1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "print-tree.h" 25 #include "locking.h" 26 27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 28 *root, struct btrfs_path *path, int level); 29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_key *ins_key, 31 struct btrfs_path *path, int data_size, int extend); 32 static int push_node_left(struct btrfs_trans_handle *trans, 33 struct btrfs_root *root, struct extent_buffer *dst, 34 struct extent_buffer *src, int empty); 35 static int balance_node_right(struct btrfs_trans_handle *trans, 36 struct btrfs_root *root, 37 struct extent_buffer *dst_buf, 38 struct extent_buffer *src_buf); 39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 40 struct btrfs_path *path, int level, int slot); 41 static int setup_items_for_insert(struct btrfs_trans_handle *trans, 42 struct btrfs_root *root, struct btrfs_path *path, 43 struct btrfs_key *cpu_key, u32 *data_size, 44 u32 total_data, u32 total_size, int nr); 45 46 47 struct btrfs_path *btrfs_alloc_path(void) 48 { 49 struct btrfs_path *path; 50 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 51 if (path) 52 path->reada = 1; 53 return path; 54 } 55 56 /* 57 * set all locked nodes in the path to blocking locks. This should 58 * be done before scheduling 59 */ 60 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 61 { 62 int i; 63 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 64 if (p->nodes[i] && p->locks[i]) 65 btrfs_set_lock_blocking(p->nodes[i]); 66 } 67 } 68 69 /* 70 * reset all the locked nodes in the patch to spinning locks. 71 * 72 * held is used to keep lockdep happy, when lockdep is enabled 73 * we set held to a blocking lock before we go around and 74 * retake all the spinlocks in the path. You can safely use NULL 75 * for held 76 */ 77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 78 struct extent_buffer *held) 79 { 80 int i; 81 82 #ifdef CONFIG_DEBUG_LOCK_ALLOC 83 /* lockdep really cares that we take all of these spinlocks 84 * in the right order. If any of the locks in the path are not 85 * currently blocking, it is going to complain. So, make really 86 * really sure by forcing the path to blocking before we clear 87 * the path blocking. 88 */ 89 if (held) 90 btrfs_set_lock_blocking(held); 91 btrfs_set_path_blocking(p); 92 #endif 93 94 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 95 if (p->nodes[i] && p->locks[i]) 96 btrfs_clear_lock_blocking(p->nodes[i]); 97 } 98 99 #ifdef CONFIG_DEBUG_LOCK_ALLOC 100 if (held) 101 btrfs_clear_lock_blocking(held); 102 #endif 103 } 104 105 /* this also releases the path */ 106 void btrfs_free_path(struct btrfs_path *p) 107 { 108 btrfs_release_path(NULL, p); 109 kmem_cache_free(btrfs_path_cachep, p); 110 } 111 112 /* 113 * path release drops references on the extent buffers in the path 114 * and it drops any locks held by this path 115 * 116 * It is safe to call this on paths that no locks or extent buffers held. 117 */ 118 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p) 119 { 120 int i; 121 122 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 123 p->slots[i] = 0; 124 if (!p->nodes[i]) 125 continue; 126 if (p->locks[i]) { 127 btrfs_tree_unlock(p->nodes[i]); 128 p->locks[i] = 0; 129 } 130 free_extent_buffer(p->nodes[i]); 131 p->nodes[i] = NULL; 132 } 133 } 134 135 /* 136 * safely gets a reference on the root node of a tree. A lock 137 * is not taken, so a concurrent writer may put a different node 138 * at the root of the tree. See btrfs_lock_root_node for the 139 * looping required. 140 * 141 * The extent buffer returned by this has a reference taken, so 142 * it won't disappear. It may stop being the root of the tree 143 * at any time because there are no locks held. 144 */ 145 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 146 { 147 struct extent_buffer *eb; 148 spin_lock(&root->node_lock); 149 eb = root->node; 150 extent_buffer_get(eb); 151 spin_unlock(&root->node_lock); 152 return eb; 153 } 154 155 /* loop around taking references on and locking the root node of the 156 * tree until you end up with a lock on the root. A locked buffer 157 * is returned, with a reference held. 158 */ 159 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 160 { 161 struct extent_buffer *eb; 162 163 while (1) { 164 eb = btrfs_root_node(root); 165 btrfs_tree_lock(eb); 166 167 spin_lock(&root->node_lock); 168 if (eb == root->node) { 169 spin_unlock(&root->node_lock); 170 break; 171 } 172 spin_unlock(&root->node_lock); 173 174 btrfs_tree_unlock(eb); 175 free_extent_buffer(eb); 176 } 177 return eb; 178 } 179 180 /* cowonly root (everything not a reference counted cow subvolume), just get 181 * put onto a simple dirty list. transaction.c walks this to make sure they 182 * get properly updated on disk. 183 */ 184 static void add_root_to_dirty_list(struct btrfs_root *root) 185 { 186 if (root->track_dirty && list_empty(&root->dirty_list)) { 187 list_add(&root->dirty_list, 188 &root->fs_info->dirty_cowonly_roots); 189 } 190 } 191 192 /* 193 * used by snapshot creation to make a copy of a root for a tree with 194 * a given objectid. The buffer with the new root node is returned in 195 * cow_ret, and this func returns zero on success or a negative error code. 196 */ 197 int btrfs_copy_root(struct btrfs_trans_handle *trans, 198 struct btrfs_root *root, 199 struct extent_buffer *buf, 200 struct extent_buffer **cow_ret, u64 new_root_objectid) 201 { 202 struct extent_buffer *cow; 203 u32 nritems; 204 int ret = 0; 205 int level; 206 struct btrfs_disk_key disk_key; 207 208 WARN_ON(root->ref_cows && trans->transid != 209 root->fs_info->running_transaction->transid); 210 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 211 212 level = btrfs_header_level(buf); 213 nritems = btrfs_header_nritems(buf); 214 if (level == 0) 215 btrfs_item_key(buf, &disk_key, 0); 216 else 217 btrfs_node_key(buf, &disk_key, 0); 218 219 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 220 new_root_objectid, &disk_key, level, 221 buf->start, 0); 222 if (IS_ERR(cow)) 223 return PTR_ERR(cow); 224 225 copy_extent_buffer(cow, buf, 0, 0, cow->len); 226 btrfs_set_header_bytenr(cow, cow->start); 227 btrfs_set_header_generation(cow, trans->transid); 228 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 229 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 230 BTRFS_HEADER_FLAG_RELOC); 231 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 232 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 233 else 234 btrfs_set_header_owner(cow, new_root_objectid); 235 236 write_extent_buffer(cow, root->fs_info->fsid, 237 (unsigned long)btrfs_header_fsid(cow), 238 BTRFS_FSID_SIZE); 239 240 WARN_ON(btrfs_header_generation(buf) > trans->transid); 241 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 242 ret = btrfs_inc_ref(trans, root, cow, 1); 243 else 244 ret = btrfs_inc_ref(trans, root, cow, 0); 245 246 if (ret) 247 return ret; 248 249 btrfs_mark_buffer_dirty(cow); 250 *cow_ret = cow; 251 return 0; 252 } 253 254 /* 255 * check if the tree block can be shared by multiple trees 256 */ 257 int btrfs_block_can_be_shared(struct btrfs_root *root, 258 struct extent_buffer *buf) 259 { 260 /* 261 * Tree blocks not in refernece counted trees and tree roots 262 * are never shared. If a block was allocated after the last 263 * snapshot and the block was not allocated by tree relocation, 264 * we know the block is not shared. 265 */ 266 if (root->ref_cows && 267 buf != root->node && buf != root->commit_root && 268 (btrfs_header_generation(buf) <= 269 btrfs_root_last_snapshot(&root->root_item) || 270 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 271 return 1; 272 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 273 if (root->ref_cows && 274 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 275 return 1; 276 #endif 277 return 0; 278 } 279 280 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 281 struct btrfs_root *root, 282 struct extent_buffer *buf, 283 struct extent_buffer *cow, 284 int *last_ref) 285 { 286 u64 refs; 287 u64 owner; 288 u64 flags; 289 u64 new_flags = 0; 290 int ret; 291 292 /* 293 * Backrefs update rules: 294 * 295 * Always use full backrefs for extent pointers in tree block 296 * allocated by tree relocation. 297 * 298 * If a shared tree block is no longer referenced by its owner 299 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 300 * use full backrefs for extent pointers in tree block. 301 * 302 * If a tree block is been relocating 303 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 304 * use full backrefs for extent pointers in tree block. 305 * The reason for this is some operations (such as drop tree) 306 * are only allowed for blocks use full backrefs. 307 */ 308 309 if (btrfs_block_can_be_shared(root, buf)) { 310 ret = btrfs_lookup_extent_info(trans, root, buf->start, 311 buf->len, &refs, &flags); 312 BUG_ON(ret); 313 BUG_ON(refs == 0); 314 } else { 315 refs = 1; 316 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 317 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 318 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 319 else 320 flags = 0; 321 } 322 323 owner = btrfs_header_owner(buf); 324 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 325 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 326 327 if (refs > 1) { 328 if ((owner == root->root_key.objectid || 329 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 330 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 331 ret = btrfs_inc_ref(trans, root, buf, 1); 332 BUG_ON(ret); 333 334 if (root->root_key.objectid == 335 BTRFS_TREE_RELOC_OBJECTID) { 336 ret = btrfs_dec_ref(trans, root, buf, 0); 337 BUG_ON(ret); 338 ret = btrfs_inc_ref(trans, root, cow, 1); 339 BUG_ON(ret); 340 } 341 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 342 } else { 343 344 if (root->root_key.objectid == 345 BTRFS_TREE_RELOC_OBJECTID) 346 ret = btrfs_inc_ref(trans, root, cow, 1); 347 else 348 ret = btrfs_inc_ref(trans, root, cow, 0); 349 BUG_ON(ret); 350 } 351 if (new_flags != 0) { 352 ret = btrfs_set_disk_extent_flags(trans, root, 353 buf->start, 354 buf->len, 355 new_flags, 0); 356 BUG_ON(ret); 357 } 358 } else { 359 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 360 if (root->root_key.objectid == 361 BTRFS_TREE_RELOC_OBJECTID) 362 ret = btrfs_inc_ref(trans, root, cow, 1); 363 else 364 ret = btrfs_inc_ref(trans, root, cow, 0); 365 BUG_ON(ret); 366 ret = btrfs_dec_ref(trans, root, buf, 1); 367 BUG_ON(ret); 368 } 369 clean_tree_block(trans, root, buf); 370 *last_ref = 1; 371 } 372 return 0; 373 } 374 375 /* 376 * does the dirty work in cow of a single block. The parent block (if 377 * supplied) is updated to point to the new cow copy. The new buffer is marked 378 * dirty and returned locked. If you modify the block it needs to be marked 379 * dirty again. 380 * 381 * search_start -- an allocation hint for the new block 382 * 383 * empty_size -- a hint that you plan on doing more cow. This is the size in 384 * bytes the allocator should try to find free next to the block it returns. 385 * This is just a hint and may be ignored by the allocator. 386 */ 387 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 388 struct btrfs_root *root, 389 struct extent_buffer *buf, 390 struct extent_buffer *parent, int parent_slot, 391 struct extent_buffer **cow_ret, 392 u64 search_start, u64 empty_size) 393 { 394 struct btrfs_disk_key disk_key; 395 struct extent_buffer *cow; 396 int level; 397 int last_ref = 0; 398 int unlock_orig = 0; 399 u64 parent_start; 400 401 if (*cow_ret == buf) 402 unlock_orig = 1; 403 404 btrfs_assert_tree_locked(buf); 405 406 WARN_ON(root->ref_cows && trans->transid != 407 root->fs_info->running_transaction->transid); 408 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 409 410 level = btrfs_header_level(buf); 411 412 if (level == 0) 413 btrfs_item_key(buf, &disk_key, 0); 414 else 415 btrfs_node_key(buf, &disk_key, 0); 416 417 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 418 if (parent) 419 parent_start = parent->start; 420 else 421 parent_start = 0; 422 } else 423 parent_start = 0; 424 425 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 426 root->root_key.objectid, &disk_key, 427 level, search_start, empty_size); 428 if (IS_ERR(cow)) 429 return PTR_ERR(cow); 430 431 /* cow is set to blocking by btrfs_init_new_buffer */ 432 433 copy_extent_buffer(cow, buf, 0, 0, cow->len); 434 btrfs_set_header_bytenr(cow, cow->start); 435 btrfs_set_header_generation(cow, trans->transid); 436 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 437 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 438 BTRFS_HEADER_FLAG_RELOC); 439 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 440 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 441 else 442 btrfs_set_header_owner(cow, root->root_key.objectid); 443 444 write_extent_buffer(cow, root->fs_info->fsid, 445 (unsigned long)btrfs_header_fsid(cow), 446 BTRFS_FSID_SIZE); 447 448 update_ref_for_cow(trans, root, buf, cow, &last_ref); 449 450 if (root->ref_cows) 451 btrfs_reloc_cow_block(trans, root, buf, cow); 452 453 if (buf == root->node) { 454 WARN_ON(parent && parent != buf); 455 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 456 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 457 parent_start = buf->start; 458 else 459 parent_start = 0; 460 461 spin_lock(&root->node_lock); 462 root->node = cow; 463 extent_buffer_get(cow); 464 spin_unlock(&root->node_lock); 465 466 btrfs_free_tree_block(trans, root, buf, parent_start, 467 last_ref); 468 free_extent_buffer(buf); 469 add_root_to_dirty_list(root); 470 } else { 471 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 472 parent_start = parent->start; 473 else 474 parent_start = 0; 475 476 WARN_ON(trans->transid != btrfs_header_generation(parent)); 477 btrfs_set_node_blockptr(parent, parent_slot, 478 cow->start); 479 btrfs_set_node_ptr_generation(parent, parent_slot, 480 trans->transid); 481 btrfs_mark_buffer_dirty(parent); 482 btrfs_free_tree_block(trans, root, buf, parent_start, 483 last_ref); 484 } 485 if (unlock_orig) 486 btrfs_tree_unlock(buf); 487 free_extent_buffer(buf); 488 btrfs_mark_buffer_dirty(cow); 489 *cow_ret = cow; 490 return 0; 491 } 492 493 static inline int should_cow_block(struct btrfs_trans_handle *trans, 494 struct btrfs_root *root, 495 struct extent_buffer *buf) 496 { 497 if (btrfs_header_generation(buf) == trans->transid && 498 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 499 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 500 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 501 return 0; 502 return 1; 503 } 504 505 /* 506 * cows a single block, see __btrfs_cow_block for the real work. 507 * This version of it has extra checks so that a block isn't cow'd more than 508 * once per transaction, as long as it hasn't been written yet 509 */ 510 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 511 struct btrfs_root *root, struct extent_buffer *buf, 512 struct extent_buffer *parent, int parent_slot, 513 struct extent_buffer **cow_ret) 514 { 515 u64 search_start; 516 int ret; 517 518 if (trans->transaction != root->fs_info->running_transaction) { 519 printk(KERN_CRIT "trans %llu running %llu\n", 520 (unsigned long long)trans->transid, 521 (unsigned long long) 522 root->fs_info->running_transaction->transid); 523 WARN_ON(1); 524 } 525 if (trans->transid != root->fs_info->generation) { 526 printk(KERN_CRIT "trans %llu running %llu\n", 527 (unsigned long long)trans->transid, 528 (unsigned long long)root->fs_info->generation); 529 WARN_ON(1); 530 } 531 532 if (!should_cow_block(trans, root, buf)) { 533 *cow_ret = buf; 534 return 0; 535 } 536 537 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 538 539 if (parent) 540 btrfs_set_lock_blocking(parent); 541 btrfs_set_lock_blocking(buf); 542 543 ret = __btrfs_cow_block(trans, root, buf, parent, 544 parent_slot, cow_ret, search_start, 0); 545 return ret; 546 } 547 548 /* 549 * helper function for defrag to decide if two blocks pointed to by a 550 * node are actually close by 551 */ 552 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 553 { 554 if (blocknr < other && other - (blocknr + blocksize) < 32768) 555 return 1; 556 if (blocknr > other && blocknr - (other + blocksize) < 32768) 557 return 1; 558 return 0; 559 } 560 561 /* 562 * compare two keys in a memcmp fashion 563 */ 564 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 565 { 566 struct btrfs_key k1; 567 568 btrfs_disk_key_to_cpu(&k1, disk); 569 570 return btrfs_comp_cpu_keys(&k1, k2); 571 } 572 573 /* 574 * same as comp_keys only with two btrfs_key's 575 */ 576 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 577 { 578 if (k1->objectid > k2->objectid) 579 return 1; 580 if (k1->objectid < k2->objectid) 581 return -1; 582 if (k1->type > k2->type) 583 return 1; 584 if (k1->type < k2->type) 585 return -1; 586 if (k1->offset > k2->offset) 587 return 1; 588 if (k1->offset < k2->offset) 589 return -1; 590 return 0; 591 } 592 593 /* 594 * this is used by the defrag code to go through all the 595 * leaves pointed to by a node and reallocate them so that 596 * disk order is close to key order 597 */ 598 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 599 struct btrfs_root *root, struct extent_buffer *parent, 600 int start_slot, int cache_only, u64 *last_ret, 601 struct btrfs_key *progress) 602 { 603 struct extent_buffer *cur; 604 u64 blocknr; 605 u64 gen; 606 u64 search_start = *last_ret; 607 u64 last_block = 0; 608 u64 other; 609 u32 parent_nritems; 610 int end_slot; 611 int i; 612 int err = 0; 613 int parent_level; 614 int uptodate; 615 u32 blocksize; 616 int progress_passed = 0; 617 struct btrfs_disk_key disk_key; 618 619 parent_level = btrfs_header_level(parent); 620 if (cache_only && parent_level != 1) 621 return 0; 622 623 if (trans->transaction != root->fs_info->running_transaction) 624 WARN_ON(1); 625 if (trans->transid != root->fs_info->generation) 626 WARN_ON(1); 627 628 parent_nritems = btrfs_header_nritems(parent); 629 blocksize = btrfs_level_size(root, parent_level - 1); 630 end_slot = parent_nritems; 631 632 if (parent_nritems == 1) 633 return 0; 634 635 btrfs_set_lock_blocking(parent); 636 637 for (i = start_slot; i < end_slot; i++) { 638 int close = 1; 639 640 if (!parent->map_token) { 641 map_extent_buffer(parent, 642 btrfs_node_key_ptr_offset(i), 643 sizeof(struct btrfs_key_ptr), 644 &parent->map_token, &parent->kaddr, 645 &parent->map_start, &parent->map_len, 646 KM_USER1); 647 } 648 btrfs_node_key(parent, &disk_key, i); 649 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 650 continue; 651 652 progress_passed = 1; 653 blocknr = btrfs_node_blockptr(parent, i); 654 gen = btrfs_node_ptr_generation(parent, i); 655 if (last_block == 0) 656 last_block = blocknr; 657 658 if (i > 0) { 659 other = btrfs_node_blockptr(parent, i - 1); 660 close = close_blocks(blocknr, other, blocksize); 661 } 662 if (!close && i < end_slot - 2) { 663 other = btrfs_node_blockptr(parent, i + 1); 664 close = close_blocks(blocknr, other, blocksize); 665 } 666 if (close) { 667 last_block = blocknr; 668 continue; 669 } 670 if (parent->map_token) { 671 unmap_extent_buffer(parent, parent->map_token, 672 KM_USER1); 673 parent->map_token = NULL; 674 } 675 676 cur = btrfs_find_tree_block(root, blocknr, blocksize); 677 if (cur) 678 uptodate = btrfs_buffer_uptodate(cur, gen); 679 else 680 uptodate = 0; 681 if (!cur || !uptodate) { 682 if (cache_only) { 683 free_extent_buffer(cur); 684 continue; 685 } 686 if (!cur) { 687 cur = read_tree_block(root, blocknr, 688 blocksize, gen); 689 } else if (!uptodate) { 690 btrfs_read_buffer(cur, gen); 691 } 692 } 693 if (search_start == 0) 694 search_start = last_block; 695 696 btrfs_tree_lock(cur); 697 btrfs_set_lock_blocking(cur); 698 err = __btrfs_cow_block(trans, root, cur, parent, i, 699 &cur, search_start, 700 min(16 * blocksize, 701 (end_slot - i) * blocksize)); 702 if (err) { 703 btrfs_tree_unlock(cur); 704 free_extent_buffer(cur); 705 break; 706 } 707 search_start = cur->start; 708 last_block = cur->start; 709 *last_ret = search_start; 710 btrfs_tree_unlock(cur); 711 free_extent_buffer(cur); 712 } 713 if (parent->map_token) { 714 unmap_extent_buffer(parent, parent->map_token, 715 KM_USER1); 716 parent->map_token = NULL; 717 } 718 return err; 719 } 720 721 /* 722 * The leaf data grows from end-to-front in the node. 723 * this returns the address of the start of the last item, 724 * which is the stop of the leaf data stack 725 */ 726 static inline unsigned int leaf_data_end(struct btrfs_root *root, 727 struct extent_buffer *leaf) 728 { 729 u32 nr = btrfs_header_nritems(leaf); 730 if (nr == 0) 731 return BTRFS_LEAF_DATA_SIZE(root); 732 return btrfs_item_offset_nr(leaf, nr - 1); 733 } 734 735 /* 736 * extra debugging checks to make sure all the items in a key are 737 * well formed and in the proper order 738 */ 739 static int check_node(struct btrfs_root *root, struct btrfs_path *path, 740 int level) 741 { 742 struct extent_buffer *parent = NULL; 743 struct extent_buffer *node = path->nodes[level]; 744 struct btrfs_disk_key parent_key; 745 struct btrfs_disk_key node_key; 746 int parent_slot; 747 int slot; 748 struct btrfs_key cpukey; 749 u32 nritems = btrfs_header_nritems(node); 750 751 if (path->nodes[level + 1]) 752 parent = path->nodes[level + 1]; 753 754 slot = path->slots[level]; 755 BUG_ON(nritems == 0); 756 if (parent) { 757 parent_slot = path->slots[level + 1]; 758 btrfs_node_key(parent, &parent_key, parent_slot); 759 btrfs_node_key(node, &node_key, 0); 760 BUG_ON(memcmp(&parent_key, &node_key, 761 sizeof(struct btrfs_disk_key))); 762 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 763 btrfs_header_bytenr(node)); 764 } 765 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root)); 766 if (slot != 0) { 767 btrfs_node_key_to_cpu(node, &cpukey, slot - 1); 768 btrfs_node_key(node, &node_key, slot); 769 BUG_ON(comp_keys(&node_key, &cpukey) <= 0); 770 } 771 if (slot < nritems - 1) { 772 btrfs_node_key_to_cpu(node, &cpukey, slot + 1); 773 btrfs_node_key(node, &node_key, slot); 774 BUG_ON(comp_keys(&node_key, &cpukey) >= 0); 775 } 776 return 0; 777 } 778 779 /* 780 * extra checking to make sure all the items in a leaf are 781 * well formed and in the proper order 782 */ 783 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path, 784 int level) 785 { 786 struct extent_buffer *leaf = path->nodes[level]; 787 struct extent_buffer *parent = NULL; 788 int parent_slot; 789 struct btrfs_key cpukey; 790 struct btrfs_disk_key parent_key; 791 struct btrfs_disk_key leaf_key; 792 int slot = path->slots[0]; 793 794 u32 nritems = btrfs_header_nritems(leaf); 795 796 if (path->nodes[level + 1]) 797 parent = path->nodes[level + 1]; 798 799 if (nritems == 0) 800 return 0; 801 802 if (parent) { 803 parent_slot = path->slots[level + 1]; 804 btrfs_node_key(parent, &parent_key, parent_slot); 805 btrfs_item_key(leaf, &leaf_key, 0); 806 807 BUG_ON(memcmp(&parent_key, &leaf_key, 808 sizeof(struct btrfs_disk_key))); 809 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 810 btrfs_header_bytenr(leaf)); 811 } 812 if (slot != 0 && slot < nritems - 1) { 813 btrfs_item_key(leaf, &leaf_key, slot); 814 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1); 815 if (comp_keys(&leaf_key, &cpukey) <= 0) { 816 btrfs_print_leaf(root, leaf); 817 printk(KERN_CRIT "slot %d offset bad key\n", slot); 818 BUG_ON(1); 819 } 820 if (btrfs_item_offset_nr(leaf, slot - 1) != 821 btrfs_item_end_nr(leaf, slot)) { 822 btrfs_print_leaf(root, leaf); 823 printk(KERN_CRIT "slot %d offset bad\n", slot); 824 BUG_ON(1); 825 } 826 } 827 if (slot < nritems - 1) { 828 btrfs_item_key(leaf, &leaf_key, slot); 829 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1); 830 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0); 831 if (btrfs_item_offset_nr(leaf, slot) != 832 btrfs_item_end_nr(leaf, slot + 1)) { 833 btrfs_print_leaf(root, leaf); 834 printk(KERN_CRIT "slot %d offset bad\n", slot); 835 BUG_ON(1); 836 } 837 } 838 BUG_ON(btrfs_item_offset_nr(leaf, 0) + 839 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root)); 840 return 0; 841 } 842 843 static noinline int check_block(struct btrfs_root *root, 844 struct btrfs_path *path, int level) 845 { 846 return 0; 847 if (level == 0) 848 return check_leaf(root, path, level); 849 return check_node(root, path, level); 850 } 851 852 /* 853 * search for key in the extent_buffer. The items start at offset p, 854 * and they are item_size apart. There are 'max' items in p. 855 * 856 * the slot in the array is returned via slot, and it points to 857 * the place where you would insert key if it is not found in 858 * the array. 859 * 860 * slot may point to max if the key is bigger than all of the keys 861 */ 862 static noinline int generic_bin_search(struct extent_buffer *eb, 863 unsigned long p, 864 int item_size, struct btrfs_key *key, 865 int max, int *slot) 866 { 867 int low = 0; 868 int high = max; 869 int mid; 870 int ret; 871 struct btrfs_disk_key *tmp = NULL; 872 struct btrfs_disk_key unaligned; 873 unsigned long offset; 874 char *map_token = NULL; 875 char *kaddr = NULL; 876 unsigned long map_start = 0; 877 unsigned long map_len = 0; 878 int err; 879 880 while (low < high) { 881 mid = (low + high) / 2; 882 offset = p + mid * item_size; 883 884 if (!map_token || offset < map_start || 885 (offset + sizeof(struct btrfs_disk_key)) > 886 map_start + map_len) { 887 if (map_token) { 888 unmap_extent_buffer(eb, map_token, KM_USER0); 889 map_token = NULL; 890 } 891 892 err = map_private_extent_buffer(eb, offset, 893 sizeof(struct btrfs_disk_key), 894 &map_token, &kaddr, 895 &map_start, &map_len, KM_USER0); 896 897 if (!err) { 898 tmp = (struct btrfs_disk_key *)(kaddr + offset - 899 map_start); 900 } else { 901 read_extent_buffer(eb, &unaligned, 902 offset, sizeof(unaligned)); 903 tmp = &unaligned; 904 } 905 906 } else { 907 tmp = (struct btrfs_disk_key *)(kaddr + offset - 908 map_start); 909 } 910 ret = comp_keys(tmp, key); 911 912 if (ret < 0) 913 low = mid + 1; 914 else if (ret > 0) 915 high = mid; 916 else { 917 *slot = mid; 918 if (map_token) 919 unmap_extent_buffer(eb, map_token, KM_USER0); 920 return 0; 921 } 922 } 923 *slot = low; 924 if (map_token) 925 unmap_extent_buffer(eb, map_token, KM_USER0); 926 return 1; 927 } 928 929 /* 930 * simple bin_search frontend that does the right thing for 931 * leaves vs nodes 932 */ 933 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 934 int level, int *slot) 935 { 936 if (level == 0) { 937 return generic_bin_search(eb, 938 offsetof(struct btrfs_leaf, items), 939 sizeof(struct btrfs_item), 940 key, btrfs_header_nritems(eb), 941 slot); 942 } else { 943 return generic_bin_search(eb, 944 offsetof(struct btrfs_node, ptrs), 945 sizeof(struct btrfs_key_ptr), 946 key, btrfs_header_nritems(eb), 947 slot); 948 } 949 return -1; 950 } 951 952 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 953 int level, int *slot) 954 { 955 return bin_search(eb, key, level, slot); 956 } 957 958 static void root_add_used(struct btrfs_root *root, u32 size) 959 { 960 spin_lock(&root->accounting_lock); 961 btrfs_set_root_used(&root->root_item, 962 btrfs_root_used(&root->root_item) + size); 963 spin_unlock(&root->accounting_lock); 964 } 965 966 static void root_sub_used(struct btrfs_root *root, u32 size) 967 { 968 spin_lock(&root->accounting_lock); 969 btrfs_set_root_used(&root->root_item, 970 btrfs_root_used(&root->root_item) - size); 971 spin_unlock(&root->accounting_lock); 972 } 973 974 /* given a node and slot number, this reads the blocks it points to. The 975 * extent buffer is returned with a reference taken (but unlocked). 976 * NULL is returned on error. 977 */ 978 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 979 struct extent_buffer *parent, int slot) 980 { 981 int level = btrfs_header_level(parent); 982 if (slot < 0) 983 return NULL; 984 if (slot >= btrfs_header_nritems(parent)) 985 return NULL; 986 987 BUG_ON(level == 0); 988 989 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 990 btrfs_level_size(root, level - 1), 991 btrfs_node_ptr_generation(parent, slot)); 992 } 993 994 /* 995 * node level balancing, used to make sure nodes are in proper order for 996 * item deletion. We balance from the top down, so we have to make sure 997 * that a deletion won't leave an node completely empty later on. 998 */ 999 static noinline int balance_level(struct btrfs_trans_handle *trans, 1000 struct btrfs_root *root, 1001 struct btrfs_path *path, int level) 1002 { 1003 struct extent_buffer *right = NULL; 1004 struct extent_buffer *mid; 1005 struct extent_buffer *left = NULL; 1006 struct extent_buffer *parent = NULL; 1007 int ret = 0; 1008 int wret; 1009 int pslot; 1010 int orig_slot = path->slots[level]; 1011 int err_on_enospc = 0; 1012 u64 orig_ptr; 1013 1014 if (level == 0) 1015 return 0; 1016 1017 mid = path->nodes[level]; 1018 1019 WARN_ON(!path->locks[level]); 1020 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1021 1022 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1023 1024 if (level < BTRFS_MAX_LEVEL - 1) 1025 parent = path->nodes[level + 1]; 1026 pslot = path->slots[level + 1]; 1027 1028 /* 1029 * deal with the case where there is only one pointer in the root 1030 * by promoting the node below to a root 1031 */ 1032 if (!parent) { 1033 struct extent_buffer *child; 1034 1035 if (btrfs_header_nritems(mid) != 1) 1036 return 0; 1037 1038 /* promote the child to a root */ 1039 child = read_node_slot(root, mid, 0); 1040 BUG_ON(!child); 1041 btrfs_tree_lock(child); 1042 btrfs_set_lock_blocking(child); 1043 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1044 if (ret) { 1045 btrfs_tree_unlock(child); 1046 free_extent_buffer(child); 1047 goto enospc; 1048 } 1049 1050 spin_lock(&root->node_lock); 1051 root->node = child; 1052 spin_unlock(&root->node_lock); 1053 1054 add_root_to_dirty_list(root); 1055 btrfs_tree_unlock(child); 1056 1057 path->locks[level] = 0; 1058 path->nodes[level] = NULL; 1059 clean_tree_block(trans, root, mid); 1060 btrfs_tree_unlock(mid); 1061 /* once for the path */ 1062 free_extent_buffer(mid); 1063 1064 root_sub_used(root, mid->len); 1065 btrfs_free_tree_block(trans, root, mid, 0, 1); 1066 /* once for the root ptr */ 1067 free_extent_buffer(mid); 1068 return 0; 1069 } 1070 if (btrfs_header_nritems(mid) > 1071 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1072 return 0; 1073 1074 if (btrfs_header_nritems(mid) < 2) 1075 err_on_enospc = 1; 1076 1077 left = read_node_slot(root, parent, pslot - 1); 1078 if (left) { 1079 btrfs_tree_lock(left); 1080 btrfs_set_lock_blocking(left); 1081 wret = btrfs_cow_block(trans, root, left, 1082 parent, pslot - 1, &left); 1083 if (wret) { 1084 ret = wret; 1085 goto enospc; 1086 } 1087 } 1088 right = read_node_slot(root, parent, pslot + 1); 1089 if (right) { 1090 btrfs_tree_lock(right); 1091 btrfs_set_lock_blocking(right); 1092 wret = btrfs_cow_block(trans, root, right, 1093 parent, pslot + 1, &right); 1094 if (wret) { 1095 ret = wret; 1096 goto enospc; 1097 } 1098 } 1099 1100 /* first, try to make some room in the middle buffer */ 1101 if (left) { 1102 orig_slot += btrfs_header_nritems(left); 1103 wret = push_node_left(trans, root, left, mid, 1); 1104 if (wret < 0) 1105 ret = wret; 1106 if (btrfs_header_nritems(mid) < 2) 1107 err_on_enospc = 1; 1108 } 1109 1110 /* 1111 * then try to empty the right most buffer into the middle 1112 */ 1113 if (right) { 1114 wret = push_node_left(trans, root, mid, right, 1); 1115 if (wret < 0 && wret != -ENOSPC) 1116 ret = wret; 1117 if (btrfs_header_nritems(right) == 0) { 1118 clean_tree_block(trans, root, right); 1119 btrfs_tree_unlock(right); 1120 wret = del_ptr(trans, root, path, level + 1, pslot + 1121 1); 1122 if (wret) 1123 ret = wret; 1124 root_sub_used(root, right->len); 1125 btrfs_free_tree_block(trans, root, right, 0, 1); 1126 free_extent_buffer(right); 1127 right = NULL; 1128 } else { 1129 struct btrfs_disk_key right_key; 1130 btrfs_node_key(right, &right_key, 0); 1131 btrfs_set_node_key(parent, &right_key, pslot + 1); 1132 btrfs_mark_buffer_dirty(parent); 1133 } 1134 } 1135 if (btrfs_header_nritems(mid) == 1) { 1136 /* 1137 * we're not allowed to leave a node with one item in the 1138 * tree during a delete. A deletion from lower in the tree 1139 * could try to delete the only pointer in this node. 1140 * So, pull some keys from the left. 1141 * There has to be a left pointer at this point because 1142 * otherwise we would have pulled some pointers from the 1143 * right 1144 */ 1145 BUG_ON(!left); 1146 wret = balance_node_right(trans, root, mid, left); 1147 if (wret < 0) { 1148 ret = wret; 1149 goto enospc; 1150 } 1151 if (wret == 1) { 1152 wret = push_node_left(trans, root, left, mid, 1); 1153 if (wret < 0) 1154 ret = wret; 1155 } 1156 BUG_ON(wret == 1); 1157 } 1158 if (btrfs_header_nritems(mid) == 0) { 1159 clean_tree_block(trans, root, mid); 1160 btrfs_tree_unlock(mid); 1161 wret = del_ptr(trans, root, path, level + 1, pslot); 1162 if (wret) 1163 ret = wret; 1164 root_sub_used(root, mid->len); 1165 btrfs_free_tree_block(trans, root, mid, 0, 1); 1166 free_extent_buffer(mid); 1167 mid = NULL; 1168 } else { 1169 /* update the parent key to reflect our changes */ 1170 struct btrfs_disk_key mid_key; 1171 btrfs_node_key(mid, &mid_key, 0); 1172 btrfs_set_node_key(parent, &mid_key, pslot); 1173 btrfs_mark_buffer_dirty(parent); 1174 } 1175 1176 /* update the path */ 1177 if (left) { 1178 if (btrfs_header_nritems(left) > orig_slot) { 1179 extent_buffer_get(left); 1180 /* left was locked after cow */ 1181 path->nodes[level] = left; 1182 path->slots[level + 1] -= 1; 1183 path->slots[level] = orig_slot; 1184 if (mid) { 1185 btrfs_tree_unlock(mid); 1186 free_extent_buffer(mid); 1187 } 1188 } else { 1189 orig_slot -= btrfs_header_nritems(left); 1190 path->slots[level] = orig_slot; 1191 } 1192 } 1193 /* double check we haven't messed things up */ 1194 check_block(root, path, level); 1195 if (orig_ptr != 1196 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1197 BUG(); 1198 enospc: 1199 if (right) { 1200 btrfs_tree_unlock(right); 1201 free_extent_buffer(right); 1202 } 1203 if (left) { 1204 if (path->nodes[level] != left) 1205 btrfs_tree_unlock(left); 1206 free_extent_buffer(left); 1207 } 1208 return ret; 1209 } 1210 1211 /* Node balancing for insertion. Here we only split or push nodes around 1212 * when they are completely full. This is also done top down, so we 1213 * have to be pessimistic. 1214 */ 1215 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1216 struct btrfs_root *root, 1217 struct btrfs_path *path, int level) 1218 { 1219 struct extent_buffer *right = NULL; 1220 struct extent_buffer *mid; 1221 struct extent_buffer *left = NULL; 1222 struct extent_buffer *parent = NULL; 1223 int ret = 0; 1224 int wret; 1225 int pslot; 1226 int orig_slot = path->slots[level]; 1227 u64 orig_ptr; 1228 1229 if (level == 0) 1230 return 1; 1231 1232 mid = path->nodes[level]; 1233 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1234 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1235 1236 if (level < BTRFS_MAX_LEVEL - 1) 1237 parent = path->nodes[level + 1]; 1238 pslot = path->slots[level + 1]; 1239 1240 if (!parent) 1241 return 1; 1242 1243 left = read_node_slot(root, parent, pslot - 1); 1244 1245 /* first, try to make some room in the middle buffer */ 1246 if (left) { 1247 u32 left_nr; 1248 1249 btrfs_tree_lock(left); 1250 btrfs_set_lock_blocking(left); 1251 1252 left_nr = btrfs_header_nritems(left); 1253 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1254 wret = 1; 1255 } else { 1256 ret = btrfs_cow_block(trans, root, left, parent, 1257 pslot - 1, &left); 1258 if (ret) 1259 wret = 1; 1260 else { 1261 wret = push_node_left(trans, root, 1262 left, mid, 0); 1263 } 1264 } 1265 if (wret < 0) 1266 ret = wret; 1267 if (wret == 0) { 1268 struct btrfs_disk_key disk_key; 1269 orig_slot += left_nr; 1270 btrfs_node_key(mid, &disk_key, 0); 1271 btrfs_set_node_key(parent, &disk_key, pslot); 1272 btrfs_mark_buffer_dirty(parent); 1273 if (btrfs_header_nritems(left) > orig_slot) { 1274 path->nodes[level] = left; 1275 path->slots[level + 1] -= 1; 1276 path->slots[level] = orig_slot; 1277 btrfs_tree_unlock(mid); 1278 free_extent_buffer(mid); 1279 } else { 1280 orig_slot -= 1281 btrfs_header_nritems(left); 1282 path->slots[level] = orig_slot; 1283 btrfs_tree_unlock(left); 1284 free_extent_buffer(left); 1285 } 1286 return 0; 1287 } 1288 btrfs_tree_unlock(left); 1289 free_extent_buffer(left); 1290 } 1291 right = read_node_slot(root, parent, pslot + 1); 1292 1293 /* 1294 * then try to empty the right most buffer into the middle 1295 */ 1296 if (right) { 1297 u32 right_nr; 1298 1299 btrfs_tree_lock(right); 1300 btrfs_set_lock_blocking(right); 1301 1302 right_nr = btrfs_header_nritems(right); 1303 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1304 wret = 1; 1305 } else { 1306 ret = btrfs_cow_block(trans, root, right, 1307 parent, pslot + 1, 1308 &right); 1309 if (ret) 1310 wret = 1; 1311 else { 1312 wret = balance_node_right(trans, root, 1313 right, mid); 1314 } 1315 } 1316 if (wret < 0) 1317 ret = wret; 1318 if (wret == 0) { 1319 struct btrfs_disk_key disk_key; 1320 1321 btrfs_node_key(right, &disk_key, 0); 1322 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1323 btrfs_mark_buffer_dirty(parent); 1324 1325 if (btrfs_header_nritems(mid) <= orig_slot) { 1326 path->nodes[level] = right; 1327 path->slots[level + 1] += 1; 1328 path->slots[level] = orig_slot - 1329 btrfs_header_nritems(mid); 1330 btrfs_tree_unlock(mid); 1331 free_extent_buffer(mid); 1332 } else { 1333 btrfs_tree_unlock(right); 1334 free_extent_buffer(right); 1335 } 1336 return 0; 1337 } 1338 btrfs_tree_unlock(right); 1339 free_extent_buffer(right); 1340 } 1341 return 1; 1342 } 1343 1344 /* 1345 * readahead one full node of leaves, finding things that are close 1346 * to the block in 'slot', and triggering ra on them. 1347 */ 1348 static void reada_for_search(struct btrfs_root *root, 1349 struct btrfs_path *path, 1350 int level, int slot, u64 objectid) 1351 { 1352 struct extent_buffer *node; 1353 struct btrfs_disk_key disk_key; 1354 u32 nritems; 1355 u64 search; 1356 u64 target; 1357 u64 nread = 0; 1358 int direction = path->reada; 1359 struct extent_buffer *eb; 1360 u32 nr; 1361 u32 blocksize; 1362 u32 nscan = 0; 1363 1364 if (level != 1) 1365 return; 1366 1367 if (!path->nodes[level]) 1368 return; 1369 1370 node = path->nodes[level]; 1371 1372 search = btrfs_node_blockptr(node, slot); 1373 blocksize = btrfs_level_size(root, level - 1); 1374 eb = btrfs_find_tree_block(root, search, blocksize); 1375 if (eb) { 1376 free_extent_buffer(eb); 1377 return; 1378 } 1379 1380 target = search; 1381 1382 nritems = btrfs_header_nritems(node); 1383 nr = slot; 1384 while (1) { 1385 if (direction < 0) { 1386 if (nr == 0) 1387 break; 1388 nr--; 1389 } else if (direction > 0) { 1390 nr++; 1391 if (nr >= nritems) 1392 break; 1393 } 1394 if (path->reada < 0 && objectid) { 1395 btrfs_node_key(node, &disk_key, nr); 1396 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1397 break; 1398 } 1399 search = btrfs_node_blockptr(node, nr); 1400 if ((search <= target && target - search <= 65536) || 1401 (search > target && search - target <= 65536)) { 1402 readahead_tree_block(root, search, blocksize, 1403 btrfs_node_ptr_generation(node, nr)); 1404 nread += blocksize; 1405 } 1406 nscan++; 1407 if ((nread > 65536 || nscan > 32)) 1408 break; 1409 } 1410 } 1411 1412 /* 1413 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1414 * cache 1415 */ 1416 static noinline int reada_for_balance(struct btrfs_root *root, 1417 struct btrfs_path *path, int level) 1418 { 1419 int slot; 1420 int nritems; 1421 struct extent_buffer *parent; 1422 struct extent_buffer *eb; 1423 u64 gen; 1424 u64 block1 = 0; 1425 u64 block2 = 0; 1426 int ret = 0; 1427 int blocksize; 1428 1429 parent = path->nodes[level + 1]; 1430 if (!parent) 1431 return 0; 1432 1433 nritems = btrfs_header_nritems(parent); 1434 slot = path->slots[level + 1]; 1435 blocksize = btrfs_level_size(root, level); 1436 1437 if (slot > 0) { 1438 block1 = btrfs_node_blockptr(parent, slot - 1); 1439 gen = btrfs_node_ptr_generation(parent, slot - 1); 1440 eb = btrfs_find_tree_block(root, block1, blocksize); 1441 if (eb && btrfs_buffer_uptodate(eb, gen)) 1442 block1 = 0; 1443 free_extent_buffer(eb); 1444 } 1445 if (slot + 1 < nritems) { 1446 block2 = btrfs_node_blockptr(parent, slot + 1); 1447 gen = btrfs_node_ptr_generation(parent, slot + 1); 1448 eb = btrfs_find_tree_block(root, block2, blocksize); 1449 if (eb && btrfs_buffer_uptodate(eb, gen)) 1450 block2 = 0; 1451 free_extent_buffer(eb); 1452 } 1453 if (block1 || block2) { 1454 ret = -EAGAIN; 1455 1456 /* release the whole path */ 1457 btrfs_release_path(root, path); 1458 1459 /* read the blocks */ 1460 if (block1) 1461 readahead_tree_block(root, block1, blocksize, 0); 1462 if (block2) 1463 readahead_tree_block(root, block2, blocksize, 0); 1464 1465 if (block1) { 1466 eb = read_tree_block(root, block1, blocksize, 0); 1467 free_extent_buffer(eb); 1468 } 1469 if (block2) { 1470 eb = read_tree_block(root, block2, blocksize, 0); 1471 free_extent_buffer(eb); 1472 } 1473 } 1474 return ret; 1475 } 1476 1477 1478 /* 1479 * when we walk down the tree, it is usually safe to unlock the higher layers 1480 * in the tree. The exceptions are when our path goes through slot 0, because 1481 * operations on the tree might require changing key pointers higher up in the 1482 * tree. 1483 * 1484 * callers might also have set path->keep_locks, which tells this code to keep 1485 * the lock if the path points to the last slot in the block. This is part of 1486 * walking through the tree, and selecting the next slot in the higher block. 1487 * 1488 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1489 * if lowest_unlock is 1, level 0 won't be unlocked 1490 */ 1491 static noinline void unlock_up(struct btrfs_path *path, int level, 1492 int lowest_unlock) 1493 { 1494 int i; 1495 int skip_level = level; 1496 int no_skips = 0; 1497 struct extent_buffer *t; 1498 1499 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1500 if (!path->nodes[i]) 1501 break; 1502 if (!path->locks[i]) 1503 break; 1504 if (!no_skips && path->slots[i] == 0) { 1505 skip_level = i + 1; 1506 continue; 1507 } 1508 if (!no_skips && path->keep_locks) { 1509 u32 nritems; 1510 t = path->nodes[i]; 1511 nritems = btrfs_header_nritems(t); 1512 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1513 skip_level = i + 1; 1514 continue; 1515 } 1516 } 1517 if (skip_level < i && i >= lowest_unlock) 1518 no_skips = 1; 1519 1520 t = path->nodes[i]; 1521 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 1522 btrfs_tree_unlock(t); 1523 path->locks[i] = 0; 1524 } 1525 } 1526 } 1527 1528 /* 1529 * This releases any locks held in the path starting at level and 1530 * going all the way up to the root. 1531 * 1532 * btrfs_search_slot will keep the lock held on higher nodes in a few 1533 * corner cases, such as COW of the block at slot zero in the node. This 1534 * ignores those rules, and it should only be called when there are no 1535 * more updates to be done higher up in the tree. 1536 */ 1537 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 1538 { 1539 int i; 1540 1541 if (path->keep_locks) 1542 return; 1543 1544 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1545 if (!path->nodes[i]) 1546 continue; 1547 if (!path->locks[i]) 1548 continue; 1549 btrfs_tree_unlock(path->nodes[i]); 1550 path->locks[i] = 0; 1551 } 1552 } 1553 1554 /* 1555 * helper function for btrfs_search_slot. The goal is to find a block 1556 * in cache without setting the path to blocking. If we find the block 1557 * we return zero and the path is unchanged. 1558 * 1559 * If we can't find the block, we set the path blocking and do some 1560 * reada. -EAGAIN is returned and the search must be repeated. 1561 */ 1562 static int 1563 read_block_for_search(struct btrfs_trans_handle *trans, 1564 struct btrfs_root *root, struct btrfs_path *p, 1565 struct extent_buffer **eb_ret, int level, int slot, 1566 struct btrfs_key *key) 1567 { 1568 u64 blocknr; 1569 u64 gen; 1570 u32 blocksize; 1571 struct extent_buffer *b = *eb_ret; 1572 struct extent_buffer *tmp; 1573 int ret; 1574 1575 blocknr = btrfs_node_blockptr(b, slot); 1576 gen = btrfs_node_ptr_generation(b, slot); 1577 blocksize = btrfs_level_size(root, level - 1); 1578 1579 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 1580 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 1581 /* 1582 * we found an up to date block without sleeping, return 1583 * right away 1584 */ 1585 *eb_ret = tmp; 1586 return 0; 1587 } 1588 1589 /* 1590 * reduce lock contention at high levels 1591 * of the btree by dropping locks before 1592 * we read. Don't release the lock on the current 1593 * level because we need to walk this node to figure 1594 * out which blocks to read. 1595 */ 1596 btrfs_unlock_up_safe(p, level + 1); 1597 btrfs_set_path_blocking(p); 1598 1599 if (tmp) 1600 free_extent_buffer(tmp); 1601 if (p->reada) 1602 reada_for_search(root, p, level, slot, key->objectid); 1603 1604 btrfs_release_path(NULL, p); 1605 1606 ret = -EAGAIN; 1607 tmp = read_tree_block(root, blocknr, blocksize, 0); 1608 if (tmp) { 1609 /* 1610 * If the read above didn't mark this buffer up to date, 1611 * it will never end up being up to date. Set ret to EIO now 1612 * and give up so that our caller doesn't loop forever 1613 * on our EAGAINs. 1614 */ 1615 if (!btrfs_buffer_uptodate(tmp, 0)) 1616 ret = -EIO; 1617 free_extent_buffer(tmp); 1618 } 1619 return ret; 1620 } 1621 1622 /* 1623 * helper function for btrfs_search_slot. This does all of the checks 1624 * for node-level blocks and does any balancing required based on 1625 * the ins_len. 1626 * 1627 * If no extra work was required, zero is returned. If we had to 1628 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1629 * start over 1630 */ 1631 static int 1632 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1633 struct btrfs_root *root, struct btrfs_path *p, 1634 struct extent_buffer *b, int level, int ins_len) 1635 { 1636 int ret; 1637 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1638 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 1639 int sret; 1640 1641 sret = reada_for_balance(root, p, level); 1642 if (sret) 1643 goto again; 1644 1645 btrfs_set_path_blocking(p); 1646 sret = split_node(trans, root, p, level); 1647 btrfs_clear_path_blocking(p, NULL); 1648 1649 BUG_ON(sret > 0); 1650 if (sret) { 1651 ret = sret; 1652 goto done; 1653 } 1654 b = p->nodes[level]; 1655 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1656 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 1657 int sret; 1658 1659 sret = reada_for_balance(root, p, level); 1660 if (sret) 1661 goto again; 1662 1663 btrfs_set_path_blocking(p); 1664 sret = balance_level(trans, root, p, level); 1665 btrfs_clear_path_blocking(p, NULL); 1666 1667 if (sret) { 1668 ret = sret; 1669 goto done; 1670 } 1671 b = p->nodes[level]; 1672 if (!b) { 1673 btrfs_release_path(NULL, p); 1674 goto again; 1675 } 1676 BUG_ON(btrfs_header_nritems(b) == 1); 1677 } 1678 return 0; 1679 1680 again: 1681 ret = -EAGAIN; 1682 done: 1683 return ret; 1684 } 1685 1686 /* 1687 * look for key in the tree. path is filled in with nodes along the way 1688 * if key is found, we return zero and you can find the item in the leaf 1689 * level of the path (level 0) 1690 * 1691 * If the key isn't found, the path points to the slot where it should 1692 * be inserted, and 1 is returned. If there are other errors during the 1693 * search a negative error number is returned. 1694 * 1695 * if ins_len > 0, nodes and leaves will be split as we walk down the 1696 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 1697 * possible) 1698 */ 1699 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 1700 *root, struct btrfs_key *key, struct btrfs_path *p, int 1701 ins_len, int cow) 1702 { 1703 struct extent_buffer *b; 1704 int slot; 1705 int ret; 1706 int err; 1707 int level; 1708 int lowest_unlock = 1; 1709 u8 lowest_level = 0; 1710 1711 lowest_level = p->lowest_level; 1712 WARN_ON(lowest_level && ins_len > 0); 1713 WARN_ON(p->nodes[0] != NULL); 1714 1715 if (ins_len < 0) 1716 lowest_unlock = 2; 1717 1718 again: 1719 if (p->search_commit_root) { 1720 b = root->commit_root; 1721 extent_buffer_get(b); 1722 if (!p->skip_locking) 1723 btrfs_tree_lock(b); 1724 } else { 1725 if (p->skip_locking) 1726 b = btrfs_root_node(root); 1727 else 1728 b = btrfs_lock_root_node(root); 1729 } 1730 1731 while (b) { 1732 level = btrfs_header_level(b); 1733 1734 /* 1735 * setup the path here so we can release it under lock 1736 * contention with the cow code 1737 */ 1738 p->nodes[level] = b; 1739 if (!p->skip_locking) 1740 p->locks[level] = 1; 1741 1742 if (cow) { 1743 /* 1744 * if we don't really need to cow this block 1745 * then we don't want to set the path blocking, 1746 * so we test it here 1747 */ 1748 if (!should_cow_block(trans, root, b)) 1749 goto cow_done; 1750 1751 btrfs_set_path_blocking(p); 1752 1753 err = btrfs_cow_block(trans, root, b, 1754 p->nodes[level + 1], 1755 p->slots[level + 1], &b); 1756 if (err) { 1757 ret = err; 1758 goto done; 1759 } 1760 } 1761 cow_done: 1762 BUG_ON(!cow && ins_len); 1763 if (level != btrfs_header_level(b)) 1764 WARN_ON(1); 1765 level = btrfs_header_level(b); 1766 1767 p->nodes[level] = b; 1768 if (!p->skip_locking) 1769 p->locks[level] = 1; 1770 1771 btrfs_clear_path_blocking(p, NULL); 1772 1773 /* 1774 * we have a lock on b and as long as we aren't changing 1775 * the tree, there is no way to for the items in b to change. 1776 * It is safe to drop the lock on our parent before we 1777 * go through the expensive btree search on b. 1778 * 1779 * If cow is true, then we might be changing slot zero, 1780 * which may require changing the parent. So, we can't 1781 * drop the lock until after we know which slot we're 1782 * operating on. 1783 */ 1784 if (!cow) 1785 btrfs_unlock_up_safe(p, level + 1); 1786 1787 ret = check_block(root, p, level); 1788 if (ret) { 1789 ret = -1; 1790 goto done; 1791 } 1792 1793 ret = bin_search(b, key, level, &slot); 1794 1795 if (level != 0) { 1796 int dec = 0; 1797 if (ret && slot > 0) { 1798 dec = 1; 1799 slot -= 1; 1800 } 1801 p->slots[level] = slot; 1802 err = setup_nodes_for_search(trans, root, p, b, level, 1803 ins_len); 1804 if (err == -EAGAIN) 1805 goto again; 1806 if (err) { 1807 ret = err; 1808 goto done; 1809 } 1810 b = p->nodes[level]; 1811 slot = p->slots[level]; 1812 1813 unlock_up(p, level, lowest_unlock); 1814 1815 if (level == lowest_level) { 1816 if (dec) 1817 p->slots[level]++; 1818 goto done; 1819 } 1820 1821 err = read_block_for_search(trans, root, p, 1822 &b, level, slot, key); 1823 if (err == -EAGAIN) 1824 goto again; 1825 if (err) { 1826 ret = err; 1827 goto done; 1828 } 1829 1830 if (!p->skip_locking) { 1831 btrfs_clear_path_blocking(p, NULL); 1832 err = btrfs_try_spin_lock(b); 1833 1834 if (!err) { 1835 btrfs_set_path_blocking(p); 1836 btrfs_tree_lock(b); 1837 btrfs_clear_path_blocking(p, b); 1838 } 1839 } 1840 } else { 1841 p->slots[level] = slot; 1842 if (ins_len > 0 && 1843 btrfs_leaf_free_space(root, b) < ins_len) { 1844 btrfs_set_path_blocking(p); 1845 err = split_leaf(trans, root, key, 1846 p, ins_len, ret == 0); 1847 btrfs_clear_path_blocking(p, NULL); 1848 1849 BUG_ON(err > 0); 1850 if (err) { 1851 ret = err; 1852 goto done; 1853 } 1854 } 1855 if (!p->search_for_split) 1856 unlock_up(p, level, lowest_unlock); 1857 goto done; 1858 } 1859 } 1860 ret = 1; 1861 done: 1862 /* 1863 * we don't really know what they plan on doing with the path 1864 * from here on, so for now just mark it as blocking 1865 */ 1866 if (!p->leave_spinning) 1867 btrfs_set_path_blocking(p); 1868 if (ret < 0) 1869 btrfs_release_path(root, p); 1870 return ret; 1871 } 1872 1873 /* 1874 * adjust the pointers going up the tree, starting at level 1875 * making sure the right key of each node is points to 'key'. 1876 * This is used after shifting pointers to the left, so it stops 1877 * fixing up pointers when a given leaf/node is not in slot 0 of the 1878 * higher levels 1879 * 1880 * If this fails to write a tree block, it returns -1, but continues 1881 * fixing up the blocks in ram so the tree is consistent. 1882 */ 1883 static int fixup_low_keys(struct btrfs_trans_handle *trans, 1884 struct btrfs_root *root, struct btrfs_path *path, 1885 struct btrfs_disk_key *key, int level) 1886 { 1887 int i; 1888 int ret = 0; 1889 struct extent_buffer *t; 1890 1891 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1892 int tslot = path->slots[i]; 1893 if (!path->nodes[i]) 1894 break; 1895 t = path->nodes[i]; 1896 btrfs_set_node_key(t, key, tslot); 1897 btrfs_mark_buffer_dirty(path->nodes[i]); 1898 if (tslot != 0) 1899 break; 1900 } 1901 return ret; 1902 } 1903 1904 /* 1905 * update item key. 1906 * 1907 * This function isn't completely safe. It's the caller's responsibility 1908 * that the new key won't break the order 1909 */ 1910 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 1911 struct btrfs_root *root, struct btrfs_path *path, 1912 struct btrfs_key *new_key) 1913 { 1914 struct btrfs_disk_key disk_key; 1915 struct extent_buffer *eb; 1916 int slot; 1917 1918 eb = path->nodes[0]; 1919 slot = path->slots[0]; 1920 if (slot > 0) { 1921 btrfs_item_key(eb, &disk_key, slot - 1); 1922 if (comp_keys(&disk_key, new_key) >= 0) 1923 return -1; 1924 } 1925 if (slot < btrfs_header_nritems(eb) - 1) { 1926 btrfs_item_key(eb, &disk_key, slot + 1); 1927 if (comp_keys(&disk_key, new_key) <= 0) 1928 return -1; 1929 } 1930 1931 btrfs_cpu_key_to_disk(&disk_key, new_key); 1932 btrfs_set_item_key(eb, &disk_key, slot); 1933 btrfs_mark_buffer_dirty(eb); 1934 if (slot == 0) 1935 fixup_low_keys(trans, root, path, &disk_key, 1); 1936 return 0; 1937 } 1938 1939 /* 1940 * try to push data from one node into the next node left in the 1941 * tree. 1942 * 1943 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 1944 * error, and > 0 if there was no room in the left hand block. 1945 */ 1946 static int push_node_left(struct btrfs_trans_handle *trans, 1947 struct btrfs_root *root, struct extent_buffer *dst, 1948 struct extent_buffer *src, int empty) 1949 { 1950 int push_items = 0; 1951 int src_nritems; 1952 int dst_nritems; 1953 int ret = 0; 1954 1955 src_nritems = btrfs_header_nritems(src); 1956 dst_nritems = btrfs_header_nritems(dst); 1957 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 1958 WARN_ON(btrfs_header_generation(src) != trans->transid); 1959 WARN_ON(btrfs_header_generation(dst) != trans->transid); 1960 1961 if (!empty && src_nritems <= 8) 1962 return 1; 1963 1964 if (push_items <= 0) 1965 return 1; 1966 1967 if (empty) { 1968 push_items = min(src_nritems, push_items); 1969 if (push_items < src_nritems) { 1970 /* leave at least 8 pointers in the node if 1971 * we aren't going to empty it 1972 */ 1973 if (src_nritems - push_items < 8) { 1974 if (push_items <= 8) 1975 return 1; 1976 push_items -= 8; 1977 } 1978 } 1979 } else 1980 push_items = min(src_nritems - 8, push_items); 1981 1982 copy_extent_buffer(dst, src, 1983 btrfs_node_key_ptr_offset(dst_nritems), 1984 btrfs_node_key_ptr_offset(0), 1985 push_items * sizeof(struct btrfs_key_ptr)); 1986 1987 if (push_items < src_nritems) { 1988 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 1989 btrfs_node_key_ptr_offset(push_items), 1990 (src_nritems - push_items) * 1991 sizeof(struct btrfs_key_ptr)); 1992 } 1993 btrfs_set_header_nritems(src, src_nritems - push_items); 1994 btrfs_set_header_nritems(dst, dst_nritems + push_items); 1995 btrfs_mark_buffer_dirty(src); 1996 btrfs_mark_buffer_dirty(dst); 1997 1998 return ret; 1999 } 2000 2001 /* 2002 * try to push data from one node into the next node right in the 2003 * tree. 2004 * 2005 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2006 * error, and > 0 if there was no room in the right hand block. 2007 * 2008 * this will only push up to 1/2 the contents of the left node over 2009 */ 2010 static int balance_node_right(struct btrfs_trans_handle *trans, 2011 struct btrfs_root *root, 2012 struct extent_buffer *dst, 2013 struct extent_buffer *src) 2014 { 2015 int push_items = 0; 2016 int max_push; 2017 int src_nritems; 2018 int dst_nritems; 2019 int ret = 0; 2020 2021 WARN_ON(btrfs_header_generation(src) != trans->transid); 2022 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2023 2024 src_nritems = btrfs_header_nritems(src); 2025 dst_nritems = btrfs_header_nritems(dst); 2026 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2027 if (push_items <= 0) 2028 return 1; 2029 2030 if (src_nritems < 4) 2031 return 1; 2032 2033 max_push = src_nritems / 2 + 1; 2034 /* don't try to empty the node */ 2035 if (max_push >= src_nritems) 2036 return 1; 2037 2038 if (max_push < push_items) 2039 push_items = max_push; 2040 2041 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2042 btrfs_node_key_ptr_offset(0), 2043 (dst_nritems) * 2044 sizeof(struct btrfs_key_ptr)); 2045 2046 copy_extent_buffer(dst, src, 2047 btrfs_node_key_ptr_offset(0), 2048 btrfs_node_key_ptr_offset(src_nritems - push_items), 2049 push_items * sizeof(struct btrfs_key_ptr)); 2050 2051 btrfs_set_header_nritems(src, src_nritems - push_items); 2052 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2053 2054 btrfs_mark_buffer_dirty(src); 2055 btrfs_mark_buffer_dirty(dst); 2056 2057 return ret; 2058 } 2059 2060 /* 2061 * helper function to insert a new root level in the tree. 2062 * A new node is allocated, and a single item is inserted to 2063 * point to the existing root 2064 * 2065 * returns zero on success or < 0 on failure. 2066 */ 2067 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2068 struct btrfs_root *root, 2069 struct btrfs_path *path, int level) 2070 { 2071 u64 lower_gen; 2072 struct extent_buffer *lower; 2073 struct extent_buffer *c; 2074 struct extent_buffer *old; 2075 struct btrfs_disk_key lower_key; 2076 2077 BUG_ON(path->nodes[level]); 2078 BUG_ON(path->nodes[level-1] != root->node); 2079 2080 lower = path->nodes[level-1]; 2081 if (level == 1) 2082 btrfs_item_key(lower, &lower_key, 0); 2083 else 2084 btrfs_node_key(lower, &lower_key, 0); 2085 2086 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2087 root->root_key.objectid, &lower_key, 2088 level, root->node->start, 0); 2089 if (IS_ERR(c)) 2090 return PTR_ERR(c); 2091 2092 root_add_used(root, root->nodesize); 2093 2094 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 2095 btrfs_set_header_nritems(c, 1); 2096 btrfs_set_header_level(c, level); 2097 btrfs_set_header_bytenr(c, c->start); 2098 btrfs_set_header_generation(c, trans->transid); 2099 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 2100 btrfs_set_header_owner(c, root->root_key.objectid); 2101 2102 write_extent_buffer(c, root->fs_info->fsid, 2103 (unsigned long)btrfs_header_fsid(c), 2104 BTRFS_FSID_SIZE); 2105 2106 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2107 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2108 BTRFS_UUID_SIZE); 2109 2110 btrfs_set_node_key(c, &lower_key, 0); 2111 btrfs_set_node_blockptr(c, 0, lower->start); 2112 lower_gen = btrfs_header_generation(lower); 2113 WARN_ON(lower_gen != trans->transid); 2114 2115 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2116 2117 btrfs_mark_buffer_dirty(c); 2118 2119 spin_lock(&root->node_lock); 2120 old = root->node; 2121 root->node = c; 2122 spin_unlock(&root->node_lock); 2123 2124 /* the super has an extra ref to root->node */ 2125 free_extent_buffer(old); 2126 2127 add_root_to_dirty_list(root); 2128 extent_buffer_get(c); 2129 path->nodes[level] = c; 2130 path->locks[level] = 1; 2131 path->slots[level] = 0; 2132 return 0; 2133 } 2134 2135 /* 2136 * worker function to insert a single pointer in a node. 2137 * the node should have enough room for the pointer already 2138 * 2139 * slot and level indicate where you want the key to go, and 2140 * blocknr is the block the key points to. 2141 * 2142 * returns zero on success and < 0 on any error 2143 */ 2144 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root 2145 *root, struct btrfs_path *path, struct btrfs_disk_key 2146 *key, u64 bytenr, int slot, int level) 2147 { 2148 struct extent_buffer *lower; 2149 int nritems; 2150 2151 BUG_ON(!path->nodes[level]); 2152 btrfs_assert_tree_locked(path->nodes[level]); 2153 lower = path->nodes[level]; 2154 nritems = btrfs_header_nritems(lower); 2155 BUG_ON(slot > nritems); 2156 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) 2157 BUG(); 2158 if (slot != nritems) { 2159 memmove_extent_buffer(lower, 2160 btrfs_node_key_ptr_offset(slot + 1), 2161 btrfs_node_key_ptr_offset(slot), 2162 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2163 } 2164 btrfs_set_node_key(lower, key, slot); 2165 btrfs_set_node_blockptr(lower, slot, bytenr); 2166 WARN_ON(trans->transid == 0); 2167 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2168 btrfs_set_header_nritems(lower, nritems + 1); 2169 btrfs_mark_buffer_dirty(lower); 2170 return 0; 2171 } 2172 2173 /* 2174 * split the node at the specified level in path in two. 2175 * The path is corrected to point to the appropriate node after the split 2176 * 2177 * Before splitting this tries to make some room in the node by pushing 2178 * left and right, if either one works, it returns right away. 2179 * 2180 * returns 0 on success and < 0 on failure 2181 */ 2182 static noinline int split_node(struct btrfs_trans_handle *trans, 2183 struct btrfs_root *root, 2184 struct btrfs_path *path, int level) 2185 { 2186 struct extent_buffer *c; 2187 struct extent_buffer *split; 2188 struct btrfs_disk_key disk_key; 2189 int mid; 2190 int ret; 2191 int wret; 2192 u32 c_nritems; 2193 2194 c = path->nodes[level]; 2195 WARN_ON(btrfs_header_generation(c) != trans->transid); 2196 if (c == root->node) { 2197 /* trying to split the root, lets make a new one */ 2198 ret = insert_new_root(trans, root, path, level + 1); 2199 if (ret) 2200 return ret; 2201 } else { 2202 ret = push_nodes_for_insert(trans, root, path, level); 2203 c = path->nodes[level]; 2204 if (!ret && btrfs_header_nritems(c) < 2205 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 2206 return 0; 2207 if (ret < 0) 2208 return ret; 2209 } 2210 2211 c_nritems = btrfs_header_nritems(c); 2212 mid = (c_nritems + 1) / 2; 2213 btrfs_node_key(c, &disk_key, mid); 2214 2215 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2216 root->root_key.objectid, 2217 &disk_key, level, c->start, 0); 2218 if (IS_ERR(split)) 2219 return PTR_ERR(split); 2220 2221 root_add_used(root, root->nodesize); 2222 2223 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 2224 btrfs_set_header_level(split, btrfs_header_level(c)); 2225 btrfs_set_header_bytenr(split, split->start); 2226 btrfs_set_header_generation(split, trans->transid); 2227 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 2228 btrfs_set_header_owner(split, root->root_key.objectid); 2229 write_extent_buffer(split, root->fs_info->fsid, 2230 (unsigned long)btrfs_header_fsid(split), 2231 BTRFS_FSID_SIZE); 2232 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 2233 (unsigned long)btrfs_header_chunk_tree_uuid(split), 2234 BTRFS_UUID_SIZE); 2235 2236 2237 copy_extent_buffer(split, c, 2238 btrfs_node_key_ptr_offset(0), 2239 btrfs_node_key_ptr_offset(mid), 2240 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2241 btrfs_set_header_nritems(split, c_nritems - mid); 2242 btrfs_set_header_nritems(c, mid); 2243 ret = 0; 2244 2245 btrfs_mark_buffer_dirty(c); 2246 btrfs_mark_buffer_dirty(split); 2247 2248 wret = insert_ptr(trans, root, path, &disk_key, split->start, 2249 path->slots[level + 1] + 1, 2250 level + 1); 2251 if (wret) 2252 ret = wret; 2253 2254 if (path->slots[level] >= mid) { 2255 path->slots[level] -= mid; 2256 btrfs_tree_unlock(c); 2257 free_extent_buffer(c); 2258 path->nodes[level] = split; 2259 path->slots[level + 1] += 1; 2260 } else { 2261 btrfs_tree_unlock(split); 2262 free_extent_buffer(split); 2263 } 2264 return ret; 2265 } 2266 2267 /* 2268 * how many bytes are required to store the items in a leaf. start 2269 * and nr indicate which items in the leaf to check. This totals up the 2270 * space used both by the item structs and the item data 2271 */ 2272 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2273 { 2274 int data_len; 2275 int nritems = btrfs_header_nritems(l); 2276 int end = min(nritems, start + nr) - 1; 2277 2278 if (!nr) 2279 return 0; 2280 data_len = btrfs_item_end_nr(l, start); 2281 data_len = data_len - btrfs_item_offset_nr(l, end); 2282 data_len += sizeof(struct btrfs_item) * nr; 2283 WARN_ON(data_len < 0); 2284 return data_len; 2285 } 2286 2287 /* 2288 * The space between the end of the leaf items and 2289 * the start of the leaf data. IOW, how much room 2290 * the leaf has left for both items and data 2291 */ 2292 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 2293 struct extent_buffer *leaf) 2294 { 2295 int nritems = btrfs_header_nritems(leaf); 2296 int ret; 2297 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 2298 if (ret < 0) { 2299 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 2300 "used %d nritems %d\n", 2301 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 2302 leaf_space_used(leaf, 0, nritems), nritems); 2303 } 2304 return ret; 2305 } 2306 2307 /* 2308 * min slot controls the lowest index we're willing to push to the 2309 * right. We'll push up to and including min_slot, but no lower 2310 */ 2311 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 2312 struct btrfs_root *root, 2313 struct btrfs_path *path, 2314 int data_size, int empty, 2315 struct extent_buffer *right, 2316 int free_space, u32 left_nritems, 2317 u32 min_slot) 2318 { 2319 struct extent_buffer *left = path->nodes[0]; 2320 struct extent_buffer *upper = path->nodes[1]; 2321 struct btrfs_disk_key disk_key; 2322 int slot; 2323 u32 i; 2324 int push_space = 0; 2325 int push_items = 0; 2326 struct btrfs_item *item; 2327 u32 nr; 2328 u32 right_nritems; 2329 u32 data_end; 2330 u32 this_item_size; 2331 2332 if (empty) 2333 nr = 0; 2334 else 2335 nr = max_t(u32, 1, min_slot); 2336 2337 if (path->slots[0] >= left_nritems) 2338 push_space += data_size; 2339 2340 slot = path->slots[1]; 2341 i = left_nritems - 1; 2342 while (i >= nr) { 2343 item = btrfs_item_nr(left, i); 2344 2345 if (!empty && push_items > 0) { 2346 if (path->slots[0] > i) 2347 break; 2348 if (path->slots[0] == i) { 2349 int space = btrfs_leaf_free_space(root, left); 2350 if (space + push_space * 2 > free_space) 2351 break; 2352 } 2353 } 2354 2355 if (path->slots[0] == i) 2356 push_space += data_size; 2357 2358 if (!left->map_token) { 2359 map_extent_buffer(left, (unsigned long)item, 2360 sizeof(struct btrfs_item), 2361 &left->map_token, &left->kaddr, 2362 &left->map_start, &left->map_len, 2363 KM_USER1); 2364 } 2365 2366 this_item_size = btrfs_item_size(left, item); 2367 if (this_item_size + sizeof(*item) + push_space > free_space) 2368 break; 2369 2370 push_items++; 2371 push_space += this_item_size + sizeof(*item); 2372 if (i == 0) 2373 break; 2374 i--; 2375 } 2376 if (left->map_token) { 2377 unmap_extent_buffer(left, left->map_token, KM_USER1); 2378 left->map_token = NULL; 2379 } 2380 2381 if (push_items == 0) 2382 goto out_unlock; 2383 2384 if (!empty && push_items == left_nritems) 2385 WARN_ON(1); 2386 2387 /* push left to right */ 2388 right_nritems = btrfs_header_nritems(right); 2389 2390 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2391 push_space -= leaf_data_end(root, left); 2392 2393 /* make room in the right data area */ 2394 data_end = leaf_data_end(root, right); 2395 memmove_extent_buffer(right, 2396 btrfs_leaf_data(right) + data_end - push_space, 2397 btrfs_leaf_data(right) + data_end, 2398 BTRFS_LEAF_DATA_SIZE(root) - data_end); 2399 2400 /* copy from the left data area */ 2401 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 2402 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2403 btrfs_leaf_data(left) + leaf_data_end(root, left), 2404 push_space); 2405 2406 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2407 btrfs_item_nr_offset(0), 2408 right_nritems * sizeof(struct btrfs_item)); 2409 2410 /* copy the items from left to right */ 2411 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2412 btrfs_item_nr_offset(left_nritems - push_items), 2413 push_items * sizeof(struct btrfs_item)); 2414 2415 /* update the item pointers */ 2416 right_nritems += push_items; 2417 btrfs_set_header_nritems(right, right_nritems); 2418 push_space = BTRFS_LEAF_DATA_SIZE(root); 2419 for (i = 0; i < right_nritems; i++) { 2420 item = btrfs_item_nr(right, i); 2421 if (!right->map_token) { 2422 map_extent_buffer(right, (unsigned long)item, 2423 sizeof(struct btrfs_item), 2424 &right->map_token, &right->kaddr, 2425 &right->map_start, &right->map_len, 2426 KM_USER1); 2427 } 2428 push_space -= btrfs_item_size(right, item); 2429 btrfs_set_item_offset(right, item, push_space); 2430 } 2431 2432 if (right->map_token) { 2433 unmap_extent_buffer(right, right->map_token, KM_USER1); 2434 right->map_token = NULL; 2435 } 2436 left_nritems -= push_items; 2437 btrfs_set_header_nritems(left, left_nritems); 2438 2439 if (left_nritems) 2440 btrfs_mark_buffer_dirty(left); 2441 else 2442 clean_tree_block(trans, root, left); 2443 2444 btrfs_mark_buffer_dirty(right); 2445 2446 btrfs_item_key(right, &disk_key, 0); 2447 btrfs_set_node_key(upper, &disk_key, slot + 1); 2448 btrfs_mark_buffer_dirty(upper); 2449 2450 /* then fixup the leaf pointer in the path */ 2451 if (path->slots[0] >= left_nritems) { 2452 path->slots[0] -= left_nritems; 2453 if (btrfs_header_nritems(path->nodes[0]) == 0) 2454 clean_tree_block(trans, root, path->nodes[0]); 2455 btrfs_tree_unlock(path->nodes[0]); 2456 free_extent_buffer(path->nodes[0]); 2457 path->nodes[0] = right; 2458 path->slots[1] += 1; 2459 } else { 2460 btrfs_tree_unlock(right); 2461 free_extent_buffer(right); 2462 } 2463 return 0; 2464 2465 out_unlock: 2466 btrfs_tree_unlock(right); 2467 free_extent_buffer(right); 2468 return 1; 2469 } 2470 2471 /* 2472 * push some data in the path leaf to the right, trying to free up at 2473 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2474 * 2475 * returns 1 if the push failed because the other node didn't have enough 2476 * room, 0 if everything worked out and < 0 if there were major errors. 2477 * 2478 * this will push starting from min_slot to the end of the leaf. It won't 2479 * push any slot lower than min_slot 2480 */ 2481 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2482 *root, struct btrfs_path *path, 2483 int min_data_size, int data_size, 2484 int empty, u32 min_slot) 2485 { 2486 struct extent_buffer *left = path->nodes[0]; 2487 struct extent_buffer *right; 2488 struct extent_buffer *upper; 2489 int slot; 2490 int free_space; 2491 u32 left_nritems; 2492 int ret; 2493 2494 if (!path->nodes[1]) 2495 return 1; 2496 2497 slot = path->slots[1]; 2498 upper = path->nodes[1]; 2499 if (slot >= btrfs_header_nritems(upper) - 1) 2500 return 1; 2501 2502 btrfs_assert_tree_locked(path->nodes[1]); 2503 2504 right = read_node_slot(root, upper, slot + 1); 2505 btrfs_tree_lock(right); 2506 btrfs_set_lock_blocking(right); 2507 2508 free_space = btrfs_leaf_free_space(root, right); 2509 if (free_space < data_size) 2510 goto out_unlock; 2511 2512 /* cow and double check */ 2513 ret = btrfs_cow_block(trans, root, right, upper, 2514 slot + 1, &right); 2515 if (ret) 2516 goto out_unlock; 2517 2518 free_space = btrfs_leaf_free_space(root, right); 2519 if (free_space < data_size) 2520 goto out_unlock; 2521 2522 left_nritems = btrfs_header_nritems(left); 2523 if (left_nritems == 0) 2524 goto out_unlock; 2525 2526 return __push_leaf_right(trans, root, path, min_data_size, empty, 2527 right, free_space, left_nritems, min_slot); 2528 out_unlock: 2529 btrfs_tree_unlock(right); 2530 free_extent_buffer(right); 2531 return 1; 2532 } 2533 2534 /* 2535 * push some data in the path leaf to the left, trying to free up at 2536 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2537 * 2538 * max_slot can put a limit on how far into the leaf we'll push items. The 2539 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 2540 * items 2541 */ 2542 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 2543 struct btrfs_root *root, 2544 struct btrfs_path *path, int data_size, 2545 int empty, struct extent_buffer *left, 2546 int free_space, u32 right_nritems, 2547 u32 max_slot) 2548 { 2549 struct btrfs_disk_key disk_key; 2550 struct extent_buffer *right = path->nodes[0]; 2551 int slot; 2552 int i; 2553 int push_space = 0; 2554 int push_items = 0; 2555 struct btrfs_item *item; 2556 u32 old_left_nritems; 2557 u32 nr; 2558 int ret = 0; 2559 int wret; 2560 u32 this_item_size; 2561 u32 old_left_item_size; 2562 2563 slot = path->slots[1]; 2564 2565 if (empty) 2566 nr = min(right_nritems, max_slot); 2567 else 2568 nr = min(right_nritems - 1, max_slot); 2569 2570 for (i = 0; i < nr; i++) { 2571 item = btrfs_item_nr(right, i); 2572 if (!right->map_token) { 2573 map_extent_buffer(right, (unsigned long)item, 2574 sizeof(struct btrfs_item), 2575 &right->map_token, &right->kaddr, 2576 &right->map_start, &right->map_len, 2577 KM_USER1); 2578 } 2579 2580 if (!empty && push_items > 0) { 2581 if (path->slots[0] < i) 2582 break; 2583 if (path->slots[0] == i) { 2584 int space = btrfs_leaf_free_space(root, right); 2585 if (space + push_space * 2 > free_space) 2586 break; 2587 } 2588 } 2589 2590 if (path->slots[0] == i) 2591 push_space += data_size; 2592 2593 this_item_size = btrfs_item_size(right, item); 2594 if (this_item_size + sizeof(*item) + push_space > free_space) 2595 break; 2596 2597 push_items++; 2598 push_space += this_item_size + sizeof(*item); 2599 } 2600 2601 if (right->map_token) { 2602 unmap_extent_buffer(right, right->map_token, KM_USER1); 2603 right->map_token = NULL; 2604 } 2605 2606 if (push_items == 0) { 2607 ret = 1; 2608 goto out; 2609 } 2610 if (!empty && push_items == btrfs_header_nritems(right)) 2611 WARN_ON(1); 2612 2613 /* push data from right to left */ 2614 copy_extent_buffer(left, right, 2615 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2616 btrfs_item_nr_offset(0), 2617 push_items * sizeof(struct btrfs_item)); 2618 2619 push_space = BTRFS_LEAF_DATA_SIZE(root) - 2620 btrfs_item_offset_nr(right, push_items - 1); 2621 2622 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 2623 leaf_data_end(root, left) - push_space, 2624 btrfs_leaf_data(right) + 2625 btrfs_item_offset_nr(right, push_items - 1), 2626 push_space); 2627 old_left_nritems = btrfs_header_nritems(left); 2628 BUG_ON(old_left_nritems <= 0); 2629 2630 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2631 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2632 u32 ioff; 2633 2634 item = btrfs_item_nr(left, i); 2635 if (!left->map_token) { 2636 map_extent_buffer(left, (unsigned long)item, 2637 sizeof(struct btrfs_item), 2638 &left->map_token, &left->kaddr, 2639 &left->map_start, &left->map_len, 2640 KM_USER1); 2641 } 2642 2643 ioff = btrfs_item_offset(left, item); 2644 btrfs_set_item_offset(left, item, 2645 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); 2646 } 2647 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2648 if (left->map_token) { 2649 unmap_extent_buffer(left, left->map_token, KM_USER1); 2650 left->map_token = NULL; 2651 } 2652 2653 /* fixup right node */ 2654 if (push_items > right_nritems) { 2655 printk(KERN_CRIT "push items %d nr %u\n", push_items, 2656 right_nritems); 2657 WARN_ON(1); 2658 } 2659 2660 if (push_items < right_nritems) { 2661 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2662 leaf_data_end(root, right); 2663 memmove_extent_buffer(right, btrfs_leaf_data(right) + 2664 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2665 btrfs_leaf_data(right) + 2666 leaf_data_end(root, right), push_space); 2667 2668 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2669 btrfs_item_nr_offset(push_items), 2670 (btrfs_header_nritems(right) - push_items) * 2671 sizeof(struct btrfs_item)); 2672 } 2673 right_nritems -= push_items; 2674 btrfs_set_header_nritems(right, right_nritems); 2675 push_space = BTRFS_LEAF_DATA_SIZE(root); 2676 for (i = 0; i < right_nritems; i++) { 2677 item = btrfs_item_nr(right, i); 2678 2679 if (!right->map_token) { 2680 map_extent_buffer(right, (unsigned long)item, 2681 sizeof(struct btrfs_item), 2682 &right->map_token, &right->kaddr, 2683 &right->map_start, &right->map_len, 2684 KM_USER1); 2685 } 2686 2687 push_space = push_space - btrfs_item_size(right, item); 2688 btrfs_set_item_offset(right, item, push_space); 2689 } 2690 if (right->map_token) { 2691 unmap_extent_buffer(right, right->map_token, KM_USER1); 2692 right->map_token = NULL; 2693 } 2694 2695 btrfs_mark_buffer_dirty(left); 2696 if (right_nritems) 2697 btrfs_mark_buffer_dirty(right); 2698 else 2699 clean_tree_block(trans, root, right); 2700 2701 btrfs_item_key(right, &disk_key, 0); 2702 wret = fixup_low_keys(trans, root, path, &disk_key, 1); 2703 if (wret) 2704 ret = wret; 2705 2706 /* then fixup the leaf pointer in the path */ 2707 if (path->slots[0] < push_items) { 2708 path->slots[0] += old_left_nritems; 2709 btrfs_tree_unlock(path->nodes[0]); 2710 free_extent_buffer(path->nodes[0]); 2711 path->nodes[0] = left; 2712 path->slots[1] -= 1; 2713 } else { 2714 btrfs_tree_unlock(left); 2715 free_extent_buffer(left); 2716 path->slots[0] -= push_items; 2717 } 2718 BUG_ON(path->slots[0] < 0); 2719 return ret; 2720 out: 2721 btrfs_tree_unlock(left); 2722 free_extent_buffer(left); 2723 return ret; 2724 } 2725 2726 /* 2727 * push some data in the path leaf to the left, trying to free up at 2728 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2729 * 2730 * max_slot can put a limit on how far into the leaf we'll push items. The 2731 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 2732 * items 2733 */ 2734 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 2735 *root, struct btrfs_path *path, int min_data_size, 2736 int data_size, int empty, u32 max_slot) 2737 { 2738 struct extent_buffer *right = path->nodes[0]; 2739 struct extent_buffer *left; 2740 int slot; 2741 int free_space; 2742 u32 right_nritems; 2743 int ret = 0; 2744 2745 slot = path->slots[1]; 2746 if (slot == 0) 2747 return 1; 2748 if (!path->nodes[1]) 2749 return 1; 2750 2751 right_nritems = btrfs_header_nritems(right); 2752 if (right_nritems == 0) 2753 return 1; 2754 2755 btrfs_assert_tree_locked(path->nodes[1]); 2756 2757 left = read_node_slot(root, path->nodes[1], slot - 1); 2758 btrfs_tree_lock(left); 2759 btrfs_set_lock_blocking(left); 2760 2761 free_space = btrfs_leaf_free_space(root, left); 2762 if (free_space < data_size) { 2763 ret = 1; 2764 goto out; 2765 } 2766 2767 /* cow and double check */ 2768 ret = btrfs_cow_block(trans, root, left, 2769 path->nodes[1], slot - 1, &left); 2770 if (ret) { 2771 /* we hit -ENOSPC, but it isn't fatal here */ 2772 ret = 1; 2773 goto out; 2774 } 2775 2776 free_space = btrfs_leaf_free_space(root, left); 2777 if (free_space < data_size) { 2778 ret = 1; 2779 goto out; 2780 } 2781 2782 return __push_leaf_left(trans, root, path, min_data_size, 2783 empty, left, free_space, right_nritems, 2784 max_slot); 2785 out: 2786 btrfs_tree_unlock(left); 2787 free_extent_buffer(left); 2788 return ret; 2789 } 2790 2791 /* 2792 * split the path's leaf in two, making sure there is at least data_size 2793 * available for the resulting leaf level of the path. 2794 * 2795 * returns 0 if all went well and < 0 on failure. 2796 */ 2797 static noinline int copy_for_split(struct btrfs_trans_handle *trans, 2798 struct btrfs_root *root, 2799 struct btrfs_path *path, 2800 struct extent_buffer *l, 2801 struct extent_buffer *right, 2802 int slot, int mid, int nritems) 2803 { 2804 int data_copy_size; 2805 int rt_data_off; 2806 int i; 2807 int ret = 0; 2808 int wret; 2809 struct btrfs_disk_key disk_key; 2810 2811 nritems = nritems - mid; 2812 btrfs_set_header_nritems(right, nritems); 2813 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 2814 2815 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 2816 btrfs_item_nr_offset(mid), 2817 nritems * sizeof(struct btrfs_item)); 2818 2819 copy_extent_buffer(right, l, 2820 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 2821 data_copy_size, btrfs_leaf_data(l) + 2822 leaf_data_end(root, l), data_copy_size); 2823 2824 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 2825 btrfs_item_end_nr(l, mid); 2826 2827 for (i = 0; i < nritems; i++) { 2828 struct btrfs_item *item = btrfs_item_nr(right, i); 2829 u32 ioff; 2830 2831 if (!right->map_token) { 2832 map_extent_buffer(right, (unsigned long)item, 2833 sizeof(struct btrfs_item), 2834 &right->map_token, &right->kaddr, 2835 &right->map_start, &right->map_len, 2836 KM_USER1); 2837 } 2838 2839 ioff = btrfs_item_offset(right, item); 2840 btrfs_set_item_offset(right, item, ioff + rt_data_off); 2841 } 2842 2843 if (right->map_token) { 2844 unmap_extent_buffer(right, right->map_token, KM_USER1); 2845 right->map_token = NULL; 2846 } 2847 2848 btrfs_set_header_nritems(l, mid); 2849 ret = 0; 2850 btrfs_item_key(right, &disk_key, 0); 2851 wret = insert_ptr(trans, root, path, &disk_key, right->start, 2852 path->slots[1] + 1, 1); 2853 if (wret) 2854 ret = wret; 2855 2856 btrfs_mark_buffer_dirty(right); 2857 btrfs_mark_buffer_dirty(l); 2858 BUG_ON(path->slots[0] != slot); 2859 2860 if (mid <= slot) { 2861 btrfs_tree_unlock(path->nodes[0]); 2862 free_extent_buffer(path->nodes[0]); 2863 path->nodes[0] = right; 2864 path->slots[0] -= mid; 2865 path->slots[1] += 1; 2866 } else { 2867 btrfs_tree_unlock(right); 2868 free_extent_buffer(right); 2869 } 2870 2871 BUG_ON(path->slots[0] < 0); 2872 2873 return ret; 2874 } 2875 2876 /* 2877 * double splits happen when we need to insert a big item in the middle 2878 * of a leaf. A double split can leave us with 3 mostly empty leaves: 2879 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 2880 * A B C 2881 * 2882 * We avoid this by trying to push the items on either side of our target 2883 * into the adjacent leaves. If all goes well we can avoid the double split 2884 * completely. 2885 */ 2886 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 2887 struct btrfs_root *root, 2888 struct btrfs_path *path, 2889 int data_size) 2890 { 2891 int ret; 2892 int progress = 0; 2893 int slot; 2894 u32 nritems; 2895 2896 slot = path->slots[0]; 2897 2898 /* 2899 * try to push all the items after our slot into the 2900 * right leaf 2901 */ 2902 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 2903 if (ret < 0) 2904 return ret; 2905 2906 if (ret == 0) 2907 progress++; 2908 2909 nritems = btrfs_header_nritems(path->nodes[0]); 2910 /* 2911 * our goal is to get our slot at the start or end of a leaf. If 2912 * we've done so we're done 2913 */ 2914 if (path->slots[0] == 0 || path->slots[0] == nritems) 2915 return 0; 2916 2917 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 2918 return 0; 2919 2920 /* try to push all the items before our slot into the next leaf */ 2921 slot = path->slots[0]; 2922 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 2923 if (ret < 0) 2924 return ret; 2925 2926 if (ret == 0) 2927 progress++; 2928 2929 if (progress) 2930 return 0; 2931 return 1; 2932 } 2933 2934 /* 2935 * split the path's leaf in two, making sure there is at least data_size 2936 * available for the resulting leaf level of the path. 2937 * 2938 * returns 0 if all went well and < 0 on failure. 2939 */ 2940 static noinline int split_leaf(struct btrfs_trans_handle *trans, 2941 struct btrfs_root *root, 2942 struct btrfs_key *ins_key, 2943 struct btrfs_path *path, int data_size, 2944 int extend) 2945 { 2946 struct btrfs_disk_key disk_key; 2947 struct extent_buffer *l; 2948 u32 nritems; 2949 int mid; 2950 int slot; 2951 struct extent_buffer *right; 2952 int ret = 0; 2953 int wret; 2954 int split; 2955 int num_doubles = 0; 2956 int tried_avoid_double = 0; 2957 2958 l = path->nodes[0]; 2959 slot = path->slots[0]; 2960 if (extend && data_size + btrfs_item_size_nr(l, slot) + 2961 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 2962 return -EOVERFLOW; 2963 2964 /* first try to make some room by pushing left and right */ 2965 if (data_size) { 2966 wret = push_leaf_right(trans, root, path, data_size, 2967 data_size, 0, 0); 2968 if (wret < 0) 2969 return wret; 2970 if (wret) { 2971 wret = push_leaf_left(trans, root, path, data_size, 2972 data_size, 0, (u32)-1); 2973 if (wret < 0) 2974 return wret; 2975 } 2976 l = path->nodes[0]; 2977 2978 /* did the pushes work? */ 2979 if (btrfs_leaf_free_space(root, l) >= data_size) 2980 return 0; 2981 } 2982 2983 if (!path->nodes[1]) { 2984 ret = insert_new_root(trans, root, path, 1); 2985 if (ret) 2986 return ret; 2987 } 2988 again: 2989 split = 1; 2990 l = path->nodes[0]; 2991 slot = path->slots[0]; 2992 nritems = btrfs_header_nritems(l); 2993 mid = (nritems + 1) / 2; 2994 2995 if (mid <= slot) { 2996 if (nritems == 1 || 2997 leaf_space_used(l, mid, nritems - mid) + data_size > 2998 BTRFS_LEAF_DATA_SIZE(root)) { 2999 if (slot >= nritems) { 3000 split = 0; 3001 } else { 3002 mid = slot; 3003 if (mid != nritems && 3004 leaf_space_used(l, mid, nritems - mid) + 3005 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3006 if (data_size && !tried_avoid_double) 3007 goto push_for_double; 3008 split = 2; 3009 } 3010 } 3011 } 3012 } else { 3013 if (leaf_space_used(l, 0, mid) + data_size > 3014 BTRFS_LEAF_DATA_SIZE(root)) { 3015 if (!extend && data_size && slot == 0) { 3016 split = 0; 3017 } else if ((extend || !data_size) && slot == 0) { 3018 mid = 1; 3019 } else { 3020 mid = slot; 3021 if (mid != nritems && 3022 leaf_space_used(l, mid, nritems - mid) + 3023 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3024 if (data_size && !tried_avoid_double) 3025 goto push_for_double; 3026 split = 2 ; 3027 } 3028 } 3029 } 3030 } 3031 3032 if (split == 0) 3033 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3034 else 3035 btrfs_item_key(l, &disk_key, mid); 3036 3037 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 3038 root->root_key.objectid, 3039 &disk_key, 0, l->start, 0); 3040 if (IS_ERR(right)) 3041 return PTR_ERR(right); 3042 3043 root_add_used(root, root->leafsize); 3044 3045 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 3046 btrfs_set_header_bytenr(right, right->start); 3047 btrfs_set_header_generation(right, trans->transid); 3048 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 3049 btrfs_set_header_owner(right, root->root_key.objectid); 3050 btrfs_set_header_level(right, 0); 3051 write_extent_buffer(right, root->fs_info->fsid, 3052 (unsigned long)btrfs_header_fsid(right), 3053 BTRFS_FSID_SIZE); 3054 3055 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 3056 (unsigned long)btrfs_header_chunk_tree_uuid(right), 3057 BTRFS_UUID_SIZE); 3058 3059 if (split == 0) { 3060 if (mid <= slot) { 3061 btrfs_set_header_nritems(right, 0); 3062 wret = insert_ptr(trans, root, path, 3063 &disk_key, right->start, 3064 path->slots[1] + 1, 1); 3065 if (wret) 3066 ret = wret; 3067 3068 btrfs_tree_unlock(path->nodes[0]); 3069 free_extent_buffer(path->nodes[0]); 3070 path->nodes[0] = right; 3071 path->slots[0] = 0; 3072 path->slots[1] += 1; 3073 } else { 3074 btrfs_set_header_nritems(right, 0); 3075 wret = insert_ptr(trans, root, path, 3076 &disk_key, 3077 right->start, 3078 path->slots[1], 1); 3079 if (wret) 3080 ret = wret; 3081 btrfs_tree_unlock(path->nodes[0]); 3082 free_extent_buffer(path->nodes[0]); 3083 path->nodes[0] = right; 3084 path->slots[0] = 0; 3085 if (path->slots[1] == 0) { 3086 wret = fixup_low_keys(trans, root, 3087 path, &disk_key, 1); 3088 if (wret) 3089 ret = wret; 3090 } 3091 } 3092 btrfs_mark_buffer_dirty(right); 3093 return ret; 3094 } 3095 3096 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems); 3097 BUG_ON(ret); 3098 3099 if (split == 2) { 3100 BUG_ON(num_doubles != 0); 3101 num_doubles++; 3102 goto again; 3103 } 3104 3105 return ret; 3106 3107 push_for_double: 3108 push_for_double_split(trans, root, path, data_size); 3109 tried_avoid_double = 1; 3110 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3111 return 0; 3112 goto again; 3113 } 3114 3115 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3116 struct btrfs_root *root, 3117 struct btrfs_path *path, int ins_len) 3118 { 3119 struct btrfs_key key; 3120 struct extent_buffer *leaf; 3121 struct btrfs_file_extent_item *fi; 3122 u64 extent_len = 0; 3123 u32 item_size; 3124 int ret; 3125 3126 leaf = path->nodes[0]; 3127 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3128 3129 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3130 key.type != BTRFS_EXTENT_CSUM_KEY); 3131 3132 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 3133 return 0; 3134 3135 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3136 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3137 fi = btrfs_item_ptr(leaf, path->slots[0], 3138 struct btrfs_file_extent_item); 3139 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3140 } 3141 btrfs_release_path(root, path); 3142 3143 path->keep_locks = 1; 3144 path->search_for_split = 1; 3145 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3146 path->search_for_split = 0; 3147 if (ret < 0) 3148 goto err; 3149 3150 ret = -EAGAIN; 3151 leaf = path->nodes[0]; 3152 /* if our item isn't there or got smaller, return now */ 3153 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 3154 goto err; 3155 3156 /* the leaf has changed, it now has room. return now */ 3157 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 3158 goto err; 3159 3160 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3161 fi = btrfs_item_ptr(leaf, path->slots[0], 3162 struct btrfs_file_extent_item); 3163 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3164 goto err; 3165 } 3166 3167 btrfs_set_path_blocking(path); 3168 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3169 if (ret) 3170 goto err; 3171 3172 path->keep_locks = 0; 3173 btrfs_unlock_up_safe(path, 1); 3174 return 0; 3175 err: 3176 path->keep_locks = 0; 3177 return ret; 3178 } 3179 3180 static noinline int split_item(struct btrfs_trans_handle *trans, 3181 struct btrfs_root *root, 3182 struct btrfs_path *path, 3183 struct btrfs_key *new_key, 3184 unsigned long split_offset) 3185 { 3186 struct extent_buffer *leaf; 3187 struct btrfs_item *item; 3188 struct btrfs_item *new_item; 3189 int slot; 3190 char *buf; 3191 u32 nritems; 3192 u32 item_size; 3193 u32 orig_offset; 3194 struct btrfs_disk_key disk_key; 3195 3196 leaf = path->nodes[0]; 3197 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3198 3199 btrfs_set_path_blocking(path); 3200 3201 item = btrfs_item_nr(leaf, path->slots[0]); 3202 orig_offset = btrfs_item_offset(leaf, item); 3203 item_size = btrfs_item_size(leaf, item); 3204 3205 buf = kmalloc(item_size, GFP_NOFS); 3206 if (!buf) 3207 return -ENOMEM; 3208 3209 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3210 path->slots[0]), item_size); 3211 3212 slot = path->slots[0] + 1; 3213 nritems = btrfs_header_nritems(leaf); 3214 if (slot != nritems) { 3215 /* shift the items */ 3216 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3217 btrfs_item_nr_offset(slot), 3218 (nritems - slot) * sizeof(struct btrfs_item)); 3219 } 3220 3221 btrfs_cpu_key_to_disk(&disk_key, new_key); 3222 btrfs_set_item_key(leaf, &disk_key, slot); 3223 3224 new_item = btrfs_item_nr(leaf, slot); 3225 3226 btrfs_set_item_offset(leaf, new_item, orig_offset); 3227 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3228 3229 btrfs_set_item_offset(leaf, item, 3230 orig_offset + item_size - split_offset); 3231 btrfs_set_item_size(leaf, item, split_offset); 3232 3233 btrfs_set_header_nritems(leaf, nritems + 1); 3234 3235 /* write the data for the start of the original item */ 3236 write_extent_buffer(leaf, buf, 3237 btrfs_item_ptr_offset(leaf, path->slots[0]), 3238 split_offset); 3239 3240 /* write the data for the new item */ 3241 write_extent_buffer(leaf, buf + split_offset, 3242 btrfs_item_ptr_offset(leaf, slot), 3243 item_size - split_offset); 3244 btrfs_mark_buffer_dirty(leaf); 3245 3246 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 3247 kfree(buf); 3248 return 0; 3249 } 3250 3251 /* 3252 * This function splits a single item into two items, 3253 * giving 'new_key' to the new item and splitting the 3254 * old one at split_offset (from the start of the item). 3255 * 3256 * The path may be released by this operation. After 3257 * the split, the path is pointing to the old item. The 3258 * new item is going to be in the same node as the old one. 3259 * 3260 * Note, the item being split must be smaller enough to live alone on 3261 * a tree block with room for one extra struct btrfs_item 3262 * 3263 * This allows us to split the item in place, keeping a lock on the 3264 * leaf the entire time. 3265 */ 3266 int btrfs_split_item(struct btrfs_trans_handle *trans, 3267 struct btrfs_root *root, 3268 struct btrfs_path *path, 3269 struct btrfs_key *new_key, 3270 unsigned long split_offset) 3271 { 3272 int ret; 3273 ret = setup_leaf_for_split(trans, root, path, 3274 sizeof(struct btrfs_item)); 3275 if (ret) 3276 return ret; 3277 3278 ret = split_item(trans, root, path, new_key, split_offset); 3279 return ret; 3280 } 3281 3282 /* 3283 * This function duplicate a item, giving 'new_key' to the new item. 3284 * It guarantees both items live in the same tree leaf and the new item 3285 * is contiguous with the original item. 3286 * 3287 * This allows us to split file extent in place, keeping a lock on the 3288 * leaf the entire time. 3289 */ 3290 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 3291 struct btrfs_root *root, 3292 struct btrfs_path *path, 3293 struct btrfs_key *new_key) 3294 { 3295 struct extent_buffer *leaf; 3296 int ret; 3297 u32 item_size; 3298 3299 leaf = path->nodes[0]; 3300 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3301 ret = setup_leaf_for_split(trans, root, path, 3302 item_size + sizeof(struct btrfs_item)); 3303 if (ret) 3304 return ret; 3305 3306 path->slots[0]++; 3307 ret = setup_items_for_insert(trans, root, path, new_key, &item_size, 3308 item_size, item_size + 3309 sizeof(struct btrfs_item), 1); 3310 BUG_ON(ret); 3311 3312 leaf = path->nodes[0]; 3313 memcpy_extent_buffer(leaf, 3314 btrfs_item_ptr_offset(leaf, path->slots[0]), 3315 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 3316 item_size); 3317 return 0; 3318 } 3319 3320 /* 3321 * make the item pointed to by the path smaller. new_size indicates 3322 * how small to make it, and from_end tells us if we just chop bytes 3323 * off the end of the item or if we shift the item to chop bytes off 3324 * the front. 3325 */ 3326 int btrfs_truncate_item(struct btrfs_trans_handle *trans, 3327 struct btrfs_root *root, 3328 struct btrfs_path *path, 3329 u32 new_size, int from_end) 3330 { 3331 int ret = 0; 3332 int slot; 3333 int slot_orig; 3334 struct extent_buffer *leaf; 3335 struct btrfs_item *item; 3336 u32 nritems; 3337 unsigned int data_end; 3338 unsigned int old_data_start; 3339 unsigned int old_size; 3340 unsigned int size_diff; 3341 int i; 3342 3343 slot_orig = path->slots[0]; 3344 leaf = path->nodes[0]; 3345 slot = path->slots[0]; 3346 3347 old_size = btrfs_item_size_nr(leaf, slot); 3348 if (old_size == new_size) 3349 return 0; 3350 3351 nritems = btrfs_header_nritems(leaf); 3352 data_end = leaf_data_end(root, leaf); 3353 3354 old_data_start = btrfs_item_offset_nr(leaf, slot); 3355 3356 size_diff = old_size - new_size; 3357 3358 BUG_ON(slot < 0); 3359 BUG_ON(slot >= nritems); 3360 3361 /* 3362 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3363 */ 3364 /* first correct the data pointers */ 3365 for (i = slot; i < nritems; i++) { 3366 u32 ioff; 3367 item = btrfs_item_nr(leaf, i); 3368 3369 if (!leaf->map_token) { 3370 map_extent_buffer(leaf, (unsigned long)item, 3371 sizeof(struct btrfs_item), 3372 &leaf->map_token, &leaf->kaddr, 3373 &leaf->map_start, &leaf->map_len, 3374 KM_USER1); 3375 } 3376 3377 ioff = btrfs_item_offset(leaf, item); 3378 btrfs_set_item_offset(leaf, item, ioff + size_diff); 3379 } 3380 3381 if (leaf->map_token) { 3382 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3383 leaf->map_token = NULL; 3384 } 3385 3386 /* shift the data */ 3387 if (from_end) { 3388 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3389 data_end + size_diff, btrfs_leaf_data(leaf) + 3390 data_end, old_data_start + new_size - data_end); 3391 } else { 3392 struct btrfs_disk_key disk_key; 3393 u64 offset; 3394 3395 btrfs_item_key(leaf, &disk_key, slot); 3396 3397 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3398 unsigned long ptr; 3399 struct btrfs_file_extent_item *fi; 3400 3401 fi = btrfs_item_ptr(leaf, slot, 3402 struct btrfs_file_extent_item); 3403 fi = (struct btrfs_file_extent_item *)( 3404 (unsigned long)fi - size_diff); 3405 3406 if (btrfs_file_extent_type(leaf, fi) == 3407 BTRFS_FILE_EXTENT_INLINE) { 3408 ptr = btrfs_item_ptr_offset(leaf, slot); 3409 memmove_extent_buffer(leaf, ptr, 3410 (unsigned long)fi, 3411 offsetof(struct btrfs_file_extent_item, 3412 disk_bytenr)); 3413 } 3414 } 3415 3416 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3417 data_end + size_diff, btrfs_leaf_data(leaf) + 3418 data_end, old_data_start - data_end); 3419 3420 offset = btrfs_disk_key_offset(&disk_key); 3421 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3422 btrfs_set_item_key(leaf, &disk_key, slot); 3423 if (slot == 0) 3424 fixup_low_keys(trans, root, path, &disk_key, 1); 3425 } 3426 3427 item = btrfs_item_nr(leaf, slot); 3428 btrfs_set_item_size(leaf, item, new_size); 3429 btrfs_mark_buffer_dirty(leaf); 3430 3431 ret = 0; 3432 if (btrfs_leaf_free_space(root, leaf) < 0) { 3433 btrfs_print_leaf(root, leaf); 3434 BUG(); 3435 } 3436 return ret; 3437 } 3438 3439 /* 3440 * make the item pointed to by the path bigger, data_size is the new size. 3441 */ 3442 int btrfs_extend_item(struct btrfs_trans_handle *trans, 3443 struct btrfs_root *root, struct btrfs_path *path, 3444 u32 data_size) 3445 { 3446 int ret = 0; 3447 int slot; 3448 int slot_orig; 3449 struct extent_buffer *leaf; 3450 struct btrfs_item *item; 3451 u32 nritems; 3452 unsigned int data_end; 3453 unsigned int old_data; 3454 unsigned int old_size; 3455 int i; 3456 3457 slot_orig = path->slots[0]; 3458 leaf = path->nodes[0]; 3459 3460 nritems = btrfs_header_nritems(leaf); 3461 data_end = leaf_data_end(root, leaf); 3462 3463 if (btrfs_leaf_free_space(root, leaf) < data_size) { 3464 btrfs_print_leaf(root, leaf); 3465 BUG(); 3466 } 3467 slot = path->slots[0]; 3468 old_data = btrfs_item_end_nr(leaf, slot); 3469 3470 BUG_ON(slot < 0); 3471 if (slot >= nritems) { 3472 btrfs_print_leaf(root, leaf); 3473 printk(KERN_CRIT "slot %d too large, nritems %d\n", 3474 slot, nritems); 3475 BUG_ON(1); 3476 } 3477 3478 /* 3479 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3480 */ 3481 /* first correct the data pointers */ 3482 for (i = slot; i < nritems; i++) { 3483 u32 ioff; 3484 item = btrfs_item_nr(leaf, i); 3485 3486 if (!leaf->map_token) { 3487 map_extent_buffer(leaf, (unsigned long)item, 3488 sizeof(struct btrfs_item), 3489 &leaf->map_token, &leaf->kaddr, 3490 &leaf->map_start, &leaf->map_len, 3491 KM_USER1); 3492 } 3493 ioff = btrfs_item_offset(leaf, item); 3494 btrfs_set_item_offset(leaf, item, ioff - data_size); 3495 } 3496 3497 if (leaf->map_token) { 3498 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3499 leaf->map_token = NULL; 3500 } 3501 3502 /* shift the data */ 3503 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3504 data_end - data_size, btrfs_leaf_data(leaf) + 3505 data_end, old_data - data_end); 3506 3507 data_end = old_data; 3508 old_size = btrfs_item_size_nr(leaf, slot); 3509 item = btrfs_item_nr(leaf, slot); 3510 btrfs_set_item_size(leaf, item, old_size + data_size); 3511 btrfs_mark_buffer_dirty(leaf); 3512 3513 ret = 0; 3514 if (btrfs_leaf_free_space(root, leaf) < 0) { 3515 btrfs_print_leaf(root, leaf); 3516 BUG(); 3517 } 3518 return ret; 3519 } 3520 3521 /* 3522 * Given a key and some data, insert items into the tree. 3523 * This does all the path init required, making room in the tree if needed. 3524 * Returns the number of keys that were inserted. 3525 */ 3526 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 3527 struct btrfs_root *root, 3528 struct btrfs_path *path, 3529 struct btrfs_key *cpu_key, u32 *data_size, 3530 int nr) 3531 { 3532 struct extent_buffer *leaf; 3533 struct btrfs_item *item; 3534 int ret = 0; 3535 int slot; 3536 int i; 3537 u32 nritems; 3538 u32 total_data = 0; 3539 u32 total_size = 0; 3540 unsigned int data_end; 3541 struct btrfs_disk_key disk_key; 3542 struct btrfs_key found_key; 3543 3544 for (i = 0; i < nr; i++) { 3545 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 3546 BTRFS_LEAF_DATA_SIZE(root)) { 3547 break; 3548 nr = i; 3549 } 3550 total_data += data_size[i]; 3551 total_size += data_size[i] + sizeof(struct btrfs_item); 3552 } 3553 BUG_ON(nr == 0); 3554 3555 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3556 if (ret == 0) 3557 return -EEXIST; 3558 if (ret < 0) 3559 goto out; 3560 3561 leaf = path->nodes[0]; 3562 3563 nritems = btrfs_header_nritems(leaf); 3564 data_end = leaf_data_end(root, leaf); 3565 3566 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3567 for (i = nr; i >= 0; i--) { 3568 total_data -= data_size[i]; 3569 total_size -= data_size[i] + sizeof(struct btrfs_item); 3570 if (total_size < btrfs_leaf_free_space(root, leaf)) 3571 break; 3572 } 3573 nr = i; 3574 } 3575 3576 slot = path->slots[0]; 3577 BUG_ON(slot < 0); 3578 3579 if (slot != nritems) { 3580 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3581 3582 item = btrfs_item_nr(leaf, slot); 3583 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3584 3585 /* figure out how many keys we can insert in here */ 3586 total_data = data_size[0]; 3587 for (i = 1; i < nr; i++) { 3588 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0) 3589 break; 3590 total_data += data_size[i]; 3591 } 3592 nr = i; 3593 3594 if (old_data < data_end) { 3595 btrfs_print_leaf(root, leaf); 3596 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3597 slot, old_data, data_end); 3598 BUG_ON(1); 3599 } 3600 /* 3601 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3602 */ 3603 /* first correct the data pointers */ 3604 WARN_ON(leaf->map_token); 3605 for (i = slot; i < nritems; i++) { 3606 u32 ioff; 3607 3608 item = btrfs_item_nr(leaf, i); 3609 if (!leaf->map_token) { 3610 map_extent_buffer(leaf, (unsigned long)item, 3611 sizeof(struct btrfs_item), 3612 &leaf->map_token, &leaf->kaddr, 3613 &leaf->map_start, &leaf->map_len, 3614 KM_USER1); 3615 } 3616 3617 ioff = btrfs_item_offset(leaf, item); 3618 btrfs_set_item_offset(leaf, item, ioff - total_data); 3619 } 3620 if (leaf->map_token) { 3621 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3622 leaf->map_token = NULL; 3623 } 3624 3625 /* shift the items */ 3626 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3627 btrfs_item_nr_offset(slot), 3628 (nritems - slot) * sizeof(struct btrfs_item)); 3629 3630 /* shift the data */ 3631 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3632 data_end - total_data, btrfs_leaf_data(leaf) + 3633 data_end, old_data - data_end); 3634 data_end = old_data; 3635 } else { 3636 /* 3637 * this sucks but it has to be done, if we are inserting at 3638 * the end of the leaf only insert 1 of the items, since we 3639 * have no way of knowing whats on the next leaf and we'd have 3640 * to drop our current locks to figure it out 3641 */ 3642 nr = 1; 3643 } 3644 3645 /* setup the item for the new data */ 3646 for (i = 0; i < nr; i++) { 3647 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3648 btrfs_set_item_key(leaf, &disk_key, slot + i); 3649 item = btrfs_item_nr(leaf, slot + i); 3650 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3651 data_end -= data_size[i]; 3652 btrfs_set_item_size(leaf, item, data_size[i]); 3653 } 3654 btrfs_set_header_nritems(leaf, nritems + nr); 3655 btrfs_mark_buffer_dirty(leaf); 3656 3657 ret = 0; 3658 if (slot == 0) { 3659 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3660 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3661 } 3662 3663 if (btrfs_leaf_free_space(root, leaf) < 0) { 3664 btrfs_print_leaf(root, leaf); 3665 BUG(); 3666 } 3667 out: 3668 if (!ret) 3669 ret = nr; 3670 return ret; 3671 } 3672 3673 /* 3674 * this is a helper for btrfs_insert_empty_items, the main goal here is 3675 * to save stack depth by doing the bulk of the work in a function 3676 * that doesn't call btrfs_search_slot 3677 */ 3678 static noinline_for_stack int 3679 setup_items_for_insert(struct btrfs_trans_handle *trans, 3680 struct btrfs_root *root, struct btrfs_path *path, 3681 struct btrfs_key *cpu_key, u32 *data_size, 3682 u32 total_data, u32 total_size, int nr) 3683 { 3684 struct btrfs_item *item; 3685 int i; 3686 u32 nritems; 3687 unsigned int data_end; 3688 struct btrfs_disk_key disk_key; 3689 int ret; 3690 struct extent_buffer *leaf; 3691 int slot; 3692 3693 leaf = path->nodes[0]; 3694 slot = path->slots[0]; 3695 3696 nritems = btrfs_header_nritems(leaf); 3697 data_end = leaf_data_end(root, leaf); 3698 3699 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3700 btrfs_print_leaf(root, leaf); 3701 printk(KERN_CRIT "not enough freespace need %u have %d\n", 3702 total_size, btrfs_leaf_free_space(root, leaf)); 3703 BUG(); 3704 } 3705 3706 if (slot != nritems) { 3707 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3708 3709 if (old_data < data_end) { 3710 btrfs_print_leaf(root, leaf); 3711 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3712 slot, old_data, data_end); 3713 BUG_ON(1); 3714 } 3715 /* 3716 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3717 */ 3718 /* first correct the data pointers */ 3719 WARN_ON(leaf->map_token); 3720 for (i = slot; i < nritems; i++) { 3721 u32 ioff; 3722 3723 item = btrfs_item_nr(leaf, i); 3724 if (!leaf->map_token) { 3725 map_extent_buffer(leaf, (unsigned long)item, 3726 sizeof(struct btrfs_item), 3727 &leaf->map_token, &leaf->kaddr, 3728 &leaf->map_start, &leaf->map_len, 3729 KM_USER1); 3730 } 3731 3732 ioff = btrfs_item_offset(leaf, item); 3733 btrfs_set_item_offset(leaf, item, ioff - total_data); 3734 } 3735 if (leaf->map_token) { 3736 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3737 leaf->map_token = NULL; 3738 } 3739 3740 /* shift the items */ 3741 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3742 btrfs_item_nr_offset(slot), 3743 (nritems - slot) * sizeof(struct btrfs_item)); 3744 3745 /* shift the data */ 3746 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3747 data_end - total_data, btrfs_leaf_data(leaf) + 3748 data_end, old_data - data_end); 3749 data_end = old_data; 3750 } 3751 3752 /* setup the item for the new data */ 3753 for (i = 0; i < nr; i++) { 3754 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3755 btrfs_set_item_key(leaf, &disk_key, slot + i); 3756 item = btrfs_item_nr(leaf, slot + i); 3757 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3758 data_end -= data_size[i]; 3759 btrfs_set_item_size(leaf, item, data_size[i]); 3760 } 3761 3762 btrfs_set_header_nritems(leaf, nritems + nr); 3763 3764 ret = 0; 3765 if (slot == 0) { 3766 struct btrfs_disk_key disk_key; 3767 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3768 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3769 } 3770 btrfs_unlock_up_safe(path, 1); 3771 btrfs_mark_buffer_dirty(leaf); 3772 3773 if (btrfs_leaf_free_space(root, leaf) < 0) { 3774 btrfs_print_leaf(root, leaf); 3775 BUG(); 3776 } 3777 return ret; 3778 } 3779 3780 /* 3781 * Given a key and some data, insert items into the tree. 3782 * This does all the path init required, making room in the tree if needed. 3783 */ 3784 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3785 struct btrfs_root *root, 3786 struct btrfs_path *path, 3787 struct btrfs_key *cpu_key, u32 *data_size, 3788 int nr) 3789 { 3790 struct extent_buffer *leaf; 3791 int ret = 0; 3792 int slot; 3793 int i; 3794 u32 total_size = 0; 3795 u32 total_data = 0; 3796 3797 for (i = 0; i < nr; i++) 3798 total_data += data_size[i]; 3799 3800 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3801 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3802 if (ret == 0) 3803 return -EEXIST; 3804 if (ret < 0) 3805 goto out; 3806 3807 leaf = path->nodes[0]; 3808 slot = path->slots[0]; 3809 BUG_ON(slot < 0); 3810 3811 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size, 3812 total_data, total_size, nr); 3813 3814 out: 3815 return ret; 3816 } 3817 3818 /* 3819 * Given a key and some data, insert an item into the tree. 3820 * This does all the path init required, making room in the tree if needed. 3821 */ 3822 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3823 *root, struct btrfs_key *cpu_key, void *data, u32 3824 data_size) 3825 { 3826 int ret = 0; 3827 struct btrfs_path *path; 3828 struct extent_buffer *leaf; 3829 unsigned long ptr; 3830 3831 path = btrfs_alloc_path(); 3832 BUG_ON(!path); 3833 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3834 if (!ret) { 3835 leaf = path->nodes[0]; 3836 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3837 write_extent_buffer(leaf, data, ptr, data_size); 3838 btrfs_mark_buffer_dirty(leaf); 3839 } 3840 btrfs_free_path(path); 3841 return ret; 3842 } 3843 3844 /* 3845 * delete the pointer from a given node. 3846 * 3847 * the tree should have been previously balanced so the deletion does not 3848 * empty a node. 3849 */ 3850 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3851 struct btrfs_path *path, int level, int slot) 3852 { 3853 struct extent_buffer *parent = path->nodes[level]; 3854 u32 nritems; 3855 int ret = 0; 3856 int wret; 3857 3858 nritems = btrfs_header_nritems(parent); 3859 if (slot != nritems - 1) { 3860 memmove_extent_buffer(parent, 3861 btrfs_node_key_ptr_offset(slot), 3862 btrfs_node_key_ptr_offset(slot + 1), 3863 sizeof(struct btrfs_key_ptr) * 3864 (nritems - slot - 1)); 3865 } 3866 nritems--; 3867 btrfs_set_header_nritems(parent, nritems); 3868 if (nritems == 0 && parent == root->node) { 3869 BUG_ON(btrfs_header_level(root->node) != 1); 3870 /* just turn the root into a leaf and break */ 3871 btrfs_set_header_level(root->node, 0); 3872 } else if (slot == 0) { 3873 struct btrfs_disk_key disk_key; 3874 3875 btrfs_node_key(parent, &disk_key, 0); 3876 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); 3877 if (wret) 3878 ret = wret; 3879 } 3880 btrfs_mark_buffer_dirty(parent); 3881 return ret; 3882 } 3883 3884 /* 3885 * a helper function to delete the leaf pointed to by path->slots[1] and 3886 * path->nodes[1]. 3887 * 3888 * This deletes the pointer in path->nodes[1] and frees the leaf 3889 * block extent. zero is returned if it all worked out, < 0 otherwise. 3890 * 3891 * The path must have already been setup for deleting the leaf, including 3892 * all the proper balancing. path->nodes[1] must be locked. 3893 */ 3894 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 3895 struct btrfs_root *root, 3896 struct btrfs_path *path, 3897 struct extent_buffer *leaf) 3898 { 3899 int ret; 3900 3901 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 3902 ret = del_ptr(trans, root, path, 1, path->slots[1]); 3903 if (ret) 3904 return ret; 3905 3906 /* 3907 * btrfs_free_extent is expensive, we want to make sure we 3908 * aren't holding any locks when we call it 3909 */ 3910 btrfs_unlock_up_safe(path, 0); 3911 3912 root_sub_used(root, leaf->len); 3913 3914 btrfs_free_tree_block(trans, root, leaf, 0, 1); 3915 return 0; 3916 } 3917 /* 3918 * delete the item at the leaf level in path. If that empties 3919 * the leaf, remove it from the tree 3920 */ 3921 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3922 struct btrfs_path *path, int slot, int nr) 3923 { 3924 struct extent_buffer *leaf; 3925 struct btrfs_item *item; 3926 int last_off; 3927 int dsize = 0; 3928 int ret = 0; 3929 int wret; 3930 int i; 3931 u32 nritems; 3932 3933 leaf = path->nodes[0]; 3934 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 3935 3936 for (i = 0; i < nr; i++) 3937 dsize += btrfs_item_size_nr(leaf, slot + i); 3938 3939 nritems = btrfs_header_nritems(leaf); 3940 3941 if (slot + nr != nritems) { 3942 int data_end = leaf_data_end(root, leaf); 3943 3944 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3945 data_end + dsize, 3946 btrfs_leaf_data(leaf) + data_end, 3947 last_off - data_end); 3948 3949 for (i = slot + nr; i < nritems; i++) { 3950 u32 ioff; 3951 3952 item = btrfs_item_nr(leaf, i); 3953 if (!leaf->map_token) { 3954 map_extent_buffer(leaf, (unsigned long)item, 3955 sizeof(struct btrfs_item), 3956 &leaf->map_token, &leaf->kaddr, 3957 &leaf->map_start, &leaf->map_len, 3958 KM_USER1); 3959 } 3960 ioff = btrfs_item_offset(leaf, item); 3961 btrfs_set_item_offset(leaf, item, ioff + dsize); 3962 } 3963 3964 if (leaf->map_token) { 3965 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3966 leaf->map_token = NULL; 3967 } 3968 3969 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 3970 btrfs_item_nr_offset(slot + nr), 3971 sizeof(struct btrfs_item) * 3972 (nritems - slot - nr)); 3973 } 3974 btrfs_set_header_nritems(leaf, nritems - nr); 3975 nritems -= nr; 3976 3977 /* delete the leaf if we've emptied it */ 3978 if (nritems == 0) { 3979 if (leaf == root->node) { 3980 btrfs_set_header_level(leaf, 0); 3981 } else { 3982 btrfs_set_path_blocking(path); 3983 clean_tree_block(trans, root, leaf); 3984 ret = btrfs_del_leaf(trans, root, path, leaf); 3985 BUG_ON(ret); 3986 } 3987 } else { 3988 int used = leaf_space_used(leaf, 0, nritems); 3989 if (slot == 0) { 3990 struct btrfs_disk_key disk_key; 3991 3992 btrfs_item_key(leaf, &disk_key, 0); 3993 wret = fixup_low_keys(trans, root, path, 3994 &disk_key, 1); 3995 if (wret) 3996 ret = wret; 3997 } 3998 3999 /* delete the leaf if it is mostly empty */ 4000 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 4001 /* push_leaf_left fixes the path. 4002 * make sure the path still points to our leaf 4003 * for possible call to del_ptr below 4004 */ 4005 slot = path->slots[1]; 4006 extent_buffer_get(leaf); 4007 4008 btrfs_set_path_blocking(path); 4009 wret = push_leaf_left(trans, root, path, 1, 1, 4010 1, (u32)-1); 4011 if (wret < 0 && wret != -ENOSPC) 4012 ret = wret; 4013 4014 if (path->nodes[0] == leaf && 4015 btrfs_header_nritems(leaf)) { 4016 wret = push_leaf_right(trans, root, path, 1, 4017 1, 1, 0); 4018 if (wret < 0 && wret != -ENOSPC) 4019 ret = wret; 4020 } 4021 4022 if (btrfs_header_nritems(leaf) == 0) { 4023 path->slots[1] = slot; 4024 ret = btrfs_del_leaf(trans, root, path, leaf); 4025 BUG_ON(ret); 4026 free_extent_buffer(leaf); 4027 } else { 4028 /* if we're still in the path, make sure 4029 * we're dirty. Otherwise, one of the 4030 * push_leaf functions must have already 4031 * dirtied this buffer 4032 */ 4033 if (path->nodes[0] == leaf) 4034 btrfs_mark_buffer_dirty(leaf); 4035 free_extent_buffer(leaf); 4036 } 4037 } else { 4038 btrfs_mark_buffer_dirty(leaf); 4039 } 4040 } 4041 return ret; 4042 } 4043 4044 /* 4045 * search the tree again to find a leaf with lesser keys 4046 * returns 0 if it found something or 1 if there are no lesser leaves. 4047 * returns < 0 on io errors. 4048 * 4049 * This may release the path, and so you may lose any locks held at the 4050 * time you call it. 4051 */ 4052 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4053 { 4054 struct btrfs_key key; 4055 struct btrfs_disk_key found_key; 4056 int ret; 4057 4058 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4059 4060 if (key.offset > 0) 4061 key.offset--; 4062 else if (key.type > 0) 4063 key.type--; 4064 else if (key.objectid > 0) 4065 key.objectid--; 4066 else 4067 return 1; 4068 4069 btrfs_release_path(root, path); 4070 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4071 if (ret < 0) 4072 return ret; 4073 btrfs_item_key(path->nodes[0], &found_key, 0); 4074 ret = comp_keys(&found_key, &key); 4075 if (ret < 0) 4076 return 0; 4077 return 1; 4078 } 4079 4080 /* 4081 * A helper function to walk down the tree starting at min_key, and looking 4082 * for nodes or leaves that are either in cache or have a minimum 4083 * transaction id. This is used by the btree defrag code, and tree logging 4084 * 4085 * This does not cow, but it does stuff the starting key it finds back 4086 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4087 * key and get a writable path. 4088 * 4089 * This does lock as it descends, and path->keep_locks should be set 4090 * to 1 by the caller. 4091 * 4092 * This honors path->lowest_level to prevent descent past a given level 4093 * of the tree. 4094 * 4095 * min_trans indicates the oldest transaction that you are interested 4096 * in walking through. Any nodes or leaves older than min_trans are 4097 * skipped over (without reading them). 4098 * 4099 * returns zero if something useful was found, < 0 on error and 1 if there 4100 * was nothing in the tree that matched the search criteria. 4101 */ 4102 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4103 struct btrfs_key *max_key, 4104 struct btrfs_path *path, int cache_only, 4105 u64 min_trans) 4106 { 4107 struct extent_buffer *cur; 4108 struct btrfs_key found_key; 4109 int slot; 4110 int sret; 4111 u32 nritems; 4112 int level; 4113 int ret = 1; 4114 4115 WARN_ON(!path->keep_locks); 4116 again: 4117 cur = btrfs_lock_root_node(root); 4118 level = btrfs_header_level(cur); 4119 WARN_ON(path->nodes[level]); 4120 path->nodes[level] = cur; 4121 path->locks[level] = 1; 4122 4123 if (btrfs_header_generation(cur) < min_trans) { 4124 ret = 1; 4125 goto out; 4126 } 4127 while (1) { 4128 nritems = btrfs_header_nritems(cur); 4129 level = btrfs_header_level(cur); 4130 sret = bin_search(cur, min_key, level, &slot); 4131 4132 /* at the lowest level, we're done, setup the path and exit */ 4133 if (level == path->lowest_level) { 4134 if (slot >= nritems) 4135 goto find_next_key; 4136 ret = 0; 4137 path->slots[level] = slot; 4138 btrfs_item_key_to_cpu(cur, &found_key, slot); 4139 goto out; 4140 } 4141 if (sret && slot > 0) 4142 slot--; 4143 /* 4144 * check this node pointer against the cache_only and 4145 * min_trans parameters. If it isn't in cache or is too 4146 * old, skip to the next one. 4147 */ 4148 while (slot < nritems) { 4149 u64 blockptr; 4150 u64 gen; 4151 struct extent_buffer *tmp; 4152 struct btrfs_disk_key disk_key; 4153 4154 blockptr = btrfs_node_blockptr(cur, slot); 4155 gen = btrfs_node_ptr_generation(cur, slot); 4156 if (gen < min_trans) { 4157 slot++; 4158 continue; 4159 } 4160 if (!cache_only) 4161 break; 4162 4163 if (max_key) { 4164 btrfs_node_key(cur, &disk_key, slot); 4165 if (comp_keys(&disk_key, max_key) >= 0) { 4166 ret = 1; 4167 goto out; 4168 } 4169 } 4170 4171 tmp = btrfs_find_tree_block(root, blockptr, 4172 btrfs_level_size(root, level - 1)); 4173 4174 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 4175 free_extent_buffer(tmp); 4176 break; 4177 } 4178 if (tmp) 4179 free_extent_buffer(tmp); 4180 slot++; 4181 } 4182 find_next_key: 4183 /* 4184 * we didn't find a candidate key in this node, walk forward 4185 * and find another one 4186 */ 4187 if (slot >= nritems) { 4188 path->slots[level] = slot; 4189 btrfs_set_path_blocking(path); 4190 sret = btrfs_find_next_key(root, path, min_key, level, 4191 cache_only, min_trans); 4192 if (sret == 0) { 4193 btrfs_release_path(root, path); 4194 goto again; 4195 } else { 4196 goto out; 4197 } 4198 } 4199 /* save our key for returning back */ 4200 btrfs_node_key_to_cpu(cur, &found_key, slot); 4201 path->slots[level] = slot; 4202 if (level == path->lowest_level) { 4203 ret = 0; 4204 unlock_up(path, level, 1); 4205 goto out; 4206 } 4207 btrfs_set_path_blocking(path); 4208 cur = read_node_slot(root, cur, slot); 4209 4210 btrfs_tree_lock(cur); 4211 4212 path->locks[level - 1] = 1; 4213 path->nodes[level - 1] = cur; 4214 unlock_up(path, level, 1); 4215 btrfs_clear_path_blocking(path, NULL); 4216 } 4217 out: 4218 if (ret == 0) 4219 memcpy(min_key, &found_key, sizeof(found_key)); 4220 btrfs_set_path_blocking(path); 4221 return ret; 4222 } 4223 4224 /* 4225 * this is similar to btrfs_next_leaf, but does not try to preserve 4226 * and fixup the path. It looks for and returns the next key in the 4227 * tree based on the current path and the cache_only and min_trans 4228 * parameters. 4229 * 4230 * 0 is returned if another key is found, < 0 if there are any errors 4231 * and 1 is returned if there are no higher keys in the tree 4232 * 4233 * path->keep_locks should be set to 1 on the search made before 4234 * calling this function. 4235 */ 4236 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4237 struct btrfs_key *key, int level, 4238 int cache_only, u64 min_trans) 4239 { 4240 int slot; 4241 struct extent_buffer *c; 4242 4243 WARN_ON(!path->keep_locks); 4244 while (level < BTRFS_MAX_LEVEL) { 4245 if (!path->nodes[level]) 4246 return 1; 4247 4248 slot = path->slots[level] + 1; 4249 c = path->nodes[level]; 4250 next: 4251 if (slot >= btrfs_header_nritems(c)) { 4252 int ret; 4253 int orig_lowest; 4254 struct btrfs_key cur_key; 4255 if (level + 1 >= BTRFS_MAX_LEVEL || 4256 !path->nodes[level + 1]) 4257 return 1; 4258 4259 if (path->locks[level + 1]) { 4260 level++; 4261 continue; 4262 } 4263 4264 slot = btrfs_header_nritems(c) - 1; 4265 if (level == 0) 4266 btrfs_item_key_to_cpu(c, &cur_key, slot); 4267 else 4268 btrfs_node_key_to_cpu(c, &cur_key, slot); 4269 4270 orig_lowest = path->lowest_level; 4271 btrfs_release_path(root, path); 4272 path->lowest_level = level; 4273 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4274 0, 0); 4275 path->lowest_level = orig_lowest; 4276 if (ret < 0) 4277 return ret; 4278 4279 c = path->nodes[level]; 4280 slot = path->slots[level]; 4281 if (ret == 0) 4282 slot++; 4283 goto next; 4284 } 4285 4286 if (level == 0) 4287 btrfs_item_key_to_cpu(c, key, slot); 4288 else { 4289 u64 blockptr = btrfs_node_blockptr(c, slot); 4290 u64 gen = btrfs_node_ptr_generation(c, slot); 4291 4292 if (cache_only) { 4293 struct extent_buffer *cur; 4294 cur = btrfs_find_tree_block(root, blockptr, 4295 btrfs_level_size(root, level - 1)); 4296 if (!cur || !btrfs_buffer_uptodate(cur, gen)) { 4297 slot++; 4298 if (cur) 4299 free_extent_buffer(cur); 4300 goto next; 4301 } 4302 free_extent_buffer(cur); 4303 } 4304 if (gen < min_trans) { 4305 slot++; 4306 goto next; 4307 } 4308 btrfs_node_key_to_cpu(c, key, slot); 4309 } 4310 return 0; 4311 } 4312 return 1; 4313 } 4314 4315 /* 4316 * search the tree again to find a leaf with greater keys 4317 * returns 0 if it found something or 1 if there are no greater leaves. 4318 * returns < 0 on io errors. 4319 */ 4320 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4321 { 4322 int slot; 4323 int level; 4324 struct extent_buffer *c; 4325 struct extent_buffer *next; 4326 struct btrfs_key key; 4327 u32 nritems; 4328 int ret; 4329 int old_spinning = path->leave_spinning; 4330 int force_blocking = 0; 4331 4332 nritems = btrfs_header_nritems(path->nodes[0]); 4333 if (nritems == 0) 4334 return 1; 4335 4336 /* 4337 * we take the blocks in an order that upsets lockdep. Using 4338 * blocking mode is the only way around it. 4339 */ 4340 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4341 force_blocking = 1; 4342 #endif 4343 4344 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4345 again: 4346 level = 1; 4347 next = NULL; 4348 btrfs_release_path(root, path); 4349 4350 path->keep_locks = 1; 4351 4352 if (!force_blocking) 4353 path->leave_spinning = 1; 4354 4355 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4356 path->keep_locks = 0; 4357 4358 if (ret < 0) 4359 return ret; 4360 4361 nritems = btrfs_header_nritems(path->nodes[0]); 4362 /* 4363 * by releasing the path above we dropped all our locks. A balance 4364 * could have added more items next to the key that used to be 4365 * at the very end of the block. So, check again here and 4366 * advance the path if there are now more items available. 4367 */ 4368 if (nritems > 0 && path->slots[0] < nritems - 1) { 4369 if (ret == 0) 4370 path->slots[0]++; 4371 ret = 0; 4372 goto done; 4373 } 4374 4375 while (level < BTRFS_MAX_LEVEL) { 4376 if (!path->nodes[level]) { 4377 ret = 1; 4378 goto done; 4379 } 4380 4381 slot = path->slots[level] + 1; 4382 c = path->nodes[level]; 4383 if (slot >= btrfs_header_nritems(c)) { 4384 level++; 4385 if (level == BTRFS_MAX_LEVEL) { 4386 ret = 1; 4387 goto done; 4388 } 4389 continue; 4390 } 4391 4392 if (next) { 4393 btrfs_tree_unlock(next); 4394 free_extent_buffer(next); 4395 } 4396 4397 next = c; 4398 ret = read_block_for_search(NULL, root, path, &next, level, 4399 slot, &key); 4400 if (ret == -EAGAIN) 4401 goto again; 4402 4403 if (ret < 0) { 4404 btrfs_release_path(root, path); 4405 goto done; 4406 } 4407 4408 if (!path->skip_locking) { 4409 ret = btrfs_try_spin_lock(next); 4410 if (!ret) { 4411 btrfs_set_path_blocking(path); 4412 btrfs_tree_lock(next); 4413 if (!force_blocking) 4414 btrfs_clear_path_blocking(path, next); 4415 } 4416 if (force_blocking) 4417 btrfs_set_lock_blocking(next); 4418 } 4419 break; 4420 } 4421 path->slots[level] = slot; 4422 while (1) { 4423 level--; 4424 c = path->nodes[level]; 4425 if (path->locks[level]) 4426 btrfs_tree_unlock(c); 4427 4428 free_extent_buffer(c); 4429 path->nodes[level] = next; 4430 path->slots[level] = 0; 4431 if (!path->skip_locking) 4432 path->locks[level] = 1; 4433 4434 if (!level) 4435 break; 4436 4437 ret = read_block_for_search(NULL, root, path, &next, level, 4438 0, &key); 4439 if (ret == -EAGAIN) 4440 goto again; 4441 4442 if (ret < 0) { 4443 btrfs_release_path(root, path); 4444 goto done; 4445 } 4446 4447 if (!path->skip_locking) { 4448 btrfs_assert_tree_locked(path->nodes[level]); 4449 ret = btrfs_try_spin_lock(next); 4450 if (!ret) { 4451 btrfs_set_path_blocking(path); 4452 btrfs_tree_lock(next); 4453 if (!force_blocking) 4454 btrfs_clear_path_blocking(path, next); 4455 } 4456 if (force_blocking) 4457 btrfs_set_lock_blocking(next); 4458 } 4459 } 4460 ret = 0; 4461 done: 4462 unlock_up(path, 0, 1); 4463 path->leave_spinning = old_spinning; 4464 if (!old_spinning) 4465 btrfs_set_path_blocking(path); 4466 4467 return ret; 4468 } 4469 4470 /* 4471 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4472 * searching until it gets past min_objectid or finds an item of 'type' 4473 * 4474 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4475 */ 4476 int btrfs_previous_item(struct btrfs_root *root, 4477 struct btrfs_path *path, u64 min_objectid, 4478 int type) 4479 { 4480 struct btrfs_key found_key; 4481 struct extent_buffer *leaf; 4482 u32 nritems; 4483 int ret; 4484 4485 while (1) { 4486 if (path->slots[0] == 0) { 4487 btrfs_set_path_blocking(path); 4488 ret = btrfs_prev_leaf(root, path); 4489 if (ret != 0) 4490 return ret; 4491 } else { 4492 path->slots[0]--; 4493 } 4494 leaf = path->nodes[0]; 4495 nritems = btrfs_header_nritems(leaf); 4496 if (nritems == 0) 4497 return 1; 4498 if (path->slots[0] == nritems) 4499 path->slots[0]--; 4500 4501 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4502 if (found_key.objectid < min_objectid) 4503 break; 4504 if (found_key.type == type) 4505 return 0; 4506 if (found_key.objectid == min_objectid && 4507 found_key.type < type) 4508 break; 4509 } 4510 return 1; 4511 } 4512