1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 #include "qgroup.h" 17 18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 19 *root, struct btrfs_path *path, int level); 20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 21 const struct btrfs_key *ins_key, struct btrfs_path *path, 22 int data_size, int extend); 23 static int push_node_left(struct btrfs_trans_handle *trans, 24 struct extent_buffer *dst, 25 struct extent_buffer *src, int empty); 26 static int balance_node_right(struct btrfs_trans_handle *trans, 27 struct extent_buffer *dst_buf, 28 struct extent_buffer *src_buf); 29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 30 int level, int slot); 31 32 static const struct btrfs_csums { 33 u16 size; 34 const char name[10]; 35 const char driver[12]; 36 } btrfs_csums[] = { 37 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 38 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 39 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 40 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 41 .driver = "blake2b-256" }, 42 }; 43 44 int btrfs_super_csum_size(const struct btrfs_super_block *s) 45 { 46 u16 t = btrfs_super_csum_type(s); 47 /* 48 * csum type is validated at mount time 49 */ 50 return btrfs_csums[t].size; 51 } 52 53 const char *btrfs_super_csum_name(u16 csum_type) 54 { 55 /* csum type is validated at mount time */ 56 return btrfs_csums[csum_type].name; 57 } 58 59 /* 60 * Return driver name if defined, otherwise the name that's also a valid driver 61 * name 62 */ 63 const char *btrfs_super_csum_driver(u16 csum_type) 64 { 65 /* csum type is validated at mount time */ 66 return btrfs_csums[csum_type].driver[0] ? 67 btrfs_csums[csum_type].driver : 68 btrfs_csums[csum_type].name; 69 } 70 71 size_t __const btrfs_get_num_csums(void) 72 { 73 return ARRAY_SIZE(btrfs_csums); 74 } 75 76 struct btrfs_path *btrfs_alloc_path(void) 77 { 78 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 79 } 80 81 /* this also releases the path */ 82 void btrfs_free_path(struct btrfs_path *p) 83 { 84 if (!p) 85 return; 86 btrfs_release_path(p); 87 kmem_cache_free(btrfs_path_cachep, p); 88 } 89 90 /* 91 * path release drops references on the extent buffers in the path 92 * and it drops any locks held by this path 93 * 94 * It is safe to call this on paths that no locks or extent buffers held. 95 */ 96 noinline void btrfs_release_path(struct btrfs_path *p) 97 { 98 int i; 99 100 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 101 p->slots[i] = 0; 102 if (!p->nodes[i]) 103 continue; 104 if (p->locks[i]) { 105 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 106 p->locks[i] = 0; 107 } 108 free_extent_buffer(p->nodes[i]); 109 p->nodes[i] = NULL; 110 } 111 } 112 113 /* 114 * safely gets a reference on the root node of a tree. A lock 115 * is not taken, so a concurrent writer may put a different node 116 * at the root of the tree. See btrfs_lock_root_node for the 117 * looping required. 118 * 119 * The extent buffer returned by this has a reference taken, so 120 * it won't disappear. It may stop being the root of the tree 121 * at any time because there are no locks held. 122 */ 123 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 124 { 125 struct extent_buffer *eb; 126 127 while (1) { 128 rcu_read_lock(); 129 eb = rcu_dereference(root->node); 130 131 /* 132 * RCU really hurts here, we could free up the root node because 133 * it was COWed but we may not get the new root node yet so do 134 * the inc_not_zero dance and if it doesn't work then 135 * synchronize_rcu and try again. 136 */ 137 if (atomic_inc_not_zero(&eb->refs)) { 138 rcu_read_unlock(); 139 break; 140 } 141 rcu_read_unlock(); 142 synchronize_rcu(); 143 } 144 return eb; 145 } 146 147 /* cowonly root (everything not a reference counted cow subvolume), just get 148 * put onto a simple dirty list. transaction.c walks this to make sure they 149 * get properly updated on disk. 150 */ 151 static void add_root_to_dirty_list(struct btrfs_root *root) 152 { 153 struct btrfs_fs_info *fs_info = root->fs_info; 154 155 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 156 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 157 return; 158 159 spin_lock(&fs_info->trans_lock); 160 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 161 /* Want the extent tree to be the last on the list */ 162 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 163 list_move_tail(&root->dirty_list, 164 &fs_info->dirty_cowonly_roots); 165 else 166 list_move(&root->dirty_list, 167 &fs_info->dirty_cowonly_roots); 168 } 169 spin_unlock(&fs_info->trans_lock); 170 } 171 172 /* 173 * used by snapshot creation to make a copy of a root for a tree with 174 * a given objectid. The buffer with the new root node is returned in 175 * cow_ret, and this func returns zero on success or a negative error code. 176 */ 177 int btrfs_copy_root(struct btrfs_trans_handle *trans, 178 struct btrfs_root *root, 179 struct extent_buffer *buf, 180 struct extent_buffer **cow_ret, u64 new_root_objectid) 181 { 182 struct btrfs_fs_info *fs_info = root->fs_info; 183 struct extent_buffer *cow; 184 int ret = 0; 185 int level; 186 struct btrfs_disk_key disk_key; 187 188 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 189 trans->transid != fs_info->running_transaction->transid); 190 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 191 trans->transid != root->last_trans); 192 193 level = btrfs_header_level(buf); 194 if (level == 0) 195 btrfs_item_key(buf, &disk_key, 0); 196 else 197 btrfs_node_key(buf, &disk_key, 0); 198 199 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 200 &disk_key, level, buf->start, 0); 201 if (IS_ERR(cow)) 202 return PTR_ERR(cow); 203 204 copy_extent_buffer_full(cow, buf); 205 btrfs_set_header_bytenr(cow, cow->start); 206 btrfs_set_header_generation(cow, trans->transid); 207 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 208 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 209 BTRFS_HEADER_FLAG_RELOC); 210 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 211 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 212 else 213 btrfs_set_header_owner(cow, new_root_objectid); 214 215 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 216 217 WARN_ON(btrfs_header_generation(buf) > trans->transid); 218 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 219 ret = btrfs_inc_ref(trans, root, cow, 1); 220 else 221 ret = btrfs_inc_ref(trans, root, cow, 0); 222 223 if (ret) 224 return ret; 225 226 btrfs_mark_buffer_dirty(cow); 227 *cow_ret = cow; 228 return 0; 229 } 230 231 enum mod_log_op { 232 MOD_LOG_KEY_REPLACE, 233 MOD_LOG_KEY_ADD, 234 MOD_LOG_KEY_REMOVE, 235 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 236 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 237 MOD_LOG_MOVE_KEYS, 238 MOD_LOG_ROOT_REPLACE, 239 }; 240 241 struct tree_mod_root { 242 u64 logical; 243 u8 level; 244 }; 245 246 struct tree_mod_elem { 247 struct rb_node node; 248 u64 logical; 249 u64 seq; 250 enum mod_log_op op; 251 252 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 253 int slot; 254 255 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 256 u64 generation; 257 258 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 259 struct btrfs_disk_key key; 260 u64 blockptr; 261 262 /* this is used for op == MOD_LOG_MOVE_KEYS */ 263 struct { 264 int dst_slot; 265 int nr_items; 266 } move; 267 268 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 269 struct tree_mod_root old_root; 270 }; 271 272 /* 273 * Pull a new tree mod seq number for our operation. 274 */ 275 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 276 { 277 return atomic64_inc_return(&fs_info->tree_mod_seq); 278 } 279 280 /* 281 * This adds a new blocker to the tree mod log's blocker list if the @elem 282 * passed does not already have a sequence number set. So when a caller expects 283 * to record tree modifications, it should ensure to set elem->seq to zero 284 * before calling btrfs_get_tree_mod_seq. 285 * Returns a fresh, unused tree log modification sequence number, even if no new 286 * blocker was added. 287 */ 288 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 289 struct seq_list *elem) 290 { 291 write_lock(&fs_info->tree_mod_log_lock); 292 if (!elem->seq) { 293 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 294 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 295 } 296 write_unlock(&fs_info->tree_mod_log_lock); 297 298 return elem->seq; 299 } 300 301 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 302 struct seq_list *elem) 303 { 304 struct rb_root *tm_root; 305 struct rb_node *node; 306 struct rb_node *next; 307 struct tree_mod_elem *tm; 308 u64 min_seq = (u64)-1; 309 u64 seq_putting = elem->seq; 310 311 if (!seq_putting) 312 return; 313 314 write_lock(&fs_info->tree_mod_log_lock); 315 list_del(&elem->list); 316 elem->seq = 0; 317 318 if (!list_empty(&fs_info->tree_mod_seq_list)) { 319 struct seq_list *first; 320 321 first = list_first_entry(&fs_info->tree_mod_seq_list, 322 struct seq_list, list); 323 if (seq_putting > first->seq) { 324 /* 325 * Blocker with lower sequence number exists, we 326 * cannot remove anything from the log. 327 */ 328 write_unlock(&fs_info->tree_mod_log_lock); 329 return; 330 } 331 min_seq = first->seq; 332 } 333 334 /* 335 * anything that's lower than the lowest existing (read: blocked) 336 * sequence number can be removed from the tree. 337 */ 338 tm_root = &fs_info->tree_mod_log; 339 for (node = rb_first(tm_root); node; node = next) { 340 next = rb_next(node); 341 tm = rb_entry(node, struct tree_mod_elem, node); 342 if (tm->seq >= min_seq) 343 continue; 344 rb_erase(node, tm_root); 345 kfree(tm); 346 } 347 write_unlock(&fs_info->tree_mod_log_lock); 348 } 349 350 /* 351 * key order of the log: 352 * node/leaf start address -> sequence 353 * 354 * The 'start address' is the logical address of the *new* root node 355 * for root replace operations, or the logical address of the affected 356 * block for all other operations. 357 */ 358 static noinline int 359 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 360 { 361 struct rb_root *tm_root; 362 struct rb_node **new; 363 struct rb_node *parent = NULL; 364 struct tree_mod_elem *cur; 365 366 lockdep_assert_held_write(&fs_info->tree_mod_log_lock); 367 368 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 369 370 tm_root = &fs_info->tree_mod_log; 371 new = &tm_root->rb_node; 372 while (*new) { 373 cur = rb_entry(*new, struct tree_mod_elem, node); 374 parent = *new; 375 if (cur->logical < tm->logical) 376 new = &((*new)->rb_left); 377 else if (cur->logical > tm->logical) 378 new = &((*new)->rb_right); 379 else if (cur->seq < tm->seq) 380 new = &((*new)->rb_left); 381 else if (cur->seq > tm->seq) 382 new = &((*new)->rb_right); 383 else 384 return -EEXIST; 385 } 386 387 rb_link_node(&tm->node, parent, new); 388 rb_insert_color(&tm->node, tm_root); 389 return 0; 390 } 391 392 /* 393 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 394 * returns zero with the tree_mod_log_lock acquired. The caller must hold 395 * this until all tree mod log insertions are recorded in the rb tree and then 396 * write unlock fs_info::tree_mod_log_lock. 397 */ 398 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 399 struct extent_buffer *eb) { 400 smp_mb(); 401 if (list_empty(&(fs_info)->tree_mod_seq_list)) 402 return 1; 403 if (eb && btrfs_header_level(eb) == 0) 404 return 1; 405 406 write_lock(&fs_info->tree_mod_log_lock); 407 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 408 write_unlock(&fs_info->tree_mod_log_lock); 409 return 1; 410 } 411 412 return 0; 413 } 414 415 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 416 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 417 struct extent_buffer *eb) 418 { 419 smp_mb(); 420 if (list_empty(&(fs_info)->tree_mod_seq_list)) 421 return 0; 422 if (eb && btrfs_header_level(eb) == 0) 423 return 0; 424 425 return 1; 426 } 427 428 static struct tree_mod_elem * 429 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 430 enum mod_log_op op, gfp_t flags) 431 { 432 struct tree_mod_elem *tm; 433 434 tm = kzalloc(sizeof(*tm), flags); 435 if (!tm) 436 return NULL; 437 438 tm->logical = eb->start; 439 if (op != MOD_LOG_KEY_ADD) { 440 btrfs_node_key(eb, &tm->key, slot); 441 tm->blockptr = btrfs_node_blockptr(eb, slot); 442 } 443 tm->op = op; 444 tm->slot = slot; 445 tm->generation = btrfs_node_ptr_generation(eb, slot); 446 RB_CLEAR_NODE(&tm->node); 447 448 return tm; 449 } 450 451 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 452 enum mod_log_op op, gfp_t flags) 453 { 454 struct tree_mod_elem *tm; 455 int ret; 456 457 if (!tree_mod_need_log(eb->fs_info, eb)) 458 return 0; 459 460 tm = alloc_tree_mod_elem(eb, slot, op, flags); 461 if (!tm) 462 return -ENOMEM; 463 464 if (tree_mod_dont_log(eb->fs_info, eb)) { 465 kfree(tm); 466 return 0; 467 } 468 469 ret = __tree_mod_log_insert(eb->fs_info, tm); 470 write_unlock(&eb->fs_info->tree_mod_log_lock); 471 if (ret) 472 kfree(tm); 473 474 return ret; 475 } 476 477 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 478 int dst_slot, int src_slot, int nr_items) 479 { 480 struct tree_mod_elem *tm = NULL; 481 struct tree_mod_elem **tm_list = NULL; 482 int ret = 0; 483 int i; 484 int locked = 0; 485 486 if (!tree_mod_need_log(eb->fs_info, eb)) 487 return 0; 488 489 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 490 if (!tm_list) 491 return -ENOMEM; 492 493 tm = kzalloc(sizeof(*tm), GFP_NOFS); 494 if (!tm) { 495 ret = -ENOMEM; 496 goto free_tms; 497 } 498 499 tm->logical = eb->start; 500 tm->slot = src_slot; 501 tm->move.dst_slot = dst_slot; 502 tm->move.nr_items = nr_items; 503 tm->op = MOD_LOG_MOVE_KEYS; 504 505 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 506 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 507 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 508 if (!tm_list[i]) { 509 ret = -ENOMEM; 510 goto free_tms; 511 } 512 } 513 514 if (tree_mod_dont_log(eb->fs_info, eb)) 515 goto free_tms; 516 locked = 1; 517 518 /* 519 * When we override something during the move, we log these removals. 520 * This can only happen when we move towards the beginning of the 521 * buffer, i.e. dst_slot < src_slot. 522 */ 523 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 524 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 525 if (ret) 526 goto free_tms; 527 } 528 529 ret = __tree_mod_log_insert(eb->fs_info, tm); 530 if (ret) 531 goto free_tms; 532 write_unlock(&eb->fs_info->tree_mod_log_lock); 533 kfree(tm_list); 534 535 return 0; 536 free_tms: 537 for (i = 0; i < nr_items; i++) { 538 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 539 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 540 kfree(tm_list[i]); 541 } 542 if (locked) 543 write_unlock(&eb->fs_info->tree_mod_log_lock); 544 kfree(tm_list); 545 kfree(tm); 546 547 return ret; 548 } 549 550 static inline int 551 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 552 struct tree_mod_elem **tm_list, 553 int nritems) 554 { 555 int i, j; 556 int ret; 557 558 for (i = nritems - 1; i >= 0; i--) { 559 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 560 if (ret) { 561 for (j = nritems - 1; j > i; j--) 562 rb_erase(&tm_list[j]->node, 563 &fs_info->tree_mod_log); 564 return ret; 565 } 566 } 567 568 return 0; 569 } 570 571 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 572 struct extent_buffer *new_root, int log_removal) 573 { 574 struct btrfs_fs_info *fs_info = old_root->fs_info; 575 struct tree_mod_elem *tm = NULL; 576 struct tree_mod_elem **tm_list = NULL; 577 int nritems = 0; 578 int ret = 0; 579 int i; 580 581 if (!tree_mod_need_log(fs_info, NULL)) 582 return 0; 583 584 if (log_removal && btrfs_header_level(old_root) > 0) { 585 nritems = btrfs_header_nritems(old_root); 586 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 587 GFP_NOFS); 588 if (!tm_list) { 589 ret = -ENOMEM; 590 goto free_tms; 591 } 592 for (i = 0; i < nritems; i++) { 593 tm_list[i] = alloc_tree_mod_elem(old_root, i, 594 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 595 if (!tm_list[i]) { 596 ret = -ENOMEM; 597 goto free_tms; 598 } 599 } 600 } 601 602 tm = kzalloc(sizeof(*tm), GFP_NOFS); 603 if (!tm) { 604 ret = -ENOMEM; 605 goto free_tms; 606 } 607 608 tm->logical = new_root->start; 609 tm->old_root.logical = old_root->start; 610 tm->old_root.level = btrfs_header_level(old_root); 611 tm->generation = btrfs_header_generation(old_root); 612 tm->op = MOD_LOG_ROOT_REPLACE; 613 614 if (tree_mod_dont_log(fs_info, NULL)) 615 goto free_tms; 616 617 if (tm_list) 618 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 619 if (!ret) 620 ret = __tree_mod_log_insert(fs_info, tm); 621 622 write_unlock(&fs_info->tree_mod_log_lock); 623 if (ret) 624 goto free_tms; 625 kfree(tm_list); 626 627 return ret; 628 629 free_tms: 630 if (tm_list) { 631 for (i = 0; i < nritems; i++) 632 kfree(tm_list[i]); 633 kfree(tm_list); 634 } 635 kfree(tm); 636 637 return ret; 638 } 639 640 static struct tree_mod_elem * 641 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 642 int smallest) 643 { 644 struct rb_root *tm_root; 645 struct rb_node *node; 646 struct tree_mod_elem *cur = NULL; 647 struct tree_mod_elem *found = NULL; 648 649 read_lock(&fs_info->tree_mod_log_lock); 650 tm_root = &fs_info->tree_mod_log; 651 node = tm_root->rb_node; 652 while (node) { 653 cur = rb_entry(node, struct tree_mod_elem, node); 654 if (cur->logical < start) { 655 node = node->rb_left; 656 } else if (cur->logical > start) { 657 node = node->rb_right; 658 } else if (cur->seq < min_seq) { 659 node = node->rb_left; 660 } else if (!smallest) { 661 /* we want the node with the highest seq */ 662 if (found) 663 BUG_ON(found->seq > cur->seq); 664 found = cur; 665 node = node->rb_left; 666 } else if (cur->seq > min_seq) { 667 /* we want the node with the smallest seq */ 668 if (found) 669 BUG_ON(found->seq < cur->seq); 670 found = cur; 671 node = node->rb_right; 672 } else { 673 found = cur; 674 break; 675 } 676 } 677 read_unlock(&fs_info->tree_mod_log_lock); 678 679 return found; 680 } 681 682 /* 683 * this returns the element from the log with the smallest time sequence 684 * value that's in the log (the oldest log item). any element with a time 685 * sequence lower than min_seq will be ignored. 686 */ 687 static struct tree_mod_elem * 688 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 689 u64 min_seq) 690 { 691 return __tree_mod_log_search(fs_info, start, min_seq, 1); 692 } 693 694 /* 695 * this returns the element from the log with the largest time sequence 696 * value that's in the log (the most recent log item). any element with 697 * a time sequence lower than min_seq will be ignored. 698 */ 699 static struct tree_mod_elem * 700 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 701 { 702 return __tree_mod_log_search(fs_info, start, min_seq, 0); 703 } 704 705 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst, 706 struct extent_buffer *src, unsigned long dst_offset, 707 unsigned long src_offset, int nr_items) 708 { 709 struct btrfs_fs_info *fs_info = dst->fs_info; 710 int ret = 0; 711 struct tree_mod_elem **tm_list = NULL; 712 struct tree_mod_elem **tm_list_add, **tm_list_rem; 713 int i; 714 int locked = 0; 715 716 if (!tree_mod_need_log(fs_info, NULL)) 717 return 0; 718 719 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 720 return 0; 721 722 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 723 GFP_NOFS); 724 if (!tm_list) 725 return -ENOMEM; 726 727 tm_list_add = tm_list; 728 tm_list_rem = tm_list + nr_items; 729 for (i = 0; i < nr_items; i++) { 730 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 731 MOD_LOG_KEY_REMOVE, GFP_NOFS); 732 if (!tm_list_rem[i]) { 733 ret = -ENOMEM; 734 goto free_tms; 735 } 736 737 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 738 MOD_LOG_KEY_ADD, GFP_NOFS); 739 if (!tm_list_add[i]) { 740 ret = -ENOMEM; 741 goto free_tms; 742 } 743 } 744 745 if (tree_mod_dont_log(fs_info, NULL)) 746 goto free_tms; 747 locked = 1; 748 749 for (i = 0; i < nr_items; i++) { 750 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 751 if (ret) 752 goto free_tms; 753 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 754 if (ret) 755 goto free_tms; 756 } 757 758 write_unlock(&fs_info->tree_mod_log_lock); 759 kfree(tm_list); 760 761 return 0; 762 763 free_tms: 764 for (i = 0; i < nr_items * 2; i++) { 765 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 766 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 767 kfree(tm_list[i]); 768 } 769 if (locked) 770 write_unlock(&fs_info->tree_mod_log_lock); 771 kfree(tm_list); 772 773 return ret; 774 } 775 776 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 777 { 778 struct tree_mod_elem **tm_list = NULL; 779 int nritems = 0; 780 int i; 781 int ret = 0; 782 783 if (btrfs_header_level(eb) == 0) 784 return 0; 785 786 if (!tree_mod_need_log(eb->fs_info, NULL)) 787 return 0; 788 789 nritems = btrfs_header_nritems(eb); 790 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 791 if (!tm_list) 792 return -ENOMEM; 793 794 for (i = 0; i < nritems; i++) { 795 tm_list[i] = alloc_tree_mod_elem(eb, i, 796 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 797 if (!tm_list[i]) { 798 ret = -ENOMEM; 799 goto free_tms; 800 } 801 } 802 803 if (tree_mod_dont_log(eb->fs_info, eb)) 804 goto free_tms; 805 806 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 807 write_unlock(&eb->fs_info->tree_mod_log_lock); 808 if (ret) 809 goto free_tms; 810 kfree(tm_list); 811 812 return 0; 813 814 free_tms: 815 for (i = 0; i < nritems; i++) 816 kfree(tm_list[i]); 817 kfree(tm_list); 818 819 return ret; 820 } 821 822 /* 823 * check if the tree block can be shared by multiple trees 824 */ 825 int btrfs_block_can_be_shared(struct btrfs_root *root, 826 struct extent_buffer *buf) 827 { 828 /* 829 * Tree blocks not in reference counted trees and tree roots 830 * are never shared. If a block was allocated after the last 831 * snapshot and the block was not allocated by tree relocation, 832 * we know the block is not shared. 833 */ 834 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 835 buf != root->node && buf != root->commit_root && 836 (btrfs_header_generation(buf) <= 837 btrfs_root_last_snapshot(&root->root_item) || 838 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 839 return 1; 840 841 return 0; 842 } 843 844 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 845 struct btrfs_root *root, 846 struct extent_buffer *buf, 847 struct extent_buffer *cow, 848 int *last_ref) 849 { 850 struct btrfs_fs_info *fs_info = root->fs_info; 851 u64 refs; 852 u64 owner; 853 u64 flags; 854 u64 new_flags = 0; 855 int ret; 856 857 /* 858 * Backrefs update rules: 859 * 860 * Always use full backrefs for extent pointers in tree block 861 * allocated by tree relocation. 862 * 863 * If a shared tree block is no longer referenced by its owner 864 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 865 * use full backrefs for extent pointers in tree block. 866 * 867 * If a tree block is been relocating 868 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 869 * use full backrefs for extent pointers in tree block. 870 * The reason for this is some operations (such as drop tree) 871 * are only allowed for blocks use full backrefs. 872 */ 873 874 if (btrfs_block_can_be_shared(root, buf)) { 875 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 876 btrfs_header_level(buf), 1, 877 &refs, &flags); 878 if (ret) 879 return ret; 880 if (refs == 0) { 881 ret = -EROFS; 882 btrfs_handle_fs_error(fs_info, ret, NULL); 883 return ret; 884 } 885 } else { 886 refs = 1; 887 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 888 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 889 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 890 else 891 flags = 0; 892 } 893 894 owner = btrfs_header_owner(buf); 895 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 896 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 897 898 if (refs > 1) { 899 if ((owner == root->root_key.objectid || 900 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 901 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 902 ret = btrfs_inc_ref(trans, root, buf, 1); 903 if (ret) 904 return ret; 905 906 if (root->root_key.objectid == 907 BTRFS_TREE_RELOC_OBJECTID) { 908 ret = btrfs_dec_ref(trans, root, buf, 0); 909 if (ret) 910 return ret; 911 ret = btrfs_inc_ref(trans, root, cow, 1); 912 if (ret) 913 return ret; 914 } 915 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 916 } else { 917 918 if (root->root_key.objectid == 919 BTRFS_TREE_RELOC_OBJECTID) 920 ret = btrfs_inc_ref(trans, root, cow, 1); 921 else 922 ret = btrfs_inc_ref(trans, root, cow, 0); 923 if (ret) 924 return ret; 925 } 926 if (new_flags != 0) { 927 int level = btrfs_header_level(buf); 928 929 ret = btrfs_set_disk_extent_flags(trans, buf, 930 new_flags, level, 0); 931 if (ret) 932 return ret; 933 } 934 } else { 935 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 936 if (root->root_key.objectid == 937 BTRFS_TREE_RELOC_OBJECTID) 938 ret = btrfs_inc_ref(trans, root, cow, 1); 939 else 940 ret = btrfs_inc_ref(trans, root, cow, 0); 941 if (ret) 942 return ret; 943 ret = btrfs_dec_ref(trans, root, buf, 1); 944 if (ret) 945 return ret; 946 } 947 btrfs_clean_tree_block(buf); 948 *last_ref = 1; 949 } 950 return 0; 951 } 952 953 static struct extent_buffer *alloc_tree_block_no_bg_flush( 954 struct btrfs_trans_handle *trans, 955 struct btrfs_root *root, 956 u64 parent_start, 957 const struct btrfs_disk_key *disk_key, 958 int level, 959 u64 hint, 960 u64 empty_size) 961 { 962 struct btrfs_fs_info *fs_info = root->fs_info; 963 struct extent_buffer *ret; 964 965 /* 966 * If we are COWing a node/leaf from the extent, chunk, device or free 967 * space trees, make sure that we do not finish block group creation of 968 * pending block groups. We do this to avoid a deadlock. 969 * COWing can result in allocation of a new chunk, and flushing pending 970 * block groups (btrfs_create_pending_block_groups()) can be triggered 971 * when finishing allocation of a new chunk. Creation of a pending block 972 * group modifies the extent, chunk, device and free space trees, 973 * therefore we could deadlock with ourselves since we are holding a 974 * lock on an extent buffer that btrfs_create_pending_block_groups() may 975 * try to COW later. 976 * For similar reasons, we also need to delay flushing pending block 977 * groups when splitting a leaf or node, from one of those trees, since 978 * we are holding a write lock on it and its parent or when inserting a 979 * new root node for one of those trees. 980 */ 981 if (root == fs_info->extent_root || 982 root == fs_info->chunk_root || 983 root == fs_info->dev_root || 984 root == fs_info->free_space_root) 985 trans->can_flush_pending_bgs = false; 986 987 ret = btrfs_alloc_tree_block(trans, root, parent_start, 988 root->root_key.objectid, disk_key, level, 989 hint, empty_size); 990 trans->can_flush_pending_bgs = true; 991 992 return ret; 993 } 994 995 /* 996 * does the dirty work in cow of a single block. The parent block (if 997 * supplied) is updated to point to the new cow copy. The new buffer is marked 998 * dirty and returned locked. If you modify the block it needs to be marked 999 * dirty again. 1000 * 1001 * search_start -- an allocation hint for the new block 1002 * 1003 * empty_size -- a hint that you plan on doing more cow. This is the size in 1004 * bytes the allocator should try to find free next to the block it returns. 1005 * This is just a hint and may be ignored by the allocator. 1006 */ 1007 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1008 struct btrfs_root *root, 1009 struct extent_buffer *buf, 1010 struct extent_buffer *parent, int parent_slot, 1011 struct extent_buffer **cow_ret, 1012 u64 search_start, u64 empty_size) 1013 { 1014 struct btrfs_fs_info *fs_info = root->fs_info; 1015 struct btrfs_disk_key disk_key; 1016 struct extent_buffer *cow; 1017 int level, ret; 1018 int last_ref = 0; 1019 int unlock_orig = 0; 1020 u64 parent_start = 0; 1021 1022 if (*cow_ret == buf) 1023 unlock_orig = 1; 1024 1025 btrfs_assert_tree_locked(buf); 1026 1027 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1028 trans->transid != fs_info->running_transaction->transid); 1029 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1030 trans->transid != root->last_trans); 1031 1032 level = btrfs_header_level(buf); 1033 1034 if (level == 0) 1035 btrfs_item_key(buf, &disk_key, 0); 1036 else 1037 btrfs_node_key(buf, &disk_key, 0); 1038 1039 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1040 parent_start = parent->start; 1041 1042 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key, 1043 level, search_start, empty_size); 1044 if (IS_ERR(cow)) 1045 return PTR_ERR(cow); 1046 1047 /* cow is set to blocking by btrfs_init_new_buffer */ 1048 1049 copy_extent_buffer_full(cow, buf); 1050 btrfs_set_header_bytenr(cow, cow->start); 1051 btrfs_set_header_generation(cow, trans->transid); 1052 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1053 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1054 BTRFS_HEADER_FLAG_RELOC); 1055 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1056 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1057 else 1058 btrfs_set_header_owner(cow, root->root_key.objectid); 1059 1060 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 1061 1062 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1063 if (ret) { 1064 btrfs_abort_transaction(trans, ret); 1065 return ret; 1066 } 1067 1068 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1069 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1070 if (ret) { 1071 btrfs_abort_transaction(trans, ret); 1072 return ret; 1073 } 1074 } 1075 1076 if (buf == root->node) { 1077 WARN_ON(parent && parent != buf); 1078 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1079 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1080 parent_start = buf->start; 1081 1082 atomic_inc(&cow->refs); 1083 ret = tree_mod_log_insert_root(root->node, cow, 1); 1084 BUG_ON(ret < 0); 1085 rcu_assign_pointer(root->node, cow); 1086 1087 btrfs_free_tree_block(trans, root, buf, parent_start, 1088 last_ref); 1089 free_extent_buffer(buf); 1090 add_root_to_dirty_list(root); 1091 } else { 1092 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1093 tree_mod_log_insert_key(parent, parent_slot, 1094 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1095 btrfs_set_node_blockptr(parent, parent_slot, 1096 cow->start); 1097 btrfs_set_node_ptr_generation(parent, parent_slot, 1098 trans->transid); 1099 btrfs_mark_buffer_dirty(parent); 1100 if (last_ref) { 1101 ret = tree_mod_log_free_eb(buf); 1102 if (ret) { 1103 btrfs_abort_transaction(trans, ret); 1104 return ret; 1105 } 1106 } 1107 btrfs_free_tree_block(trans, root, buf, parent_start, 1108 last_ref); 1109 } 1110 if (unlock_orig) 1111 btrfs_tree_unlock(buf); 1112 free_extent_buffer_stale(buf); 1113 btrfs_mark_buffer_dirty(cow); 1114 *cow_ret = cow; 1115 return 0; 1116 } 1117 1118 /* 1119 * returns the logical address of the oldest predecessor of the given root. 1120 * entries older than time_seq are ignored. 1121 */ 1122 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1123 struct extent_buffer *eb_root, u64 time_seq) 1124 { 1125 struct tree_mod_elem *tm; 1126 struct tree_mod_elem *found = NULL; 1127 u64 root_logical = eb_root->start; 1128 int looped = 0; 1129 1130 if (!time_seq) 1131 return NULL; 1132 1133 /* 1134 * the very last operation that's logged for a root is the 1135 * replacement operation (if it is replaced at all). this has 1136 * the logical address of the *new* root, making it the very 1137 * first operation that's logged for this root. 1138 */ 1139 while (1) { 1140 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1141 time_seq); 1142 if (!looped && !tm) 1143 return NULL; 1144 /* 1145 * if there are no tree operation for the oldest root, we simply 1146 * return it. this should only happen if that (old) root is at 1147 * level 0. 1148 */ 1149 if (!tm) 1150 break; 1151 1152 /* 1153 * if there's an operation that's not a root replacement, we 1154 * found the oldest version of our root. normally, we'll find a 1155 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1156 */ 1157 if (tm->op != MOD_LOG_ROOT_REPLACE) 1158 break; 1159 1160 found = tm; 1161 root_logical = tm->old_root.logical; 1162 looped = 1; 1163 } 1164 1165 /* if there's no old root to return, return what we found instead */ 1166 if (!found) 1167 found = tm; 1168 1169 return found; 1170 } 1171 1172 /* 1173 * tm is a pointer to the first operation to rewind within eb. then, all 1174 * previous operations will be rewound (until we reach something older than 1175 * time_seq). 1176 */ 1177 static void 1178 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1179 u64 time_seq, struct tree_mod_elem *first_tm) 1180 { 1181 u32 n; 1182 struct rb_node *next; 1183 struct tree_mod_elem *tm = first_tm; 1184 unsigned long o_dst; 1185 unsigned long o_src; 1186 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1187 1188 n = btrfs_header_nritems(eb); 1189 read_lock(&fs_info->tree_mod_log_lock); 1190 while (tm && tm->seq >= time_seq) { 1191 /* 1192 * all the operations are recorded with the operator used for 1193 * the modification. as we're going backwards, we do the 1194 * opposite of each operation here. 1195 */ 1196 switch (tm->op) { 1197 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1198 BUG_ON(tm->slot < n); 1199 /* Fallthrough */ 1200 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1201 case MOD_LOG_KEY_REMOVE: 1202 btrfs_set_node_key(eb, &tm->key, tm->slot); 1203 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1204 btrfs_set_node_ptr_generation(eb, tm->slot, 1205 tm->generation); 1206 n++; 1207 break; 1208 case MOD_LOG_KEY_REPLACE: 1209 BUG_ON(tm->slot >= n); 1210 btrfs_set_node_key(eb, &tm->key, tm->slot); 1211 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1212 btrfs_set_node_ptr_generation(eb, tm->slot, 1213 tm->generation); 1214 break; 1215 case MOD_LOG_KEY_ADD: 1216 /* if a move operation is needed it's in the log */ 1217 n--; 1218 break; 1219 case MOD_LOG_MOVE_KEYS: 1220 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1221 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1222 memmove_extent_buffer(eb, o_dst, o_src, 1223 tm->move.nr_items * p_size); 1224 break; 1225 case MOD_LOG_ROOT_REPLACE: 1226 /* 1227 * this operation is special. for roots, this must be 1228 * handled explicitly before rewinding. 1229 * for non-roots, this operation may exist if the node 1230 * was a root: root A -> child B; then A gets empty and 1231 * B is promoted to the new root. in the mod log, we'll 1232 * have a root-replace operation for B, a tree block 1233 * that is no root. we simply ignore that operation. 1234 */ 1235 break; 1236 } 1237 next = rb_next(&tm->node); 1238 if (!next) 1239 break; 1240 tm = rb_entry(next, struct tree_mod_elem, node); 1241 if (tm->logical != first_tm->logical) 1242 break; 1243 } 1244 read_unlock(&fs_info->tree_mod_log_lock); 1245 btrfs_set_header_nritems(eb, n); 1246 } 1247 1248 /* 1249 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1250 * is returned. If rewind operations happen, a fresh buffer is returned. The 1251 * returned buffer is always read-locked. If the returned buffer is not the 1252 * input buffer, the lock on the input buffer is released and the input buffer 1253 * is freed (its refcount is decremented). 1254 */ 1255 static struct extent_buffer * 1256 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1257 struct extent_buffer *eb, u64 time_seq) 1258 { 1259 struct extent_buffer *eb_rewin; 1260 struct tree_mod_elem *tm; 1261 1262 if (!time_seq) 1263 return eb; 1264 1265 if (btrfs_header_level(eb) == 0) 1266 return eb; 1267 1268 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1269 if (!tm) 1270 return eb; 1271 1272 btrfs_set_path_blocking(path); 1273 btrfs_set_lock_blocking_read(eb); 1274 1275 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1276 BUG_ON(tm->slot != 0); 1277 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1278 if (!eb_rewin) { 1279 btrfs_tree_read_unlock_blocking(eb); 1280 free_extent_buffer(eb); 1281 return NULL; 1282 } 1283 btrfs_set_header_bytenr(eb_rewin, eb->start); 1284 btrfs_set_header_backref_rev(eb_rewin, 1285 btrfs_header_backref_rev(eb)); 1286 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1287 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1288 } else { 1289 eb_rewin = btrfs_clone_extent_buffer(eb); 1290 if (!eb_rewin) { 1291 btrfs_tree_read_unlock_blocking(eb); 1292 free_extent_buffer(eb); 1293 return NULL; 1294 } 1295 } 1296 1297 btrfs_tree_read_unlock_blocking(eb); 1298 free_extent_buffer(eb); 1299 1300 btrfs_tree_read_lock(eb_rewin); 1301 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1302 WARN_ON(btrfs_header_nritems(eb_rewin) > 1303 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1304 1305 return eb_rewin; 1306 } 1307 1308 /* 1309 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1310 * value. If there are no changes, the current root->root_node is returned. If 1311 * anything changed in between, there's a fresh buffer allocated on which the 1312 * rewind operations are done. In any case, the returned buffer is read locked. 1313 * Returns NULL on error (with no locks held). 1314 */ 1315 static inline struct extent_buffer * 1316 get_old_root(struct btrfs_root *root, u64 time_seq) 1317 { 1318 struct btrfs_fs_info *fs_info = root->fs_info; 1319 struct tree_mod_elem *tm; 1320 struct extent_buffer *eb = NULL; 1321 struct extent_buffer *eb_root; 1322 u64 eb_root_owner = 0; 1323 struct extent_buffer *old; 1324 struct tree_mod_root *old_root = NULL; 1325 u64 old_generation = 0; 1326 u64 logical; 1327 int level; 1328 1329 eb_root = btrfs_read_lock_root_node(root); 1330 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1331 if (!tm) 1332 return eb_root; 1333 1334 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1335 old_root = &tm->old_root; 1336 old_generation = tm->generation; 1337 logical = old_root->logical; 1338 level = old_root->level; 1339 } else { 1340 logical = eb_root->start; 1341 level = btrfs_header_level(eb_root); 1342 } 1343 1344 tm = tree_mod_log_search(fs_info, logical, time_seq); 1345 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1346 btrfs_tree_read_unlock(eb_root); 1347 free_extent_buffer(eb_root); 1348 old = read_tree_block(fs_info, logical, 0, level, NULL); 1349 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1350 if (!IS_ERR(old)) 1351 free_extent_buffer(old); 1352 btrfs_warn(fs_info, 1353 "failed to read tree block %llu from get_old_root", 1354 logical); 1355 } else { 1356 eb = btrfs_clone_extent_buffer(old); 1357 free_extent_buffer(old); 1358 } 1359 } else if (old_root) { 1360 eb_root_owner = btrfs_header_owner(eb_root); 1361 btrfs_tree_read_unlock(eb_root); 1362 free_extent_buffer(eb_root); 1363 eb = alloc_dummy_extent_buffer(fs_info, logical); 1364 } else { 1365 btrfs_set_lock_blocking_read(eb_root); 1366 eb = btrfs_clone_extent_buffer(eb_root); 1367 btrfs_tree_read_unlock_blocking(eb_root); 1368 free_extent_buffer(eb_root); 1369 } 1370 1371 if (!eb) 1372 return NULL; 1373 btrfs_tree_read_lock(eb); 1374 if (old_root) { 1375 btrfs_set_header_bytenr(eb, eb->start); 1376 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1377 btrfs_set_header_owner(eb, eb_root_owner); 1378 btrfs_set_header_level(eb, old_root->level); 1379 btrfs_set_header_generation(eb, old_generation); 1380 } 1381 if (tm) 1382 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1383 else 1384 WARN_ON(btrfs_header_level(eb) != 0); 1385 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1386 1387 return eb; 1388 } 1389 1390 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1391 { 1392 struct tree_mod_elem *tm; 1393 int level; 1394 struct extent_buffer *eb_root = btrfs_root_node(root); 1395 1396 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1397 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1398 level = tm->old_root.level; 1399 } else { 1400 level = btrfs_header_level(eb_root); 1401 } 1402 free_extent_buffer(eb_root); 1403 1404 return level; 1405 } 1406 1407 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1408 struct btrfs_root *root, 1409 struct extent_buffer *buf) 1410 { 1411 if (btrfs_is_testing(root->fs_info)) 1412 return 0; 1413 1414 /* Ensure we can see the FORCE_COW bit */ 1415 smp_mb__before_atomic(); 1416 1417 /* 1418 * We do not need to cow a block if 1419 * 1) this block is not created or changed in this transaction; 1420 * 2) this block does not belong to TREE_RELOC tree; 1421 * 3) the root is not forced COW. 1422 * 1423 * What is forced COW: 1424 * when we create snapshot during committing the transaction, 1425 * after we've finished copying src root, we must COW the shared 1426 * block to ensure the metadata consistency. 1427 */ 1428 if (btrfs_header_generation(buf) == trans->transid && 1429 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1430 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1431 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1432 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1433 return 0; 1434 return 1; 1435 } 1436 1437 /* 1438 * cows a single block, see __btrfs_cow_block for the real work. 1439 * This version of it has extra checks so that a block isn't COWed more than 1440 * once per transaction, as long as it hasn't been written yet 1441 */ 1442 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1443 struct btrfs_root *root, struct extent_buffer *buf, 1444 struct extent_buffer *parent, int parent_slot, 1445 struct extent_buffer **cow_ret) 1446 { 1447 struct btrfs_fs_info *fs_info = root->fs_info; 1448 u64 search_start; 1449 int ret; 1450 1451 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 1452 btrfs_err(fs_info, 1453 "COW'ing blocks on a fs root that's being dropped"); 1454 1455 if (trans->transaction != fs_info->running_transaction) 1456 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1457 trans->transid, 1458 fs_info->running_transaction->transid); 1459 1460 if (trans->transid != fs_info->generation) 1461 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1462 trans->transid, fs_info->generation); 1463 1464 if (!should_cow_block(trans, root, buf)) { 1465 trans->dirty = true; 1466 *cow_ret = buf; 1467 return 0; 1468 } 1469 1470 search_start = buf->start & ~((u64)SZ_1G - 1); 1471 1472 if (parent) 1473 btrfs_set_lock_blocking_write(parent); 1474 btrfs_set_lock_blocking_write(buf); 1475 1476 /* 1477 * Before CoWing this block for later modification, check if it's 1478 * the subtree root and do the delayed subtree trace if needed. 1479 * 1480 * Also We don't care about the error, as it's handled internally. 1481 */ 1482 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 1483 ret = __btrfs_cow_block(trans, root, buf, parent, 1484 parent_slot, cow_ret, search_start, 0); 1485 1486 trace_btrfs_cow_block(root, buf, *cow_ret); 1487 1488 return ret; 1489 } 1490 1491 /* 1492 * helper function for defrag to decide if two blocks pointed to by a 1493 * node are actually close by 1494 */ 1495 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1496 { 1497 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1498 return 1; 1499 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1500 return 1; 1501 return 0; 1502 } 1503 1504 /* 1505 * compare two keys in a memcmp fashion 1506 */ 1507 static int comp_keys(const struct btrfs_disk_key *disk, 1508 const struct btrfs_key *k2) 1509 { 1510 struct btrfs_key k1; 1511 1512 btrfs_disk_key_to_cpu(&k1, disk); 1513 1514 return btrfs_comp_cpu_keys(&k1, k2); 1515 } 1516 1517 /* 1518 * same as comp_keys only with two btrfs_key's 1519 */ 1520 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1521 { 1522 if (k1->objectid > k2->objectid) 1523 return 1; 1524 if (k1->objectid < k2->objectid) 1525 return -1; 1526 if (k1->type > k2->type) 1527 return 1; 1528 if (k1->type < k2->type) 1529 return -1; 1530 if (k1->offset > k2->offset) 1531 return 1; 1532 if (k1->offset < k2->offset) 1533 return -1; 1534 return 0; 1535 } 1536 1537 /* 1538 * this is used by the defrag code to go through all the 1539 * leaves pointed to by a node and reallocate them so that 1540 * disk order is close to key order 1541 */ 1542 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1543 struct btrfs_root *root, struct extent_buffer *parent, 1544 int start_slot, u64 *last_ret, 1545 struct btrfs_key *progress) 1546 { 1547 struct btrfs_fs_info *fs_info = root->fs_info; 1548 struct extent_buffer *cur; 1549 u64 blocknr; 1550 u64 gen; 1551 u64 search_start = *last_ret; 1552 u64 last_block = 0; 1553 u64 other; 1554 u32 parent_nritems; 1555 int end_slot; 1556 int i; 1557 int err = 0; 1558 int parent_level; 1559 int uptodate; 1560 u32 blocksize; 1561 int progress_passed = 0; 1562 struct btrfs_disk_key disk_key; 1563 1564 parent_level = btrfs_header_level(parent); 1565 1566 WARN_ON(trans->transaction != fs_info->running_transaction); 1567 WARN_ON(trans->transid != fs_info->generation); 1568 1569 parent_nritems = btrfs_header_nritems(parent); 1570 blocksize = fs_info->nodesize; 1571 end_slot = parent_nritems - 1; 1572 1573 if (parent_nritems <= 1) 1574 return 0; 1575 1576 btrfs_set_lock_blocking_write(parent); 1577 1578 for (i = start_slot; i <= end_slot; i++) { 1579 struct btrfs_key first_key; 1580 int close = 1; 1581 1582 btrfs_node_key(parent, &disk_key, i); 1583 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1584 continue; 1585 1586 progress_passed = 1; 1587 blocknr = btrfs_node_blockptr(parent, i); 1588 gen = btrfs_node_ptr_generation(parent, i); 1589 btrfs_node_key_to_cpu(parent, &first_key, i); 1590 if (last_block == 0) 1591 last_block = blocknr; 1592 1593 if (i > 0) { 1594 other = btrfs_node_blockptr(parent, i - 1); 1595 close = close_blocks(blocknr, other, blocksize); 1596 } 1597 if (!close && i < end_slot) { 1598 other = btrfs_node_blockptr(parent, i + 1); 1599 close = close_blocks(blocknr, other, blocksize); 1600 } 1601 if (close) { 1602 last_block = blocknr; 1603 continue; 1604 } 1605 1606 cur = find_extent_buffer(fs_info, blocknr); 1607 if (cur) 1608 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1609 else 1610 uptodate = 0; 1611 if (!cur || !uptodate) { 1612 if (!cur) { 1613 cur = read_tree_block(fs_info, blocknr, gen, 1614 parent_level - 1, 1615 &first_key); 1616 if (IS_ERR(cur)) { 1617 return PTR_ERR(cur); 1618 } else if (!extent_buffer_uptodate(cur)) { 1619 free_extent_buffer(cur); 1620 return -EIO; 1621 } 1622 } else if (!uptodate) { 1623 err = btrfs_read_buffer(cur, gen, 1624 parent_level - 1,&first_key); 1625 if (err) { 1626 free_extent_buffer(cur); 1627 return err; 1628 } 1629 } 1630 } 1631 if (search_start == 0) 1632 search_start = last_block; 1633 1634 btrfs_tree_lock(cur); 1635 btrfs_set_lock_blocking_write(cur); 1636 err = __btrfs_cow_block(trans, root, cur, parent, i, 1637 &cur, search_start, 1638 min(16 * blocksize, 1639 (end_slot - i) * blocksize)); 1640 if (err) { 1641 btrfs_tree_unlock(cur); 1642 free_extent_buffer(cur); 1643 break; 1644 } 1645 search_start = cur->start; 1646 last_block = cur->start; 1647 *last_ret = search_start; 1648 btrfs_tree_unlock(cur); 1649 free_extent_buffer(cur); 1650 } 1651 return err; 1652 } 1653 1654 /* 1655 * search for key in the extent_buffer. The items start at offset p, 1656 * and they are item_size apart. There are 'max' items in p. 1657 * 1658 * the slot in the array is returned via slot, and it points to 1659 * the place where you would insert key if it is not found in 1660 * the array. 1661 * 1662 * slot may point to max if the key is bigger than all of the keys 1663 */ 1664 static noinline int generic_bin_search(struct extent_buffer *eb, 1665 unsigned long p, int item_size, 1666 const struct btrfs_key *key, 1667 int max, int *slot) 1668 { 1669 int low = 0; 1670 int high = max; 1671 int mid; 1672 int ret; 1673 struct btrfs_disk_key *tmp = NULL; 1674 struct btrfs_disk_key unaligned; 1675 unsigned long offset; 1676 char *kaddr = NULL; 1677 unsigned long map_start = 0; 1678 unsigned long map_len = 0; 1679 int err; 1680 1681 if (low > high) { 1682 btrfs_err(eb->fs_info, 1683 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1684 __func__, low, high, eb->start, 1685 btrfs_header_owner(eb), btrfs_header_level(eb)); 1686 return -EINVAL; 1687 } 1688 1689 while (low < high) { 1690 mid = (low + high) / 2; 1691 offset = p + mid * item_size; 1692 1693 if (!kaddr || offset < map_start || 1694 (offset + sizeof(struct btrfs_disk_key)) > 1695 map_start + map_len) { 1696 1697 err = map_private_extent_buffer(eb, offset, 1698 sizeof(struct btrfs_disk_key), 1699 &kaddr, &map_start, &map_len); 1700 1701 if (!err) { 1702 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1703 map_start); 1704 } else if (err == 1) { 1705 read_extent_buffer(eb, &unaligned, 1706 offset, sizeof(unaligned)); 1707 tmp = &unaligned; 1708 } else { 1709 return err; 1710 } 1711 1712 } else { 1713 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1714 map_start); 1715 } 1716 ret = comp_keys(tmp, key); 1717 1718 if (ret < 0) 1719 low = mid + 1; 1720 else if (ret > 0) 1721 high = mid; 1722 else { 1723 *slot = mid; 1724 return 0; 1725 } 1726 } 1727 *slot = low; 1728 return 1; 1729 } 1730 1731 /* 1732 * simple bin_search frontend that does the right thing for 1733 * leaves vs nodes 1734 */ 1735 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1736 int level, int *slot) 1737 { 1738 if (level == 0) 1739 return generic_bin_search(eb, 1740 offsetof(struct btrfs_leaf, items), 1741 sizeof(struct btrfs_item), 1742 key, btrfs_header_nritems(eb), 1743 slot); 1744 else 1745 return generic_bin_search(eb, 1746 offsetof(struct btrfs_node, ptrs), 1747 sizeof(struct btrfs_key_ptr), 1748 key, btrfs_header_nritems(eb), 1749 slot); 1750 } 1751 1752 static void root_add_used(struct btrfs_root *root, u32 size) 1753 { 1754 spin_lock(&root->accounting_lock); 1755 btrfs_set_root_used(&root->root_item, 1756 btrfs_root_used(&root->root_item) + size); 1757 spin_unlock(&root->accounting_lock); 1758 } 1759 1760 static void root_sub_used(struct btrfs_root *root, u32 size) 1761 { 1762 spin_lock(&root->accounting_lock); 1763 btrfs_set_root_used(&root->root_item, 1764 btrfs_root_used(&root->root_item) - size); 1765 spin_unlock(&root->accounting_lock); 1766 } 1767 1768 /* given a node and slot number, this reads the blocks it points to. The 1769 * extent buffer is returned with a reference taken (but unlocked). 1770 */ 1771 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 1772 int slot) 1773 { 1774 int level = btrfs_header_level(parent); 1775 struct extent_buffer *eb; 1776 struct btrfs_key first_key; 1777 1778 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1779 return ERR_PTR(-ENOENT); 1780 1781 BUG_ON(level == 0); 1782 1783 btrfs_node_key_to_cpu(parent, &first_key, slot); 1784 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 1785 btrfs_node_ptr_generation(parent, slot), 1786 level - 1, &first_key); 1787 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1788 free_extent_buffer(eb); 1789 eb = ERR_PTR(-EIO); 1790 } 1791 1792 return eb; 1793 } 1794 1795 /* 1796 * node level balancing, used to make sure nodes are in proper order for 1797 * item deletion. We balance from the top down, so we have to make sure 1798 * that a deletion won't leave an node completely empty later on. 1799 */ 1800 static noinline int balance_level(struct btrfs_trans_handle *trans, 1801 struct btrfs_root *root, 1802 struct btrfs_path *path, int level) 1803 { 1804 struct btrfs_fs_info *fs_info = root->fs_info; 1805 struct extent_buffer *right = NULL; 1806 struct extent_buffer *mid; 1807 struct extent_buffer *left = NULL; 1808 struct extent_buffer *parent = NULL; 1809 int ret = 0; 1810 int wret; 1811 int pslot; 1812 int orig_slot = path->slots[level]; 1813 u64 orig_ptr; 1814 1815 ASSERT(level > 0); 1816 1817 mid = path->nodes[level]; 1818 1819 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1820 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1821 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1822 1823 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1824 1825 if (level < BTRFS_MAX_LEVEL - 1) { 1826 parent = path->nodes[level + 1]; 1827 pslot = path->slots[level + 1]; 1828 } 1829 1830 /* 1831 * deal with the case where there is only one pointer in the root 1832 * by promoting the node below to a root 1833 */ 1834 if (!parent) { 1835 struct extent_buffer *child; 1836 1837 if (btrfs_header_nritems(mid) != 1) 1838 return 0; 1839 1840 /* promote the child to a root */ 1841 child = btrfs_read_node_slot(mid, 0); 1842 if (IS_ERR(child)) { 1843 ret = PTR_ERR(child); 1844 btrfs_handle_fs_error(fs_info, ret, NULL); 1845 goto enospc; 1846 } 1847 1848 btrfs_tree_lock(child); 1849 btrfs_set_lock_blocking_write(child); 1850 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1851 if (ret) { 1852 btrfs_tree_unlock(child); 1853 free_extent_buffer(child); 1854 goto enospc; 1855 } 1856 1857 ret = tree_mod_log_insert_root(root->node, child, 1); 1858 BUG_ON(ret < 0); 1859 rcu_assign_pointer(root->node, child); 1860 1861 add_root_to_dirty_list(root); 1862 btrfs_tree_unlock(child); 1863 1864 path->locks[level] = 0; 1865 path->nodes[level] = NULL; 1866 btrfs_clean_tree_block(mid); 1867 btrfs_tree_unlock(mid); 1868 /* once for the path */ 1869 free_extent_buffer(mid); 1870 1871 root_sub_used(root, mid->len); 1872 btrfs_free_tree_block(trans, root, mid, 0, 1); 1873 /* once for the root ptr */ 1874 free_extent_buffer_stale(mid); 1875 return 0; 1876 } 1877 if (btrfs_header_nritems(mid) > 1878 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1879 return 0; 1880 1881 left = btrfs_read_node_slot(parent, pslot - 1); 1882 if (IS_ERR(left)) 1883 left = NULL; 1884 1885 if (left) { 1886 btrfs_tree_lock(left); 1887 btrfs_set_lock_blocking_write(left); 1888 wret = btrfs_cow_block(trans, root, left, 1889 parent, pslot - 1, &left); 1890 if (wret) { 1891 ret = wret; 1892 goto enospc; 1893 } 1894 } 1895 1896 right = btrfs_read_node_slot(parent, pslot + 1); 1897 if (IS_ERR(right)) 1898 right = NULL; 1899 1900 if (right) { 1901 btrfs_tree_lock(right); 1902 btrfs_set_lock_blocking_write(right); 1903 wret = btrfs_cow_block(trans, root, right, 1904 parent, pslot + 1, &right); 1905 if (wret) { 1906 ret = wret; 1907 goto enospc; 1908 } 1909 } 1910 1911 /* first, try to make some room in the middle buffer */ 1912 if (left) { 1913 orig_slot += btrfs_header_nritems(left); 1914 wret = push_node_left(trans, left, mid, 1); 1915 if (wret < 0) 1916 ret = wret; 1917 } 1918 1919 /* 1920 * then try to empty the right most buffer into the middle 1921 */ 1922 if (right) { 1923 wret = push_node_left(trans, mid, right, 1); 1924 if (wret < 0 && wret != -ENOSPC) 1925 ret = wret; 1926 if (btrfs_header_nritems(right) == 0) { 1927 btrfs_clean_tree_block(right); 1928 btrfs_tree_unlock(right); 1929 del_ptr(root, path, level + 1, pslot + 1); 1930 root_sub_used(root, right->len); 1931 btrfs_free_tree_block(trans, root, right, 0, 1); 1932 free_extent_buffer_stale(right); 1933 right = NULL; 1934 } else { 1935 struct btrfs_disk_key right_key; 1936 btrfs_node_key(right, &right_key, 0); 1937 ret = tree_mod_log_insert_key(parent, pslot + 1, 1938 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1939 BUG_ON(ret < 0); 1940 btrfs_set_node_key(parent, &right_key, pslot + 1); 1941 btrfs_mark_buffer_dirty(parent); 1942 } 1943 } 1944 if (btrfs_header_nritems(mid) == 1) { 1945 /* 1946 * we're not allowed to leave a node with one item in the 1947 * tree during a delete. A deletion from lower in the tree 1948 * could try to delete the only pointer in this node. 1949 * So, pull some keys from the left. 1950 * There has to be a left pointer at this point because 1951 * otherwise we would have pulled some pointers from the 1952 * right 1953 */ 1954 if (!left) { 1955 ret = -EROFS; 1956 btrfs_handle_fs_error(fs_info, ret, NULL); 1957 goto enospc; 1958 } 1959 wret = balance_node_right(trans, mid, left); 1960 if (wret < 0) { 1961 ret = wret; 1962 goto enospc; 1963 } 1964 if (wret == 1) { 1965 wret = push_node_left(trans, left, mid, 1); 1966 if (wret < 0) 1967 ret = wret; 1968 } 1969 BUG_ON(wret == 1); 1970 } 1971 if (btrfs_header_nritems(mid) == 0) { 1972 btrfs_clean_tree_block(mid); 1973 btrfs_tree_unlock(mid); 1974 del_ptr(root, path, level + 1, pslot); 1975 root_sub_used(root, mid->len); 1976 btrfs_free_tree_block(trans, root, mid, 0, 1); 1977 free_extent_buffer_stale(mid); 1978 mid = NULL; 1979 } else { 1980 /* update the parent key to reflect our changes */ 1981 struct btrfs_disk_key mid_key; 1982 btrfs_node_key(mid, &mid_key, 0); 1983 ret = tree_mod_log_insert_key(parent, pslot, 1984 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1985 BUG_ON(ret < 0); 1986 btrfs_set_node_key(parent, &mid_key, pslot); 1987 btrfs_mark_buffer_dirty(parent); 1988 } 1989 1990 /* update the path */ 1991 if (left) { 1992 if (btrfs_header_nritems(left) > orig_slot) { 1993 atomic_inc(&left->refs); 1994 /* left was locked after cow */ 1995 path->nodes[level] = left; 1996 path->slots[level + 1] -= 1; 1997 path->slots[level] = orig_slot; 1998 if (mid) { 1999 btrfs_tree_unlock(mid); 2000 free_extent_buffer(mid); 2001 } 2002 } else { 2003 orig_slot -= btrfs_header_nritems(left); 2004 path->slots[level] = orig_slot; 2005 } 2006 } 2007 /* double check we haven't messed things up */ 2008 if (orig_ptr != 2009 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2010 BUG(); 2011 enospc: 2012 if (right) { 2013 btrfs_tree_unlock(right); 2014 free_extent_buffer(right); 2015 } 2016 if (left) { 2017 if (path->nodes[level] != left) 2018 btrfs_tree_unlock(left); 2019 free_extent_buffer(left); 2020 } 2021 return ret; 2022 } 2023 2024 /* Node balancing for insertion. Here we only split or push nodes around 2025 * when they are completely full. This is also done top down, so we 2026 * have to be pessimistic. 2027 */ 2028 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2029 struct btrfs_root *root, 2030 struct btrfs_path *path, int level) 2031 { 2032 struct btrfs_fs_info *fs_info = root->fs_info; 2033 struct extent_buffer *right = NULL; 2034 struct extent_buffer *mid; 2035 struct extent_buffer *left = NULL; 2036 struct extent_buffer *parent = NULL; 2037 int ret = 0; 2038 int wret; 2039 int pslot; 2040 int orig_slot = path->slots[level]; 2041 2042 if (level == 0) 2043 return 1; 2044 2045 mid = path->nodes[level]; 2046 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2047 2048 if (level < BTRFS_MAX_LEVEL - 1) { 2049 parent = path->nodes[level + 1]; 2050 pslot = path->slots[level + 1]; 2051 } 2052 2053 if (!parent) 2054 return 1; 2055 2056 left = btrfs_read_node_slot(parent, pslot - 1); 2057 if (IS_ERR(left)) 2058 left = NULL; 2059 2060 /* first, try to make some room in the middle buffer */ 2061 if (left) { 2062 u32 left_nr; 2063 2064 btrfs_tree_lock(left); 2065 btrfs_set_lock_blocking_write(left); 2066 2067 left_nr = btrfs_header_nritems(left); 2068 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2069 wret = 1; 2070 } else { 2071 ret = btrfs_cow_block(trans, root, left, parent, 2072 pslot - 1, &left); 2073 if (ret) 2074 wret = 1; 2075 else { 2076 wret = push_node_left(trans, left, mid, 0); 2077 } 2078 } 2079 if (wret < 0) 2080 ret = wret; 2081 if (wret == 0) { 2082 struct btrfs_disk_key disk_key; 2083 orig_slot += left_nr; 2084 btrfs_node_key(mid, &disk_key, 0); 2085 ret = tree_mod_log_insert_key(parent, pslot, 2086 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2087 BUG_ON(ret < 0); 2088 btrfs_set_node_key(parent, &disk_key, pslot); 2089 btrfs_mark_buffer_dirty(parent); 2090 if (btrfs_header_nritems(left) > orig_slot) { 2091 path->nodes[level] = left; 2092 path->slots[level + 1] -= 1; 2093 path->slots[level] = orig_slot; 2094 btrfs_tree_unlock(mid); 2095 free_extent_buffer(mid); 2096 } else { 2097 orig_slot -= 2098 btrfs_header_nritems(left); 2099 path->slots[level] = orig_slot; 2100 btrfs_tree_unlock(left); 2101 free_extent_buffer(left); 2102 } 2103 return 0; 2104 } 2105 btrfs_tree_unlock(left); 2106 free_extent_buffer(left); 2107 } 2108 right = btrfs_read_node_slot(parent, pslot + 1); 2109 if (IS_ERR(right)) 2110 right = NULL; 2111 2112 /* 2113 * then try to empty the right most buffer into the middle 2114 */ 2115 if (right) { 2116 u32 right_nr; 2117 2118 btrfs_tree_lock(right); 2119 btrfs_set_lock_blocking_write(right); 2120 2121 right_nr = btrfs_header_nritems(right); 2122 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2123 wret = 1; 2124 } else { 2125 ret = btrfs_cow_block(trans, root, right, 2126 parent, pslot + 1, 2127 &right); 2128 if (ret) 2129 wret = 1; 2130 else { 2131 wret = balance_node_right(trans, right, mid); 2132 } 2133 } 2134 if (wret < 0) 2135 ret = wret; 2136 if (wret == 0) { 2137 struct btrfs_disk_key disk_key; 2138 2139 btrfs_node_key(right, &disk_key, 0); 2140 ret = tree_mod_log_insert_key(parent, pslot + 1, 2141 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2142 BUG_ON(ret < 0); 2143 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2144 btrfs_mark_buffer_dirty(parent); 2145 2146 if (btrfs_header_nritems(mid) <= orig_slot) { 2147 path->nodes[level] = right; 2148 path->slots[level + 1] += 1; 2149 path->slots[level] = orig_slot - 2150 btrfs_header_nritems(mid); 2151 btrfs_tree_unlock(mid); 2152 free_extent_buffer(mid); 2153 } else { 2154 btrfs_tree_unlock(right); 2155 free_extent_buffer(right); 2156 } 2157 return 0; 2158 } 2159 btrfs_tree_unlock(right); 2160 free_extent_buffer(right); 2161 } 2162 return 1; 2163 } 2164 2165 /* 2166 * readahead one full node of leaves, finding things that are close 2167 * to the block in 'slot', and triggering ra on them. 2168 */ 2169 static void reada_for_search(struct btrfs_fs_info *fs_info, 2170 struct btrfs_path *path, 2171 int level, int slot, u64 objectid) 2172 { 2173 struct extent_buffer *node; 2174 struct btrfs_disk_key disk_key; 2175 u32 nritems; 2176 u64 search; 2177 u64 target; 2178 u64 nread = 0; 2179 struct extent_buffer *eb; 2180 u32 nr; 2181 u32 blocksize; 2182 u32 nscan = 0; 2183 2184 if (level != 1) 2185 return; 2186 2187 if (!path->nodes[level]) 2188 return; 2189 2190 node = path->nodes[level]; 2191 2192 search = btrfs_node_blockptr(node, slot); 2193 blocksize = fs_info->nodesize; 2194 eb = find_extent_buffer(fs_info, search); 2195 if (eb) { 2196 free_extent_buffer(eb); 2197 return; 2198 } 2199 2200 target = search; 2201 2202 nritems = btrfs_header_nritems(node); 2203 nr = slot; 2204 2205 while (1) { 2206 if (path->reada == READA_BACK) { 2207 if (nr == 0) 2208 break; 2209 nr--; 2210 } else if (path->reada == READA_FORWARD) { 2211 nr++; 2212 if (nr >= nritems) 2213 break; 2214 } 2215 if (path->reada == READA_BACK && objectid) { 2216 btrfs_node_key(node, &disk_key, nr); 2217 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2218 break; 2219 } 2220 search = btrfs_node_blockptr(node, nr); 2221 if ((search <= target && target - search <= 65536) || 2222 (search > target && search - target <= 65536)) { 2223 readahead_tree_block(fs_info, search); 2224 nread += blocksize; 2225 } 2226 nscan++; 2227 if ((nread > 65536 || nscan > 32)) 2228 break; 2229 } 2230 } 2231 2232 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2233 struct btrfs_path *path, int level) 2234 { 2235 int slot; 2236 int nritems; 2237 struct extent_buffer *parent; 2238 struct extent_buffer *eb; 2239 u64 gen; 2240 u64 block1 = 0; 2241 u64 block2 = 0; 2242 2243 parent = path->nodes[level + 1]; 2244 if (!parent) 2245 return; 2246 2247 nritems = btrfs_header_nritems(parent); 2248 slot = path->slots[level + 1]; 2249 2250 if (slot > 0) { 2251 block1 = btrfs_node_blockptr(parent, slot - 1); 2252 gen = btrfs_node_ptr_generation(parent, slot - 1); 2253 eb = find_extent_buffer(fs_info, block1); 2254 /* 2255 * if we get -eagain from btrfs_buffer_uptodate, we 2256 * don't want to return eagain here. That will loop 2257 * forever 2258 */ 2259 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2260 block1 = 0; 2261 free_extent_buffer(eb); 2262 } 2263 if (slot + 1 < nritems) { 2264 block2 = btrfs_node_blockptr(parent, slot + 1); 2265 gen = btrfs_node_ptr_generation(parent, slot + 1); 2266 eb = find_extent_buffer(fs_info, block2); 2267 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2268 block2 = 0; 2269 free_extent_buffer(eb); 2270 } 2271 2272 if (block1) 2273 readahead_tree_block(fs_info, block1); 2274 if (block2) 2275 readahead_tree_block(fs_info, block2); 2276 } 2277 2278 2279 /* 2280 * when we walk down the tree, it is usually safe to unlock the higher layers 2281 * in the tree. The exceptions are when our path goes through slot 0, because 2282 * operations on the tree might require changing key pointers higher up in the 2283 * tree. 2284 * 2285 * callers might also have set path->keep_locks, which tells this code to keep 2286 * the lock if the path points to the last slot in the block. This is part of 2287 * walking through the tree, and selecting the next slot in the higher block. 2288 * 2289 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2290 * if lowest_unlock is 1, level 0 won't be unlocked 2291 */ 2292 static noinline void unlock_up(struct btrfs_path *path, int level, 2293 int lowest_unlock, int min_write_lock_level, 2294 int *write_lock_level) 2295 { 2296 int i; 2297 int skip_level = level; 2298 int no_skips = 0; 2299 struct extent_buffer *t; 2300 2301 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2302 if (!path->nodes[i]) 2303 break; 2304 if (!path->locks[i]) 2305 break; 2306 if (!no_skips && path->slots[i] == 0) { 2307 skip_level = i + 1; 2308 continue; 2309 } 2310 if (!no_skips && path->keep_locks) { 2311 u32 nritems; 2312 t = path->nodes[i]; 2313 nritems = btrfs_header_nritems(t); 2314 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2315 skip_level = i + 1; 2316 continue; 2317 } 2318 } 2319 if (skip_level < i && i >= lowest_unlock) 2320 no_skips = 1; 2321 2322 t = path->nodes[i]; 2323 if (i >= lowest_unlock && i > skip_level) { 2324 btrfs_tree_unlock_rw(t, path->locks[i]); 2325 path->locks[i] = 0; 2326 if (write_lock_level && 2327 i > min_write_lock_level && 2328 i <= *write_lock_level) { 2329 *write_lock_level = i - 1; 2330 } 2331 } 2332 } 2333 } 2334 2335 /* 2336 * helper function for btrfs_search_slot. The goal is to find a block 2337 * in cache without setting the path to blocking. If we find the block 2338 * we return zero and the path is unchanged. 2339 * 2340 * If we can't find the block, we set the path blocking and do some 2341 * reada. -EAGAIN is returned and the search must be repeated. 2342 */ 2343 static int 2344 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2345 struct extent_buffer **eb_ret, int level, int slot, 2346 const struct btrfs_key *key) 2347 { 2348 struct btrfs_fs_info *fs_info = root->fs_info; 2349 u64 blocknr; 2350 u64 gen; 2351 struct extent_buffer *b = *eb_ret; 2352 struct extent_buffer *tmp; 2353 struct btrfs_key first_key; 2354 int ret; 2355 int parent_level; 2356 2357 blocknr = btrfs_node_blockptr(b, slot); 2358 gen = btrfs_node_ptr_generation(b, slot); 2359 parent_level = btrfs_header_level(b); 2360 btrfs_node_key_to_cpu(b, &first_key, slot); 2361 2362 tmp = find_extent_buffer(fs_info, blocknr); 2363 if (tmp) { 2364 /* first we do an atomic uptodate check */ 2365 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2366 /* 2367 * Do extra check for first_key, eb can be stale due to 2368 * being cached, read from scrub, or have multiple 2369 * parents (shared tree blocks). 2370 */ 2371 if (btrfs_verify_level_key(tmp, 2372 parent_level - 1, &first_key, gen)) { 2373 free_extent_buffer(tmp); 2374 return -EUCLEAN; 2375 } 2376 *eb_ret = tmp; 2377 return 0; 2378 } 2379 2380 /* the pages were up to date, but we failed 2381 * the generation number check. Do a full 2382 * read for the generation number that is correct. 2383 * We must do this without dropping locks so 2384 * we can trust our generation number 2385 */ 2386 btrfs_set_path_blocking(p); 2387 2388 /* now we're allowed to do a blocking uptodate check */ 2389 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2390 if (!ret) { 2391 *eb_ret = tmp; 2392 return 0; 2393 } 2394 free_extent_buffer(tmp); 2395 btrfs_release_path(p); 2396 return -EIO; 2397 } 2398 2399 /* 2400 * reduce lock contention at high levels 2401 * of the btree by dropping locks before 2402 * we read. Don't release the lock on the current 2403 * level because we need to walk this node to figure 2404 * out which blocks to read. 2405 */ 2406 btrfs_unlock_up_safe(p, level + 1); 2407 btrfs_set_path_blocking(p); 2408 2409 if (p->reada != READA_NONE) 2410 reada_for_search(fs_info, p, level, slot, key->objectid); 2411 2412 ret = -EAGAIN; 2413 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1, 2414 &first_key); 2415 if (!IS_ERR(tmp)) { 2416 /* 2417 * If the read above didn't mark this buffer up to date, 2418 * it will never end up being up to date. Set ret to EIO now 2419 * and give up so that our caller doesn't loop forever 2420 * on our EAGAINs. 2421 */ 2422 if (!extent_buffer_uptodate(tmp)) 2423 ret = -EIO; 2424 free_extent_buffer(tmp); 2425 } else { 2426 ret = PTR_ERR(tmp); 2427 } 2428 2429 btrfs_release_path(p); 2430 return ret; 2431 } 2432 2433 /* 2434 * helper function for btrfs_search_slot. This does all of the checks 2435 * for node-level blocks and does any balancing required based on 2436 * the ins_len. 2437 * 2438 * If no extra work was required, zero is returned. If we had to 2439 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2440 * start over 2441 */ 2442 static int 2443 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2444 struct btrfs_root *root, struct btrfs_path *p, 2445 struct extent_buffer *b, int level, int ins_len, 2446 int *write_lock_level) 2447 { 2448 struct btrfs_fs_info *fs_info = root->fs_info; 2449 int ret; 2450 2451 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2452 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2453 int sret; 2454 2455 if (*write_lock_level < level + 1) { 2456 *write_lock_level = level + 1; 2457 btrfs_release_path(p); 2458 goto again; 2459 } 2460 2461 btrfs_set_path_blocking(p); 2462 reada_for_balance(fs_info, p, level); 2463 sret = split_node(trans, root, p, level); 2464 2465 BUG_ON(sret > 0); 2466 if (sret) { 2467 ret = sret; 2468 goto done; 2469 } 2470 b = p->nodes[level]; 2471 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2472 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2473 int sret; 2474 2475 if (*write_lock_level < level + 1) { 2476 *write_lock_level = level + 1; 2477 btrfs_release_path(p); 2478 goto again; 2479 } 2480 2481 btrfs_set_path_blocking(p); 2482 reada_for_balance(fs_info, p, level); 2483 sret = balance_level(trans, root, p, level); 2484 2485 if (sret) { 2486 ret = sret; 2487 goto done; 2488 } 2489 b = p->nodes[level]; 2490 if (!b) { 2491 btrfs_release_path(p); 2492 goto again; 2493 } 2494 BUG_ON(btrfs_header_nritems(b) == 1); 2495 } 2496 return 0; 2497 2498 again: 2499 ret = -EAGAIN; 2500 done: 2501 return ret; 2502 } 2503 2504 static int key_search(struct extent_buffer *b, const struct btrfs_key *key, 2505 int level, int *prev_cmp, int *slot) 2506 { 2507 if (*prev_cmp != 0) { 2508 *prev_cmp = btrfs_bin_search(b, key, level, slot); 2509 return *prev_cmp; 2510 } 2511 2512 *slot = 0; 2513 2514 return 0; 2515 } 2516 2517 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2518 u64 iobjectid, u64 ioff, u8 key_type, 2519 struct btrfs_key *found_key) 2520 { 2521 int ret; 2522 struct btrfs_key key; 2523 struct extent_buffer *eb; 2524 2525 ASSERT(path); 2526 ASSERT(found_key); 2527 2528 key.type = key_type; 2529 key.objectid = iobjectid; 2530 key.offset = ioff; 2531 2532 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2533 if (ret < 0) 2534 return ret; 2535 2536 eb = path->nodes[0]; 2537 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2538 ret = btrfs_next_leaf(fs_root, path); 2539 if (ret) 2540 return ret; 2541 eb = path->nodes[0]; 2542 } 2543 2544 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2545 if (found_key->type != key.type || 2546 found_key->objectid != key.objectid) 2547 return 1; 2548 2549 return 0; 2550 } 2551 2552 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2553 struct btrfs_path *p, 2554 int write_lock_level) 2555 { 2556 struct btrfs_fs_info *fs_info = root->fs_info; 2557 struct extent_buffer *b; 2558 int root_lock; 2559 int level = 0; 2560 2561 /* We try very hard to do read locks on the root */ 2562 root_lock = BTRFS_READ_LOCK; 2563 2564 if (p->search_commit_root) { 2565 /* 2566 * The commit roots are read only so we always do read locks, 2567 * and we always must hold the commit_root_sem when doing 2568 * searches on them, the only exception is send where we don't 2569 * want to block transaction commits for a long time, so 2570 * we need to clone the commit root in order to avoid races 2571 * with transaction commits that create a snapshot of one of 2572 * the roots used by a send operation. 2573 */ 2574 if (p->need_commit_sem) { 2575 down_read(&fs_info->commit_root_sem); 2576 b = btrfs_clone_extent_buffer(root->commit_root); 2577 up_read(&fs_info->commit_root_sem); 2578 if (!b) 2579 return ERR_PTR(-ENOMEM); 2580 2581 } else { 2582 b = root->commit_root; 2583 atomic_inc(&b->refs); 2584 } 2585 level = btrfs_header_level(b); 2586 /* 2587 * Ensure that all callers have set skip_locking when 2588 * p->search_commit_root = 1. 2589 */ 2590 ASSERT(p->skip_locking == 1); 2591 2592 goto out; 2593 } 2594 2595 if (p->skip_locking) { 2596 b = btrfs_root_node(root); 2597 level = btrfs_header_level(b); 2598 goto out; 2599 } 2600 2601 /* 2602 * If the level is set to maximum, we can skip trying to get the read 2603 * lock. 2604 */ 2605 if (write_lock_level < BTRFS_MAX_LEVEL) { 2606 /* 2607 * We don't know the level of the root node until we actually 2608 * have it read locked 2609 */ 2610 b = btrfs_read_lock_root_node(root); 2611 level = btrfs_header_level(b); 2612 if (level > write_lock_level) 2613 goto out; 2614 2615 /* Whoops, must trade for write lock */ 2616 btrfs_tree_read_unlock(b); 2617 free_extent_buffer(b); 2618 } 2619 2620 b = btrfs_lock_root_node(root); 2621 root_lock = BTRFS_WRITE_LOCK; 2622 2623 /* The level might have changed, check again */ 2624 level = btrfs_header_level(b); 2625 2626 out: 2627 p->nodes[level] = b; 2628 if (!p->skip_locking) 2629 p->locks[level] = root_lock; 2630 /* 2631 * Callers are responsible for dropping b's references. 2632 */ 2633 return b; 2634 } 2635 2636 2637 /* 2638 * btrfs_search_slot - look for a key in a tree and perform necessary 2639 * modifications to preserve tree invariants. 2640 * 2641 * @trans: Handle of transaction, used when modifying the tree 2642 * @p: Holds all btree nodes along the search path 2643 * @root: The root node of the tree 2644 * @key: The key we are looking for 2645 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2646 * deletions it's -1. 0 for plain searches 2647 * @cow: boolean should CoW operations be performed. Must always be 1 2648 * when modifying the tree. 2649 * 2650 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2651 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2652 * 2653 * If @key is found, 0 is returned and you can find the item in the leaf level 2654 * of the path (level 0) 2655 * 2656 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2657 * points to the slot where it should be inserted 2658 * 2659 * If an error is encountered while searching the tree a negative error number 2660 * is returned 2661 */ 2662 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2663 const struct btrfs_key *key, struct btrfs_path *p, 2664 int ins_len, int cow) 2665 { 2666 struct extent_buffer *b; 2667 int slot; 2668 int ret; 2669 int err; 2670 int level; 2671 int lowest_unlock = 1; 2672 /* everything at write_lock_level or lower must be write locked */ 2673 int write_lock_level = 0; 2674 u8 lowest_level = 0; 2675 int min_write_lock_level; 2676 int prev_cmp; 2677 2678 lowest_level = p->lowest_level; 2679 WARN_ON(lowest_level && ins_len > 0); 2680 WARN_ON(p->nodes[0] != NULL); 2681 BUG_ON(!cow && ins_len); 2682 2683 if (ins_len < 0) { 2684 lowest_unlock = 2; 2685 2686 /* when we are removing items, we might have to go up to level 2687 * two as we update tree pointers Make sure we keep write 2688 * for those levels as well 2689 */ 2690 write_lock_level = 2; 2691 } else if (ins_len > 0) { 2692 /* 2693 * for inserting items, make sure we have a write lock on 2694 * level 1 so we can update keys 2695 */ 2696 write_lock_level = 1; 2697 } 2698 2699 if (!cow) 2700 write_lock_level = -1; 2701 2702 if (cow && (p->keep_locks || p->lowest_level)) 2703 write_lock_level = BTRFS_MAX_LEVEL; 2704 2705 min_write_lock_level = write_lock_level; 2706 2707 again: 2708 prev_cmp = -1; 2709 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2710 if (IS_ERR(b)) { 2711 ret = PTR_ERR(b); 2712 goto done; 2713 } 2714 2715 while (b) { 2716 int dec = 0; 2717 2718 level = btrfs_header_level(b); 2719 2720 if (cow) { 2721 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2722 2723 /* 2724 * if we don't really need to cow this block 2725 * then we don't want to set the path blocking, 2726 * so we test it here 2727 */ 2728 if (!should_cow_block(trans, root, b)) { 2729 trans->dirty = true; 2730 goto cow_done; 2731 } 2732 2733 /* 2734 * must have write locks on this node and the 2735 * parent 2736 */ 2737 if (level > write_lock_level || 2738 (level + 1 > write_lock_level && 2739 level + 1 < BTRFS_MAX_LEVEL && 2740 p->nodes[level + 1])) { 2741 write_lock_level = level + 1; 2742 btrfs_release_path(p); 2743 goto again; 2744 } 2745 2746 btrfs_set_path_blocking(p); 2747 if (last_level) 2748 err = btrfs_cow_block(trans, root, b, NULL, 0, 2749 &b); 2750 else 2751 err = btrfs_cow_block(trans, root, b, 2752 p->nodes[level + 1], 2753 p->slots[level + 1], &b); 2754 if (err) { 2755 ret = err; 2756 goto done; 2757 } 2758 } 2759 cow_done: 2760 p->nodes[level] = b; 2761 /* 2762 * Leave path with blocking locks to avoid massive 2763 * lock context switch, this is made on purpose. 2764 */ 2765 2766 /* 2767 * we have a lock on b and as long as we aren't changing 2768 * the tree, there is no way to for the items in b to change. 2769 * It is safe to drop the lock on our parent before we 2770 * go through the expensive btree search on b. 2771 * 2772 * If we're inserting or deleting (ins_len != 0), then we might 2773 * be changing slot zero, which may require changing the parent. 2774 * So, we can't drop the lock until after we know which slot 2775 * we're operating on. 2776 */ 2777 if (!ins_len && !p->keep_locks) { 2778 int u = level + 1; 2779 2780 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2781 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2782 p->locks[u] = 0; 2783 } 2784 } 2785 2786 ret = key_search(b, key, level, &prev_cmp, &slot); 2787 if (ret < 0) 2788 goto done; 2789 2790 if (level == 0) { 2791 p->slots[level] = slot; 2792 if (ins_len > 0 && 2793 btrfs_leaf_free_space(b) < ins_len) { 2794 if (write_lock_level < 1) { 2795 write_lock_level = 1; 2796 btrfs_release_path(p); 2797 goto again; 2798 } 2799 2800 btrfs_set_path_blocking(p); 2801 err = split_leaf(trans, root, key, 2802 p, ins_len, ret == 0); 2803 2804 BUG_ON(err > 0); 2805 if (err) { 2806 ret = err; 2807 goto done; 2808 } 2809 } 2810 if (!p->search_for_split) 2811 unlock_up(p, level, lowest_unlock, 2812 min_write_lock_level, NULL); 2813 goto done; 2814 } 2815 if (ret && slot > 0) { 2816 dec = 1; 2817 slot--; 2818 } 2819 p->slots[level] = slot; 2820 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2821 &write_lock_level); 2822 if (err == -EAGAIN) 2823 goto again; 2824 if (err) { 2825 ret = err; 2826 goto done; 2827 } 2828 b = p->nodes[level]; 2829 slot = p->slots[level]; 2830 2831 /* 2832 * Slot 0 is special, if we change the key we have to update 2833 * the parent pointer which means we must have a write lock on 2834 * the parent 2835 */ 2836 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2837 write_lock_level = level + 1; 2838 btrfs_release_path(p); 2839 goto again; 2840 } 2841 2842 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2843 &write_lock_level); 2844 2845 if (level == lowest_level) { 2846 if (dec) 2847 p->slots[level]++; 2848 goto done; 2849 } 2850 2851 err = read_block_for_search(root, p, &b, level, slot, key); 2852 if (err == -EAGAIN) 2853 goto again; 2854 if (err) { 2855 ret = err; 2856 goto done; 2857 } 2858 2859 if (!p->skip_locking) { 2860 level = btrfs_header_level(b); 2861 if (level <= write_lock_level) { 2862 if (!btrfs_try_tree_write_lock(b)) { 2863 btrfs_set_path_blocking(p); 2864 btrfs_tree_lock(b); 2865 } 2866 p->locks[level] = BTRFS_WRITE_LOCK; 2867 } else { 2868 if (!btrfs_tree_read_lock_atomic(b)) { 2869 btrfs_set_path_blocking(p); 2870 btrfs_tree_read_lock(b); 2871 } 2872 p->locks[level] = BTRFS_READ_LOCK; 2873 } 2874 p->nodes[level] = b; 2875 } 2876 } 2877 ret = 1; 2878 done: 2879 /* 2880 * we don't really know what they plan on doing with the path 2881 * from here on, so for now just mark it as blocking 2882 */ 2883 if (!p->leave_spinning) 2884 btrfs_set_path_blocking(p); 2885 if (ret < 0 && !p->skip_release_on_error) 2886 btrfs_release_path(p); 2887 return ret; 2888 } 2889 2890 /* 2891 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2892 * current state of the tree together with the operations recorded in the tree 2893 * modification log to search for the key in a previous version of this tree, as 2894 * denoted by the time_seq parameter. 2895 * 2896 * Naturally, there is no support for insert, delete or cow operations. 2897 * 2898 * The resulting path and return value will be set up as if we called 2899 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2900 */ 2901 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2902 struct btrfs_path *p, u64 time_seq) 2903 { 2904 struct btrfs_fs_info *fs_info = root->fs_info; 2905 struct extent_buffer *b; 2906 int slot; 2907 int ret; 2908 int err; 2909 int level; 2910 int lowest_unlock = 1; 2911 u8 lowest_level = 0; 2912 int prev_cmp = -1; 2913 2914 lowest_level = p->lowest_level; 2915 WARN_ON(p->nodes[0] != NULL); 2916 2917 if (p->search_commit_root) { 2918 BUG_ON(time_seq); 2919 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2920 } 2921 2922 again: 2923 b = get_old_root(root, time_seq); 2924 if (!b) { 2925 ret = -EIO; 2926 goto done; 2927 } 2928 level = btrfs_header_level(b); 2929 p->locks[level] = BTRFS_READ_LOCK; 2930 2931 while (b) { 2932 int dec = 0; 2933 2934 level = btrfs_header_level(b); 2935 p->nodes[level] = b; 2936 2937 /* 2938 * we have a lock on b and as long as we aren't changing 2939 * the tree, there is no way to for the items in b to change. 2940 * It is safe to drop the lock on our parent before we 2941 * go through the expensive btree search on b. 2942 */ 2943 btrfs_unlock_up_safe(p, level + 1); 2944 2945 /* 2946 * Since we can unwind ebs we want to do a real search every 2947 * time. 2948 */ 2949 prev_cmp = -1; 2950 ret = key_search(b, key, level, &prev_cmp, &slot); 2951 if (ret < 0) 2952 goto done; 2953 2954 if (level == 0) { 2955 p->slots[level] = slot; 2956 unlock_up(p, level, lowest_unlock, 0, NULL); 2957 goto done; 2958 } 2959 2960 if (ret && slot > 0) { 2961 dec = 1; 2962 slot--; 2963 } 2964 p->slots[level] = slot; 2965 unlock_up(p, level, lowest_unlock, 0, NULL); 2966 2967 if (level == lowest_level) { 2968 if (dec) 2969 p->slots[level]++; 2970 goto done; 2971 } 2972 2973 err = read_block_for_search(root, p, &b, level, slot, key); 2974 if (err == -EAGAIN) 2975 goto again; 2976 if (err) { 2977 ret = err; 2978 goto done; 2979 } 2980 2981 level = btrfs_header_level(b); 2982 if (!btrfs_tree_read_lock_atomic(b)) { 2983 btrfs_set_path_blocking(p); 2984 btrfs_tree_read_lock(b); 2985 } 2986 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 2987 if (!b) { 2988 ret = -ENOMEM; 2989 goto done; 2990 } 2991 p->locks[level] = BTRFS_READ_LOCK; 2992 p->nodes[level] = b; 2993 } 2994 ret = 1; 2995 done: 2996 if (!p->leave_spinning) 2997 btrfs_set_path_blocking(p); 2998 if (ret < 0) 2999 btrfs_release_path(p); 3000 3001 return ret; 3002 } 3003 3004 /* 3005 * helper to use instead of search slot if no exact match is needed but 3006 * instead the next or previous item should be returned. 3007 * When find_higher is true, the next higher item is returned, the next lower 3008 * otherwise. 3009 * When return_any and find_higher are both true, and no higher item is found, 3010 * return the next lower instead. 3011 * When return_any is true and find_higher is false, and no lower item is found, 3012 * return the next higher instead. 3013 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3014 * < 0 on error 3015 */ 3016 int btrfs_search_slot_for_read(struct btrfs_root *root, 3017 const struct btrfs_key *key, 3018 struct btrfs_path *p, int find_higher, 3019 int return_any) 3020 { 3021 int ret; 3022 struct extent_buffer *leaf; 3023 3024 again: 3025 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3026 if (ret <= 0) 3027 return ret; 3028 /* 3029 * a return value of 1 means the path is at the position where the 3030 * item should be inserted. Normally this is the next bigger item, 3031 * but in case the previous item is the last in a leaf, path points 3032 * to the first free slot in the previous leaf, i.e. at an invalid 3033 * item. 3034 */ 3035 leaf = p->nodes[0]; 3036 3037 if (find_higher) { 3038 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3039 ret = btrfs_next_leaf(root, p); 3040 if (ret <= 0) 3041 return ret; 3042 if (!return_any) 3043 return 1; 3044 /* 3045 * no higher item found, return the next 3046 * lower instead 3047 */ 3048 return_any = 0; 3049 find_higher = 0; 3050 btrfs_release_path(p); 3051 goto again; 3052 } 3053 } else { 3054 if (p->slots[0] == 0) { 3055 ret = btrfs_prev_leaf(root, p); 3056 if (ret < 0) 3057 return ret; 3058 if (!ret) { 3059 leaf = p->nodes[0]; 3060 if (p->slots[0] == btrfs_header_nritems(leaf)) 3061 p->slots[0]--; 3062 return 0; 3063 } 3064 if (!return_any) 3065 return 1; 3066 /* 3067 * no lower item found, return the next 3068 * higher instead 3069 */ 3070 return_any = 0; 3071 find_higher = 1; 3072 btrfs_release_path(p); 3073 goto again; 3074 } else { 3075 --p->slots[0]; 3076 } 3077 } 3078 return 0; 3079 } 3080 3081 /* 3082 * adjust the pointers going up the tree, starting at level 3083 * making sure the right key of each node is points to 'key'. 3084 * This is used after shifting pointers to the left, so it stops 3085 * fixing up pointers when a given leaf/node is not in slot 0 of the 3086 * higher levels 3087 * 3088 */ 3089 static void fixup_low_keys(struct btrfs_path *path, 3090 struct btrfs_disk_key *key, int level) 3091 { 3092 int i; 3093 struct extent_buffer *t; 3094 int ret; 3095 3096 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3097 int tslot = path->slots[i]; 3098 3099 if (!path->nodes[i]) 3100 break; 3101 t = path->nodes[i]; 3102 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3103 GFP_ATOMIC); 3104 BUG_ON(ret < 0); 3105 btrfs_set_node_key(t, key, tslot); 3106 btrfs_mark_buffer_dirty(path->nodes[i]); 3107 if (tslot != 0) 3108 break; 3109 } 3110 } 3111 3112 /* 3113 * update item key. 3114 * 3115 * This function isn't completely safe. It's the caller's responsibility 3116 * that the new key won't break the order 3117 */ 3118 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3119 struct btrfs_path *path, 3120 const struct btrfs_key *new_key) 3121 { 3122 struct btrfs_disk_key disk_key; 3123 struct extent_buffer *eb; 3124 int slot; 3125 3126 eb = path->nodes[0]; 3127 slot = path->slots[0]; 3128 if (slot > 0) { 3129 btrfs_item_key(eb, &disk_key, slot - 1); 3130 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 3131 btrfs_crit(fs_info, 3132 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3133 slot, btrfs_disk_key_objectid(&disk_key), 3134 btrfs_disk_key_type(&disk_key), 3135 btrfs_disk_key_offset(&disk_key), 3136 new_key->objectid, new_key->type, 3137 new_key->offset); 3138 btrfs_print_leaf(eb); 3139 BUG(); 3140 } 3141 } 3142 if (slot < btrfs_header_nritems(eb) - 1) { 3143 btrfs_item_key(eb, &disk_key, slot + 1); 3144 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 3145 btrfs_crit(fs_info, 3146 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3147 slot, btrfs_disk_key_objectid(&disk_key), 3148 btrfs_disk_key_type(&disk_key), 3149 btrfs_disk_key_offset(&disk_key), 3150 new_key->objectid, new_key->type, 3151 new_key->offset); 3152 btrfs_print_leaf(eb); 3153 BUG(); 3154 } 3155 } 3156 3157 btrfs_cpu_key_to_disk(&disk_key, new_key); 3158 btrfs_set_item_key(eb, &disk_key, slot); 3159 btrfs_mark_buffer_dirty(eb); 3160 if (slot == 0) 3161 fixup_low_keys(path, &disk_key, 1); 3162 } 3163 3164 /* 3165 * try to push data from one node into the next node left in the 3166 * tree. 3167 * 3168 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3169 * error, and > 0 if there was no room in the left hand block. 3170 */ 3171 static int push_node_left(struct btrfs_trans_handle *trans, 3172 struct extent_buffer *dst, 3173 struct extent_buffer *src, int empty) 3174 { 3175 struct btrfs_fs_info *fs_info = trans->fs_info; 3176 int push_items = 0; 3177 int src_nritems; 3178 int dst_nritems; 3179 int ret = 0; 3180 3181 src_nritems = btrfs_header_nritems(src); 3182 dst_nritems = btrfs_header_nritems(dst); 3183 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3184 WARN_ON(btrfs_header_generation(src) != trans->transid); 3185 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3186 3187 if (!empty && src_nritems <= 8) 3188 return 1; 3189 3190 if (push_items <= 0) 3191 return 1; 3192 3193 if (empty) { 3194 push_items = min(src_nritems, push_items); 3195 if (push_items < src_nritems) { 3196 /* leave at least 8 pointers in the node if 3197 * we aren't going to empty it 3198 */ 3199 if (src_nritems - push_items < 8) { 3200 if (push_items <= 8) 3201 return 1; 3202 push_items -= 8; 3203 } 3204 } 3205 } else 3206 push_items = min(src_nritems - 8, push_items); 3207 3208 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 3209 if (ret) { 3210 btrfs_abort_transaction(trans, ret); 3211 return ret; 3212 } 3213 copy_extent_buffer(dst, src, 3214 btrfs_node_key_ptr_offset(dst_nritems), 3215 btrfs_node_key_ptr_offset(0), 3216 push_items * sizeof(struct btrfs_key_ptr)); 3217 3218 if (push_items < src_nritems) { 3219 /* 3220 * Don't call tree_mod_log_insert_move here, key removal was 3221 * already fully logged by tree_mod_log_eb_copy above. 3222 */ 3223 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3224 btrfs_node_key_ptr_offset(push_items), 3225 (src_nritems - push_items) * 3226 sizeof(struct btrfs_key_ptr)); 3227 } 3228 btrfs_set_header_nritems(src, src_nritems - push_items); 3229 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3230 btrfs_mark_buffer_dirty(src); 3231 btrfs_mark_buffer_dirty(dst); 3232 3233 return ret; 3234 } 3235 3236 /* 3237 * try to push data from one node into the next node right in the 3238 * tree. 3239 * 3240 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3241 * error, and > 0 if there was no room in the right hand block. 3242 * 3243 * this will only push up to 1/2 the contents of the left node over 3244 */ 3245 static int balance_node_right(struct btrfs_trans_handle *trans, 3246 struct extent_buffer *dst, 3247 struct extent_buffer *src) 3248 { 3249 struct btrfs_fs_info *fs_info = trans->fs_info; 3250 int push_items = 0; 3251 int max_push; 3252 int src_nritems; 3253 int dst_nritems; 3254 int ret = 0; 3255 3256 WARN_ON(btrfs_header_generation(src) != trans->transid); 3257 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3258 3259 src_nritems = btrfs_header_nritems(src); 3260 dst_nritems = btrfs_header_nritems(dst); 3261 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3262 if (push_items <= 0) 3263 return 1; 3264 3265 if (src_nritems < 4) 3266 return 1; 3267 3268 max_push = src_nritems / 2 + 1; 3269 /* don't try to empty the node */ 3270 if (max_push >= src_nritems) 3271 return 1; 3272 3273 if (max_push < push_items) 3274 push_items = max_push; 3275 3276 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3277 BUG_ON(ret < 0); 3278 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3279 btrfs_node_key_ptr_offset(0), 3280 (dst_nritems) * 3281 sizeof(struct btrfs_key_ptr)); 3282 3283 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 3284 push_items); 3285 if (ret) { 3286 btrfs_abort_transaction(trans, ret); 3287 return ret; 3288 } 3289 copy_extent_buffer(dst, src, 3290 btrfs_node_key_ptr_offset(0), 3291 btrfs_node_key_ptr_offset(src_nritems - push_items), 3292 push_items * sizeof(struct btrfs_key_ptr)); 3293 3294 btrfs_set_header_nritems(src, src_nritems - push_items); 3295 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3296 3297 btrfs_mark_buffer_dirty(src); 3298 btrfs_mark_buffer_dirty(dst); 3299 3300 return ret; 3301 } 3302 3303 /* 3304 * helper function to insert a new root level in the tree. 3305 * A new node is allocated, and a single item is inserted to 3306 * point to the existing root 3307 * 3308 * returns zero on success or < 0 on failure. 3309 */ 3310 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3311 struct btrfs_root *root, 3312 struct btrfs_path *path, int level) 3313 { 3314 struct btrfs_fs_info *fs_info = root->fs_info; 3315 u64 lower_gen; 3316 struct extent_buffer *lower; 3317 struct extent_buffer *c; 3318 struct extent_buffer *old; 3319 struct btrfs_disk_key lower_key; 3320 int ret; 3321 3322 BUG_ON(path->nodes[level]); 3323 BUG_ON(path->nodes[level-1] != root->node); 3324 3325 lower = path->nodes[level-1]; 3326 if (level == 1) 3327 btrfs_item_key(lower, &lower_key, 0); 3328 else 3329 btrfs_node_key(lower, &lower_key, 0); 3330 3331 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level, 3332 root->node->start, 0); 3333 if (IS_ERR(c)) 3334 return PTR_ERR(c); 3335 3336 root_add_used(root, fs_info->nodesize); 3337 3338 btrfs_set_header_nritems(c, 1); 3339 btrfs_set_node_key(c, &lower_key, 0); 3340 btrfs_set_node_blockptr(c, 0, lower->start); 3341 lower_gen = btrfs_header_generation(lower); 3342 WARN_ON(lower_gen != trans->transid); 3343 3344 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3345 3346 btrfs_mark_buffer_dirty(c); 3347 3348 old = root->node; 3349 ret = tree_mod_log_insert_root(root->node, c, 0); 3350 BUG_ON(ret < 0); 3351 rcu_assign_pointer(root->node, c); 3352 3353 /* the super has an extra ref to root->node */ 3354 free_extent_buffer(old); 3355 3356 add_root_to_dirty_list(root); 3357 atomic_inc(&c->refs); 3358 path->nodes[level] = c; 3359 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3360 path->slots[level] = 0; 3361 return 0; 3362 } 3363 3364 /* 3365 * worker function to insert a single pointer in a node. 3366 * the node should have enough room for the pointer already 3367 * 3368 * slot and level indicate where you want the key to go, and 3369 * blocknr is the block the key points to. 3370 */ 3371 static void insert_ptr(struct btrfs_trans_handle *trans, 3372 struct btrfs_path *path, 3373 struct btrfs_disk_key *key, u64 bytenr, 3374 int slot, int level) 3375 { 3376 struct extent_buffer *lower; 3377 int nritems; 3378 int ret; 3379 3380 BUG_ON(!path->nodes[level]); 3381 btrfs_assert_tree_locked(path->nodes[level]); 3382 lower = path->nodes[level]; 3383 nritems = btrfs_header_nritems(lower); 3384 BUG_ON(slot > nritems); 3385 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 3386 if (slot != nritems) { 3387 if (level) { 3388 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3389 nritems - slot); 3390 BUG_ON(ret < 0); 3391 } 3392 memmove_extent_buffer(lower, 3393 btrfs_node_key_ptr_offset(slot + 1), 3394 btrfs_node_key_ptr_offset(slot), 3395 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3396 } 3397 if (level) { 3398 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3399 GFP_NOFS); 3400 BUG_ON(ret < 0); 3401 } 3402 btrfs_set_node_key(lower, key, slot); 3403 btrfs_set_node_blockptr(lower, slot, bytenr); 3404 WARN_ON(trans->transid == 0); 3405 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3406 btrfs_set_header_nritems(lower, nritems + 1); 3407 btrfs_mark_buffer_dirty(lower); 3408 } 3409 3410 /* 3411 * split the node at the specified level in path in two. 3412 * The path is corrected to point to the appropriate node after the split 3413 * 3414 * Before splitting this tries to make some room in the node by pushing 3415 * left and right, if either one works, it returns right away. 3416 * 3417 * returns 0 on success and < 0 on failure 3418 */ 3419 static noinline int split_node(struct btrfs_trans_handle *trans, 3420 struct btrfs_root *root, 3421 struct btrfs_path *path, int level) 3422 { 3423 struct btrfs_fs_info *fs_info = root->fs_info; 3424 struct extent_buffer *c; 3425 struct extent_buffer *split; 3426 struct btrfs_disk_key disk_key; 3427 int mid; 3428 int ret; 3429 u32 c_nritems; 3430 3431 c = path->nodes[level]; 3432 WARN_ON(btrfs_header_generation(c) != trans->transid); 3433 if (c == root->node) { 3434 /* 3435 * trying to split the root, lets make a new one 3436 * 3437 * tree mod log: We don't log_removal old root in 3438 * insert_new_root, because that root buffer will be kept as a 3439 * normal node. We are going to log removal of half of the 3440 * elements below with tree_mod_log_eb_copy. We're holding a 3441 * tree lock on the buffer, which is why we cannot race with 3442 * other tree_mod_log users. 3443 */ 3444 ret = insert_new_root(trans, root, path, level + 1); 3445 if (ret) 3446 return ret; 3447 } else { 3448 ret = push_nodes_for_insert(trans, root, path, level); 3449 c = path->nodes[level]; 3450 if (!ret && btrfs_header_nritems(c) < 3451 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3452 return 0; 3453 if (ret < 0) 3454 return ret; 3455 } 3456 3457 c_nritems = btrfs_header_nritems(c); 3458 mid = (c_nritems + 1) / 2; 3459 btrfs_node_key(c, &disk_key, mid); 3460 3461 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level, 3462 c->start, 0); 3463 if (IS_ERR(split)) 3464 return PTR_ERR(split); 3465 3466 root_add_used(root, fs_info->nodesize); 3467 ASSERT(btrfs_header_level(c) == level); 3468 3469 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 3470 if (ret) { 3471 btrfs_abort_transaction(trans, ret); 3472 return ret; 3473 } 3474 copy_extent_buffer(split, c, 3475 btrfs_node_key_ptr_offset(0), 3476 btrfs_node_key_ptr_offset(mid), 3477 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3478 btrfs_set_header_nritems(split, c_nritems - mid); 3479 btrfs_set_header_nritems(c, mid); 3480 ret = 0; 3481 3482 btrfs_mark_buffer_dirty(c); 3483 btrfs_mark_buffer_dirty(split); 3484 3485 insert_ptr(trans, path, &disk_key, split->start, 3486 path->slots[level + 1] + 1, level + 1); 3487 3488 if (path->slots[level] >= mid) { 3489 path->slots[level] -= mid; 3490 btrfs_tree_unlock(c); 3491 free_extent_buffer(c); 3492 path->nodes[level] = split; 3493 path->slots[level + 1] += 1; 3494 } else { 3495 btrfs_tree_unlock(split); 3496 free_extent_buffer(split); 3497 } 3498 return ret; 3499 } 3500 3501 /* 3502 * how many bytes are required to store the items in a leaf. start 3503 * and nr indicate which items in the leaf to check. This totals up the 3504 * space used both by the item structs and the item data 3505 */ 3506 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3507 { 3508 struct btrfs_item *start_item; 3509 struct btrfs_item *end_item; 3510 struct btrfs_map_token token; 3511 int data_len; 3512 int nritems = btrfs_header_nritems(l); 3513 int end = min(nritems, start + nr) - 1; 3514 3515 if (!nr) 3516 return 0; 3517 btrfs_init_map_token(&token, l); 3518 start_item = btrfs_item_nr(start); 3519 end_item = btrfs_item_nr(end); 3520 data_len = btrfs_token_item_offset(l, start_item, &token) + 3521 btrfs_token_item_size(l, start_item, &token); 3522 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3523 data_len += sizeof(struct btrfs_item) * nr; 3524 WARN_ON(data_len < 0); 3525 return data_len; 3526 } 3527 3528 /* 3529 * The space between the end of the leaf items and 3530 * the start of the leaf data. IOW, how much room 3531 * the leaf has left for both items and data 3532 */ 3533 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 3534 { 3535 struct btrfs_fs_info *fs_info = leaf->fs_info; 3536 int nritems = btrfs_header_nritems(leaf); 3537 int ret; 3538 3539 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3540 if (ret < 0) { 3541 btrfs_crit(fs_info, 3542 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3543 ret, 3544 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3545 leaf_space_used(leaf, 0, nritems), nritems); 3546 } 3547 return ret; 3548 } 3549 3550 /* 3551 * min slot controls the lowest index we're willing to push to the 3552 * right. We'll push up to and including min_slot, but no lower 3553 */ 3554 static noinline int __push_leaf_right(struct btrfs_path *path, 3555 int data_size, int empty, 3556 struct extent_buffer *right, 3557 int free_space, u32 left_nritems, 3558 u32 min_slot) 3559 { 3560 struct btrfs_fs_info *fs_info = right->fs_info; 3561 struct extent_buffer *left = path->nodes[0]; 3562 struct extent_buffer *upper = path->nodes[1]; 3563 struct btrfs_map_token token; 3564 struct btrfs_disk_key disk_key; 3565 int slot; 3566 u32 i; 3567 int push_space = 0; 3568 int push_items = 0; 3569 struct btrfs_item *item; 3570 u32 nr; 3571 u32 right_nritems; 3572 u32 data_end; 3573 u32 this_item_size; 3574 3575 if (empty) 3576 nr = 0; 3577 else 3578 nr = max_t(u32, 1, min_slot); 3579 3580 if (path->slots[0] >= left_nritems) 3581 push_space += data_size; 3582 3583 slot = path->slots[1]; 3584 i = left_nritems - 1; 3585 while (i >= nr) { 3586 item = btrfs_item_nr(i); 3587 3588 if (!empty && push_items > 0) { 3589 if (path->slots[0] > i) 3590 break; 3591 if (path->slots[0] == i) { 3592 int space = btrfs_leaf_free_space(left); 3593 3594 if (space + push_space * 2 > free_space) 3595 break; 3596 } 3597 } 3598 3599 if (path->slots[0] == i) 3600 push_space += data_size; 3601 3602 this_item_size = btrfs_item_size(left, item); 3603 if (this_item_size + sizeof(*item) + push_space > free_space) 3604 break; 3605 3606 push_items++; 3607 push_space += this_item_size + sizeof(*item); 3608 if (i == 0) 3609 break; 3610 i--; 3611 } 3612 3613 if (push_items == 0) 3614 goto out_unlock; 3615 3616 WARN_ON(!empty && push_items == left_nritems); 3617 3618 /* push left to right */ 3619 right_nritems = btrfs_header_nritems(right); 3620 3621 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3622 push_space -= leaf_data_end(left); 3623 3624 /* make room in the right data area */ 3625 data_end = leaf_data_end(right); 3626 memmove_extent_buffer(right, 3627 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3628 BTRFS_LEAF_DATA_OFFSET + data_end, 3629 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3630 3631 /* copy from the left data area */ 3632 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3633 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3634 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 3635 push_space); 3636 3637 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3638 btrfs_item_nr_offset(0), 3639 right_nritems * sizeof(struct btrfs_item)); 3640 3641 /* copy the items from left to right */ 3642 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3643 btrfs_item_nr_offset(left_nritems - push_items), 3644 push_items * sizeof(struct btrfs_item)); 3645 3646 /* update the item pointers */ 3647 btrfs_init_map_token(&token, right); 3648 right_nritems += push_items; 3649 btrfs_set_header_nritems(right, right_nritems); 3650 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3651 for (i = 0; i < right_nritems; i++) { 3652 item = btrfs_item_nr(i); 3653 push_space -= btrfs_token_item_size(right, item, &token); 3654 btrfs_set_token_item_offset(right, item, push_space, &token); 3655 } 3656 3657 left_nritems -= push_items; 3658 btrfs_set_header_nritems(left, left_nritems); 3659 3660 if (left_nritems) 3661 btrfs_mark_buffer_dirty(left); 3662 else 3663 btrfs_clean_tree_block(left); 3664 3665 btrfs_mark_buffer_dirty(right); 3666 3667 btrfs_item_key(right, &disk_key, 0); 3668 btrfs_set_node_key(upper, &disk_key, slot + 1); 3669 btrfs_mark_buffer_dirty(upper); 3670 3671 /* then fixup the leaf pointer in the path */ 3672 if (path->slots[0] >= left_nritems) { 3673 path->slots[0] -= left_nritems; 3674 if (btrfs_header_nritems(path->nodes[0]) == 0) 3675 btrfs_clean_tree_block(path->nodes[0]); 3676 btrfs_tree_unlock(path->nodes[0]); 3677 free_extent_buffer(path->nodes[0]); 3678 path->nodes[0] = right; 3679 path->slots[1] += 1; 3680 } else { 3681 btrfs_tree_unlock(right); 3682 free_extent_buffer(right); 3683 } 3684 return 0; 3685 3686 out_unlock: 3687 btrfs_tree_unlock(right); 3688 free_extent_buffer(right); 3689 return 1; 3690 } 3691 3692 /* 3693 * push some data in the path leaf to the right, trying to free up at 3694 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3695 * 3696 * returns 1 if the push failed because the other node didn't have enough 3697 * room, 0 if everything worked out and < 0 if there were major errors. 3698 * 3699 * this will push starting from min_slot to the end of the leaf. It won't 3700 * push any slot lower than min_slot 3701 */ 3702 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3703 *root, struct btrfs_path *path, 3704 int min_data_size, int data_size, 3705 int empty, u32 min_slot) 3706 { 3707 struct extent_buffer *left = path->nodes[0]; 3708 struct extent_buffer *right; 3709 struct extent_buffer *upper; 3710 int slot; 3711 int free_space; 3712 u32 left_nritems; 3713 int ret; 3714 3715 if (!path->nodes[1]) 3716 return 1; 3717 3718 slot = path->slots[1]; 3719 upper = path->nodes[1]; 3720 if (slot >= btrfs_header_nritems(upper) - 1) 3721 return 1; 3722 3723 btrfs_assert_tree_locked(path->nodes[1]); 3724 3725 right = btrfs_read_node_slot(upper, slot + 1); 3726 /* 3727 * slot + 1 is not valid or we fail to read the right node, 3728 * no big deal, just return. 3729 */ 3730 if (IS_ERR(right)) 3731 return 1; 3732 3733 btrfs_tree_lock(right); 3734 btrfs_set_lock_blocking_write(right); 3735 3736 free_space = btrfs_leaf_free_space(right); 3737 if (free_space < data_size) 3738 goto out_unlock; 3739 3740 /* cow and double check */ 3741 ret = btrfs_cow_block(trans, root, right, upper, 3742 slot + 1, &right); 3743 if (ret) 3744 goto out_unlock; 3745 3746 free_space = btrfs_leaf_free_space(right); 3747 if (free_space < data_size) 3748 goto out_unlock; 3749 3750 left_nritems = btrfs_header_nritems(left); 3751 if (left_nritems == 0) 3752 goto out_unlock; 3753 3754 if (path->slots[0] == left_nritems && !empty) { 3755 /* Key greater than all keys in the leaf, right neighbor has 3756 * enough room for it and we're not emptying our leaf to delete 3757 * it, therefore use right neighbor to insert the new item and 3758 * no need to touch/dirty our left leaf. */ 3759 btrfs_tree_unlock(left); 3760 free_extent_buffer(left); 3761 path->nodes[0] = right; 3762 path->slots[0] = 0; 3763 path->slots[1]++; 3764 return 0; 3765 } 3766 3767 return __push_leaf_right(path, min_data_size, empty, 3768 right, free_space, left_nritems, min_slot); 3769 out_unlock: 3770 btrfs_tree_unlock(right); 3771 free_extent_buffer(right); 3772 return 1; 3773 } 3774 3775 /* 3776 * push some data in the path leaf to the left, trying to free up at 3777 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3778 * 3779 * max_slot can put a limit on how far into the leaf we'll push items. The 3780 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3781 * items 3782 */ 3783 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 3784 int empty, struct extent_buffer *left, 3785 int free_space, u32 right_nritems, 3786 u32 max_slot) 3787 { 3788 struct btrfs_fs_info *fs_info = left->fs_info; 3789 struct btrfs_disk_key disk_key; 3790 struct extent_buffer *right = path->nodes[0]; 3791 int i; 3792 int push_space = 0; 3793 int push_items = 0; 3794 struct btrfs_item *item; 3795 u32 old_left_nritems; 3796 u32 nr; 3797 int ret = 0; 3798 u32 this_item_size; 3799 u32 old_left_item_size; 3800 struct btrfs_map_token token; 3801 3802 if (empty) 3803 nr = min(right_nritems, max_slot); 3804 else 3805 nr = min(right_nritems - 1, max_slot); 3806 3807 for (i = 0; i < nr; i++) { 3808 item = btrfs_item_nr(i); 3809 3810 if (!empty && push_items > 0) { 3811 if (path->slots[0] < i) 3812 break; 3813 if (path->slots[0] == i) { 3814 int space = btrfs_leaf_free_space(right); 3815 3816 if (space + push_space * 2 > free_space) 3817 break; 3818 } 3819 } 3820 3821 if (path->slots[0] == i) 3822 push_space += data_size; 3823 3824 this_item_size = btrfs_item_size(right, item); 3825 if (this_item_size + sizeof(*item) + push_space > free_space) 3826 break; 3827 3828 push_items++; 3829 push_space += this_item_size + sizeof(*item); 3830 } 3831 3832 if (push_items == 0) { 3833 ret = 1; 3834 goto out; 3835 } 3836 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3837 3838 /* push data from right to left */ 3839 copy_extent_buffer(left, right, 3840 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3841 btrfs_item_nr_offset(0), 3842 push_items * sizeof(struct btrfs_item)); 3843 3844 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3845 btrfs_item_offset_nr(right, push_items - 1); 3846 3847 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3848 leaf_data_end(left) - push_space, 3849 BTRFS_LEAF_DATA_OFFSET + 3850 btrfs_item_offset_nr(right, push_items - 1), 3851 push_space); 3852 old_left_nritems = btrfs_header_nritems(left); 3853 BUG_ON(old_left_nritems <= 0); 3854 3855 btrfs_init_map_token(&token, left); 3856 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3857 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3858 u32 ioff; 3859 3860 item = btrfs_item_nr(i); 3861 3862 ioff = btrfs_token_item_offset(left, item, &token); 3863 btrfs_set_token_item_offset(left, item, 3864 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), 3865 &token); 3866 } 3867 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3868 3869 /* fixup right node */ 3870 if (push_items > right_nritems) 3871 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3872 right_nritems); 3873 3874 if (push_items < right_nritems) { 3875 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3876 leaf_data_end(right); 3877 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3878 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3879 BTRFS_LEAF_DATA_OFFSET + 3880 leaf_data_end(right), push_space); 3881 3882 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3883 btrfs_item_nr_offset(push_items), 3884 (btrfs_header_nritems(right) - push_items) * 3885 sizeof(struct btrfs_item)); 3886 } 3887 3888 btrfs_init_map_token(&token, right); 3889 right_nritems -= push_items; 3890 btrfs_set_header_nritems(right, right_nritems); 3891 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3892 for (i = 0; i < right_nritems; i++) { 3893 item = btrfs_item_nr(i); 3894 3895 push_space = push_space - btrfs_token_item_size(right, 3896 item, &token); 3897 btrfs_set_token_item_offset(right, item, push_space, &token); 3898 } 3899 3900 btrfs_mark_buffer_dirty(left); 3901 if (right_nritems) 3902 btrfs_mark_buffer_dirty(right); 3903 else 3904 btrfs_clean_tree_block(right); 3905 3906 btrfs_item_key(right, &disk_key, 0); 3907 fixup_low_keys(path, &disk_key, 1); 3908 3909 /* then fixup the leaf pointer in the path */ 3910 if (path->slots[0] < push_items) { 3911 path->slots[0] += old_left_nritems; 3912 btrfs_tree_unlock(path->nodes[0]); 3913 free_extent_buffer(path->nodes[0]); 3914 path->nodes[0] = left; 3915 path->slots[1] -= 1; 3916 } else { 3917 btrfs_tree_unlock(left); 3918 free_extent_buffer(left); 3919 path->slots[0] -= push_items; 3920 } 3921 BUG_ON(path->slots[0] < 0); 3922 return ret; 3923 out: 3924 btrfs_tree_unlock(left); 3925 free_extent_buffer(left); 3926 return ret; 3927 } 3928 3929 /* 3930 * push some data in the path leaf to the left, trying to free up at 3931 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3932 * 3933 * max_slot can put a limit on how far into the leaf we'll push items. The 3934 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3935 * items 3936 */ 3937 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3938 *root, struct btrfs_path *path, int min_data_size, 3939 int data_size, int empty, u32 max_slot) 3940 { 3941 struct extent_buffer *right = path->nodes[0]; 3942 struct extent_buffer *left; 3943 int slot; 3944 int free_space; 3945 u32 right_nritems; 3946 int ret = 0; 3947 3948 slot = path->slots[1]; 3949 if (slot == 0) 3950 return 1; 3951 if (!path->nodes[1]) 3952 return 1; 3953 3954 right_nritems = btrfs_header_nritems(right); 3955 if (right_nritems == 0) 3956 return 1; 3957 3958 btrfs_assert_tree_locked(path->nodes[1]); 3959 3960 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3961 /* 3962 * slot - 1 is not valid or we fail to read the left node, 3963 * no big deal, just return. 3964 */ 3965 if (IS_ERR(left)) 3966 return 1; 3967 3968 btrfs_tree_lock(left); 3969 btrfs_set_lock_blocking_write(left); 3970 3971 free_space = btrfs_leaf_free_space(left); 3972 if (free_space < data_size) { 3973 ret = 1; 3974 goto out; 3975 } 3976 3977 /* cow and double check */ 3978 ret = btrfs_cow_block(trans, root, left, 3979 path->nodes[1], slot - 1, &left); 3980 if (ret) { 3981 /* we hit -ENOSPC, but it isn't fatal here */ 3982 if (ret == -ENOSPC) 3983 ret = 1; 3984 goto out; 3985 } 3986 3987 free_space = btrfs_leaf_free_space(left); 3988 if (free_space < data_size) { 3989 ret = 1; 3990 goto out; 3991 } 3992 3993 return __push_leaf_left(path, min_data_size, 3994 empty, left, free_space, right_nritems, 3995 max_slot); 3996 out: 3997 btrfs_tree_unlock(left); 3998 free_extent_buffer(left); 3999 return ret; 4000 } 4001 4002 /* 4003 * split the path's leaf in two, making sure there is at least data_size 4004 * available for the resulting leaf level of the path. 4005 */ 4006 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4007 struct btrfs_path *path, 4008 struct extent_buffer *l, 4009 struct extent_buffer *right, 4010 int slot, int mid, int nritems) 4011 { 4012 struct btrfs_fs_info *fs_info = trans->fs_info; 4013 int data_copy_size; 4014 int rt_data_off; 4015 int i; 4016 struct btrfs_disk_key disk_key; 4017 struct btrfs_map_token token; 4018 4019 nritems = nritems - mid; 4020 btrfs_set_header_nritems(right, nritems); 4021 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l); 4022 4023 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4024 btrfs_item_nr_offset(mid), 4025 nritems * sizeof(struct btrfs_item)); 4026 4027 copy_extent_buffer(right, l, 4028 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4029 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4030 leaf_data_end(l), data_copy_size); 4031 4032 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4033 4034 btrfs_init_map_token(&token, right); 4035 for (i = 0; i < nritems; i++) { 4036 struct btrfs_item *item = btrfs_item_nr(i); 4037 u32 ioff; 4038 4039 ioff = btrfs_token_item_offset(right, item, &token); 4040 btrfs_set_token_item_offset(right, item, 4041 ioff + rt_data_off, &token); 4042 } 4043 4044 btrfs_set_header_nritems(l, mid); 4045 btrfs_item_key(right, &disk_key, 0); 4046 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 4047 4048 btrfs_mark_buffer_dirty(right); 4049 btrfs_mark_buffer_dirty(l); 4050 BUG_ON(path->slots[0] != slot); 4051 4052 if (mid <= slot) { 4053 btrfs_tree_unlock(path->nodes[0]); 4054 free_extent_buffer(path->nodes[0]); 4055 path->nodes[0] = right; 4056 path->slots[0] -= mid; 4057 path->slots[1] += 1; 4058 } else { 4059 btrfs_tree_unlock(right); 4060 free_extent_buffer(right); 4061 } 4062 4063 BUG_ON(path->slots[0] < 0); 4064 } 4065 4066 /* 4067 * double splits happen when we need to insert a big item in the middle 4068 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4069 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4070 * A B C 4071 * 4072 * We avoid this by trying to push the items on either side of our target 4073 * into the adjacent leaves. If all goes well we can avoid the double split 4074 * completely. 4075 */ 4076 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4077 struct btrfs_root *root, 4078 struct btrfs_path *path, 4079 int data_size) 4080 { 4081 int ret; 4082 int progress = 0; 4083 int slot; 4084 u32 nritems; 4085 int space_needed = data_size; 4086 4087 slot = path->slots[0]; 4088 if (slot < btrfs_header_nritems(path->nodes[0])) 4089 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4090 4091 /* 4092 * try to push all the items after our slot into the 4093 * right leaf 4094 */ 4095 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4096 if (ret < 0) 4097 return ret; 4098 4099 if (ret == 0) 4100 progress++; 4101 4102 nritems = btrfs_header_nritems(path->nodes[0]); 4103 /* 4104 * our goal is to get our slot at the start or end of a leaf. If 4105 * we've done so we're done 4106 */ 4107 if (path->slots[0] == 0 || path->slots[0] == nritems) 4108 return 0; 4109 4110 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4111 return 0; 4112 4113 /* try to push all the items before our slot into the next leaf */ 4114 slot = path->slots[0]; 4115 space_needed = data_size; 4116 if (slot > 0) 4117 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4118 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4119 if (ret < 0) 4120 return ret; 4121 4122 if (ret == 0) 4123 progress++; 4124 4125 if (progress) 4126 return 0; 4127 return 1; 4128 } 4129 4130 /* 4131 * split the path's leaf in two, making sure there is at least data_size 4132 * available for the resulting leaf level of the path. 4133 * 4134 * returns 0 if all went well and < 0 on failure. 4135 */ 4136 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4137 struct btrfs_root *root, 4138 const struct btrfs_key *ins_key, 4139 struct btrfs_path *path, int data_size, 4140 int extend) 4141 { 4142 struct btrfs_disk_key disk_key; 4143 struct extent_buffer *l; 4144 u32 nritems; 4145 int mid; 4146 int slot; 4147 struct extent_buffer *right; 4148 struct btrfs_fs_info *fs_info = root->fs_info; 4149 int ret = 0; 4150 int wret; 4151 int split; 4152 int num_doubles = 0; 4153 int tried_avoid_double = 0; 4154 4155 l = path->nodes[0]; 4156 slot = path->slots[0]; 4157 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4158 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4159 return -EOVERFLOW; 4160 4161 /* first try to make some room by pushing left and right */ 4162 if (data_size && path->nodes[1]) { 4163 int space_needed = data_size; 4164 4165 if (slot < btrfs_header_nritems(l)) 4166 space_needed -= btrfs_leaf_free_space(l); 4167 4168 wret = push_leaf_right(trans, root, path, space_needed, 4169 space_needed, 0, 0); 4170 if (wret < 0) 4171 return wret; 4172 if (wret) { 4173 space_needed = data_size; 4174 if (slot > 0) 4175 space_needed -= btrfs_leaf_free_space(l); 4176 wret = push_leaf_left(trans, root, path, space_needed, 4177 space_needed, 0, (u32)-1); 4178 if (wret < 0) 4179 return wret; 4180 } 4181 l = path->nodes[0]; 4182 4183 /* did the pushes work? */ 4184 if (btrfs_leaf_free_space(l) >= data_size) 4185 return 0; 4186 } 4187 4188 if (!path->nodes[1]) { 4189 ret = insert_new_root(trans, root, path, 1); 4190 if (ret) 4191 return ret; 4192 } 4193 again: 4194 split = 1; 4195 l = path->nodes[0]; 4196 slot = path->slots[0]; 4197 nritems = btrfs_header_nritems(l); 4198 mid = (nritems + 1) / 2; 4199 4200 if (mid <= slot) { 4201 if (nritems == 1 || 4202 leaf_space_used(l, mid, nritems - mid) + data_size > 4203 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4204 if (slot >= nritems) { 4205 split = 0; 4206 } else { 4207 mid = slot; 4208 if (mid != nritems && 4209 leaf_space_used(l, mid, nritems - mid) + 4210 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4211 if (data_size && !tried_avoid_double) 4212 goto push_for_double; 4213 split = 2; 4214 } 4215 } 4216 } 4217 } else { 4218 if (leaf_space_used(l, 0, mid) + data_size > 4219 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4220 if (!extend && data_size && slot == 0) { 4221 split = 0; 4222 } else if ((extend || !data_size) && slot == 0) { 4223 mid = 1; 4224 } else { 4225 mid = slot; 4226 if (mid != nritems && 4227 leaf_space_used(l, mid, nritems - mid) + 4228 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4229 if (data_size && !tried_avoid_double) 4230 goto push_for_double; 4231 split = 2; 4232 } 4233 } 4234 } 4235 } 4236 4237 if (split == 0) 4238 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4239 else 4240 btrfs_item_key(l, &disk_key, mid); 4241 4242 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0, 4243 l->start, 0); 4244 if (IS_ERR(right)) 4245 return PTR_ERR(right); 4246 4247 root_add_used(root, fs_info->nodesize); 4248 4249 if (split == 0) { 4250 if (mid <= slot) { 4251 btrfs_set_header_nritems(right, 0); 4252 insert_ptr(trans, path, &disk_key, 4253 right->start, path->slots[1] + 1, 1); 4254 btrfs_tree_unlock(path->nodes[0]); 4255 free_extent_buffer(path->nodes[0]); 4256 path->nodes[0] = right; 4257 path->slots[0] = 0; 4258 path->slots[1] += 1; 4259 } else { 4260 btrfs_set_header_nritems(right, 0); 4261 insert_ptr(trans, path, &disk_key, 4262 right->start, path->slots[1], 1); 4263 btrfs_tree_unlock(path->nodes[0]); 4264 free_extent_buffer(path->nodes[0]); 4265 path->nodes[0] = right; 4266 path->slots[0] = 0; 4267 if (path->slots[1] == 0) 4268 fixup_low_keys(path, &disk_key, 1); 4269 } 4270 /* 4271 * We create a new leaf 'right' for the required ins_len and 4272 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4273 * the content of ins_len to 'right'. 4274 */ 4275 return ret; 4276 } 4277 4278 copy_for_split(trans, path, l, right, slot, mid, nritems); 4279 4280 if (split == 2) { 4281 BUG_ON(num_doubles != 0); 4282 num_doubles++; 4283 goto again; 4284 } 4285 4286 return 0; 4287 4288 push_for_double: 4289 push_for_double_split(trans, root, path, data_size); 4290 tried_avoid_double = 1; 4291 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4292 return 0; 4293 goto again; 4294 } 4295 4296 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4297 struct btrfs_root *root, 4298 struct btrfs_path *path, int ins_len) 4299 { 4300 struct btrfs_key key; 4301 struct extent_buffer *leaf; 4302 struct btrfs_file_extent_item *fi; 4303 u64 extent_len = 0; 4304 u32 item_size; 4305 int ret; 4306 4307 leaf = path->nodes[0]; 4308 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4309 4310 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4311 key.type != BTRFS_EXTENT_CSUM_KEY); 4312 4313 if (btrfs_leaf_free_space(leaf) >= ins_len) 4314 return 0; 4315 4316 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4317 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4318 fi = btrfs_item_ptr(leaf, path->slots[0], 4319 struct btrfs_file_extent_item); 4320 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4321 } 4322 btrfs_release_path(path); 4323 4324 path->keep_locks = 1; 4325 path->search_for_split = 1; 4326 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4327 path->search_for_split = 0; 4328 if (ret > 0) 4329 ret = -EAGAIN; 4330 if (ret < 0) 4331 goto err; 4332 4333 ret = -EAGAIN; 4334 leaf = path->nodes[0]; 4335 /* if our item isn't there, return now */ 4336 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4337 goto err; 4338 4339 /* the leaf has changed, it now has room. return now */ 4340 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 4341 goto err; 4342 4343 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4344 fi = btrfs_item_ptr(leaf, path->slots[0], 4345 struct btrfs_file_extent_item); 4346 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4347 goto err; 4348 } 4349 4350 btrfs_set_path_blocking(path); 4351 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4352 if (ret) 4353 goto err; 4354 4355 path->keep_locks = 0; 4356 btrfs_unlock_up_safe(path, 1); 4357 return 0; 4358 err: 4359 path->keep_locks = 0; 4360 return ret; 4361 } 4362 4363 static noinline int split_item(struct btrfs_path *path, 4364 const struct btrfs_key *new_key, 4365 unsigned long split_offset) 4366 { 4367 struct extent_buffer *leaf; 4368 struct btrfs_item *item; 4369 struct btrfs_item *new_item; 4370 int slot; 4371 char *buf; 4372 u32 nritems; 4373 u32 item_size; 4374 u32 orig_offset; 4375 struct btrfs_disk_key disk_key; 4376 4377 leaf = path->nodes[0]; 4378 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 4379 4380 btrfs_set_path_blocking(path); 4381 4382 item = btrfs_item_nr(path->slots[0]); 4383 orig_offset = btrfs_item_offset(leaf, item); 4384 item_size = btrfs_item_size(leaf, item); 4385 4386 buf = kmalloc(item_size, GFP_NOFS); 4387 if (!buf) 4388 return -ENOMEM; 4389 4390 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4391 path->slots[0]), item_size); 4392 4393 slot = path->slots[0] + 1; 4394 nritems = btrfs_header_nritems(leaf); 4395 if (slot != nritems) { 4396 /* shift the items */ 4397 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4398 btrfs_item_nr_offset(slot), 4399 (nritems - slot) * sizeof(struct btrfs_item)); 4400 } 4401 4402 btrfs_cpu_key_to_disk(&disk_key, new_key); 4403 btrfs_set_item_key(leaf, &disk_key, slot); 4404 4405 new_item = btrfs_item_nr(slot); 4406 4407 btrfs_set_item_offset(leaf, new_item, orig_offset); 4408 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4409 4410 btrfs_set_item_offset(leaf, item, 4411 orig_offset + item_size - split_offset); 4412 btrfs_set_item_size(leaf, item, split_offset); 4413 4414 btrfs_set_header_nritems(leaf, nritems + 1); 4415 4416 /* write the data for the start of the original item */ 4417 write_extent_buffer(leaf, buf, 4418 btrfs_item_ptr_offset(leaf, path->slots[0]), 4419 split_offset); 4420 4421 /* write the data for the new item */ 4422 write_extent_buffer(leaf, buf + split_offset, 4423 btrfs_item_ptr_offset(leaf, slot), 4424 item_size - split_offset); 4425 btrfs_mark_buffer_dirty(leaf); 4426 4427 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 4428 kfree(buf); 4429 return 0; 4430 } 4431 4432 /* 4433 * This function splits a single item into two items, 4434 * giving 'new_key' to the new item and splitting the 4435 * old one at split_offset (from the start of the item). 4436 * 4437 * The path may be released by this operation. After 4438 * the split, the path is pointing to the old item. The 4439 * new item is going to be in the same node as the old one. 4440 * 4441 * Note, the item being split must be smaller enough to live alone on 4442 * a tree block with room for one extra struct btrfs_item 4443 * 4444 * This allows us to split the item in place, keeping a lock on the 4445 * leaf the entire time. 4446 */ 4447 int btrfs_split_item(struct btrfs_trans_handle *trans, 4448 struct btrfs_root *root, 4449 struct btrfs_path *path, 4450 const struct btrfs_key *new_key, 4451 unsigned long split_offset) 4452 { 4453 int ret; 4454 ret = setup_leaf_for_split(trans, root, path, 4455 sizeof(struct btrfs_item)); 4456 if (ret) 4457 return ret; 4458 4459 ret = split_item(path, new_key, split_offset); 4460 return ret; 4461 } 4462 4463 /* 4464 * This function duplicate a item, giving 'new_key' to the new item. 4465 * It guarantees both items live in the same tree leaf and the new item 4466 * is contiguous with the original item. 4467 * 4468 * This allows us to split file extent in place, keeping a lock on the 4469 * leaf the entire time. 4470 */ 4471 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4472 struct btrfs_root *root, 4473 struct btrfs_path *path, 4474 const struct btrfs_key *new_key) 4475 { 4476 struct extent_buffer *leaf; 4477 int ret; 4478 u32 item_size; 4479 4480 leaf = path->nodes[0]; 4481 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4482 ret = setup_leaf_for_split(trans, root, path, 4483 item_size + sizeof(struct btrfs_item)); 4484 if (ret) 4485 return ret; 4486 4487 path->slots[0]++; 4488 setup_items_for_insert(root, path, new_key, &item_size, 4489 item_size, item_size + 4490 sizeof(struct btrfs_item), 1); 4491 leaf = path->nodes[0]; 4492 memcpy_extent_buffer(leaf, 4493 btrfs_item_ptr_offset(leaf, path->slots[0]), 4494 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4495 item_size); 4496 return 0; 4497 } 4498 4499 /* 4500 * make the item pointed to by the path smaller. new_size indicates 4501 * how small to make it, and from_end tells us if we just chop bytes 4502 * off the end of the item or if we shift the item to chop bytes off 4503 * the front. 4504 */ 4505 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 4506 { 4507 int slot; 4508 struct extent_buffer *leaf; 4509 struct btrfs_item *item; 4510 u32 nritems; 4511 unsigned int data_end; 4512 unsigned int old_data_start; 4513 unsigned int old_size; 4514 unsigned int size_diff; 4515 int i; 4516 struct btrfs_map_token token; 4517 4518 leaf = path->nodes[0]; 4519 slot = path->slots[0]; 4520 4521 old_size = btrfs_item_size_nr(leaf, slot); 4522 if (old_size == new_size) 4523 return; 4524 4525 nritems = btrfs_header_nritems(leaf); 4526 data_end = leaf_data_end(leaf); 4527 4528 old_data_start = btrfs_item_offset_nr(leaf, slot); 4529 4530 size_diff = old_size - new_size; 4531 4532 BUG_ON(slot < 0); 4533 BUG_ON(slot >= nritems); 4534 4535 /* 4536 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4537 */ 4538 /* first correct the data pointers */ 4539 btrfs_init_map_token(&token, leaf); 4540 for (i = slot; i < nritems; i++) { 4541 u32 ioff; 4542 item = btrfs_item_nr(i); 4543 4544 ioff = btrfs_token_item_offset(leaf, item, &token); 4545 btrfs_set_token_item_offset(leaf, item, 4546 ioff + size_diff, &token); 4547 } 4548 4549 /* shift the data */ 4550 if (from_end) { 4551 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4552 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4553 data_end, old_data_start + new_size - data_end); 4554 } else { 4555 struct btrfs_disk_key disk_key; 4556 u64 offset; 4557 4558 btrfs_item_key(leaf, &disk_key, slot); 4559 4560 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4561 unsigned long ptr; 4562 struct btrfs_file_extent_item *fi; 4563 4564 fi = btrfs_item_ptr(leaf, slot, 4565 struct btrfs_file_extent_item); 4566 fi = (struct btrfs_file_extent_item *)( 4567 (unsigned long)fi - size_diff); 4568 4569 if (btrfs_file_extent_type(leaf, fi) == 4570 BTRFS_FILE_EXTENT_INLINE) { 4571 ptr = btrfs_item_ptr_offset(leaf, slot); 4572 memmove_extent_buffer(leaf, ptr, 4573 (unsigned long)fi, 4574 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4575 } 4576 } 4577 4578 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4579 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4580 data_end, old_data_start - data_end); 4581 4582 offset = btrfs_disk_key_offset(&disk_key); 4583 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4584 btrfs_set_item_key(leaf, &disk_key, slot); 4585 if (slot == 0) 4586 fixup_low_keys(path, &disk_key, 1); 4587 } 4588 4589 item = btrfs_item_nr(slot); 4590 btrfs_set_item_size(leaf, item, new_size); 4591 btrfs_mark_buffer_dirty(leaf); 4592 4593 if (btrfs_leaf_free_space(leaf) < 0) { 4594 btrfs_print_leaf(leaf); 4595 BUG(); 4596 } 4597 } 4598 4599 /* 4600 * make the item pointed to by the path bigger, data_size is the added size. 4601 */ 4602 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 4603 { 4604 int slot; 4605 struct extent_buffer *leaf; 4606 struct btrfs_item *item; 4607 u32 nritems; 4608 unsigned int data_end; 4609 unsigned int old_data; 4610 unsigned int old_size; 4611 int i; 4612 struct btrfs_map_token token; 4613 4614 leaf = path->nodes[0]; 4615 4616 nritems = btrfs_header_nritems(leaf); 4617 data_end = leaf_data_end(leaf); 4618 4619 if (btrfs_leaf_free_space(leaf) < data_size) { 4620 btrfs_print_leaf(leaf); 4621 BUG(); 4622 } 4623 slot = path->slots[0]; 4624 old_data = btrfs_item_end_nr(leaf, slot); 4625 4626 BUG_ON(slot < 0); 4627 if (slot >= nritems) { 4628 btrfs_print_leaf(leaf); 4629 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4630 slot, nritems); 4631 BUG(); 4632 } 4633 4634 /* 4635 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4636 */ 4637 /* first correct the data pointers */ 4638 btrfs_init_map_token(&token, leaf); 4639 for (i = slot; i < nritems; i++) { 4640 u32 ioff; 4641 item = btrfs_item_nr(i); 4642 4643 ioff = btrfs_token_item_offset(leaf, item, &token); 4644 btrfs_set_token_item_offset(leaf, item, 4645 ioff - data_size, &token); 4646 } 4647 4648 /* shift the data */ 4649 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4650 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4651 data_end, old_data - data_end); 4652 4653 data_end = old_data; 4654 old_size = btrfs_item_size_nr(leaf, slot); 4655 item = btrfs_item_nr(slot); 4656 btrfs_set_item_size(leaf, item, old_size + data_size); 4657 btrfs_mark_buffer_dirty(leaf); 4658 4659 if (btrfs_leaf_free_space(leaf) < 0) { 4660 btrfs_print_leaf(leaf); 4661 BUG(); 4662 } 4663 } 4664 4665 /* 4666 * this is a helper for btrfs_insert_empty_items, the main goal here is 4667 * to save stack depth by doing the bulk of the work in a function 4668 * that doesn't call btrfs_search_slot 4669 */ 4670 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4671 const struct btrfs_key *cpu_key, u32 *data_size, 4672 u32 total_data, u32 total_size, int nr) 4673 { 4674 struct btrfs_fs_info *fs_info = root->fs_info; 4675 struct btrfs_item *item; 4676 int i; 4677 u32 nritems; 4678 unsigned int data_end; 4679 struct btrfs_disk_key disk_key; 4680 struct extent_buffer *leaf; 4681 int slot; 4682 struct btrfs_map_token token; 4683 4684 if (path->slots[0] == 0) { 4685 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4686 fixup_low_keys(path, &disk_key, 1); 4687 } 4688 btrfs_unlock_up_safe(path, 1); 4689 4690 leaf = path->nodes[0]; 4691 slot = path->slots[0]; 4692 4693 nritems = btrfs_header_nritems(leaf); 4694 data_end = leaf_data_end(leaf); 4695 4696 if (btrfs_leaf_free_space(leaf) < total_size) { 4697 btrfs_print_leaf(leaf); 4698 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4699 total_size, btrfs_leaf_free_space(leaf)); 4700 BUG(); 4701 } 4702 4703 btrfs_init_map_token(&token, leaf); 4704 if (slot != nritems) { 4705 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4706 4707 if (old_data < data_end) { 4708 btrfs_print_leaf(leaf); 4709 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4710 slot, old_data, data_end); 4711 BUG(); 4712 } 4713 /* 4714 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4715 */ 4716 /* first correct the data pointers */ 4717 for (i = slot; i < nritems; i++) { 4718 u32 ioff; 4719 4720 item = btrfs_item_nr(i); 4721 ioff = btrfs_token_item_offset(leaf, item, &token); 4722 btrfs_set_token_item_offset(leaf, item, 4723 ioff - total_data, &token); 4724 } 4725 /* shift the items */ 4726 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4727 btrfs_item_nr_offset(slot), 4728 (nritems - slot) * sizeof(struct btrfs_item)); 4729 4730 /* shift the data */ 4731 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4732 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4733 data_end, old_data - data_end); 4734 data_end = old_data; 4735 } 4736 4737 /* setup the item for the new data */ 4738 for (i = 0; i < nr; i++) { 4739 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4740 btrfs_set_item_key(leaf, &disk_key, slot + i); 4741 item = btrfs_item_nr(slot + i); 4742 btrfs_set_token_item_offset(leaf, item, 4743 data_end - data_size[i], &token); 4744 data_end -= data_size[i]; 4745 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4746 } 4747 4748 btrfs_set_header_nritems(leaf, nritems + nr); 4749 btrfs_mark_buffer_dirty(leaf); 4750 4751 if (btrfs_leaf_free_space(leaf) < 0) { 4752 btrfs_print_leaf(leaf); 4753 BUG(); 4754 } 4755 } 4756 4757 /* 4758 * Given a key and some data, insert items into the tree. 4759 * This does all the path init required, making room in the tree if needed. 4760 */ 4761 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4762 struct btrfs_root *root, 4763 struct btrfs_path *path, 4764 const struct btrfs_key *cpu_key, u32 *data_size, 4765 int nr) 4766 { 4767 int ret = 0; 4768 int slot; 4769 int i; 4770 u32 total_size = 0; 4771 u32 total_data = 0; 4772 4773 for (i = 0; i < nr; i++) 4774 total_data += data_size[i]; 4775 4776 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4777 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4778 if (ret == 0) 4779 return -EEXIST; 4780 if (ret < 0) 4781 return ret; 4782 4783 slot = path->slots[0]; 4784 BUG_ON(slot < 0); 4785 4786 setup_items_for_insert(root, path, cpu_key, data_size, 4787 total_data, total_size, nr); 4788 return 0; 4789 } 4790 4791 /* 4792 * Given a key and some data, insert an item into the tree. 4793 * This does all the path init required, making room in the tree if needed. 4794 */ 4795 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4796 const struct btrfs_key *cpu_key, void *data, 4797 u32 data_size) 4798 { 4799 int ret = 0; 4800 struct btrfs_path *path; 4801 struct extent_buffer *leaf; 4802 unsigned long ptr; 4803 4804 path = btrfs_alloc_path(); 4805 if (!path) 4806 return -ENOMEM; 4807 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4808 if (!ret) { 4809 leaf = path->nodes[0]; 4810 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4811 write_extent_buffer(leaf, data, ptr, data_size); 4812 btrfs_mark_buffer_dirty(leaf); 4813 } 4814 btrfs_free_path(path); 4815 return ret; 4816 } 4817 4818 /* 4819 * delete the pointer from a given node. 4820 * 4821 * the tree should have been previously balanced so the deletion does not 4822 * empty a node. 4823 */ 4824 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4825 int level, int slot) 4826 { 4827 struct extent_buffer *parent = path->nodes[level]; 4828 u32 nritems; 4829 int ret; 4830 4831 nritems = btrfs_header_nritems(parent); 4832 if (slot != nritems - 1) { 4833 if (level) { 4834 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4835 nritems - slot - 1); 4836 BUG_ON(ret < 0); 4837 } 4838 memmove_extent_buffer(parent, 4839 btrfs_node_key_ptr_offset(slot), 4840 btrfs_node_key_ptr_offset(slot + 1), 4841 sizeof(struct btrfs_key_ptr) * 4842 (nritems - slot - 1)); 4843 } else if (level) { 4844 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4845 GFP_NOFS); 4846 BUG_ON(ret < 0); 4847 } 4848 4849 nritems--; 4850 btrfs_set_header_nritems(parent, nritems); 4851 if (nritems == 0 && parent == root->node) { 4852 BUG_ON(btrfs_header_level(root->node) != 1); 4853 /* just turn the root into a leaf and break */ 4854 btrfs_set_header_level(root->node, 0); 4855 } else if (slot == 0) { 4856 struct btrfs_disk_key disk_key; 4857 4858 btrfs_node_key(parent, &disk_key, 0); 4859 fixup_low_keys(path, &disk_key, level + 1); 4860 } 4861 btrfs_mark_buffer_dirty(parent); 4862 } 4863 4864 /* 4865 * a helper function to delete the leaf pointed to by path->slots[1] and 4866 * path->nodes[1]. 4867 * 4868 * This deletes the pointer in path->nodes[1] and frees the leaf 4869 * block extent. zero is returned if it all worked out, < 0 otherwise. 4870 * 4871 * The path must have already been setup for deleting the leaf, including 4872 * all the proper balancing. path->nodes[1] must be locked. 4873 */ 4874 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4875 struct btrfs_root *root, 4876 struct btrfs_path *path, 4877 struct extent_buffer *leaf) 4878 { 4879 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4880 del_ptr(root, path, 1, path->slots[1]); 4881 4882 /* 4883 * btrfs_free_extent is expensive, we want to make sure we 4884 * aren't holding any locks when we call it 4885 */ 4886 btrfs_unlock_up_safe(path, 0); 4887 4888 root_sub_used(root, leaf->len); 4889 4890 atomic_inc(&leaf->refs); 4891 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4892 free_extent_buffer_stale(leaf); 4893 } 4894 /* 4895 * delete the item at the leaf level in path. If that empties 4896 * the leaf, remove it from the tree 4897 */ 4898 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4899 struct btrfs_path *path, int slot, int nr) 4900 { 4901 struct btrfs_fs_info *fs_info = root->fs_info; 4902 struct extent_buffer *leaf; 4903 struct btrfs_item *item; 4904 u32 last_off; 4905 u32 dsize = 0; 4906 int ret = 0; 4907 int wret; 4908 int i; 4909 u32 nritems; 4910 4911 leaf = path->nodes[0]; 4912 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4913 4914 for (i = 0; i < nr; i++) 4915 dsize += btrfs_item_size_nr(leaf, slot + i); 4916 4917 nritems = btrfs_header_nritems(leaf); 4918 4919 if (slot + nr != nritems) { 4920 int data_end = leaf_data_end(leaf); 4921 struct btrfs_map_token token; 4922 4923 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4924 data_end + dsize, 4925 BTRFS_LEAF_DATA_OFFSET + data_end, 4926 last_off - data_end); 4927 4928 btrfs_init_map_token(&token, leaf); 4929 for (i = slot + nr; i < nritems; i++) { 4930 u32 ioff; 4931 4932 item = btrfs_item_nr(i); 4933 ioff = btrfs_token_item_offset(leaf, item, &token); 4934 btrfs_set_token_item_offset(leaf, item, 4935 ioff + dsize, &token); 4936 } 4937 4938 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4939 btrfs_item_nr_offset(slot + nr), 4940 sizeof(struct btrfs_item) * 4941 (nritems - slot - nr)); 4942 } 4943 btrfs_set_header_nritems(leaf, nritems - nr); 4944 nritems -= nr; 4945 4946 /* delete the leaf if we've emptied it */ 4947 if (nritems == 0) { 4948 if (leaf == root->node) { 4949 btrfs_set_header_level(leaf, 0); 4950 } else { 4951 btrfs_set_path_blocking(path); 4952 btrfs_clean_tree_block(leaf); 4953 btrfs_del_leaf(trans, root, path, leaf); 4954 } 4955 } else { 4956 int used = leaf_space_used(leaf, 0, nritems); 4957 if (slot == 0) { 4958 struct btrfs_disk_key disk_key; 4959 4960 btrfs_item_key(leaf, &disk_key, 0); 4961 fixup_low_keys(path, &disk_key, 1); 4962 } 4963 4964 /* delete the leaf if it is mostly empty */ 4965 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4966 /* push_leaf_left fixes the path. 4967 * make sure the path still points to our leaf 4968 * for possible call to del_ptr below 4969 */ 4970 slot = path->slots[1]; 4971 atomic_inc(&leaf->refs); 4972 4973 btrfs_set_path_blocking(path); 4974 wret = push_leaf_left(trans, root, path, 1, 1, 4975 1, (u32)-1); 4976 if (wret < 0 && wret != -ENOSPC) 4977 ret = wret; 4978 4979 if (path->nodes[0] == leaf && 4980 btrfs_header_nritems(leaf)) { 4981 wret = push_leaf_right(trans, root, path, 1, 4982 1, 1, 0); 4983 if (wret < 0 && wret != -ENOSPC) 4984 ret = wret; 4985 } 4986 4987 if (btrfs_header_nritems(leaf) == 0) { 4988 path->slots[1] = slot; 4989 btrfs_del_leaf(trans, root, path, leaf); 4990 free_extent_buffer(leaf); 4991 ret = 0; 4992 } else { 4993 /* if we're still in the path, make sure 4994 * we're dirty. Otherwise, one of the 4995 * push_leaf functions must have already 4996 * dirtied this buffer 4997 */ 4998 if (path->nodes[0] == leaf) 4999 btrfs_mark_buffer_dirty(leaf); 5000 free_extent_buffer(leaf); 5001 } 5002 } else { 5003 btrfs_mark_buffer_dirty(leaf); 5004 } 5005 } 5006 return ret; 5007 } 5008 5009 /* 5010 * search the tree again to find a leaf with lesser keys 5011 * returns 0 if it found something or 1 if there are no lesser leaves. 5012 * returns < 0 on io errors. 5013 * 5014 * This may release the path, and so you may lose any locks held at the 5015 * time you call it. 5016 */ 5017 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5018 { 5019 struct btrfs_key key; 5020 struct btrfs_disk_key found_key; 5021 int ret; 5022 5023 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5024 5025 if (key.offset > 0) { 5026 key.offset--; 5027 } else if (key.type > 0) { 5028 key.type--; 5029 key.offset = (u64)-1; 5030 } else if (key.objectid > 0) { 5031 key.objectid--; 5032 key.type = (u8)-1; 5033 key.offset = (u64)-1; 5034 } else { 5035 return 1; 5036 } 5037 5038 btrfs_release_path(path); 5039 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5040 if (ret < 0) 5041 return ret; 5042 btrfs_item_key(path->nodes[0], &found_key, 0); 5043 ret = comp_keys(&found_key, &key); 5044 /* 5045 * We might have had an item with the previous key in the tree right 5046 * before we released our path. And after we released our path, that 5047 * item might have been pushed to the first slot (0) of the leaf we 5048 * were holding due to a tree balance. Alternatively, an item with the 5049 * previous key can exist as the only element of a leaf (big fat item). 5050 * Therefore account for these 2 cases, so that our callers (like 5051 * btrfs_previous_item) don't miss an existing item with a key matching 5052 * the previous key we computed above. 5053 */ 5054 if (ret <= 0) 5055 return 0; 5056 return 1; 5057 } 5058 5059 /* 5060 * A helper function to walk down the tree starting at min_key, and looking 5061 * for nodes or leaves that are have a minimum transaction id. 5062 * This is used by the btree defrag code, and tree logging 5063 * 5064 * This does not cow, but it does stuff the starting key it finds back 5065 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5066 * key and get a writable path. 5067 * 5068 * This honors path->lowest_level to prevent descent past a given level 5069 * of the tree. 5070 * 5071 * min_trans indicates the oldest transaction that you are interested 5072 * in walking through. Any nodes or leaves older than min_trans are 5073 * skipped over (without reading them). 5074 * 5075 * returns zero if something useful was found, < 0 on error and 1 if there 5076 * was nothing in the tree that matched the search criteria. 5077 */ 5078 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5079 struct btrfs_path *path, 5080 u64 min_trans) 5081 { 5082 struct extent_buffer *cur; 5083 struct btrfs_key found_key; 5084 int slot; 5085 int sret; 5086 u32 nritems; 5087 int level; 5088 int ret = 1; 5089 int keep_locks = path->keep_locks; 5090 5091 path->keep_locks = 1; 5092 again: 5093 cur = btrfs_read_lock_root_node(root); 5094 level = btrfs_header_level(cur); 5095 WARN_ON(path->nodes[level]); 5096 path->nodes[level] = cur; 5097 path->locks[level] = BTRFS_READ_LOCK; 5098 5099 if (btrfs_header_generation(cur) < min_trans) { 5100 ret = 1; 5101 goto out; 5102 } 5103 while (1) { 5104 nritems = btrfs_header_nritems(cur); 5105 level = btrfs_header_level(cur); 5106 sret = btrfs_bin_search(cur, min_key, level, &slot); 5107 if (sret < 0) { 5108 ret = sret; 5109 goto out; 5110 } 5111 5112 /* at the lowest level, we're done, setup the path and exit */ 5113 if (level == path->lowest_level) { 5114 if (slot >= nritems) 5115 goto find_next_key; 5116 ret = 0; 5117 path->slots[level] = slot; 5118 btrfs_item_key_to_cpu(cur, &found_key, slot); 5119 goto out; 5120 } 5121 if (sret && slot > 0) 5122 slot--; 5123 /* 5124 * check this node pointer against the min_trans parameters. 5125 * If it is too old, old, skip to the next one. 5126 */ 5127 while (slot < nritems) { 5128 u64 gen; 5129 5130 gen = btrfs_node_ptr_generation(cur, slot); 5131 if (gen < min_trans) { 5132 slot++; 5133 continue; 5134 } 5135 break; 5136 } 5137 find_next_key: 5138 /* 5139 * we didn't find a candidate key in this node, walk forward 5140 * and find another one 5141 */ 5142 if (slot >= nritems) { 5143 path->slots[level] = slot; 5144 btrfs_set_path_blocking(path); 5145 sret = btrfs_find_next_key(root, path, min_key, level, 5146 min_trans); 5147 if (sret == 0) { 5148 btrfs_release_path(path); 5149 goto again; 5150 } else { 5151 goto out; 5152 } 5153 } 5154 /* save our key for returning back */ 5155 btrfs_node_key_to_cpu(cur, &found_key, slot); 5156 path->slots[level] = slot; 5157 if (level == path->lowest_level) { 5158 ret = 0; 5159 goto out; 5160 } 5161 btrfs_set_path_blocking(path); 5162 cur = btrfs_read_node_slot(cur, slot); 5163 if (IS_ERR(cur)) { 5164 ret = PTR_ERR(cur); 5165 goto out; 5166 } 5167 5168 btrfs_tree_read_lock(cur); 5169 5170 path->locks[level - 1] = BTRFS_READ_LOCK; 5171 path->nodes[level - 1] = cur; 5172 unlock_up(path, level, 1, 0, NULL); 5173 } 5174 out: 5175 path->keep_locks = keep_locks; 5176 if (ret == 0) { 5177 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5178 btrfs_set_path_blocking(path); 5179 memcpy(min_key, &found_key, sizeof(found_key)); 5180 } 5181 return ret; 5182 } 5183 5184 /* 5185 * this is similar to btrfs_next_leaf, but does not try to preserve 5186 * and fixup the path. It looks for and returns the next key in the 5187 * tree based on the current path and the min_trans parameters. 5188 * 5189 * 0 is returned if another key is found, < 0 if there are any errors 5190 * and 1 is returned if there are no higher keys in the tree 5191 * 5192 * path->keep_locks should be set to 1 on the search made before 5193 * calling this function. 5194 */ 5195 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5196 struct btrfs_key *key, int level, u64 min_trans) 5197 { 5198 int slot; 5199 struct extent_buffer *c; 5200 5201 WARN_ON(!path->keep_locks && !path->skip_locking); 5202 while (level < BTRFS_MAX_LEVEL) { 5203 if (!path->nodes[level]) 5204 return 1; 5205 5206 slot = path->slots[level] + 1; 5207 c = path->nodes[level]; 5208 next: 5209 if (slot >= btrfs_header_nritems(c)) { 5210 int ret; 5211 int orig_lowest; 5212 struct btrfs_key cur_key; 5213 if (level + 1 >= BTRFS_MAX_LEVEL || 5214 !path->nodes[level + 1]) 5215 return 1; 5216 5217 if (path->locks[level + 1] || path->skip_locking) { 5218 level++; 5219 continue; 5220 } 5221 5222 slot = btrfs_header_nritems(c) - 1; 5223 if (level == 0) 5224 btrfs_item_key_to_cpu(c, &cur_key, slot); 5225 else 5226 btrfs_node_key_to_cpu(c, &cur_key, slot); 5227 5228 orig_lowest = path->lowest_level; 5229 btrfs_release_path(path); 5230 path->lowest_level = level; 5231 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5232 0, 0); 5233 path->lowest_level = orig_lowest; 5234 if (ret < 0) 5235 return ret; 5236 5237 c = path->nodes[level]; 5238 slot = path->slots[level]; 5239 if (ret == 0) 5240 slot++; 5241 goto next; 5242 } 5243 5244 if (level == 0) 5245 btrfs_item_key_to_cpu(c, key, slot); 5246 else { 5247 u64 gen = btrfs_node_ptr_generation(c, slot); 5248 5249 if (gen < min_trans) { 5250 slot++; 5251 goto next; 5252 } 5253 btrfs_node_key_to_cpu(c, key, slot); 5254 } 5255 return 0; 5256 } 5257 return 1; 5258 } 5259 5260 /* 5261 * search the tree again to find a leaf with greater keys 5262 * returns 0 if it found something or 1 if there are no greater leaves. 5263 * returns < 0 on io errors. 5264 */ 5265 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5266 { 5267 return btrfs_next_old_leaf(root, path, 0); 5268 } 5269 5270 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5271 u64 time_seq) 5272 { 5273 int slot; 5274 int level; 5275 struct extent_buffer *c; 5276 struct extent_buffer *next; 5277 struct btrfs_key key; 5278 u32 nritems; 5279 int ret; 5280 int old_spinning = path->leave_spinning; 5281 int next_rw_lock = 0; 5282 5283 nritems = btrfs_header_nritems(path->nodes[0]); 5284 if (nritems == 0) 5285 return 1; 5286 5287 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5288 again: 5289 level = 1; 5290 next = NULL; 5291 next_rw_lock = 0; 5292 btrfs_release_path(path); 5293 5294 path->keep_locks = 1; 5295 path->leave_spinning = 1; 5296 5297 if (time_seq) 5298 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5299 else 5300 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5301 path->keep_locks = 0; 5302 5303 if (ret < 0) 5304 return ret; 5305 5306 nritems = btrfs_header_nritems(path->nodes[0]); 5307 /* 5308 * by releasing the path above we dropped all our locks. A balance 5309 * could have added more items next to the key that used to be 5310 * at the very end of the block. So, check again here and 5311 * advance the path if there are now more items available. 5312 */ 5313 if (nritems > 0 && path->slots[0] < nritems - 1) { 5314 if (ret == 0) 5315 path->slots[0]++; 5316 ret = 0; 5317 goto done; 5318 } 5319 /* 5320 * So the above check misses one case: 5321 * - after releasing the path above, someone has removed the item that 5322 * used to be at the very end of the block, and balance between leafs 5323 * gets another one with bigger key.offset to replace it. 5324 * 5325 * This one should be returned as well, or we can get leaf corruption 5326 * later(esp. in __btrfs_drop_extents()). 5327 * 5328 * And a bit more explanation about this check, 5329 * with ret > 0, the key isn't found, the path points to the slot 5330 * where it should be inserted, so the path->slots[0] item must be the 5331 * bigger one. 5332 */ 5333 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5334 ret = 0; 5335 goto done; 5336 } 5337 5338 while (level < BTRFS_MAX_LEVEL) { 5339 if (!path->nodes[level]) { 5340 ret = 1; 5341 goto done; 5342 } 5343 5344 slot = path->slots[level] + 1; 5345 c = path->nodes[level]; 5346 if (slot >= btrfs_header_nritems(c)) { 5347 level++; 5348 if (level == BTRFS_MAX_LEVEL) { 5349 ret = 1; 5350 goto done; 5351 } 5352 continue; 5353 } 5354 5355 if (next) { 5356 btrfs_tree_unlock_rw(next, next_rw_lock); 5357 free_extent_buffer(next); 5358 } 5359 5360 next = c; 5361 next_rw_lock = path->locks[level]; 5362 ret = read_block_for_search(root, path, &next, level, 5363 slot, &key); 5364 if (ret == -EAGAIN) 5365 goto again; 5366 5367 if (ret < 0) { 5368 btrfs_release_path(path); 5369 goto done; 5370 } 5371 5372 if (!path->skip_locking) { 5373 ret = btrfs_try_tree_read_lock(next); 5374 if (!ret && time_seq) { 5375 /* 5376 * If we don't get the lock, we may be racing 5377 * with push_leaf_left, holding that lock while 5378 * itself waiting for the leaf we've currently 5379 * locked. To solve this situation, we give up 5380 * on our lock and cycle. 5381 */ 5382 free_extent_buffer(next); 5383 btrfs_release_path(path); 5384 cond_resched(); 5385 goto again; 5386 } 5387 if (!ret) { 5388 btrfs_set_path_blocking(path); 5389 btrfs_tree_read_lock(next); 5390 } 5391 next_rw_lock = BTRFS_READ_LOCK; 5392 } 5393 break; 5394 } 5395 path->slots[level] = slot; 5396 while (1) { 5397 level--; 5398 c = path->nodes[level]; 5399 if (path->locks[level]) 5400 btrfs_tree_unlock_rw(c, path->locks[level]); 5401 5402 free_extent_buffer(c); 5403 path->nodes[level] = next; 5404 path->slots[level] = 0; 5405 if (!path->skip_locking) 5406 path->locks[level] = next_rw_lock; 5407 if (!level) 5408 break; 5409 5410 ret = read_block_for_search(root, path, &next, level, 5411 0, &key); 5412 if (ret == -EAGAIN) 5413 goto again; 5414 5415 if (ret < 0) { 5416 btrfs_release_path(path); 5417 goto done; 5418 } 5419 5420 if (!path->skip_locking) { 5421 ret = btrfs_try_tree_read_lock(next); 5422 if (!ret) { 5423 btrfs_set_path_blocking(path); 5424 btrfs_tree_read_lock(next); 5425 } 5426 next_rw_lock = BTRFS_READ_LOCK; 5427 } 5428 } 5429 ret = 0; 5430 done: 5431 unlock_up(path, 0, 1, 0, NULL); 5432 path->leave_spinning = old_spinning; 5433 if (!old_spinning) 5434 btrfs_set_path_blocking(path); 5435 5436 return ret; 5437 } 5438 5439 /* 5440 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5441 * searching until it gets past min_objectid or finds an item of 'type' 5442 * 5443 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5444 */ 5445 int btrfs_previous_item(struct btrfs_root *root, 5446 struct btrfs_path *path, u64 min_objectid, 5447 int type) 5448 { 5449 struct btrfs_key found_key; 5450 struct extent_buffer *leaf; 5451 u32 nritems; 5452 int ret; 5453 5454 while (1) { 5455 if (path->slots[0] == 0) { 5456 btrfs_set_path_blocking(path); 5457 ret = btrfs_prev_leaf(root, path); 5458 if (ret != 0) 5459 return ret; 5460 } else { 5461 path->slots[0]--; 5462 } 5463 leaf = path->nodes[0]; 5464 nritems = btrfs_header_nritems(leaf); 5465 if (nritems == 0) 5466 return 1; 5467 if (path->slots[0] == nritems) 5468 path->slots[0]--; 5469 5470 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5471 if (found_key.objectid < min_objectid) 5472 break; 5473 if (found_key.type == type) 5474 return 0; 5475 if (found_key.objectid == min_objectid && 5476 found_key.type < type) 5477 break; 5478 } 5479 return 1; 5480 } 5481 5482 /* 5483 * search in extent tree to find a previous Metadata/Data extent item with 5484 * min objecitd. 5485 * 5486 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5487 */ 5488 int btrfs_previous_extent_item(struct btrfs_root *root, 5489 struct btrfs_path *path, u64 min_objectid) 5490 { 5491 struct btrfs_key found_key; 5492 struct extent_buffer *leaf; 5493 u32 nritems; 5494 int ret; 5495 5496 while (1) { 5497 if (path->slots[0] == 0) { 5498 btrfs_set_path_blocking(path); 5499 ret = btrfs_prev_leaf(root, path); 5500 if (ret != 0) 5501 return ret; 5502 } else { 5503 path->slots[0]--; 5504 } 5505 leaf = path->nodes[0]; 5506 nritems = btrfs_header_nritems(leaf); 5507 if (nritems == 0) 5508 return 1; 5509 if (path->slots[0] == nritems) 5510 path->slots[0]--; 5511 5512 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5513 if (found_key.objectid < min_objectid) 5514 break; 5515 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5516 found_key.type == BTRFS_METADATA_ITEM_KEY) 5517 return 0; 5518 if (found_key.objectid == min_objectid && 5519 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5520 break; 5521 } 5522 return 1; 5523 } 5524