xref: /linux/fs/btrfs/ctree.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26 
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28 		      *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_key *ins_key,
31 		      struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33 			  struct btrfs_root *root, struct extent_buffer *dst,
34 			  struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36 			      struct btrfs_root *root,
37 			      struct extent_buffer *dst_buf,
38 			      struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40 		   struct btrfs_path *path, int level, int slot);
41 static int setup_items_for_insert(struct btrfs_trans_handle *trans,
42 			struct btrfs_root *root, struct btrfs_path *path,
43 			struct btrfs_key *cpu_key, u32 *data_size,
44 			u32 total_data, u32 total_size, int nr);
45 
46 
47 struct btrfs_path *btrfs_alloc_path(void)
48 {
49 	struct btrfs_path *path;
50 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
51 	if (path)
52 		path->reada = 1;
53 	return path;
54 }
55 
56 /*
57  * set all locked nodes in the path to blocking locks.  This should
58  * be done before scheduling
59  */
60 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
61 {
62 	int i;
63 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
64 		if (p->nodes[i] && p->locks[i])
65 			btrfs_set_lock_blocking(p->nodes[i]);
66 	}
67 }
68 
69 /*
70  * reset all the locked nodes in the patch to spinning locks.
71  *
72  * held is used to keep lockdep happy, when lockdep is enabled
73  * we set held to a blocking lock before we go around and
74  * retake all the spinlocks in the path.  You can safely use NULL
75  * for held
76  */
77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78 					struct extent_buffer *held)
79 {
80 	int i;
81 
82 #ifdef CONFIG_DEBUG_LOCK_ALLOC
83 	/* lockdep really cares that we take all of these spinlocks
84 	 * in the right order.  If any of the locks in the path are not
85 	 * currently blocking, it is going to complain.  So, make really
86 	 * really sure by forcing the path to blocking before we clear
87 	 * the path blocking.
88 	 */
89 	if (held)
90 		btrfs_set_lock_blocking(held);
91 	btrfs_set_path_blocking(p);
92 #endif
93 
94 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
95 		if (p->nodes[i] && p->locks[i])
96 			btrfs_clear_lock_blocking(p->nodes[i]);
97 	}
98 
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100 	if (held)
101 		btrfs_clear_lock_blocking(held);
102 #endif
103 }
104 
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path *p)
107 {
108 	btrfs_release_path(NULL, p);
109 	kmem_cache_free(btrfs_path_cachep, p);
110 }
111 
112 /*
113  * path release drops references on the extent buffers in the path
114  * and it drops any locks held by this path
115  *
116  * It is safe to call this on paths that no locks or extent buffers held.
117  */
118 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
119 {
120 	int i;
121 
122 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
123 		p->slots[i] = 0;
124 		if (!p->nodes[i])
125 			continue;
126 		if (p->locks[i]) {
127 			btrfs_tree_unlock(p->nodes[i]);
128 			p->locks[i] = 0;
129 		}
130 		free_extent_buffer(p->nodes[i]);
131 		p->nodes[i] = NULL;
132 	}
133 }
134 
135 /*
136  * safely gets a reference on the root node of a tree.  A lock
137  * is not taken, so a concurrent writer may put a different node
138  * at the root of the tree.  See btrfs_lock_root_node for the
139  * looping required.
140  *
141  * The extent buffer returned by this has a reference taken, so
142  * it won't disappear.  It may stop being the root of the tree
143  * at any time because there are no locks held.
144  */
145 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
146 {
147 	struct extent_buffer *eb;
148 	spin_lock(&root->node_lock);
149 	eb = root->node;
150 	extent_buffer_get(eb);
151 	spin_unlock(&root->node_lock);
152 	return eb;
153 }
154 
155 /* loop around taking references on and locking the root node of the
156  * tree until you end up with a lock on the root.  A locked buffer
157  * is returned, with a reference held.
158  */
159 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
160 {
161 	struct extent_buffer *eb;
162 
163 	while (1) {
164 		eb = btrfs_root_node(root);
165 		btrfs_tree_lock(eb);
166 
167 		spin_lock(&root->node_lock);
168 		if (eb == root->node) {
169 			spin_unlock(&root->node_lock);
170 			break;
171 		}
172 		spin_unlock(&root->node_lock);
173 
174 		btrfs_tree_unlock(eb);
175 		free_extent_buffer(eb);
176 	}
177 	return eb;
178 }
179 
180 /* cowonly root (everything not a reference counted cow subvolume), just get
181  * put onto a simple dirty list.  transaction.c walks this to make sure they
182  * get properly updated on disk.
183  */
184 static void add_root_to_dirty_list(struct btrfs_root *root)
185 {
186 	if (root->track_dirty && list_empty(&root->dirty_list)) {
187 		list_add(&root->dirty_list,
188 			 &root->fs_info->dirty_cowonly_roots);
189 	}
190 }
191 
192 /*
193  * used by snapshot creation to make a copy of a root for a tree with
194  * a given objectid.  The buffer with the new root node is returned in
195  * cow_ret, and this func returns zero on success or a negative error code.
196  */
197 int btrfs_copy_root(struct btrfs_trans_handle *trans,
198 		      struct btrfs_root *root,
199 		      struct extent_buffer *buf,
200 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
201 {
202 	struct extent_buffer *cow;
203 	u32 nritems;
204 	int ret = 0;
205 	int level;
206 	struct btrfs_disk_key disk_key;
207 
208 	WARN_ON(root->ref_cows && trans->transid !=
209 		root->fs_info->running_transaction->transid);
210 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
211 
212 	level = btrfs_header_level(buf);
213 	nritems = btrfs_header_nritems(buf);
214 	if (level == 0)
215 		btrfs_item_key(buf, &disk_key, 0);
216 	else
217 		btrfs_node_key(buf, &disk_key, 0);
218 
219 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
220 				     new_root_objectid, &disk_key, level,
221 				     buf->start, 0);
222 	if (IS_ERR(cow))
223 		return PTR_ERR(cow);
224 
225 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
226 	btrfs_set_header_bytenr(cow, cow->start);
227 	btrfs_set_header_generation(cow, trans->transid);
228 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
229 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
230 				     BTRFS_HEADER_FLAG_RELOC);
231 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
232 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
233 	else
234 		btrfs_set_header_owner(cow, new_root_objectid);
235 
236 	write_extent_buffer(cow, root->fs_info->fsid,
237 			    (unsigned long)btrfs_header_fsid(cow),
238 			    BTRFS_FSID_SIZE);
239 
240 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
241 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
242 		ret = btrfs_inc_ref(trans, root, cow, 1);
243 	else
244 		ret = btrfs_inc_ref(trans, root, cow, 0);
245 
246 	if (ret)
247 		return ret;
248 
249 	btrfs_mark_buffer_dirty(cow);
250 	*cow_ret = cow;
251 	return 0;
252 }
253 
254 /*
255  * check if the tree block can be shared by multiple trees
256  */
257 int btrfs_block_can_be_shared(struct btrfs_root *root,
258 			      struct extent_buffer *buf)
259 {
260 	/*
261 	 * Tree blocks not in refernece counted trees and tree roots
262 	 * are never shared. If a block was allocated after the last
263 	 * snapshot and the block was not allocated by tree relocation,
264 	 * we know the block is not shared.
265 	 */
266 	if (root->ref_cows &&
267 	    buf != root->node && buf != root->commit_root &&
268 	    (btrfs_header_generation(buf) <=
269 	     btrfs_root_last_snapshot(&root->root_item) ||
270 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
271 		return 1;
272 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
273 	if (root->ref_cows &&
274 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
275 		return 1;
276 #endif
277 	return 0;
278 }
279 
280 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
281 				       struct btrfs_root *root,
282 				       struct extent_buffer *buf,
283 				       struct extent_buffer *cow,
284 				       int *last_ref)
285 {
286 	u64 refs;
287 	u64 owner;
288 	u64 flags;
289 	u64 new_flags = 0;
290 	int ret;
291 
292 	/*
293 	 * Backrefs update rules:
294 	 *
295 	 * Always use full backrefs for extent pointers in tree block
296 	 * allocated by tree relocation.
297 	 *
298 	 * If a shared tree block is no longer referenced by its owner
299 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
300 	 * use full backrefs for extent pointers in tree block.
301 	 *
302 	 * If a tree block is been relocating
303 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
304 	 * use full backrefs for extent pointers in tree block.
305 	 * The reason for this is some operations (such as drop tree)
306 	 * are only allowed for blocks use full backrefs.
307 	 */
308 
309 	if (btrfs_block_can_be_shared(root, buf)) {
310 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
311 					       buf->len, &refs, &flags);
312 		BUG_ON(ret);
313 		BUG_ON(refs == 0);
314 	} else {
315 		refs = 1;
316 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
317 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
318 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
319 		else
320 			flags = 0;
321 	}
322 
323 	owner = btrfs_header_owner(buf);
324 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
325 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
326 
327 	if (refs > 1) {
328 		if ((owner == root->root_key.objectid ||
329 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
330 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
331 			ret = btrfs_inc_ref(trans, root, buf, 1);
332 			BUG_ON(ret);
333 
334 			if (root->root_key.objectid ==
335 			    BTRFS_TREE_RELOC_OBJECTID) {
336 				ret = btrfs_dec_ref(trans, root, buf, 0);
337 				BUG_ON(ret);
338 				ret = btrfs_inc_ref(trans, root, cow, 1);
339 				BUG_ON(ret);
340 			}
341 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
342 		} else {
343 
344 			if (root->root_key.objectid ==
345 			    BTRFS_TREE_RELOC_OBJECTID)
346 				ret = btrfs_inc_ref(trans, root, cow, 1);
347 			else
348 				ret = btrfs_inc_ref(trans, root, cow, 0);
349 			BUG_ON(ret);
350 		}
351 		if (new_flags != 0) {
352 			ret = btrfs_set_disk_extent_flags(trans, root,
353 							  buf->start,
354 							  buf->len,
355 							  new_flags, 0);
356 			BUG_ON(ret);
357 		}
358 	} else {
359 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
360 			if (root->root_key.objectid ==
361 			    BTRFS_TREE_RELOC_OBJECTID)
362 				ret = btrfs_inc_ref(trans, root, cow, 1);
363 			else
364 				ret = btrfs_inc_ref(trans, root, cow, 0);
365 			BUG_ON(ret);
366 			ret = btrfs_dec_ref(trans, root, buf, 1);
367 			BUG_ON(ret);
368 		}
369 		clean_tree_block(trans, root, buf);
370 		*last_ref = 1;
371 	}
372 	return 0;
373 }
374 
375 /*
376  * does the dirty work in cow of a single block.  The parent block (if
377  * supplied) is updated to point to the new cow copy.  The new buffer is marked
378  * dirty and returned locked.  If you modify the block it needs to be marked
379  * dirty again.
380  *
381  * search_start -- an allocation hint for the new block
382  *
383  * empty_size -- a hint that you plan on doing more cow.  This is the size in
384  * bytes the allocator should try to find free next to the block it returns.
385  * This is just a hint and may be ignored by the allocator.
386  */
387 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
388 			     struct btrfs_root *root,
389 			     struct extent_buffer *buf,
390 			     struct extent_buffer *parent, int parent_slot,
391 			     struct extent_buffer **cow_ret,
392 			     u64 search_start, u64 empty_size)
393 {
394 	struct btrfs_disk_key disk_key;
395 	struct extent_buffer *cow;
396 	int level;
397 	int last_ref = 0;
398 	int unlock_orig = 0;
399 	u64 parent_start;
400 
401 	if (*cow_ret == buf)
402 		unlock_orig = 1;
403 
404 	btrfs_assert_tree_locked(buf);
405 
406 	WARN_ON(root->ref_cows && trans->transid !=
407 		root->fs_info->running_transaction->transid);
408 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
409 
410 	level = btrfs_header_level(buf);
411 
412 	if (level == 0)
413 		btrfs_item_key(buf, &disk_key, 0);
414 	else
415 		btrfs_node_key(buf, &disk_key, 0);
416 
417 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
418 		if (parent)
419 			parent_start = parent->start;
420 		else
421 			parent_start = 0;
422 	} else
423 		parent_start = 0;
424 
425 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
426 				     root->root_key.objectid, &disk_key,
427 				     level, search_start, empty_size);
428 	if (IS_ERR(cow))
429 		return PTR_ERR(cow);
430 
431 	/* cow is set to blocking by btrfs_init_new_buffer */
432 
433 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
434 	btrfs_set_header_bytenr(cow, cow->start);
435 	btrfs_set_header_generation(cow, trans->transid);
436 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
437 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
438 				     BTRFS_HEADER_FLAG_RELOC);
439 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
440 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
441 	else
442 		btrfs_set_header_owner(cow, root->root_key.objectid);
443 
444 	write_extent_buffer(cow, root->fs_info->fsid,
445 			    (unsigned long)btrfs_header_fsid(cow),
446 			    BTRFS_FSID_SIZE);
447 
448 	update_ref_for_cow(trans, root, buf, cow, &last_ref);
449 
450 	if (root->ref_cows)
451 		btrfs_reloc_cow_block(trans, root, buf, cow);
452 
453 	if (buf == root->node) {
454 		WARN_ON(parent && parent != buf);
455 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
456 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
457 			parent_start = buf->start;
458 		else
459 			parent_start = 0;
460 
461 		spin_lock(&root->node_lock);
462 		root->node = cow;
463 		extent_buffer_get(cow);
464 		spin_unlock(&root->node_lock);
465 
466 		btrfs_free_tree_block(trans, root, buf, parent_start,
467 				      last_ref);
468 		free_extent_buffer(buf);
469 		add_root_to_dirty_list(root);
470 	} else {
471 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
472 			parent_start = parent->start;
473 		else
474 			parent_start = 0;
475 
476 		WARN_ON(trans->transid != btrfs_header_generation(parent));
477 		btrfs_set_node_blockptr(parent, parent_slot,
478 					cow->start);
479 		btrfs_set_node_ptr_generation(parent, parent_slot,
480 					      trans->transid);
481 		btrfs_mark_buffer_dirty(parent);
482 		btrfs_free_tree_block(trans, root, buf, parent_start,
483 				      last_ref);
484 	}
485 	if (unlock_orig)
486 		btrfs_tree_unlock(buf);
487 	free_extent_buffer(buf);
488 	btrfs_mark_buffer_dirty(cow);
489 	*cow_ret = cow;
490 	return 0;
491 }
492 
493 static inline int should_cow_block(struct btrfs_trans_handle *trans,
494 				   struct btrfs_root *root,
495 				   struct extent_buffer *buf)
496 {
497 	if (btrfs_header_generation(buf) == trans->transid &&
498 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
499 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
500 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
501 		return 0;
502 	return 1;
503 }
504 
505 /*
506  * cows a single block, see __btrfs_cow_block for the real work.
507  * This version of it has extra checks so that a block isn't cow'd more than
508  * once per transaction, as long as it hasn't been written yet
509  */
510 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
511 		    struct btrfs_root *root, struct extent_buffer *buf,
512 		    struct extent_buffer *parent, int parent_slot,
513 		    struct extent_buffer **cow_ret)
514 {
515 	u64 search_start;
516 	int ret;
517 
518 	if (trans->transaction != root->fs_info->running_transaction) {
519 		printk(KERN_CRIT "trans %llu running %llu\n",
520 		       (unsigned long long)trans->transid,
521 		       (unsigned long long)
522 		       root->fs_info->running_transaction->transid);
523 		WARN_ON(1);
524 	}
525 	if (trans->transid != root->fs_info->generation) {
526 		printk(KERN_CRIT "trans %llu running %llu\n",
527 		       (unsigned long long)trans->transid,
528 		       (unsigned long long)root->fs_info->generation);
529 		WARN_ON(1);
530 	}
531 
532 	if (!should_cow_block(trans, root, buf)) {
533 		*cow_ret = buf;
534 		return 0;
535 	}
536 
537 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
538 
539 	if (parent)
540 		btrfs_set_lock_blocking(parent);
541 	btrfs_set_lock_blocking(buf);
542 
543 	ret = __btrfs_cow_block(trans, root, buf, parent,
544 				 parent_slot, cow_ret, search_start, 0);
545 	return ret;
546 }
547 
548 /*
549  * helper function for defrag to decide if two blocks pointed to by a
550  * node are actually close by
551  */
552 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
553 {
554 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
555 		return 1;
556 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
557 		return 1;
558 	return 0;
559 }
560 
561 /*
562  * compare two keys in a memcmp fashion
563  */
564 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
565 {
566 	struct btrfs_key k1;
567 
568 	btrfs_disk_key_to_cpu(&k1, disk);
569 
570 	return btrfs_comp_cpu_keys(&k1, k2);
571 }
572 
573 /*
574  * same as comp_keys only with two btrfs_key's
575  */
576 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
577 {
578 	if (k1->objectid > k2->objectid)
579 		return 1;
580 	if (k1->objectid < k2->objectid)
581 		return -1;
582 	if (k1->type > k2->type)
583 		return 1;
584 	if (k1->type < k2->type)
585 		return -1;
586 	if (k1->offset > k2->offset)
587 		return 1;
588 	if (k1->offset < k2->offset)
589 		return -1;
590 	return 0;
591 }
592 
593 /*
594  * this is used by the defrag code to go through all the
595  * leaves pointed to by a node and reallocate them so that
596  * disk order is close to key order
597  */
598 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
599 		       struct btrfs_root *root, struct extent_buffer *parent,
600 		       int start_slot, int cache_only, u64 *last_ret,
601 		       struct btrfs_key *progress)
602 {
603 	struct extent_buffer *cur;
604 	u64 blocknr;
605 	u64 gen;
606 	u64 search_start = *last_ret;
607 	u64 last_block = 0;
608 	u64 other;
609 	u32 parent_nritems;
610 	int end_slot;
611 	int i;
612 	int err = 0;
613 	int parent_level;
614 	int uptodate;
615 	u32 blocksize;
616 	int progress_passed = 0;
617 	struct btrfs_disk_key disk_key;
618 
619 	parent_level = btrfs_header_level(parent);
620 	if (cache_only && parent_level != 1)
621 		return 0;
622 
623 	if (trans->transaction != root->fs_info->running_transaction)
624 		WARN_ON(1);
625 	if (trans->transid != root->fs_info->generation)
626 		WARN_ON(1);
627 
628 	parent_nritems = btrfs_header_nritems(parent);
629 	blocksize = btrfs_level_size(root, parent_level - 1);
630 	end_slot = parent_nritems;
631 
632 	if (parent_nritems == 1)
633 		return 0;
634 
635 	btrfs_set_lock_blocking(parent);
636 
637 	for (i = start_slot; i < end_slot; i++) {
638 		int close = 1;
639 
640 		if (!parent->map_token) {
641 			map_extent_buffer(parent,
642 					btrfs_node_key_ptr_offset(i),
643 					sizeof(struct btrfs_key_ptr),
644 					&parent->map_token, &parent->kaddr,
645 					&parent->map_start, &parent->map_len,
646 					KM_USER1);
647 		}
648 		btrfs_node_key(parent, &disk_key, i);
649 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
650 			continue;
651 
652 		progress_passed = 1;
653 		blocknr = btrfs_node_blockptr(parent, i);
654 		gen = btrfs_node_ptr_generation(parent, i);
655 		if (last_block == 0)
656 			last_block = blocknr;
657 
658 		if (i > 0) {
659 			other = btrfs_node_blockptr(parent, i - 1);
660 			close = close_blocks(blocknr, other, blocksize);
661 		}
662 		if (!close && i < end_slot - 2) {
663 			other = btrfs_node_blockptr(parent, i + 1);
664 			close = close_blocks(blocknr, other, blocksize);
665 		}
666 		if (close) {
667 			last_block = blocknr;
668 			continue;
669 		}
670 		if (parent->map_token) {
671 			unmap_extent_buffer(parent, parent->map_token,
672 					    KM_USER1);
673 			parent->map_token = NULL;
674 		}
675 
676 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
677 		if (cur)
678 			uptodate = btrfs_buffer_uptodate(cur, gen);
679 		else
680 			uptodate = 0;
681 		if (!cur || !uptodate) {
682 			if (cache_only) {
683 				free_extent_buffer(cur);
684 				continue;
685 			}
686 			if (!cur) {
687 				cur = read_tree_block(root, blocknr,
688 							 blocksize, gen);
689 			} else if (!uptodate) {
690 				btrfs_read_buffer(cur, gen);
691 			}
692 		}
693 		if (search_start == 0)
694 			search_start = last_block;
695 
696 		btrfs_tree_lock(cur);
697 		btrfs_set_lock_blocking(cur);
698 		err = __btrfs_cow_block(trans, root, cur, parent, i,
699 					&cur, search_start,
700 					min(16 * blocksize,
701 					    (end_slot - i) * blocksize));
702 		if (err) {
703 			btrfs_tree_unlock(cur);
704 			free_extent_buffer(cur);
705 			break;
706 		}
707 		search_start = cur->start;
708 		last_block = cur->start;
709 		*last_ret = search_start;
710 		btrfs_tree_unlock(cur);
711 		free_extent_buffer(cur);
712 	}
713 	if (parent->map_token) {
714 		unmap_extent_buffer(parent, parent->map_token,
715 				    KM_USER1);
716 		parent->map_token = NULL;
717 	}
718 	return err;
719 }
720 
721 /*
722  * The leaf data grows from end-to-front in the node.
723  * this returns the address of the start of the last item,
724  * which is the stop of the leaf data stack
725  */
726 static inline unsigned int leaf_data_end(struct btrfs_root *root,
727 					 struct extent_buffer *leaf)
728 {
729 	u32 nr = btrfs_header_nritems(leaf);
730 	if (nr == 0)
731 		return BTRFS_LEAF_DATA_SIZE(root);
732 	return btrfs_item_offset_nr(leaf, nr - 1);
733 }
734 
735 /*
736  * extra debugging checks to make sure all the items in a key are
737  * well formed and in the proper order
738  */
739 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
740 		      int level)
741 {
742 	struct extent_buffer *parent = NULL;
743 	struct extent_buffer *node = path->nodes[level];
744 	struct btrfs_disk_key parent_key;
745 	struct btrfs_disk_key node_key;
746 	int parent_slot;
747 	int slot;
748 	struct btrfs_key cpukey;
749 	u32 nritems = btrfs_header_nritems(node);
750 
751 	if (path->nodes[level + 1])
752 		parent = path->nodes[level + 1];
753 
754 	slot = path->slots[level];
755 	BUG_ON(nritems == 0);
756 	if (parent) {
757 		parent_slot = path->slots[level + 1];
758 		btrfs_node_key(parent, &parent_key, parent_slot);
759 		btrfs_node_key(node, &node_key, 0);
760 		BUG_ON(memcmp(&parent_key, &node_key,
761 			      sizeof(struct btrfs_disk_key)));
762 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
763 		       btrfs_header_bytenr(node));
764 	}
765 	BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
766 	if (slot != 0) {
767 		btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
768 		btrfs_node_key(node, &node_key, slot);
769 		BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
770 	}
771 	if (slot < nritems - 1) {
772 		btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
773 		btrfs_node_key(node, &node_key, slot);
774 		BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
775 	}
776 	return 0;
777 }
778 
779 /*
780  * extra checking to make sure all the items in a leaf are
781  * well formed and in the proper order
782  */
783 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
784 		      int level)
785 {
786 	struct extent_buffer *leaf = path->nodes[level];
787 	struct extent_buffer *parent = NULL;
788 	int parent_slot;
789 	struct btrfs_key cpukey;
790 	struct btrfs_disk_key parent_key;
791 	struct btrfs_disk_key leaf_key;
792 	int slot = path->slots[0];
793 
794 	u32 nritems = btrfs_header_nritems(leaf);
795 
796 	if (path->nodes[level + 1])
797 		parent = path->nodes[level + 1];
798 
799 	if (nritems == 0)
800 		return 0;
801 
802 	if (parent) {
803 		parent_slot = path->slots[level + 1];
804 		btrfs_node_key(parent, &parent_key, parent_slot);
805 		btrfs_item_key(leaf, &leaf_key, 0);
806 
807 		BUG_ON(memcmp(&parent_key, &leaf_key,
808 		       sizeof(struct btrfs_disk_key)));
809 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
810 		       btrfs_header_bytenr(leaf));
811 	}
812 	if (slot != 0 && slot < nritems - 1) {
813 		btrfs_item_key(leaf, &leaf_key, slot);
814 		btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
815 		if (comp_keys(&leaf_key, &cpukey) <= 0) {
816 			btrfs_print_leaf(root, leaf);
817 			printk(KERN_CRIT "slot %d offset bad key\n", slot);
818 			BUG_ON(1);
819 		}
820 		if (btrfs_item_offset_nr(leaf, slot - 1) !=
821 		       btrfs_item_end_nr(leaf, slot)) {
822 			btrfs_print_leaf(root, leaf);
823 			printk(KERN_CRIT "slot %d offset bad\n", slot);
824 			BUG_ON(1);
825 		}
826 	}
827 	if (slot < nritems - 1) {
828 		btrfs_item_key(leaf, &leaf_key, slot);
829 		btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
830 		BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
831 		if (btrfs_item_offset_nr(leaf, slot) !=
832 			btrfs_item_end_nr(leaf, slot + 1)) {
833 			btrfs_print_leaf(root, leaf);
834 			printk(KERN_CRIT "slot %d offset bad\n", slot);
835 			BUG_ON(1);
836 		}
837 	}
838 	BUG_ON(btrfs_item_offset_nr(leaf, 0) +
839 	       btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
840 	return 0;
841 }
842 
843 static noinline int check_block(struct btrfs_root *root,
844 				struct btrfs_path *path, int level)
845 {
846 	return 0;
847 	if (level == 0)
848 		return check_leaf(root, path, level);
849 	return check_node(root, path, level);
850 }
851 
852 /*
853  * search for key in the extent_buffer.  The items start at offset p,
854  * and they are item_size apart.  There are 'max' items in p.
855  *
856  * the slot in the array is returned via slot, and it points to
857  * the place where you would insert key if it is not found in
858  * the array.
859  *
860  * slot may point to max if the key is bigger than all of the keys
861  */
862 static noinline int generic_bin_search(struct extent_buffer *eb,
863 				       unsigned long p,
864 				       int item_size, struct btrfs_key *key,
865 				       int max, int *slot)
866 {
867 	int low = 0;
868 	int high = max;
869 	int mid;
870 	int ret;
871 	struct btrfs_disk_key *tmp = NULL;
872 	struct btrfs_disk_key unaligned;
873 	unsigned long offset;
874 	char *map_token = NULL;
875 	char *kaddr = NULL;
876 	unsigned long map_start = 0;
877 	unsigned long map_len = 0;
878 	int err;
879 
880 	while (low < high) {
881 		mid = (low + high) / 2;
882 		offset = p + mid * item_size;
883 
884 		if (!map_token || offset < map_start ||
885 		    (offset + sizeof(struct btrfs_disk_key)) >
886 		    map_start + map_len) {
887 			if (map_token) {
888 				unmap_extent_buffer(eb, map_token, KM_USER0);
889 				map_token = NULL;
890 			}
891 
892 			err = map_private_extent_buffer(eb, offset,
893 						sizeof(struct btrfs_disk_key),
894 						&map_token, &kaddr,
895 						&map_start, &map_len, KM_USER0);
896 
897 			if (!err) {
898 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
899 							map_start);
900 			} else {
901 				read_extent_buffer(eb, &unaligned,
902 						   offset, sizeof(unaligned));
903 				tmp = &unaligned;
904 			}
905 
906 		} else {
907 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
908 							map_start);
909 		}
910 		ret = comp_keys(tmp, key);
911 
912 		if (ret < 0)
913 			low = mid + 1;
914 		else if (ret > 0)
915 			high = mid;
916 		else {
917 			*slot = mid;
918 			if (map_token)
919 				unmap_extent_buffer(eb, map_token, KM_USER0);
920 			return 0;
921 		}
922 	}
923 	*slot = low;
924 	if (map_token)
925 		unmap_extent_buffer(eb, map_token, KM_USER0);
926 	return 1;
927 }
928 
929 /*
930  * simple bin_search frontend that does the right thing for
931  * leaves vs nodes
932  */
933 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
934 		      int level, int *slot)
935 {
936 	if (level == 0) {
937 		return generic_bin_search(eb,
938 					  offsetof(struct btrfs_leaf, items),
939 					  sizeof(struct btrfs_item),
940 					  key, btrfs_header_nritems(eb),
941 					  slot);
942 	} else {
943 		return generic_bin_search(eb,
944 					  offsetof(struct btrfs_node, ptrs),
945 					  sizeof(struct btrfs_key_ptr),
946 					  key, btrfs_header_nritems(eb),
947 					  slot);
948 	}
949 	return -1;
950 }
951 
952 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
953 		     int level, int *slot)
954 {
955 	return bin_search(eb, key, level, slot);
956 }
957 
958 static void root_add_used(struct btrfs_root *root, u32 size)
959 {
960 	spin_lock(&root->accounting_lock);
961 	btrfs_set_root_used(&root->root_item,
962 			    btrfs_root_used(&root->root_item) + size);
963 	spin_unlock(&root->accounting_lock);
964 }
965 
966 static void root_sub_used(struct btrfs_root *root, u32 size)
967 {
968 	spin_lock(&root->accounting_lock);
969 	btrfs_set_root_used(&root->root_item,
970 			    btrfs_root_used(&root->root_item) - size);
971 	spin_unlock(&root->accounting_lock);
972 }
973 
974 /* given a node and slot number, this reads the blocks it points to.  The
975  * extent buffer is returned with a reference taken (but unlocked).
976  * NULL is returned on error.
977  */
978 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
979 				   struct extent_buffer *parent, int slot)
980 {
981 	int level = btrfs_header_level(parent);
982 	if (slot < 0)
983 		return NULL;
984 	if (slot >= btrfs_header_nritems(parent))
985 		return NULL;
986 
987 	BUG_ON(level == 0);
988 
989 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
990 		       btrfs_level_size(root, level - 1),
991 		       btrfs_node_ptr_generation(parent, slot));
992 }
993 
994 /*
995  * node level balancing, used to make sure nodes are in proper order for
996  * item deletion.  We balance from the top down, so we have to make sure
997  * that a deletion won't leave an node completely empty later on.
998  */
999 static noinline int balance_level(struct btrfs_trans_handle *trans,
1000 			 struct btrfs_root *root,
1001 			 struct btrfs_path *path, int level)
1002 {
1003 	struct extent_buffer *right = NULL;
1004 	struct extent_buffer *mid;
1005 	struct extent_buffer *left = NULL;
1006 	struct extent_buffer *parent = NULL;
1007 	int ret = 0;
1008 	int wret;
1009 	int pslot;
1010 	int orig_slot = path->slots[level];
1011 	int err_on_enospc = 0;
1012 	u64 orig_ptr;
1013 
1014 	if (level == 0)
1015 		return 0;
1016 
1017 	mid = path->nodes[level];
1018 
1019 	WARN_ON(!path->locks[level]);
1020 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1021 
1022 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1023 
1024 	if (level < BTRFS_MAX_LEVEL - 1)
1025 		parent = path->nodes[level + 1];
1026 	pslot = path->slots[level + 1];
1027 
1028 	/*
1029 	 * deal with the case where there is only one pointer in the root
1030 	 * by promoting the node below to a root
1031 	 */
1032 	if (!parent) {
1033 		struct extent_buffer *child;
1034 
1035 		if (btrfs_header_nritems(mid) != 1)
1036 			return 0;
1037 
1038 		/* promote the child to a root */
1039 		child = read_node_slot(root, mid, 0);
1040 		BUG_ON(!child);
1041 		btrfs_tree_lock(child);
1042 		btrfs_set_lock_blocking(child);
1043 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1044 		if (ret) {
1045 			btrfs_tree_unlock(child);
1046 			free_extent_buffer(child);
1047 			goto enospc;
1048 		}
1049 
1050 		spin_lock(&root->node_lock);
1051 		root->node = child;
1052 		spin_unlock(&root->node_lock);
1053 
1054 		add_root_to_dirty_list(root);
1055 		btrfs_tree_unlock(child);
1056 
1057 		path->locks[level] = 0;
1058 		path->nodes[level] = NULL;
1059 		clean_tree_block(trans, root, mid);
1060 		btrfs_tree_unlock(mid);
1061 		/* once for the path */
1062 		free_extent_buffer(mid);
1063 
1064 		root_sub_used(root, mid->len);
1065 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1066 		/* once for the root ptr */
1067 		free_extent_buffer(mid);
1068 		return 0;
1069 	}
1070 	if (btrfs_header_nritems(mid) >
1071 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1072 		return 0;
1073 
1074 	if (btrfs_header_nritems(mid) < 2)
1075 		err_on_enospc = 1;
1076 
1077 	left = read_node_slot(root, parent, pslot - 1);
1078 	if (left) {
1079 		btrfs_tree_lock(left);
1080 		btrfs_set_lock_blocking(left);
1081 		wret = btrfs_cow_block(trans, root, left,
1082 				       parent, pslot - 1, &left);
1083 		if (wret) {
1084 			ret = wret;
1085 			goto enospc;
1086 		}
1087 	}
1088 	right = read_node_slot(root, parent, pslot + 1);
1089 	if (right) {
1090 		btrfs_tree_lock(right);
1091 		btrfs_set_lock_blocking(right);
1092 		wret = btrfs_cow_block(trans, root, right,
1093 				       parent, pslot + 1, &right);
1094 		if (wret) {
1095 			ret = wret;
1096 			goto enospc;
1097 		}
1098 	}
1099 
1100 	/* first, try to make some room in the middle buffer */
1101 	if (left) {
1102 		orig_slot += btrfs_header_nritems(left);
1103 		wret = push_node_left(trans, root, left, mid, 1);
1104 		if (wret < 0)
1105 			ret = wret;
1106 		if (btrfs_header_nritems(mid) < 2)
1107 			err_on_enospc = 1;
1108 	}
1109 
1110 	/*
1111 	 * then try to empty the right most buffer into the middle
1112 	 */
1113 	if (right) {
1114 		wret = push_node_left(trans, root, mid, right, 1);
1115 		if (wret < 0 && wret != -ENOSPC)
1116 			ret = wret;
1117 		if (btrfs_header_nritems(right) == 0) {
1118 			clean_tree_block(trans, root, right);
1119 			btrfs_tree_unlock(right);
1120 			wret = del_ptr(trans, root, path, level + 1, pslot +
1121 				       1);
1122 			if (wret)
1123 				ret = wret;
1124 			root_sub_used(root, right->len);
1125 			btrfs_free_tree_block(trans, root, right, 0, 1);
1126 			free_extent_buffer(right);
1127 			right = NULL;
1128 		} else {
1129 			struct btrfs_disk_key right_key;
1130 			btrfs_node_key(right, &right_key, 0);
1131 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1132 			btrfs_mark_buffer_dirty(parent);
1133 		}
1134 	}
1135 	if (btrfs_header_nritems(mid) == 1) {
1136 		/*
1137 		 * we're not allowed to leave a node with one item in the
1138 		 * tree during a delete.  A deletion from lower in the tree
1139 		 * could try to delete the only pointer in this node.
1140 		 * So, pull some keys from the left.
1141 		 * There has to be a left pointer at this point because
1142 		 * otherwise we would have pulled some pointers from the
1143 		 * right
1144 		 */
1145 		BUG_ON(!left);
1146 		wret = balance_node_right(trans, root, mid, left);
1147 		if (wret < 0) {
1148 			ret = wret;
1149 			goto enospc;
1150 		}
1151 		if (wret == 1) {
1152 			wret = push_node_left(trans, root, left, mid, 1);
1153 			if (wret < 0)
1154 				ret = wret;
1155 		}
1156 		BUG_ON(wret == 1);
1157 	}
1158 	if (btrfs_header_nritems(mid) == 0) {
1159 		clean_tree_block(trans, root, mid);
1160 		btrfs_tree_unlock(mid);
1161 		wret = del_ptr(trans, root, path, level + 1, pslot);
1162 		if (wret)
1163 			ret = wret;
1164 		root_sub_used(root, mid->len);
1165 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1166 		free_extent_buffer(mid);
1167 		mid = NULL;
1168 	} else {
1169 		/* update the parent key to reflect our changes */
1170 		struct btrfs_disk_key mid_key;
1171 		btrfs_node_key(mid, &mid_key, 0);
1172 		btrfs_set_node_key(parent, &mid_key, pslot);
1173 		btrfs_mark_buffer_dirty(parent);
1174 	}
1175 
1176 	/* update the path */
1177 	if (left) {
1178 		if (btrfs_header_nritems(left) > orig_slot) {
1179 			extent_buffer_get(left);
1180 			/* left was locked after cow */
1181 			path->nodes[level] = left;
1182 			path->slots[level + 1] -= 1;
1183 			path->slots[level] = orig_slot;
1184 			if (mid) {
1185 				btrfs_tree_unlock(mid);
1186 				free_extent_buffer(mid);
1187 			}
1188 		} else {
1189 			orig_slot -= btrfs_header_nritems(left);
1190 			path->slots[level] = orig_slot;
1191 		}
1192 	}
1193 	/* double check we haven't messed things up */
1194 	check_block(root, path, level);
1195 	if (orig_ptr !=
1196 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1197 		BUG();
1198 enospc:
1199 	if (right) {
1200 		btrfs_tree_unlock(right);
1201 		free_extent_buffer(right);
1202 	}
1203 	if (left) {
1204 		if (path->nodes[level] != left)
1205 			btrfs_tree_unlock(left);
1206 		free_extent_buffer(left);
1207 	}
1208 	return ret;
1209 }
1210 
1211 /* Node balancing for insertion.  Here we only split or push nodes around
1212  * when they are completely full.  This is also done top down, so we
1213  * have to be pessimistic.
1214  */
1215 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1216 					  struct btrfs_root *root,
1217 					  struct btrfs_path *path, int level)
1218 {
1219 	struct extent_buffer *right = NULL;
1220 	struct extent_buffer *mid;
1221 	struct extent_buffer *left = NULL;
1222 	struct extent_buffer *parent = NULL;
1223 	int ret = 0;
1224 	int wret;
1225 	int pslot;
1226 	int orig_slot = path->slots[level];
1227 	u64 orig_ptr;
1228 
1229 	if (level == 0)
1230 		return 1;
1231 
1232 	mid = path->nodes[level];
1233 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1234 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1235 
1236 	if (level < BTRFS_MAX_LEVEL - 1)
1237 		parent = path->nodes[level + 1];
1238 	pslot = path->slots[level + 1];
1239 
1240 	if (!parent)
1241 		return 1;
1242 
1243 	left = read_node_slot(root, parent, pslot - 1);
1244 
1245 	/* first, try to make some room in the middle buffer */
1246 	if (left) {
1247 		u32 left_nr;
1248 
1249 		btrfs_tree_lock(left);
1250 		btrfs_set_lock_blocking(left);
1251 
1252 		left_nr = btrfs_header_nritems(left);
1253 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1254 			wret = 1;
1255 		} else {
1256 			ret = btrfs_cow_block(trans, root, left, parent,
1257 					      pslot - 1, &left);
1258 			if (ret)
1259 				wret = 1;
1260 			else {
1261 				wret = push_node_left(trans, root,
1262 						      left, mid, 0);
1263 			}
1264 		}
1265 		if (wret < 0)
1266 			ret = wret;
1267 		if (wret == 0) {
1268 			struct btrfs_disk_key disk_key;
1269 			orig_slot += left_nr;
1270 			btrfs_node_key(mid, &disk_key, 0);
1271 			btrfs_set_node_key(parent, &disk_key, pslot);
1272 			btrfs_mark_buffer_dirty(parent);
1273 			if (btrfs_header_nritems(left) > orig_slot) {
1274 				path->nodes[level] = left;
1275 				path->slots[level + 1] -= 1;
1276 				path->slots[level] = orig_slot;
1277 				btrfs_tree_unlock(mid);
1278 				free_extent_buffer(mid);
1279 			} else {
1280 				orig_slot -=
1281 					btrfs_header_nritems(left);
1282 				path->slots[level] = orig_slot;
1283 				btrfs_tree_unlock(left);
1284 				free_extent_buffer(left);
1285 			}
1286 			return 0;
1287 		}
1288 		btrfs_tree_unlock(left);
1289 		free_extent_buffer(left);
1290 	}
1291 	right = read_node_slot(root, parent, pslot + 1);
1292 
1293 	/*
1294 	 * then try to empty the right most buffer into the middle
1295 	 */
1296 	if (right) {
1297 		u32 right_nr;
1298 
1299 		btrfs_tree_lock(right);
1300 		btrfs_set_lock_blocking(right);
1301 
1302 		right_nr = btrfs_header_nritems(right);
1303 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1304 			wret = 1;
1305 		} else {
1306 			ret = btrfs_cow_block(trans, root, right,
1307 					      parent, pslot + 1,
1308 					      &right);
1309 			if (ret)
1310 				wret = 1;
1311 			else {
1312 				wret = balance_node_right(trans, root,
1313 							  right, mid);
1314 			}
1315 		}
1316 		if (wret < 0)
1317 			ret = wret;
1318 		if (wret == 0) {
1319 			struct btrfs_disk_key disk_key;
1320 
1321 			btrfs_node_key(right, &disk_key, 0);
1322 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1323 			btrfs_mark_buffer_dirty(parent);
1324 
1325 			if (btrfs_header_nritems(mid) <= orig_slot) {
1326 				path->nodes[level] = right;
1327 				path->slots[level + 1] += 1;
1328 				path->slots[level] = orig_slot -
1329 					btrfs_header_nritems(mid);
1330 				btrfs_tree_unlock(mid);
1331 				free_extent_buffer(mid);
1332 			} else {
1333 				btrfs_tree_unlock(right);
1334 				free_extent_buffer(right);
1335 			}
1336 			return 0;
1337 		}
1338 		btrfs_tree_unlock(right);
1339 		free_extent_buffer(right);
1340 	}
1341 	return 1;
1342 }
1343 
1344 /*
1345  * readahead one full node of leaves, finding things that are close
1346  * to the block in 'slot', and triggering ra on them.
1347  */
1348 static void reada_for_search(struct btrfs_root *root,
1349 			     struct btrfs_path *path,
1350 			     int level, int slot, u64 objectid)
1351 {
1352 	struct extent_buffer *node;
1353 	struct btrfs_disk_key disk_key;
1354 	u32 nritems;
1355 	u64 search;
1356 	u64 target;
1357 	u64 nread = 0;
1358 	int direction = path->reada;
1359 	struct extent_buffer *eb;
1360 	u32 nr;
1361 	u32 blocksize;
1362 	u32 nscan = 0;
1363 
1364 	if (level != 1)
1365 		return;
1366 
1367 	if (!path->nodes[level])
1368 		return;
1369 
1370 	node = path->nodes[level];
1371 
1372 	search = btrfs_node_blockptr(node, slot);
1373 	blocksize = btrfs_level_size(root, level - 1);
1374 	eb = btrfs_find_tree_block(root, search, blocksize);
1375 	if (eb) {
1376 		free_extent_buffer(eb);
1377 		return;
1378 	}
1379 
1380 	target = search;
1381 
1382 	nritems = btrfs_header_nritems(node);
1383 	nr = slot;
1384 	while (1) {
1385 		if (direction < 0) {
1386 			if (nr == 0)
1387 				break;
1388 			nr--;
1389 		} else if (direction > 0) {
1390 			nr++;
1391 			if (nr >= nritems)
1392 				break;
1393 		}
1394 		if (path->reada < 0 && objectid) {
1395 			btrfs_node_key(node, &disk_key, nr);
1396 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1397 				break;
1398 		}
1399 		search = btrfs_node_blockptr(node, nr);
1400 		if ((search <= target && target - search <= 65536) ||
1401 		    (search > target && search - target <= 65536)) {
1402 			readahead_tree_block(root, search, blocksize,
1403 				     btrfs_node_ptr_generation(node, nr));
1404 			nread += blocksize;
1405 		}
1406 		nscan++;
1407 		if ((nread > 65536 || nscan > 32))
1408 			break;
1409 	}
1410 }
1411 
1412 /*
1413  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1414  * cache
1415  */
1416 static noinline int reada_for_balance(struct btrfs_root *root,
1417 				      struct btrfs_path *path, int level)
1418 {
1419 	int slot;
1420 	int nritems;
1421 	struct extent_buffer *parent;
1422 	struct extent_buffer *eb;
1423 	u64 gen;
1424 	u64 block1 = 0;
1425 	u64 block2 = 0;
1426 	int ret = 0;
1427 	int blocksize;
1428 
1429 	parent = path->nodes[level + 1];
1430 	if (!parent)
1431 		return 0;
1432 
1433 	nritems = btrfs_header_nritems(parent);
1434 	slot = path->slots[level + 1];
1435 	blocksize = btrfs_level_size(root, level);
1436 
1437 	if (slot > 0) {
1438 		block1 = btrfs_node_blockptr(parent, slot - 1);
1439 		gen = btrfs_node_ptr_generation(parent, slot - 1);
1440 		eb = btrfs_find_tree_block(root, block1, blocksize);
1441 		if (eb && btrfs_buffer_uptodate(eb, gen))
1442 			block1 = 0;
1443 		free_extent_buffer(eb);
1444 	}
1445 	if (slot + 1 < nritems) {
1446 		block2 = btrfs_node_blockptr(parent, slot + 1);
1447 		gen = btrfs_node_ptr_generation(parent, slot + 1);
1448 		eb = btrfs_find_tree_block(root, block2, blocksize);
1449 		if (eb && btrfs_buffer_uptodate(eb, gen))
1450 			block2 = 0;
1451 		free_extent_buffer(eb);
1452 	}
1453 	if (block1 || block2) {
1454 		ret = -EAGAIN;
1455 
1456 		/* release the whole path */
1457 		btrfs_release_path(root, path);
1458 
1459 		/* read the blocks */
1460 		if (block1)
1461 			readahead_tree_block(root, block1, blocksize, 0);
1462 		if (block2)
1463 			readahead_tree_block(root, block2, blocksize, 0);
1464 
1465 		if (block1) {
1466 			eb = read_tree_block(root, block1, blocksize, 0);
1467 			free_extent_buffer(eb);
1468 		}
1469 		if (block2) {
1470 			eb = read_tree_block(root, block2, blocksize, 0);
1471 			free_extent_buffer(eb);
1472 		}
1473 	}
1474 	return ret;
1475 }
1476 
1477 
1478 /*
1479  * when we walk down the tree, it is usually safe to unlock the higher layers
1480  * in the tree.  The exceptions are when our path goes through slot 0, because
1481  * operations on the tree might require changing key pointers higher up in the
1482  * tree.
1483  *
1484  * callers might also have set path->keep_locks, which tells this code to keep
1485  * the lock if the path points to the last slot in the block.  This is part of
1486  * walking through the tree, and selecting the next slot in the higher block.
1487  *
1488  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1489  * if lowest_unlock is 1, level 0 won't be unlocked
1490  */
1491 static noinline void unlock_up(struct btrfs_path *path, int level,
1492 			       int lowest_unlock)
1493 {
1494 	int i;
1495 	int skip_level = level;
1496 	int no_skips = 0;
1497 	struct extent_buffer *t;
1498 
1499 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1500 		if (!path->nodes[i])
1501 			break;
1502 		if (!path->locks[i])
1503 			break;
1504 		if (!no_skips && path->slots[i] == 0) {
1505 			skip_level = i + 1;
1506 			continue;
1507 		}
1508 		if (!no_skips && path->keep_locks) {
1509 			u32 nritems;
1510 			t = path->nodes[i];
1511 			nritems = btrfs_header_nritems(t);
1512 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1513 				skip_level = i + 1;
1514 				continue;
1515 			}
1516 		}
1517 		if (skip_level < i && i >= lowest_unlock)
1518 			no_skips = 1;
1519 
1520 		t = path->nodes[i];
1521 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1522 			btrfs_tree_unlock(t);
1523 			path->locks[i] = 0;
1524 		}
1525 	}
1526 }
1527 
1528 /*
1529  * This releases any locks held in the path starting at level and
1530  * going all the way up to the root.
1531  *
1532  * btrfs_search_slot will keep the lock held on higher nodes in a few
1533  * corner cases, such as COW of the block at slot zero in the node.  This
1534  * ignores those rules, and it should only be called when there are no
1535  * more updates to be done higher up in the tree.
1536  */
1537 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1538 {
1539 	int i;
1540 
1541 	if (path->keep_locks)
1542 		return;
1543 
1544 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1545 		if (!path->nodes[i])
1546 			continue;
1547 		if (!path->locks[i])
1548 			continue;
1549 		btrfs_tree_unlock(path->nodes[i]);
1550 		path->locks[i] = 0;
1551 	}
1552 }
1553 
1554 /*
1555  * helper function for btrfs_search_slot.  The goal is to find a block
1556  * in cache without setting the path to blocking.  If we find the block
1557  * we return zero and the path is unchanged.
1558  *
1559  * If we can't find the block, we set the path blocking and do some
1560  * reada.  -EAGAIN is returned and the search must be repeated.
1561  */
1562 static int
1563 read_block_for_search(struct btrfs_trans_handle *trans,
1564 		       struct btrfs_root *root, struct btrfs_path *p,
1565 		       struct extent_buffer **eb_ret, int level, int slot,
1566 		       struct btrfs_key *key)
1567 {
1568 	u64 blocknr;
1569 	u64 gen;
1570 	u32 blocksize;
1571 	struct extent_buffer *b = *eb_ret;
1572 	struct extent_buffer *tmp;
1573 	int ret;
1574 
1575 	blocknr = btrfs_node_blockptr(b, slot);
1576 	gen = btrfs_node_ptr_generation(b, slot);
1577 	blocksize = btrfs_level_size(root, level - 1);
1578 
1579 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1580 	if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1581 		/*
1582 		 * we found an up to date block without sleeping, return
1583 		 * right away
1584 		 */
1585 		*eb_ret = tmp;
1586 		return 0;
1587 	}
1588 
1589 	/*
1590 	 * reduce lock contention at high levels
1591 	 * of the btree by dropping locks before
1592 	 * we read.  Don't release the lock on the current
1593 	 * level because we need to walk this node to figure
1594 	 * out which blocks to read.
1595 	 */
1596 	btrfs_unlock_up_safe(p, level + 1);
1597 	btrfs_set_path_blocking(p);
1598 
1599 	if (tmp)
1600 		free_extent_buffer(tmp);
1601 	if (p->reada)
1602 		reada_for_search(root, p, level, slot, key->objectid);
1603 
1604 	btrfs_release_path(NULL, p);
1605 
1606 	ret = -EAGAIN;
1607 	tmp = read_tree_block(root, blocknr, blocksize, 0);
1608 	if (tmp) {
1609 		/*
1610 		 * If the read above didn't mark this buffer up to date,
1611 		 * it will never end up being up to date.  Set ret to EIO now
1612 		 * and give up so that our caller doesn't loop forever
1613 		 * on our EAGAINs.
1614 		 */
1615 		if (!btrfs_buffer_uptodate(tmp, 0))
1616 			ret = -EIO;
1617 		free_extent_buffer(tmp);
1618 	}
1619 	return ret;
1620 }
1621 
1622 /*
1623  * helper function for btrfs_search_slot.  This does all of the checks
1624  * for node-level blocks and does any balancing required based on
1625  * the ins_len.
1626  *
1627  * If no extra work was required, zero is returned.  If we had to
1628  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1629  * start over
1630  */
1631 static int
1632 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1633 		       struct btrfs_root *root, struct btrfs_path *p,
1634 		       struct extent_buffer *b, int level, int ins_len)
1635 {
1636 	int ret;
1637 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1638 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1639 		int sret;
1640 
1641 		sret = reada_for_balance(root, p, level);
1642 		if (sret)
1643 			goto again;
1644 
1645 		btrfs_set_path_blocking(p);
1646 		sret = split_node(trans, root, p, level);
1647 		btrfs_clear_path_blocking(p, NULL);
1648 
1649 		BUG_ON(sret > 0);
1650 		if (sret) {
1651 			ret = sret;
1652 			goto done;
1653 		}
1654 		b = p->nodes[level];
1655 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1656 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1657 		int sret;
1658 
1659 		sret = reada_for_balance(root, p, level);
1660 		if (sret)
1661 			goto again;
1662 
1663 		btrfs_set_path_blocking(p);
1664 		sret = balance_level(trans, root, p, level);
1665 		btrfs_clear_path_blocking(p, NULL);
1666 
1667 		if (sret) {
1668 			ret = sret;
1669 			goto done;
1670 		}
1671 		b = p->nodes[level];
1672 		if (!b) {
1673 			btrfs_release_path(NULL, p);
1674 			goto again;
1675 		}
1676 		BUG_ON(btrfs_header_nritems(b) == 1);
1677 	}
1678 	return 0;
1679 
1680 again:
1681 	ret = -EAGAIN;
1682 done:
1683 	return ret;
1684 }
1685 
1686 /*
1687  * look for key in the tree.  path is filled in with nodes along the way
1688  * if key is found, we return zero and you can find the item in the leaf
1689  * level of the path (level 0)
1690  *
1691  * If the key isn't found, the path points to the slot where it should
1692  * be inserted, and 1 is returned.  If there are other errors during the
1693  * search a negative error number is returned.
1694  *
1695  * if ins_len > 0, nodes and leaves will be split as we walk down the
1696  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1697  * possible)
1698  */
1699 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1700 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1701 		      ins_len, int cow)
1702 {
1703 	struct extent_buffer *b;
1704 	int slot;
1705 	int ret;
1706 	int err;
1707 	int level;
1708 	int lowest_unlock = 1;
1709 	u8 lowest_level = 0;
1710 
1711 	lowest_level = p->lowest_level;
1712 	WARN_ON(lowest_level && ins_len > 0);
1713 	WARN_ON(p->nodes[0] != NULL);
1714 
1715 	if (ins_len < 0)
1716 		lowest_unlock = 2;
1717 
1718 again:
1719 	if (p->search_commit_root) {
1720 		b = root->commit_root;
1721 		extent_buffer_get(b);
1722 		if (!p->skip_locking)
1723 			btrfs_tree_lock(b);
1724 	} else {
1725 		if (p->skip_locking)
1726 			b = btrfs_root_node(root);
1727 		else
1728 			b = btrfs_lock_root_node(root);
1729 	}
1730 
1731 	while (b) {
1732 		level = btrfs_header_level(b);
1733 
1734 		/*
1735 		 * setup the path here so we can release it under lock
1736 		 * contention with the cow code
1737 		 */
1738 		p->nodes[level] = b;
1739 		if (!p->skip_locking)
1740 			p->locks[level] = 1;
1741 
1742 		if (cow) {
1743 			/*
1744 			 * if we don't really need to cow this block
1745 			 * then we don't want to set the path blocking,
1746 			 * so we test it here
1747 			 */
1748 			if (!should_cow_block(trans, root, b))
1749 				goto cow_done;
1750 
1751 			btrfs_set_path_blocking(p);
1752 
1753 			err = btrfs_cow_block(trans, root, b,
1754 					      p->nodes[level + 1],
1755 					      p->slots[level + 1], &b);
1756 			if (err) {
1757 				ret = err;
1758 				goto done;
1759 			}
1760 		}
1761 cow_done:
1762 		BUG_ON(!cow && ins_len);
1763 		if (level != btrfs_header_level(b))
1764 			WARN_ON(1);
1765 		level = btrfs_header_level(b);
1766 
1767 		p->nodes[level] = b;
1768 		if (!p->skip_locking)
1769 			p->locks[level] = 1;
1770 
1771 		btrfs_clear_path_blocking(p, NULL);
1772 
1773 		/*
1774 		 * we have a lock on b and as long as we aren't changing
1775 		 * the tree, there is no way to for the items in b to change.
1776 		 * It is safe to drop the lock on our parent before we
1777 		 * go through the expensive btree search on b.
1778 		 *
1779 		 * If cow is true, then we might be changing slot zero,
1780 		 * which may require changing the parent.  So, we can't
1781 		 * drop the lock until after we know which slot we're
1782 		 * operating on.
1783 		 */
1784 		if (!cow)
1785 			btrfs_unlock_up_safe(p, level + 1);
1786 
1787 		ret = check_block(root, p, level);
1788 		if (ret) {
1789 			ret = -1;
1790 			goto done;
1791 		}
1792 
1793 		ret = bin_search(b, key, level, &slot);
1794 
1795 		if (level != 0) {
1796 			int dec = 0;
1797 			if (ret && slot > 0) {
1798 				dec = 1;
1799 				slot -= 1;
1800 			}
1801 			p->slots[level] = slot;
1802 			err = setup_nodes_for_search(trans, root, p, b, level,
1803 						     ins_len);
1804 			if (err == -EAGAIN)
1805 				goto again;
1806 			if (err) {
1807 				ret = err;
1808 				goto done;
1809 			}
1810 			b = p->nodes[level];
1811 			slot = p->slots[level];
1812 
1813 			unlock_up(p, level, lowest_unlock);
1814 
1815 			if (level == lowest_level) {
1816 				if (dec)
1817 					p->slots[level]++;
1818 				goto done;
1819 			}
1820 
1821 			err = read_block_for_search(trans, root, p,
1822 						    &b, level, slot, key);
1823 			if (err == -EAGAIN)
1824 				goto again;
1825 			if (err) {
1826 				ret = err;
1827 				goto done;
1828 			}
1829 
1830 			if (!p->skip_locking) {
1831 				btrfs_clear_path_blocking(p, NULL);
1832 				err = btrfs_try_spin_lock(b);
1833 
1834 				if (!err) {
1835 					btrfs_set_path_blocking(p);
1836 					btrfs_tree_lock(b);
1837 					btrfs_clear_path_blocking(p, b);
1838 				}
1839 			}
1840 		} else {
1841 			p->slots[level] = slot;
1842 			if (ins_len > 0 &&
1843 			    btrfs_leaf_free_space(root, b) < ins_len) {
1844 				btrfs_set_path_blocking(p);
1845 				err = split_leaf(trans, root, key,
1846 						 p, ins_len, ret == 0);
1847 				btrfs_clear_path_blocking(p, NULL);
1848 
1849 				BUG_ON(err > 0);
1850 				if (err) {
1851 					ret = err;
1852 					goto done;
1853 				}
1854 			}
1855 			if (!p->search_for_split)
1856 				unlock_up(p, level, lowest_unlock);
1857 			goto done;
1858 		}
1859 	}
1860 	ret = 1;
1861 done:
1862 	/*
1863 	 * we don't really know what they plan on doing with the path
1864 	 * from here on, so for now just mark it as blocking
1865 	 */
1866 	if (!p->leave_spinning)
1867 		btrfs_set_path_blocking(p);
1868 	if (ret < 0)
1869 		btrfs_release_path(root, p);
1870 	return ret;
1871 }
1872 
1873 /*
1874  * adjust the pointers going up the tree, starting at level
1875  * making sure the right key of each node is points to 'key'.
1876  * This is used after shifting pointers to the left, so it stops
1877  * fixing up pointers when a given leaf/node is not in slot 0 of the
1878  * higher levels
1879  *
1880  * If this fails to write a tree block, it returns -1, but continues
1881  * fixing up the blocks in ram so the tree is consistent.
1882  */
1883 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1884 			  struct btrfs_root *root, struct btrfs_path *path,
1885 			  struct btrfs_disk_key *key, int level)
1886 {
1887 	int i;
1888 	int ret = 0;
1889 	struct extent_buffer *t;
1890 
1891 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1892 		int tslot = path->slots[i];
1893 		if (!path->nodes[i])
1894 			break;
1895 		t = path->nodes[i];
1896 		btrfs_set_node_key(t, key, tslot);
1897 		btrfs_mark_buffer_dirty(path->nodes[i]);
1898 		if (tslot != 0)
1899 			break;
1900 	}
1901 	return ret;
1902 }
1903 
1904 /*
1905  * update item key.
1906  *
1907  * This function isn't completely safe. It's the caller's responsibility
1908  * that the new key won't break the order
1909  */
1910 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1911 			    struct btrfs_root *root, struct btrfs_path *path,
1912 			    struct btrfs_key *new_key)
1913 {
1914 	struct btrfs_disk_key disk_key;
1915 	struct extent_buffer *eb;
1916 	int slot;
1917 
1918 	eb = path->nodes[0];
1919 	slot = path->slots[0];
1920 	if (slot > 0) {
1921 		btrfs_item_key(eb, &disk_key, slot - 1);
1922 		if (comp_keys(&disk_key, new_key) >= 0)
1923 			return -1;
1924 	}
1925 	if (slot < btrfs_header_nritems(eb) - 1) {
1926 		btrfs_item_key(eb, &disk_key, slot + 1);
1927 		if (comp_keys(&disk_key, new_key) <= 0)
1928 			return -1;
1929 	}
1930 
1931 	btrfs_cpu_key_to_disk(&disk_key, new_key);
1932 	btrfs_set_item_key(eb, &disk_key, slot);
1933 	btrfs_mark_buffer_dirty(eb);
1934 	if (slot == 0)
1935 		fixup_low_keys(trans, root, path, &disk_key, 1);
1936 	return 0;
1937 }
1938 
1939 /*
1940  * try to push data from one node into the next node left in the
1941  * tree.
1942  *
1943  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1944  * error, and > 0 if there was no room in the left hand block.
1945  */
1946 static int push_node_left(struct btrfs_trans_handle *trans,
1947 			  struct btrfs_root *root, struct extent_buffer *dst,
1948 			  struct extent_buffer *src, int empty)
1949 {
1950 	int push_items = 0;
1951 	int src_nritems;
1952 	int dst_nritems;
1953 	int ret = 0;
1954 
1955 	src_nritems = btrfs_header_nritems(src);
1956 	dst_nritems = btrfs_header_nritems(dst);
1957 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1958 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1959 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1960 
1961 	if (!empty && src_nritems <= 8)
1962 		return 1;
1963 
1964 	if (push_items <= 0)
1965 		return 1;
1966 
1967 	if (empty) {
1968 		push_items = min(src_nritems, push_items);
1969 		if (push_items < src_nritems) {
1970 			/* leave at least 8 pointers in the node if
1971 			 * we aren't going to empty it
1972 			 */
1973 			if (src_nritems - push_items < 8) {
1974 				if (push_items <= 8)
1975 					return 1;
1976 				push_items -= 8;
1977 			}
1978 		}
1979 	} else
1980 		push_items = min(src_nritems - 8, push_items);
1981 
1982 	copy_extent_buffer(dst, src,
1983 			   btrfs_node_key_ptr_offset(dst_nritems),
1984 			   btrfs_node_key_ptr_offset(0),
1985 			   push_items * sizeof(struct btrfs_key_ptr));
1986 
1987 	if (push_items < src_nritems) {
1988 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1989 				      btrfs_node_key_ptr_offset(push_items),
1990 				      (src_nritems - push_items) *
1991 				      sizeof(struct btrfs_key_ptr));
1992 	}
1993 	btrfs_set_header_nritems(src, src_nritems - push_items);
1994 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1995 	btrfs_mark_buffer_dirty(src);
1996 	btrfs_mark_buffer_dirty(dst);
1997 
1998 	return ret;
1999 }
2000 
2001 /*
2002  * try to push data from one node into the next node right in the
2003  * tree.
2004  *
2005  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2006  * error, and > 0 if there was no room in the right hand block.
2007  *
2008  * this will  only push up to 1/2 the contents of the left node over
2009  */
2010 static int balance_node_right(struct btrfs_trans_handle *trans,
2011 			      struct btrfs_root *root,
2012 			      struct extent_buffer *dst,
2013 			      struct extent_buffer *src)
2014 {
2015 	int push_items = 0;
2016 	int max_push;
2017 	int src_nritems;
2018 	int dst_nritems;
2019 	int ret = 0;
2020 
2021 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2022 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2023 
2024 	src_nritems = btrfs_header_nritems(src);
2025 	dst_nritems = btrfs_header_nritems(dst);
2026 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2027 	if (push_items <= 0)
2028 		return 1;
2029 
2030 	if (src_nritems < 4)
2031 		return 1;
2032 
2033 	max_push = src_nritems / 2 + 1;
2034 	/* don't try to empty the node */
2035 	if (max_push >= src_nritems)
2036 		return 1;
2037 
2038 	if (max_push < push_items)
2039 		push_items = max_push;
2040 
2041 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2042 				      btrfs_node_key_ptr_offset(0),
2043 				      (dst_nritems) *
2044 				      sizeof(struct btrfs_key_ptr));
2045 
2046 	copy_extent_buffer(dst, src,
2047 			   btrfs_node_key_ptr_offset(0),
2048 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2049 			   push_items * sizeof(struct btrfs_key_ptr));
2050 
2051 	btrfs_set_header_nritems(src, src_nritems - push_items);
2052 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2053 
2054 	btrfs_mark_buffer_dirty(src);
2055 	btrfs_mark_buffer_dirty(dst);
2056 
2057 	return ret;
2058 }
2059 
2060 /*
2061  * helper function to insert a new root level in the tree.
2062  * A new node is allocated, and a single item is inserted to
2063  * point to the existing root
2064  *
2065  * returns zero on success or < 0 on failure.
2066  */
2067 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2068 			   struct btrfs_root *root,
2069 			   struct btrfs_path *path, int level)
2070 {
2071 	u64 lower_gen;
2072 	struct extent_buffer *lower;
2073 	struct extent_buffer *c;
2074 	struct extent_buffer *old;
2075 	struct btrfs_disk_key lower_key;
2076 
2077 	BUG_ON(path->nodes[level]);
2078 	BUG_ON(path->nodes[level-1] != root->node);
2079 
2080 	lower = path->nodes[level-1];
2081 	if (level == 1)
2082 		btrfs_item_key(lower, &lower_key, 0);
2083 	else
2084 		btrfs_node_key(lower, &lower_key, 0);
2085 
2086 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2087 				   root->root_key.objectid, &lower_key,
2088 				   level, root->node->start, 0);
2089 	if (IS_ERR(c))
2090 		return PTR_ERR(c);
2091 
2092 	root_add_used(root, root->nodesize);
2093 
2094 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2095 	btrfs_set_header_nritems(c, 1);
2096 	btrfs_set_header_level(c, level);
2097 	btrfs_set_header_bytenr(c, c->start);
2098 	btrfs_set_header_generation(c, trans->transid);
2099 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2100 	btrfs_set_header_owner(c, root->root_key.objectid);
2101 
2102 	write_extent_buffer(c, root->fs_info->fsid,
2103 			    (unsigned long)btrfs_header_fsid(c),
2104 			    BTRFS_FSID_SIZE);
2105 
2106 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2107 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2108 			    BTRFS_UUID_SIZE);
2109 
2110 	btrfs_set_node_key(c, &lower_key, 0);
2111 	btrfs_set_node_blockptr(c, 0, lower->start);
2112 	lower_gen = btrfs_header_generation(lower);
2113 	WARN_ON(lower_gen != trans->transid);
2114 
2115 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2116 
2117 	btrfs_mark_buffer_dirty(c);
2118 
2119 	spin_lock(&root->node_lock);
2120 	old = root->node;
2121 	root->node = c;
2122 	spin_unlock(&root->node_lock);
2123 
2124 	/* the super has an extra ref to root->node */
2125 	free_extent_buffer(old);
2126 
2127 	add_root_to_dirty_list(root);
2128 	extent_buffer_get(c);
2129 	path->nodes[level] = c;
2130 	path->locks[level] = 1;
2131 	path->slots[level] = 0;
2132 	return 0;
2133 }
2134 
2135 /*
2136  * worker function to insert a single pointer in a node.
2137  * the node should have enough room for the pointer already
2138  *
2139  * slot and level indicate where you want the key to go, and
2140  * blocknr is the block the key points to.
2141  *
2142  * returns zero on success and < 0 on any error
2143  */
2144 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2145 		      *root, struct btrfs_path *path, struct btrfs_disk_key
2146 		      *key, u64 bytenr, int slot, int level)
2147 {
2148 	struct extent_buffer *lower;
2149 	int nritems;
2150 
2151 	BUG_ON(!path->nodes[level]);
2152 	btrfs_assert_tree_locked(path->nodes[level]);
2153 	lower = path->nodes[level];
2154 	nritems = btrfs_header_nritems(lower);
2155 	BUG_ON(slot > nritems);
2156 	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2157 		BUG();
2158 	if (slot != nritems) {
2159 		memmove_extent_buffer(lower,
2160 			      btrfs_node_key_ptr_offset(slot + 1),
2161 			      btrfs_node_key_ptr_offset(slot),
2162 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2163 	}
2164 	btrfs_set_node_key(lower, key, slot);
2165 	btrfs_set_node_blockptr(lower, slot, bytenr);
2166 	WARN_ON(trans->transid == 0);
2167 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2168 	btrfs_set_header_nritems(lower, nritems + 1);
2169 	btrfs_mark_buffer_dirty(lower);
2170 	return 0;
2171 }
2172 
2173 /*
2174  * split the node at the specified level in path in two.
2175  * The path is corrected to point to the appropriate node after the split
2176  *
2177  * Before splitting this tries to make some room in the node by pushing
2178  * left and right, if either one works, it returns right away.
2179  *
2180  * returns 0 on success and < 0 on failure
2181  */
2182 static noinline int split_node(struct btrfs_trans_handle *trans,
2183 			       struct btrfs_root *root,
2184 			       struct btrfs_path *path, int level)
2185 {
2186 	struct extent_buffer *c;
2187 	struct extent_buffer *split;
2188 	struct btrfs_disk_key disk_key;
2189 	int mid;
2190 	int ret;
2191 	int wret;
2192 	u32 c_nritems;
2193 
2194 	c = path->nodes[level];
2195 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2196 	if (c == root->node) {
2197 		/* trying to split the root, lets make a new one */
2198 		ret = insert_new_root(trans, root, path, level + 1);
2199 		if (ret)
2200 			return ret;
2201 	} else {
2202 		ret = push_nodes_for_insert(trans, root, path, level);
2203 		c = path->nodes[level];
2204 		if (!ret && btrfs_header_nritems(c) <
2205 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2206 			return 0;
2207 		if (ret < 0)
2208 			return ret;
2209 	}
2210 
2211 	c_nritems = btrfs_header_nritems(c);
2212 	mid = (c_nritems + 1) / 2;
2213 	btrfs_node_key(c, &disk_key, mid);
2214 
2215 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2216 					root->root_key.objectid,
2217 					&disk_key, level, c->start, 0);
2218 	if (IS_ERR(split))
2219 		return PTR_ERR(split);
2220 
2221 	root_add_used(root, root->nodesize);
2222 
2223 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2224 	btrfs_set_header_level(split, btrfs_header_level(c));
2225 	btrfs_set_header_bytenr(split, split->start);
2226 	btrfs_set_header_generation(split, trans->transid);
2227 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2228 	btrfs_set_header_owner(split, root->root_key.objectid);
2229 	write_extent_buffer(split, root->fs_info->fsid,
2230 			    (unsigned long)btrfs_header_fsid(split),
2231 			    BTRFS_FSID_SIZE);
2232 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2233 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2234 			    BTRFS_UUID_SIZE);
2235 
2236 
2237 	copy_extent_buffer(split, c,
2238 			   btrfs_node_key_ptr_offset(0),
2239 			   btrfs_node_key_ptr_offset(mid),
2240 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2241 	btrfs_set_header_nritems(split, c_nritems - mid);
2242 	btrfs_set_header_nritems(c, mid);
2243 	ret = 0;
2244 
2245 	btrfs_mark_buffer_dirty(c);
2246 	btrfs_mark_buffer_dirty(split);
2247 
2248 	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2249 			  path->slots[level + 1] + 1,
2250 			  level + 1);
2251 	if (wret)
2252 		ret = wret;
2253 
2254 	if (path->slots[level] >= mid) {
2255 		path->slots[level] -= mid;
2256 		btrfs_tree_unlock(c);
2257 		free_extent_buffer(c);
2258 		path->nodes[level] = split;
2259 		path->slots[level + 1] += 1;
2260 	} else {
2261 		btrfs_tree_unlock(split);
2262 		free_extent_buffer(split);
2263 	}
2264 	return ret;
2265 }
2266 
2267 /*
2268  * how many bytes are required to store the items in a leaf.  start
2269  * and nr indicate which items in the leaf to check.  This totals up the
2270  * space used both by the item structs and the item data
2271  */
2272 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2273 {
2274 	int data_len;
2275 	int nritems = btrfs_header_nritems(l);
2276 	int end = min(nritems, start + nr) - 1;
2277 
2278 	if (!nr)
2279 		return 0;
2280 	data_len = btrfs_item_end_nr(l, start);
2281 	data_len = data_len - btrfs_item_offset_nr(l, end);
2282 	data_len += sizeof(struct btrfs_item) * nr;
2283 	WARN_ON(data_len < 0);
2284 	return data_len;
2285 }
2286 
2287 /*
2288  * The space between the end of the leaf items and
2289  * the start of the leaf data.  IOW, how much room
2290  * the leaf has left for both items and data
2291  */
2292 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2293 				   struct extent_buffer *leaf)
2294 {
2295 	int nritems = btrfs_header_nritems(leaf);
2296 	int ret;
2297 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2298 	if (ret < 0) {
2299 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2300 		       "used %d nritems %d\n",
2301 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2302 		       leaf_space_used(leaf, 0, nritems), nritems);
2303 	}
2304 	return ret;
2305 }
2306 
2307 /*
2308  * min slot controls the lowest index we're willing to push to the
2309  * right.  We'll push up to and including min_slot, but no lower
2310  */
2311 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2312 				      struct btrfs_root *root,
2313 				      struct btrfs_path *path,
2314 				      int data_size, int empty,
2315 				      struct extent_buffer *right,
2316 				      int free_space, u32 left_nritems,
2317 				      u32 min_slot)
2318 {
2319 	struct extent_buffer *left = path->nodes[0];
2320 	struct extent_buffer *upper = path->nodes[1];
2321 	struct btrfs_disk_key disk_key;
2322 	int slot;
2323 	u32 i;
2324 	int push_space = 0;
2325 	int push_items = 0;
2326 	struct btrfs_item *item;
2327 	u32 nr;
2328 	u32 right_nritems;
2329 	u32 data_end;
2330 	u32 this_item_size;
2331 
2332 	if (empty)
2333 		nr = 0;
2334 	else
2335 		nr = max_t(u32, 1, min_slot);
2336 
2337 	if (path->slots[0] >= left_nritems)
2338 		push_space += data_size;
2339 
2340 	slot = path->slots[1];
2341 	i = left_nritems - 1;
2342 	while (i >= nr) {
2343 		item = btrfs_item_nr(left, i);
2344 
2345 		if (!empty && push_items > 0) {
2346 			if (path->slots[0] > i)
2347 				break;
2348 			if (path->slots[0] == i) {
2349 				int space = btrfs_leaf_free_space(root, left);
2350 				if (space + push_space * 2 > free_space)
2351 					break;
2352 			}
2353 		}
2354 
2355 		if (path->slots[0] == i)
2356 			push_space += data_size;
2357 
2358 		if (!left->map_token) {
2359 			map_extent_buffer(left, (unsigned long)item,
2360 					sizeof(struct btrfs_item),
2361 					&left->map_token, &left->kaddr,
2362 					&left->map_start, &left->map_len,
2363 					KM_USER1);
2364 		}
2365 
2366 		this_item_size = btrfs_item_size(left, item);
2367 		if (this_item_size + sizeof(*item) + push_space > free_space)
2368 			break;
2369 
2370 		push_items++;
2371 		push_space += this_item_size + sizeof(*item);
2372 		if (i == 0)
2373 			break;
2374 		i--;
2375 	}
2376 	if (left->map_token) {
2377 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2378 		left->map_token = NULL;
2379 	}
2380 
2381 	if (push_items == 0)
2382 		goto out_unlock;
2383 
2384 	if (!empty && push_items == left_nritems)
2385 		WARN_ON(1);
2386 
2387 	/* push left to right */
2388 	right_nritems = btrfs_header_nritems(right);
2389 
2390 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2391 	push_space -= leaf_data_end(root, left);
2392 
2393 	/* make room in the right data area */
2394 	data_end = leaf_data_end(root, right);
2395 	memmove_extent_buffer(right,
2396 			      btrfs_leaf_data(right) + data_end - push_space,
2397 			      btrfs_leaf_data(right) + data_end,
2398 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2399 
2400 	/* copy from the left data area */
2401 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2402 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2403 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2404 		     push_space);
2405 
2406 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2407 			      btrfs_item_nr_offset(0),
2408 			      right_nritems * sizeof(struct btrfs_item));
2409 
2410 	/* copy the items from left to right */
2411 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2412 		   btrfs_item_nr_offset(left_nritems - push_items),
2413 		   push_items * sizeof(struct btrfs_item));
2414 
2415 	/* update the item pointers */
2416 	right_nritems += push_items;
2417 	btrfs_set_header_nritems(right, right_nritems);
2418 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2419 	for (i = 0; i < right_nritems; i++) {
2420 		item = btrfs_item_nr(right, i);
2421 		if (!right->map_token) {
2422 			map_extent_buffer(right, (unsigned long)item,
2423 					sizeof(struct btrfs_item),
2424 					&right->map_token, &right->kaddr,
2425 					&right->map_start, &right->map_len,
2426 					KM_USER1);
2427 		}
2428 		push_space -= btrfs_item_size(right, item);
2429 		btrfs_set_item_offset(right, item, push_space);
2430 	}
2431 
2432 	if (right->map_token) {
2433 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2434 		right->map_token = NULL;
2435 	}
2436 	left_nritems -= push_items;
2437 	btrfs_set_header_nritems(left, left_nritems);
2438 
2439 	if (left_nritems)
2440 		btrfs_mark_buffer_dirty(left);
2441 	else
2442 		clean_tree_block(trans, root, left);
2443 
2444 	btrfs_mark_buffer_dirty(right);
2445 
2446 	btrfs_item_key(right, &disk_key, 0);
2447 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2448 	btrfs_mark_buffer_dirty(upper);
2449 
2450 	/* then fixup the leaf pointer in the path */
2451 	if (path->slots[0] >= left_nritems) {
2452 		path->slots[0] -= left_nritems;
2453 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2454 			clean_tree_block(trans, root, path->nodes[0]);
2455 		btrfs_tree_unlock(path->nodes[0]);
2456 		free_extent_buffer(path->nodes[0]);
2457 		path->nodes[0] = right;
2458 		path->slots[1] += 1;
2459 	} else {
2460 		btrfs_tree_unlock(right);
2461 		free_extent_buffer(right);
2462 	}
2463 	return 0;
2464 
2465 out_unlock:
2466 	btrfs_tree_unlock(right);
2467 	free_extent_buffer(right);
2468 	return 1;
2469 }
2470 
2471 /*
2472  * push some data in the path leaf to the right, trying to free up at
2473  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2474  *
2475  * returns 1 if the push failed because the other node didn't have enough
2476  * room, 0 if everything worked out and < 0 if there were major errors.
2477  *
2478  * this will push starting from min_slot to the end of the leaf.  It won't
2479  * push any slot lower than min_slot
2480  */
2481 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2482 			   *root, struct btrfs_path *path,
2483 			   int min_data_size, int data_size,
2484 			   int empty, u32 min_slot)
2485 {
2486 	struct extent_buffer *left = path->nodes[0];
2487 	struct extent_buffer *right;
2488 	struct extent_buffer *upper;
2489 	int slot;
2490 	int free_space;
2491 	u32 left_nritems;
2492 	int ret;
2493 
2494 	if (!path->nodes[1])
2495 		return 1;
2496 
2497 	slot = path->slots[1];
2498 	upper = path->nodes[1];
2499 	if (slot >= btrfs_header_nritems(upper) - 1)
2500 		return 1;
2501 
2502 	btrfs_assert_tree_locked(path->nodes[1]);
2503 
2504 	right = read_node_slot(root, upper, slot + 1);
2505 	btrfs_tree_lock(right);
2506 	btrfs_set_lock_blocking(right);
2507 
2508 	free_space = btrfs_leaf_free_space(root, right);
2509 	if (free_space < data_size)
2510 		goto out_unlock;
2511 
2512 	/* cow and double check */
2513 	ret = btrfs_cow_block(trans, root, right, upper,
2514 			      slot + 1, &right);
2515 	if (ret)
2516 		goto out_unlock;
2517 
2518 	free_space = btrfs_leaf_free_space(root, right);
2519 	if (free_space < data_size)
2520 		goto out_unlock;
2521 
2522 	left_nritems = btrfs_header_nritems(left);
2523 	if (left_nritems == 0)
2524 		goto out_unlock;
2525 
2526 	return __push_leaf_right(trans, root, path, min_data_size, empty,
2527 				right, free_space, left_nritems, min_slot);
2528 out_unlock:
2529 	btrfs_tree_unlock(right);
2530 	free_extent_buffer(right);
2531 	return 1;
2532 }
2533 
2534 /*
2535  * push some data in the path leaf to the left, trying to free up at
2536  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2537  *
2538  * max_slot can put a limit on how far into the leaf we'll push items.  The
2539  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2540  * items
2541  */
2542 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2543 				     struct btrfs_root *root,
2544 				     struct btrfs_path *path, int data_size,
2545 				     int empty, struct extent_buffer *left,
2546 				     int free_space, u32 right_nritems,
2547 				     u32 max_slot)
2548 {
2549 	struct btrfs_disk_key disk_key;
2550 	struct extent_buffer *right = path->nodes[0];
2551 	int slot;
2552 	int i;
2553 	int push_space = 0;
2554 	int push_items = 0;
2555 	struct btrfs_item *item;
2556 	u32 old_left_nritems;
2557 	u32 nr;
2558 	int ret = 0;
2559 	int wret;
2560 	u32 this_item_size;
2561 	u32 old_left_item_size;
2562 
2563 	slot = path->slots[1];
2564 
2565 	if (empty)
2566 		nr = min(right_nritems, max_slot);
2567 	else
2568 		nr = min(right_nritems - 1, max_slot);
2569 
2570 	for (i = 0; i < nr; i++) {
2571 		item = btrfs_item_nr(right, i);
2572 		if (!right->map_token) {
2573 			map_extent_buffer(right, (unsigned long)item,
2574 					sizeof(struct btrfs_item),
2575 					&right->map_token, &right->kaddr,
2576 					&right->map_start, &right->map_len,
2577 					KM_USER1);
2578 		}
2579 
2580 		if (!empty && push_items > 0) {
2581 			if (path->slots[0] < i)
2582 				break;
2583 			if (path->slots[0] == i) {
2584 				int space = btrfs_leaf_free_space(root, right);
2585 				if (space + push_space * 2 > free_space)
2586 					break;
2587 			}
2588 		}
2589 
2590 		if (path->slots[0] == i)
2591 			push_space += data_size;
2592 
2593 		this_item_size = btrfs_item_size(right, item);
2594 		if (this_item_size + sizeof(*item) + push_space > free_space)
2595 			break;
2596 
2597 		push_items++;
2598 		push_space += this_item_size + sizeof(*item);
2599 	}
2600 
2601 	if (right->map_token) {
2602 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2603 		right->map_token = NULL;
2604 	}
2605 
2606 	if (push_items == 0) {
2607 		ret = 1;
2608 		goto out;
2609 	}
2610 	if (!empty && push_items == btrfs_header_nritems(right))
2611 		WARN_ON(1);
2612 
2613 	/* push data from right to left */
2614 	copy_extent_buffer(left, right,
2615 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2616 			   btrfs_item_nr_offset(0),
2617 			   push_items * sizeof(struct btrfs_item));
2618 
2619 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2620 		     btrfs_item_offset_nr(right, push_items - 1);
2621 
2622 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2623 		     leaf_data_end(root, left) - push_space,
2624 		     btrfs_leaf_data(right) +
2625 		     btrfs_item_offset_nr(right, push_items - 1),
2626 		     push_space);
2627 	old_left_nritems = btrfs_header_nritems(left);
2628 	BUG_ON(old_left_nritems <= 0);
2629 
2630 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2631 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2632 		u32 ioff;
2633 
2634 		item = btrfs_item_nr(left, i);
2635 		if (!left->map_token) {
2636 			map_extent_buffer(left, (unsigned long)item,
2637 					sizeof(struct btrfs_item),
2638 					&left->map_token, &left->kaddr,
2639 					&left->map_start, &left->map_len,
2640 					KM_USER1);
2641 		}
2642 
2643 		ioff = btrfs_item_offset(left, item);
2644 		btrfs_set_item_offset(left, item,
2645 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2646 	}
2647 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2648 	if (left->map_token) {
2649 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2650 		left->map_token = NULL;
2651 	}
2652 
2653 	/* fixup right node */
2654 	if (push_items > right_nritems) {
2655 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2656 		       right_nritems);
2657 		WARN_ON(1);
2658 	}
2659 
2660 	if (push_items < right_nritems) {
2661 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2662 						  leaf_data_end(root, right);
2663 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2664 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2665 				      btrfs_leaf_data(right) +
2666 				      leaf_data_end(root, right), push_space);
2667 
2668 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2669 			      btrfs_item_nr_offset(push_items),
2670 			     (btrfs_header_nritems(right) - push_items) *
2671 			     sizeof(struct btrfs_item));
2672 	}
2673 	right_nritems -= push_items;
2674 	btrfs_set_header_nritems(right, right_nritems);
2675 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2676 	for (i = 0; i < right_nritems; i++) {
2677 		item = btrfs_item_nr(right, i);
2678 
2679 		if (!right->map_token) {
2680 			map_extent_buffer(right, (unsigned long)item,
2681 					sizeof(struct btrfs_item),
2682 					&right->map_token, &right->kaddr,
2683 					&right->map_start, &right->map_len,
2684 					KM_USER1);
2685 		}
2686 
2687 		push_space = push_space - btrfs_item_size(right, item);
2688 		btrfs_set_item_offset(right, item, push_space);
2689 	}
2690 	if (right->map_token) {
2691 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2692 		right->map_token = NULL;
2693 	}
2694 
2695 	btrfs_mark_buffer_dirty(left);
2696 	if (right_nritems)
2697 		btrfs_mark_buffer_dirty(right);
2698 	else
2699 		clean_tree_block(trans, root, right);
2700 
2701 	btrfs_item_key(right, &disk_key, 0);
2702 	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2703 	if (wret)
2704 		ret = wret;
2705 
2706 	/* then fixup the leaf pointer in the path */
2707 	if (path->slots[0] < push_items) {
2708 		path->slots[0] += old_left_nritems;
2709 		btrfs_tree_unlock(path->nodes[0]);
2710 		free_extent_buffer(path->nodes[0]);
2711 		path->nodes[0] = left;
2712 		path->slots[1] -= 1;
2713 	} else {
2714 		btrfs_tree_unlock(left);
2715 		free_extent_buffer(left);
2716 		path->slots[0] -= push_items;
2717 	}
2718 	BUG_ON(path->slots[0] < 0);
2719 	return ret;
2720 out:
2721 	btrfs_tree_unlock(left);
2722 	free_extent_buffer(left);
2723 	return ret;
2724 }
2725 
2726 /*
2727  * push some data in the path leaf to the left, trying to free up at
2728  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2729  *
2730  * max_slot can put a limit on how far into the leaf we'll push items.  The
2731  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2732  * items
2733  */
2734 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2735 			  *root, struct btrfs_path *path, int min_data_size,
2736 			  int data_size, int empty, u32 max_slot)
2737 {
2738 	struct extent_buffer *right = path->nodes[0];
2739 	struct extent_buffer *left;
2740 	int slot;
2741 	int free_space;
2742 	u32 right_nritems;
2743 	int ret = 0;
2744 
2745 	slot = path->slots[1];
2746 	if (slot == 0)
2747 		return 1;
2748 	if (!path->nodes[1])
2749 		return 1;
2750 
2751 	right_nritems = btrfs_header_nritems(right);
2752 	if (right_nritems == 0)
2753 		return 1;
2754 
2755 	btrfs_assert_tree_locked(path->nodes[1]);
2756 
2757 	left = read_node_slot(root, path->nodes[1], slot - 1);
2758 	btrfs_tree_lock(left);
2759 	btrfs_set_lock_blocking(left);
2760 
2761 	free_space = btrfs_leaf_free_space(root, left);
2762 	if (free_space < data_size) {
2763 		ret = 1;
2764 		goto out;
2765 	}
2766 
2767 	/* cow and double check */
2768 	ret = btrfs_cow_block(trans, root, left,
2769 			      path->nodes[1], slot - 1, &left);
2770 	if (ret) {
2771 		/* we hit -ENOSPC, but it isn't fatal here */
2772 		ret = 1;
2773 		goto out;
2774 	}
2775 
2776 	free_space = btrfs_leaf_free_space(root, left);
2777 	if (free_space < data_size) {
2778 		ret = 1;
2779 		goto out;
2780 	}
2781 
2782 	return __push_leaf_left(trans, root, path, min_data_size,
2783 			       empty, left, free_space, right_nritems,
2784 			       max_slot);
2785 out:
2786 	btrfs_tree_unlock(left);
2787 	free_extent_buffer(left);
2788 	return ret;
2789 }
2790 
2791 /*
2792  * split the path's leaf in two, making sure there is at least data_size
2793  * available for the resulting leaf level of the path.
2794  *
2795  * returns 0 if all went well and < 0 on failure.
2796  */
2797 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2798 			       struct btrfs_root *root,
2799 			       struct btrfs_path *path,
2800 			       struct extent_buffer *l,
2801 			       struct extent_buffer *right,
2802 			       int slot, int mid, int nritems)
2803 {
2804 	int data_copy_size;
2805 	int rt_data_off;
2806 	int i;
2807 	int ret = 0;
2808 	int wret;
2809 	struct btrfs_disk_key disk_key;
2810 
2811 	nritems = nritems - mid;
2812 	btrfs_set_header_nritems(right, nritems);
2813 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2814 
2815 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2816 			   btrfs_item_nr_offset(mid),
2817 			   nritems * sizeof(struct btrfs_item));
2818 
2819 	copy_extent_buffer(right, l,
2820 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2821 		     data_copy_size, btrfs_leaf_data(l) +
2822 		     leaf_data_end(root, l), data_copy_size);
2823 
2824 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2825 		      btrfs_item_end_nr(l, mid);
2826 
2827 	for (i = 0; i < nritems; i++) {
2828 		struct btrfs_item *item = btrfs_item_nr(right, i);
2829 		u32 ioff;
2830 
2831 		if (!right->map_token) {
2832 			map_extent_buffer(right, (unsigned long)item,
2833 					sizeof(struct btrfs_item),
2834 					&right->map_token, &right->kaddr,
2835 					&right->map_start, &right->map_len,
2836 					KM_USER1);
2837 		}
2838 
2839 		ioff = btrfs_item_offset(right, item);
2840 		btrfs_set_item_offset(right, item, ioff + rt_data_off);
2841 	}
2842 
2843 	if (right->map_token) {
2844 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2845 		right->map_token = NULL;
2846 	}
2847 
2848 	btrfs_set_header_nritems(l, mid);
2849 	ret = 0;
2850 	btrfs_item_key(right, &disk_key, 0);
2851 	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2852 			  path->slots[1] + 1, 1);
2853 	if (wret)
2854 		ret = wret;
2855 
2856 	btrfs_mark_buffer_dirty(right);
2857 	btrfs_mark_buffer_dirty(l);
2858 	BUG_ON(path->slots[0] != slot);
2859 
2860 	if (mid <= slot) {
2861 		btrfs_tree_unlock(path->nodes[0]);
2862 		free_extent_buffer(path->nodes[0]);
2863 		path->nodes[0] = right;
2864 		path->slots[0] -= mid;
2865 		path->slots[1] += 1;
2866 	} else {
2867 		btrfs_tree_unlock(right);
2868 		free_extent_buffer(right);
2869 	}
2870 
2871 	BUG_ON(path->slots[0] < 0);
2872 
2873 	return ret;
2874 }
2875 
2876 /*
2877  * double splits happen when we need to insert a big item in the middle
2878  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2879  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2880  *          A                 B                 C
2881  *
2882  * We avoid this by trying to push the items on either side of our target
2883  * into the adjacent leaves.  If all goes well we can avoid the double split
2884  * completely.
2885  */
2886 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2887 					  struct btrfs_root *root,
2888 					  struct btrfs_path *path,
2889 					  int data_size)
2890 {
2891 	int ret;
2892 	int progress = 0;
2893 	int slot;
2894 	u32 nritems;
2895 
2896 	slot = path->slots[0];
2897 
2898 	/*
2899 	 * try to push all the items after our slot into the
2900 	 * right leaf
2901 	 */
2902 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2903 	if (ret < 0)
2904 		return ret;
2905 
2906 	if (ret == 0)
2907 		progress++;
2908 
2909 	nritems = btrfs_header_nritems(path->nodes[0]);
2910 	/*
2911 	 * our goal is to get our slot at the start or end of a leaf.  If
2912 	 * we've done so we're done
2913 	 */
2914 	if (path->slots[0] == 0 || path->slots[0] == nritems)
2915 		return 0;
2916 
2917 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2918 		return 0;
2919 
2920 	/* try to push all the items before our slot into the next leaf */
2921 	slot = path->slots[0];
2922 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2923 	if (ret < 0)
2924 		return ret;
2925 
2926 	if (ret == 0)
2927 		progress++;
2928 
2929 	if (progress)
2930 		return 0;
2931 	return 1;
2932 }
2933 
2934 /*
2935  * split the path's leaf in two, making sure there is at least data_size
2936  * available for the resulting leaf level of the path.
2937  *
2938  * returns 0 if all went well and < 0 on failure.
2939  */
2940 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2941 			       struct btrfs_root *root,
2942 			       struct btrfs_key *ins_key,
2943 			       struct btrfs_path *path, int data_size,
2944 			       int extend)
2945 {
2946 	struct btrfs_disk_key disk_key;
2947 	struct extent_buffer *l;
2948 	u32 nritems;
2949 	int mid;
2950 	int slot;
2951 	struct extent_buffer *right;
2952 	int ret = 0;
2953 	int wret;
2954 	int split;
2955 	int num_doubles = 0;
2956 	int tried_avoid_double = 0;
2957 
2958 	l = path->nodes[0];
2959 	slot = path->slots[0];
2960 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
2961 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2962 		return -EOVERFLOW;
2963 
2964 	/* first try to make some room by pushing left and right */
2965 	if (data_size) {
2966 		wret = push_leaf_right(trans, root, path, data_size,
2967 				       data_size, 0, 0);
2968 		if (wret < 0)
2969 			return wret;
2970 		if (wret) {
2971 			wret = push_leaf_left(trans, root, path, data_size,
2972 					      data_size, 0, (u32)-1);
2973 			if (wret < 0)
2974 				return wret;
2975 		}
2976 		l = path->nodes[0];
2977 
2978 		/* did the pushes work? */
2979 		if (btrfs_leaf_free_space(root, l) >= data_size)
2980 			return 0;
2981 	}
2982 
2983 	if (!path->nodes[1]) {
2984 		ret = insert_new_root(trans, root, path, 1);
2985 		if (ret)
2986 			return ret;
2987 	}
2988 again:
2989 	split = 1;
2990 	l = path->nodes[0];
2991 	slot = path->slots[0];
2992 	nritems = btrfs_header_nritems(l);
2993 	mid = (nritems + 1) / 2;
2994 
2995 	if (mid <= slot) {
2996 		if (nritems == 1 ||
2997 		    leaf_space_used(l, mid, nritems - mid) + data_size >
2998 			BTRFS_LEAF_DATA_SIZE(root)) {
2999 			if (slot >= nritems) {
3000 				split = 0;
3001 			} else {
3002 				mid = slot;
3003 				if (mid != nritems &&
3004 				    leaf_space_used(l, mid, nritems - mid) +
3005 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3006 					if (data_size && !tried_avoid_double)
3007 						goto push_for_double;
3008 					split = 2;
3009 				}
3010 			}
3011 		}
3012 	} else {
3013 		if (leaf_space_used(l, 0, mid) + data_size >
3014 			BTRFS_LEAF_DATA_SIZE(root)) {
3015 			if (!extend && data_size && slot == 0) {
3016 				split = 0;
3017 			} else if ((extend || !data_size) && slot == 0) {
3018 				mid = 1;
3019 			} else {
3020 				mid = slot;
3021 				if (mid != nritems &&
3022 				    leaf_space_used(l, mid, nritems - mid) +
3023 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3024 					if (data_size && !tried_avoid_double)
3025 						goto push_for_double;
3026 					split = 2 ;
3027 				}
3028 			}
3029 		}
3030 	}
3031 
3032 	if (split == 0)
3033 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3034 	else
3035 		btrfs_item_key(l, &disk_key, mid);
3036 
3037 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3038 					root->root_key.objectid,
3039 					&disk_key, 0, l->start, 0);
3040 	if (IS_ERR(right))
3041 		return PTR_ERR(right);
3042 
3043 	root_add_used(root, root->leafsize);
3044 
3045 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3046 	btrfs_set_header_bytenr(right, right->start);
3047 	btrfs_set_header_generation(right, trans->transid);
3048 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3049 	btrfs_set_header_owner(right, root->root_key.objectid);
3050 	btrfs_set_header_level(right, 0);
3051 	write_extent_buffer(right, root->fs_info->fsid,
3052 			    (unsigned long)btrfs_header_fsid(right),
3053 			    BTRFS_FSID_SIZE);
3054 
3055 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3056 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
3057 			    BTRFS_UUID_SIZE);
3058 
3059 	if (split == 0) {
3060 		if (mid <= slot) {
3061 			btrfs_set_header_nritems(right, 0);
3062 			wret = insert_ptr(trans, root, path,
3063 					  &disk_key, right->start,
3064 					  path->slots[1] + 1, 1);
3065 			if (wret)
3066 				ret = wret;
3067 
3068 			btrfs_tree_unlock(path->nodes[0]);
3069 			free_extent_buffer(path->nodes[0]);
3070 			path->nodes[0] = right;
3071 			path->slots[0] = 0;
3072 			path->slots[1] += 1;
3073 		} else {
3074 			btrfs_set_header_nritems(right, 0);
3075 			wret = insert_ptr(trans, root, path,
3076 					  &disk_key,
3077 					  right->start,
3078 					  path->slots[1], 1);
3079 			if (wret)
3080 				ret = wret;
3081 			btrfs_tree_unlock(path->nodes[0]);
3082 			free_extent_buffer(path->nodes[0]);
3083 			path->nodes[0] = right;
3084 			path->slots[0] = 0;
3085 			if (path->slots[1] == 0) {
3086 				wret = fixup_low_keys(trans, root,
3087 						path, &disk_key, 1);
3088 				if (wret)
3089 					ret = wret;
3090 			}
3091 		}
3092 		btrfs_mark_buffer_dirty(right);
3093 		return ret;
3094 	}
3095 
3096 	ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3097 	BUG_ON(ret);
3098 
3099 	if (split == 2) {
3100 		BUG_ON(num_doubles != 0);
3101 		num_doubles++;
3102 		goto again;
3103 	}
3104 
3105 	return ret;
3106 
3107 push_for_double:
3108 	push_for_double_split(trans, root, path, data_size);
3109 	tried_avoid_double = 1;
3110 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3111 		return 0;
3112 	goto again;
3113 }
3114 
3115 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3116 					 struct btrfs_root *root,
3117 					 struct btrfs_path *path, int ins_len)
3118 {
3119 	struct btrfs_key key;
3120 	struct extent_buffer *leaf;
3121 	struct btrfs_file_extent_item *fi;
3122 	u64 extent_len = 0;
3123 	u32 item_size;
3124 	int ret;
3125 
3126 	leaf = path->nodes[0];
3127 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3128 
3129 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3130 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3131 
3132 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3133 		return 0;
3134 
3135 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3136 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3137 		fi = btrfs_item_ptr(leaf, path->slots[0],
3138 				    struct btrfs_file_extent_item);
3139 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3140 	}
3141 	btrfs_release_path(root, path);
3142 
3143 	path->keep_locks = 1;
3144 	path->search_for_split = 1;
3145 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3146 	path->search_for_split = 0;
3147 	if (ret < 0)
3148 		goto err;
3149 
3150 	ret = -EAGAIN;
3151 	leaf = path->nodes[0];
3152 	/* if our item isn't there or got smaller, return now */
3153 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3154 		goto err;
3155 
3156 	/* the leaf has  changed, it now has room.  return now */
3157 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3158 		goto err;
3159 
3160 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3161 		fi = btrfs_item_ptr(leaf, path->slots[0],
3162 				    struct btrfs_file_extent_item);
3163 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3164 			goto err;
3165 	}
3166 
3167 	btrfs_set_path_blocking(path);
3168 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3169 	if (ret)
3170 		goto err;
3171 
3172 	path->keep_locks = 0;
3173 	btrfs_unlock_up_safe(path, 1);
3174 	return 0;
3175 err:
3176 	path->keep_locks = 0;
3177 	return ret;
3178 }
3179 
3180 static noinline int split_item(struct btrfs_trans_handle *trans,
3181 			       struct btrfs_root *root,
3182 			       struct btrfs_path *path,
3183 			       struct btrfs_key *new_key,
3184 			       unsigned long split_offset)
3185 {
3186 	struct extent_buffer *leaf;
3187 	struct btrfs_item *item;
3188 	struct btrfs_item *new_item;
3189 	int slot;
3190 	char *buf;
3191 	u32 nritems;
3192 	u32 item_size;
3193 	u32 orig_offset;
3194 	struct btrfs_disk_key disk_key;
3195 
3196 	leaf = path->nodes[0];
3197 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3198 
3199 	btrfs_set_path_blocking(path);
3200 
3201 	item = btrfs_item_nr(leaf, path->slots[0]);
3202 	orig_offset = btrfs_item_offset(leaf, item);
3203 	item_size = btrfs_item_size(leaf, item);
3204 
3205 	buf = kmalloc(item_size, GFP_NOFS);
3206 	if (!buf)
3207 		return -ENOMEM;
3208 
3209 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3210 			    path->slots[0]), item_size);
3211 
3212 	slot = path->slots[0] + 1;
3213 	nritems = btrfs_header_nritems(leaf);
3214 	if (slot != nritems) {
3215 		/* shift the items */
3216 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3217 				btrfs_item_nr_offset(slot),
3218 				(nritems - slot) * sizeof(struct btrfs_item));
3219 	}
3220 
3221 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3222 	btrfs_set_item_key(leaf, &disk_key, slot);
3223 
3224 	new_item = btrfs_item_nr(leaf, slot);
3225 
3226 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3227 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3228 
3229 	btrfs_set_item_offset(leaf, item,
3230 			      orig_offset + item_size - split_offset);
3231 	btrfs_set_item_size(leaf, item, split_offset);
3232 
3233 	btrfs_set_header_nritems(leaf, nritems + 1);
3234 
3235 	/* write the data for the start of the original item */
3236 	write_extent_buffer(leaf, buf,
3237 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3238 			    split_offset);
3239 
3240 	/* write the data for the new item */
3241 	write_extent_buffer(leaf, buf + split_offset,
3242 			    btrfs_item_ptr_offset(leaf, slot),
3243 			    item_size - split_offset);
3244 	btrfs_mark_buffer_dirty(leaf);
3245 
3246 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3247 	kfree(buf);
3248 	return 0;
3249 }
3250 
3251 /*
3252  * This function splits a single item into two items,
3253  * giving 'new_key' to the new item and splitting the
3254  * old one at split_offset (from the start of the item).
3255  *
3256  * The path may be released by this operation.  After
3257  * the split, the path is pointing to the old item.  The
3258  * new item is going to be in the same node as the old one.
3259  *
3260  * Note, the item being split must be smaller enough to live alone on
3261  * a tree block with room for one extra struct btrfs_item
3262  *
3263  * This allows us to split the item in place, keeping a lock on the
3264  * leaf the entire time.
3265  */
3266 int btrfs_split_item(struct btrfs_trans_handle *trans,
3267 		     struct btrfs_root *root,
3268 		     struct btrfs_path *path,
3269 		     struct btrfs_key *new_key,
3270 		     unsigned long split_offset)
3271 {
3272 	int ret;
3273 	ret = setup_leaf_for_split(trans, root, path,
3274 				   sizeof(struct btrfs_item));
3275 	if (ret)
3276 		return ret;
3277 
3278 	ret = split_item(trans, root, path, new_key, split_offset);
3279 	return ret;
3280 }
3281 
3282 /*
3283  * This function duplicate a item, giving 'new_key' to the new item.
3284  * It guarantees both items live in the same tree leaf and the new item
3285  * is contiguous with the original item.
3286  *
3287  * This allows us to split file extent in place, keeping a lock on the
3288  * leaf the entire time.
3289  */
3290 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3291 			 struct btrfs_root *root,
3292 			 struct btrfs_path *path,
3293 			 struct btrfs_key *new_key)
3294 {
3295 	struct extent_buffer *leaf;
3296 	int ret;
3297 	u32 item_size;
3298 
3299 	leaf = path->nodes[0];
3300 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3301 	ret = setup_leaf_for_split(trans, root, path,
3302 				   item_size + sizeof(struct btrfs_item));
3303 	if (ret)
3304 		return ret;
3305 
3306 	path->slots[0]++;
3307 	ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3308 				     item_size, item_size +
3309 				     sizeof(struct btrfs_item), 1);
3310 	BUG_ON(ret);
3311 
3312 	leaf = path->nodes[0];
3313 	memcpy_extent_buffer(leaf,
3314 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3315 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3316 			     item_size);
3317 	return 0;
3318 }
3319 
3320 /*
3321  * make the item pointed to by the path smaller.  new_size indicates
3322  * how small to make it, and from_end tells us if we just chop bytes
3323  * off the end of the item or if we shift the item to chop bytes off
3324  * the front.
3325  */
3326 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3327 			struct btrfs_root *root,
3328 			struct btrfs_path *path,
3329 			u32 new_size, int from_end)
3330 {
3331 	int ret = 0;
3332 	int slot;
3333 	int slot_orig;
3334 	struct extent_buffer *leaf;
3335 	struct btrfs_item *item;
3336 	u32 nritems;
3337 	unsigned int data_end;
3338 	unsigned int old_data_start;
3339 	unsigned int old_size;
3340 	unsigned int size_diff;
3341 	int i;
3342 
3343 	slot_orig = path->slots[0];
3344 	leaf = path->nodes[0];
3345 	slot = path->slots[0];
3346 
3347 	old_size = btrfs_item_size_nr(leaf, slot);
3348 	if (old_size == new_size)
3349 		return 0;
3350 
3351 	nritems = btrfs_header_nritems(leaf);
3352 	data_end = leaf_data_end(root, leaf);
3353 
3354 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3355 
3356 	size_diff = old_size - new_size;
3357 
3358 	BUG_ON(slot < 0);
3359 	BUG_ON(slot >= nritems);
3360 
3361 	/*
3362 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3363 	 */
3364 	/* first correct the data pointers */
3365 	for (i = slot; i < nritems; i++) {
3366 		u32 ioff;
3367 		item = btrfs_item_nr(leaf, i);
3368 
3369 		if (!leaf->map_token) {
3370 			map_extent_buffer(leaf, (unsigned long)item,
3371 					sizeof(struct btrfs_item),
3372 					&leaf->map_token, &leaf->kaddr,
3373 					&leaf->map_start, &leaf->map_len,
3374 					KM_USER1);
3375 		}
3376 
3377 		ioff = btrfs_item_offset(leaf, item);
3378 		btrfs_set_item_offset(leaf, item, ioff + size_diff);
3379 	}
3380 
3381 	if (leaf->map_token) {
3382 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3383 		leaf->map_token = NULL;
3384 	}
3385 
3386 	/* shift the data */
3387 	if (from_end) {
3388 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3389 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3390 			      data_end, old_data_start + new_size - data_end);
3391 	} else {
3392 		struct btrfs_disk_key disk_key;
3393 		u64 offset;
3394 
3395 		btrfs_item_key(leaf, &disk_key, slot);
3396 
3397 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3398 			unsigned long ptr;
3399 			struct btrfs_file_extent_item *fi;
3400 
3401 			fi = btrfs_item_ptr(leaf, slot,
3402 					    struct btrfs_file_extent_item);
3403 			fi = (struct btrfs_file_extent_item *)(
3404 			     (unsigned long)fi - size_diff);
3405 
3406 			if (btrfs_file_extent_type(leaf, fi) ==
3407 			    BTRFS_FILE_EXTENT_INLINE) {
3408 				ptr = btrfs_item_ptr_offset(leaf, slot);
3409 				memmove_extent_buffer(leaf, ptr,
3410 				      (unsigned long)fi,
3411 				      offsetof(struct btrfs_file_extent_item,
3412 						 disk_bytenr));
3413 			}
3414 		}
3415 
3416 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3417 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3418 			      data_end, old_data_start - data_end);
3419 
3420 		offset = btrfs_disk_key_offset(&disk_key);
3421 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3422 		btrfs_set_item_key(leaf, &disk_key, slot);
3423 		if (slot == 0)
3424 			fixup_low_keys(trans, root, path, &disk_key, 1);
3425 	}
3426 
3427 	item = btrfs_item_nr(leaf, slot);
3428 	btrfs_set_item_size(leaf, item, new_size);
3429 	btrfs_mark_buffer_dirty(leaf);
3430 
3431 	ret = 0;
3432 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3433 		btrfs_print_leaf(root, leaf);
3434 		BUG();
3435 	}
3436 	return ret;
3437 }
3438 
3439 /*
3440  * make the item pointed to by the path bigger, data_size is the new size.
3441  */
3442 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3443 		      struct btrfs_root *root, struct btrfs_path *path,
3444 		      u32 data_size)
3445 {
3446 	int ret = 0;
3447 	int slot;
3448 	int slot_orig;
3449 	struct extent_buffer *leaf;
3450 	struct btrfs_item *item;
3451 	u32 nritems;
3452 	unsigned int data_end;
3453 	unsigned int old_data;
3454 	unsigned int old_size;
3455 	int i;
3456 
3457 	slot_orig = path->slots[0];
3458 	leaf = path->nodes[0];
3459 
3460 	nritems = btrfs_header_nritems(leaf);
3461 	data_end = leaf_data_end(root, leaf);
3462 
3463 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3464 		btrfs_print_leaf(root, leaf);
3465 		BUG();
3466 	}
3467 	slot = path->slots[0];
3468 	old_data = btrfs_item_end_nr(leaf, slot);
3469 
3470 	BUG_ON(slot < 0);
3471 	if (slot >= nritems) {
3472 		btrfs_print_leaf(root, leaf);
3473 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3474 		       slot, nritems);
3475 		BUG_ON(1);
3476 	}
3477 
3478 	/*
3479 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3480 	 */
3481 	/* first correct the data pointers */
3482 	for (i = slot; i < nritems; i++) {
3483 		u32 ioff;
3484 		item = btrfs_item_nr(leaf, i);
3485 
3486 		if (!leaf->map_token) {
3487 			map_extent_buffer(leaf, (unsigned long)item,
3488 					sizeof(struct btrfs_item),
3489 					&leaf->map_token, &leaf->kaddr,
3490 					&leaf->map_start, &leaf->map_len,
3491 					KM_USER1);
3492 		}
3493 		ioff = btrfs_item_offset(leaf, item);
3494 		btrfs_set_item_offset(leaf, item, ioff - data_size);
3495 	}
3496 
3497 	if (leaf->map_token) {
3498 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3499 		leaf->map_token = NULL;
3500 	}
3501 
3502 	/* shift the data */
3503 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3504 		      data_end - data_size, btrfs_leaf_data(leaf) +
3505 		      data_end, old_data - data_end);
3506 
3507 	data_end = old_data;
3508 	old_size = btrfs_item_size_nr(leaf, slot);
3509 	item = btrfs_item_nr(leaf, slot);
3510 	btrfs_set_item_size(leaf, item, old_size + data_size);
3511 	btrfs_mark_buffer_dirty(leaf);
3512 
3513 	ret = 0;
3514 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3515 		btrfs_print_leaf(root, leaf);
3516 		BUG();
3517 	}
3518 	return ret;
3519 }
3520 
3521 /*
3522  * Given a key and some data, insert items into the tree.
3523  * This does all the path init required, making room in the tree if needed.
3524  * Returns the number of keys that were inserted.
3525  */
3526 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3527 			    struct btrfs_root *root,
3528 			    struct btrfs_path *path,
3529 			    struct btrfs_key *cpu_key, u32 *data_size,
3530 			    int nr)
3531 {
3532 	struct extent_buffer *leaf;
3533 	struct btrfs_item *item;
3534 	int ret = 0;
3535 	int slot;
3536 	int i;
3537 	u32 nritems;
3538 	u32 total_data = 0;
3539 	u32 total_size = 0;
3540 	unsigned int data_end;
3541 	struct btrfs_disk_key disk_key;
3542 	struct btrfs_key found_key;
3543 
3544 	for (i = 0; i < nr; i++) {
3545 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3546 		    BTRFS_LEAF_DATA_SIZE(root)) {
3547 			break;
3548 			nr = i;
3549 		}
3550 		total_data += data_size[i];
3551 		total_size += data_size[i] + sizeof(struct btrfs_item);
3552 	}
3553 	BUG_ON(nr == 0);
3554 
3555 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3556 	if (ret == 0)
3557 		return -EEXIST;
3558 	if (ret < 0)
3559 		goto out;
3560 
3561 	leaf = path->nodes[0];
3562 
3563 	nritems = btrfs_header_nritems(leaf);
3564 	data_end = leaf_data_end(root, leaf);
3565 
3566 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3567 		for (i = nr; i >= 0; i--) {
3568 			total_data -= data_size[i];
3569 			total_size -= data_size[i] + sizeof(struct btrfs_item);
3570 			if (total_size < btrfs_leaf_free_space(root, leaf))
3571 				break;
3572 		}
3573 		nr = i;
3574 	}
3575 
3576 	slot = path->slots[0];
3577 	BUG_ON(slot < 0);
3578 
3579 	if (slot != nritems) {
3580 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3581 
3582 		item = btrfs_item_nr(leaf, slot);
3583 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3584 
3585 		/* figure out how many keys we can insert in here */
3586 		total_data = data_size[0];
3587 		for (i = 1; i < nr; i++) {
3588 			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3589 				break;
3590 			total_data += data_size[i];
3591 		}
3592 		nr = i;
3593 
3594 		if (old_data < data_end) {
3595 			btrfs_print_leaf(root, leaf);
3596 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3597 			       slot, old_data, data_end);
3598 			BUG_ON(1);
3599 		}
3600 		/*
3601 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3602 		 */
3603 		/* first correct the data pointers */
3604 		WARN_ON(leaf->map_token);
3605 		for (i = slot; i < nritems; i++) {
3606 			u32 ioff;
3607 
3608 			item = btrfs_item_nr(leaf, i);
3609 			if (!leaf->map_token) {
3610 				map_extent_buffer(leaf, (unsigned long)item,
3611 					sizeof(struct btrfs_item),
3612 					&leaf->map_token, &leaf->kaddr,
3613 					&leaf->map_start, &leaf->map_len,
3614 					KM_USER1);
3615 			}
3616 
3617 			ioff = btrfs_item_offset(leaf, item);
3618 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3619 		}
3620 		if (leaf->map_token) {
3621 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3622 			leaf->map_token = NULL;
3623 		}
3624 
3625 		/* shift the items */
3626 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3627 			      btrfs_item_nr_offset(slot),
3628 			      (nritems - slot) * sizeof(struct btrfs_item));
3629 
3630 		/* shift the data */
3631 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3632 			      data_end - total_data, btrfs_leaf_data(leaf) +
3633 			      data_end, old_data - data_end);
3634 		data_end = old_data;
3635 	} else {
3636 		/*
3637 		 * this sucks but it has to be done, if we are inserting at
3638 		 * the end of the leaf only insert 1 of the items, since we
3639 		 * have no way of knowing whats on the next leaf and we'd have
3640 		 * to drop our current locks to figure it out
3641 		 */
3642 		nr = 1;
3643 	}
3644 
3645 	/* setup the item for the new data */
3646 	for (i = 0; i < nr; i++) {
3647 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3648 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3649 		item = btrfs_item_nr(leaf, slot + i);
3650 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3651 		data_end -= data_size[i];
3652 		btrfs_set_item_size(leaf, item, data_size[i]);
3653 	}
3654 	btrfs_set_header_nritems(leaf, nritems + nr);
3655 	btrfs_mark_buffer_dirty(leaf);
3656 
3657 	ret = 0;
3658 	if (slot == 0) {
3659 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3660 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3661 	}
3662 
3663 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3664 		btrfs_print_leaf(root, leaf);
3665 		BUG();
3666 	}
3667 out:
3668 	if (!ret)
3669 		ret = nr;
3670 	return ret;
3671 }
3672 
3673 /*
3674  * this is a helper for btrfs_insert_empty_items, the main goal here is
3675  * to save stack depth by doing the bulk of the work in a function
3676  * that doesn't call btrfs_search_slot
3677  */
3678 static noinline_for_stack int
3679 setup_items_for_insert(struct btrfs_trans_handle *trans,
3680 		      struct btrfs_root *root, struct btrfs_path *path,
3681 		      struct btrfs_key *cpu_key, u32 *data_size,
3682 		      u32 total_data, u32 total_size, int nr)
3683 {
3684 	struct btrfs_item *item;
3685 	int i;
3686 	u32 nritems;
3687 	unsigned int data_end;
3688 	struct btrfs_disk_key disk_key;
3689 	int ret;
3690 	struct extent_buffer *leaf;
3691 	int slot;
3692 
3693 	leaf = path->nodes[0];
3694 	slot = path->slots[0];
3695 
3696 	nritems = btrfs_header_nritems(leaf);
3697 	data_end = leaf_data_end(root, leaf);
3698 
3699 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3700 		btrfs_print_leaf(root, leaf);
3701 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3702 		       total_size, btrfs_leaf_free_space(root, leaf));
3703 		BUG();
3704 	}
3705 
3706 	if (slot != nritems) {
3707 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3708 
3709 		if (old_data < data_end) {
3710 			btrfs_print_leaf(root, leaf);
3711 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3712 			       slot, old_data, data_end);
3713 			BUG_ON(1);
3714 		}
3715 		/*
3716 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3717 		 */
3718 		/* first correct the data pointers */
3719 		WARN_ON(leaf->map_token);
3720 		for (i = slot; i < nritems; i++) {
3721 			u32 ioff;
3722 
3723 			item = btrfs_item_nr(leaf, i);
3724 			if (!leaf->map_token) {
3725 				map_extent_buffer(leaf, (unsigned long)item,
3726 					sizeof(struct btrfs_item),
3727 					&leaf->map_token, &leaf->kaddr,
3728 					&leaf->map_start, &leaf->map_len,
3729 					KM_USER1);
3730 			}
3731 
3732 			ioff = btrfs_item_offset(leaf, item);
3733 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3734 		}
3735 		if (leaf->map_token) {
3736 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3737 			leaf->map_token = NULL;
3738 		}
3739 
3740 		/* shift the items */
3741 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3742 			      btrfs_item_nr_offset(slot),
3743 			      (nritems - slot) * sizeof(struct btrfs_item));
3744 
3745 		/* shift the data */
3746 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3747 			      data_end - total_data, btrfs_leaf_data(leaf) +
3748 			      data_end, old_data - data_end);
3749 		data_end = old_data;
3750 	}
3751 
3752 	/* setup the item for the new data */
3753 	for (i = 0; i < nr; i++) {
3754 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3755 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3756 		item = btrfs_item_nr(leaf, slot + i);
3757 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3758 		data_end -= data_size[i];
3759 		btrfs_set_item_size(leaf, item, data_size[i]);
3760 	}
3761 
3762 	btrfs_set_header_nritems(leaf, nritems + nr);
3763 
3764 	ret = 0;
3765 	if (slot == 0) {
3766 		struct btrfs_disk_key disk_key;
3767 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3768 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3769 	}
3770 	btrfs_unlock_up_safe(path, 1);
3771 	btrfs_mark_buffer_dirty(leaf);
3772 
3773 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3774 		btrfs_print_leaf(root, leaf);
3775 		BUG();
3776 	}
3777 	return ret;
3778 }
3779 
3780 /*
3781  * Given a key and some data, insert items into the tree.
3782  * This does all the path init required, making room in the tree if needed.
3783  */
3784 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3785 			    struct btrfs_root *root,
3786 			    struct btrfs_path *path,
3787 			    struct btrfs_key *cpu_key, u32 *data_size,
3788 			    int nr)
3789 {
3790 	struct extent_buffer *leaf;
3791 	int ret = 0;
3792 	int slot;
3793 	int i;
3794 	u32 total_size = 0;
3795 	u32 total_data = 0;
3796 
3797 	for (i = 0; i < nr; i++)
3798 		total_data += data_size[i];
3799 
3800 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3801 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3802 	if (ret == 0)
3803 		return -EEXIST;
3804 	if (ret < 0)
3805 		goto out;
3806 
3807 	leaf = path->nodes[0];
3808 	slot = path->slots[0];
3809 	BUG_ON(slot < 0);
3810 
3811 	ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3812 			       total_data, total_size, nr);
3813 
3814 out:
3815 	return ret;
3816 }
3817 
3818 /*
3819  * Given a key and some data, insert an item into the tree.
3820  * This does all the path init required, making room in the tree if needed.
3821  */
3822 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3823 		      *root, struct btrfs_key *cpu_key, void *data, u32
3824 		      data_size)
3825 {
3826 	int ret = 0;
3827 	struct btrfs_path *path;
3828 	struct extent_buffer *leaf;
3829 	unsigned long ptr;
3830 
3831 	path = btrfs_alloc_path();
3832 	BUG_ON(!path);
3833 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3834 	if (!ret) {
3835 		leaf = path->nodes[0];
3836 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3837 		write_extent_buffer(leaf, data, ptr, data_size);
3838 		btrfs_mark_buffer_dirty(leaf);
3839 	}
3840 	btrfs_free_path(path);
3841 	return ret;
3842 }
3843 
3844 /*
3845  * delete the pointer from a given node.
3846  *
3847  * the tree should have been previously balanced so the deletion does not
3848  * empty a node.
3849  */
3850 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3851 		   struct btrfs_path *path, int level, int slot)
3852 {
3853 	struct extent_buffer *parent = path->nodes[level];
3854 	u32 nritems;
3855 	int ret = 0;
3856 	int wret;
3857 
3858 	nritems = btrfs_header_nritems(parent);
3859 	if (slot != nritems - 1) {
3860 		memmove_extent_buffer(parent,
3861 			      btrfs_node_key_ptr_offset(slot),
3862 			      btrfs_node_key_ptr_offset(slot + 1),
3863 			      sizeof(struct btrfs_key_ptr) *
3864 			      (nritems - slot - 1));
3865 	}
3866 	nritems--;
3867 	btrfs_set_header_nritems(parent, nritems);
3868 	if (nritems == 0 && parent == root->node) {
3869 		BUG_ON(btrfs_header_level(root->node) != 1);
3870 		/* just turn the root into a leaf and break */
3871 		btrfs_set_header_level(root->node, 0);
3872 	} else if (slot == 0) {
3873 		struct btrfs_disk_key disk_key;
3874 
3875 		btrfs_node_key(parent, &disk_key, 0);
3876 		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3877 		if (wret)
3878 			ret = wret;
3879 	}
3880 	btrfs_mark_buffer_dirty(parent);
3881 	return ret;
3882 }
3883 
3884 /*
3885  * a helper function to delete the leaf pointed to by path->slots[1] and
3886  * path->nodes[1].
3887  *
3888  * This deletes the pointer in path->nodes[1] and frees the leaf
3889  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3890  *
3891  * The path must have already been setup for deleting the leaf, including
3892  * all the proper balancing.  path->nodes[1] must be locked.
3893  */
3894 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3895 				   struct btrfs_root *root,
3896 				   struct btrfs_path *path,
3897 				   struct extent_buffer *leaf)
3898 {
3899 	int ret;
3900 
3901 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3902 	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3903 	if (ret)
3904 		return ret;
3905 
3906 	/*
3907 	 * btrfs_free_extent is expensive, we want to make sure we
3908 	 * aren't holding any locks when we call it
3909 	 */
3910 	btrfs_unlock_up_safe(path, 0);
3911 
3912 	root_sub_used(root, leaf->len);
3913 
3914 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
3915 	return 0;
3916 }
3917 /*
3918  * delete the item at the leaf level in path.  If that empties
3919  * the leaf, remove it from the tree
3920  */
3921 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3922 		    struct btrfs_path *path, int slot, int nr)
3923 {
3924 	struct extent_buffer *leaf;
3925 	struct btrfs_item *item;
3926 	int last_off;
3927 	int dsize = 0;
3928 	int ret = 0;
3929 	int wret;
3930 	int i;
3931 	u32 nritems;
3932 
3933 	leaf = path->nodes[0];
3934 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3935 
3936 	for (i = 0; i < nr; i++)
3937 		dsize += btrfs_item_size_nr(leaf, slot + i);
3938 
3939 	nritems = btrfs_header_nritems(leaf);
3940 
3941 	if (slot + nr != nritems) {
3942 		int data_end = leaf_data_end(root, leaf);
3943 
3944 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3945 			      data_end + dsize,
3946 			      btrfs_leaf_data(leaf) + data_end,
3947 			      last_off - data_end);
3948 
3949 		for (i = slot + nr; i < nritems; i++) {
3950 			u32 ioff;
3951 
3952 			item = btrfs_item_nr(leaf, i);
3953 			if (!leaf->map_token) {
3954 				map_extent_buffer(leaf, (unsigned long)item,
3955 					sizeof(struct btrfs_item),
3956 					&leaf->map_token, &leaf->kaddr,
3957 					&leaf->map_start, &leaf->map_len,
3958 					KM_USER1);
3959 			}
3960 			ioff = btrfs_item_offset(leaf, item);
3961 			btrfs_set_item_offset(leaf, item, ioff + dsize);
3962 		}
3963 
3964 		if (leaf->map_token) {
3965 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3966 			leaf->map_token = NULL;
3967 		}
3968 
3969 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3970 			      btrfs_item_nr_offset(slot + nr),
3971 			      sizeof(struct btrfs_item) *
3972 			      (nritems - slot - nr));
3973 	}
3974 	btrfs_set_header_nritems(leaf, nritems - nr);
3975 	nritems -= nr;
3976 
3977 	/* delete the leaf if we've emptied it */
3978 	if (nritems == 0) {
3979 		if (leaf == root->node) {
3980 			btrfs_set_header_level(leaf, 0);
3981 		} else {
3982 			btrfs_set_path_blocking(path);
3983 			clean_tree_block(trans, root, leaf);
3984 			ret = btrfs_del_leaf(trans, root, path, leaf);
3985 			BUG_ON(ret);
3986 		}
3987 	} else {
3988 		int used = leaf_space_used(leaf, 0, nritems);
3989 		if (slot == 0) {
3990 			struct btrfs_disk_key disk_key;
3991 
3992 			btrfs_item_key(leaf, &disk_key, 0);
3993 			wret = fixup_low_keys(trans, root, path,
3994 					      &disk_key, 1);
3995 			if (wret)
3996 				ret = wret;
3997 		}
3998 
3999 		/* delete the leaf if it is mostly empty */
4000 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4001 			/* push_leaf_left fixes the path.
4002 			 * make sure the path still points to our leaf
4003 			 * for possible call to del_ptr below
4004 			 */
4005 			slot = path->slots[1];
4006 			extent_buffer_get(leaf);
4007 
4008 			btrfs_set_path_blocking(path);
4009 			wret = push_leaf_left(trans, root, path, 1, 1,
4010 					      1, (u32)-1);
4011 			if (wret < 0 && wret != -ENOSPC)
4012 				ret = wret;
4013 
4014 			if (path->nodes[0] == leaf &&
4015 			    btrfs_header_nritems(leaf)) {
4016 				wret = push_leaf_right(trans, root, path, 1,
4017 						       1, 1, 0);
4018 				if (wret < 0 && wret != -ENOSPC)
4019 					ret = wret;
4020 			}
4021 
4022 			if (btrfs_header_nritems(leaf) == 0) {
4023 				path->slots[1] = slot;
4024 				ret = btrfs_del_leaf(trans, root, path, leaf);
4025 				BUG_ON(ret);
4026 				free_extent_buffer(leaf);
4027 			} else {
4028 				/* if we're still in the path, make sure
4029 				 * we're dirty.  Otherwise, one of the
4030 				 * push_leaf functions must have already
4031 				 * dirtied this buffer
4032 				 */
4033 				if (path->nodes[0] == leaf)
4034 					btrfs_mark_buffer_dirty(leaf);
4035 				free_extent_buffer(leaf);
4036 			}
4037 		} else {
4038 			btrfs_mark_buffer_dirty(leaf);
4039 		}
4040 	}
4041 	return ret;
4042 }
4043 
4044 /*
4045  * search the tree again to find a leaf with lesser keys
4046  * returns 0 if it found something or 1 if there are no lesser leaves.
4047  * returns < 0 on io errors.
4048  *
4049  * This may release the path, and so you may lose any locks held at the
4050  * time you call it.
4051  */
4052 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4053 {
4054 	struct btrfs_key key;
4055 	struct btrfs_disk_key found_key;
4056 	int ret;
4057 
4058 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4059 
4060 	if (key.offset > 0)
4061 		key.offset--;
4062 	else if (key.type > 0)
4063 		key.type--;
4064 	else if (key.objectid > 0)
4065 		key.objectid--;
4066 	else
4067 		return 1;
4068 
4069 	btrfs_release_path(root, path);
4070 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4071 	if (ret < 0)
4072 		return ret;
4073 	btrfs_item_key(path->nodes[0], &found_key, 0);
4074 	ret = comp_keys(&found_key, &key);
4075 	if (ret < 0)
4076 		return 0;
4077 	return 1;
4078 }
4079 
4080 /*
4081  * A helper function to walk down the tree starting at min_key, and looking
4082  * for nodes or leaves that are either in cache or have a minimum
4083  * transaction id.  This is used by the btree defrag code, and tree logging
4084  *
4085  * This does not cow, but it does stuff the starting key it finds back
4086  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4087  * key and get a writable path.
4088  *
4089  * This does lock as it descends, and path->keep_locks should be set
4090  * to 1 by the caller.
4091  *
4092  * This honors path->lowest_level to prevent descent past a given level
4093  * of the tree.
4094  *
4095  * min_trans indicates the oldest transaction that you are interested
4096  * in walking through.  Any nodes or leaves older than min_trans are
4097  * skipped over (without reading them).
4098  *
4099  * returns zero if something useful was found, < 0 on error and 1 if there
4100  * was nothing in the tree that matched the search criteria.
4101  */
4102 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4103 			 struct btrfs_key *max_key,
4104 			 struct btrfs_path *path, int cache_only,
4105 			 u64 min_trans)
4106 {
4107 	struct extent_buffer *cur;
4108 	struct btrfs_key found_key;
4109 	int slot;
4110 	int sret;
4111 	u32 nritems;
4112 	int level;
4113 	int ret = 1;
4114 
4115 	WARN_ON(!path->keep_locks);
4116 again:
4117 	cur = btrfs_lock_root_node(root);
4118 	level = btrfs_header_level(cur);
4119 	WARN_ON(path->nodes[level]);
4120 	path->nodes[level] = cur;
4121 	path->locks[level] = 1;
4122 
4123 	if (btrfs_header_generation(cur) < min_trans) {
4124 		ret = 1;
4125 		goto out;
4126 	}
4127 	while (1) {
4128 		nritems = btrfs_header_nritems(cur);
4129 		level = btrfs_header_level(cur);
4130 		sret = bin_search(cur, min_key, level, &slot);
4131 
4132 		/* at the lowest level, we're done, setup the path and exit */
4133 		if (level == path->lowest_level) {
4134 			if (slot >= nritems)
4135 				goto find_next_key;
4136 			ret = 0;
4137 			path->slots[level] = slot;
4138 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4139 			goto out;
4140 		}
4141 		if (sret && slot > 0)
4142 			slot--;
4143 		/*
4144 		 * check this node pointer against the cache_only and
4145 		 * min_trans parameters.  If it isn't in cache or is too
4146 		 * old, skip to the next one.
4147 		 */
4148 		while (slot < nritems) {
4149 			u64 blockptr;
4150 			u64 gen;
4151 			struct extent_buffer *tmp;
4152 			struct btrfs_disk_key disk_key;
4153 
4154 			blockptr = btrfs_node_blockptr(cur, slot);
4155 			gen = btrfs_node_ptr_generation(cur, slot);
4156 			if (gen < min_trans) {
4157 				slot++;
4158 				continue;
4159 			}
4160 			if (!cache_only)
4161 				break;
4162 
4163 			if (max_key) {
4164 				btrfs_node_key(cur, &disk_key, slot);
4165 				if (comp_keys(&disk_key, max_key) >= 0) {
4166 					ret = 1;
4167 					goto out;
4168 				}
4169 			}
4170 
4171 			tmp = btrfs_find_tree_block(root, blockptr,
4172 					    btrfs_level_size(root, level - 1));
4173 
4174 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4175 				free_extent_buffer(tmp);
4176 				break;
4177 			}
4178 			if (tmp)
4179 				free_extent_buffer(tmp);
4180 			slot++;
4181 		}
4182 find_next_key:
4183 		/*
4184 		 * we didn't find a candidate key in this node, walk forward
4185 		 * and find another one
4186 		 */
4187 		if (slot >= nritems) {
4188 			path->slots[level] = slot;
4189 			btrfs_set_path_blocking(path);
4190 			sret = btrfs_find_next_key(root, path, min_key, level,
4191 						  cache_only, min_trans);
4192 			if (sret == 0) {
4193 				btrfs_release_path(root, path);
4194 				goto again;
4195 			} else {
4196 				goto out;
4197 			}
4198 		}
4199 		/* save our key for returning back */
4200 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4201 		path->slots[level] = slot;
4202 		if (level == path->lowest_level) {
4203 			ret = 0;
4204 			unlock_up(path, level, 1);
4205 			goto out;
4206 		}
4207 		btrfs_set_path_blocking(path);
4208 		cur = read_node_slot(root, cur, slot);
4209 
4210 		btrfs_tree_lock(cur);
4211 
4212 		path->locks[level - 1] = 1;
4213 		path->nodes[level - 1] = cur;
4214 		unlock_up(path, level, 1);
4215 		btrfs_clear_path_blocking(path, NULL);
4216 	}
4217 out:
4218 	if (ret == 0)
4219 		memcpy(min_key, &found_key, sizeof(found_key));
4220 	btrfs_set_path_blocking(path);
4221 	return ret;
4222 }
4223 
4224 /*
4225  * this is similar to btrfs_next_leaf, but does not try to preserve
4226  * and fixup the path.  It looks for and returns the next key in the
4227  * tree based on the current path and the cache_only and min_trans
4228  * parameters.
4229  *
4230  * 0 is returned if another key is found, < 0 if there are any errors
4231  * and 1 is returned if there are no higher keys in the tree
4232  *
4233  * path->keep_locks should be set to 1 on the search made before
4234  * calling this function.
4235  */
4236 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4237 			struct btrfs_key *key, int level,
4238 			int cache_only, u64 min_trans)
4239 {
4240 	int slot;
4241 	struct extent_buffer *c;
4242 
4243 	WARN_ON(!path->keep_locks);
4244 	while (level < BTRFS_MAX_LEVEL) {
4245 		if (!path->nodes[level])
4246 			return 1;
4247 
4248 		slot = path->slots[level] + 1;
4249 		c = path->nodes[level];
4250 next:
4251 		if (slot >= btrfs_header_nritems(c)) {
4252 			int ret;
4253 			int orig_lowest;
4254 			struct btrfs_key cur_key;
4255 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4256 			    !path->nodes[level + 1])
4257 				return 1;
4258 
4259 			if (path->locks[level + 1]) {
4260 				level++;
4261 				continue;
4262 			}
4263 
4264 			slot = btrfs_header_nritems(c) - 1;
4265 			if (level == 0)
4266 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4267 			else
4268 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4269 
4270 			orig_lowest = path->lowest_level;
4271 			btrfs_release_path(root, path);
4272 			path->lowest_level = level;
4273 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4274 						0, 0);
4275 			path->lowest_level = orig_lowest;
4276 			if (ret < 0)
4277 				return ret;
4278 
4279 			c = path->nodes[level];
4280 			slot = path->slots[level];
4281 			if (ret == 0)
4282 				slot++;
4283 			goto next;
4284 		}
4285 
4286 		if (level == 0)
4287 			btrfs_item_key_to_cpu(c, key, slot);
4288 		else {
4289 			u64 blockptr = btrfs_node_blockptr(c, slot);
4290 			u64 gen = btrfs_node_ptr_generation(c, slot);
4291 
4292 			if (cache_only) {
4293 				struct extent_buffer *cur;
4294 				cur = btrfs_find_tree_block(root, blockptr,
4295 					    btrfs_level_size(root, level - 1));
4296 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4297 					slot++;
4298 					if (cur)
4299 						free_extent_buffer(cur);
4300 					goto next;
4301 				}
4302 				free_extent_buffer(cur);
4303 			}
4304 			if (gen < min_trans) {
4305 				slot++;
4306 				goto next;
4307 			}
4308 			btrfs_node_key_to_cpu(c, key, slot);
4309 		}
4310 		return 0;
4311 	}
4312 	return 1;
4313 }
4314 
4315 /*
4316  * search the tree again to find a leaf with greater keys
4317  * returns 0 if it found something or 1 if there are no greater leaves.
4318  * returns < 0 on io errors.
4319  */
4320 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4321 {
4322 	int slot;
4323 	int level;
4324 	struct extent_buffer *c;
4325 	struct extent_buffer *next;
4326 	struct btrfs_key key;
4327 	u32 nritems;
4328 	int ret;
4329 	int old_spinning = path->leave_spinning;
4330 	int force_blocking = 0;
4331 
4332 	nritems = btrfs_header_nritems(path->nodes[0]);
4333 	if (nritems == 0)
4334 		return 1;
4335 
4336 	/*
4337 	 * we take the blocks in an order that upsets lockdep.  Using
4338 	 * blocking mode is the only way around it.
4339 	 */
4340 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4341 	force_blocking = 1;
4342 #endif
4343 
4344 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4345 again:
4346 	level = 1;
4347 	next = NULL;
4348 	btrfs_release_path(root, path);
4349 
4350 	path->keep_locks = 1;
4351 
4352 	if (!force_blocking)
4353 		path->leave_spinning = 1;
4354 
4355 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4356 	path->keep_locks = 0;
4357 
4358 	if (ret < 0)
4359 		return ret;
4360 
4361 	nritems = btrfs_header_nritems(path->nodes[0]);
4362 	/*
4363 	 * by releasing the path above we dropped all our locks.  A balance
4364 	 * could have added more items next to the key that used to be
4365 	 * at the very end of the block.  So, check again here and
4366 	 * advance the path if there are now more items available.
4367 	 */
4368 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4369 		if (ret == 0)
4370 			path->slots[0]++;
4371 		ret = 0;
4372 		goto done;
4373 	}
4374 
4375 	while (level < BTRFS_MAX_LEVEL) {
4376 		if (!path->nodes[level]) {
4377 			ret = 1;
4378 			goto done;
4379 		}
4380 
4381 		slot = path->slots[level] + 1;
4382 		c = path->nodes[level];
4383 		if (slot >= btrfs_header_nritems(c)) {
4384 			level++;
4385 			if (level == BTRFS_MAX_LEVEL) {
4386 				ret = 1;
4387 				goto done;
4388 			}
4389 			continue;
4390 		}
4391 
4392 		if (next) {
4393 			btrfs_tree_unlock(next);
4394 			free_extent_buffer(next);
4395 		}
4396 
4397 		next = c;
4398 		ret = read_block_for_search(NULL, root, path, &next, level,
4399 					    slot, &key);
4400 		if (ret == -EAGAIN)
4401 			goto again;
4402 
4403 		if (ret < 0) {
4404 			btrfs_release_path(root, path);
4405 			goto done;
4406 		}
4407 
4408 		if (!path->skip_locking) {
4409 			ret = btrfs_try_spin_lock(next);
4410 			if (!ret) {
4411 				btrfs_set_path_blocking(path);
4412 				btrfs_tree_lock(next);
4413 				if (!force_blocking)
4414 					btrfs_clear_path_blocking(path, next);
4415 			}
4416 			if (force_blocking)
4417 				btrfs_set_lock_blocking(next);
4418 		}
4419 		break;
4420 	}
4421 	path->slots[level] = slot;
4422 	while (1) {
4423 		level--;
4424 		c = path->nodes[level];
4425 		if (path->locks[level])
4426 			btrfs_tree_unlock(c);
4427 
4428 		free_extent_buffer(c);
4429 		path->nodes[level] = next;
4430 		path->slots[level] = 0;
4431 		if (!path->skip_locking)
4432 			path->locks[level] = 1;
4433 
4434 		if (!level)
4435 			break;
4436 
4437 		ret = read_block_for_search(NULL, root, path, &next, level,
4438 					    0, &key);
4439 		if (ret == -EAGAIN)
4440 			goto again;
4441 
4442 		if (ret < 0) {
4443 			btrfs_release_path(root, path);
4444 			goto done;
4445 		}
4446 
4447 		if (!path->skip_locking) {
4448 			btrfs_assert_tree_locked(path->nodes[level]);
4449 			ret = btrfs_try_spin_lock(next);
4450 			if (!ret) {
4451 				btrfs_set_path_blocking(path);
4452 				btrfs_tree_lock(next);
4453 				if (!force_blocking)
4454 					btrfs_clear_path_blocking(path, next);
4455 			}
4456 			if (force_blocking)
4457 				btrfs_set_lock_blocking(next);
4458 		}
4459 	}
4460 	ret = 0;
4461 done:
4462 	unlock_up(path, 0, 1);
4463 	path->leave_spinning = old_spinning;
4464 	if (!old_spinning)
4465 		btrfs_set_path_blocking(path);
4466 
4467 	return ret;
4468 }
4469 
4470 /*
4471  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4472  * searching until it gets past min_objectid or finds an item of 'type'
4473  *
4474  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4475  */
4476 int btrfs_previous_item(struct btrfs_root *root,
4477 			struct btrfs_path *path, u64 min_objectid,
4478 			int type)
4479 {
4480 	struct btrfs_key found_key;
4481 	struct extent_buffer *leaf;
4482 	u32 nritems;
4483 	int ret;
4484 
4485 	while (1) {
4486 		if (path->slots[0] == 0) {
4487 			btrfs_set_path_blocking(path);
4488 			ret = btrfs_prev_leaf(root, path);
4489 			if (ret != 0)
4490 				return ret;
4491 		} else {
4492 			path->slots[0]--;
4493 		}
4494 		leaf = path->nodes[0];
4495 		nritems = btrfs_header_nritems(leaf);
4496 		if (nritems == 0)
4497 			return 1;
4498 		if (path->slots[0] == nritems)
4499 			path->slots[0]--;
4500 
4501 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4502 		if (found_key.objectid < min_objectid)
4503 			break;
4504 		if (found_key.type == type)
4505 			return 0;
4506 		if (found_key.objectid == min_objectid &&
4507 		    found_key.type < type)
4508 			break;
4509 	}
4510 	return 1;
4511 }
4512