1123 btrfs_free_tree_block(trans, root, buf, parent_start, 1124 last_ref); 1125 } 1126 if (unlock_orig) 1127 btrfs_tree_unlock(buf); 1128 free_extent_buffer_stale(buf); 1129 btrfs_mark_buffer_dirty(cow); 1130 *cow_ret = cow; 1131 return 0; 1132 } 1133 1134 /* 1135 * returns the logical address of the oldest predecessor of the given root. 1136 * entries older than time_seq are ignored. 1137 */ 1138 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1139 struct extent_buffer *eb_root, u64 time_seq) 1140 { 1141 struct tree_mod_elem *tm; 1142 struct tree_mod_elem *found = NULL; 1143 u64 root_logical = eb_root->start; 1144 int looped = 0; 1145 1146 if (!time_seq) 1147 return NULL; 1148 1149 /* 1150 * the very last operation that's logged for a root is the 1151 * replacement operation (if it is replaced at all). this has 1152 * the logical address of the *new* root, making it the very 1153 * first operation that's logged for this root. 1154 */ 1155 while (1) { 1156 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1157 time_seq); 1158 if (!looped && !tm) 1159 return NULL; 1160 /* 1161 * if there are no tree operation for the oldest root, we simply 1162 * return it. this should only happen if that (old) root is at 1163 * level 0. 1164 */ 1165 if (!tm) 1166 break; 1167 1168 /* 1169 * if there's an operation that's not a root replacement, we 1170 * found the oldest version of our root. normally, we'll find a 1171 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1172 */ 1173 if (tm->op != MOD_LOG_ROOT_REPLACE) 1174 break; 1175 1176 found = tm; 1177 root_logical = tm->old_root.logical; 1178 looped = 1; 1179 } 1180 1181 /* if there's no old root to return, return what we found instead */ 1182 if (!found) 1183 found = tm; 1184 1185 return found; 1186 } 1187 1188 /* 1189 * tm is a pointer to the first operation to rewind within eb. then, all 1190 * previous operations will be rewound (until we reach something older than 1191 * time_seq). 1192 */ 1193 static void 1194 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1195 u64 time_seq, struct tree_mod_elem *first_tm) 1196 { 1197 u32 n; 1198 struct rb_node *next; 1199 struct tree_mod_elem *tm = first_tm; 1200 unsigned long o_dst; 1201 unsigned long o_src; 1202 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1203 1204 n = btrfs_header_nritems(eb); 1205 read_lock(&fs_info->tree_mod_log_lock); 1206 while (tm && tm->seq >= time_seq) { 1207 /* 1208 * all the operations are recorded with the operator used for 1209 * the modification. as we're going backwards, we do the 1210 * opposite of each operation here. 1211 */ 1212 switch (tm->op) { 1213 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1214 BUG_ON(tm->slot < n); 1215 /* Fallthrough */ 1216 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1217 case MOD_LOG_KEY_REMOVE: 1218 btrfs_set_node_key(eb, &tm->key, tm->slot); 1219 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1220 btrfs_set_node_ptr_generation(eb, tm->slot, 1221 tm->generation); 1222 n++; 1223 break; 1224 case MOD_LOG_KEY_REPLACE: 1225 BUG_ON(tm->slot >= n); 1226 btrfs_set_node_key(eb, &tm->key, tm->slot); 1227 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1228 btrfs_set_node_ptr_generation(eb, tm->slot, 1229 tm->generation); 1230 break; 1231 case MOD_LOG_KEY_ADD: 1232 /* if a move operation is needed it's in the log */ 1233 n--; 1234 break; 1235 case MOD_LOG_MOVE_KEYS: 1236 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1237 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1238 memmove_extent_buffer(eb, o_dst, o_src, 1239 tm->move.nr_items * p_size); 1240 break; 1241 case MOD_LOG_ROOT_REPLACE: 1242 /* 1243 * this operation is special. for roots, this must be 1244 * handled explicitly before rewinding. 1245 * for non-roots, this operation may exist if the node 1246 * was a root: root A -> child B; then A gets empty and 1247 * B is promoted to the new root. in the mod log, we'll 1248 * have a root-replace operation for B, a tree block 1249 * that is no root. we simply ignore that operation. 1250 */ 1251 break; 1252 } 1253 next = rb_next(&tm->node); 1254 if (!next) 1255 break; 1256 tm = rb_entry(next, struct tree_mod_elem, node); 1257 if (tm->logical != first_tm->logical) 1258 break; 1259 } 1260 read_unlock(&fs_info->tree_mod_log_lock); 1261 btrfs_set_header_nritems(eb, n); 1262 } 1263 1264 /* 1265 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1266 * is returned. If rewind operations happen, a fresh buffer is returned. The 1267 * returned buffer is always read-locked. If the returned buffer is not the 1268 * input buffer, the lock on the input buffer is released and the input buffer 1269 * is freed (its refcount is decremented). 1270 */ 1271 static struct extent_buffer * 1272 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1273 struct extent_buffer *eb, u64 time_seq) 1274 { 1275 struct extent_buffer *eb_rewin; 1276 struct tree_mod_elem *tm; 1277 1278 if (!time_seq) 1279 return eb; 1280 1281 if (btrfs_header_level(eb) == 0) 1282 return eb; 1283 1284 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1285 if (!tm) 1286 return eb; 1287 1288 btrfs_set_path_blocking(path); 1289 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1290 1291 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1292 BUG_ON(tm->slot != 0); 1293 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1294 if (!eb_rewin) { 1295 btrfs_tree_read_unlock_blocking(eb); 1296 free_extent_buffer(eb); 1297 return NULL; 1298 } 1299 btrfs_set_header_bytenr(eb_rewin, eb->start); 1300 btrfs_set_header_backref_rev(eb_rewin, 1301 btrfs_header_backref_rev(eb)); 1302 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1303 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1304 } else { 1305 eb_rewin = btrfs_clone_extent_buffer(eb); 1306 if (!eb_rewin) { 1307 btrfs_tree_read_unlock_blocking(eb); 1308 free_extent_buffer(eb); 1309 return NULL; 1310 } 1311 } 1312 1313 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1314 btrfs_tree_read_unlock_blocking(eb); 1315 free_extent_buffer(eb); 1316 1317 extent_buffer_get(eb_rewin); 1318 btrfs_tree_read_lock(eb_rewin); 1319 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1320 WARN_ON(btrfs_header_nritems(eb_rewin) > 1321 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1322 1323 return eb_rewin; 1324 } 1325 1326 /* 1327 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1328 * value. If there are no changes, the current root->root_node is returned. If 1329 * anything changed in between, there's a fresh buffer allocated on which the 1330 * rewind operations are done. In any case, the returned buffer is read locked. 1331 * Returns NULL on error (with no locks held). 1332 */ 1333 static inline struct extent_buffer * 1334 get_old_root(struct btrfs_root *root, u64 time_seq) 1335 { 1336 struct btrfs_fs_info *fs_info = root->fs_info; 1337 struct tree_mod_elem *tm; 1338 struct extent_buffer *eb = NULL; 1339 struct extent_buffer *eb_root; 1340 struct extent_buffer *old; 1341 struct tree_mod_root *old_root = NULL; 1342 u64 old_generation = 0; 1343 u64 logical; 1344 int level; 1345 1346 eb_root = btrfs_read_lock_root_node(root); 1347 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1348 if (!tm) 1349 return eb_root; 1350 1351 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1352 old_root = &tm->old_root; 1353 old_generation = tm->generation; 1354 logical = old_root->logical; 1355 level = old_root->level; 1356 } else { 1357 logical = eb_root->start; 1358 level = btrfs_header_level(eb_root); 1359 } 1360 1361 tm = tree_mod_log_search(fs_info, logical, time_seq); 1362 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1363 btrfs_tree_read_unlock(eb_root); 1364 free_extent_buffer(eb_root); 1365 old = read_tree_block(fs_info, logical, 0, level, NULL); 1366 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1367 if (!IS_ERR(old)) 1368 free_extent_buffer(old); 1369 btrfs_warn(fs_info, 1370 "failed to read tree block %llu from get_old_root", 1371 logical); 1372 } else { 1373 eb = btrfs_clone_extent_buffer(old); 1374 free_extent_buffer(old); 1375 } 1376 } else if (old_root) { 1377 btrfs_tree_read_unlock(eb_root); 1378 free_extent_buffer(eb_root); 1379 eb = alloc_dummy_extent_buffer(fs_info, logical); 1380 } else { 1381 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1382 eb = btrfs_clone_extent_buffer(eb_root); 1383 btrfs_tree_read_unlock_blocking(eb_root); 1384 free_extent_buffer(eb_root); 1385 } 1386 1387 if (!eb) 1388 return NULL; 1389 extent_buffer_get(eb); 1390 btrfs_tree_read_lock(eb); 1391 if (old_root) { 1392 btrfs_set_header_bytenr(eb, eb->start); 1393 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1394 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1395 btrfs_set_header_level(eb, old_root->level); 1396 btrfs_set_header_generation(eb, old_generation); 1397 } 1398 if (tm) 1399 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1400 else 1401 WARN_ON(btrfs_header_level(eb) != 0); 1402 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1403 1404 return eb; 1405 } 1406 1407 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1408 { 1409 struct tree_mod_elem *tm; 1410 int level; 1411 struct extent_buffer *eb_root = btrfs_root_node(root); 1412 1413 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1414 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1415 level = tm->old_root.level; 1416 } else { 1417 level = btrfs_header_level(eb_root); 1418 } 1419 free_extent_buffer(eb_root); 1420 1421 return level; 1422 } 1423 1424 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1425 struct btrfs_root *root, 1426 struct extent_buffer *buf) 1427 { 1428 if (btrfs_is_testing(root->fs_info)) 1429 return 0; 1430 1431 /* Ensure we can see the FORCE_COW bit */ 1432 smp_mb__before_atomic(); 1433 1434 /* 1435 * We do not need to cow a block if 1436 * 1) this block is not created or changed in this transaction; 1437 * 2) this block does not belong to TREE_RELOC tree; 1438 * 3) the root is not forced COW. 1439 * 1440 * What is forced COW: 1441 * when we create snapshot during committing the transaction, 1442 * after we've finished coping src root, we must COW the shared 1443 * block to ensure the metadata consistency. 1444 */ 1445 if (btrfs_header_generation(buf) == trans->transid && 1446 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1447 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1448 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1449 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1450 return 0; 1451 return 1; 1452 } 1453 1454 /* 1455 * cows a single block, see __btrfs_cow_block for the real work. 1456 * This version of it has extra checks so that a block isn't COWed more than 1457 * once per transaction, as long as it hasn't been written yet 1458 */ 1459 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1460 struct btrfs_root *root, struct extent_buffer *buf, 1461 struct extent_buffer *parent, int parent_slot, 1462 struct extent_buffer **cow_ret) 1463 { 1464 struct btrfs_fs_info *fs_info = root->fs_info; 1465 u64 search_start; 1466 int ret; 1467 1468 if (trans->transaction != fs_info->running_transaction) 1469 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1470 trans->transid, 1471 fs_info->running_transaction->transid); 1472 1473 if (trans->transid != fs_info->generation) 1474 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1475 trans->transid, fs_info->generation); 1476 1477 if (!should_cow_block(trans, root, buf)) { 1478 trans->dirty = true; 1479 *cow_ret = buf; 1480 return 0; 1481 } 1482 1483 search_start = buf->start & ~((u64)SZ_1G - 1); 1484 1485 if (parent) 1486 btrfs_set_lock_blocking(parent); 1487 btrfs_set_lock_blocking(buf); 1488 1489 ret = __btrfs_cow_block(trans, root, buf, parent, 1490 parent_slot, cow_ret, search_start, 0); 1491 1492 trace_btrfs_cow_block(root, buf, *cow_ret); 1493 1494 return ret; 1495 } 1496 1497 /* 1498 * helper function for defrag to decide if two blocks pointed to by a 1499 * node are actually close by 1500 */ 1501 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1502 { 1503 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1504 return 1; 1505 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1506 return 1; 1507 return 0; 1508 } 1509 1510 /* 1511 * compare two keys in a memcmp fashion 1512 */ 1513 static int comp_keys(const struct btrfs_disk_key *disk, 1514 const struct btrfs_key *k2) 1515 { 1516 struct btrfs_key k1; 1517 1518 btrfs_disk_key_to_cpu(&k1, disk); 1519 1520 return btrfs_comp_cpu_keys(&k1, k2); 1521 } 1522 1523 /* 1524 * same as comp_keys only with two btrfs_key's 1525 */ 1526 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1527 { 1528 if (k1->objectid > k2->objectid) 1529 return 1; 1530 if (k1->objectid < k2->objectid) 1531 return -1; 1532 if (k1->type > k2->type) 1533 return 1; 1534 if (k1->type < k2->type) 1535 return -1; 1536 if (k1->offset > k2->offset) 1537 return 1; 1538 if (k1->offset < k2->offset) 1539 return -1; 1540 return 0; 1541 } 1542 1543 /* 1544 * this is used by the defrag code to go through all the 1545 * leaves pointed to by a node and reallocate them so that 1546 * disk order is close to key order 1547 */ 1548 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1549 struct btrfs_root *root, struct extent_buffer *parent, 1550 int start_slot, u64 *last_ret, 1551 struct btrfs_key *progress) 1552 { 1553 struct btrfs_fs_info *fs_info = root->fs_info; 1554 struct extent_buffer *cur; 1555 u64 blocknr; 1556 u64 gen; 1557 u64 search_start = *last_ret; 1558 u64 last_block = 0; 1559 u64 other; 1560 u32 parent_nritems; 1561 int end_slot; 1562 int i; 1563 int err = 0; 1564 int parent_level; 1565 int uptodate; 1566 u32 blocksize; 1567 int progress_passed = 0; 1568 struct btrfs_disk_key disk_key; 1569 1570 parent_level = btrfs_header_level(parent); 1571 1572 WARN_ON(trans->transaction != fs_info->running_transaction); 1573 WARN_ON(trans->transid != fs_info->generation); 1574 1575 parent_nritems = btrfs_header_nritems(parent); 1576 blocksize = fs_info->nodesize; 1577 end_slot = parent_nritems - 1; 1578 1579 if (parent_nritems <= 1) 1580 return 0; 1581 1582 btrfs_set_lock_blocking(parent); 1583 1584 for (i = start_slot; i <= end_slot; i++) { 1585 struct btrfs_key first_key; 1586 int close = 1; 1587 1588 btrfs_node_key(parent, &disk_key, i); 1589 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1590 continue; 1591 1592 progress_passed = 1; 1593 blocknr = btrfs_node_blockptr(parent, i); 1594 gen = btrfs_node_ptr_generation(parent, i); 1595 btrfs_node_key_to_cpu(parent, &first_key, i); 1596 if (last_block == 0) 1597 last_block = blocknr; 1598 1599 if (i > 0) { 1600 other = btrfs_node_blockptr(parent, i - 1); 1601 close = close_blocks(blocknr, other, blocksize); 1602 } 1603 if (!close && i < end_slot) { 1604 other = btrfs_node_blockptr(parent, i + 1); 1605 close = close_blocks(blocknr, other, blocksize); 1606 } 1607 if (close) { 1608 last_block = blocknr; 1609 continue; 1610 } 1611 1612 cur = find_extent_buffer(fs_info, blocknr); 1613 if (cur) 1614 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1615 else 1616 uptodate = 0; 1617 if (!cur || !uptodate) { 1618 if (!cur) { 1619 cur = read_tree_block(fs_info, blocknr, gen, 1620 parent_level - 1, 1621 &first_key); 1622 if (IS_ERR(cur)) { 1623 return PTR_ERR(cur); 1624 } else if (!extent_buffer_uptodate(cur)) { 1625 free_extent_buffer(cur); 1626 return -EIO; 1627 } 1628 } else if (!uptodate) { 1629 err = btrfs_read_buffer(cur, gen, 1630 parent_level - 1,&first_key); 1631 if (err) { 1632 free_extent_buffer(cur); 1633 return err; 1634 } 1635 } 1636 } 1637 if (search_start == 0) 1638 search_start = last_block; 1639 1640 btrfs_tree_lock(cur); 1641 btrfs_set_lock_blocking(cur); 1642 err = __btrfs_cow_block(trans, root, cur, parent, i, 1643 &cur, search_start, 1644 min(16 * blocksize, 1645 (end_slot - i) * blocksize)); 1646 if (err) { 1647 btrfs_tree_unlock(cur); 1648 free_extent_buffer(cur); 1649 break; 1650 } 1651 search_start = cur->start; 1652 last_block = cur->start; 1653 *last_ret = search_start; 1654 btrfs_tree_unlock(cur); 1655 free_extent_buffer(cur); 1656 } 1657 return err; 1658 } 1659 1660 /* 1661 * search for key in the extent_buffer. The items start at offset p, 1662 * and they are item_size apart. There are 'max' items in p. 1663 * 1664 * the slot in the array is returned via slot, and it points to 1665 * the place where you would insert key if it is not found in 1666 * the array. 1667 * 1668 * slot may point to max if the key is bigger than all of the keys 1669 */ 1670 static noinline int generic_bin_search(struct extent_buffer *eb, 1671 unsigned long p, int item_size, 1672 const struct btrfs_key *key, 1673 int max, int *slot) 1674 { 1675 int low = 0; 1676 int high = max; 1677 int mid; 1678 int ret; 1679 struct btrfs_disk_key *tmp = NULL; 1680 struct btrfs_disk_key unaligned; 1681 unsigned long offset; 1682 char *kaddr = NULL; 1683 unsigned long map_start = 0; 1684 unsigned long map_len = 0; 1685 int err; 1686 1687 if (low > high) { 1688 btrfs_err(eb->fs_info, 1689 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1690 __func__, low, high, eb->start, 1691 btrfs_header_owner(eb), btrfs_header_level(eb)); 1692 return -EINVAL; 1693 } 1694 1695 while (low < high) { 1696 mid = (low + high) / 2; 1697 offset = p + mid * item_size; 1698 1699 if (!kaddr || offset < map_start || 1700 (offset + sizeof(struct btrfs_disk_key)) > 1701 map_start + map_len) { 1702 1703 err = map_private_extent_buffer(eb, offset, 1704 sizeof(struct btrfs_disk_key), 1705 &kaddr, &map_start, &map_len); 1706 1707 if (!err) { 1708 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1709 map_start); 1710 } else if (err == 1) { 1711 read_extent_buffer(eb, &unaligned, 1712 offset, sizeof(unaligned)); 1713 tmp = &unaligned; 1714 } else { 1715 return err; 1716 } 1717 1718 } else { 1719 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1720 map_start); 1721 } 1722 ret = comp_keys(tmp, key); 1723 1724 if (ret < 0) 1725 low = mid + 1; 1726 else if (ret > 0) 1727 high = mid; 1728 else { 1729 *slot = mid; 1730 return 0; 1731 } 1732 } 1733 *slot = low; 1734 return 1; 1735 } 1736 1737 /* 1738 * simple bin_search frontend that does the right thing for 1739 * leaves vs nodes 1740 */ 1741 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1742 int level, int *slot) 1743 { 1744 if (level == 0) 1745 return generic_bin_search(eb, 1746 offsetof(struct btrfs_leaf, items), 1747 sizeof(struct btrfs_item), 1748 key, btrfs_header_nritems(eb), 1749 slot); 1750 else 1751 return generic_bin_search(eb, 1752 offsetof(struct btrfs_node, ptrs), 1753 sizeof(struct btrfs_key_ptr), 1754 key, btrfs_header_nritems(eb), 1755 slot); 1756 } 1757 1758 static void root_add_used(struct btrfs_root *root, u32 size) 1759 { 1760 spin_lock(&root->accounting_lock); 1761 btrfs_set_root_used(&root->root_item, 1762 btrfs_root_used(&root->root_item) + size); 1763 spin_unlock(&root->accounting_lock); 1764 } 1765 1766 static void root_sub_used(struct btrfs_root *root, u32 size) 1767 { 1768 spin_lock(&root->accounting_lock); 1769 btrfs_set_root_used(&root->root_item, 1770 btrfs_root_used(&root->root_item) - size); 1771 spin_unlock(&root->accounting_lock); 1772 } 1773 1774 /* given a node and slot number, this reads the blocks it points to. The 1775 * extent buffer is returned with a reference taken (but unlocked). 1776 */ 1777 static noinline struct extent_buffer * 1778 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent, 1779 int slot) 1780 { 1781 int level = btrfs_header_level(parent); 1782 struct extent_buffer *eb; 1783 struct btrfs_key first_key; 1784 1785 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1786 return ERR_PTR(-ENOENT); 1787 1788 BUG_ON(level == 0); 1789 1790 btrfs_node_key_to_cpu(parent, &first_key, slot); 1791 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot), 1792 btrfs_node_ptr_generation(parent, slot), 1793 level - 1, &first_key); 1794 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1795 free_extent_buffer(eb); 1796 eb = ERR_PTR(-EIO); 1797 } 1798 1799 return eb; 1800 } 1801 1802 /* 1803 * node level balancing, used to make sure nodes are in proper order for 1804 * item deletion. We balance from the top down, so we have to make sure 1805 * that a deletion won't leave an node completely empty later on. 1806 */ 1807 static noinline int balance_level(struct btrfs_trans_handle *trans, 1808 struct btrfs_root *root, 1809 struct btrfs_path *path, int level) 1810 { 1811 struct btrfs_fs_info *fs_info = root->fs_info; 1812 struct extent_buffer *right = NULL; 1813 struct extent_buffer *mid; 1814 struct extent_buffer *left = NULL; 1815 struct extent_buffer *parent = NULL; 1816 int ret = 0; 1817 int wret; 1818 int pslot; 1819 int orig_slot = path->slots[level]; 1820 u64 orig_ptr; 1821 1822 if (level == 0) 1823 return 0; 1824 1825 mid = path->nodes[level]; 1826 1827 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1828 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1829 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1830 1831 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1832 1833 if (level < BTRFS_MAX_LEVEL - 1) { 1834 parent = path->nodes[level + 1]; 1835 pslot = path->slots[level + 1]; 1836 } 1837 1838 /* 1839 * deal with the case where there is only one pointer in the root 1840 * by promoting the node below to a root 1841 */ 1842 if (!parent) { 1843 struct extent_buffer *child; 1844 1845 if (btrfs_header_nritems(mid) != 1) 1846 return 0; 1847 1848 /* promote the child to a root */ 1849 child = read_node_slot(fs_info, mid, 0); 1850 if (IS_ERR(child)) { 1851 ret = PTR_ERR(child); 1852 btrfs_handle_fs_error(fs_info, ret, NULL); 1853 goto enospc; 1854 } 1855 1856 btrfs_tree_lock(child); 1857 btrfs_set_lock_blocking(child); 1858 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1859 if (ret) { 1860 btrfs_tree_unlock(child); 1861 free_extent_buffer(child); 1862 goto enospc; 1863 } 1864 1865 ret = tree_mod_log_insert_root(root->node, child, 1); 1866 BUG_ON(ret < 0); 1867 rcu_assign_pointer(root->node, child); 1868 1869 add_root_to_dirty_list(root); 1870 btrfs_tree_unlock(child); 1871 1872 path->locks[level] = 0; 1873 path->nodes[level] = NULL; 1874 clean_tree_block(fs_info, mid); 1875 btrfs_tree_unlock(mid); 1876 /* once for the path */ 1877 free_extent_buffer(mid); 1878 1879 root_sub_used(root, mid->len); 1880 btrfs_free_tree_block(trans, root, mid, 0, 1); 1881 /* once for the root ptr */ 1882 free_extent_buffer_stale(mid); 1883 return 0; 1884 } 1885 if (btrfs_header_nritems(mid) > 1886 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1887 return 0; 1888 1889 left = read_node_slot(fs_info, parent, pslot - 1); 1890 if (IS_ERR(left)) 1891 left = NULL; 1892 1893 if (left) { 1894 btrfs_tree_lock(left); 1895 btrfs_set_lock_blocking(left); 1896 wret = btrfs_cow_block(trans, root, left, 1897 parent, pslot - 1, &left); 1898 if (wret) { 1899 ret = wret; 1900 goto enospc; 1901 } 1902 } 1903 1904 right = read_node_slot(fs_info, parent, pslot + 1); 1905 if (IS_ERR(right)) 1906 right = NULL; 1907 1908 if (right) { 1909 btrfs_tree_lock(right); 1910 btrfs_set_lock_blocking(right); 1911 wret = btrfs_cow_block(trans, root, right, 1912 parent, pslot + 1, &right); 1913 if (wret) { 1914 ret = wret; 1915 goto enospc; 1916 } 1917 } 1918 1919 /* first, try to make some room in the middle buffer */ 1920 if (left) { 1921 orig_slot += btrfs_header_nritems(left); 1922 wret = push_node_left(trans, fs_info, left, mid, 1); 1923 if (wret < 0) 1924 ret = wret; 1925 } 1926 1927 /* 1928 * then try to empty the right most buffer into the middle 1929 */ 1930 if (right) { 1931 wret = push_node_left(trans, fs_info, mid, right, 1); 1932 if (wret < 0 && wret != -ENOSPC) 1933 ret = wret; 1934 if (btrfs_header_nritems(right) == 0) { 1935 clean_tree_block(fs_info, right); 1936 btrfs_tree_unlock(right); 1937 del_ptr(root, path, level + 1, pslot + 1); 1938 root_sub_used(root, right->len); 1939 btrfs_free_tree_block(trans, root, right, 0, 1); 1940 free_extent_buffer_stale(right); 1941 right = NULL; 1942 } else { 1943 struct btrfs_disk_key right_key; 1944 btrfs_node_key(right, &right_key, 0); 1945 ret = tree_mod_log_insert_key(parent, pslot + 1, 1946 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1947 BUG_ON(ret < 0); 1948 btrfs_set_node_key(parent, &right_key, pslot + 1); 1949 btrfs_mark_buffer_dirty(parent); 1950 } 1951 } 1952 if (btrfs_header_nritems(mid) == 1) { 1953 /* 1954 * we're not allowed to leave a node with one item in the 1955 * tree during a delete. A deletion from lower in the tree 1956 * could try to delete the only pointer in this node. 1957 * So, pull some keys from the left. 1958 * There has to be a left pointer at this point because 1959 * otherwise we would have pulled some pointers from the 1960 * right 1961 */ 1962 if (!left) { 1963 ret = -EROFS; 1964 btrfs_handle_fs_error(fs_info, ret, NULL); 1965 goto enospc; 1966 } 1967 wret = balance_node_right(trans, fs_info, mid, left); 1968 if (wret < 0) { 1969 ret = wret; 1970 goto enospc; 1971 } 1972 if (wret == 1) { 1973 wret = push_node_left(trans, fs_info, left, mid, 1); 1974 if (wret < 0) 1975 ret = wret; 1976 } 1977 BUG_ON(wret == 1); 1978 } 1979 if (btrfs_header_nritems(mid) == 0) { 1980 clean_tree_block(fs_info, mid); 1981 btrfs_tree_unlock(mid); 1982 del_ptr(root, path, level + 1, pslot); 1983 root_sub_used(root, mid->len); 1984 btrfs_free_tree_block(trans, root, mid, 0, 1); 1985 free_extent_buffer_stale(mid); 1986 mid = NULL; 1987 } else { 1988 /* update the parent key to reflect our changes */ 1989 struct btrfs_disk_key mid_key; 1990 btrfs_node_key(mid, &mid_key, 0); 1991 ret = tree_mod_log_insert_key(parent, pslot, 1992 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1993 BUG_ON(ret < 0); 1994 btrfs_set_node_key(parent, &mid_key, pslot); 1995 btrfs_mark_buffer_dirty(parent); 1996 } 1997 1998 /* update the path */ 1999 if (left) { 2000 if (btrfs_header_nritems(left) > orig_slot) { 2001 extent_buffer_get(left); 2002 /* left was locked after cow */ 2003 path->nodes[level] = left; 2004 path->slots[level + 1] -= 1; 2005 path->slots[level] = orig_slot; 2006 if (mid) { 2007 btrfs_tree_unlock(mid); 2008 free_extent_buffer(mid); 2009 } 2010 } else { 2011 orig_slot -= btrfs_header_nritems(left); 2012 path->slots[level] = orig_slot; 2013 } 2014 } 2015 /* double check we haven't messed things up */ 2016 if (orig_ptr != 2017 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2018 BUG(); 2019 enospc: 2020 if (right) { 2021 btrfs_tree_unlock(right); 2022 free_extent_buffer(right); 2023 } 2024 if (left) { 2025 if (path->nodes[level] != left) 2026 btrfs_tree_unlock(left); 2027 free_extent_buffer(left); 2028 } 2029 return ret; 2030 } 2031 2032 /* Node balancing for insertion. Here we only split or push nodes around 2033 * when they are completely full. This is also done top down, so we 2034 * have to be pessimistic. 2035 */ 2036 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2037 struct btrfs_root *root, 2038 struct btrfs_path *path, int level) 2039 { 2040 struct btrfs_fs_info *fs_info = root->fs_info; 2041 struct extent_buffer *right = NULL; 2042 struct extent_buffer *mid; 2043 struct extent_buffer *left = NULL; 2044 struct extent_buffer *parent = NULL; 2045 int ret = 0; 2046 int wret; 2047 int pslot; 2048 int orig_slot = path->slots[level]; 2049 2050 if (level == 0) 2051 return 1; 2052 2053 mid = path->nodes[level]; 2054 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2055 2056 if (level < BTRFS_MAX_LEVEL - 1) { 2057 parent = path->nodes[level + 1]; 2058 pslot = path->slots[level + 1]; 2059 } 2060 2061 if (!parent) 2062 return 1; 2063 2064 left = read_node_slot(fs_info, parent, pslot - 1); 2065 if (IS_ERR(left)) 2066 left = NULL; 2067 2068 /* first, try to make some room in the middle buffer */ 2069 if (left) { 2070 u32 left_nr; 2071 2072 btrfs_tree_lock(left); 2073 btrfs_set_lock_blocking(left); 2074 2075 left_nr = btrfs_header_nritems(left); 2076 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2077 wret = 1; 2078 } else { 2079 ret = btrfs_cow_block(trans, root, left, parent, 2080 pslot - 1, &left); 2081 if (ret) 2082 wret = 1; 2083 else { 2084 wret = push_node_left(trans, fs_info, 2085 left, mid, 0); 2086 } 2087 } 2088 if (wret < 0) 2089 ret = wret; 2090 if (wret == 0) { 2091 struct btrfs_disk_key disk_key; 2092 orig_slot += left_nr; 2093 btrfs_node_key(mid, &disk_key, 0); 2094 ret = tree_mod_log_insert_key(parent, pslot, 2095 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2096 BUG_ON(ret < 0); 2097 btrfs_set_node_key(parent, &disk_key, pslot); 2098 btrfs_mark_buffer_dirty(parent); 2099 if (btrfs_header_nritems(left) > orig_slot) { 2100 path->nodes[level] = left; 2101 path->slots[level + 1] -= 1; 2102 path->slots[level] = orig_slot; 2103 btrfs_tree_unlock(mid); 2104 free_extent_buffer(mid); 2105 } else { 2106 orig_slot -= 2107 btrfs_header_nritems(left); 2108 path->slots[level] = orig_slot; 2109 btrfs_tree_unlock(left); 2110 free_extent_buffer(left); 2111 } 2112 return 0; 2113 } 2114 btrfs_tree_unlock(left); 2115 free_extent_buffer(left); 2116 } 2117 right = read_node_slot(fs_info, parent, pslot + 1); 2118 if (IS_ERR(right)) 2119 right = NULL; 2120 2121 /* 2122 * then try to empty the right most buffer into the middle 2123 */ 2124 if (right) { 2125 u32 right_nr; 2126 2127 btrfs_tree_lock(right); 2128 btrfs_set_lock_blocking(right); 2129 2130 right_nr = btrfs_header_nritems(right); 2131 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2132 wret = 1; 2133 } else { 2134 ret = btrfs_cow_block(trans, root, right, 2135 parent, pslot + 1, 2136 &right); 2137 if (ret) 2138 wret = 1; 2139 else { 2140 wret = balance_node_right(trans, fs_info, 2141 right, mid); 2142 } 2143 } 2144 if (wret < 0) 2145 ret = wret; 2146 if (wret == 0) { 2147 struct btrfs_disk_key disk_key; 2148 2149 btrfs_node_key(right, &disk_key, 0); 2150 ret = tree_mod_log_insert_key(parent, pslot + 1, 2151 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2152 BUG_ON(ret < 0); 2153 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2154 btrfs_mark_buffer_dirty(parent); 2155 2156 if (btrfs_header_nritems(mid) <= orig_slot) { 2157 path->nodes[level] = right; 2158 path->slots[level + 1] += 1; 2159 path->slots[level] = orig_slot - 2160 btrfs_header_nritems(mid); 2161 btrfs_tree_unlock(mid); 2162 free_extent_buffer(mid); 2163 } else { 2164 btrfs_tree_unlock(right); 2165 free_extent_buffer(right); 2166 } 2167 return 0; 2168 } 2169 btrfs_tree_unlock(right); 2170 free_extent_buffer(right); 2171 } 2172 return 1; 2173 } 2174 2175 /* 2176 * readahead one full node of leaves, finding things that are close 2177 * to the block in 'slot', and triggering ra on them. 2178 */ 2179 static void reada_for_search(struct btrfs_fs_info *fs_info, 2180 struct btrfs_path *path, 2181 int level, int slot, u64 objectid) 2182 { 2183 struct extent_buffer *node; 2184 struct btrfs_disk_key disk_key; 2185 u32 nritems; 2186 u64 search; 2187 u64 target; 2188 u64 nread = 0; 2189 struct extent_buffer *eb; 2190 u32 nr; 2191 u32 blocksize; 2192 u32 nscan = 0; 2193 2194 if (level != 1) 2195 return; 2196 2197 if (!path->nodes[level]) 2198 return; 2199 2200 node = path->nodes[level]; 2201 2202 search = btrfs_node_blockptr(node, slot); 2203 blocksize = fs_info->nodesize; 2204 eb = find_extent_buffer(fs_info, search); 2205 if (eb) { 2206 free_extent_buffer(eb); 2207 return; 2208 } 2209 2210 target = search; 2211 2212 nritems = btrfs_header_nritems(node); 2213 nr = slot; 2214 2215 while (1) { 2216 if (path->reada == READA_BACK) { 2217 if (nr == 0) 2218 break; 2219 nr--; 2220 } else if (path->reada == READA_FORWARD) { 2221 nr++; 2222 if (nr >= nritems) 2223 break; 2224 } 2225 if (path->reada == READA_BACK && objectid) { 2226 btrfs_node_key(node, &disk_key, nr); 2227 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2228 break; 2229 } 2230 search = btrfs_node_blockptr(node, nr); 2231 if ((search <= target && target - search <= 65536) || 2232 (search > target && search - target <= 65536)) { 2233 readahead_tree_block(fs_info, search); 2234 nread += blocksize; 2235 } 2236 nscan++; 2237 if ((nread > 65536 || nscan > 32)) 2238 break; 2239 } 2240 } 2241 2242 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2243 struct btrfs_path *path, int level) 2244 { 2245 int slot; 2246 int nritems; 2247 struct extent_buffer *parent; 2248 struct extent_buffer *eb; 2249 u64 gen; 2250 u64 block1 = 0; 2251 u64 block2 = 0; 2252 2253 parent = path->nodes[level + 1]; 2254 if (!parent) 2255 return; 2256 2257 nritems = btrfs_header_nritems(parent); 2258 slot = path->slots[level + 1]; 2259 2260 if (slot > 0) { 2261 block1 = btrfs_node_blockptr(parent, slot - 1); 2262 gen = btrfs_node_ptr_generation(parent, slot - 1); 2263 eb = find_extent_buffer(fs_info, block1); 2264 /* 2265 * if we get -eagain from btrfs_buffer_uptodate, we 2266 * don't want to return eagain here. That will loop 2267 * forever 2268 */ 2269 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2270 block1 = 0; 2271 free_extent_buffer(eb); 2272 } 2273 if (slot + 1 < nritems) { 2274 block2 = btrfs_node_blockptr(parent, slot + 1); 2275 gen = btrfs_node_ptr_generation(parent, slot + 1); 2276 eb = find_extent_buffer(fs_info, block2); 2277 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2278 block2 = 0; 2279 free_extent_buffer(eb); 2280 } 2281 2282 if (block1) 2283 readahead_tree_block(fs_info, block1); 2284 if (block2) 2285 readahead_tree_block(fs_info, block2); 2286 } 2287 2288 2289 /* 2290 * when we walk down the tree, it is usually safe to unlock the higher layers 2291 * in the tree. The exceptions are when our path goes through slot 0, because 2292 * operations on the tree might require changing key pointers higher up in the 2293 * tree. 2294 * 2295 * callers might also have set path->keep_locks, which tells this code to keep 2296 * the lock if the path points to the last slot in the block. This is part of 2297 * walking through the tree, and selecting the next slot in the higher block. 2298 * 2299 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2300 * if lowest_unlock is 1, level 0 won't be unlocked 2301 */ 2302 static noinline void unlock_up(struct btrfs_path *path, int level, 2303 int lowest_unlock, int min_write_lock_level, 2304 int *write_lock_level) 2305 { 2306 int i; 2307 int skip_level = level; 2308 int no_skips = 0; 2309 struct extent_buffer *t; 2310 2311 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2312 if (!path->nodes[i]) 2313 break; 2314 if (!path->locks[i]) 2315 break; 2316 if (!no_skips && path->slots[i] == 0) { 2317 skip_level = i + 1; 2318 continue; 2319 } 2320 if (!no_skips && path->keep_locks) { 2321 u32 nritems; 2322 t = path->nodes[i]; 2323 nritems = btrfs_header_nritems(t); 2324 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2325 skip_level = i + 1; 2326 continue; 2327 } 2328 } 2329 if (skip_level < i && i >= lowest_unlock) 2330 no_skips = 1; 2331 2332 t = path->nodes[i]; 2333 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2334 btrfs_tree_unlock_rw(t, path->locks[i]); 2335 path->locks[i] = 0; 2336 if (write_lock_level && 2337 i > min_write_lock_level && 2338 i <= *write_lock_level) { 2339 *write_lock_level = i - 1; 2340 } 2341 } 2342 } 2343 } 2344 2345 /* 2346 * This releases any locks held in the path starting at level and 2347 * going all the way up to the root. 2348 * 2349 * btrfs_search_slot will keep the lock held on higher nodes in a few 2350 * corner cases, such as COW of the block at slot zero in the node. This 2351 * ignores those rules, and it should only be called when there are no 2352 * more updates to be done higher up in the tree. 2353 */ 2354 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2355 { 2356 int i; 2357 2358 if (path->keep_locks) 2359 return; 2360 2361 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2362 if (!path->nodes[i]) 2363 continue; 2364 if (!path->locks[i]) 2365 continue; 2366 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2367 path->locks[i] = 0; 2368 } 2369 } 2370 2371 /* 2372 * helper function for btrfs_search_slot. The goal is to find a block 2373 * in cache without setting the path to blocking. If we find the block 2374 * we return zero and the path is unchanged. 2375 * 2376 * If we can't find the block, we set the path blocking and do some 2377 * reada. -EAGAIN is returned and the search must be repeated. 2378 */ 2379 static int 2380 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2381 struct extent_buffer **eb_ret, int level, int slot, 2382 const struct btrfs_key *key) 2383 { 2384 struct btrfs_fs_info *fs_info = root->fs_info; 2385 u64 blocknr; 2386 u64 gen; 2387 struct extent_buffer *b = *eb_ret; 2388 struct extent_buffer *tmp; 2389 struct btrfs_key first_key; 2390 int ret; 2391 int parent_level; 2392 2393 blocknr = btrfs_node_blockptr(b, slot); 2394 gen = btrfs_node_ptr_generation(b, slot); 2395 parent_level = btrfs_header_level(b); 2396 btrfs_node_key_to_cpu(b, &first_key, slot); 2397 2398 tmp = find_extent_buffer(fs_info, blocknr); 2399 if (tmp) { 2400 /* first we do an atomic uptodate check */ 2401 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2402 *eb_ret = tmp; 2403 return 0; 2404 } 2405 2406 /* the pages were up to date, but we failed 2407 * the generation number check. Do a full 2408 * read for the generation number that is correct. 2409 * We must do this without dropping locks so 2410 * we can trust our generation number 2411 */ 2412 btrfs_set_path_blocking(p); 2413 2414 /* now we're allowed to do a blocking uptodate check */ 2415 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2416 if (!ret) { 2417 *eb_ret = tmp; 2418 return 0; 2419 } 2420 free_extent_buffer(tmp); 2421 btrfs_release_path(p); 2422 return -EIO; 2423 } 2424 2425 /* 2426 * reduce lock contention at high levels 2427 * of the btree by dropping locks before 2428 * we read. Don't release the lock on the current 2429 * level because we need to walk this node to figure 2430 * out which blocks to read. 2431 */ 2432 btrfs_unlock_up_safe(p, level + 1); 2433 btrfs_set_path_blocking(p); 2434 2435 free_extent_buffer(tmp); 2436 if (p->reada != READA_NONE) 2437 reada_for_search(fs_info, p, level, slot, key->objectid); 2438 2439 btrfs_release_path(p); 2440 2441 ret = -EAGAIN; 2442 tmp = read_tree_block(fs_info, blocknr, 0, parent_level - 1, 2443 &first_key); 2444 if (!IS_ERR(tmp)) { 2445 /* 2446 * If the read above didn't mark this buffer up to date, 2447 * it will never end up being up to date. Set ret to EIO now 2448 * and give up so that our caller doesn't loop forever 2449 * on our EAGAINs. 2450 */ 2451 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2452 ret = -EIO; 2453 free_extent_buffer(tmp); 2454 } else { 2455 ret = PTR_ERR(tmp); 2456 } 2457 return ret; 2458 } 2459 2460 /* 2461 * helper function for btrfs_search_slot. This does all of the checks 2462 * for node-level blocks and does any balancing required based on 2463 * the ins_len. 2464 * 2465 * If no extra work was required, zero is returned. If we had to 2466 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2467 * start over 2468 */ 2469 static int 2470 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2471 struct btrfs_root *root, struct btrfs_path *p, 2472 struct extent_buffer *b, int level, int ins_len, 2473 int *write_lock_level) 2474 { 2475 struct btrfs_fs_info *fs_info = root->fs_info; 2476 int ret; 2477 2478 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2479 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2480 int sret; 2481 2482 if (*write_lock_level < level + 1) { 2483 *write_lock_level = level + 1; 2484 btrfs_release_path(p); 2485 goto again; 2486 } 2487 2488 btrfs_set_path_blocking(p); 2489 reada_for_balance(fs_info, p, level); 2490 sret = split_node(trans, root, p, level); 2491 btrfs_clear_path_blocking(p, NULL, 0); 2492 2493 BUG_ON(sret > 0); 2494 if (sret) { 2495 ret = sret; 2496 goto done; 2497 } 2498 b = p->nodes[level]; 2499 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2500 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2501 int sret; 2502 2503 if (*write_lock_level < level + 1) { 2504 *write_lock_level = level + 1; 2505 btrfs_release_path(p); 2506 goto again; 2507 } 2508 2509 btrfs_set_path_blocking(p); 2510 reada_for_balance(fs_info, p, level); 2511 sret = balance_level(trans, root, p, level); 2512 btrfs_clear_path_blocking(p, NULL, 0); 2513 2514 if (sret) { 2515 ret = sret; 2516 goto done; 2517 } 2518 b = p->nodes[level]; 2519 if (!b) { 2520 btrfs_release_path(p); 2521 goto again; 2522 } 2523 BUG_ON(btrfs_header_nritems(b) == 1); 2524 } 2525 return 0; 2526 2527 again: 2528 ret = -EAGAIN; 2529 done: 2530 return ret; 2531 } 2532 2533 static void key_search_validate(struct extent_buffer *b, 2534 const struct btrfs_key *key, 2535 int level) 2536 { 2537 #ifdef CONFIG_BTRFS_ASSERT 2538 struct btrfs_disk_key disk_key; 2539 2540 btrfs_cpu_key_to_disk(&disk_key, key); 2541 2542 if (level == 0) 2543 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2544 offsetof(struct btrfs_leaf, items[0].key), 2545 sizeof(disk_key))); 2546 else 2547 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2548 offsetof(struct btrfs_node, ptrs[0].key), 2549 sizeof(disk_key))); 2550 #endif 2551 } 2552 2553 static int key_search(struct extent_buffer *b, const struct btrfs_key *key, 2554 int level, int *prev_cmp, int *slot) 2555 { 2556 if (*prev_cmp != 0) { 2557 *prev_cmp = btrfs_bin_search(b, key, level, slot); 2558 return *prev_cmp; 2559 } 2560 2561 key_search_validate(b, key, level); 2562 *slot = 0; 2563 2564 return 0; 2565 } 2566 2567 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2568 u64 iobjectid, u64 ioff, u8 key_type, 2569 struct btrfs_key *found_key) 2570 { 2571 int ret; 2572 struct btrfs_key key; 2573 struct extent_buffer *eb; 2574 2575 ASSERT(path); 2576 ASSERT(found_key); 2577 2578 key.type = key_type; 2579 key.objectid = iobjectid; 2580 key.offset = ioff; 2581 2582 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2583 if (ret < 0) 2584 return ret; 2585 2586 eb = path->nodes[0]; 2587 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2588 ret = btrfs_next_leaf(fs_root, path); 2589 if (ret) 2590 return ret; 2591 eb = path->nodes[0]; 2592 } 2593 2594 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2595 if (found_key->type != key.type || 2596 found_key->objectid != key.objectid) 2597 return 1; 2598 2599 return 0; 2600 } 2601 2602 /* 2603 * btrfs_search_slot - look for a key in a tree and perform necessary 2604 * modifications to preserve tree invariants. 2605 * 2606 * @trans: Handle of transaction, used when modifying the tree 2607 * @p: Holds all btree nodes along the search path 2608 * @root: The root node of the tree 2609 * @key: The key we are looking for 2610 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2611 * deletions it's -1. 0 for plain searches 2612 * @cow: boolean should CoW operations be performed. Must always be 1 2613 * when modifying the tree. 2614 * 2615 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2616 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2617 * 2618 * If @key is found, 0 is returned and you can find the item in the leaf level 2619 * of the path (level 0) 2620 * 2621 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2622 * points to the slot where it should be inserted 2623 * 2624 * If an error is encountered while searching the tree a negative error number 2625 * is returned 2626 */ 2627 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2628 const struct btrfs_key *key, struct btrfs_path *p, 2629 int ins_len, int cow) 2630 { 2631 struct btrfs_fs_info *fs_info = root->fs_info; 2632 struct extent_buffer *b; 2633 int slot; 2634 int ret; 2635 int err; 2636 int level; 2637 int lowest_unlock = 1; 2638 int root_lock; 2639 /* everything at write_lock_level or lower must be write locked */ 2640 int write_lock_level = 0; 2641 u8 lowest_level = 0; 2642 int min_write_lock_level; 2643 int prev_cmp; 2644 2645 lowest_level = p->lowest_level; 2646 WARN_ON(lowest_level && ins_len > 0); 2647 WARN_ON(p->nodes[0] != NULL); 2648 BUG_ON(!cow && ins_len); 2649 2650 if (ins_len < 0) { 2651 lowest_unlock = 2; 2652 2653 /* when we are removing items, we might have to go up to level 2654 * two as we update tree pointers Make sure we keep write 2655 * for those levels as well 2656 */ 2657 write_lock_level = 2; 2658 } else if (ins_len > 0) { 2659 /* 2660 * for inserting items, make sure we have a write lock on 2661 * level 1 so we can update keys 2662 */ 2663 write_lock_level = 1; 2664 } 2665 2666 if (!cow) 2667 write_lock_level = -1; 2668 2669 if (cow && (p->keep_locks || p->lowest_level)) 2670 write_lock_level = BTRFS_MAX_LEVEL; 2671 2672 min_write_lock_level = write_lock_level; 2673 2674 again: 2675 prev_cmp = -1; 2676 /* 2677 * we try very hard to do read locks on the root 2678 */ 2679 root_lock = BTRFS_READ_LOCK; 2680 level = 0; 2681 if (p->search_commit_root) { 2682 /* 2683 * the commit roots are read only 2684 * so we always do read locks 2685 */ 2686 if (p->need_commit_sem) 2687 down_read(&fs_info->commit_root_sem); 2688 b = root->commit_root; 2689 extent_buffer_get(b); 2690 level = btrfs_header_level(b); 2691 if (p->need_commit_sem) 2692 up_read(&fs_info->commit_root_sem); 2693 if (!p->skip_locking) 2694 btrfs_tree_read_lock(b); 2695 } else { 2696 if (p->skip_locking) { 2697 b = btrfs_root_node(root); 2698 level = btrfs_header_level(b); 2699 } else { 2700 /* we don't know the level of the root node 2701 * until we actually have it read locked 2702 */ 2703 b = btrfs_read_lock_root_node(root); 2704 level = btrfs_header_level(b); 2705 if (level <= write_lock_level) { 2706 /* whoops, must trade for write lock */ 2707 btrfs_tree_read_unlock(b); 2708 free_extent_buffer(b); 2709 b = btrfs_lock_root_node(root); 2710 root_lock = BTRFS_WRITE_LOCK; 2711 2712 /* the level might have changed, check again */ 2713 level = btrfs_header_level(b); 2714 } 2715 } 2716 } 2717 p->nodes[level] = b; 2718 if (!p->skip_locking) 2719 p->locks[level] = root_lock; 2720 2721 while (b) { 2722 level = btrfs_header_level(b); 2723 2724 /* 2725 * setup the path here so we can release it under lock 2726 * contention with the cow code 2727 */ 2728 if (cow) { 2729 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2730 2731 /* 2732 * if we don't really need to cow this block 2733 * then we don't want to set the path blocking, 2734 * so we test it here 2735 */ 2736 if (!should_cow_block(trans, root, b)) { 2737 trans->dirty = true; 2738 goto cow_done; 2739 } 2740 2741 /* 2742 * must have write locks on this node and the 2743 * parent 2744 */ 2745 if (level > write_lock_level || 2746 (level + 1 > write_lock_level && 2747 level + 1 < BTRFS_MAX_LEVEL && 2748 p->nodes[level + 1])) { 2749 write_lock_level = level + 1; 2750 btrfs_release_path(p); 2751 goto again; 2752 } 2753 2754 btrfs_set_path_blocking(p); 2755 if (last_level) 2756 err = btrfs_cow_block(trans, root, b, NULL, 0, 2757 &b); 2758 else 2759 err = btrfs_cow_block(trans, root, b, 2760 p->nodes[level + 1], 2761 p->slots[level + 1], &b); 2762 if (err) { 2763 ret = err; 2764 goto done; 2765 } 2766 } 2767 cow_done: 2768 p->nodes[level] = b; 2769 btrfs_clear_path_blocking(p, NULL, 0); 2770 2771 /* 2772 * we have a lock on b and as long as we aren't changing 2773 * the tree, there is no way to for the items in b to change. 2774 * It is safe to drop the lock on our parent before we 2775 * go through the expensive btree search on b. 2776 * 2777 * If we're inserting or deleting (ins_len != 0), then we might 2778 * be changing slot zero, which may require changing the parent. 2779 * So, we can't drop the lock until after we know which slot 2780 * we're operating on. 2781 */ 2782 if (!ins_len && !p->keep_locks) { 2783 int u = level + 1; 2784 2785 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2786 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2787 p->locks[u] = 0; 2788 } 2789 } 2790 2791 ret = key_search(b, key, level, &prev_cmp, &slot); 2792 if (ret < 0) 2793 goto done; 2794 2795 if (level != 0) { 2796 int dec = 0; 2797 if (ret && slot > 0) { 2798 dec = 1; 2799 slot -= 1; 2800 } 2801 p->slots[level] = slot; 2802 err = setup_nodes_for_search(trans, root, p, b, level, 2803 ins_len, &write_lock_level); 2804 if (err == -EAGAIN) 2805 goto again; 2806 if (err) { 2807 ret = err; 2808 goto done; 2809 } 2810 b = p->nodes[level]; 2811 slot = p->slots[level]; 2812 2813 /* 2814 * slot 0 is special, if we change the key 2815 * we have to update the parent pointer 2816 * which means we must have a write lock 2817 * on the parent 2818 */ 2819 if (slot == 0 && ins_len && 2820 write_lock_level < level + 1) { 2821 write_lock_level = level + 1; 2822 btrfs_release_path(p); 2823 goto again; 2824 } 2825 2826 unlock_up(p, level, lowest_unlock, 2827 min_write_lock_level, &write_lock_level); 2828 2829 if (level == lowest_level) { 2830 if (dec) 2831 p->slots[level]++; 2832 goto done; 2833 } 2834 2835 err = read_block_for_search(root, p, &b, level, 2836 slot, key); 2837 if (err == -EAGAIN) 2838 goto again; 2839 if (err) { 2840 ret = err; 2841 goto done; 2842 } 2843 2844 if (!p->skip_locking) { 2845 level = btrfs_header_level(b); 2846 if (level <= write_lock_level) { 2847 err = btrfs_try_tree_write_lock(b); 2848 if (!err) { 2849 btrfs_set_path_blocking(p); 2850 btrfs_tree_lock(b); 2851 btrfs_clear_path_blocking(p, b, 2852 BTRFS_WRITE_LOCK); 2853 } 2854 p->locks[level] = BTRFS_WRITE_LOCK; 2855 } else { 2856 err = btrfs_tree_read_lock_atomic(b); 2857 if (!err) { 2858 btrfs_set_path_blocking(p); 2859 btrfs_tree_read_lock(b); 2860 btrfs_clear_path_blocking(p, b, 2861 BTRFS_READ_LOCK); 2862 } 2863 p->locks[level] = BTRFS_READ_LOCK; 2864 } 2865 p->nodes[level] = b; 2866 } 2867 } else { 2868 p->slots[level] = slot; 2869 if (ins_len > 0 && 2870 btrfs_leaf_free_space(fs_info, b) < ins_len) { 2871 if (write_lock_level < 1) { 2872 write_lock_level = 1; 2873 btrfs_release_path(p); 2874 goto again; 2875 } 2876 2877 btrfs_set_path_blocking(p); 2878 err = split_leaf(trans, root, key, 2879 p, ins_len, ret == 0); 2880 btrfs_clear_path_blocking(p, NULL, 0); 2881 2882 BUG_ON(err > 0); 2883 if (err) { 2884 ret = err; 2885 goto done; 2886 } 2887 } 2888 if (!p->search_for_split) 2889 unlock_up(p, level, lowest_unlock, 2890 min_write_lock_level, &write_lock_level); 2891 goto done; 2892 } 2893 } 2894 ret = 1; 2895 done: 2896 /* 2897 * we don't really know what they plan on doing with the path 2898 * from here on, so for now just mark it as blocking 2899 */ 2900 if (!p->leave_spinning) 2901 btrfs_set_path_blocking(p); 2902 if (ret < 0 && !p->skip_release_on_error) 2903 btrfs_release_path(p); 2904 return ret; 2905 } 2906 2907 /* 2908 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2909 * current state of the tree together with the operations recorded in the tree 2910 * modification log to search for the key in a previous version of this tree, as 2911 * denoted by the time_seq parameter. 2912 * 2913 * Naturally, there is no support for insert, delete or cow operations. 2914 * 2915 * The resulting path and return value will be set up as if we called 2916 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2917 */ 2918 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2919 struct btrfs_path *p, u64 time_seq) 2920 { 2921 struct btrfs_fs_info *fs_info = root->fs_info; 2922 struct extent_buffer *b; 2923 int slot; 2924 int ret; 2925 int err; 2926 int level; 2927 int lowest_unlock = 1; 2928 u8 lowest_level = 0; 2929 int prev_cmp = -1; 2930 2931 lowest_level = p->lowest_level; 2932 WARN_ON(p->nodes[0] != NULL); 2933 2934 if (p->search_commit_root) { 2935 BUG_ON(time_seq); 2936 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2937 } 2938 2939 again: 2940 b = get_old_root(root, time_seq); 2941 level = btrfs_header_level(b); 2942 p->locks[level] = BTRFS_READ_LOCK; 2943 2944 while (b) { 2945 level = btrfs_header_level(b); 2946 p->nodes[level] = b; 2947 btrfs_clear_path_blocking(p, NULL, 0); 2948 2949 /* 2950 * we have a lock on b and as long as we aren't changing 2951 * the tree, there is no way to for the items in b to change. 2952 * It is safe to drop the lock on our parent before we 2953 * go through the expensive btree search on b. 2954 */ 2955 btrfs_unlock_up_safe(p, level + 1); 2956 2957 /* 2958 * Since we can unwind ebs we want to do a real search every 2959 * time. 2960 */ 2961 prev_cmp = -1; 2962 ret = key_search(b, key, level, &prev_cmp, &slot); 2963 2964 if (level != 0) { 2965 int dec = 0; 2966 if (ret && slot > 0) { 2967 dec = 1; 2968 slot -= 1; 2969 } 2970 p->slots[level] = slot; 2971 unlock_up(p, level, lowest_unlock, 0, NULL); 2972 2973 if (level == lowest_level) { 2974 if (dec) 2975 p->slots[level]++; 2976 goto done; 2977 } 2978 2979 err = read_block_for_search(root, p, &b, level, 2980 slot, key); 2981 if (err == -EAGAIN) 2982 goto again; 2983 if (err) { 2984 ret = err; 2985 goto done; 2986 } 2987 2988 level = btrfs_header_level(b); 2989 err = btrfs_tree_read_lock_atomic(b); 2990 if (!err) { 2991 btrfs_set_path_blocking(p); 2992 btrfs_tree_read_lock(b); 2993 btrfs_clear_path_blocking(p, b, 2994 BTRFS_READ_LOCK); 2995 } 2996 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 2997 if (!b) { 2998 ret = -ENOMEM; 2999 goto done; 3000 } 3001 p->locks[level] = BTRFS_READ_LOCK; 3002 p->nodes[level] = b; 3003 } else { 3004 p->slots[level] = slot; 3005 unlock_up(p, level, lowest_unlock, 0, NULL); 3006 goto done; 3007 } 3008 } 3009 ret = 1; 3010 done: 3011 if (!p->leave_spinning) 3012 btrfs_set_path_blocking(p); 3013 if (ret < 0) 3014 btrfs_release_path(p); 3015 3016 return ret; 3017 } 3018 3019 /* 3020 * helper to use instead of search slot if no exact match is needed but 3021 * instead the next or previous item should be returned. 3022 * When find_higher is true, the next higher item is returned, the next lower 3023 * otherwise. 3024 * When return_any and find_higher are both true, and no higher item is found, 3025 * return the next lower instead. 3026 * When return_any is true and find_higher is false, and no lower item is found, 3027 * return the next higher instead. 3028 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3029 * < 0 on error 3030 */ 3031 int btrfs_search_slot_for_read(struct btrfs_root *root, 3032 const struct btrfs_key *key, 3033 struct btrfs_path *p, int find_higher, 3034 int return_any) 3035 { 3036 int ret; 3037 struct extent_buffer *leaf; 3038 3039 again: 3040 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3041 if (ret <= 0) 3042 return ret; 3043 /* 3044 * a return value of 1 means the path is at the position where the 3045 * item should be inserted. Normally this is the next bigger item, 3046 * but in case the previous item is the last in a leaf, path points 3047 * to the first free slot in the previous leaf, i.e. at an invalid 3048 * item. 3049 */ 3050 leaf = p->nodes[0]; 3051 3052 if (find_higher) { 3053 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3054 ret = btrfs_next_leaf(root, p); 3055 if (ret <= 0) 3056 return ret; 3057 if (!return_any) 3058 return 1; 3059 /* 3060 * no higher item found, return the next 3061 * lower instead 3062 */ 3063 return_any = 0; 3064 find_higher = 0; 3065 btrfs_release_path(p); 3066 goto again; 3067 } 3068 } else { 3069 if (p->slots[0] == 0) { 3070 ret = btrfs_prev_leaf(root, p); 3071 if (ret < 0) 3072 return ret; 3073 if (!ret) { 3074 leaf = p->nodes[0]; 3075 if (p->slots[0] == btrfs_header_nritems(leaf)) 3076 p->slots[0]--; 3077 return 0; 3078 } 3079 if (!return_any) 3080 return 1; 3081 /* 3082 * no lower item found, return the next 3083 * higher instead 3084 */ 3085 return_any = 0; 3086 find_higher = 1; 3087 btrfs_release_path(p); 3088 goto again; 3089 } else { 3090 --p->slots[0]; 3091 } 3092 } 3093 return 0; 3094 } 3095 3096 /* 3097 * adjust the pointers going up the tree, starting at level 3098 * making sure the right key of each node is points to 'key'. 3099 * This is used after shifting pointers to the left, so it stops 3100 * fixing up pointers when a given leaf/node is not in slot 0 of the 3101 * higher levels 3102 * 3103 */ 3104 static void fixup_low_keys(struct btrfs_fs_info *fs_info, 3105 struct btrfs_path *path, 3106 struct btrfs_disk_key *key, int level) 3107 { 3108 int i; 3109 struct extent_buffer *t; 3110 int ret; 3111 3112 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3113 int tslot = path->slots[i]; 3114 3115 if (!path->nodes[i]) 3116 break; 3117 t = path->nodes[i]; 3118 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3119 GFP_ATOMIC); 3120 BUG_ON(ret < 0); 3121 btrfs_set_node_key(t, key, tslot); 3122 btrfs_mark_buffer_dirty(path->nodes[i]); 3123 if (tslot != 0) 3124 break; 3125 } 3126 } 3127 3128 /* 3129 * update item key. 3130 * 3131 * This function isn't completely safe. It's the caller's responsibility 3132 * that the new key won't break the order 3133 */ 3134 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3135 struct btrfs_path *path, 3136 const struct btrfs_key *new_key) 3137 { 3138 struct btrfs_disk_key disk_key; 3139 struct extent_buffer *eb; 3140 int slot; 3141 3142 eb = path->nodes[0]; 3143 slot = path->slots[0]; 3144 if (slot > 0) { 3145 btrfs_item_key(eb, &disk_key, slot - 1); 3146 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3147 } 3148 if (slot < btrfs_header_nritems(eb) - 1) { 3149 btrfs_item_key(eb, &disk_key, slot + 1); 3150 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3151 } 3152 3153 btrfs_cpu_key_to_disk(&disk_key, new_key); 3154 btrfs_set_item_key(eb, &disk_key, slot); 3155 btrfs_mark_buffer_dirty(eb); 3156 if (slot == 0) 3157 fixup_low_keys(fs_info, path, &disk_key, 1); 3158 } 3159 3160 /* 3161 * try to push data from one node into the next node left in the 3162 * tree. 3163 * 3164 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3165 * error, and > 0 if there was no room in the left hand block. 3166 */ 3167 static int push_node_left(struct btrfs_trans_handle *trans, 3168 struct btrfs_fs_info *fs_info, 3169 struct extent_buffer *dst, 3170 struct extent_buffer *src, int empty) 3171 { 3172 int push_items = 0; 3173 int src_nritems; 3174 int dst_nritems; 3175 int ret = 0; 3176 3177 src_nritems = btrfs_header_nritems(src); 3178 dst_nritems = btrfs_header_nritems(dst); 3179 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3180 WARN_ON(btrfs_header_generation(src) != trans->transid); 3181 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3182 3183 if (!empty && src_nritems <= 8) 3184 return 1; 3185 3186 if (push_items <= 0) 3187 return 1; 3188 3189 if (empty) { 3190 push_items = min(src_nritems, push_items); 3191 if (push_items < src_nritems) { 3192 /* leave at least 8 pointers in the node if 3193 * we aren't going to empty it 3194 */ 3195 if (src_nritems - push_items < 8) { 3196 if (push_items <= 8) 3197 return 1; 3198 push_items -= 8; 3199 } 3200 } 3201 } else 3202 push_items = min(src_nritems - 8, push_items); 3203 3204 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0, 3205 push_items); 3206 if (ret) { 3207 btrfs_abort_transaction(trans, ret); 3208 return ret; 3209 } 3210 copy_extent_buffer(dst, src, 3211 btrfs_node_key_ptr_offset(dst_nritems), 3212 btrfs_node_key_ptr_offset(0), 3213 push_items * sizeof(struct btrfs_key_ptr)); 3214 3215 if (push_items < src_nritems) { 3216 /* 3217 * Don't call tree_mod_log_insert_move here, key removal was 3218 * already fully logged by tree_mod_log_eb_copy above. 3219 */ 3220 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3221 btrfs_node_key_ptr_offset(push_items), 3222 (src_nritems - push_items) * 3223 sizeof(struct btrfs_key_ptr)); 3224 } 3225 btrfs_set_header_nritems(src, src_nritems - push_items); 3226 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3227 btrfs_mark_buffer_dirty(src); 3228 btrfs_mark_buffer_dirty(dst); 3229 3230 return ret; 3231 } 3232 3233 /* 3234 * try to push data from one node into the next node right in the 3235 * tree. 3236 * 3237 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3238 * error, and > 0 if there was no room in the right hand block. 3239 * 3240 * this will only push up to 1/2 the contents of the left node over 3241 */ 3242 static int balance_node_right(struct btrfs_trans_handle *trans, 3243 struct btrfs_fs_info *fs_info, 3244 struct extent_buffer *dst, 3245 struct extent_buffer *src) 3246 { 3247 int push_items = 0; 3248 int max_push; 3249 int src_nritems; 3250 int dst_nritems; 3251 int ret = 0; 3252 3253 WARN_ON(btrfs_header_generation(src) != trans->transid); 3254 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3255 3256 src_nritems = btrfs_header_nritems(src); 3257 dst_nritems = btrfs_header_nritems(dst); 3258 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3259 if (push_items <= 0) 3260 return 1; 3261 3262 if (src_nritems < 4) 3263 return 1; 3264 3265 max_push = src_nritems / 2 + 1; 3266 /* don't try to empty the node */ 3267 if (max_push >= src_nritems) 3268 return 1; 3269 3270 if (max_push < push_items) 3271 push_items = max_push; 3272 3273 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3274 BUG_ON(ret < 0); 3275 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3276 btrfs_node_key_ptr_offset(0), 3277 (dst_nritems) * 3278 sizeof(struct btrfs_key_ptr)); 3279 3280 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0, 3281 src_nritems - push_items, push_items); 3282 if (ret) { 3283 btrfs_abort_transaction(trans, ret); 3284 return ret; 3285 } 3286 copy_extent_buffer(dst, src, 3287 btrfs_node_key_ptr_offset(0), 3288 btrfs_node_key_ptr_offset(src_nritems - push_items), 3289 push_items * sizeof(struct btrfs_key_ptr)); 3290 3291 btrfs_set_header_nritems(src, src_nritems - push_items); 3292 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3293 3294 btrfs_mark_buffer_dirty(src); 3295 btrfs_mark_buffer_dirty(dst); 3296 3297 return ret; 3298 } 3299 3300 /* 3301 * helper function to insert a new root level in the tree. 3302 * A new node is allocated, and a single item is inserted to 3303 * point to the existing root 3304 * 3305 * returns zero on success or < 0 on failure. 3306 */ 3307 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3308 struct btrfs_root *root, 3309 struct btrfs_path *path, int level) 3310 { 3311 struct btrfs_fs_info *fs_info = root->fs_info; 3312 u64 lower_gen; 3313 struct extent_buffer *lower; 3314 struct extent_buffer *c; 3315 struct extent_buffer *old; 3316 struct btrfs_disk_key lower_key; 3317 int ret; 3318 3319 BUG_ON(path->nodes[level]); 3320 BUG_ON(path->nodes[level-1] != root->node); 3321 3322 lower = path->nodes[level-1]; 3323 if (level == 1) 3324 btrfs_item_key(lower, &lower_key, 0); 3325 else 3326 btrfs_node_key(lower, &lower_key, 0); 3327 3328 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3329 &lower_key, level, root->node->start, 0); 3330 if (IS_ERR(c)) 3331 return PTR_ERR(c); 3332 3333 root_add_used(root, fs_info->nodesize); 3334 3335 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header)); 3336 btrfs_set_header_nritems(c, 1); 3337 btrfs_set_header_level(c, level); 3338 btrfs_set_header_bytenr(c, c->start); 3339 btrfs_set_header_generation(c, trans->transid); 3340 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3341 btrfs_set_header_owner(c, root->root_key.objectid); 3342 3343 write_extent_buffer_fsid(c, fs_info->fsid); 3344 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid); 3345 3346 btrfs_set_node_key(c, &lower_key, 0); 3347 btrfs_set_node_blockptr(c, 0, lower->start); 3348 lower_gen = btrfs_header_generation(lower); 3349 WARN_ON(lower_gen != trans->transid); 3350 3351 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3352 3353 btrfs_mark_buffer_dirty(c); 3354 3355 old = root->node; 3356 ret = tree_mod_log_insert_root(root->node, c, 0); 3357 BUG_ON(ret < 0); 3358 rcu_assign_pointer(root->node, c); 3359 3360 /* the super has an extra ref to root->node */ 3361 free_extent_buffer(old); 3362 3363 add_root_to_dirty_list(root); 3364 extent_buffer_get(c); 3365 path->nodes[level] = c; 3366 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3367 path->slots[level] = 0; 3368 return 0; 3369 } 3370 3371 /* 3372 * worker function to insert a single pointer in a node. 3373 * the node should have enough room for the pointer already 3374 * 3375 * slot and level indicate where you want the key to go, and 3376 * blocknr is the block the key points to. 3377 */ 3378 static void insert_ptr(struct btrfs_trans_handle *trans, 3379 struct btrfs_fs_info *fs_info, struct btrfs_path *path, 3380 struct btrfs_disk_key *key, u64 bytenr, 3381 int slot, int level) 3382 { 3383 struct extent_buffer *lower; 3384 int nritems; 3385 int ret; 3386 3387 BUG_ON(!path->nodes[level]); 3388 btrfs_assert_tree_locked(path->nodes[level]); 3389 lower = path->nodes[level]; 3390 nritems = btrfs_header_nritems(lower); 3391 BUG_ON(slot > nritems); 3392 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 3393 if (slot != nritems) { 3394 if (level) { 3395 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3396 nritems - slot); 3397 BUG_ON(ret < 0); 3398 } 3399 memmove_extent_buffer(lower, 3400 btrfs_node_key_ptr_offset(slot + 1), 3401 btrfs_node_key_ptr_offset(slot), 3402 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3403 } 3404 if (level) { 3405 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3406 GFP_NOFS); 3407 BUG_ON(ret < 0); 3408 } 3409 btrfs_set_node_key(lower, key, slot); 3410 btrfs_set_node_blockptr(lower, slot, bytenr); 3411 WARN_ON(trans->transid == 0); 3412 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3413 btrfs_set_header_nritems(lower, nritems + 1); 3414 btrfs_mark_buffer_dirty(lower); 3415 } 3416 3417 /* 3418 * split the node at the specified level in path in two. 3419 * The path is corrected to point to the appropriate node after the split 3420 * 3421 * Before splitting this tries to make some room in the node by pushing 3422 * left and right, if either one works, it returns right away. 3423 * 3424 * returns 0 on success and < 0 on failure 3425 */ 3426 static noinline int split_node(struct btrfs_trans_handle *trans, 3427 struct btrfs_root *root, 3428 struct btrfs_path *path, int level) 3429 { 3430 struct btrfs_fs_info *fs_info = root->fs_info; 3431 struct extent_buffer *c; 3432 struct extent_buffer *split; 3433 struct btrfs_disk_key disk_key; 3434 int mid; 3435 int ret; 3436 u32 c_nritems; 3437 3438 c = path->nodes[level]; 3439 WARN_ON(btrfs_header_generation(c) != trans->transid); 3440 if (c == root->node) { 3441 /* 3442 * trying to split the root, lets make a new one 3443 * 3444 * tree mod log: We don't log_removal old root in 3445 * insert_new_root, because that root buffer will be kept as a 3446 * normal node. We are going to log removal of half of the 3447 * elements below with tree_mod_log_eb_copy. We're holding a 3448 * tree lock on the buffer, which is why we cannot race with 3449 * other tree_mod_log users. 3450 */ 3451 ret = insert_new_root(trans, root, path, level + 1); 3452 if (ret) 3453 return ret; 3454 } else { 3455 ret = push_nodes_for_insert(trans, root, path, level); 3456 c = path->nodes[level]; 3457 if (!ret && btrfs_header_nritems(c) < 3458 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3459 return 0; 3460 if (ret < 0) 3461 return ret; 3462 } 3463 3464 c_nritems = btrfs_header_nritems(c); 3465 mid = (c_nritems + 1) / 2; 3466 btrfs_node_key(c, &disk_key, mid); 3467 3468 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3469 &disk_key, level, c->start, 0); 3470 if (IS_ERR(split)) 3471 return PTR_ERR(split); 3472 3473 root_add_used(root, fs_info->nodesize); 3474 3475 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header)); 3476 btrfs_set_header_level(split, btrfs_header_level(c)); 3477 btrfs_set_header_bytenr(split, split->start); 3478 btrfs_set_header_generation(split, trans->transid); 3479 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3480 btrfs_set_header_owner(split, root->root_key.objectid); 3481 write_extent_buffer_fsid(split, fs_info->fsid); 3482 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid); 3483 3484 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid); 3485 if (ret) { 3486 btrfs_abort_transaction(trans, ret); 3487 return ret; 3488 } 3489 copy_extent_buffer(split, c, 3490 btrfs_node_key_ptr_offset(0), 3491 btrfs_node_key_ptr_offset(mid), 3492 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3493 btrfs_set_header_nritems(split, c_nritems - mid); 3494 btrfs_set_header_nritems(c, mid); 3495 ret = 0; 3496 3497 btrfs_mark_buffer_dirty(c); 3498 btrfs_mark_buffer_dirty(split); 3499 3500 insert_ptr(trans, fs_info, path, &disk_key, split->start, 3501 path->slots[level + 1] + 1, level + 1); 3502 3503 if (path->slots[level] >= mid) { 3504 path->slots[level] -= mid; 3505 btrfs_tree_unlock(c); 3506 free_extent_buffer(c); 3507 path->nodes[level] = split; 3508 path->slots[level + 1] += 1; 3509 } else { 3510 btrfs_tree_unlock(split); 3511 free_extent_buffer(split); 3512 } 3513 return ret; 3514 } 3515 3516 /* 3517 * how many bytes are required to store the items in a leaf. start 3518 * and nr indicate which items in the leaf to check. This totals up the 3519 * space used both by the item structs and the item data 3520 */ 3521 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3522 { 3523 struct btrfs_item *start_item; 3524 struct btrfs_item *end_item; 3525 struct btrfs_map_token token; 3526 int data_len; 3527 int nritems = btrfs_header_nritems(l); 3528 int end = min(nritems, start + nr) - 1; 3529 3530 if (!nr) 3531 return 0; 3532 btrfs_init_map_token(&token); 3533 start_item = btrfs_item_nr(start); 3534 end_item = btrfs_item_nr(end); 3535 data_len = btrfs_token_item_offset(l, start_item, &token) + 3536 btrfs_token_item_size(l, start_item, &token); 3537 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3538 data_len += sizeof(struct btrfs_item) * nr; 3539 WARN_ON(data_len < 0); 3540 return data_len; 3541 } 3542 3543 /* 3544 * The space between the end of the leaf items and 3545 * the start of the leaf data. IOW, how much room 3546 * the leaf has left for both items and data 3547 */ 3548 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info, 3549 struct extent_buffer *leaf) 3550 { 3551 int nritems = btrfs_header_nritems(leaf); 3552 int ret; 3553 3554 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3555 if (ret < 0) { 3556 btrfs_crit(fs_info, 3557 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3558 ret, 3559 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3560 leaf_space_used(leaf, 0, nritems), nritems); 3561 } 3562 return ret; 3563 } 3564 3565 /* 3566 * min slot controls the lowest index we're willing to push to the 3567 * right. We'll push up to and including min_slot, but no lower 3568 */ 3569 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info, 3570 struct btrfs_path *path, 3571 int data_size, int empty, 3572 struct extent_buffer *right, 3573 int free_space, u32 left_nritems, 3574 u32 min_slot) 3575 { 3576 struct extent_buffer *left = path->nodes[0]; 3577 struct extent_buffer *upper = path->nodes[1]; 3578 struct btrfs_map_token token; 3579 struct btrfs_disk_key disk_key; 3580 int slot; 3581 u32 i; 3582 int push_space = 0; 3583 int push_items = 0; 3584 struct btrfs_item *item; 3585 u32 nr; 3586 u32 right_nritems; 3587 u32 data_end; 3588 u32 this_item_size; 3589 3590 btrfs_init_map_token(&token); 3591 3592 if (empty) 3593 nr = 0; 3594 else 3595 nr = max_t(u32, 1, min_slot); 3596 3597 if (path->slots[0] >= left_nritems) 3598 push_space += data_size; 3599 3600 slot = path->slots[1]; 3601 i = left_nritems - 1; 3602 while (i >= nr) { 3603 item = btrfs_item_nr(i); 3604 3605 if (!empty && push_items > 0) { 3606 if (path->slots[0] > i) 3607 break; 3608 if (path->slots[0] == i) { 3609 int space = btrfs_leaf_free_space(fs_info, left); 3610 if (space + push_space * 2 > free_space) 3611 break; 3612 } 3613 } 3614 3615 if (path->slots[0] == i) 3616 push_space += data_size; 3617 3618 this_item_size = btrfs_item_size(left, item); 3619 if (this_item_size + sizeof(*item) + push_space > free_space) 3620 break; 3621 3622 push_items++; 3623 push_space += this_item_size + sizeof(*item); 3624 if (i == 0) 3625 break; 3626 i--; 3627 } 3628 3629 if (push_items == 0) 3630 goto out_unlock; 3631 3632 WARN_ON(!empty && push_items == left_nritems); 3633 3634 /* push left to right */ 3635 right_nritems = btrfs_header_nritems(right); 3636 3637 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3638 push_space -= leaf_data_end(fs_info, left); 3639 3640 /* make room in the right data area */ 3641 data_end = leaf_data_end(fs_info, right); 3642 memmove_extent_buffer(right, 3643 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3644 BTRFS_LEAF_DATA_OFFSET + data_end, 3645 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3646 3647 /* copy from the left data area */ 3648 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3649 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3650 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left), 3651 push_space); 3652 3653 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3654 btrfs_item_nr_offset(0), 3655 right_nritems * sizeof(struct btrfs_item)); 3656 3657 /* copy the items from left to right */ 3658 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3659 btrfs_item_nr_offset(left_nritems - push_items), 3660 push_items * sizeof(struct btrfs_item)); 3661 3662 /* update the item pointers */ 3663 right_nritems += push_items; 3664 btrfs_set_header_nritems(right, right_nritems); 3665 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3666 for (i = 0; i < right_nritems; i++) { 3667 item = btrfs_item_nr(i); 3668 push_space -= btrfs_token_item_size(right, item, &token); 3669 btrfs_set_token_item_offset(right, item, push_space, &token); 3670 } 3671 3672 left_nritems -= push_items; 3673 btrfs_set_header_nritems(left, left_nritems); 3674 3675 if (left_nritems) 3676 btrfs_mark_buffer_dirty(left); 3677 else 3678 clean_tree_block(fs_info, left); 3679 3680 btrfs_mark_buffer_dirty(right); 3681 3682 btrfs_item_key(right, &disk_key, 0); 3683 btrfs_set_node_key(upper, &disk_key, slot + 1); 3684 btrfs_mark_buffer_dirty(upper); 3685 3686 /* then fixup the leaf pointer in the path */ 3687 if (path->slots[0] >= left_nritems) { 3688 path->slots[0] -= left_nritems; 3689 if (btrfs_header_nritems(path->nodes[0]) == 0) 3690 clean_tree_block(fs_info, path->nodes[0]); 3691 btrfs_tree_unlock(path->nodes[0]); 3692 free_extent_buffer(path->nodes[0]); 3693 path->nodes[0] = right; 3694 path->slots[1] += 1; 3695 } else { 3696 btrfs_tree_unlock(right); 3697 free_extent_buffer(right); 3698 } 3699 return 0; 3700 3701 out_unlock: 3702 btrfs_tree_unlock(right); 3703 free_extent_buffer(right); 3704 return 1; 3705 } 3706 3707 /* 3708 * push some data in the path leaf to the right, trying to free up at 3709 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3710 * 3711 * returns 1 if the push failed because the other node didn't have enough 3712 * room, 0 if everything worked out and < 0 if there were major errors. 3713 * 3714 * this will push starting from min_slot to the end of the leaf. It won't 3715 * push any slot lower than min_slot 3716 */ 3717 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3718 *root, struct btrfs_path *path, 3719 int min_data_size, int data_size, 3720 int empty, u32 min_slot) 3721 { 3722 struct btrfs_fs_info *fs_info = root->fs_info; 3723 struct extent_buffer *left = path->nodes[0]; 3724 struct extent_buffer *right; 3725 struct extent_buffer *upper; 3726 int slot; 3727 int free_space; 3728 u32 left_nritems; 3729 int ret; 3730 3731 if (!path->nodes[1]) 3732 return 1; 3733 3734 slot = path->slots[1]; 3735 upper = path->nodes[1]; 3736 if (slot >= btrfs_header_nritems(upper) - 1) 3737 return 1; 3738 3739 btrfs_assert_tree_locked(path->nodes[1]); 3740 3741 right = read_node_slot(fs_info, upper, slot + 1); 3742 /* 3743 * slot + 1 is not valid or we fail to read the right node, 3744 * no big deal, just return. 3745 */ 3746 if (IS_ERR(right)) 3747 return 1; 3748 3749 btrfs_tree_lock(right); 3750 btrfs_set_lock_blocking(right); 3751 3752 free_space = btrfs_leaf_free_space(fs_info, right); 3753 if (free_space < data_size) 3754 goto out_unlock; 3755 3756 /* cow and double check */ 3757 ret = btrfs_cow_block(trans, root, right, upper, 3758 slot + 1, &right); 3759 if (ret) 3760 goto out_unlock; 3761 3762 free_space = btrfs_leaf_free_space(fs_info, right); 3763 if (free_space < data_size) 3764 goto out_unlock; 3765 3766 left_nritems = btrfs_header_nritems(left); 3767 if (left_nritems == 0) 3768 goto out_unlock; 3769 3770 if (path->slots[0] == left_nritems && !empty) { 3771 /* Key greater than all keys in the leaf, right neighbor has 3772 * enough room for it and we're not emptying our leaf to delete 3773 * it, therefore use right neighbor to insert the new item and 3774 * no need to touch/dirty our left leaft. */ 3775 btrfs_tree_unlock(left); 3776 free_extent_buffer(left); 3777 path->nodes[0] = right; 3778 path->slots[0] = 0; 3779 path->slots[1]++; 3780 return 0; 3781 } 3782 3783 return __push_leaf_right(fs_info, path, min_data_size, empty, 3784 right, free_space, left_nritems, min_slot); 3785 out_unlock: 3786 btrfs_tree_unlock(right); 3787 free_extent_buffer(right); 3788 return 1; 3789 } 3790 3791 /* 3792 * push some data in the path leaf to the left, trying to free up at 3793 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3794 * 3795 * max_slot can put a limit on how far into the leaf we'll push items. The 3796 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3797 * items 3798 */ 3799 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info, 3800 struct btrfs_path *path, int data_size, 3801 int empty, struct extent_buffer *left, 3802 int free_space, u32 right_nritems, 3803 u32 max_slot) 3804 { 3805 struct btrfs_disk_key disk_key; 3806 struct extent_buffer *right = path->nodes[0]; 3807 int i; 3808 int push_space = 0; 3809 int push_items = 0; 3810 struct btrfs_item *item; 3811 u32 old_left_nritems; 3812 u32 nr; 3813 int ret = 0; 3814 u32 this_item_size; 3815 u32 old_left_item_size; 3816 struct btrfs_map_token token; 3817 3818 btrfs_init_map_token(&token); 3819 3820 if (empty) 3821 nr = min(right_nritems, max_slot); 3822 else 3823 nr = min(right_nritems - 1, max_slot); 3824 3825 for (i = 0; i < nr; i++) { 3826 item = btrfs_item_nr(i); 3827 3828 if (!empty && push_items > 0) { 3829 if (path->slots[0] < i) 3830 break; 3831 if (path->slots[0] == i) { 3832 int space = btrfs_leaf_free_space(fs_info, right); 3833 if (space + push_space * 2 > free_space) 3834 break; 3835 } 3836 } 3837 3838 if (path->slots[0] == i) 3839 push_space += data_size; 3840 3841 this_item_size = btrfs_item_size(right, item); 3842 if (this_item_size + sizeof(*item) + push_space > free_space) 3843 break; 3844 3845 push_items++; 3846 push_space += this_item_size + sizeof(*item); 3847 } 3848 3849 if (push_items == 0) { 3850 ret = 1; 3851 goto out; 3852 } 3853 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3854 3855 /* push data from right to left */ 3856 copy_extent_buffer(left, right, 3857 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3858 btrfs_item_nr_offset(0), 3859 push_items * sizeof(struct btrfs_item)); 3860 3861 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3862 btrfs_item_offset_nr(right, push_items - 1); 3863 3864 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3865 leaf_data_end(fs_info, left) - push_space, 3866 BTRFS_LEAF_DATA_OFFSET + 3867 btrfs_item_offset_nr(right, push_items - 1), 3868 push_space); 3869 old_left_nritems = btrfs_header_nritems(left); 3870 BUG_ON(old_left_nritems <= 0); 3871 3872 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3873 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3874 u32 ioff; 3875 3876 item = btrfs_item_nr(i); 3877 3878 ioff = btrfs_token_item_offset(left, item, &token); 3879 btrfs_set_token_item_offset(left, item, 3880 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), 3881 &token); 3882 } 3883 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3884 3885 /* fixup right node */ 3886 if (push_items > right_nritems) 3887 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3888 right_nritems); 3889 3890 if (push_items < right_nritems) { 3891 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3892 leaf_data_end(fs_info, right); 3893 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3894 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3895 BTRFS_LEAF_DATA_OFFSET + 3896 leaf_data_end(fs_info, right), push_space); 3897 3898 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3899 btrfs_item_nr_offset(push_items), 3900 (btrfs_header_nritems(right) - push_items) * 3901 sizeof(struct btrfs_item)); 3902 } 3903 right_nritems -= push_items; 3904 btrfs_set_header_nritems(right, right_nritems); 3905 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3906 for (i = 0; i < right_nritems; i++) { 3907 item = btrfs_item_nr(i); 3908 3909 push_space = push_space - btrfs_token_item_size(right, 3910 item, &token); 3911 btrfs_set_token_item_offset(right, item, push_space, &token); 3912 } 3913 3914 btrfs_mark_buffer_dirty(left); 3915 if (right_nritems) 3916 btrfs_mark_buffer_dirty(right); 3917 else 3918 clean_tree_block(fs_info, right); 3919 3920 btrfs_item_key(right, &disk_key, 0); 3921 fixup_low_keys(fs_info, path, &disk_key, 1); 3922 3923 /* then fixup the leaf pointer in the path */ 3924 if (path->slots[0] < push_items) { 3925 path->slots[0] += old_left_nritems; 3926 btrfs_tree_unlock(path->nodes[0]); 3927 free_extent_buffer(path->nodes[0]); 3928 path->nodes[0] = left; 3929 path->slots[1] -= 1; 3930 } else { 3931 btrfs_tree_unlock(left); 3932 free_extent_buffer(left); 3933 path->slots[0] -= push_items; 3934 } 3935 BUG_ON(path->slots[0] < 0); 3936 return ret; 3937 out: 3938 btrfs_tree_unlock(left); 3939 free_extent_buffer(left); 3940 return ret; 3941 } 3942 3943 /* 3944 * push some data in the path leaf to the left, trying to free up at 3945 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3946 * 3947 * max_slot can put a limit on how far into the leaf we'll push items. The 3948 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3949 * items 3950 */ 3951 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3952 *root, struct btrfs_path *path, int min_data_size, 3953 int data_size, int empty, u32 max_slot) 3954 { 3955 struct btrfs_fs_info *fs_info = root->fs_info; 3956 struct extent_buffer *right = path->nodes[0]; 3957 struct extent_buffer *left; 3958 int slot; 3959 int free_space; 3960 u32 right_nritems; 3961 int ret = 0; 3962 3963 slot = path->slots[1]; 3964 if (slot == 0) 3965 return 1; 3966 if (!path->nodes[1]) 3967 return 1; 3968 3969 right_nritems = btrfs_header_nritems(right); 3970 if (right_nritems == 0) 3971 return 1; 3972 3973 btrfs_assert_tree_locked(path->nodes[1]); 3974 3975 left = read_node_slot(fs_info, path->nodes[1], slot - 1); 3976 /* 3977 * slot - 1 is not valid or we fail to read the left node, 3978 * no big deal, just return. 3979 */ 3980 if (IS_ERR(left)) 3981 return 1; 3982 3983 btrfs_tree_lock(left); 3984 btrfs_set_lock_blocking(left); 3985 3986 free_space = btrfs_leaf_free_space(fs_info, left); 3987 if (free_space < data_size) { 3988 ret = 1; 3989 goto out; 3990 } 3991 3992 /* cow and double check */ 3993 ret = btrfs_cow_block(trans, root, left, 3994 path->nodes[1], slot - 1, &left); 3995 if (ret) { 3996 /* we hit -ENOSPC, but it isn't fatal here */ 3997 if (ret == -ENOSPC) 3998 ret = 1; 3999 goto out; 4000 } 4001 4002 free_space = btrfs_leaf_free_space(fs_info, left); 4003 if (free_space < data_size) { 4004 ret = 1; 4005 goto out; 4006 } 4007 4008 return __push_leaf_left(fs_info, path, min_data_size, 4009 empty, left, free_space, right_nritems, 4010 max_slot); 4011 out: 4012 btrfs_tree_unlock(left); 4013 free_extent_buffer(left); 4014 return ret; 4015 } 4016 4017 /* 4018 * split the path's leaf in two, making sure there is at least data_size 4019 * available for the resulting leaf level of the path. 4020 */ 4021 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4022 struct btrfs_fs_info *fs_info, 4023 struct btrfs_path *path, 4024 struct extent_buffer *l, 4025 struct extent_buffer *right, 4026 int slot, int mid, int nritems) 4027 { 4028 int data_copy_size; 4029 int rt_data_off; 4030 int i; 4031 struct btrfs_disk_key disk_key; 4032 struct btrfs_map_token token; 4033 4034 btrfs_init_map_token(&token); 4035 4036 nritems = nritems - mid; 4037 btrfs_set_header_nritems(right, nritems); 4038 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l); 4039 4040 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4041 btrfs_item_nr_offset(mid), 4042 nritems * sizeof(struct btrfs_item)); 4043 4044 copy_extent_buffer(right, l, 4045 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4046 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4047 leaf_data_end(fs_info, l), data_copy_size); 4048 4049 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4050 4051 for (i = 0; i < nritems; i++) { 4052 struct btrfs_item *item = btrfs_item_nr(i); 4053 u32 ioff; 4054 4055 ioff = btrfs_token_item_offset(right, item, &token); 4056 btrfs_set_token_item_offset(right, item, 4057 ioff + rt_data_off, &token); 4058 } 4059 4060 btrfs_set_header_nritems(l, mid); 4061 btrfs_item_key(right, &disk_key, 0); 4062 insert_ptr(trans, fs_info, path, &disk_key, right->start, 4063 path->slots[1] + 1, 1); 4064 4065 btrfs_mark_buffer_dirty(right); 4066 btrfs_mark_buffer_dirty(l); 4067 BUG_ON(path->slots[0] != slot); 4068 4069 if (mid <= slot) { 4070 btrfs_tree_unlock(path->nodes[0]); 4071 free_extent_buffer(path->nodes[0]); 4072 path->nodes[0] = right; 4073 path->slots[0] -= mid; 4074 path->slots[1] += 1; 4075 } else { 4076 btrfs_tree_unlock(right); 4077 free_extent_buffer(right); 4078 } 4079 4080 BUG_ON(path->slots[0] < 0); 4081 } 4082 4083 /* 4084 * double splits happen when we need to insert a big item in the middle 4085 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4086 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4087 * A B C 4088 * 4089 * We avoid this by trying to push the items on either side of our target 4090 * into the adjacent leaves. If all goes well we can avoid the double split 4091 * completely. 4092 */ 4093 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4094 struct btrfs_root *root, 4095 struct btrfs_path *path, 4096 int data_size) 4097 { 4098 struct btrfs_fs_info *fs_info = root->fs_info; 4099 int ret; 4100 int progress = 0; 4101 int slot; 4102 u32 nritems; 4103 int space_needed = data_size; 4104 4105 slot = path->slots[0]; 4106 if (slot < btrfs_header_nritems(path->nodes[0])) 4107 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4108 4109 /* 4110 * try to push all the items after our slot into the 4111 * right leaf 4112 */ 4113 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4114 if (ret < 0) 4115 return ret; 4116 4117 if (ret == 0) 4118 progress++; 4119 4120 nritems = btrfs_header_nritems(path->nodes[0]); 4121 /* 4122 * our goal is to get our slot at the start or end of a leaf. If 4123 * we've done so we're done 4124 */ 4125 if (path->slots[0] == 0 || path->slots[0] == nritems) 4126 return 0; 4127 4128 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4129 return 0; 4130 4131 /* try to push all the items before our slot into the next leaf */ 4132 slot = path->slots[0]; 4133 space_needed = data_size; 4134 if (slot > 0) 4135 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4136 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4137 if (ret < 0) 4138 return ret; 4139 4140 if (ret == 0) 4141 progress++; 4142 4143 if (progress) 4144 return 0; 4145 return 1; 4146 } 4147 4148 /* 4149 * split the path's leaf in two, making sure there is at least data_size 4150 * available for the resulting leaf level of the path. 4151 * 4152 * returns 0 if all went well and < 0 on failure. 4153 */ 4154 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4155 struct btrfs_root *root, 4156 const struct btrfs_key *ins_key, 4157 struct btrfs_path *path, int data_size, 4158 int extend) 4159 { 4160 struct btrfs_disk_key disk_key; 4161 struct extent_buffer *l; 4162 u32 nritems; 4163 int mid; 4164 int slot; 4165 struct extent_buffer *right; 4166 struct btrfs_fs_info *fs_info = root->fs_info; 4167 int ret = 0; 4168 int wret; 4169 int split; 4170 int num_doubles = 0; 4171 int tried_avoid_double = 0; 4172 4173 l = path->nodes[0]; 4174 slot = path->slots[0]; 4175 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4176 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4177 return -EOVERFLOW; 4178 4179 /* first try to make some room by pushing left and right */ 4180 if (data_size && path->nodes[1]) { 4181 int space_needed = data_size; 4182 4183 if (slot < btrfs_header_nritems(l)) 4184 space_needed -= btrfs_leaf_free_space(fs_info, l); 4185 4186 wret = push_leaf_right(trans, root, path, space_needed, 4187 space_needed, 0, 0); 4188 if (wret < 0) 4189 return wret; 4190 if (wret) { 4191 space_needed = data_size; 4192 if (slot > 0) 4193 space_needed -= btrfs_leaf_free_space(fs_info, 4194 l); 4195 wret = push_leaf_left(trans, root, path, space_needed, 4196 space_needed, 0, (u32)-1); 4197 if (wret < 0) 4198 return wret; 4199 } 4200 l = path->nodes[0]; 4201 4202 /* did the pushes work? */ 4203 if (btrfs_leaf_free_space(fs_info, l) >= data_size) 4204 return 0; 4205 } 4206 4207 if (!path->nodes[1]) { 4208 ret = insert_new_root(trans, root, path, 1); 4209 if (ret) 4210 return ret; 4211 } 4212 again: 4213 split = 1; 4214 l = path->nodes[0]; 4215 slot = path->slots[0]; 4216 nritems = btrfs_header_nritems(l); 4217 mid = (nritems + 1) / 2; 4218 4219 if (mid <= slot) { 4220 if (nritems == 1 || 4221 leaf_space_used(l, mid, nritems - mid) + data_size > 4222 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4223 if (slot >= nritems) { 4224 split = 0; 4225 } else { 4226 mid = slot; 4227 if (mid != nritems && 4228 leaf_space_used(l, mid, nritems - mid) + 4229 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4230 if (data_size && !tried_avoid_double) 4231 goto push_for_double; 4232 split = 2; 4233 } 4234 } 4235 } 4236 } else { 4237 if (leaf_space_used(l, 0, mid) + data_size > 4238 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4239 if (!extend && data_size && slot == 0) { 4240 split = 0; 4241 } else if ((extend || !data_size) && slot == 0) { 4242 mid = 1; 4243 } else { 4244 mid = slot; 4245 if (mid != nritems && 4246 leaf_space_used(l, mid, nritems - mid) + 4247 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4248 if (data_size && !tried_avoid_double) 4249 goto push_for_double; 4250 split = 2; 4251 } 4252 } 4253 } 4254 } 4255 4256 if (split == 0) 4257 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4258 else 4259 btrfs_item_key(l, &disk_key, mid); 4260 4261 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4262 &disk_key, 0, l->start, 0); 4263 if (IS_ERR(right)) 4264 return PTR_ERR(right); 4265 4266 root_add_used(root, fs_info->nodesize); 4267 4268 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header)); 4269 btrfs_set_header_bytenr(right, right->start); 4270 btrfs_set_header_generation(right, trans->transid); 4271 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4272 btrfs_set_header_owner(right, root->root_key.objectid); 4273 btrfs_set_header_level(right, 0); 4274 write_extent_buffer_fsid(right, fs_info->fsid); 4275 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid); 4276 4277 if (split == 0) { 4278 if (mid <= slot) { 4279 btrfs_set_header_nritems(right, 0); 4280 insert_ptr(trans, fs_info, path, &disk_key, 4281 right->start, path->slots[1] + 1, 1); 4282 btrfs_tree_unlock(path->nodes[0]); 4283 free_extent_buffer(path->nodes[0]); 4284 path->nodes[0] = right; 4285 path->slots[0] = 0; 4286 path->slots[1] += 1; 4287 } else { 4288 btrfs_set_header_nritems(right, 0); 4289 insert_ptr(trans, fs_info, path, &disk_key, 4290 right->start, path->slots[1], 1); 4291 btrfs_tree_unlock(path->nodes[0]); 4292 free_extent_buffer(path->nodes[0]); 4293 path->nodes[0] = right; 4294 path->slots[0] = 0; 4295 if (path->slots[1] == 0) 4296 fixup_low_keys(fs_info, path, &disk_key, 1); 4297 } 4298 /* 4299 * We create a new leaf 'right' for the required ins_len and 4300 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4301 * the content of ins_len to 'right'. 4302 */ 4303 return ret; 4304 } 4305 4306 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems); 4307 4308 if (split == 2) { 4309 BUG_ON(num_doubles != 0); 4310 num_doubles++; 4311 goto again; 4312 } 4313 4314 return 0; 4315 4316 push_for_double: 4317 push_for_double_split(trans, root, path, data_size); 4318 tried_avoid_double = 1; 4319 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4320 return 0; 4321 goto again; 4322 } 4323 4324 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4325 struct btrfs_root *root, 4326 struct btrfs_path *path, int ins_len) 4327 { 4328 struct btrfs_fs_info *fs_info = root->fs_info; 4329 struct btrfs_key key; 4330 struct extent_buffer *leaf; 4331 struct btrfs_file_extent_item *fi; 4332 u64 extent_len = 0; 4333 u32 item_size; 4334 int ret; 4335 4336 leaf = path->nodes[0]; 4337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4338 4339 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4340 key.type != BTRFS_EXTENT_CSUM_KEY); 4341 4342 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len) 4343 return 0; 4344 4345 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4346 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4347 fi = btrfs_item_ptr(leaf, path->slots[0], 4348 struct btrfs_file_extent_item); 4349 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4350 } 4351 btrfs_release_path(path); 4352 4353 path->keep_locks = 1; 4354 path->search_for_split = 1; 4355 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4356 path->search_for_split = 0; 4357 if (ret > 0) 4358 ret = -EAGAIN; 4359 if (ret < 0) 4360 goto err; 4361 4362 ret = -EAGAIN; 4363 leaf = path->nodes[0]; 4364 /* if our item isn't there, return now */ 4365 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4366 goto err; 4367 4368 /* the leaf has changed, it now has room. return now */ 4369 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len) 4370 goto err; 4371 4372 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4373 fi = btrfs_item_ptr(leaf, path->slots[0], 4374 struct btrfs_file_extent_item); 4375 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4376 goto err; 4377 } 4378 4379 btrfs_set_path_blocking(path); 4380 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4381 if (ret) 4382 goto err; 4383 4384 path->keep_locks = 0; 4385 btrfs_unlock_up_safe(path, 1); 4386 return 0; 4387 err: 4388 path->keep_locks = 0; 4389 return ret; 4390 } 4391 4392 static noinline int split_item(struct btrfs_fs_info *fs_info, 4393 struct btrfs_path *path, 4394 const struct btrfs_key *new_key, 4395 unsigned long split_offset) 4396 { 4397 struct extent_buffer *leaf; 4398 struct btrfs_item *item; 4399 struct btrfs_item *new_item; 4400 int slot; 4401 char *buf; 4402 u32 nritems; 4403 u32 item_size; 4404 u32 orig_offset; 4405 struct btrfs_disk_key disk_key; 4406 4407 leaf = path->nodes[0]; 4408 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item)); 4409 4410 btrfs_set_path_blocking(path); 4411 4412 item = btrfs_item_nr(path->slots[0]); 4413 orig_offset = btrfs_item_offset(leaf, item); 4414 item_size = btrfs_item_size(leaf, item); 4415 4416 buf = kmalloc(item_size, GFP_NOFS); 4417 if (!buf) 4418 return -ENOMEM; 4419 4420 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4421 path->slots[0]), item_size); 4422 4423 slot = path->slots[0] + 1; 4424 nritems = btrfs_header_nritems(leaf); 4425 if (slot != nritems) { 4426 /* shift the items */ 4427 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4428 btrfs_item_nr_offset(slot), 4429 (nritems - slot) * sizeof(struct btrfs_item)); 4430 } 4431 4432 btrfs_cpu_key_to_disk(&disk_key, new_key); 4433 btrfs_set_item_key(leaf, &disk_key, slot); 4434 4435 new_item = btrfs_item_nr(slot); 4436 4437 btrfs_set_item_offset(leaf, new_item, orig_offset); 4438 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4439 4440 btrfs_set_item_offset(leaf, item, 4441 orig_offset + item_size - split_offset); 4442 btrfs_set_item_size(leaf, item, split_offset); 4443 4444 btrfs_set_header_nritems(leaf, nritems + 1); 4445 4446 /* write the data for the start of the original item */ 4447 write_extent_buffer(leaf, buf, 4448 btrfs_item_ptr_offset(leaf, path->slots[0]), 4449 split_offset); 4450 4451 /* write the data for the new item */ 4452 write_extent_buffer(leaf, buf + split_offset, 4453 btrfs_item_ptr_offset(leaf, slot), 4454 item_size - split_offset); 4455 btrfs_mark_buffer_dirty(leaf); 4456 4457 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0); 4458 kfree(buf); 4459 return 0; 4460 } 4461 4462 /* 4463 * This function splits a single item into two items, 4464 * giving 'new_key' to the new item and splitting the 4465 * old one at split_offset (from the start of the item). 4466 * 4467 * The path may be released by this operation. After 4468 * the split, the path is pointing to the old item. The 4469 * new item is going to be in the same node as the old one. 4470 * 4471 * Note, the item being split must be smaller enough to live alone on 4472 * a tree block with room for one extra struct btrfs_item 4473 * 4474 * This allows us to split the item in place, keeping a lock on the 4475 * leaf the entire time. 4476 */ 4477 int btrfs_split_item(struct btrfs_trans_handle *trans, 4478 struct btrfs_root *root, 4479 struct btrfs_path *path, 4480 const struct btrfs_key *new_key, 4481 unsigned long split_offset) 4482 { 4483 int ret; 4484 ret = setup_leaf_for_split(trans, root, path, 4485 sizeof(struct btrfs_item)); 4486 if (ret) 4487 return ret; 4488 4489 ret = split_item(root->fs_info, path, new_key, split_offset); 4490 return ret; 4491 } 4492 4493 /* 4494 * This function duplicate a item, giving 'new_key' to the new item. 4495 * It guarantees both items live in the same tree leaf and the new item 4496 * is contiguous with the original item. 4497 * 4498 * This allows us to split file extent in place, keeping a lock on the 4499 * leaf the entire time. 4500 */ 4501 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4502 struct btrfs_root *root, 4503 struct btrfs_path *path, 4504 const struct btrfs_key *new_key) 4505 { 4506 struct extent_buffer *leaf; 4507 int ret; 4508 u32 item_size; 4509 4510 leaf = path->nodes[0]; 4511 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4512 ret = setup_leaf_for_split(trans, root, path, 4513 item_size + sizeof(struct btrfs_item)); 4514 if (ret) 4515 return ret; 4516 4517 path->slots[0]++; 4518 setup_items_for_insert(root, path, new_key, &item_size, 4519 item_size, item_size + 4520 sizeof(struct btrfs_item), 1); 4521 leaf = path->nodes[0]; 4522 memcpy_extent_buffer(leaf, 4523 btrfs_item_ptr_offset(leaf, path->slots[0]), 4524 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4525 item_size); 4526 return 0; 4527 } 4528 4529 /* 4530 * make the item pointed to by the path smaller. new_size indicates 4531 * how small to make it, and from_end tells us if we just chop bytes 4532 * off the end of the item or if we shift the item to chop bytes off 4533 * the front. 4534 */ 4535 void btrfs_truncate_item(struct btrfs_fs_info *fs_info, 4536 struct btrfs_path *path, u32 new_size, int from_end) 4537 { 4538 int slot; 4539 struct extent_buffer *leaf; 4540 struct btrfs_item *item; 4541 u32 nritems; 4542 unsigned int data_end; 4543 unsigned int old_data_start; 4544 unsigned int old_size; 4545 unsigned int size_diff; 4546 int i; 4547 struct btrfs_map_token token; 4548 4549 btrfs_init_map_token(&token); 4550 4551 leaf = path->nodes[0]; 4552 slot = path->slots[0]; 4553 4554 old_size = btrfs_item_size_nr(leaf, slot); 4555 if (old_size == new_size) 4556 return; 4557 4558 nritems = btrfs_header_nritems(leaf); 4559 data_end = leaf_data_end(fs_info, leaf); 4560 4561 old_data_start = btrfs_item_offset_nr(leaf, slot); 4562 4563 size_diff = old_size - new_size; 4564 4565 BUG_ON(slot < 0); 4566 BUG_ON(slot >= nritems); 4567 4568 /* 4569 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4570 */ 4571 /* first correct the data pointers */ 4572 for (i = slot; i < nritems; i++) { 4573 u32 ioff; 4574 item = btrfs_item_nr(i); 4575 4576 ioff = btrfs_token_item_offset(leaf, item, &token); 4577 btrfs_set_token_item_offset(leaf, item, 4578 ioff + size_diff, &token); 4579 } 4580 4581 /* shift the data */ 4582 if (from_end) { 4583 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4584 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4585 data_end, old_data_start + new_size - data_end); 4586 } else { 4587 struct btrfs_disk_key disk_key; 4588 u64 offset; 4589 4590 btrfs_item_key(leaf, &disk_key, slot); 4591 4592 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4593 unsigned long ptr; 4594 struct btrfs_file_extent_item *fi; 4595 4596 fi = btrfs_item_ptr(leaf, slot, 4597 struct btrfs_file_extent_item); 4598 fi = (struct btrfs_file_extent_item *)( 4599 (unsigned long)fi - size_diff); 4600 4601 if (btrfs_file_extent_type(leaf, fi) == 4602 BTRFS_FILE_EXTENT_INLINE) { 4603 ptr = btrfs_item_ptr_offset(leaf, slot); 4604 memmove_extent_buffer(leaf, ptr, 4605 (unsigned long)fi, 4606 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4607 } 4608 } 4609 4610 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4611 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4612 data_end, old_data_start - data_end); 4613 4614 offset = btrfs_disk_key_offset(&disk_key); 4615 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4616 btrfs_set_item_key(leaf, &disk_key, slot); 4617 if (slot == 0) 4618 fixup_low_keys(fs_info, path, &disk_key, 1); 4619 } 4620 4621 item = btrfs_item_nr(slot); 4622 btrfs_set_item_size(leaf, item, new_size); 4623 btrfs_mark_buffer_dirty(leaf); 4624 4625 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4626 btrfs_print_leaf(leaf); 4627 BUG(); 4628 } 4629 } 4630 4631 /* 4632 * make the item pointed to by the path bigger, data_size is the added size. 4633 */ 4634 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 4635 u32 data_size) 4636 { 4637 int slot; 4638 struct extent_buffer *leaf; 4639 struct btrfs_item *item; 4640 u32 nritems; 4641 unsigned int data_end; 4642 unsigned int old_data; 4643 unsigned int old_size; 4644 int i; 4645 struct btrfs_map_token token; 4646 4647 btrfs_init_map_token(&token); 4648 4649 leaf = path->nodes[0]; 4650 4651 nritems = btrfs_header_nritems(leaf); 4652 data_end = leaf_data_end(fs_info, leaf); 4653 4654 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) { 4655 btrfs_print_leaf(leaf); 4656 BUG(); 4657 } 4658 slot = path->slots[0]; 4659 old_data = btrfs_item_end_nr(leaf, slot); 4660 4661 BUG_ON(slot < 0); 4662 if (slot >= nritems) { 4663 btrfs_print_leaf(leaf); 4664 btrfs_crit(fs_info, "slot %d too large, nritems %d", 4665 slot, nritems); 4666 BUG_ON(1); 4667 } 4668 4669 /* 4670 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4671 */ 4672 /* first correct the data pointers */ 4673 for (i = slot; i < nritems; i++) { 4674 u32 ioff; 4675 item = btrfs_item_nr(i); 4676 4677 ioff = btrfs_token_item_offset(leaf, item, &token); 4678 btrfs_set_token_item_offset(leaf, item, 4679 ioff - data_size, &token); 4680 } 4681 4682 /* shift the data */ 4683 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4684 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4685 data_end, old_data - data_end); 4686 4687 data_end = old_data; 4688 old_size = btrfs_item_size_nr(leaf, slot); 4689 item = btrfs_item_nr(slot); 4690 btrfs_set_item_size(leaf, item, old_size + data_size); 4691 btrfs_mark_buffer_dirty(leaf); 4692 4693 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4694 btrfs_print_leaf(leaf); 4695 BUG(); 4696 } 4697 } 4698 4699 /* 4700 * this is a helper for btrfs_insert_empty_items, the main goal here is 4701 * to save stack depth by doing the bulk of the work in a function 4702 * that doesn't call btrfs_search_slot 4703 */ 4704 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4705 const struct btrfs_key *cpu_key, u32 *data_size, 4706 u32 total_data, u32 total_size, int nr) 4707 { 4708 struct btrfs_fs_info *fs_info = root->fs_info; 4709 struct btrfs_item *item; 4710 int i; 4711 u32 nritems; 4712 unsigned int data_end; 4713 struct btrfs_disk_key disk_key; 4714 struct extent_buffer *leaf; 4715 int slot; 4716 struct btrfs_map_token token; 4717 4718 if (path->slots[0] == 0) { 4719 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4720 fixup_low_keys(fs_info, path, &disk_key, 1); 4721 } 4722 btrfs_unlock_up_safe(path, 1); 4723 4724 btrfs_init_map_token(&token); 4725 4726 leaf = path->nodes[0]; 4727 slot = path->slots[0]; 4728 4729 nritems = btrfs_header_nritems(leaf); 4730 data_end = leaf_data_end(fs_info, leaf); 4731 4732 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) { 4733 btrfs_print_leaf(leaf); 4734 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4735 total_size, btrfs_leaf_free_space(fs_info, leaf)); 4736 BUG(); 4737 } 4738 4739 if (slot != nritems) { 4740 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4741 4742 if (old_data < data_end) { 4743 btrfs_print_leaf(leaf); 4744 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4745 slot, old_data, data_end); 4746 BUG_ON(1); 4747 } 4748 /* 4749 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4750 */ 4751 /* first correct the data pointers */ 4752 for (i = slot; i < nritems; i++) { 4753 u32 ioff; 4754 4755 item = btrfs_item_nr(i); 4756 ioff = btrfs_token_item_offset(leaf, item, &token); 4757 btrfs_set_token_item_offset(leaf, item, 4758 ioff - total_data, &token); 4759 } 4760 /* shift the items */ 4761 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4762 btrfs_item_nr_offset(slot), 4763 (nritems - slot) * sizeof(struct btrfs_item)); 4764 4765 /* shift the data */ 4766 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4767 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4768 data_end, old_data - data_end); 4769 data_end = old_data; 4770 } 4771 4772 /* setup the item for the new data */ 4773 for (i = 0; i < nr; i++) { 4774 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4775 btrfs_set_item_key(leaf, &disk_key, slot + i); 4776 item = btrfs_item_nr(slot + i); 4777 btrfs_set_token_item_offset(leaf, item, 4778 data_end - data_size[i], &token); 4779 data_end -= data_size[i]; 4780 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4781 } 4782 4783 btrfs_set_header_nritems(leaf, nritems + nr); 4784 btrfs_mark_buffer_dirty(leaf); 4785 4786 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4787 btrfs_print_leaf(leaf); 4788 BUG(); 4789 } 4790 } 4791 4792 /* 4793 * Given a key and some data, insert items into the tree. 4794 * This does all the path init required, making room in the tree if needed. 4795 */ 4796 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4797 struct btrfs_root *root, 4798 struct btrfs_path *path, 4799 const struct btrfs_key *cpu_key, u32 *data_size, 4800 int nr) 4801 { 4802 int ret = 0; 4803 int slot; 4804 int i; 4805 u32 total_size = 0; 4806 u32 total_data = 0; 4807 4808 for (i = 0; i < nr; i++) 4809 total_data += data_size[i]; 4810 4811 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4812 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4813 if (ret == 0) 4814 return -EEXIST; 4815 if (ret < 0) 4816 return ret; 4817 4818 slot = path->slots[0]; 4819 BUG_ON(slot < 0); 4820 4821 setup_items_for_insert(root, path, cpu_key, data_size, 4822 total_data, total_size, nr); 4823 return 0; 4824 } 4825 4826 /* 4827 * Given a key and some data, insert an item into the tree. 4828 * This does all the path init required, making room in the tree if needed. 4829 */ 4830 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4831 const struct btrfs_key *cpu_key, void *data, 4832 u32 data_size) 4833 { 4834 int ret = 0; 4835 struct btrfs_path *path; 4836 struct extent_buffer *leaf; 4837 unsigned long ptr; 4838 4839 path = btrfs_alloc_path(); 4840 if (!path) 4841 return -ENOMEM; 4842 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4843 if (!ret) { 4844 leaf = path->nodes[0]; 4845 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4846 write_extent_buffer(leaf, data, ptr, data_size); 4847 btrfs_mark_buffer_dirty(leaf); 4848 } 4849 btrfs_free_path(path); 4850 return ret; 4851 } 4852 4853 /* 4854 * delete the pointer from a given node. 4855 * 4856 * the tree should have been previously balanced so the deletion does not 4857 * empty a node. 4858 */ 4859 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4860 int level, int slot) 4861 { 4862 struct btrfs_fs_info *fs_info = root->fs_info; 4863 struct extent_buffer *parent = path->nodes[level]; 4864 u32 nritems; 4865 int ret; 4866 4867 nritems = btrfs_header_nritems(parent); 4868 if (slot != nritems - 1) { 4869 if (level) { 4870 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4871 nritems - slot - 1); 4872 BUG_ON(ret < 0); 4873 } 4874 memmove_extent_buffer(parent, 4875 btrfs_node_key_ptr_offset(slot), 4876 btrfs_node_key_ptr_offset(slot + 1), 4877 sizeof(struct btrfs_key_ptr) * 4878 (nritems - slot - 1)); 4879 } else if (level) { 4880 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4881 GFP_NOFS); 4882 BUG_ON(ret < 0); 4883 } 4884 4885 nritems--; 4886 btrfs_set_header_nritems(parent, nritems); 4887 if (nritems == 0 && parent == root->node) { 4888 BUG_ON(btrfs_header_level(root->node) != 1); 4889 /* just turn the root into a leaf and break */ 4890 btrfs_set_header_level(root->node, 0); 4891 } else if (slot == 0) { 4892 struct btrfs_disk_key disk_key; 4893 4894 btrfs_node_key(parent, &disk_key, 0); 4895 fixup_low_keys(fs_info, path, &disk_key, level + 1); 4896 } 4897 btrfs_mark_buffer_dirty(parent); 4898 } 4899 4900 /* 4901 * a helper function to delete the leaf pointed to by path->slots[1] and 4902 * path->nodes[1]. 4903 * 4904 * This deletes the pointer in path->nodes[1] and frees the leaf 4905 * block extent. zero is returned if it all worked out, < 0 otherwise. 4906 * 4907 * The path must have already been setup for deleting the leaf, including 4908 * all the proper balancing. path->nodes[1] must be locked. 4909 */ 4910 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4911 struct btrfs_root *root, 4912 struct btrfs_path *path, 4913 struct extent_buffer *leaf) 4914 { 4915 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4916 del_ptr(root, path, 1, path->slots[1]); 4917 4918 /* 4919 * btrfs_free_extent is expensive, we want to make sure we 4920 * aren't holding any locks when we call it 4921 */ 4922 btrfs_unlock_up_safe(path, 0); 4923 4924 root_sub_used(root, leaf->len); 4925 4926 extent_buffer_get(leaf); 4927 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4928 free_extent_buffer_stale(leaf); 4929 } 4930 /* 4931 * delete the item at the leaf level in path. If that empties 4932 * the leaf, remove it from the tree 4933 */ 4934 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4935 struct btrfs_path *path, int slot, int nr) 4936 { 4937 struct btrfs_fs_info *fs_info = root->fs_info; 4938 struct extent_buffer *leaf; 4939 struct btrfs_item *item; 4940 u32 last_off; 4941 u32 dsize = 0; 4942 int ret = 0; 4943 int wret; 4944 int i; 4945 u32 nritems; 4946 struct btrfs_map_token token; 4947 4948 btrfs_init_map_token(&token); 4949 4950 leaf = path->nodes[0]; 4951 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4952 4953 for (i = 0; i < nr; i++) 4954 dsize += btrfs_item_size_nr(leaf, slot + i); 4955 4956 nritems = btrfs_header_nritems(leaf); 4957 4958 if (slot + nr != nritems) { 4959 int data_end = leaf_data_end(fs_info, leaf); 4960 4961 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4962 data_end + dsize, 4963 BTRFS_LEAF_DATA_OFFSET + data_end, 4964 last_off - data_end); 4965 4966 for (i = slot + nr; i < nritems; i++) { 4967 u32 ioff; 4968 4969 item = btrfs_item_nr(i); 4970 ioff = btrfs_token_item_offset(leaf, item, &token); 4971 btrfs_set_token_item_offset(leaf, item, 4972 ioff + dsize, &token); 4973 } 4974 4975 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4976 btrfs_item_nr_offset(slot + nr), 4977 sizeof(struct btrfs_item) * 4978 (nritems - slot - nr)); 4979 } 4980 btrfs_set_header_nritems(leaf, nritems - nr); 4981 nritems -= nr; 4982 4983 /* delete the leaf if we've emptied it */ 4984 if (nritems == 0) { 4985 if (leaf == root->node) { 4986 btrfs_set_header_level(leaf, 0); 4987 } else { 4988 btrfs_set_path_blocking(path); 4989 clean_tree_block(fs_info, leaf); 4990 btrfs_del_leaf(trans, root, path, leaf); 4991 } 4992 } else { 4993 int used = leaf_space_used(leaf, 0, nritems); 4994 if (slot == 0) { 4995 struct btrfs_disk_key disk_key; 4996 4997 btrfs_item_key(leaf, &disk_key, 0); 4998 fixup_low_keys(fs_info, path, &disk_key, 1); 4999 } 5000 5001 /* delete the leaf if it is mostly empty */ 5002 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 5003 /* push_leaf_left fixes the path. 5004 * make sure the path still points to our leaf 5005 * for possible call to del_ptr below 5006 */ 5007 slot = path->slots[1]; 5008 extent_buffer_get(leaf); 5009 5010 btrfs_set_path_blocking(path); 5011 wret = push_leaf_left(trans, root, path, 1, 1, 5012 1, (u32)-1); 5013 if (wret < 0 && wret != -ENOSPC) 5014 ret = wret; 5015 5016 if (path->nodes[0] == leaf && 5017 btrfs_header_nritems(leaf)) { 5018 wret = push_leaf_right(trans, root, path, 1, 5019 1, 1, 0); 5020 if (wret < 0 && wret != -ENOSPC) 5021 ret = wret; 5022 } 5023 5024 if (btrfs_header_nritems(leaf) == 0) { 5025 path->slots[1] = slot; 5026 btrfs_del_leaf(trans, root, path, leaf); 5027 free_extent_buffer(leaf); 5028 ret = 0; 5029 } else { 5030 /* if we're still in the path, make sure 5031 * we're dirty. Otherwise, one of the 5032 * push_leaf functions must have already 5033 * dirtied this buffer 5034 */ 5035 if (path->nodes[0] == leaf) 5036 btrfs_mark_buffer_dirty(leaf); 5037 free_extent_buffer(leaf); 5038 } 5039 } else { 5040 btrfs_mark_buffer_dirty(leaf); 5041 } 5042 } 5043 return ret; 5044 } 5045 5046 /* 5047 * search the tree again to find a leaf with lesser keys 5048 * returns 0 if it found something or 1 if there are no lesser leaves. 5049 * returns < 0 on io errors. 5050 * 5051 * This may release the path, and so you may lose any locks held at the 5052 * time you call it. 5053 */ 5054 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5055 { 5056 struct btrfs_key key; 5057 struct btrfs_disk_key found_key; 5058 int ret; 5059 5060 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5061 5062 if (key.offset > 0) { 5063 key.offset--; 5064 } else if (key.type > 0) { 5065 key.type--; 5066 key.offset = (u64)-1; 5067 } else if (key.objectid > 0) { 5068 key.objectid--; 5069 key.type = (u8)-1; 5070 key.offset = (u64)-1; 5071 } else { 5072 return 1; 5073 } 5074 5075 btrfs_release_path(path); 5076 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5077 if (ret < 0) 5078 return ret; 5079 btrfs_item_key(path->nodes[0], &found_key, 0); 5080 ret = comp_keys(&found_key, &key); 5081 /* 5082 * We might have had an item with the previous key in the tree right 5083 * before we released our path. And after we released our path, that 5084 * item might have been pushed to the first slot (0) of the leaf we 5085 * were holding due to a tree balance. Alternatively, an item with the 5086 * previous key can exist as the only element of a leaf (big fat item). 5087 * Therefore account for these 2 cases, so that our callers (like 5088 * btrfs_previous_item) don't miss an existing item with a key matching 5089 * the previous key we computed above. 5090 */ 5091 if (ret <= 0) 5092 return 0; 5093 return 1; 5094 } 5095 5096 /* 5097 * A helper function to walk down the tree starting at min_key, and looking 5098 * for nodes or leaves that are have a minimum transaction id. 5099 * This is used by the btree defrag code, and tree logging 5100 * 5101 * This does not cow, but it does stuff the starting key it finds back 5102 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5103 * key and get a writable path. 5104 * 5105 * This honors path->lowest_level to prevent descent past a given level 5106 * of the tree. 5107 * 5108 * min_trans indicates the oldest transaction that you are interested 5109 * in walking through. Any nodes or leaves older than min_trans are 5110 * skipped over (without reading them). 5111 * 5112 * returns zero if something useful was found, < 0 on error and 1 if there 5113 * was nothing in the tree that matched the search criteria. 5114 */ 5115 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5116 struct btrfs_path *path, 5117 u64 min_trans) 5118 { 5119 struct btrfs_fs_info *fs_info = root->fs_info; 5120 struct extent_buffer *cur; 5121 struct btrfs_key found_key; 5122 int slot; 5123 int sret; 5124 u32 nritems; 5125 int level; 5126 int ret = 1; 5127 int keep_locks = path->keep_locks; 5128 5129 path->keep_locks = 1; 5130 again: 5131 cur = btrfs_read_lock_root_node(root); 5132 level = btrfs_header_level(cur); 5133 WARN_ON(path->nodes[level]); 5134 path->nodes[level] = cur; 5135 path->locks[level] = BTRFS_READ_LOCK; 5136 5137 if (btrfs_header_generation(cur) < min_trans) { 5138 ret = 1; 5139 goto out; 5140 } 5141 while (1) { 5142 nritems = btrfs_header_nritems(cur); 5143 level = btrfs_header_level(cur); 5144 sret = btrfs_bin_search(cur, min_key, level, &slot); 5145 5146 /* at the lowest level, we're done, setup the path and exit */ 5147 if (level == path->lowest_level) { 5148 if (slot >= nritems) 5149 goto find_next_key; 5150 ret = 0; 5151 path->slots[level] = slot; 5152 btrfs_item_key_to_cpu(cur, &found_key, slot); 5153 goto out; 5154 } 5155 if (sret && slot > 0) 5156 slot--; 5157 /* 5158 * check this node pointer against the min_trans parameters. 5159 * If it is too old, old, skip to the next one. 5160 */ 5161 while (slot < nritems) { 5162 u64 gen; 5163 5164 gen = btrfs_node_ptr_generation(cur, slot); 5165 if (gen < min_trans) { 5166 slot++; 5167 continue; 5168 } 5169 break; 5170 } 5171 find_next_key: 5172 /* 5173 * we didn't find a candidate key in this node, walk forward 5174 * and find another one 5175 */ 5176 if (slot >= nritems) { 5177 path->slots[level] = slot; 5178 btrfs_set_path_blocking(path); 5179 sret = btrfs_find_next_key(root, path, min_key, level, 5180 min_trans); 5181 if (sret == 0) { 5182 btrfs_release_path(path); 5183 goto again; 5184 } else { 5185 goto out; 5186 } 5187 } 5188 /* save our key for returning back */ 5189 btrfs_node_key_to_cpu(cur, &found_key, slot); 5190 path->slots[level] = slot; 5191 if (level == path->lowest_level) { 5192 ret = 0; 5193 goto out; 5194 } 5195 btrfs_set_path_blocking(path); 5196 cur = read_node_slot(fs_info, cur, slot); 5197 if (IS_ERR(cur)) { 5198 ret = PTR_ERR(cur); 5199 goto out; 5200 } 5201 5202 btrfs_tree_read_lock(cur); 5203 5204 path->locks[level - 1] = BTRFS_READ_LOCK; 5205 path->nodes[level - 1] = cur; 5206 unlock_up(path, level, 1, 0, NULL); 5207 btrfs_clear_path_blocking(path, NULL, 0); 5208 } 5209 out: 5210 path->keep_locks = keep_locks; 5211 if (ret == 0) { 5212 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5213 btrfs_set_path_blocking(path); 5214 memcpy(min_key, &found_key, sizeof(found_key)); 5215 } 5216 return ret; 5217 } 5218 5219 static int tree_move_down(struct btrfs_fs_info *fs_info, 5220 struct btrfs_path *path, 5221 int *level) 5222 { 5223 struct extent_buffer *eb; 5224 5225 BUG_ON(*level == 0); 5226 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]); 5227 if (IS_ERR(eb)) 5228 return PTR_ERR(eb); 5229 5230 path->nodes[*level - 1] = eb; 5231 path->slots[*level - 1] = 0; 5232 (*level)--; 5233 return 0; 5234 } 5235 5236 static int tree_move_next_or_upnext(struct btrfs_path *path, 5237 int *level, int root_level) 5238 { 5239 int ret = 0; 5240 int nritems; 5241 nritems = btrfs_header_nritems(path->nodes[*level]); 5242 5243 path->slots[*level]++; 5244 5245 while (path->slots[*level] >= nritems) { 5246 if (*level == root_level) 5247 return -1; 5248 5249 /* move upnext */ 5250 path->slots[*level] = 0; 5251 free_extent_buffer(path->nodes[*level]); 5252 path->nodes[*level] = NULL; 5253 (*level)++; 5254 path->slots[*level]++; 5255 5256 nritems = btrfs_header_nritems(path->nodes[*level]); 5257 ret = 1; 5258 } 5259 return ret; 5260 } 5261 5262 /* 5263 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5264 * or down. 5265 */ 5266 static int tree_advance(struct btrfs_fs_info *fs_info, 5267 struct btrfs_path *path, 5268 int *level, int root_level, 5269 int allow_down, 5270 struct btrfs_key *key) 5271 { 5272 int ret; 5273 5274 if (*level == 0 || !allow_down) { 5275 ret = tree_move_next_or_upnext(path, level, root_level); 5276 } else { 5277 ret = tree_move_down(fs_info, path, level); 5278 } 5279 if (ret >= 0) { 5280 if (*level == 0) 5281 btrfs_item_key_to_cpu(path->nodes[*level], key, 5282 path->slots[*level]); 5283 else 5284 btrfs_node_key_to_cpu(path->nodes[*level], key, 5285 path->slots[*level]); 5286 } 5287 return ret; 5288 } 5289 5290 static int tree_compare_item(struct btrfs_path *left_path, 5291 struct btrfs_path *right_path, 5292 char *tmp_buf) 5293 { 5294 int cmp; 5295 int len1, len2; 5296 unsigned long off1, off2; 5297 5298 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5299 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5300 if (len1 != len2) 5301 return 1; 5302 5303 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5304 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5305 right_path->slots[0]); 5306 5307 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5308 5309 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5310 if (cmp) 5311 return 1; 5312 return 0; 5313 } 5314 5315 #define ADVANCE 1 5316 #define ADVANCE_ONLY_NEXT -1 5317 5318 /* 5319 * This function compares two trees and calls the provided callback for 5320 * every changed/new/deleted item it finds. 5321 * If shared tree blocks are encountered, whole subtrees are skipped, making 5322 * the compare pretty fast on snapshotted subvolumes. 5323 * 5324 * This currently works on commit roots only. As commit roots are read only, 5325 * we don't do any locking. The commit roots are protected with transactions. 5326 * Transactions are ended and rejoined when a commit is tried in between. 5327 * 5328 * This function checks for modifications done to the trees while comparing. 5329 * If it detects a change, it aborts immediately. 5330 */ 5331 int btrfs_compare_trees(struct btrfs_root *left_root, 5332 struct btrfs_root *right_root, 5333 btrfs_changed_cb_t changed_cb, void *ctx) 5334 { 5335 struct btrfs_fs_info *fs_info = left_root->fs_info; 5336 int ret; 5337 int cmp; 5338 struct btrfs_path *left_path = NULL; 5339 struct btrfs_path *right_path = NULL; 5340 struct btrfs_key left_key; 5341 struct btrfs_key right_key; 5342 char *tmp_buf = NULL; 5343 int left_root_level; 5344 int right_root_level; 5345 int left_level; 5346 int right_level; 5347 int left_end_reached; 5348 int right_end_reached; 5349 int advance_left; 5350 int advance_right; 5351 u64 left_blockptr; 5352 u64 right_blockptr; 5353 u64 left_gen; 5354 u64 right_gen; 5355 5356 left_path = btrfs_alloc_path(); 5357 if (!left_path) { 5358 ret = -ENOMEM; 5359 goto out; 5360 } 5361 right_path = btrfs_alloc_path(); 5362 if (!right_path) { 5363 ret = -ENOMEM; 5364 goto out; 5365 } 5366 5367 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 5368 if (!tmp_buf) { 5369 ret = -ENOMEM; 5370 goto out; 5371 } 5372 5373 left_path->search_commit_root = 1; 5374 left_path->skip_locking = 1; 5375 right_path->search_commit_root = 1; 5376 right_path->skip_locking = 1; 5377 5378 /* 5379 * Strategy: Go to the first items of both trees. Then do 5380 * 5381 * If both trees are at level 0 5382 * Compare keys of current items 5383 * If left < right treat left item as new, advance left tree 5384 * and repeat 5385 * If left > right treat right item as deleted, advance right tree 5386 * and repeat 5387 * If left == right do deep compare of items, treat as changed if 5388 * needed, advance both trees and repeat 5389 * If both trees are at the same level but not at level 0 5390 * Compare keys of current nodes/leafs 5391 * If left < right advance left tree and repeat 5392 * If left > right advance right tree and repeat 5393 * If left == right compare blockptrs of the next nodes/leafs 5394 * If they match advance both trees but stay at the same level 5395 * and repeat 5396 * If they don't match advance both trees while allowing to go 5397 * deeper and repeat 5398 * If tree levels are different 5399 * Advance the tree that needs it and repeat 5400 * 5401 * Advancing a tree means: 5402 * If we are at level 0, try to go to the next slot. If that's not 5403 * possible, go one level up and repeat. Stop when we found a level 5404 * where we could go to the next slot. We may at this point be on a 5405 * node or a leaf. 5406 * 5407 * If we are not at level 0 and not on shared tree blocks, go one 5408 * level deeper. 5409 * 5410 * If we are not at level 0 and on shared tree blocks, go one slot to 5411 * the right if possible or go up and right. 5412 */ 5413 5414 down_read(&fs_info->commit_root_sem); 5415 left_level = btrfs_header_level(left_root->commit_root); 5416 left_root_level = left_level; 5417 left_path->nodes[left_level] = left_root->commit_root; 5418 extent_buffer_get(left_path->nodes[left_level]); 5419 5420 right_level = btrfs_header_level(right_root->commit_root); 5421 right_root_level = right_level; 5422 right_path->nodes[right_level] = right_root->commit_root; 5423 extent_buffer_get(right_path->nodes[right_level]); 5424 up_read(&fs_info->commit_root_sem); 5425 5426 if (left_level == 0) 5427 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5428 &left_key, left_path->slots[left_level]); 5429 else 5430 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5431 &left_key, left_path->slots[left_level]); 5432 if (right_level == 0) 5433 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5434 &right_key, right_path->slots[right_level]); 5435 else 5436 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5437 &right_key, right_path->slots[right_level]); 5438 5439 left_end_reached = right_end_reached = 0; 5440 advance_left = advance_right = 0; 5441 5442 while (1) { 5443 if (advance_left && !left_end_reached) { 5444 ret = tree_advance(fs_info, left_path, &left_level, 5445 left_root_level, 5446 advance_left != ADVANCE_ONLY_NEXT, 5447 &left_key); 5448 if (ret == -1) 5449 left_end_reached = ADVANCE; 5450 else if (ret < 0) 5451 goto out; 5452 advance_left = 0; 5453 } 5454 if (advance_right && !right_end_reached) { 5455 ret = tree_advance(fs_info, right_path, &right_level, 5456 right_root_level, 5457 advance_right != ADVANCE_ONLY_NEXT, 5458 &right_key); 5459 if (ret == -1) 5460 right_end_reached = ADVANCE; 5461 else if (ret < 0) 5462 goto out; 5463 advance_right = 0; 5464 } 5465 5466 if (left_end_reached && right_end_reached) { 5467 ret = 0; 5468 goto out; 5469 } else if (left_end_reached) { 5470 if (right_level == 0) { 5471 ret = changed_cb(left_path, right_path, 5472 &right_key, 5473 BTRFS_COMPARE_TREE_DELETED, 5474 ctx); 5475 if (ret < 0) 5476 goto out; 5477 } 5478 advance_right = ADVANCE; 5479 continue; 5480 } else if (right_end_reached) { 5481 if (left_level == 0) { 5482 ret = changed_cb(left_path, right_path, 5483 &left_key, 5484 BTRFS_COMPARE_TREE_NEW, 5485 ctx); 5486 if (ret < 0) 5487 goto out; 5488 } 5489 advance_left = ADVANCE; 5490 continue; 5491 } 5492 5493 if (left_level == 0 && right_level == 0) { 5494 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5495 if (cmp < 0) { 5496 ret = changed_cb(left_path, right_path, 5497 &left_key, 5498 BTRFS_COMPARE_TREE_NEW, 5499 ctx); 5500 if (ret < 0) 5501 goto out; 5502 advance_left = ADVANCE; 5503 } else if (cmp > 0) { 5504 ret = changed_cb(left_path, right_path, 5505 &right_key, 5506 BTRFS_COMPARE_TREE_DELETED, 5507 ctx); 5508 if (ret < 0) 5509 goto out; 5510 advance_right = ADVANCE; 5511 } else { 5512 enum btrfs_compare_tree_result result; 5513 5514 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5515 ret = tree_compare_item(left_path, right_path, 5516 tmp_buf); 5517 if (ret) 5518 result = BTRFS_COMPARE_TREE_CHANGED; 5519 else 5520 result = BTRFS_COMPARE_TREE_SAME; 5521 ret = changed_cb(left_path, right_path, 5522 &left_key, result, ctx); 5523 if (ret < 0) 5524 goto out; 5525 advance_left = ADVANCE; 5526 advance_right = ADVANCE; 5527 } 5528 } else if (left_level == right_level) { 5529 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5530 if (cmp < 0) { 5531 advance_left = ADVANCE; 5532 } else if (cmp > 0) { 5533 advance_right = ADVANCE; 5534 } else { 5535 left_blockptr = btrfs_node_blockptr( 5536 left_path->nodes[left_level], 5537 left_path->slots[left_level]); 5538 right_blockptr = btrfs_node_blockptr( 5539 right_path->nodes[right_level], 5540 right_path->slots[right_level]); 5541 left_gen = btrfs_node_ptr_generation( 5542 left_path->nodes[left_level], 5543 left_path->slots[left_level]); 5544 right_gen = btrfs_node_ptr_generation( 5545 right_path->nodes[right_level], 5546 right_path->slots[right_level]); 5547 if (left_blockptr == right_blockptr && 5548 left_gen == right_gen) { 5549 /* 5550 * As we're on a shared block, don't 5551 * allow to go deeper. 5552 */ 5553 advance_left = ADVANCE_ONLY_NEXT; 5554 advance_right = ADVANCE_ONLY_NEXT; 5555 } else { 5556 advance_left = ADVANCE; 5557 advance_right = ADVANCE; 5558 } 5559 } 5560 } else if (left_level < right_level) { 5561 advance_right = ADVANCE; 5562 } else { 5563 advance_left = ADVANCE; 5564 } 5565 } 5566 5567 out: 5568 btrfs_free_path(left_path); 5569 btrfs_free_path(right_path); 5570 kvfree(tmp_buf); 5571 return ret; 5572 } 5573 5574 /* 5575 * this is similar to btrfs_next_leaf, but does not try to preserve 5576 * and fixup the path. It looks for and returns the next key in the 5577 * tree based on the current path and the min_trans parameters. 5578 * 5579 * 0 is returned if another key is found, < 0 if there are any errors 5580 * and 1 is returned if there are no higher keys in the tree 5581 * 5582 * path->keep_locks should be set to 1 on the search made before 5583 * calling this function. 5584 */ 5585 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5586 struct btrfs_key *key, int level, u64 min_trans) 5587 { 5588 int slot; 5589 struct extent_buffer *c; 5590 5591 WARN_ON(!path->keep_locks); 5592 while (level < BTRFS_MAX_LEVEL) { 5593 if (!path->nodes[level]) 5594 return 1; 5595 5596 slot = path->slots[level] + 1; 5597 c = path->nodes[level]; 5598 next: 5599 if (slot >= btrfs_header_nritems(c)) { 5600 int ret; 5601 int orig_lowest; 5602 struct btrfs_key cur_key; 5603 if (level + 1 >= BTRFS_MAX_LEVEL || 5604 !path->nodes[level + 1]) 5605 return 1; 5606 5607 if (path->locks[level + 1]) { 5608 level++; 5609 continue; 5610 } 5611 5612 slot = btrfs_header_nritems(c) - 1; 5613 if (level == 0) 5614 btrfs_item_key_to_cpu(c, &cur_key, slot); 5615 else 5616 btrfs_node_key_to_cpu(c, &cur_key, slot); 5617 5618 orig_lowest = path->lowest_level; 5619 btrfs_release_path(path); 5620 path->lowest_level = level; 5621 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5622 0, 0); 5623 path->lowest_level = orig_lowest; 5624 if (ret < 0) 5625 return ret; 5626 5627 c = path->nodes[level]; 5628 slot = path->slots[level]; 5629 if (ret == 0) 5630 slot++; 5631 goto next; 5632 } 5633 5634 if (level == 0) 5635 btrfs_item_key_to_cpu(c, key, slot); 5636 else { 5637 u64 gen = btrfs_node_ptr_generation(c, slot); 5638 5639 if (gen < min_trans) { 5640 slot++; 5641 goto next; 5642 } 5643 btrfs_node_key_to_cpu(c, key, slot); 5644 } 5645 return 0; 5646 } 5647 return 1; 5648 } 5649 5650 /* 5651 * search the tree again to find a leaf with greater keys 5652 * returns 0 if it found something or 1 if there are no greater leaves. 5653 * returns < 0 on io errors. 5654 */ 5655 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5656 { 5657 return btrfs_next_old_leaf(root, path, 0); 5658 } 5659 5660 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5661 u64 time_seq) 5662 { 5663 int slot; 5664 int level; 5665 struct extent_buffer *c; 5666 struct extent_buffer *next; 5667 struct btrfs_key key; 5668 u32 nritems; 5669 int ret; 5670 int old_spinning = path->leave_spinning; 5671 int next_rw_lock = 0; 5672 5673 nritems = btrfs_header_nritems(path->nodes[0]); 5674 if (nritems == 0) 5675 return 1; 5676 5677 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5678 again: 5679 level = 1; 5680 next = NULL; 5681 next_rw_lock = 0; 5682 btrfs_release_path(path); 5683 5684 path->keep_locks = 1; 5685 path->leave_spinning = 1; 5686 5687 if (time_seq) 5688 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5689 else 5690 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5691 path->keep_locks = 0; 5692 5693 if (ret < 0) 5694 return ret; 5695 5696 nritems = btrfs_header_nritems(path->nodes[0]); 5697 /* 5698 * by releasing the path above we dropped all our locks. A balance 5699 * could have added more items next to the key that used to be 5700 * at the very end of the block. So, check again here and 5701 * advance the path if there are now more items available. 5702 */ 5703 if (nritems > 0 && path->slots[0] < nritems - 1) { 5704 if (ret == 0) 5705 path->slots[0]++; 5706 ret = 0; 5707 goto done; 5708 } 5709 /* 5710 * So the above check misses one case: 5711 * - after releasing the path above, someone has removed the item that 5712 * used to be at the very end of the block, and balance between leafs 5713 * gets another one with bigger key.offset to replace it. 5714 * 5715 * This one should be returned as well, or we can get leaf corruption 5716 * later(esp. in __btrfs_drop_extents()). 5717 * 5718 * And a bit more explanation about this check, 5719 * with ret > 0, the key isn't found, the path points to the slot 5720 * where it should be inserted, so the path->slots[0] item must be the 5721 * bigger one. 5722 */ 5723 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5724 ret = 0; 5725 goto done; 5726 } 5727 5728 while (level < BTRFS_MAX_LEVEL) { 5729 if (!path->nodes[level]) { 5730 ret = 1; 5731 goto done; 5732 } 5733 5734 slot = path->slots[level] + 1; 5735 c = path->nodes[level]; 5736 if (slot >= btrfs_header_nritems(c)) { 5737 level++; 5738 if (level == BTRFS_MAX_LEVEL) { 5739 ret = 1; 5740 goto done; 5741 } 5742 continue; 5743 } 5744 5745 if (next) { 5746 btrfs_tree_unlock_rw(next, next_rw_lock); 5747 free_extent_buffer(next); 5748 } 5749 5750 next = c; 5751 next_rw_lock = path->locks[level]; 5752 ret = read_block_for_search(root, path, &next, level, 5753 slot, &key); 5754 if (ret == -EAGAIN) 5755 goto again; 5756 5757 if (ret < 0) { 5758 btrfs_release_path(path); 5759 goto done; 5760 } 5761 5762 if (!path->skip_locking) { 5763 ret = btrfs_try_tree_read_lock(next); 5764 if (!ret && time_seq) { 5765 /* 5766 * If we don't get the lock, we may be racing 5767 * with push_leaf_left, holding that lock while 5768 * itself waiting for the leaf we've currently 5769 * locked. To solve this situation, we give up 5770 * on our lock and cycle. 5771 */ 5772 free_extent_buffer(next); 5773 btrfs_release_path(path); 5774 cond_resched(); 5775 goto again; 5776 } 5777 if (!ret) { 5778 btrfs_set_path_blocking(path); 5779 btrfs_tree_read_lock(next); 5780 btrfs_clear_path_blocking(path, next, 5781 BTRFS_READ_LOCK); 5782 } 5783 next_rw_lock = BTRFS_READ_LOCK; 5784 } 5785 break; 5786 } 5787 path->slots[level] = slot; 5788 while (1) { 5789 level--; 5790 c = path->nodes[level]; 5791 if (path->locks[level]) 5792 btrfs_tree_unlock_rw(c, path->locks[level]); 5793 5794 free_extent_buffer(c); 5795 path->nodes[level] = next; 5796 path->slots[level] = 0; 5797 if (!path->skip_locking) 5798 path->locks[level] = next_rw_lock; 5799 if (!level) 5800 break; 5801 5802 ret = read_block_for_search(root, path, &next, level, 5803 0, &key); 5804 if (ret == -EAGAIN) 5805 goto again; 5806 5807 if (ret < 0) { 5808 btrfs_release_path(path); 5809 goto done; 5810 } 5811 5812 if (!path->skip_locking) { 5813 ret = btrfs_try_tree_read_lock(next); 5814 if (!ret) { 5815 btrfs_set_path_blocking(path); 5816 btrfs_tree_read_lock(next); 5817 btrfs_clear_path_blocking(path, next, 5818 BTRFS_READ_LOCK); 5819 } 5820 next_rw_lock = BTRFS_READ_LOCK; 5821 } 5822 } 5823 ret = 0; 5824 done: 5825 unlock_up(path, 0, 1, 0, NULL); 5826 path->leave_spinning = old_spinning; 5827 if (!old_spinning) 5828 btrfs_set_path_blocking(path); 5829 5830 return ret; 5831 } 5832 5833 /* 5834 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5835 * searching until it gets past min_objectid or finds an item of 'type' 5836 * 5837 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5838 */ 5839 int btrfs_previous_item(struct btrfs_root *root, 5840 struct btrfs_path *path, u64 min_objectid, 5841 int type) 5842 { 5843 struct btrfs_key found_key; 5844 struct extent_buffer *leaf; 5845 u32 nritems; 5846 int ret; 5847 5848 while (1) { 5849 if (path->slots[0] == 0) { 5850 btrfs_set_path_blocking(path); 5851 ret = btrfs_prev_leaf(root, path); 5852 if (ret != 0) 5853 return ret; 5854 } else { 5855 path->slots[0]--; 5856 } 5857 leaf = path->nodes[0]; 5858 nritems = btrfs_header_nritems(leaf); 5859 if (nritems == 0) 5860 return 1; 5861 if (path->slots[0] == nritems) 5862 path->slots[0]--; 5863 5864 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5865 if (found_key.objectid < min_objectid) 5866 break; 5867 if (found_key.type == type) 5868 return 0; 5869 if (found_key.objectid == min_objectid && 5870 found_key.type < type) 5871 break; 5872 } 5873 return 1; 5874 } 5875 5876 /* 5877 * search in extent tree to find a previous Metadata/Data extent item with 5878 * min objecitd. 5879 * 5880 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5881 */ 5882 int btrfs_previous_extent_item(struct btrfs_root *root, 5883 struct btrfs_path *path, u64 min_objectid) 5884 { 5885 struct btrfs_key found_key; 5886 struct extent_buffer *leaf; 5887 u32 nritems; 5888 int ret; 5889 5890 while (1) { 5891 if (path->slots[0] == 0) { 5892 btrfs_set_path_blocking(path); 5893 ret = btrfs_prev_leaf(root, path); 5894 if (ret != 0) 5895 return ret; 5896 } else { 5897 path->slots[0]--; 5898 } 5899 leaf = path->nodes[0]; 5900 nritems = btrfs_header_nritems(leaf); 5901 if (nritems == 0) 5902 return 1; 5903 if (path->slots[0] == nritems) 5904 path->slots[0]--; 5905 5906 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5907 if (found_key.objectid < min_objectid) 5908 break; 5909 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5910 found_key.type == BTRFS_METADATA_ITEM_KEY) 5911 return 0; 5912 if (found_key.objectid == min_objectid && 5913 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5914 break; 5915 } 5916 return 1; 5917 } 5918