1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 41 int level, int slot); 42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 43 struct extent_buffer *eb); 44 45 struct btrfs_path *btrfs_alloc_path(void) 46 { 47 struct btrfs_path *path; 48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 49 return path; 50 } 51 52 /* 53 * set all locked nodes in the path to blocking locks. This should 54 * be done before scheduling 55 */ 56 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 57 { 58 int i; 59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 60 if (!p->nodes[i] || !p->locks[i]) 61 continue; 62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 63 if (p->locks[i] == BTRFS_READ_LOCK) 64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 65 else if (p->locks[i] == BTRFS_WRITE_LOCK) 66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 67 } 68 } 69 70 /* 71 * reset all the locked nodes in the patch to spinning locks. 72 * 73 * held is used to keep lockdep happy, when lockdep is enabled 74 * we set held to a blocking lock before we go around and 75 * retake all the spinlocks in the path. You can safely use NULL 76 * for held 77 */ 78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 79 struct extent_buffer *held, int held_rw) 80 { 81 int i; 82 83 if (held) { 84 btrfs_set_lock_blocking_rw(held, held_rw); 85 if (held_rw == BTRFS_WRITE_LOCK) 86 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 87 else if (held_rw == BTRFS_READ_LOCK) 88 held_rw = BTRFS_READ_LOCK_BLOCKING; 89 } 90 btrfs_set_path_blocking(p); 91 92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 93 if (p->nodes[i] && p->locks[i]) { 94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 96 p->locks[i] = BTRFS_WRITE_LOCK; 97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 98 p->locks[i] = BTRFS_READ_LOCK; 99 } 100 } 101 102 if (held) 103 btrfs_clear_lock_blocking_rw(held, held_rw); 104 } 105 106 /* this also releases the path */ 107 void btrfs_free_path(struct btrfs_path *p) 108 { 109 if (!p) 110 return; 111 btrfs_release_path(p); 112 kmem_cache_free(btrfs_path_cachep, p); 113 } 114 115 /* 116 * path release drops references on the extent buffers in the path 117 * and it drops any locks held by this path 118 * 119 * It is safe to call this on paths that no locks or extent buffers held. 120 */ 121 noinline void btrfs_release_path(struct btrfs_path *p) 122 { 123 int i; 124 125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 126 p->slots[i] = 0; 127 if (!p->nodes[i]) 128 continue; 129 if (p->locks[i]) { 130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 131 p->locks[i] = 0; 132 } 133 free_extent_buffer(p->nodes[i]); 134 p->nodes[i] = NULL; 135 } 136 } 137 138 /* 139 * safely gets a reference on the root node of a tree. A lock 140 * is not taken, so a concurrent writer may put a different node 141 * at the root of the tree. See btrfs_lock_root_node for the 142 * looping required. 143 * 144 * The extent buffer returned by this has a reference taken, so 145 * it won't disappear. It may stop being the root of the tree 146 * at any time because there are no locks held. 147 */ 148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 149 { 150 struct extent_buffer *eb; 151 152 while (1) { 153 rcu_read_lock(); 154 eb = rcu_dereference(root->node); 155 156 /* 157 * RCU really hurts here, we could free up the root node because 158 * it was cow'ed but we may not get the new root node yet so do 159 * the inc_not_zero dance and if it doesn't work then 160 * synchronize_rcu and try again. 161 */ 162 if (atomic_inc_not_zero(&eb->refs)) { 163 rcu_read_unlock(); 164 break; 165 } 166 rcu_read_unlock(); 167 synchronize_rcu(); 168 } 169 return eb; 170 } 171 172 /* loop around taking references on and locking the root node of the 173 * tree until you end up with a lock on the root. A locked buffer 174 * is returned, with a reference held. 175 */ 176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 177 { 178 struct extent_buffer *eb; 179 180 while (1) { 181 eb = btrfs_root_node(root); 182 btrfs_tree_lock(eb); 183 if (eb == root->node) 184 break; 185 btrfs_tree_unlock(eb); 186 free_extent_buffer(eb); 187 } 188 return eb; 189 } 190 191 /* loop around taking references on and locking the root node of the 192 * tree until you end up with a lock on the root. A locked buffer 193 * is returned, with a reference held. 194 */ 195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 196 { 197 struct extent_buffer *eb; 198 199 while (1) { 200 eb = btrfs_root_node(root); 201 btrfs_tree_read_lock(eb); 202 if (eb == root->node) 203 break; 204 btrfs_tree_read_unlock(eb); 205 free_extent_buffer(eb); 206 } 207 return eb; 208 } 209 210 /* cowonly root (everything not a reference counted cow subvolume), just get 211 * put onto a simple dirty list. transaction.c walks this to make sure they 212 * get properly updated on disk. 213 */ 214 static void add_root_to_dirty_list(struct btrfs_root *root) 215 { 216 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 217 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 218 return; 219 220 spin_lock(&root->fs_info->trans_lock); 221 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 222 /* Want the extent tree to be the last on the list */ 223 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID) 224 list_move_tail(&root->dirty_list, 225 &root->fs_info->dirty_cowonly_roots); 226 else 227 list_move(&root->dirty_list, 228 &root->fs_info->dirty_cowonly_roots); 229 } 230 spin_unlock(&root->fs_info->trans_lock); 231 } 232 233 /* 234 * used by snapshot creation to make a copy of a root for a tree with 235 * a given objectid. The buffer with the new root node is returned in 236 * cow_ret, and this func returns zero on success or a negative error code. 237 */ 238 int btrfs_copy_root(struct btrfs_trans_handle *trans, 239 struct btrfs_root *root, 240 struct extent_buffer *buf, 241 struct extent_buffer **cow_ret, u64 new_root_objectid) 242 { 243 struct extent_buffer *cow; 244 int ret = 0; 245 int level; 246 struct btrfs_disk_key disk_key; 247 248 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 249 trans->transid != root->fs_info->running_transaction->transid); 250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 251 trans->transid != root->last_trans); 252 253 level = btrfs_header_level(buf); 254 if (level == 0) 255 btrfs_item_key(buf, &disk_key, 0); 256 else 257 btrfs_node_key(buf, &disk_key, 0); 258 259 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 260 &disk_key, level, buf->start, 0); 261 if (IS_ERR(cow)) 262 return PTR_ERR(cow); 263 264 copy_extent_buffer(cow, buf, 0, 0, cow->len); 265 btrfs_set_header_bytenr(cow, cow->start); 266 btrfs_set_header_generation(cow, trans->transid); 267 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 268 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 269 BTRFS_HEADER_FLAG_RELOC); 270 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 271 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 272 else 273 btrfs_set_header_owner(cow, new_root_objectid); 274 275 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 276 BTRFS_FSID_SIZE); 277 278 WARN_ON(btrfs_header_generation(buf) > trans->transid); 279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 280 ret = btrfs_inc_ref(trans, root, cow, 1); 281 else 282 ret = btrfs_inc_ref(trans, root, cow, 0); 283 284 if (ret) 285 return ret; 286 287 btrfs_mark_buffer_dirty(cow); 288 *cow_ret = cow; 289 return 0; 290 } 291 292 enum mod_log_op { 293 MOD_LOG_KEY_REPLACE, 294 MOD_LOG_KEY_ADD, 295 MOD_LOG_KEY_REMOVE, 296 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 297 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 298 MOD_LOG_MOVE_KEYS, 299 MOD_LOG_ROOT_REPLACE, 300 }; 301 302 struct tree_mod_move { 303 int dst_slot; 304 int nr_items; 305 }; 306 307 struct tree_mod_root { 308 u64 logical; 309 u8 level; 310 }; 311 312 struct tree_mod_elem { 313 struct rb_node node; 314 u64 index; /* shifted logical */ 315 u64 seq; 316 enum mod_log_op op; 317 318 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 319 int slot; 320 321 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 322 u64 generation; 323 324 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 325 struct btrfs_disk_key key; 326 u64 blockptr; 327 328 /* this is used for op == MOD_LOG_MOVE_KEYS */ 329 struct tree_mod_move move; 330 331 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 332 struct tree_mod_root old_root; 333 }; 334 335 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 336 { 337 read_lock(&fs_info->tree_mod_log_lock); 338 } 339 340 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 341 { 342 read_unlock(&fs_info->tree_mod_log_lock); 343 } 344 345 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 346 { 347 write_lock(&fs_info->tree_mod_log_lock); 348 } 349 350 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 351 { 352 write_unlock(&fs_info->tree_mod_log_lock); 353 } 354 355 /* 356 * Pull a new tree mod seq number for our operation. 357 */ 358 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 359 { 360 return atomic64_inc_return(&fs_info->tree_mod_seq); 361 } 362 363 /* 364 * This adds a new blocker to the tree mod log's blocker list if the @elem 365 * passed does not already have a sequence number set. So when a caller expects 366 * to record tree modifications, it should ensure to set elem->seq to zero 367 * before calling btrfs_get_tree_mod_seq. 368 * Returns a fresh, unused tree log modification sequence number, even if no new 369 * blocker was added. 370 */ 371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 372 struct seq_list *elem) 373 { 374 tree_mod_log_write_lock(fs_info); 375 spin_lock(&fs_info->tree_mod_seq_lock); 376 if (!elem->seq) { 377 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 378 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 379 } 380 spin_unlock(&fs_info->tree_mod_seq_lock); 381 tree_mod_log_write_unlock(fs_info); 382 383 return elem->seq; 384 } 385 386 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 387 struct seq_list *elem) 388 { 389 struct rb_root *tm_root; 390 struct rb_node *node; 391 struct rb_node *next; 392 struct seq_list *cur_elem; 393 struct tree_mod_elem *tm; 394 u64 min_seq = (u64)-1; 395 u64 seq_putting = elem->seq; 396 397 if (!seq_putting) 398 return; 399 400 spin_lock(&fs_info->tree_mod_seq_lock); 401 list_del(&elem->list); 402 elem->seq = 0; 403 404 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 405 if (cur_elem->seq < min_seq) { 406 if (seq_putting > cur_elem->seq) { 407 /* 408 * blocker with lower sequence number exists, we 409 * cannot remove anything from the log 410 */ 411 spin_unlock(&fs_info->tree_mod_seq_lock); 412 return; 413 } 414 min_seq = cur_elem->seq; 415 } 416 } 417 spin_unlock(&fs_info->tree_mod_seq_lock); 418 419 /* 420 * anything that's lower than the lowest existing (read: blocked) 421 * sequence number can be removed from the tree. 422 */ 423 tree_mod_log_write_lock(fs_info); 424 tm_root = &fs_info->tree_mod_log; 425 for (node = rb_first(tm_root); node; node = next) { 426 next = rb_next(node); 427 tm = container_of(node, struct tree_mod_elem, node); 428 if (tm->seq > min_seq) 429 continue; 430 rb_erase(node, tm_root); 431 kfree(tm); 432 } 433 tree_mod_log_write_unlock(fs_info); 434 } 435 436 /* 437 * key order of the log: 438 * index -> sequence 439 * 440 * the index is the shifted logical of the *new* root node for root replace 441 * operations, or the shifted logical of the affected block for all other 442 * operations. 443 * 444 * Note: must be called with write lock (tree_mod_log_write_lock). 445 */ 446 static noinline int 447 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 448 { 449 struct rb_root *tm_root; 450 struct rb_node **new; 451 struct rb_node *parent = NULL; 452 struct tree_mod_elem *cur; 453 454 BUG_ON(!tm); 455 456 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 457 458 tm_root = &fs_info->tree_mod_log; 459 new = &tm_root->rb_node; 460 while (*new) { 461 cur = container_of(*new, struct tree_mod_elem, node); 462 parent = *new; 463 if (cur->index < tm->index) 464 new = &((*new)->rb_left); 465 else if (cur->index > tm->index) 466 new = &((*new)->rb_right); 467 else if (cur->seq < tm->seq) 468 new = &((*new)->rb_left); 469 else if (cur->seq > tm->seq) 470 new = &((*new)->rb_right); 471 else 472 return -EEXIST; 473 } 474 475 rb_link_node(&tm->node, parent, new); 476 rb_insert_color(&tm->node, tm_root); 477 return 0; 478 } 479 480 /* 481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 482 * returns zero with the tree_mod_log_lock acquired. The caller must hold 483 * this until all tree mod log insertions are recorded in the rb tree and then 484 * call tree_mod_log_write_unlock() to release. 485 */ 486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 487 struct extent_buffer *eb) { 488 smp_mb(); 489 if (list_empty(&(fs_info)->tree_mod_seq_list)) 490 return 1; 491 if (eb && btrfs_header_level(eb) == 0) 492 return 1; 493 494 tree_mod_log_write_lock(fs_info); 495 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 496 tree_mod_log_write_unlock(fs_info); 497 return 1; 498 } 499 500 return 0; 501 } 502 503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 505 struct extent_buffer *eb) 506 { 507 smp_mb(); 508 if (list_empty(&(fs_info)->tree_mod_seq_list)) 509 return 0; 510 if (eb && btrfs_header_level(eb) == 0) 511 return 0; 512 513 return 1; 514 } 515 516 static struct tree_mod_elem * 517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 518 enum mod_log_op op, gfp_t flags) 519 { 520 struct tree_mod_elem *tm; 521 522 tm = kzalloc(sizeof(*tm), flags); 523 if (!tm) 524 return NULL; 525 526 tm->index = eb->start >> PAGE_CACHE_SHIFT; 527 if (op != MOD_LOG_KEY_ADD) { 528 btrfs_node_key(eb, &tm->key, slot); 529 tm->blockptr = btrfs_node_blockptr(eb, slot); 530 } 531 tm->op = op; 532 tm->slot = slot; 533 tm->generation = btrfs_node_ptr_generation(eb, slot); 534 RB_CLEAR_NODE(&tm->node); 535 536 return tm; 537 } 538 539 static noinline int 540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 541 struct extent_buffer *eb, int slot, 542 enum mod_log_op op, gfp_t flags) 543 { 544 struct tree_mod_elem *tm; 545 int ret; 546 547 if (!tree_mod_need_log(fs_info, eb)) 548 return 0; 549 550 tm = alloc_tree_mod_elem(eb, slot, op, flags); 551 if (!tm) 552 return -ENOMEM; 553 554 if (tree_mod_dont_log(fs_info, eb)) { 555 kfree(tm); 556 return 0; 557 } 558 559 ret = __tree_mod_log_insert(fs_info, tm); 560 tree_mod_log_write_unlock(fs_info); 561 if (ret) 562 kfree(tm); 563 564 return ret; 565 } 566 567 static noinline int 568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 569 struct extent_buffer *eb, int dst_slot, int src_slot, 570 int nr_items, gfp_t flags) 571 { 572 struct tree_mod_elem *tm = NULL; 573 struct tree_mod_elem **tm_list = NULL; 574 int ret = 0; 575 int i; 576 int locked = 0; 577 578 if (!tree_mod_need_log(fs_info, eb)) 579 return 0; 580 581 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags); 582 if (!tm_list) 583 return -ENOMEM; 584 585 tm = kzalloc(sizeof(*tm), flags); 586 if (!tm) { 587 ret = -ENOMEM; 588 goto free_tms; 589 } 590 591 tm->index = eb->start >> PAGE_CACHE_SHIFT; 592 tm->slot = src_slot; 593 tm->move.dst_slot = dst_slot; 594 tm->move.nr_items = nr_items; 595 tm->op = MOD_LOG_MOVE_KEYS; 596 597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags); 600 if (!tm_list[i]) { 601 ret = -ENOMEM; 602 goto free_tms; 603 } 604 } 605 606 if (tree_mod_dont_log(fs_info, eb)) 607 goto free_tms; 608 locked = 1; 609 610 /* 611 * When we override something during the move, we log these removals. 612 * This can only happen when we move towards the beginning of the 613 * buffer, i.e. dst_slot < src_slot. 614 */ 615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 616 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 617 if (ret) 618 goto free_tms; 619 } 620 621 ret = __tree_mod_log_insert(fs_info, tm); 622 if (ret) 623 goto free_tms; 624 tree_mod_log_write_unlock(fs_info); 625 kfree(tm_list); 626 627 return 0; 628 free_tms: 629 for (i = 0; i < nr_items; i++) { 630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 632 kfree(tm_list[i]); 633 } 634 if (locked) 635 tree_mod_log_write_unlock(fs_info); 636 kfree(tm_list); 637 kfree(tm); 638 639 return ret; 640 } 641 642 static inline int 643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 644 struct tree_mod_elem **tm_list, 645 int nritems) 646 { 647 int i, j; 648 int ret; 649 650 for (i = nritems - 1; i >= 0; i--) { 651 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 652 if (ret) { 653 for (j = nritems - 1; j > i; j--) 654 rb_erase(&tm_list[j]->node, 655 &fs_info->tree_mod_log); 656 return ret; 657 } 658 } 659 660 return 0; 661 } 662 663 static noinline int 664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 665 struct extent_buffer *old_root, 666 struct extent_buffer *new_root, gfp_t flags, 667 int log_removal) 668 { 669 struct tree_mod_elem *tm = NULL; 670 struct tree_mod_elem **tm_list = NULL; 671 int nritems = 0; 672 int ret = 0; 673 int i; 674 675 if (!tree_mod_need_log(fs_info, NULL)) 676 return 0; 677 678 if (log_removal && btrfs_header_level(old_root) > 0) { 679 nritems = btrfs_header_nritems(old_root); 680 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 681 flags); 682 if (!tm_list) { 683 ret = -ENOMEM; 684 goto free_tms; 685 } 686 for (i = 0; i < nritems; i++) { 687 tm_list[i] = alloc_tree_mod_elem(old_root, i, 688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags); 689 if (!tm_list[i]) { 690 ret = -ENOMEM; 691 goto free_tms; 692 } 693 } 694 } 695 696 tm = kzalloc(sizeof(*tm), flags); 697 if (!tm) { 698 ret = -ENOMEM; 699 goto free_tms; 700 } 701 702 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 703 tm->old_root.logical = old_root->start; 704 tm->old_root.level = btrfs_header_level(old_root); 705 tm->generation = btrfs_header_generation(old_root); 706 tm->op = MOD_LOG_ROOT_REPLACE; 707 708 if (tree_mod_dont_log(fs_info, NULL)) 709 goto free_tms; 710 711 if (tm_list) 712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 713 if (!ret) 714 ret = __tree_mod_log_insert(fs_info, tm); 715 716 tree_mod_log_write_unlock(fs_info); 717 if (ret) 718 goto free_tms; 719 kfree(tm_list); 720 721 return ret; 722 723 free_tms: 724 if (tm_list) { 725 for (i = 0; i < nritems; i++) 726 kfree(tm_list[i]); 727 kfree(tm_list); 728 } 729 kfree(tm); 730 731 return ret; 732 } 733 734 static struct tree_mod_elem * 735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 736 int smallest) 737 { 738 struct rb_root *tm_root; 739 struct rb_node *node; 740 struct tree_mod_elem *cur = NULL; 741 struct tree_mod_elem *found = NULL; 742 u64 index = start >> PAGE_CACHE_SHIFT; 743 744 tree_mod_log_read_lock(fs_info); 745 tm_root = &fs_info->tree_mod_log; 746 node = tm_root->rb_node; 747 while (node) { 748 cur = container_of(node, struct tree_mod_elem, node); 749 if (cur->index < index) { 750 node = node->rb_left; 751 } else if (cur->index > index) { 752 node = node->rb_right; 753 } else if (cur->seq < min_seq) { 754 node = node->rb_left; 755 } else if (!smallest) { 756 /* we want the node with the highest seq */ 757 if (found) 758 BUG_ON(found->seq > cur->seq); 759 found = cur; 760 node = node->rb_left; 761 } else if (cur->seq > min_seq) { 762 /* we want the node with the smallest seq */ 763 if (found) 764 BUG_ON(found->seq < cur->seq); 765 found = cur; 766 node = node->rb_right; 767 } else { 768 found = cur; 769 break; 770 } 771 } 772 tree_mod_log_read_unlock(fs_info); 773 774 return found; 775 } 776 777 /* 778 * this returns the element from the log with the smallest time sequence 779 * value that's in the log (the oldest log item). any element with a time 780 * sequence lower than min_seq will be ignored. 781 */ 782 static struct tree_mod_elem * 783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 784 u64 min_seq) 785 { 786 return __tree_mod_log_search(fs_info, start, min_seq, 1); 787 } 788 789 /* 790 * this returns the element from the log with the largest time sequence 791 * value that's in the log (the most recent log item). any element with 792 * a time sequence lower than min_seq will be ignored. 793 */ 794 static struct tree_mod_elem * 795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 796 { 797 return __tree_mod_log_search(fs_info, start, min_seq, 0); 798 } 799 800 static noinline int 801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 802 struct extent_buffer *src, unsigned long dst_offset, 803 unsigned long src_offset, int nr_items) 804 { 805 int ret = 0; 806 struct tree_mod_elem **tm_list = NULL; 807 struct tree_mod_elem **tm_list_add, **tm_list_rem; 808 int i; 809 int locked = 0; 810 811 if (!tree_mod_need_log(fs_info, NULL)) 812 return 0; 813 814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 815 return 0; 816 817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 818 GFP_NOFS); 819 if (!tm_list) 820 return -ENOMEM; 821 822 tm_list_add = tm_list; 823 tm_list_rem = tm_list + nr_items; 824 for (i = 0; i < nr_items; i++) { 825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 826 MOD_LOG_KEY_REMOVE, GFP_NOFS); 827 if (!tm_list_rem[i]) { 828 ret = -ENOMEM; 829 goto free_tms; 830 } 831 832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 833 MOD_LOG_KEY_ADD, GFP_NOFS); 834 if (!tm_list_add[i]) { 835 ret = -ENOMEM; 836 goto free_tms; 837 } 838 } 839 840 if (tree_mod_dont_log(fs_info, NULL)) 841 goto free_tms; 842 locked = 1; 843 844 for (i = 0; i < nr_items; i++) { 845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 846 if (ret) 847 goto free_tms; 848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 849 if (ret) 850 goto free_tms; 851 } 852 853 tree_mod_log_write_unlock(fs_info); 854 kfree(tm_list); 855 856 return 0; 857 858 free_tms: 859 for (i = 0; i < nr_items * 2; i++) { 860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 862 kfree(tm_list[i]); 863 } 864 if (locked) 865 tree_mod_log_write_unlock(fs_info); 866 kfree(tm_list); 867 868 return ret; 869 } 870 871 static inline void 872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 873 int dst_offset, int src_offset, int nr_items) 874 { 875 int ret; 876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 877 nr_items, GFP_NOFS); 878 BUG_ON(ret < 0); 879 } 880 881 static noinline void 882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 883 struct extent_buffer *eb, int slot, int atomic) 884 { 885 int ret; 886 887 ret = tree_mod_log_insert_key(fs_info, eb, slot, 888 MOD_LOG_KEY_REPLACE, 889 atomic ? GFP_ATOMIC : GFP_NOFS); 890 BUG_ON(ret < 0); 891 } 892 893 static noinline int 894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 895 { 896 struct tree_mod_elem **tm_list = NULL; 897 int nritems = 0; 898 int i; 899 int ret = 0; 900 901 if (btrfs_header_level(eb) == 0) 902 return 0; 903 904 if (!tree_mod_need_log(fs_info, NULL)) 905 return 0; 906 907 nritems = btrfs_header_nritems(eb); 908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 909 if (!tm_list) 910 return -ENOMEM; 911 912 for (i = 0; i < nritems; i++) { 913 tm_list[i] = alloc_tree_mod_elem(eb, i, 914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 915 if (!tm_list[i]) { 916 ret = -ENOMEM; 917 goto free_tms; 918 } 919 } 920 921 if (tree_mod_dont_log(fs_info, eb)) 922 goto free_tms; 923 924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 925 tree_mod_log_write_unlock(fs_info); 926 if (ret) 927 goto free_tms; 928 kfree(tm_list); 929 930 return 0; 931 932 free_tms: 933 for (i = 0; i < nritems; i++) 934 kfree(tm_list[i]); 935 kfree(tm_list); 936 937 return ret; 938 } 939 940 static noinline void 941 tree_mod_log_set_root_pointer(struct btrfs_root *root, 942 struct extent_buffer *new_root_node, 943 int log_removal) 944 { 945 int ret; 946 ret = tree_mod_log_insert_root(root->fs_info, root->node, 947 new_root_node, GFP_NOFS, log_removal); 948 BUG_ON(ret < 0); 949 } 950 951 /* 952 * check if the tree block can be shared by multiple trees 953 */ 954 int btrfs_block_can_be_shared(struct btrfs_root *root, 955 struct extent_buffer *buf) 956 { 957 /* 958 * Tree blocks not in refernece counted trees and tree roots 959 * are never shared. If a block was allocated after the last 960 * snapshot and the block was not allocated by tree relocation, 961 * we know the block is not shared. 962 */ 963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 964 buf != root->node && buf != root->commit_root && 965 (btrfs_header_generation(buf) <= 966 btrfs_root_last_snapshot(&root->root_item) || 967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 968 return 1; 969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 972 return 1; 973 #endif 974 return 0; 975 } 976 977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 978 struct btrfs_root *root, 979 struct extent_buffer *buf, 980 struct extent_buffer *cow, 981 int *last_ref) 982 { 983 u64 refs; 984 u64 owner; 985 u64 flags; 986 u64 new_flags = 0; 987 int ret; 988 989 /* 990 * Backrefs update rules: 991 * 992 * Always use full backrefs for extent pointers in tree block 993 * allocated by tree relocation. 994 * 995 * If a shared tree block is no longer referenced by its owner 996 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 997 * use full backrefs for extent pointers in tree block. 998 * 999 * If a tree block is been relocating 1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 1001 * use full backrefs for extent pointers in tree block. 1002 * The reason for this is some operations (such as drop tree) 1003 * are only allowed for blocks use full backrefs. 1004 */ 1005 1006 if (btrfs_block_can_be_shared(root, buf)) { 1007 ret = btrfs_lookup_extent_info(trans, root, buf->start, 1008 btrfs_header_level(buf), 1, 1009 &refs, &flags); 1010 if (ret) 1011 return ret; 1012 if (refs == 0) { 1013 ret = -EROFS; 1014 btrfs_std_error(root->fs_info, ret); 1015 return ret; 1016 } 1017 } else { 1018 refs = 1; 1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1022 else 1023 flags = 0; 1024 } 1025 1026 owner = btrfs_header_owner(buf); 1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1029 1030 if (refs > 1) { 1031 if ((owner == root->root_key.objectid || 1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1034 ret = btrfs_inc_ref(trans, root, buf, 1); 1035 BUG_ON(ret); /* -ENOMEM */ 1036 1037 if (root->root_key.objectid == 1038 BTRFS_TREE_RELOC_OBJECTID) { 1039 ret = btrfs_dec_ref(trans, root, buf, 0); 1040 BUG_ON(ret); /* -ENOMEM */ 1041 ret = btrfs_inc_ref(trans, root, cow, 1); 1042 BUG_ON(ret); /* -ENOMEM */ 1043 } 1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1045 } else { 1046 1047 if (root->root_key.objectid == 1048 BTRFS_TREE_RELOC_OBJECTID) 1049 ret = btrfs_inc_ref(trans, root, cow, 1); 1050 else 1051 ret = btrfs_inc_ref(trans, root, cow, 0); 1052 BUG_ON(ret); /* -ENOMEM */ 1053 } 1054 if (new_flags != 0) { 1055 int level = btrfs_header_level(buf); 1056 1057 ret = btrfs_set_disk_extent_flags(trans, root, 1058 buf->start, 1059 buf->len, 1060 new_flags, level, 0); 1061 if (ret) 1062 return ret; 1063 } 1064 } else { 1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1066 if (root->root_key.objectid == 1067 BTRFS_TREE_RELOC_OBJECTID) 1068 ret = btrfs_inc_ref(trans, root, cow, 1); 1069 else 1070 ret = btrfs_inc_ref(trans, root, cow, 0); 1071 BUG_ON(ret); /* -ENOMEM */ 1072 ret = btrfs_dec_ref(trans, root, buf, 1); 1073 BUG_ON(ret); /* -ENOMEM */ 1074 } 1075 clean_tree_block(trans, root->fs_info, buf); 1076 *last_ref = 1; 1077 } 1078 return 0; 1079 } 1080 1081 /* 1082 * does the dirty work in cow of a single block. The parent block (if 1083 * supplied) is updated to point to the new cow copy. The new buffer is marked 1084 * dirty and returned locked. If you modify the block it needs to be marked 1085 * dirty again. 1086 * 1087 * search_start -- an allocation hint for the new block 1088 * 1089 * empty_size -- a hint that you plan on doing more cow. This is the size in 1090 * bytes the allocator should try to find free next to the block it returns. 1091 * This is just a hint and may be ignored by the allocator. 1092 */ 1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1094 struct btrfs_root *root, 1095 struct extent_buffer *buf, 1096 struct extent_buffer *parent, int parent_slot, 1097 struct extent_buffer **cow_ret, 1098 u64 search_start, u64 empty_size) 1099 { 1100 struct btrfs_disk_key disk_key; 1101 struct extent_buffer *cow; 1102 int level, ret; 1103 int last_ref = 0; 1104 int unlock_orig = 0; 1105 u64 parent_start; 1106 1107 if (*cow_ret == buf) 1108 unlock_orig = 1; 1109 1110 btrfs_assert_tree_locked(buf); 1111 1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1113 trans->transid != root->fs_info->running_transaction->transid); 1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1115 trans->transid != root->last_trans); 1116 1117 level = btrfs_header_level(buf); 1118 1119 if (level == 0) 1120 btrfs_item_key(buf, &disk_key, 0); 1121 else 1122 btrfs_node_key(buf, &disk_key, 0); 1123 1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 1125 if (parent) 1126 parent_start = parent->start; 1127 else 1128 parent_start = 0; 1129 } else 1130 parent_start = 0; 1131 1132 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1133 root->root_key.objectid, &disk_key, level, 1134 search_start, empty_size); 1135 if (IS_ERR(cow)) 1136 return PTR_ERR(cow); 1137 1138 /* cow is set to blocking by btrfs_init_new_buffer */ 1139 1140 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1141 btrfs_set_header_bytenr(cow, cow->start); 1142 btrfs_set_header_generation(cow, trans->transid); 1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1145 BTRFS_HEADER_FLAG_RELOC); 1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1148 else 1149 btrfs_set_header_owner(cow, root->root_key.objectid); 1150 1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 1152 BTRFS_FSID_SIZE); 1153 1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1155 if (ret) { 1156 btrfs_abort_transaction(trans, root, ret); 1157 return ret; 1158 } 1159 1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1162 if (ret) { 1163 btrfs_abort_transaction(trans, root, ret); 1164 return ret; 1165 } 1166 } 1167 1168 if (buf == root->node) { 1169 WARN_ON(parent && parent != buf); 1170 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1171 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1172 parent_start = buf->start; 1173 else 1174 parent_start = 0; 1175 1176 extent_buffer_get(cow); 1177 tree_mod_log_set_root_pointer(root, cow, 1); 1178 rcu_assign_pointer(root->node, cow); 1179 1180 btrfs_free_tree_block(trans, root, buf, parent_start, 1181 last_ref); 1182 free_extent_buffer(buf); 1183 add_root_to_dirty_list(root); 1184 } else { 1185 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1186 parent_start = parent->start; 1187 else 1188 parent_start = 0; 1189 1190 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1191 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1192 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1193 btrfs_set_node_blockptr(parent, parent_slot, 1194 cow->start); 1195 btrfs_set_node_ptr_generation(parent, parent_slot, 1196 trans->transid); 1197 btrfs_mark_buffer_dirty(parent); 1198 if (last_ref) { 1199 ret = tree_mod_log_free_eb(root->fs_info, buf); 1200 if (ret) { 1201 btrfs_abort_transaction(trans, root, ret); 1202 return ret; 1203 } 1204 } 1205 btrfs_free_tree_block(trans, root, buf, parent_start, 1206 last_ref); 1207 } 1208 if (unlock_orig) 1209 btrfs_tree_unlock(buf); 1210 free_extent_buffer_stale(buf); 1211 btrfs_mark_buffer_dirty(cow); 1212 *cow_ret = cow; 1213 return 0; 1214 } 1215 1216 /* 1217 * returns the logical address of the oldest predecessor of the given root. 1218 * entries older than time_seq are ignored. 1219 */ 1220 static struct tree_mod_elem * 1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1222 struct extent_buffer *eb_root, u64 time_seq) 1223 { 1224 struct tree_mod_elem *tm; 1225 struct tree_mod_elem *found = NULL; 1226 u64 root_logical = eb_root->start; 1227 int looped = 0; 1228 1229 if (!time_seq) 1230 return NULL; 1231 1232 /* 1233 * the very last operation that's logged for a root is the replacement 1234 * operation (if it is replaced at all). this has the index of the *new* 1235 * root, making it the very first operation that's logged for this root. 1236 */ 1237 while (1) { 1238 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1239 time_seq); 1240 if (!looped && !tm) 1241 return NULL; 1242 /* 1243 * if there are no tree operation for the oldest root, we simply 1244 * return it. this should only happen if that (old) root is at 1245 * level 0. 1246 */ 1247 if (!tm) 1248 break; 1249 1250 /* 1251 * if there's an operation that's not a root replacement, we 1252 * found the oldest version of our root. normally, we'll find a 1253 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1254 */ 1255 if (tm->op != MOD_LOG_ROOT_REPLACE) 1256 break; 1257 1258 found = tm; 1259 root_logical = tm->old_root.logical; 1260 looped = 1; 1261 } 1262 1263 /* if there's no old root to return, return what we found instead */ 1264 if (!found) 1265 found = tm; 1266 1267 return found; 1268 } 1269 1270 /* 1271 * tm is a pointer to the first operation to rewind within eb. then, all 1272 * previous operations will be rewinded (until we reach something older than 1273 * time_seq). 1274 */ 1275 static void 1276 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1277 u64 time_seq, struct tree_mod_elem *first_tm) 1278 { 1279 u32 n; 1280 struct rb_node *next; 1281 struct tree_mod_elem *tm = first_tm; 1282 unsigned long o_dst; 1283 unsigned long o_src; 1284 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1285 1286 n = btrfs_header_nritems(eb); 1287 tree_mod_log_read_lock(fs_info); 1288 while (tm && tm->seq >= time_seq) { 1289 /* 1290 * all the operations are recorded with the operator used for 1291 * the modification. as we're going backwards, we do the 1292 * opposite of each operation here. 1293 */ 1294 switch (tm->op) { 1295 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1296 BUG_ON(tm->slot < n); 1297 /* Fallthrough */ 1298 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1299 case MOD_LOG_KEY_REMOVE: 1300 btrfs_set_node_key(eb, &tm->key, tm->slot); 1301 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1302 btrfs_set_node_ptr_generation(eb, tm->slot, 1303 tm->generation); 1304 n++; 1305 break; 1306 case MOD_LOG_KEY_REPLACE: 1307 BUG_ON(tm->slot >= n); 1308 btrfs_set_node_key(eb, &tm->key, tm->slot); 1309 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1310 btrfs_set_node_ptr_generation(eb, tm->slot, 1311 tm->generation); 1312 break; 1313 case MOD_LOG_KEY_ADD: 1314 /* if a move operation is needed it's in the log */ 1315 n--; 1316 break; 1317 case MOD_LOG_MOVE_KEYS: 1318 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1319 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1320 memmove_extent_buffer(eb, o_dst, o_src, 1321 tm->move.nr_items * p_size); 1322 break; 1323 case MOD_LOG_ROOT_REPLACE: 1324 /* 1325 * this operation is special. for roots, this must be 1326 * handled explicitly before rewinding. 1327 * for non-roots, this operation may exist if the node 1328 * was a root: root A -> child B; then A gets empty and 1329 * B is promoted to the new root. in the mod log, we'll 1330 * have a root-replace operation for B, a tree block 1331 * that is no root. we simply ignore that operation. 1332 */ 1333 break; 1334 } 1335 next = rb_next(&tm->node); 1336 if (!next) 1337 break; 1338 tm = container_of(next, struct tree_mod_elem, node); 1339 if (tm->index != first_tm->index) 1340 break; 1341 } 1342 tree_mod_log_read_unlock(fs_info); 1343 btrfs_set_header_nritems(eb, n); 1344 } 1345 1346 /* 1347 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer 1348 * is returned. If rewind operations happen, a fresh buffer is returned. The 1349 * returned buffer is always read-locked. If the returned buffer is not the 1350 * input buffer, the lock on the input buffer is released and the input buffer 1351 * is freed (its refcount is decremented). 1352 */ 1353 static struct extent_buffer * 1354 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1355 struct extent_buffer *eb, u64 time_seq) 1356 { 1357 struct extent_buffer *eb_rewin; 1358 struct tree_mod_elem *tm; 1359 1360 if (!time_seq) 1361 return eb; 1362 1363 if (btrfs_header_level(eb) == 0) 1364 return eb; 1365 1366 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1367 if (!tm) 1368 return eb; 1369 1370 btrfs_set_path_blocking(path); 1371 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1372 1373 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1374 BUG_ON(tm->slot != 0); 1375 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1376 if (!eb_rewin) { 1377 btrfs_tree_read_unlock_blocking(eb); 1378 free_extent_buffer(eb); 1379 return NULL; 1380 } 1381 btrfs_set_header_bytenr(eb_rewin, eb->start); 1382 btrfs_set_header_backref_rev(eb_rewin, 1383 btrfs_header_backref_rev(eb)); 1384 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1385 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1386 } else { 1387 eb_rewin = btrfs_clone_extent_buffer(eb); 1388 if (!eb_rewin) { 1389 btrfs_tree_read_unlock_blocking(eb); 1390 free_extent_buffer(eb); 1391 return NULL; 1392 } 1393 } 1394 1395 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1396 btrfs_tree_read_unlock_blocking(eb); 1397 free_extent_buffer(eb); 1398 1399 extent_buffer_get(eb_rewin); 1400 btrfs_tree_read_lock(eb_rewin); 1401 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1402 WARN_ON(btrfs_header_nritems(eb_rewin) > 1403 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1404 1405 return eb_rewin; 1406 } 1407 1408 /* 1409 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1410 * value. If there are no changes, the current root->root_node is returned. If 1411 * anything changed in between, there's a fresh buffer allocated on which the 1412 * rewind operations are done. In any case, the returned buffer is read locked. 1413 * Returns NULL on error (with no locks held). 1414 */ 1415 static inline struct extent_buffer * 1416 get_old_root(struct btrfs_root *root, u64 time_seq) 1417 { 1418 struct tree_mod_elem *tm; 1419 struct extent_buffer *eb = NULL; 1420 struct extent_buffer *eb_root; 1421 struct extent_buffer *old; 1422 struct tree_mod_root *old_root = NULL; 1423 u64 old_generation = 0; 1424 u64 logical; 1425 1426 eb_root = btrfs_read_lock_root_node(root); 1427 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1428 if (!tm) 1429 return eb_root; 1430 1431 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1432 old_root = &tm->old_root; 1433 old_generation = tm->generation; 1434 logical = old_root->logical; 1435 } else { 1436 logical = eb_root->start; 1437 } 1438 1439 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1440 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1441 btrfs_tree_read_unlock(eb_root); 1442 free_extent_buffer(eb_root); 1443 old = read_tree_block(root, logical, 0); 1444 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1445 if (!IS_ERR(old)) 1446 free_extent_buffer(old); 1447 btrfs_warn(root->fs_info, 1448 "failed to read tree block %llu from get_old_root", logical); 1449 } else { 1450 eb = btrfs_clone_extent_buffer(old); 1451 free_extent_buffer(old); 1452 } 1453 } else if (old_root) { 1454 btrfs_tree_read_unlock(eb_root); 1455 free_extent_buffer(eb_root); 1456 eb = alloc_dummy_extent_buffer(root->fs_info, logical); 1457 } else { 1458 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1459 eb = btrfs_clone_extent_buffer(eb_root); 1460 btrfs_tree_read_unlock_blocking(eb_root); 1461 free_extent_buffer(eb_root); 1462 } 1463 1464 if (!eb) 1465 return NULL; 1466 extent_buffer_get(eb); 1467 btrfs_tree_read_lock(eb); 1468 if (old_root) { 1469 btrfs_set_header_bytenr(eb, eb->start); 1470 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1471 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1472 btrfs_set_header_level(eb, old_root->level); 1473 btrfs_set_header_generation(eb, old_generation); 1474 } 1475 if (tm) 1476 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1477 else 1478 WARN_ON(btrfs_header_level(eb) != 0); 1479 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1480 1481 return eb; 1482 } 1483 1484 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1485 { 1486 struct tree_mod_elem *tm; 1487 int level; 1488 struct extent_buffer *eb_root = btrfs_root_node(root); 1489 1490 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1491 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1492 level = tm->old_root.level; 1493 } else { 1494 level = btrfs_header_level(eb_root); 1495 } 1496 free_extent_buffer(eb_root); 1497 1498 return level; 1499 } 1500 1501 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1502 struct btrfs_root *root, 1503 struct extent_buffer *buf) 1504 { 1505 if (btrfs_test_is_dummy_root(root)) 1506 return 0; 1507 1508 /* ensure we can see the force_cow */ 1509 smp_rmb(); 1510 1511 /* 1512 * We do not need to cow a block if 1513 * 1) this block is not created or changed in this transaction; 1514 * 2) this block does not belong to TREE_RELOC tree; 1515 * 3) the root is not forced COW. 1516 * 1517 * What is forced COW: 1518 * when we create snapshot during commiting the transaction, 1519 * after we've finished coping src root, we must COW the shared 1520 * block to ensure the metadata consistency. 1521 */ 1522 if (btrfs_header_generation(buf) == trans->transid && 1523 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1524 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1525 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1526 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1527 return 0; 1528 return 1; 1529 } 1530 1531 /* 1532 * cows a single block, see __btrfs_cow_block for the real work. 1533 * This version of it has extra checks so that a block isn't cow'd more than 1534 * once per transaction, as long as it hasn't been written yet 1535 */ 1536 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1537 struct btrfs_root *root, struct extent_buffer *buf, 1538 struct extent_buffer *parent, int parent_slot, 1539 struct extent_buffer **cow_ret) 1540 { 1541 u64 search_start; 1542 int ret; 1543 1544 if (trans->transaction != root->fs_info->running_transaction) 1545 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1546 trans->transid, 1547 root->fs_info->running_transaction->transid); 1548 1549 if (trans->transid != root->fs_info->generation) 1550 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1551 trans->transid, root->fs_info->generation); 1552 1553 if (!should_cow_block(trans, root, buf)) { 1554 *cow_ret = buf; 1555 return 0; 1556 } 1557 1558 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1559 1560 if (parent) 1561 btrfs_set_lock_blocking(parent); 1562 btrfs_set_lock_blocking(buf); 1563 1564 ret = __btrfs_cow_block(trans, root, buf, parent, 1565 parent_slot, cow_ret, search_start, 0); 1566 1567 trace_btrfs_cow_block(root, buf, *cow_ret); 1568 1569 return ret; 1570 } 1571 1572 /* 1573 * helper function for defrag to decide if two blocks pointed to by a 1574 * node are actually close by 1575 */ 1576 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1577 { 1578 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1579 return 1; 1580 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1581 return 1; 1582 return 0; 1583 } 1584 1585 /* 1586 * compare two keys in a memcmp fashion 1587 */ 1588 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1589 { 1590 struct btrfs_key k1; 1591 1592 btrfs_disk_key_to_cpu(&k1, disk); 1593 1594 return btrfs_comp_cpu_keys(&k1, k2); 1595 } 1596 1597 /* 1598 * same as comp_keys only with two btrfs_key's 1599 */ 1600 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1601 { 1602 if (k1->objectid > k2->objectid) 1603 return 1; 1604 if (k1->objectid < k2->objectid) 1605 return -1; 1606 if (k1->type > k2->type) 1607 return 1; 1608 if (k1->type < k2->type) 1609 return -1; 1610 if (k1->offset > k2->offset) 1611 return 1; 1612 if (k1->offset < k2->offset) 1613 return -1; 1614 return 0; 1615 } 1616 1617 /* 1618 * this is used by the defrag code to go through all the 1619 * leaves pointed to by a node and reallocate them so that 1620 * disk order is close to key order 1621 */ 1622 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1623 struct btrfs_root *root, struct extent_buffer *parent, 1624 int start_slot, u64 *last_ret, 1625 struct btrfs_key *progress) 1626 { 1627 struct extent_buffer *cur; 1628 u64 blocknr; 1629 u64 gen; 1630 u64 search_start = *last_ret; 1631 u64 last_block = 0; 1632 u64 other; 1633 u32 parent_nritems; 1634 int end_slot; 1635 int i; 1636 int err = 0; 1637 int parent_level; 1638 int uptodate; 1639 u32 blocksize; 1640 int progress_passed = 0; 1641 struct btrfs_disk_key disk_key; 1642 1643 parent_level = btrfs_header_level(parent); 1644 1645 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1646 WARN_ON(trans->transid != root->fs_info->generation); 1647 1648 parent_nritems = btrfs_header_nritems(parent); 1649 blocksize = root->nodesize; 1650 end_slot = parent_nritems - 1; 1651 1652 if (parent_nritems <= 1) 1653 return 0; 1654 1655 btrfs_set_lock_blocking(parent); 1656 1657 for (i = start_slot; i <= end_slot; i++) { 1658 int close = 1; 1659 1660 btrfs_node_key(parent, &disk_key, i); 1661 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1662 continue; 1663 1664 progress_passed = 1; 1665 blocknr = btrfs_node_blockptr(parent, i); 1666 gen = btrfs_node_ptr_generation(parent, i); 1667 if (last_block == 0) 1668 last_block = blocknr; 1669 1670 if (i > 0) { 1671 other = btrfs_node_blockptr(parent, i - 1); 1672 close = close_blocks(blocknr, other, blocksize); 1673 } 1674 if (!close && i < end_slot) { 1675 other = btrfs_node_blockptr(parent, i + 1); 1676 close = close_blocks(blocknr, other, blocksize); 1677 } 1678 if (close) { 1679 last_block = blocknr; 1680 continue; 1681 } 1682 1683 cur = btrfs_find_tree_block(root->fs_info, blocknr); 1684 if (cur) 1685 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1686 else 1687 uptodate = 0; 1688 if (!cur || !uptodate) { 1689 if (!cur) { 1690 cur = read_tree_block(root, blocknr, gen); 1691 if (IS_ERR(cur)) { 1692 return PTR_ERR(cur); 1693 } else if (!extent_buffer_uptodate(cur)) { 1694 free_extent_buffer(cur); 1695 return -EIO; 1696 } 1697 } else if (!uptodate) { 1698 err = btrfs_read_buffer(cur, gen); 1699 if (err) { 1700 free_extent_buffer(cur); 1701 return err; 1702 } 1703 } 1704 } 1705 if (search_start == 0) 1706 search_start = last_block; 1707 1708 btrfs_tree_lock(cur); 1709 btrfs_set_lock_blocking(cur); 1710 err = __btrfs_cow_block(trans, root, cur, parent, i, 1711 &cur, search_start, 1712 min(16 * blocksize, 1713 (end_slot - i) * blocksize)); 1714 if (err) { 1715 btrfs_tree_unlock(cur); 1716 free_extent_buffer(cur); 1717 break; 1718 } 1719 search_start = cur->start; 1720 last_block = cur->start; 1721 *last_ret = search_start; 1722 btrfs_tree_unlock(cur); 1723 free_extent_buffer(cur); 1724 } 1725 return err; 1726 } 1727 1728 /* 1729 * The leaf data grows from end-to-front in the node. 1730 * this returns the address of the start of the last item, 1731 * which is the stop of the leaf data stack 1732 */ 1733 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1734 struct extent_buffer *leaf) 1735 { 1736 u32 nr = btrfs_header_nritems(leaf); 1737 if (nr == 0) 1738 return BTRFS_LEAF_DATA_SIZE(root); 1739 return btrfs_item_offset_nr(leaf, nr - 1); 1740 } 1741 1742 1743 /* 1744 * search for key in the extent_buffer. The items start at offset p, 1745 * and they are item_size apart. There are 'max' items in p. 1746 * 1747 * the slot in the array is returned via slot, and it points to 1748 * the place where you would insert key if it is not found in 1749 * the array. 1750 * 1751 * slot may point to max if the key is bigger than all of the keys 1752 */ 1753 static noinline int generic_bin_search(struct extent_buffer *eb, 1754 unsigned long p, 1755 int item_size, struct btrfs_key *key, 1756 int max, int *slot) 1757 { 1758 int low = 0; 1759 int high = max; 1760 int mid; 1761 int ret; 1762 struct btrfs_disk_key *tmp = NULL; 1763 struct btrfs_disk_key unaligned; 1764 unsigned long offset; 1765 char *kaddr = NULL; 1766 unsigned long map_start = 0; 1767 unsigned long map_len = 0; 1768 int err; 1769 1770 while (low < high) { 1771 mid = (low + high) / 2; 1772 offset = p + mid * item_size; 1773 1774 if (!kaddr || offset < map_start || 1775 (offset + sizeof(struct btrfs_disk_key)) > 1776 map_start + map_len) { 1777 1778 err = map_private_extent_buffer(eb, offset, 1779 sizeof(struct btrfs_disk_key), 1780 &kaddr, &map_start, &map_len); 1781 1782 if (!err) { 1783 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1784 map_start); 1785 } else { 1786 read_extent_buffer(eb, &unaligned, 1787 offset, sizeof(unaligned)); 1788 tmp = &unaligned; 1789 } 1790 1791 } else { 1792 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1793 map_start); 1794 } 1795 ret = comp_keys(tmp, key); 1796 1797 if (ret < 0) 1798 low = mid + 1; 1799 else if (ret > 0) 1800 high = mid; 1801 else { 1802 *slot = mid; 1803 return 0; 1804 } 1805 } 1806 *slot = low; 1807 return 1; 1808 } 1809 1810 /* 1811 * simple bin_search frontend that does the right thing for 1812 * leaves vs nodes 1813 */ 1814 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1815 int level, int *slot) 1816 { 1817 if (level == 0) 1818 return generic_bin_search(eb, 1819 offsetof(struct btrfs_leaf, items), 1820 sizeof(struct btrfs_item), 1821 key, btrfs_header_nritems(eb), 1822 slot); 1823 else 1824 return generic_bin_search(eb, 1825 offsetof(struct btrfs_node, ptrs), 1826 sizeof(struct btrfs_key_ptr), 1827 key, btrfs_header_nritems(eb), 1828 slot); 1829 } 1830 1831 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1832 int level, int *slot) 1833 { 1834 return bin_search(eb, key, level, slot); 1835 } 1836 1837 static void root_add_used(struct btrfs_root *root, u32 size) 1838 { 1839 spin_lock(&root->accounting_lock); 1840 btrfs_set_root_used(&root->root_item, 1841 btrfs_root_used(&root->root_item) + size); 1842 spin_unlock(&root->accounting_lock); 1843 } 1844 1845 static void root_sub_used(struct btrfs_root *root, u32 size) 1846 { 1847 spin_lock(&root->accounting_lock); 1848 btrfs_set_root_used(&root->root_item, 1849 btrfs_root_used(&root->root_item) - size); 1850 spin_unlock(&root->accounting_lock); 1851 } 1852 1853 /* given a node and slot number, this reads the blocks it points to. The 1854 * extent buffer is returned with a reference taken (but unlocked). 1855 * NULL is returned on error. 1856 */ 1857 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1858 struct extent_buffer *parent, int slot) 1859 { 1860 int level = btrfs_header_level(parent); 1861 struct extent_buffer *eb; 1862 1863 if (slot < 0) 1864 return NULL; 1865 if (slot >= btrfs_header_nritems(parent)) 1866 return NULL; 1867 1868 BUG_ON(level == 0); 1869 1870 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1871 btrfs_node_ptr_generation(parent, slot)); 1872 if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) { 1873 if (!IS_ERR(eb)) 1874 free_extent_buffer(eb); 1875 eb = NULL; 1876 } 1877 1878 return eb; 1879 } 1880 1881 /* 1882 * node level balancing, used to make sure nodes are in proper order for 1883 * item deletion. We balance from the top down, so we have to make sure 1884 * that a deletion won't leave an node completely empty later on. 1885 */ 1886 static noinline int balance_level(struct btrfs_trans_handle *trans, 1887 struct btrfs_root *root, 1888 struct btrfs_path *path, int level) 1889 { 1890 struct extent_buffer *right = NULL; 1891 struct extent_buffer *mid; 1892 struct extent_buffer *left = NULL; 1893 struct extent_buffer *parent = NULL; 1894 int ret = 0; 1895 int wret; 1896 int pslot; 1897 int orig_slot = path->slots[level]; 1898 u64 orig_ptr; 1899 1900 if (level == 0) 1901 return 0; 1902 1903 mid = path->nodes[level]; 1904 1905 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1906 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1907 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1908 1909 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1910 1911 if (level < BTRFS_MAX_LEVEL - 1) { 1912 parent = path->nodes[level + 1]; 1913 pslot = path->slots[level + 1]; 1914 } 1915 1916 /* 1917 * deal with the case where there is only one pointer in the root 1918 * by promoting the node below to a root 1919 */ 1920 if (!parent) { 1921 struct extent_buffer *child; 1922 1923 if (btrfs_header_nritems(mid) != 1) 1924 return 0; 1925 1926 /* promote the child to a root */ 1927 child = read_node_slot(root, mid, 0); 1928 if (!child) { 1929 ret = -EROFS; 1930 btrfs_std_error(root->fs_info, ret); 1931 goto enospc; 1932 } 1933 1934 btrfs_tree_lock(child); 1935 btrfs_set_lock_blocking(child); 1936 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1937 if (ret) { 1938 btrfs_tree_unlock(child); 1939 free_extent_buffer(child); 1940 goto enospc; 1941 } 1942 1943 tree_mod_log_set_root_pointer(root, child, 1); 1944 rcu_assign_pointer(root->node, child); 1945 1946 add_root_to_dirty_list(root); 1947 btrfs_tree_unlock(child); 1948 1949 path->locks[level] = 0; 1950 path->nodes[level] = NULL; 1951 clean_tree_block(trans, root->fs_info, mid); 1952 btrfs_tree_unlock(mid); 1953 /* once for the path */ 1954 free_extent_buffer(mid); 1955 1956 root_sub_used(root, mid->len); 1957 btrfs_free_tree_block(trans, root, mid, 0, 1); 1958 /* once for the root ptr */ 1959 free_extent_buffer_stale(mid); 1960 return 0; 1961 } 1962 if (btrfs_header_nritems(mid) > 1963 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1964 return 0; 1965 1966 left = read_node_slot(root, parent, pslot - 1); 1967 if (left) { 1968 btrfs_tree_lock(left); 1969 btrfs_set_lock_blocking(left); 1970 wret = btrfs_cow_block(trans, root, left, 1971 parent, pslot - 1, &left); 1972 if (wret) { 1973 ret = wret; 1974 goto enospc; 1975 } 1976 } 1977 right = read_node_slot(root, parent, pslot + 1); 1978 if (right) { 1979 btrfs_tree_lock(right); 1980 btrfs_set_lock_blocking(right); 1981 wret = btrfs_cow_block(trans, root, right, 1982 parent, pslot + 1, &right); 1983 if (wret) { 1984 ret = wret; 1985 goto enospc; 1986 } 1987 } 1988 1989 /* first, try to make some room in the middle buffer */ 1990 if (left) { 1991 orig_slot += btrfs_header_nritems(left); 1992 wret = push_node_left(trans, root, left, mid, 1); 1993 if (wret < 0) 1994 ret = wret; 1995 } 1996 1997 /* 1998 * then try to empty the right most buffer into the middle 1999 */ 2000 if (right) { 2001 wret = push_node_left(trans, root, mid, right, 1); 2002 if (wret < 0 && wret != -ENOSPC) 2003 ret = wret; 2004 if (btrfs_header_nritems(right) == 0) { 2005 clean_tree_block(trans, root->fs_info, right); 2006 btrfs_tree_unlock(right); 2007 del_ptr(root, path, level + 1, pslot + 1); 2008 root_sub_used(root, right->len); 2009 btrfs_free_tree_block(trans, root, right, 0, 1); 2010 free_extent_buffer_stale(right); 2011 right = NULL; 2012 } else { 2013 struct btrfs_disk_key right_key; 2014 btrfs_node_key(right, &right_key, 0); 2015 tree_mod_log_set_node_key(root->fs_info, parent, 2016 pslot + 1, 0); 2017 btrfs_set_node_key(parent, &right_key, pslot + 1); 2018 btrfs_mark_buffer_dirty(parent); 2019 } 2020 } 2021 if (btrfs_header_nritems(mid) == 1) { 2022 /* 2023 * we're not allowed to leave a node with one item in the 2024 * tree during a delete. A deletion from lower in the tree 2025 * could try to delete the only pointer in this node. 2026 * So, pull some keys from the left. 2027 * There has to be a left pointer at this point because 2028 * otherwise we would have pulled some pointers from the 2029 * right 2030 */ 2031 if (!left) { 2032 ret = -EROFS; 2033 btrfs_std_error(root->fs_info, ret); 2034 goto enospc; 2035 } 2036 wret = balance_node_right(trans, root, mid, left); 2037 if (wret < 0) { 2038 ret = wret; 2039 goto enospc; 2040 } 2041 if (wret == 1) { 2042 wret = push_node_left(trans, root, left, mid, 1); 2043 if (wret < 0) 2044 ret = wret; 2045 } 2046 BUG_ON(wret == 1); 2047 } 2048 if (btrfs_header_nritems(mid) == 0) { 2049 clean_tree_block(trans, root->fs_info, mid); 2050 btrfs_tree_unlock(mid); 2051 del_ptr(root, path, level + 1, pslot); 2052 root_sub_used(root, mid->len); 2053 btrfs_free_tree_block(trans, root, mid, 0, 1); 2054 free_extent_buffer_stale(mid); 2055 mid = NULL; 2056 } else { 2057 /* update the parent key to reflect our changes */ 2058 struct btrfs_disk_key mid_key; 2059 btrfs_node_key(mid, &mid_key, 0); 2060 tree_mod_log_set_node_key(root->fs_info, parent, 2061 pslot, 0); 2062 btrfs_set_node_key(parent, &mid_key, pslot); 2063 btrfs_mark_buffer_dirty(parent); 2064 } 2065 2066 /* update the path */ 2067 if (left) { 2068 if (btrfs_header_nritems(left) > orig_slot) { 2069 extent_buffer_get(left); 2070 /* left was locked after cow */ 2071 path->nodes[level] = left; 2072 path->slots[level + 1] -= 1; 2073 path->slots[level] = orig_slot; 2074 if (mid) { 2075 btrfs_tree_unlock(mid); 2076 free_extent_buffer(mid); 2077 } 2078 } else { 2079 orig_slot -= btrfs_header_nritems(left); 2080 path->slots[level] = orig_slot; 2081 } 2082 } 2083 /* double check we haven't messed things up */ 2084 if (orig_ptr != 2085 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2086 BUG(); 2087 enospc: 2088 if (right) { 2089 btrfs_tree_unlock(right); 2090 free_extent_buffer(right); 2091 } 2092 if (left) { 2093 if (path->nodes[level] != left) 2094 btrfs_tree_unlock(left); 2095 free_extent_buffer(left); 2096 } 2097 return ret; 2098 } 2099 2100 /* Node balancing for insertion. Here we only split or push nodes around 2101 * when they are completely full. This is also done top down, so we 2102 * have to be pessimistic. 2103 */ 2104 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2105 struct btrfs_root *root, 2106 struct btrfs_path *path, int level) 2107 { 2108 struct extent_buffer *right = NULL; 2109 struct extent_buffer *mid; 2110 struct extent_buffer *left = NULL; 2111 struct extent_buffer *parent = NULL; 2112 int ret = 0; 2113 int wret; 2114 int pslot; 2115 int orig_slot = path->slots[level]; 2116 2117 if (level == 0) 2118 return 1; 2119 2120 mid = path->nodes[level]; 2121 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2122 2123 if (level < BTRFS_MAX_LEVEL - 1) { 2124 parent = path->nodes[level + 1]; 2125 pslot = path->slots[level + 1]; 2126 } 2127 2128 if (!parent) 2129 return 1; 2130 2131 left = read_node_slot(root, parent, pslot - 1); 2132 2133 /* first, try to make some room in the middle buffer */ 2134 if (left) { 2135 u32 left_nr; 2136 2137 btrfs_tree_lock(left); 2138 btrfs_set_lock_blocking(left); 2139 2140 left_nr = btrfs_header_nritems(left); 2141 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2142 wret = 1; 2143 } else { 2144 ret = btrfs_cow_block(trans, root, left, parent, 2145 pslot - 1, &left); 2146 if (ret) 2147 wret = 1; 2148 else { 2149 wret = push_node_left(trans, root, 2150 left, mid, 0); 2151 } 2152 } 2153 if (wret < 0) 2154 ret = wret; 2155 if (wret == 0) { 2156 struct btrfs_disk_key disk_key; 2157 orig_slot += left_nr; 2158 btrfs_node_key(mid, &disk_key, 0); 2159 tree_mod_log_set_node_key(root->fs_info, parent, 2160 pslot, 0); 2161 btrfs_set_node_key(parent, &disk_key, pslot); 2162 btrfs_mark_buffer_dirty(parent); 2163 if (btrfs_header_nritems(left) > orig_slot) { 2164 path->nodes[level] = left; 2165 path->slots[level + 1] -= 1; 2166 path->slots[level] = orig_slot; 2167 btrfs_tree_unlock(mid); 2168 free_extent_buffer(mid); 2169 } else { 2170 orig_slot -= 2171 btrfs_header_nritems(left); 2172 path->slots[level] = orig_slot; 2173 btrfs_tree_unlock(left); 2174 free_extent_buffer(left); 2175 } 2176 return 0; 2177 } 2178 btrfs_tree_unlock(left); 2179 free_extent_buffer(left); 2180 } 2181 right = read_node_slot(root, parent, pslot + 1); 2182 2183 /* 2184 * then try to empty the right most buffer into the middle 2185 */ 2186 if (right) { 2187 u32 right_nr; 2188 2189 btrfs_tree_lock(right); 2190 btrfs_set_lock_blocking(right); 2191 2192 right_nr = btrfs_header_nritems(right); 2193 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2194 wret = 1; 2195 } else { 2196 ret = btrfs_cow_block(trans, root, right, 2197 parent, pslot + 1, 2198 &right); 2199 if (ret) 2200 wret = 1; 2201 else { 2202 wret = balance_node_right(trans, root, 2203 right, mid); 2204 } 2205 } 2206 if (wret < 0) 2207 ret = wret; 2208 if (wret == 0) { 2209 struct btrfs_disk_key disk_key; 2210 2211 btrfs_node_key(right, &disk_key, 0); 2212 tree_mod_log_set_node_key(root->fs_info, parent, 2213 pslot + 1, 0); 2214 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2215 btrfs_mark_buffer_dirty(parent); 2216 2217 if (btrfs_header_nritems(mid) <= orig_slot) { 2218 path->nodes[level] = right; 2219 path->slots[level + 1] += 1; 2220 path->slots[level] = orig_slot - 2221 btrfs_header_nritems(mid); 2222 btrfs_tree_unlock(mid); 2223 free_extent_buffer(mid); 2224 } else { 2225 btrfs_tree_unlock(right); 2226 free_extent_buffer(right); 2227 } 2228 return 0; 2229 } 2230 btrfs_tree_unlock(right); 2231 free_extent_buffer(right); 2232 } 2233 return 1; 2234 } 2235 2236 /* 2237 * readahead one full node of leaves, finding things that are close 2238 * to the block in 'slot', and triggering ra on them. 2239 */ 2240 static void reada_for_search(struct btrfs_root *root, 2241 struct btrfs_path *path, 2242 int level, int slot, u64 objectid) 2243 { 2244 struct extent_buffer *node; 2245 struct btrfs_disk_key disk_key; 2246 u32 nritems; 2247 u64 search; 2248 u64 target; 2249 u64 nread = 0; 2250 u64 gen; 2251 int direction = path->reada; 2252 struct extent_buffer *eb; 2253 u32 nr; 2254 u32 blocksize; 2255 u32 nscan = 0; 2256 2257 if (level != 1) 2258 return; 2259 2260 if (!path->nodes[level]) 2261 return; 2262 2263 node = path->nodes[level]; 2264 2265 search = btrfs_node_blockptr(node, slot); 2266 blocksize = root->nodesize; 2267 eb = btrfs_find_tree_block(root->fs_info, search); 2268 if (eb) { 2269 free_extent_buffer(eb); 2270 return; 2271 } 2272 2273 target = search; 2274 2275 nritems = btrfs_header_nritems(node); 2276 nr = slot; 2277 2278 while (1) { 2279 if (direction < 0) { 2280 if (nr == 0) 2281 break; 2282 nr--; 2283 } else if (direction > 0) { 2284 nr++; 2285 if (nr >= nritems) 2286 break; 2287 } 2288 if (path->reada < 0 && objectid) { 2289 btrfs_node_key(node, &disk_key, nr); 2290 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2291 break; 2292 } 2293 search = btrfs_node_blockptr(node, nr); 2294 if ((search <= target && target - search <= 65536) || 2295 (search > target && search - target <= 65536)) { 2296 gen = btrfs_node_ptr_generation(node, nr); 2297 readahead_tree_block(root, search); 2298 nread += blocksize; 2299 } 2300 nscan++; 2301 if ((nread > 65536 || nscan > 32)) 2302 break; 2303 } 2304 } 2305 2306 static noinline void reada_for_balance(struct btrfs_root *root, 2307 struct btrfs_path *path, int level) 2308 { 2309 int slot; 2310 int nritems; 2311 struct extent_buffer *parent; 2312 struct extent_buffer *eb; 2313 u64 gen; 2314 u64 block1 = 0; 2315 u64 block2 = 0; 2316 2317 parent = path->nodes[level + 1]; 2318 if (!parent) 2319 return; 2320 2321 nritems = btrfs_header_nritems(parent); 2322 slot = path->slots[level + 1]; 2323 2324 if (slot > 0) { 2325 block1 = btrfs_node_blockptr(parent, slot - 1); 2326 gen = btrfs_node_ptr_generation(parent, slot - 1); 2327 eb = btrfs_find_tree_block(root->fs_info, block1); 2328 /* 2329 * if we get -eagain from btrfs_buffer_uptodate, we 2330 * don't want to return eagain here. That will loop 2331 * forever 2332 */ 2333 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2334 block1 = 0; 2335 free_extent_buffer(eb); 2336 } 2337 if (slot + 1 < nritems) { 2338 block2 = btrfs_node_blockptr(parent, slot + 1); 2339 gen = btrfs_node_ptr_generation(parent, slot + 1); 2340 eb = btrfs_find_tree_block(root->fs_info, block2); 2341 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2342 block2 = 0; 2343 free_extent_buffer(eb); 2344 } 2345 2346 if (block1) 2347 readahead_tree_block(root, block1); 2348 if (block2) 2349 readahead_tree_block(root, block2); 2350 } 2351 2352 2353 /* 2354 * when we walk down the tree, it is usually safe to unlock the higher layers 2355 * in the tree. The exceptions are when our path goes through slot 0, because 2356 * operations on the tree might require changing key pointers higher up in the 2357 * tree. 2358 * 2359 * callers might also have set path->keep_locks, which tells this code to keep 2360 * the lock if the path points to the last slot in the block. This is part of 2361 * walking through the tree, and selecting the next slot in the higher block. 2362 * 2363 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2364 * if lowest_unlock is 1, level 0 won't be unlocked 2365 */ 2366 static noinline void unlock_up(struct btrfs_path *path, int level, 2367 int lowest_unlock, int min_write_lock_level, 2368 int *write_lock_level) 2369 { 2370 int i; 2371 int skip_level = level; 2372 int no_skips = 0; 2373 struct extent_buffer *t; 2374 2375 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2376 if (!path->nodes[i]) 2377 break; 2378 if (!path->locks[i]) 2379 break; 2380 if (!no_skips && path->slots[i] == 0) { 2381 skip_level = i + 1; 2382 continue; 2383 } 2384 if (!no_skips && path->keep_locks) { 2385 u32 nritems; 2386 t = path->nodes[i]; 2387 nritems = btrfs_header_nritems(t); 2388 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2389 skip_level = i + 1; 2390 continue; 2391 } 2392 } 2393 if (skip_level < i && i >= lowest_unlock) 2394 no_skips = 1; 2395 2396 t = path->nodes[i]; 2397 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2398 btrfs_tree_unlock_rw(t, path->locks[i]); 2399 path->locks[i] = 0; 2400 if (write_lock_level && 2401 i > min_write_lock_level && 2402 i <= *write_lock_level) { 2403 *write_lock_level = i - 1; 2404 } 2405 } 2406 } 2407 } 2408 2409 /* 2410 * This releases any locks held in the path starting at level and 2411 * going all the way up to the root. 2412 * 2413 * btrfs_search_slot will keep the lock held on higher nodes in a few 2414 * corner cases, such as COW of the block at slot zero in the node. This 2415 * ignores those rules, and it should only be called when there are no 2416 * more updates to be done higher up in the tree. 2417 */ 2418 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2419 { 2420 int i; 2421 2422 if (path->keep_locks) 2423 return; 2424 2425 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2426 if (!path->nodes[i]) 2427 continue; 2428 if (!path->locks[i]) 2429 continue; 2430 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2431 path->locks[i] = 0; 2432 } 2433 } 2434 2435 /* 2436 * helper function for btrfs_search_slot. The goal is to find a block 2437 * in cache without setting the path to blocking. If we find the block 2438 * we return zero and the path is unchanged. 2439 * 2440 * If we can't find the block, we set the path blocking and do some 2441 * reada. -EAGAIN is returned and the search must be repeated. 2442 */ 2443 static int 2444 read_block_for_search(struct btrfs_trans_handle *trans, 2445 struct btrfs_root *root, struct btrfs_path *p, 2446 struct extent_buffer **eb_ret, int level, int slot, 2447 struct btrfs_key *key, u64 time_seq) 2448 { 2449 u64 blocknr; 2450 u64 gen; 2451 struct extent_buffer *b = *eb_ret; 2452 struct extent_buffer *tmp; 2453 int ret; 2454 2455 blocknr = btrfs_node_blockptr(b, slot); 2456 gen = btrfs_node_ptr_generation(b, slot); 2457 2458 tmp = btrfs_find_tree_block(root->fs_info, blocknr); 2459 if (tmp) { 2460 /* first we do an atomic uptodate check */ 2461 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2462 *eb_ret = tmp; 2463 return 0; 2464 } 2465 2466 /* the pages were up to date, but we failed 2467 * the generation number check. Do a full 2468 * read for the generation number that is correct. 2469 * We must do this without dropping locks so 2470 * we can trust our generation number 2471 */ 2472 btrfs_set_path_blocking(p); 2473 2474 /* now we're allowed to do a blocking uptodate check */ 2475 ret = btrfs_read_buffer(tmp, gen); 2476 if (!ret) { 2477 *eb_ret = tmp; 2478 return 0; 2479 } 2480 free_extent_buffer(tmp); 2481 btrfs_release_path(p); 2482 return -EIO; 2483 } 2484 2485 /* 2486 * reduce lock contention at high levels 2487 * of the btree by dropping locks before 2488 * we read. Don't release the lock on the current 2489 * level because we need to walk this node to figure 2490 * out which blocks to read. 2491 */ 2492 btrfs_unlock_up_safe(p, level + 1); 2493 btrfs_set_path_blocking(p); 2494 2495 free_extent_buffer(tmp); 2496 if (p->reada) 2497 reada_for_search(root, p, level, slot, key->objectid); 2498 2499 btrfs_release_path(p); 2500 2501 ret = -EAGAIN; 2502 tmp = read_tree_block(root, blocknr, 0); 2503 if (!IS_ERR(tmp)) { 2504 /* 2505 * If the read above didn't mark this buffer up to date, 2506 * it will never end up being up to date. Set ret to EIO now 2507 * and give up so that our caller doesn't loop forever 2508 * on our EAGAINs. 2509 */ 2510 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2511 ret = -EIO; 2512 free_extent_buffer(tmp); 2513 } 2514 return ret; 2515 } 2516 2517 /* 2518 * helper function for btrfs_search_slot. This does all of the checks 2519 * for node-level blocks and does any balancing required based on 2520 * the ins_len. 2521 * 2522 * If no extra work was required, zero is returned. If we had to 2523 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2524 * start over 2525 */ 2526 static int 2527 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2528 struct btrfs_root *root, struct btrfs_path *p, 2529 struct extent_buffer *b, int level, int ins_len, 2530 int *write_lock_level) 2531 { 2532 int ret; 2533 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2534 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2535 int sret; 2536 2537 if (*write_lock_level < level + 1) { 2538 *write_lock_level = level + 1; 2539 btrfs_release_path(p); 2540 goto again; 2541 } 2542 2543 btrfs_set_path_blocking(p); 2544 reada_for_balance(root, p, level); 2545 sret = split_node(trans, root, p, level); 2546 btrfs_clear_path_blocking(p, NULL, 0); 2547 2548 BUG_ON(sret > 0); 2549 if (sret) { 2550 ret = sret; 2551 goto done; 2552 } 2553 b = p->nodes[level]; 2554 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2555 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2556 int sret; 2557 2558 if (*write_lock_level < level + 1) { 2559 *write_lock_level = level + 1; 2560 btrfs_release_path(p); 2561 goto again; 2562 } 2563 2564 btrfs_set_path_blocking(p); 2565 reada_for_balance(root, p, level); 2566 sret = balance_level(trans, root, p, level); 2567 btrfs_clear_path_blocking(p, NULL, 0); 2568 2569 if (sret) { 2570 ret = sret; 2571 goto done; 2572 } 2573 b = p->nodes[level]; 2574 if (!b) { 2575 btrfs_release_path(p); 2576 goto again; 2577 } 2578 BUG_ON(btrfs_header_nritems(b) == 1); 2579 } 2580 return 0; 2581 2582 again: 2583 ret = -EAGAIN; 2584 done: 2585 return ret; 2586 } 2587 2588 static void key_search_validate(struct extent_buffer *b, 2589 struct btrfs_key *key, 2590 int level) 2591 { 2592 #ifdef CONFIG_BTRFS_ASSERT 2593 struct btrfs_disk_key disk_key; 2594 2595 btrfs_cpu_key_to_disk(&disk_key, key); 2596 2597 if (level == 0) 2598 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2599 offsetof(struct btrfs_leaf, items[0].key), 2600 sizeof(disk_key))); 2601 else 2602 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2603 offsetof(struct btrfs_node, ptrs[0].key), 2604 sizeof(disk_key))); 2605 #endif 2606 } 2607 2608 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2609 int level, int *prev_cmp, int *slot) 2610 { 2611 if (*prev_cmp != 0) { 2612 *prev_cmp = bin_search(b, key, level, slot); 2613 return *prev_cmp; 2614 } 2615 2616 key_search_validate(b, key, level); 2617 *slot = 0; 2618 2619 return 0; 2620 } 2621 2622 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2623 u64 iobjectid, u64 ioff, u8 key_type, 2624 struct btrfs_key *found_key) 2625 { 2626 int ret; 2627 struct btrfs_key key; 2628 struct extent_buffer *eb; 2629 2630 ASSERT(path); 2631 ASSERT(found_key); 2632 2633 key.type = key_type; 2634 key.objectid = iobjectid; 2635 key.offset = ioff; 2636 2637 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2638 if (ret < 0) 2639 return ret; 2640 2641 eb = path->nodes[0]; 2642 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2643 ret = btrfs_next_leaf(fs_root, path); 2644 if (ret) 2645 return ret; 2646 eb = path->nodes[0]; 2647 } 2648 2649 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2650 if (found_key->type != key.type || 2651 found_key->objectid != key.objectid) 2652 return 1; 2653 2654 return 0; 2655 } 2656 2657 /* 2658 * look for key in the tree. path is filled in with nodes along the way 2659 * if key is found, we return zero and you can find the item in the leaf 2660 * level of the path (level 0) 2661 * 2662 * If the key isn't found, the path points to the slot where it should 2663 * be inserted, and 1 is returned. If there are other errors during the 2664 * search a negative error number is returned. 2665 * 2666 * if ins_len > 0, nodes and leaves will be split as we walk down the 2667 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2668 * possible) 2669 */ 2670 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2671 *root, struct btrfs_key *key, struct btrfs_path *p, int 2672 ins_len, int cow) 2673 { 2674 struct extent_buffer *b; 2675 int slot; 2676 int ret; 2677 int err; 2678 int level; 2679 int lowest_unlock = 1; 2680 int root_lock; 2681 /* everything at write_lock_level or lower must be write locked */ 2682 int write_lock_level = 0; 2683 u8 lowest_level = 0; 2684 int min_write_lock_level; 2685 int prev_cmp; 2686 2687 lowest_level = p->lowest_level; 2688 WARN_ON(lowest_level && ins_len > 0); 2689 WARN_ON(p->nodes[0] != NULL); 2690 BUG_ON(!cow && ins_len); 2691 2692 if (ins_len < 0) { 2693 lowest_unlock = 2; 2694 2695 /* when we are removing items, we might have to go up to level 2696 * two as we update tree pointers Make sure we keep write 2697 * for those levels as well 2698 */ 2699 write_lock_level = 2; 2700 } else if (ins_len > 0) { 2701 /* 2702 * for inserting items, make sure we have a write lock on 2703 * level 1 so we can update keys 2704 */ 2705 write_lock_level = 1; 2706 } 2707 2708 if (!cow) 2709 write_lock_level = -1; 2710 2711 if (cow && (p->keep_locks || p->lowest_level)) 2712 write_lock_level = BTRFS_MAX_LEVEL; 2713 2714 min_write_lock_level = write_lock_level; 2715 2716 again: 2717 prev_cmp = -1; 2718 /* 2719 * we try very hard to do read locks on the root 2720 */ 2721 root_lock = BTRFS_READ_LOCK; 2722 level = 0; 2723 if (p->search_commit_root) { 2724 /* 2725 * the commit roots are read only 2726 * so we always do read locks 2727 */ 2728 if (p->need_commit_sem) 2729 down_read(&root->fs_info->commit_root_sem); 2730 b = root->commit_root; 2731 extent_buffer_get(b); 2732 level = btrfs_header_level(b); 2733 if (p->need_commit_sem) 2734 up_read(&root->fs_info->commit_root_sem); 2735 if (!p->skip_locking) 2736 btrfs_tree_read_lock(b); 2737 } else { 2738 if (p->skip_locking) { 2739 b = btrfs_root_node(root); 2740 level = btrfs_header_level(b); 2741 } else { 2742 /* we don't know the level of the root node 2743 * until we actually have it read locked 2744 */ 2745 b = btrfs_read_lock_root_node(root); 2746 level = btrfs_header_level(b); 2747 if (level <= write_lock_level) { 2748 /* whoops, must trade for write lock */ 2749 btrfs_tree_read_unlock(b); 2750 free_extent_buffer(b); 2751 b = btrfs_lock_root_node(root); 2752 root_lock = BTRFS_WRITE_LOCK; 2753 2754 /* the level might have changed, check again */ 2755 level = btrfs_header_level(b); 2756 } 2757 } 2758 } 2759 p->nodes[level] = b; 2760 if (!p->skip_locking) 2761 p->locks[level] = root_lock; 2762 2763 while (b) { 2764 level = btrfs_header_level(b); 2765 2766 /* 2767 * setup the path here so we can release it under lock 2768 * contention with the cow code 2769 */ 2770 if (cow) { 2771 /* 2772 * if we don't really need to cow this block 2773 * then we don't want to set the path blocking, 2774 * so we test it here 2775 */ 2776 if (!should_cow_block(trans, root, b)) 2777 goto cow_done; 2778 2779 /* 2780 * must have write locks on this node and the 2781 * parent 2782 */ 2783 if (level > write_lock_level || 2784 (level + 1 > write_lock_level && 2785 level + 1 < BTRFS_MAX_LEVEL && 2786 p->nodes[level + 1])) { 2787 write_lock_level = level + 1; 2788 btrfs_release_path(p); 2789 goto again; 2790 } 2791 2792 btrfs_set_path_blocking(p); 2793 err = btrfs_cow_block(trans, root, b, 2794 p->nodes[level + 1], 2795 p->slots[level + 1], &b); 2796 if (err) { 2797 ret = err; 2798 goto done; 2799 } 2800 } 2801 cow_done: 2802 p->nodes[level] = b; 2803 btrfs_clear_path_blocking(p, NULL, 0); 2804 2805 /* 2806 * we have a lock on b and as long as we aren't changing 2807 * the tree, there is no way to for the items in b to change. 2808 * It is safe to drop the lock on our parent before we 2809 * go through the expensive btree search on b. 2810 * 2811 * If we're inserting or deleting (ins_len != 0), then we might 2812 * be changing slot zero, which may require changing the parent. 2813 * So, we can't drop the lock until after we know which slot 2814 * we're operating on. 2815 */ 2816 if (!ins_len && !p->keep_locks) { 2817 int u = level + 1; 2818 2819 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2820 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2821 p->locks[u] = 0; 2822 } 2823 } 2824 2825 ret = key_search(b, key, level, &prev_cmp, &slot); 2826 2827 if (level != 0) { 2828 int dec = 0; 2829 if (ret && slot > 0) { 2830 dec = 1; 2831 slot -= 1; 2832 } 2833 p->slots[level] = slot; 2834 err = setup_nodes_for_search(trans, root, p, b, level, 2835 ins_len, &write_lock_level); 2836 if (err == -EAGAIN) 2837 goto again; 2838 if (err) { 2839 ret = err; 2840 goto done; 2841 } 2842 b = p->nodes[level]; 2843 slot = p->slots[level]; 2844 2845 /* 2846 * slot 0 is special, if we change the key 2847 * we have to update the parent pointer 2848 * which means we must have a write lock 2849 * on the parent 2850 */ 2851 if (slot == 0 && ins_len && 2852 write_lock_level < level + 1) { 2853 write_lock_level = level + 1; 2854 btrfs_release_path(p); 2855 goto again; 2856 } 2857 2858 unlock_up(p, level, lowest_unlock, 2859 min_write_lock_level, &write_lock_level); 2860 2861 if (level == lowest_level) { 2862 if (dec) 2863 p->slots[level]++; 2864 goto done; 2865 } 2866 2867 err = read_block_for_search(trans, root, p, 2868 &b, level, slot, key, 0); 2869 if (err == -EAGAIN) 2870 goto again; 2871 if (err) { 2872 ret = err; 2873 goto done; 2874 } 2875 2876 if (!p->skip_locking) { 2877 level = btrfs_header_level(b); 2878 if (level <= write_lock_level) { 2879 err = btrfs_try_tree_write_lock(b); 2880 if (!err) { 2881 btrfs_set_path_blocking(p); 2882 btrfs_tree_lock(b); 2883 btrfs_clear_path_blocking(p, b, 2884 BTRFS_WRITE_LOCK); 2885 } 2886 p->locks[level] = BTRFS_WRITE_LOCK; 2887 } else { 2888 err = btrfs_tree_read_lock_atomic(b); 2889 if (!err) { 2890 btrfs_set_path_blocking(p); 2891 btrfs_tree_read_lock(b); 2892 btrfs_clear_path_blocking(p, b, 2893 BTRFS_READ_LOCK); 2894 } 2895 p->locks[level] = BTRFS_READ_LOCK; 2896 } 2897 p->nodes[level] = b; 2898 } 2899 } else { 2900 p->slots[level] = slot; 2901 if (ins_len > 0 && 2902 btrfs_leaf_free_space(root, b) < ins_len) { 2903 if (write_lock_level < 1) { 2904 write_lock_level = 1; 2905 btrfs_release_path(p); 2906 goto again; 2907 } 2908 2909 btrfs_set_path_blocking(p); 2910 err = split_leaf(trans, root, key, 2911 p, ins_len, ret == 0); 2912 btrfs_clear_path_blocking(p, NULL, 0); 2913 2914 BUG_ON(err > 0); 2915 if (err) { 2916 ret = err; 2917 goto done; 2918 } 2919 } 2920 if (!p->search_for_split) 2921 unlock_up(p, level, lowest_unlock, 2922 min_write_lock_level, &write_lock_level); 2923 goto done; 2924 } 2925 } 2926 ret = 1; 2927 done: 2928 /* 2929 * we don't really know what they plan on doing with the path 2930 * from here on, so for now just mark it as blocking 2931 */ 2932 if (!p->leave_spinning) 2933 btrfs_set_path_blocking(p); 2934 if (ret < 0 && !p->skip_release_on_error) 2935 btrfs_release_path(p); 2936 return ret; 2937 } 2938 2939 /* 2940 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2941 * current state of the tree together with the operations recorded in the tree 2942 * modification log to search for the key in a previous version of this tree, as 2943 * denoted by the time_seq parameter. 2944 * 2945 * Naturally, there is no support for insert, delete or cow operations. 2946 * 2947 * The resulting path and return value will be set up as if we called 2948 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2949 */ 2950 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2951 struct btrfs_path *p, u64 time_seq) 2952 { 2953 struct extent_buffer *b; 2954 int slot; 2955 int ret; 2956 int err; 2957 int level; 2958 int lowest_unlock = 1; 2959 u8 lowest_level = 0; 2960 int prev_cmp = -1; 2961 2962 lowest_level = p->lowest_level; 2963 WARN_ON(p->nodes[0] != NULL); 2964 2965 if (p->search_commit_root) { 2966 BUG_ON(time_seq); 2967 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2968 } 2969 2970 again: 2971 b = get_old_root(root, time_seq); 2972 level = btrfs_header_level(b); 2973 p->locks[level] = BTRFS_READ_LOCK; 2974 2975 while (b) { 2976 level = btrfs_header_level(b); 2977 p->nodes[level] = b; 2978 btrfs_clear_path_blocking(p, NULL, 0); 2979 2980 /* 2981 * we have a lock on b and as long as we aren't changing 2982 * the tree, there is no way to for the items in b to change. 2983 * It is safe to drop the lock on our parent before we 2984 * go through the expensive btree search on b. 2985 */ 2986 btrfs_unlock_up_safe(p, level + 1); 2987 2988 /* 2989 * Since we can unwind eb's we want to do a real search every 2990 * time. 2991 */ 2992 prev_cmp = -1; 2993 ret = key_search(b, key, level, &prev_cmp, &slot); 2994 2995 if (level != 0) { 2996 int dec = 0; 2997 if (ret && slot > 0) { 2998 dec = 1; 2999 slot -= 1; 3000 } 3001 p->slots[level] = slot; 3002 unlock_up(p, level, lowest_unlock, 0, NULL); 3003 3004 if (level == lowest_level) { 3005 if (dec) 3006 p->slots[level]++; 3007 goto done; 3008 } 3009 3010 err = read_block_for_search(NULL, root, p, &b, level, 3011 slot, key, time_seq); 3012 if (err == -EAGAIN) 3013 goto again; 3014 if (err) { 3015 ret = err; 3016 goto done; 3017 } 3018 3019 level = btrfs_header_level(b); 3020 err = btrfs_tree_read_lock_atomic(b); 3021 if (!err) { 3022 btrfs_set_path_blocking(p); 3023 btrfs_tree_read_lock(b); 3024 btrfs_clear_path_blocking(p, b, 3025 BTRFS_READ_LOCK); 3026 } 3027 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 3028 if (!b) { 3029 ret = -ENOMEM; 3030 goto done; 3031 } 3032 p->locks[level] = BTRFS_READ_LOCK; 3033 p->nodes[level] = b; 3034 } else { 3035 p->slots[level] = slot; 3036 unlock_up(p, level, lowest_unlock, 0, NULL); 3037 goto done; 3038 } 3039 } 3040 ret = 1; 3041 done: 3042 if (!p->leave_spinning) 3043 btrfs_set_path_blocking(p); 3044 if (ret < 0) 3045 btrfs_release_path(p); 3046 3047 return ret; 3048 } 3049 3050 /* 3051 * helper to use instead of search slot if no exact match is needed but 3052 * instead the next or previous item should be returned. 3053 * When find_higher is true, the next higher item is returned, the next lower 3054 * otherwise. 3055 * When return_any and find_higher are both true, and no higher item is found, 3056 * return the next lower instead. 3057 * When return_any is true and find_higher is false, and no lower item is found, 3058 * return the next higher instead. 3059 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3060 * < 0 on error 3061 */ 3062 int btrfs_search_slot_for_read(struct btrfs_root *root, 3063 struct btrfs_key *key, struct btrfs_path *p, 3064 int find_higher, int return_any) 3065 { 3066 int ret; 3067 struct extent_buffer *leaf; 3068 3069 again: 3070 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3071 if (ret <= 0) 3072 return ret; 3073 /* 3074 * a return value of 1 means the path is at the position where the 3075 * item should be inserted. Normally this is the next bigger item, 3076 * but in case the previous item is the last in a leaf, path points 3077 * to the first free slot in the previous leaf, i.e. at an invalid 3078 * item. 3079 */ 3080 leaf = p->nodes[0]; 3081 3082 if (find_higher) { 3083 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3084 ret = btrfs_next_leaf(root, p); 3085 if (ret <= 0) 3086 return ret; 3087 if (!return_any) 3088 return 1; 3089 /* 3090 * no higher item found, return the next 3091 * lower instead 3092 */ 3093 return_any = 0; 3094 find_higher = 0; 3095 btrfs_release_path(p); 3096 goto again; 3097 } 3098 } else { 3099 if (p->slots[0] == 0) { 3100 ret = btrfs_prev_leaf(root, p); 3101 if (ret < 0) 3102 return ret; 3103 if (!ret) { 3104 leaf = p->nodes[0]; 3105 if (p->slots[0] == btrfs_header_nritems(leaf)) 3106 p->slots[0]--; 3107 return 0; 3108 } 3109 if (!return_any) 3110 return 1; 3111 /* 3112 * no lower item found, return the next 3113 * higher instead 3114 */ 3115 return_any = 0; 3116 find_higher = 1; 3117 btrfs_release_path(p); 3118 goto again; 3119 } else { 3120 --p->slots[0]; 3121 } 3122 } 3123 return 0; 3124 } 3125 3126 /* 3127 * adjust the pointers going up the tree, starting at level 3128 * making sure the right key of each node is points to 'key'. 3129 * This is used after shifting pointers to the left, so it stops 3130 * fixing up pointers when a given leaf/node is not in slot 0 of the 3131 * higher levels 3132 * 3133 */ 3134 static void fixup_low_keys(struct btrfs_fs_info *fs_info, 3135 struct btrfs_path *path, 3136 struct btrfs_disk_key *key, int level) 3137 { 3138 int i; 3139 struct extent_buffer *t; 3140 3141 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3142 int tslot = path->slots[i]; 3143 if (!path->nodes[i]) 3144 break; 3145 t = path->nodes[i]; 3146 tree_mod_log_set_node_key(fs_info, t, tslot, 1); 3147 btrfs_set_node_key(t, key, tslot); 3148 btrfs_mark_buffer_dirty(path->nodes[i]); 3149 if (tslot != 0) 3150 break; 3151 } 3152 } 3153 3154 /* 3155 * update item key. 3156 * 3157 * This function isn't completely safe. It's the caller's responsibility 3158 * that the new key won't break the order 3159 */ 3160 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3161 struct btrfs_path *path, 3162 struct btrfs_key *new_key) 3163 { 3164 struct btrfs_disk_key disk_key; 3165 struct extent_buffer *eb; 3166 int slot; 3167 3168 eb = path->nodes[0]; 3169 slot = path->slots[0]; 3170 if (slot > 0) { 3171 btrfs_item_key(eb, &disk_key, slot - 1); 3172 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3173 } 3174 if (slot < btrfs_header_nritems(eb) - 1) { 3175 btrfs_item_key(eb, &disk_key, slot + 1); 3176 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3177 } 3178 3179 btrfs_cpu_key_to_disk(&disk_key, new_key); 3180 btrfs_set_item_key(eb, &disk_key, slot); 3181 btrfs_mark_buffer_dirty(eb); 3182 if (slot == 0) 3183 fixup_low_keys(fs_info, path, &disk_key, 1); 3184 } 3185 3186 /* 3187 * try to push data from one node into the next node left in the 3188 * tree. 3189 * 3190 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3191 * error, and > 0 if there was no room in the left hand block. 3192 */ 3193 static int push_node_left(struct btrfs_trans_handle *trans, 3194 struct btrfs_root *root, struct extent_buffer *dst, 3195 struct extent_buffer *src, int empty) 3196 { 3197 int push_items = 0; 3198 int src_nritems; 3199 int dst_nritems; 3200 int ret = 0; 3201 3202 src_nritems = btrfs_header_nritems(src); 3203 dst_nritems = btrfs_header_nritems(dst); 3204 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3205 WARN_ON(btrfs_header_generation(src) != trans->transid); 3206 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3207 3208 if (!empty && src_nritems <= 8) 3209 return 1; 3210 3211 if (push_items <= 0) 3212 return 1; 3213 3214 if (empty) { 3215 push_items = min(src_nritems, push_items); 3216 if (push_items < src_nritems) { 3217 /* leave at least 8 pointers in the node if 3218 * we aren't going to empty it 3219 */ 3220 if (src_nritems - push_items < 8) { 3221 if (push_items <= 8) 3222 return 1; 3223 push_items -= 8; 3224 } 3225 } 3226 } else 3227 push_items = min(src_nritems - 8, push_items); 3228 3229 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3230 push_items); 3231 if (ret) { 3232 btrfs_abort_transaction(trans, root, ret); 3233 return ret; 3234 } 3235 copy_extent_buffer(dst, src, 3236 btrfs_node_key_ptr_offset(dst_nritems), 3237 btrfs_node_key_ptr_offset(0), 3238 push_items * sizeof(struct btrfs_key_ptr)); 3239 3240 if (push_items < src_nritems) { 3241 /* 3242 * don't call tree_mod_log_eb_move here, key removal was already 3243 * fully logged by tree_mod_log_eb_copy above. 3244 */ 3245 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3246 btrfs_node_key_ptr_offset(push_items), 3247 (src_nritems - push_items) * 3248 sizeof(struct btrfs_key_ptr)); 3249 } 3250 btrfs_set_header_nritems(src, src_nritems - push_items); 3251 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3252 btrfs_mark_buffer_dirty(src); 3253 btrfs_mark_buffer_dirty(dst); 3254 3255 return ret; 3256 } 3257 3258 /* 3259 * try to push data from one node into the next node right in the 3260 * tree. 3261 * 3262 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3263 * error, and > 0 if there was no room in the right hand block. 3264 * 3265 * this will only push up to 1/2 the contents of the left node over 3266 */ 3267 static int balance_node_right(struct btrfs_trans_handle *trans, 3268 struct btrfs_root *root, 3269 struct extent_buffer *dst, 3270 struct extent_buffer *src) 3271 { 3272 int push_items = 0; 3273 int max_push; 3274 int src_nritems; 3275 int dst_nritems; 3276 int ret = 0; 3277 3278 WARN_ON(btrfs_header_generation(src) != trans->transid); 3279 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3280 3281 src_nritems = btrfs_header_nritems(src); 3282 dst_nritems = btrfs_header_nritems(dst); 3283 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3284 if (push_items <= 0) 3285 return 1; 3286 3287 if (src_nritems < 4) 3288 return 1; 3289 3290 max_push = src_nritems / 2 + 1; 3291 /* don't try to empty the node */ 3292 if (max_push >= src_nritems) 3293 return 1; 3294 3295 if (max_push < push_items) 3296 push_items = max_push; 3297 3298 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3299 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3300 btrfs_node_key_ptr_offset(0), 3301 (dst_nritems) * 3302 sizeof(struct btrfs_key_ptr)); 3303 3304 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3305 src_nritems - push_items, push_items); 3306 if (ret) { 3307 btrfs_abort_transaction(trans, root, ret); 3308 return ret; 3309 } 3310 copy_extent_buffer(dst, src, 3311 btrfs_node_key_ptr_offset(0), 3312 btrfs_node_key_ptr_offset(src_nritems - push_items), 3313 push_items * sizeof(struct btrfs_key_ptr)); 3314 3315 btrfs_set_header_nritems(src, src_nritems - push_items); 3316 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3317 3318 btrfs_mark_buffer_dirty(src); 3319 btrfs_mark_buffer_dirty(dst); 3320 3321 return ret; 3322 } 3323 3324 /* 3325 * helper function to insert a new root level in the tree. 3326 * A new node is allocated, and a single item is inserted to 3327 * point to the existing root 3328 * 3329 * returns zero on success or < 0 on failure. 3330 */ 3331 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3332 struct btrfs_root *root, 3333 struct btrfs_path *path, int level) 3334 { 3335 u64 lower_gen; 3336 struct extent_buffer *lower; 3337 struct extent_buffer *c; 3338 struct extent_buffer *old; 3339 struct btrfs_disk_key lower_key; 3340 3341 BUG_ON(path->nodes[level]); 3342 BUG_ON(path->nodes[level-1] != root->node); 3343 3344 lower = path->nodes[level-1]; 3345 if (level == 1) 3346 btrfs_item_key(lower, &lower_key, 0); 3347 else 3348 btrfs_node_key(lower, &lower_key, 0); 3349 3350 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3351 &lower_key, level, root->node->start, 0); 3352 if (IS_ERR(c)) 3353 return PTR_ERR(c); 3354 3355 root_add_used(root, root->nodesize); 3356 3357 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3358 btrfs_set_header_nritems(c, 1); 3359 btrfs_set_header_level(c, level); 3360 btrfs_set_header_bytenr(c, c->start); 3361 btrfs_set_header_generation(c, trans->transid); 3362 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3363 btrfs_set_header_owner(c, root->root_key.objectid); 3364 3365 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), 3366 BTRFS_FSID_SIZE); 3367 3368 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3369 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3370 3371 btrfs_set_node_key(c, &lower_key, 0); 3372 btrfs_set_node_blockptr(c, 0, lower->start); 3373 lower_gen = btrfs_header_generation(lower); 3374 WARN_ON(lower_gen != trans->transid); 3375 3376 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3377 3378 btrfs_mark_buffer_dirty(c); 3379 3380 old = root->node; 3381 tree_mod_log_set_root_pointer(root, c, 0); 3382 rcu_assign_pointer(root->node, c); 3383 3384 /* the super has an extra ref to root->node */ 3385 free_extent_buffer(old); 3386 3387 add_root_to_dirty_list(root); 3388 extent_buffer_get(c); 3389 path->nodes[level] = c; 3390 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3391 path->slots[level] = 0; 3392 return 0; 3393 } 3394 3395 /* 3396 * worker function to insert a single pointer in a node. 3397 * the node should have enough room for the pointer already 3398 * 3399 * slot and level indicate where you want the key to go, and 3400 * blocknr is the block the key points to. 3401 */ 3402 static void insert_ptr(struct btrfs_trans_handle *trans, 3403 struct btrfs_root *root, struct btrfs_path *path, 3404 struct btrfs_disk_key *key, u64 bytenr, 3405 int slot, int level) 3406 { 3407 struct extent_buffer *lower; 3408 int nritems; 3409 int ret; 3410 3411 BUG_ON(!path->nodes[level]); 3412 btrfs_assert_tree_locked(path->nodes[level]); 3413 lower = path->nodes[level]; 3414 nritems = btrfs_header_nritems(lower); 3415 BUG_ON(slot > nritems); 3416 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3417 if (slot != nritems) { 3418 if (level) 3419 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3420 slot, nritems - slot); 3421 memmove_extent_buffer(lower, 3422 btrfs_node_key_ptr_offset(slot + 1), 3423 btrfs_node_key_ptr_offset(slot), 3424 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3425 } 3426 if (level) { 3427 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3428 MOD_LOG_KEY_ADD, GFP_NOFS); 3429 BUG_ON(ret < 0); 3430 } 3431 btrfs_set_node_key(lower, key, slot); 3432 btrfs_set_node_blockptr(lower, slot, bytenr); 3433 WARN_ON(trans->transid == 0); 3434 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3435 btrfs_set_header_nritems(lower, nritems + 1); 3436 btrfs_mark_buffer_dirty(lower); 3437 } 3438 3439 /* 3440 * split the node at the specified level in path in two. 3441 * The path is corrected to point to the appropriate node after the split 3442 * 3443 * Before splitting this tries to make some room in the node by pushing 3444 * left and right, if either one works, it returns right away. 3445 * 3446 * returns 0 on success and < 0 on failure 3447 */ 3448 static noinline int split_node(struct btrfs_trans_handle *trans, 3449 struct btrfs_root *root, 3450 struct btrfs_path *path, int level) 3451 { 3452 struct extent_buffer *c; 3453 struct extent_buffer *split; 3454 struct btrfs_disk_key disk_key; 3455 int mid; 3456 int ret; 3457 u32 c_nritems; 3458 3459 c = path->nodes[level]; 3460 WARN_ON(btrfs_header_generation(c) != trans->transid); 3461 if (c == root->node) { 3462 /* 3463 * trying to split the root, lets make a new one 3464 * 3465 * tree mod log: We don't log_removal old root in 3466 * insert_new_root, because that root buffer will be kept as a 3467 * normal node. We are going to log removal of half of the 3468 * elements below with tree_mod_log_eb_copy. We're holding a 3469 * tree lock on the buffer, which is why we cannot race with 3470 * other tree_mod_log users. 3471 */ 3472 ret = insert_new_root(trans, root, path, level + 1); 3473 if (ret) 3474 return ret; 3475 } else { 3476 ret = push_nodes_for_insert(trans, root, path, level); 3477 c = path->nodes[level]; 3478 if (!ret && btrfs_header_nritems(c) < 3479 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3480 return 0; 3481 if (ret < 0) 3482 return ret; 3483 } 3484 3485 c_nritems = btrfs_header_nritems(c); 3486 mid = (c_nritems + 1) / 2; 3487 btrfs_node_key(c, &disk_key, mid); 3488 3489 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3490 &disk_key, level, c->start, 0); 3491 if (IS_ERR(split)) 3492 return PTR_ERR(split); 3493 3494 root_add_used(root, root->nodesize); 3495 3496 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3497 btrfs_set_header_level(split, btrfs_header_level(c)); 3498 btrfs_set_header_bytenr(split, split->start); 3499 btrfs_set_header_generation(split, trans->transid); 3500 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3501 btrfs_set_header_owner(split, root->root_key.objectid); 3502 write_extent_buffer(split, root->fs_info->fsid, 3503 btrfs_header_fsid(), BTRFS_FSID_SIZE); 3504 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3505 btrfs_header_chunk_tree_uuid(split), 3506 BTRFS_UUID_SIZE); 3507 3508 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0, 3509 mid, c_nritems - mid); 3510 if (ret) { 3511 btrfs_abort_transaction(trans, root, ret); 3512 return ret; 3513 } 3514 copy_extent_buffer(split, c, 3515 btrfs_node_key_ptr_offset(0), 3516 btrfs_node_key_ptr_offset(mid), 3517 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3518 btrfs_set_header_nritems(split, c_nritems - mid); 3519 btrfs_set_header_nritems(c, mid); 3520 ret = 0; 3521 3522 btrfs_mark_buffer_dirty(c); 3523 btrfs_mark_buffer_dirty(split); 3524 3525 insert_ptr(trans, root, path, &disk_key, split->start, 3526 path->slots[level + 1] + 1, level + 1); 3527 3528 if (path->slots[level] >= mid) { 3529 path->slots[level] -= mid; 3530 btrfs_tree_unlock(c); 3531 free_extent_buffer(c); 3532 path->nodes[level] = split; 3533 path->slots[level + 1] += 1; 3534 } else { 3535 btrfs_tree_unlock(split); 3536 free_extent_buffer(split); 3537 } 3538 return ret; 3539 } 3540 3541 /* 3542 * how many bytes are required to store the items in a leaf. start 3543 * and nr indicate which items in the leaf to check. This totals up the 3544 * space used both by the item structs and the item data 3545 */ 3546 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3547 { 3548 struct btrfs_item *start_item; 3549 struct btrfs_item *end_item; 3550 struct btrfs_map_token token; 3551 int data_len; 3552 int nritems = btrfs_header_nritems(l); 3553 int end = min(nritems, start + nr) - 1; 3554 3555 if (!nr) 3556 return 0; 3557 btrfs_init_map_token(&token); 3558 start_item = btrfs_item_nr(start); 3559 end_item = btrfs_item_nr(end); 3560 data_len = btrfs_token_item_offset(l, start_item, &token) + 3561 btrfs_token_item_size(l, start_item, &token); 3562 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3563 data_len += sizeof(struct btrfs_item) * nr; 3564 WARN_ON(data_len < 0); 3565 return data_len; 3566 } 3567 3568 /* 3569 * The space between the end of the leaf items and 3570 * the start of the leaf data. IOW, how much room 3571 * the leaf has left for both items and data 3572 */ 3573 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3574 struct extent_buffer *leaf) 3575 { 3576 int nritems = btrfs_header_nritems(leaf); 3577 int ret; 3578 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3579 if (ret < 0) { 3580 btrfs_crit(root->fs_info, 3581 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3582 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3583 leaf_space_used(leaf, 0, nritems), nritems); 3584 } 3585 return ret; 3586 } 3587 3588 /* 3589 * min slot controls the lowest index we're willing to push to the 3590 * right. We'll push up to and including min_slot, but no lower 3591 */ 3592 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3593 struct btrfs_root *root, 3594 struct btrfs_path *path, 3595 int data_size, int empty, 3596 struct extent_buffer *right, 3597 int free_space, u32 left_nritems, 3598 u32 min_slot) 3599 { 3600 struct extent_buffer *left = path->nodes[0]; 3601 struct extent_buffer *upper = path->nodes[1]; 3602 struct btrfs_map_token token; 3603 struct btrfs_disk_key disk_key; 3604 int slot; 3605 u32 i; 3606 int push_space = 0; 3607 int push_items = 0; 3608 struct btrfs_item *item; 3609 u32 nr; 3610 u32 right_nritems; 3611 u32 data_end; 3612 u32 this_item_size; 3613 3614 btrfs_init_map_token(&token); 3615 3616 if (empty) 3617 nr = 0; 3618 else 3619 nr = max_t(u32, 1, min_slot); 3620 3621 if (path->slots[0] >= left_nritems) 3622 push_space += data_size; 3623 3624 slot = path->slots[1]; 3625 i = left_nritems - 1; 3626 while (i >= nr) { 3627 item = btrfs_item_nr(i); 3628 3629 if (!empty && push_items > 0) { 3630 if (path->slots[0] > i) 3631 break; 3632 if (path->slots[0] == i) { 3633 int space = btrfs_leaf_free_space(root, left); 3634 if (space + push_space * 2 > free_space) 3635 break; 3636 } 3637 } 3638 3639 if (path->slots[0] == i) 3640 push_space += data_size; 3641 3642 this_item_size = btrfs_item_size(left, item); 3643 if (this_item_size + sizeof(*item) + push_space > free_space) 3644 break; 3645 3646 push_items++; 3647 push_space += this_item_size + sizeof(*item); 3648 if (i == 0) 3649 break; 3650 i--; 3651 } 3652 3653 if (push_items == 0) 3654 goto out_unlock; 3655 3656 WARN_ON(!empty && push_items == left_nritems); 3657 3658 /* push left to right */ 3659 right_nritems = btrfs_header_nritems(right); 3660 3661 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3662 push_space -= leaf_data_end(root, left); 3663 3664 /* make room in the right data area */ 3665 data_end = leaf_data_end(root, right); 3666 memmove_extent_buffer(right, 3667 btrfs_leaf_data(right) + data_end - push_space, 3668 btrfs_leaf_data(right) + data_end, 3669 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3670 3671 /* copy from the left data area */ 3672 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3673 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3674 btrfs_leaf_data(left) + leaf_data_end(root, left), 3675 push_space); 3676 3677 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3678 btrfs_item_nr_offset(0), 3679 right_nritems * sizeof(struct btrfs_item)); 3680 3681 /* copy the items from left to right */ 3682 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3683 btrfs_item_nr_offset(left_nritems - push_items), 3684 push_items * sizeof(struct btrfs_item)); 3685 3686 /* update the item pointers */ 3687 right_nritems += push_items; 3688 btrfs_set_header_nritems(right, right_nritems); 3689 push_space = BTRFS_LEAF_DATA_SIZE(root); 3690 for (i = 0; i < right_nritems; i++) { 3691 item = btrfs_item_nr(i); 3692 push_space -= btrfs_token_item_size(right, item, &token); 3693 btrfs_set_token_item_offset(right, item, push_space, &token); 3694 } 3695 3696 left_nritems -= push_items; 3697 btrfs_set_header_nritems(left, left_nritems); 3698 3699 if (left_nritems) 3700 btrfs_mark_buffer_dirty(left); 3701 else 3702 clean_tree_block(trans, root->fs_info, left); 3703 3704 btrfs_mark_buffer_dirty(right); 3705 3706 btrfs_item_key(right, &disk_key, 0); 3707 btrfs_set_node_key(upper, &disk_key, slot + 1); 3708 btrfs_mark_buffer_dirty(upper); 3709 3710 /* then fixup the leaf pointer in the path */ 3711 if (path->slots[0] >= left_nritems) { 3712 path->slots[0] -= left_nritems; 3713 if (btrfs_header_nritems(path->nodes[0]) == 0) 3714 clean_tree_block(trans, root->fs_info, path->nodes[0]); 3715 btrfs_tree_unlock(path->nodes[0]); 3716 free_extent_buffer(path->nodes[0]); 3717 path->nodes[0] = right; 3718 path->slots[1] += 1; 3719 } else { 3720 btrfs_tree_unlock(right); 3721 free_extent_buffer(right); 3722 } 3723 return 0; 3724 3725 out_unlock: 3726 btrfs_tree_unlock(right); 3727 free_extent_buffer(right); 3728 return 1; 3729 } 3730 3731 /* 3732 * push some data in the path leaf to the right, trying to free up at 3733 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3734 * 3735 * returns 1 if the push failed because the other node didn't have enough 3736 * room, 0 if everything worked out and < 0 if there were major errors. 3737 * 3738 * this will push starting from min_slot to the end of the leaf. It won't 3739 * push any slot lower than min_slot 3740 */ 3741 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3742 *root, struct btrfs_path *path, 3743 int min_data_size, int data_size, 3744 int empty, u32 min_slot) 3745 { 3746 struct extent_buffer *left = path->nodes[0]; 3747 struct extent_buffer *right; 3748 struct extent_buffer *upper; 3749 int slot; 3750 int free_space; 3751 u32 left_nritems; 3752 int ret; 3753 3754 if (!path->nodes[1]) 3755 return 1; 3756 3757 slot = path->slots[1]; 3758 upper = path->nodes[1]; 3759 if (slot >= btrfs_header_nritems(upper) - 1) 3760 return 1; 3761 3762 btrfs_assert_tree_locked(path->nodes[1]); 3763 3764 right = read_node_slot(root, upper, slot + 1); 3765 if (right == NULL) 3766 return 1; 3767 3768 btrfs_tree_lock(right); 3769 btrfs_set_lock_blocking(right); 3770 3771 free_space = btrfs_leaf_free_space(root, right); 3772 if (free_space < data_size) 3773 goto out_unlock; 3774 3775 /* cow and double check */ 3776 ret = btrfs_cow_block(trans, root, right, upper, 3777 slot + 1, &right); 3778 if (ret) 3779 goto out_unlock; 3780 3781 free_space = btrfs_leaf_free_space(root, right); 3782 if (free_space < data_size) 3783 goto out_unlock; 3784 3785 left_nritems = btrfs_header_nritems(left); 3786 if (left_nritems == 0) 3787 goto out_unlock; 3788 3789 if (path->slots[0] == left_nritems && !empty) { 3790 /* Key greater than all keys in the leaf, right neighbor has 3791 * enough room for it and we're not emptying our leaf to delete 3792 * it, therefore use right neighbor to insert the new item and 3793 * no need to touch/dirty our left leaft. */ 3794 btrfs_tree_unlock(left); 3795 free_extent_buffer(left); 3796 path->nodes[0] = right; 3797 path->slots[0] = 0; 3798 path->slots[1]++; 3799 return 0; 3800 } 3801 3802 return __push_leaf_right(trans, root, path, min_data_size, empty, 3803 right, free_space, left_nritems, min_slot); 3804 out_unlock: 3805 btrfs_tree_unlock(right); 3806 free_extent_buffer(right); 3807 return 1; 3808 } 3809 3810 /* 3811 * push some data in the path leaf to the left, trying to free up at 3812 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3813 * 3814 * max_slot can put a limit on how far into the leaf we'll push items. The 3815 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3816 * items 3817 */ 3818 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3819 struct btrfs_root *root, 3820 struct btrfs_path *path, int data_size, 3821 int empty, struct extent_buffer *left, 3822 int free_space, u32 right_nritems, 3823 u32 max_slot) 3824 { 3825 struct btrfs_disk_key disk_key; 3826 struct extent_buffer *right = path->nodes[0]; 3827 int i; 3828 int push_space = 0; 3829 int push_items = 0; 3830 struct btrfs_item *item; 3831 u32 old_left_nritems; 3832 u32 nr; 3833 int ret = 0; 3834 u32 this_item_size; 3835 u32 old_left_item_size; 3836 struct btrfs_map_token token; 3837 3838 btrfs_init_map_token(&token); 3839 3840 if (empty) 3841 nr = min(right_nritems, max_slot); 3842 else 3843 nr = min(right_nritems - 1, max_slot); 3844 3845 for (i = 0; i < nr; i++) { 3846 item = btrfs_item_nr(i); 3847 3848 if (!empty && push_items > 0) { 3849 if (path->slots[0] < i) 3850 break; 3851 if (path->slots[0] == i) { 3852 int space = btrfs_leaf_free_space(root, right); 3853 if (space + push_space * 2 > free_space) 3854 break; 3855 } 3856 } 3857 3858 if (path->slots[0] == i) 3859 push_space += data_size; 3860 3861 this_item_size = btrfs_item_size(right, item); 3862 if (this_item_size + sizeof(*item) + push_space > free_space) 3863 break; 3864 3865 push_items++; 3866 push_space += this_item_size + sizeof(*item); 3867 } 3868 3869 if (push_items == 0) { 3870 ret = 1; 3871 goto out; 3872 } 3873 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3874 3875 /* push data from right to left */ 3876 copy_extent_buffer(left, right, 3877 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3878 btrfs_item_nr_offset(0), 3879 push_items * sizeof(struct btrfs_item)); 3880 3881 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3882 btrfs_item_offset_nr(right, push_items - 1); 3883 3884 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3885 leaf_data_end(root, left) - push_space, 3886 btrfs_leaf_data(right) + 3887 btrfs_item_offset_nr(right, push_items - 1), 3888 push_space); 3889 old_left_nritems = btrfs_header_nritems(left); 3890 BUG_ON(old_left_nritems <= 0); 3891 3892 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3893 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3894 u32 ioff; 3895 3896 item = btrfs_item_nr(i); 3897 3898 ioff = btrfs_token_item_offset(left, item, &token); 3899 btrfs_set_token_item_offset(left, item, 3900 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3901 &token); 3902 } 3903 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3904 3905 /* fixup right node */ 3906 if (push_items > right_nritems) 3907 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3908 right_nritems); 3909 3910 if (push_items < right_nritems) { 3911 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3912 leaf_data_end(root, right); 3913 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3914 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3915 btrfs_leaf_data(right) + 3916 leaf_data_end(root, right), push_space); 3917 3918 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3919 btrfs_item_nr_offset(push_items), 3920 (btrfs_header_nritems(right) - push_items) * 3921 sizeof(struct btrfs_item)); 3922 } 3923 right_nritems -= push_items; 3924 btrfs_set_header_nritems(right, right_nritems); 3925 push_space = BTRFS_LEAF_DATA_SIZE(root); 3926 for (i = 0; i < right_nritems; i++) { 3927 item = btrfs_item_nr(i); 3928 3929 push_space = push_space - btrfs_token_item_size(right, 3930 item, &token); 3931 btrfs_set_token_item_offset(right, item, push_space, &token); 3932 } 3933 3934 btrfs_mark_buffer_dirty(left); 3935 if (right_nritems) 3936 btrfs_mark_buffer_dirty(right); 3937 else 3938 clean_tree_block(trans, root->fs_info, right); 3939 3940 btrfs_item_key(right, &disk_key, 0); 3941 fixup_low_keys(root->fs_info, path, &disk_key, 1); 3942 3943 /* then fixup the leaf pointer in the path */ 3944 if (path->slots[0] < push_items) { 3945 path->slots[0] += old_left_nritems; 3946 btrfs_tree_unlock(path->nodes[0]); 3947 free_extent_buffer(path->nodes[0]); 3948 path->nodes[0] = left; 3949 path->slots[1] -= 1; 3950 } else { 3951 btrfs_tree_unlock(left); 3952 free_extent_buffer(left); 3953 path->slots[0] -= push_items; 3954 } 3955 BUG_ON(path->slots[0] < 0); 3956 return ret; 3957 out: 3958 btrfs_tree_unlock(left); 3959 free_extent_buffer(left); 3960 return ret; 3961 } 3962 3963 /* 3964 * push some data in the path leaf to the left, trying to free up at 3965 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3966 * 3967 * max_slot can put a limit on how far into the leaf we'll push items. The 3968 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3969 * items 3970 */ 3971 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3972 *root, struct btrfs_path *path, int min_data_size, 3973 int data_size, int empty, u32 max_slot) 3974 { 3975 struct extent_buffer *right = path->nodes[0]; 3976 struct extent_buffer *left; 3977 int slot; 3978 int free_space; 3979 u32 right_nritems; 3980 int ret = 0; 3981 3982 slot = path->slots[1]; 3983 if (slot == 0) 3984 return 1; 3985 if (!path->nodes[1]) 3986 return 1; 3987 3988 right_nritems = btrfs_header_nritems(right); 3989 if (right_nritems == 0) 3990 return 1; 3991 3992 btrfs_assert_tree_locked(path->nodes[1]); 3993 3994 left = read_node_slot(root, path->nodes[1], slot - 1); 3995 if (left == NULL) 3996 return 1; 3997 3998 btrfs_tree_lock(left); 3999 btrfs_set_lock_blocking(left); 4000 4001 free_space = btrfs_leaf_free_space(root, left); 4002 if (free_space < data_size) { 4003 ret = 1; 4004 goto out; 4005 } 4006 4007 /* cow and double check */ 4008 ret = btrfs_cow_block(trans, root, left, 4009 path->nodes[1], slot - 1, &left); 4010 if (ret) { 4011 /* we hit -ENOSPC, but it isn't fatal here */ 4012 if (ret == -ENOSPC) 4013 ret = 1; 4014 goto out; 4015 } 4016 4017 free_space = btrfs_leaf_free_space(root, left); 4018 if (free_space < data_size) { 4019 ret = 1; 4020 goto out; 4021 } 4022 4023 return __push_leaf_left(trans, root, path, min_data_size, 4024 empty, left, free_space, right_nritems, 4025 max_slot); 4026 out: 4027 btrfs_tree_unlock(left); 4028 free_extent_buffer(left); 4029 return ret; 4030 } 4031 4032 /* 4033 * split the path's leaf in two, making sure there is at least data_size 4034 * available for the resulting leaf level of the path. 4035 */ 4036 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4037 struct btrfs_root *root, 4038 struct btrfs_path *path, 4039 struct extent_buffer *l, 4040 struct extent_buffer *right, 4041 int slot, int mid, int nritems) 4042 { 4043 int data_copy_size; 4044 int rt_data_off; 4045 int i; 4046 struct btrfs_disk_key disk_key; 4047 struct btrfs_map_token token; 4048 4049 btrfs_init_map_token(&token); 4050 4051 nritems = nritems - mid; 4052 btrfs_set_header_nritems(right, nritems); 4053 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 4054 4055 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4056 btrfs_item_nr_offset(mid), 4057 nritems * sizeof(struct btrfs_item)); 4058 4059 copy_extent_buffer(right, l, 4060 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 4061 data_copy_size, btrfs_leaf_data(l) + 4062 leaf_data_end(root, l), data_copy_size); 4063 4064 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 4065 btrfs_item_end_nr(l, mid); 4066 4067 for (i = 0; i < nritems; i++) { 4068 struct btrfs_item *item = btrfs_item_nr(i); 4069 u32 ioff; 4070 4071 ioff = btrfs_token_item_offset(right, item, &token); 4072 btrfs_set_token_item_offset(right, item, 4073 ioff + rt_data_off, &token); 4074 } 4075 4076 btrfs_set_header_nritems(l, mid); 4077 btrfs_item_key(right, &disk_key, 0); 4078 insert_ptr(trans, root, path, &disk_key, right->start, 4079 path->slots[1] + 1, 1); 4080 4081 btrfs_mark_buffer_dirty(right); 4082 btrfs_mark_buffer_dirty(l); 4083 BUG_ON(path->slots[0] != slot); 4084 4085 if (mid <= slot) { 4086 btrfs_tree_unlock(path->nodes[0]); 4087 free_extent_buffer(path->nodes[0]); 4088 path->nodes[0] = right; 4089 path->slots[0] -= mid; 4090 path->slots[1] += 1; 4091 } else { 4092 btrfs_tree_unlock(right); 4093 free_extent_buffer(right); 4094 } 4095 4096 BUG_ON(path->slots[0] < 0); 4097 } 4098 4099 /* 4100 * double splits happen when we need to insert a big item in the middle 4101 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4102 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4103 * A B C 4104 * 4105 * We avoid this by trying to push the items on either side of our target 4106 * into the adjacent leaves. If all goes well we can avoid the double split 4107 * completely. 4108 */ 4109 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4110 struct btrfs_root *root, 4111 struct btrfs_path *path, 4112 int data_size) 4113 { 4114 int ret; 4115 int progress = 0; 4116 int slot; 4117 u32 nritems; 4118 int space_needed = data_size; 4119 4120 slot = path->slots[0]; 4121 if (slot < btrfs_header_nritems(path->nodes[0])) 4122 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]); 4123 4124 /* 4125 * try to push all the items after our slot into the 4126 * right leaf 4127 */ 4128 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4129 if (ret < 0) 4130 return ret; 4131 4132 if (ret == 0) 4133 progress++; 4134 4135 nritems = btrfs_header_nritems(path->nodes[0]); 4136 /* 4137 * our goal is to get our slot at the start or end of a leaf. If 4138 * we've done so we're done 4139 */ 4140 if (path->slots[0] == 0 || path->slots[0] == nritems) 4141 return 0; 4142 4143 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4144 return 0; 4145 4146 /* try to push all the items before our slot into the next leaf */ 4147 slot = path->slots[0]; 4148 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4149 if (ret < 0) 4150 return ret; 4151 4152 if (ret == 0) 4153 progress++; 4154 4155 if (progress) 4156 return 0; 4157 return 1; 4158 } 4159 4160 /* 4161 * split the path's leaf in two, making sure there is at least data_size 4162 * available for the resulting leaf level of the path. 4163 * 4164 * returns 0 if all went well and < 0 on failure. 4165 */ 4166 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4167 struct btrfs_root *root, 4168 struct btrfs_key *ins_key, 4169 struct btrfs_path *path, int data_size, 4170 int extend) 4171 { 4172 struct btrfs_disk_key disk_key; 4173 struct extent_buffer *l; 4174 u32 nritems; 4175 int mid; 4176 int slot; 4177 struct extent_buffer *right; 4178 struct btrfs_fs_info *fs_info = root->fs_info; 4179 int ret = 0; 4180 int wret; 4181 int split; 4182 int num_doubles = 0; 4183 int tried_avoid_double = 0; 4184 4185 l = path->nodes[0]; 4186 slot = path->slots[0]; 4187 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4188 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 4189 return -EOVERFLOW; 4190 4191 /* first try to make some room by pushing left and right */ 4192 if (data_size && path->nodes[1]) { 4193 int space_needed = data_size; 4194 4195 if (slot < btrfs_header_nritems(l)) 4196 space_needed -= btrfs_leaf_free_space(root, l); 4197 4198 wret = push_leaf_right(trans, root, path, space_needed, 4199 space_needed, 0, 0); 4200 if (wret < 0) 4201 return wret; 4202 if (wret) { 4203 wret = push_leaf_left(trans, root, path, space_needed, 4204 space_needed, 0, (u32)-1); 4205 if (wret < 0) 4206 return wret; 4207 } 4208 l = path->nodes[0]; 4209 4210 /* did the pushes work? */ 4211 if (btrfs_leaf_free_space(root, l) >= data_size) 4212 return 0; 4213 } 4214 4215 if (!path->nodes[1]) { 4216 ret = insert_new_root(trans, root, path, 1); 4217 if (ret) 4218 return ret; 4219 } 4220 again: 4221 split = 1; 4222 l = path->nodes[0]; 4223 slot = path->slots[0]; 4224 nritems = btrfs_header_nritems(l); 4225 mid = (nritems + 1) / 2; 4226 4227 if (mid <= slot) { 4228 if (nritems == 1 || 4229 leaf_space_used(l, mid, nritems - mid) + data_size > 4230 BTRFS_LEAF_DATA_SIZE(root)) { 4231 if (slot >= nritems) { 4232 split = 0; 4233 } else { 4234 mid = slot; 4235 if (mid != nritems && 4236 leaf_space_used(l, mid, nritems - mid) + 4237 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4238 if (data_size && !tried_avoid_double) 4239 goto push_for_double; 4240 split = 2; 4241 } 4242 } 4243 } 4244 } else { 4245 if (leaf_space_used(l, 0, mid) + data_size > 4246 BTRFS_LEAF_DATA_SIZE(root)) { 4247 if (!extend && data_size && slot == 0) { 4248 split = 0; 4249 } else if ((extend || !data_size) && slot == 0) { 4250 mid = 1; 4251 } else { 4252 mid = slot; 4253 if (mid != nritems && 4254 leaf_space_used(l, mid, nritems - mid) + 4255 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4256 if (data_size && !tried_avoid_double) 4257 goto push_for_double; 4258 split = 2; 4259 } 4260 } 4261 } 4262 } 4263 4264 if (split == 0) 4265 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4266 else 4267 btrfs_item_key(l, &disk_key, mid); 4268 4269 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4270 &disk_key, 0, l->start, 0); 4271 if (IS_ERR(right)) 4272 return PTR_ERR(right); 4273 4274 root_add_used(root, root->nodesize); 4275 4276 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4277 btrfs_set_header_bytenr(right, right->start); 4278 btrfs_set_header_generation(right, trans->transid); 4279 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4280 btrfs_set_header_owner(right, root->root_key.objectid); 4281 btrfs_set_header_level(right, 0); 4282 write_extent_buffer(right, fs_info->fsid, 4283 btrfs_header_fsid(), BTRFS_FSID_SIZE); 4284 4285 write_extent_buffer(right, fs_info->chunk_tree_uuid, 4286 btrfs_header_chunk_tree_uuid(right), 4287 BTRFS_UUID_SIZE); 4288 4289 if (split == 0) { 4290 if (mid <= slot) { 4291 btrfs_set_header_nritems(right, 0); 4292 insert_ptr(trans, root, path, &disk_key, right->start, 4293 path->slots[1] + 1, 1); 4294 btrfs_tree_unlock(path->nodes[0]); 4295 free_extent_buffer(path->nodes[0]); 4296 path->nodes[0] = right; 4297 path->slots[0] = 0; 4298 path->slots[1] += 1; 4299 } else { 4300 btrfs_set_header_nritems(right, 0); 4301 insert_ptr(trans, root, path, &disk_key, right->start, 4302 path->slots[1], 1); 4303 btrfs_tree_unlock(path->nodes[0]); 4304 free_extent_buffer(path->nodes[0]); 4305 path->nodes[0] = right; 4306 path->slots[0] = 0; 4307 if (path->slots[1] == 0) 4308 fixup_low_keys(fs_info, path, &disk_key, 1); 4309 } 4310 btrfs_mark_buffer_dirty(right); 4311 return ret; 4312 } 4313 4314 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4315 4316 if (split == 2) { 4317 BUG_ON(num_doubles != 0); 4318 num_doubles++; 4319 goto again; 4320 } 4321 4322 return 0; 4323 4324 push_for_double: 4325 push_for_double_split(trans, root, path, data_size); 4326 tried_avoid_double = 1; 4327 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4328 return 0; 4329 goto again; 4330 } 4331 4332 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4333 struct btrfs_root *root, 4334 struct btrfs_path *path, int ins_len) 4335 { 4336 struct btrfs_key key; 4337 struct extent_buffer *leaf; 4338 struct btrfs_file_extent_item *fi; 4339 u64 extent_len = 0; 4340 u32 item_size; 4341 int ret; 4342 4343 leaf = path->nodes[0]; 4344 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4345 4346 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4347 key.type != BTRFS_EXTENT_CSUM_KEY); 4348 4349 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4350 return 0; 4351 4352 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4353 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4354 fi = btrfs_item_ptr(leaf, path->slots[0], 4355 struct btrfs_file_extent_item); 4356 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4357 } 4358 btrfs_release_path(path); 4359 4360 path->keep_locks = 1; 4361 path->search_for_split = 1; 4362 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4363 path->search_for_split = 0; 4364 if (ret > 0) 4365 ret = -EAGAIN; 4366 if (ret < 0) 4367 goto err; 4368 4369 ret = -EAGAIN; 4370 leaf = path->nodes[0]; 4371 /* if our item isn't there, return now */ 4372 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4373 goto err; 4374 4375 /* the leaf has changed, it now has room. return now */ 4376 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4377 goto err; 4378 4379 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4380 fi = btrfs_item_ptr(leaf, path->slots[0], 4381 struct btrfs_file_extent_item); 4382 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4383 goto err; 4384 } 4385 4386 btrfs_set_path_blocking(path); 4387 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4388 if (ret) 4389 goto err; 4390 4391 path->keep_locks = 0; 4392 btrfs_unlock_up_safe(path, 1); 4393 return 0; 4394 err: 4395 path->keep_locks = 0; 4396 return ret; 4397 } 4398 4399 static noinline int split_item(struct btrfs_trans_handle *trans, 4400 struct btrfs_root *root, 4401 struct btrfs_path *path, 4402 struct btrfs_key *new_key, 4403 unsigned long split_offset) 4404 { 4405 struct extent_buffer *leaf; 4406 struct btrfs_item *item; 4407 struct btrfs_item *new_item; 4408 int slot; 4409 char *buf; 4410 u32 nritems; 4411 u32 item_size; 4412 u32 orig_offset; 4413 struct btrfs_disk_key disk_key; 4414 4415 leaf = path->nodes[0]; 4416 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4417 4418 btrfs_set_path_blocking(path); 4419 4420 item = btrfs_item_nr(path->slots[0]); 4421 orig_offset = btrfs_item_offset(leaf, item); 4422 item_size = btrfs_item_size(leaf, item); 4423 4424 buf = kmalloc(item_size, GFP_NOFS); 4425 if (!buf) 4426 return -ENOMEM; 4427 4428 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4429 path->slots[0]), item_size); 4430 4431 slot = path->slots[0] + 1; 4432 nritems = btrfs_header_nritems(leaf); 4433 if (slot != nritems) { 4434 /* shift the items */ 4435 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4436 btrfs_item_nr_offset(slot), 4437 (nritems - slot) * sizeof(struct btrfs_item)); 4438 } 4439 4440 btrfs_cpu_key_to_disk(&disk_key, new_key); 4441 btrfs_set_item_key(leaf, &disk_key, slot); 4442 4443 new_item = btrfs_item_nr(slot); 4444 4445 btrfs_set_item_offset(leaf, new_item, orig_offset); 4446 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4447 4448 btrfs_set_item_offset(leaf, item, 4449 orig_offset + item_size - split_offset); 4450 btrfs_set_item_size(leaf, item, split_offset); 4451 4452 btrfs_set_header_nritems(leaf, nritems + 1); 4453 4454 /* write the data for the start of the original item */ 4455 write_extent_buffer(leaf, buf, 4456 btrfs_item_ptr_offset(leaf, path->slots[0]), 4457 split_offset); 4458 4459 /* write the data for the new item */ 4460 write_extent_buffer(leaf, buf + split_offset, 4461 btrfs_item_ptr_offset(leaf, slot), 4462 item_size - split_offset); 4463 btrfs_mark_buffer_dirty(leaf); 4464 4465 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4466 kfree(buf); 4467 return 0; 4468 } 4469 4470 /* 4471 * This function splits a single item into two items, 4472 * giving 'new_key' to the new item and splitting the 4473 * old one at split_offset (from the start of the item). 4474 * 4475 * The path may be released by this operation. After 4476 * the split, the path is pointing to the old item. The 4477 * new item is going to be in the same node as the old one. 4478 * 4479 * Note, the item being split must be smaller enough to live alone on 4480 * a tree block with room for one extra struct btrfs_item 4481 * 4482 * This allows us to split the item in place, keeping a lock on the 4483 * leaf the entire time. 4484 */ 4485 int btrfs_split_item(struct btrfs_trans_handle *trans, 4486 struct btrfs_root *root, 4487 struct btrfs_path *path, 4488 struct btrfs_key *new_key, 4489 unsigned long split_offset) 4490 { 4491 int ret; 4492 ret = setup_leaf_for_split(trans, root, path, 4493 sizeof(struct btrfs_item)); 4494 if (ret) 4495 return ret; 4496 4497 ret = split_item(trans, root, path, new_key, split_offset); 4498 return ret; 4499 } 4500 4501 /* 4502 * This function duplicate a item, giving 'new_key' to the new item. 4503 * It guarantees both items live in the same tree leaf and the new item 4504 * is contiguous with the original item. 4505 * 4506 * This allows us to split file extent in place, keeping a lock on the 4507 * leaf the entire time. 4508 */ 4509 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4510 struct btrfs_root *root, 4511 struct btrfs_path *path, 4512 struct btrfs_key *new_key) 4513 { 4514 struct extent_buffer *leaf; 4515 int ret; 4516 u32 item_size; 4517 4518 leaf = path->nodes[0]; 4519 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4520 ret = setup_leaf_for_split(trans, root, path, 4521 item_size + sizeof(struct btrfs_item)); 4522 if (ret) 4523 return ret; 4524 4525 path->slots[0]++; 4526 setup_items_for_insert(root, path, new_key, &item_size, 4527 item_size, item_size + 4528 sizeof(struct btrfs_item), 1); 4529 leaf = path->nodes[0]; 4530 memcpy_extent_buffer(leaf, 4531 btrfs_item_ptr_offset(leaf, path->slots[0]), 4532 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4533 item_size); 4534 return 0; 4535 } 4536 4537 /* 4538 * make the item pointed to by the path smaller. new_size indicates 4539 * how small to make it, and from_end tells us if we just chop bytes 4540 * off the end of the item or if we shift the item to chop bytes off 4541 * the front. 4542 */ 4543 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4544 u32 new_size, int from_end) 4545 { 4546 int slot; 4547 struct extent_buffer *leaf; 4548 struct btrfs_item *item; 4549 u32 nritems; 4550 unsigned int data_end; 4551 unsigned int old_data_start; 4552 unsigned int old_size; 4553 unsigned int size_diff; 4554 int i; 4555 struct btrfs_map_token token; 4556 4557 btrfs_init_map_token(&token); 4558 4559 leaf = path->nodes[0]; 4560 slot = path->slots[0]; 4561 4562 old_size = btrfs_item_size_nr(leaf, slot); 4563 if (old_size == new_size) 4564 return; 4565 4566 nritems = btrfs_header_nritems(leaf); 4567 data_end = leaf_data_end(root, leaf); 4568 4569 old_data_start = btrfs_item_offset_nr(leaf, slot); 4570 4571 size_diff = old_size - new_size; 4572 4573 BUG_ON(slot < 0); 4574 BUG_ON(slot >= nritems); 4575 4576 /* 4577 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4578 */ 4579 /* first correct the data pointers */ 4580 for (i = slot; i < nritems; i++) { 4581 u32 ioff; 4582 item = btrfs_item_nr(i); 4583 4584 ioff = btrfs_token_item_offset(leaf, item, &token); 4585 btrfs_set_token_item_offset(leaf, item, 4586 ioff + size_diff, &token); 4587 } 4588 4589 /* shift the data */ 4590 if (from_end) { 4591 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4592 data_end + size_diff, btrfs_leaf_data(leaf) + 4593 data_end, old_data_start + new_size - data_end); 4594 } else { 4595 struct btrfs_disk_key disk_key; 4596 u64 offset; 4597 4598 btrfs_item_key(leaf, &disk_key, slot); 4599 4600 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4601 unsigned long ptr; 4602 struct btrfs_file_extent_item *fi; 4603 4604 fi = btrfs_item_ptr(leaf, slot, 4605 struct btrfs_file_extent_item); 4606 fi = (struct btrfs_file_extent_item *)( 4607 (unsigned long)fi - size_diff); 4608 4609 if (btrfs_file_extent_type(leaf, fi) == 4610 BTRFS_FILE_EXTENT_INLINE) { 4611 ptr = btrfs_item_ptr_offset(leaf, slot); 4612 memmove_extent_buffer(leaf, ptr, 4613 (unsigned long)fi, 4614 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4615 } 4616 } 4617 4618 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4619 data_end + size_diff, btrfs_leaf_data(leaf) + 4620 data_end, old_data_start - data_end); 4621 4622 offset = btrfs_disk_key_offset(&disk_key); 4623 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4624 btrfs_set_item_key(leaf, &disk_key, slot); 4625 if (slot == 0) 4626 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4627 } 4628 4629 item = btrfs_item_nr(slot); 4630 btrfs_set_item_size(leaf, item, new_size); 4631 btrfs_mark_buffer_dirty(leaf); 4632 4633 if (btrfs_leaf_free_space(root, leaf) < 0) { 4634 btrfs_print_leaf(root, leaf); 4635 BUG(); 4636 } 4637 } 4638 4639 /* 4640 * make the item pointed to by the path bigger, data_size is the added size. 4641 */ 4642 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4643 u32 data_size) 4644 { 4645 int slot; 4646 struct extent_buffer *leaf; 4647 struct btrfs_item *item; 4648 u32 nritems; 4649 unsigned int data_end; 4650 unsigned int old_data; 4651 unsigned int old_size; 4652 int i; 4653 struct btrfs_map_token token; 4654 4655 btrfs_init_map_token(&token); 4656 4657 leaf = path->nodes[0]; 4658 4659 nritems = btrfs_header_nritems(leaf); 4660 data_end = leaf_data_end(root, leaf); 4661 4662 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4663 btrfs_print_leaf(root, leaf); 4664 BUG(); 4665 } 4666 slot = path->slots[0]; 4667 old_data = btrfs_item_end_nr(leaf, slot); 4668 4669 BUG_ON(slot < 0); 4670 if (slot >= nritems) { 4671 btrfs_print_leaf(root, leaf); 4672 btrfs_crit(root->fs_info, "slot %d too large, nritems %d", 4673 slot, nritems); 4674 BUG_ON(1); 4675 } 4676 4677 /* 4678 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4679 */ 4680 /* first correct the data pointers */ 4681 for (i = slot; i < nritems; i++) { 4682 u32 ioff; 4683 item = btrfs_item_nr(i); 4684 4685 ioff = btrfs_token_item_offset(leaf, item, &token); 4686 btrfs_set_token_item_offset(leaf, item, 4687 ioff - data_size, &token); 4688 } 4689 4690 /* shift the data */ 4691 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4692 data_end - data_size, btrfs_leaf_data(leaf) + 4693 data_end, old_data - data_end); 4694 4695 data_end = old_data; 4696 old_size = btrfs_item_size_nr(leaf, slot); 4697 item = btrfs_item_nr(slot); 4698 btrfs_set_item_size(leaf, item, old_size + data_size); 4699 btrfs_mark_buffer_dirty(leaf); 4700 4701 if (btrfs_leaf_free_space(root, leaf) < 0) { 4702 btrfs_print_leaf(root, leaf); 4703 BUG(); 4704 } 4705 } 4706 4707 /* 4708 * this is a helper for btrfs_insert_empty_items, the main goal here is 4709 * to save stack depth by doing the bulk of the work in a function 4710 * that doesn't call btrfs_search_slot 4711 */ 4712 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4713 struct btrfs_key *cpu_key, u32 *data_size, 4714 u32 total_data, u32 total_size, int nr) 4715 { 4716 struct btrfs_item *item; 4717 int i; 4718 u32 nritems; 4719 unsigned int data_end; 4720 struct btrfs_disk_key disk_key; 4721 struct extent_buffer *leaf; 4722 int slot; 4723 struct btrfs_map_token token; 4724 4725 if (path->slots[0] == 0) { 4726 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4727 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4728 } 4729 btrfs_unlock_up_safe(path, 1); 4730 4731 btrfs_init_map_token(&token); 4732 4733 leaf = path->nodes[0]; 4734 slot = path->slots[0]; 4735 4736 nritems = btrfs_header_nritems(leaf); 4737 data_end = leaf_data_end(root, leaf); 4738 4739 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4740 btrfs_print_leaf(root, leaf); 4741 btrfs_crit(root->fs_info, "not enough freespace need %u have %d", 4742 total_size, btrfs_leaf_free_space(root, leaf)); 4743 BUG(); 4744 } 4745 4746 if (slot != nritems) { 4747 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4748 4749 if (old_data < data_end) { 4750 btrfs_print_leaf(root, leaf); 4751 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d", 4752 slot, old_data, data_end); 4753 BUG_ON(1); 4754 } 4755 /* 4756 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4757 */ 4758 /* first correct the data pointers */ 4759 for (i = slot; i < nritems; i++) { 4760 u32 ioff; 4761 4762 item = btrfs_item_nr( i); 4763 ioff = btrfs_token_item_offset(leaf, item, &token); 4764 btrfs_set_token_item_offset(leaf, item, 4765 ioff - total_data, &token); 4766 } 4767 /* shift the items */ 4768 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4769 btrfs_item_nr_offset(slot), 4770 (nritems - slot) * sizeof(struct btrfs_item)); 4771 4772 /* shift the data */ 4773 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4774 data_end - total_data, btrfs_leaf_data(leaf) + 4775 data_end, old_data - data_end); 4776 data_end = old_data; 4777 } 4778 4779 /* setup the item for the new data */ 4780 for (i = 0; i < nr; i++) { 4781 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4782 btrfs_set_item_key(leaf, &disk_key, slot + i); 4783 item = btrfs_item_nr(slot + i); 4784 btrfs_set_token_item_offset(leaf, item, 4785 data_end - data_size[i], &token); 4786 data_end -= data_size[i]; 4787 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4788 } 4789 4790 btrfs_set_header_nritems(leaf, nritems + nr); 4791 btrfs_mark_buffer_dirty(leaf); 4792 4793 if (btrfs_leaf_free_space(root, leaf) < 0) { 4794 btrfs_print_leaf(root, leaf); 4795 BUG(); 4796 } 4797 } 4798 4799 /* 4800 * Given a key and some data, insert items into the tree. 4801 * This does all the path init required, making room in the tree if needed. 4802 */ 4803 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4804 struct btrfs_root *root, 4805 struct btrfs_path *path, 4806 struct btrfs_key *cpu_key, u32 *data_size, 4807 int nr) 4808 { 4809 int ret = 0; 4810 int slot; 4811 int i; 4812 u32 total_size = 0; 4813 u32 total_data = 0; 4814 4815 for (i = 0; i < nr; i++) 4816 total_data += data_size[i]; 4817 4818 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4819 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4820 if (ret == 0) 4821 return -EEXIST; 4822 if (ret < 0) 4823 return ret; 4824 4825 slot = path->slots[0]; 4826 BUG_ON(slot < 0); 4827 4828 setup_items_for_insert(root, path, cpu_key, data_size, 4829 total_data, total_size, nr); 4830 return 0; 4831 } 4832 4833 /* 4834 * Given a key and some data, insert an item into the tree. 4835 * This does all the path init required, making room in the tree if needed. 4836 */ 4837 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4838 *root, struct btrfs_key *cpu_key, void *data, u32 4839 data_size) 4840 { 4841 int ret = 0; 4842 struct btrfs_path *path; 4843 struct extent_buffer *leaf; 4844 unsigned long ptr; 4845 4846 path = btrfs_alloc_path(); 4847 if (!path) 4848 return -ENOMEM; 4849 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4850 if (!ret) { 4851 leaf = path->nodes[0]; 4852 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4853 write_extent_buffer(leaf, data, ptr, data_size); 4854 btrfs_mark_buffer_dirty(leaf); 4855 } 4856 btrfs_free_path(path); 4857 return ret; 4858 } 4859 4860 /* 4861 * delete the pointer from a given node. 4862 * 4863 * the tree should have been previously balanced so the deletion does not 4864 * empty a node. 4865 */ 4866 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4867 int level, int slot) 4868 { 4869 struct extent_buffer *parent = path->nodes[level]; 4870 u32 nritems; 4871 int ret; 4872 4873 nritems = btrfs_header_nritems(parent); 4874 if (slot != nritems - 1) { 4875 if (level) 4876 tree_mod_log_eb_move(root->fs_info, parent, slot, 4877 slot + 1, nritems - slot - 1); 4878 memmove_extent_buffer(parent, 4879 btrfs_node_key_ptr_offset(slot), 4880 btrfs_node_key_ptr_offset(slot + 1), 4881 sizeof(struct btrfs_key_ptr) * 4882 (nritems - slot - 1)); 4883 } else if (level) { 4884 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4885 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4886 BUG_ON(ret < 0); 4887 } 4888 4889 nritems--; 4890 btrfs_set_header_nritems(parent, nritems); 4891 if (nritems == 0 && parent == root->node) { 4892 BUG_ON(btrfs_header_level(root->node) != 1); 4893 /* just turn the root into a leaf and break */ 4894 btrfs_set_header_level(root->node, 0); 4895 } else if (slot == 0) { 4896 struct btrfs_disk_key disk_key; 4897 4898 btrfs_node_key(parent, &disk_key, 0); 4899 fixup_low_keys(root->fs_info, path, &disk_key, level + 1); 4900 } 4901 btrfs_mark_buffer_dirty(parent); 4902 } 4903 4904 /* 4905 * a helper function to delete the leaf pointed to by path->slots[1] and 4906 * path->nodes[1]. 4907 * 4908 * This deletes the pointer in path->nodes[1] and frees the leaf 4909 * block extent. zero is returned if it all worked out, < 0 otherwise. 4910 * 4911 * The path must have already been setup for deleting the leaf, including 4912 * all the proper balancing. path->nodes[1] must be locked. 4913 */ 4914 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4915 struct btrfs_root *root, 4916 struct btrfs_path *path, 4917 struct extent_buffer *leaf) 4918 { 4919 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4920 del_ptr(root, path, 1, path->slots[1]); 4921 4922 /* 4923 * btrfs_free_extent is expensive, we want to make sure we 4924 * aren't holding any locks when we call it 4925 */ 4926 btrfs_unlock_up_safe(path, 0); 4927 4928 root_sub_used(root, leaf->len); 4929 4930 extent_buffer_get(leaf); 4931 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4932 free_extent_buffer_stale(leaf); 4933 } 4934 /* 4935 * delete the item at the leaf level in path. If that empties 4936 * the leaf, remove it from the tree 4937 */ 4938 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4939 struct btrfs_path *path, int slot, int nr) 4940 { 4941 struct extent_buffer *leaf; 4942 struct btrfs_item *item; 4943 int last_off; 4944 int dsize = 0; 4945 int ret = 0; 4946 int wret; 4947 int i; 4948 u32 nritems; 4949 struct btrfs_map_token token; 4950 4951 btrfs_init_map_token(&token); 4952 4953 leaf = path->nodes[0]; 4954 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4955 4956 for (i = 0; i < nr; i++) 4957 dsize += btrfs_item_size_nr(leaf, slot + i); 4958 4959 nritems = btrfs_header_nritems(leaf); 4960 4961 if (slot + nr != nritems) { 4962 int data_end = leaf_data_end(root, leaf); 4963 4964 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4965 data_end + dsize, 4966 btrfs_leaf_data(leaf) + data_end, 4967 last_off - data_end); 4968 4969 for (i = slot + nr; i < nritems; i++) { 4970 u32 ioff; 4971 4972 item = btrfs_item_nr(i); 4973 ioff = btrfs_token_item_offset(leaf, item, &token); 4974 btrfs_set_token_item_offset(leaf, item, 4975 ioff + dsize, &token); 4976 } 4977 4978 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4979 btrfs_item_nr_offset(slot + nr), 4980 sizeof(struct btrfs_item) * 4981 (nritems - slot - nr)); 4982 } 4983 btrfs_set_header_nritems(leaf, nritems - nr); 4984 nritems -= nr; 4985 4986 /* delete the leaf if we've emptied it */ 4987 if (nritems == 0) { 4988 if (leaf == root->node) { 4989 btrfs_set_header_level(leaf, 0); 4990 } else { 4991 btrfs_set_path_blocking(path); 4992 clean_tree_block(trans, root->fs_info, leaf); 4993 btrfs_del_leaf(trans, root, path, leaf); 4994 } 4995 } else { 4996 int used = leaf_space_used(leaf, 0, nritems); 4997 if (slot == 0) { 4998 struct btrfs_disk_key disk_key; 4999 5000 btrfs_item_key(leaf, &disk_key, 0); 5001 fixup_low_keys(root->fs_info, path, &disk_key, 1); 5002 } 5003 5004 /* delete the leaf if it is mostly empty */ 5005 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 5006 /* push_leaf_left fixes the path. 5007 * make sure the path still points to our leaf 5008 * for possible call to del_ptr below 5009 */ 5010 slot = path->slots[1]; 5011 extent_buffer_get(leaf); 5012 5013 btrfs_set_path_blocking(path); 5014 wret = push_leaf_left(trans, root, path, 1, 1, 5015 1, (u32)-1); 5016 if (wret < 0 && wret != -ENOSPC) 5017 ret = wret; 5018 5019 if (path->nodes[0] == leaf && 5020 btrfs_header_nritems(leaf)) { 5021 wret = push_leaf_right(trans, root, path, 1, 5022 1, 1, 0); 5023 if (wret < 0 && wret != -ENOSPC) 5024 ret = wret; 5025 } 5026 5027 if (btrfs_header_nritems(leaf) == 0) { 5028 path->slots[1] = slot; 5029 btrfs_del_leaf(trans, root, path, leaf); 5030 free_extent_buffer(leaf); 5031 ret = 0; 5032 } else { 5033 /* if we're still in the path, make sure 5034 * we're dirty. Otherwise, one of the 5035 * push_leaf functions must have already 5036 * dirtied this buffer 5037 */ 5038 if (path->nodes[0] == leaf) 5039 btrfs_mark_buffer_dirty(leaf); 5040 free_extent_buffer(leaf); 5041 } 5042 } else { 5043 btrfs_mark_buffer_dirty(leaf); 5044 } 5045 } 5046 return ret; 5047 } 5048 5049 /* 5050 * search the tree again to find a leaf with lesser keys 5051 * returns 0 if it found something or 1 if there are no lesser leaves. 5052 * returns < 0 on io errors. 5053 * 5054 * This may release the path, and so you may lose any locks held at the 5055 * time you call it. 5056 */ 5057 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5058 { 5059 struct btrfs_key key; 5060 struct btrfs_disk_key found_key; 5061 int ret; 5062 5063 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5064 5065 if (key.offset > 0) { 5066 key.offset--; 5067 } else if (key.type > 0) { 5068 key.type--; 5069 key.offset = (u64)-1; 5070 } else if (key.objectid > 0) { 5071 key.objectid--; 5072 key.type = (u8)-1; 5073 key.offset = (u64)-1; 5074 } else { 5075 return 1; 5076 } 5077 5078 btrfs_release_path(path); 5079 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5080 if (ret < 0) 5081 return ret; 5082 btrfs_item_key(path->nodes[0], &found_key, 0); 5083 ret = comp_keys(&found_key, &key); 5084 /* 5085 * We might have had an item with the previous key in the tree right 5086 * before we released our path. And after we released our path, that 5087 * item might have been pushed to the first slot (0) of the leaf we 5088 * were holding due to a tree balance. Alternatively, an item with the 5089 * previous key can exist as the only element of a leaf (big fat item). 5090 * Therefore account for these 2 cases, so that our callers (like 5091 * btrfs_previous_item) don't miss an existing item with a key matching 5092 * the previous key we computed above. 5093 */ 5094 if (ret <= 0) 5095 return 0; 5096 return 1; 5097 } 5098 5099 /* 5100 * A helper function to walk down the tree starting at min_key, and looking 5101 * for nodes or leaves that are have a minimum transaction id. 5102 * This is used by the btree defrag code, and tree logging 5103 * 5104 * This does not cow, but it does stuff the starting key it finds back 5105 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5106 * key and get a writable path. 5107 * 5108 * This does lock as it descends, and path->keep_locks should be set 5109 * to 1 by the caller. 5110 * 5111 * This honors path->lowest_level to prevent descent past a given level 5112 * of the tree. 5113 * 5114 * min_trans indicates the oldest transaction that you are interested 5115 * in walking through. Any nodes or leaves older than min_trans are 5116 * skipped over (without reading them). 5117 * 5118 * returns zero if something useful was found, < 0 on error and 1 if there 5119 * was nothing in the tree that matched the search criteria. 5120 */ 5121 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5122 struct btrfs_path *path, 5123 u64 min_trans) 5124 { 5125 struct extent_buffer *cur; 5126 struct btrfs_key found_key; 5127 int slot; 5128 int sret; 5129 u32 nritems; 5130 int level; 5131 int ret = 1; 5132 int keep_locks = path->keep_locks; 5133 5134 path->keep_locks = 1; 5135 again: 5136 cur = btrfs_read_lock_root_node(root); 5137 level = btrfs_header_level(cur); 5138 WARN_ON(path->nodes[level]); 5139 path->nodes[level] = cur; 5140 path->locks[level] = BTRFS_READ_LOCK; 5141 5142 if (btrfs_header_generation(cur) < min_trans) { 5143 ret = 1; 5144 goto out; 5145 } 5146 while (1) { 5147 nritems = btrfs_header_nritems(cur); 5148 level = btrfs_header_level(cur); 5149 sret = bin_search(cur, min_key, level, &slot); 5150 5151 /* at the lowest level, we're done, setup the path and exit */ 5152 if (level == path->lowest_level) { 5153 if (slot >= nritems) 5154 goto find_next_key; 5155 ret = 0; 5156 path->slots[level] = slot; 5157 btrfs_item_key_to_cpu(cur, &found_key, slot); 5158 goto out; 5159 } 5160 if (sret && slot > 0) 5161 slot--; 5162 /* 5163 * check this node pointer against the min_trans parameters. 5164 * If it is too old, old, skip to the next one. 5165 */ 5166 while (slot < nritems) { 5167 u64 gen; 5168 5169 gen = btrfs_node_ptr_generation(cur, slot); 5170 if (gen < min_trans) { 5171 slot++; 5172 continue; 5173 } 5174 break; 5175 } 5176 find_next_key: 5177 /* 5178 * we didn't find a candidate key in this node, walk forward 5179 * and find another one 5180 */ 5181 if (slot >= nritems) { 5182 path->slots[level] = slot; 5183 btrfs_set_path_blocking(path); 5184 sret = btrfs_find_next_key(root, path, min_key, level, 5185 min_trans); 5186 if (sret == 0) { 5187 btrfs_release_path(path); 5188 goto again; 5189 } else { 5190 goto out; 5191 } 5192 } 5193 /* save our key for returning back */ 5194 btrfs_node_key_to_cpu(cur, &found_key, slot); 5195 path->slots[level] = slot; 5196 if (level == path->lowest_level) { 5197 ret = 0; 5198 goto out; 5199 } 5200 btrfs_set_path_blocking(path); 5201 cur = read_node_slot(root, cur, slot); 5202 BUG_ON(!cur); /* -ENOMEM */ 5203 5204 btrfs_tree_read_lock(cur); 5205 5206 path->locks[level - 1] = BTRFS_READ_LOCK; 5207 path->nodes[level - 1] = cur; 5208 unlock_up(path, level, 1, 0, NULL); 5209 btrfs_clear_path_blocking(path, NULL, 0); 5210 } 5211 out: 5212 path->keep_locks = keep_locks; 5213 if (ret == 0) { 5214 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5215 btrfs_set_path_blocking(path); 5216 memcpy(min_key, &found_key, sizeof(found_key)); 5217 } 5218 return ret; 5219 } 5220 5221 static void tree_move_down(struct btrfs_root *root, 5222 struct btrfs_path *path, 5223 int *level, int root_level) 5224 { 5225 BUG_ON(*level == 0); 5226 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 5227 path->slots[*level]); 5228 path->slots[*level - 1] = 0; 5229 (*level)--; 5230 } 5231 5232 static int tree_move_next_or_upnext(struct btrfs_root *root, 5233 struct btrfs_path *path, 5234 int *level, int root_level) 5235 { 5236 int ret = 0; 5237 int nritems; 5238 nritems = btrfs_header_nritems(path->nodes[*level]); 5239 5240 path->slots[*level]++; 5241 5242 while (path->slots[*level] >= nritems) { 5243 if (*level == root_level) 5244 return -1; 5245 5246 /* move upnext */ 5247 path->slots[*level] = 0; 5248 free_extent_buffer(path->nodes[*level]); 5249 path->nodes[*level] = NULL; 5250 (*level)++; 5251 path->slots[*level]++; 5252 5253 nritems = btrfs_header_nritems(path->nodes[*level]); 5254 ret = 1; 5255 } 5256 return ret; 5257 } 5258 5259 /* 5260 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5261 * or down. 5262 */ 5263 static int tree_advance(struct btrfs_root *root, 5264 struct btrfs_path *path, 5265 int *level, int root_level, 5266 int allow_down, 5267 struct btrfs_key *key) 5268 { 5269 int ret; 5270 5271 if (*level == 0 || !allow_down) { 5272 ret = tree_move_next_or_upnext(root, path, level, root_level); 5273 } else { 5274 tree_move_down(root, path, level, root_level); 5275 ret = 0; 5276 } 5277 if (ret >= 0) { 5278 if (*level == 0) 5279 btrfs_item_key_to_cpu(path->nodes[*level], key, 5280 path->slots[*level]); 5281 else 5282 btrfs_node_key_to_cpu(path->nodes[*level], key, 5283 path->slots[*level]); 5284 } 5285 return ret; 5286 } 5287 5288 static int tree_compare_item(struct btrfs_root *left_root, 5289 struct btrfs_path *left_path, 5290 struct btrfs_path *right_path, 5291 char *tmp_buf) 5292 { 5293 int cmp; 5294 int len1, len2; 5295 unsigned long off1, off2; 5296 5297 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5298 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5299 if (len1 != len2) 5300 return 1; 5301 5302 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5303 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5304 right_path->slots[0]); 5305 5306 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5307 5308 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5309 if (cmp) 5310 return 1; 5311 return 0; 5312 } 5313 5314 #define ADVANCE 1 5315 #define ADVANCE_ONLY_NEXT -1 5316 5317 /* 5318 * This function compares two trees and calls the provided callback for 5319 * every changed/new/deleted item it finds. 5320 * If shared tree blocks are encountered, whole subtrees are skipped, making 5321 * the compare pretty fast on snapshotted subvolumes. 5322 * 5323 * This currently works on commit roots only. As commit roots are read only, 5324 * we don't do any locking. The commit roots are protected with transactions. 5325 * Transactions are ended and rejoined when a commit is tried in between. 5326 * 5327 * This function checks for modifications done to the trees while comparing. 5328 * If it detects a change, it aborts immediately. 5329 */ 5330 int btrfs_compare_trees(struct btrfs_root *left_root, 5331 struct btrfs_root *right_root, 5332 btrfs_changed_cb_t changed_cb, void *ctx) 5333 { 5334 int ret; 5335 int cmp; 5336 struct btrfs_path *left_path = NULL; 5337 struct btrfs_path *right_path = NULL; 5338 struct btrfs_key left_key; 5339 struct btrfs_key right_key; 5340 char *tmp_buf = NULL; 5341 int left_root_level; 5342 int right_root_level; 5343 int left_level; 5344 int right_level; 5345 int left_end_reached; 5346 int right_end_reached; 5347 int advance_left; 5348 int advance_right; 5349 u64 left_blockptr; 5350 u64 right_blockptr; 5351 u64 left_gen; 5352 u64 right_gen; 5353 5354 left_path = btrfs_alloc_path(); 5355 if (!left_path) { 5356 ret = -ENOMEM; 5357 goto out; 5358 } 5359 right_path = btrfs_alloc_path(); 5360 if (!right_path) { 5361 ret = -ENOMEM; 5362 goto out; 5363 } 5364 5365 tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS); 5366 if (!tmp_buf) { 5367 ret = -ENOMEM; 5368 goto out; 5369 } 5370 5371 left_path->search_commit_root = 1; 5372 left_path->skip_locking = 1; 5373 right_path->search_commit_root = 1; 5374 right_path->skip_locking = 1; 5375 5376 /* 5377 * Strategy: Go to the first items of both trees. Then do 5378 * 5379 * If both trees are at level 0 5380 * Compare keys of current items 5381 * If left < right treat left item as new, advance left tree 5382 * and repeat 5383 * If left > right treat right item as deleted, advance right tree 5384 * and repeat 5385 * If left == right do deep compare of items, treat as changed if 5386 * needed, advance both trees and repeat 5387 * If both trees are at the same level but not at level 0 5388 * Compare keys of current nodes/leafs 5389 * If left < right advance left tree and repeat 5390 * If left > right advance right tree and repeat 5391 * If left == right compare blockptrs of the next nodes/leafs 5392 * If they match advance both trees but stay at the same level 5393 * and repeat 5394 * If they don't match advance both trees while allowing to go 5395 * deeper and repeat 5396 * If tree levels are different 5397 * Advance the tree that needs it and repeat 5398 * 5399 * Advancing a tree means: 5400 * If we are at level 0, try to go to the next slot. If that's not 5401 * possible, go one level up and repeat. Stop when we found a level 5402 * where we could go to the next slot. We may at this point be on a 5403 * node or a leaf. 5404 * 5405 * If we are not at level 0 and not on shared tree blocks, go one 5406 * level deeper. 5407 * 5408 * If we are not at level 0 and on shared tree blocks, go one slot to 5409 * the right if possible or go up and right. 5410 */ 5411 5412 down_read(&left_root->fs_info->commit_root_sem); 5413 left_level = btrfs_header_level(left_root->commit_root); 5414 left_root_level = left_level; 5415 left_path->nodes[left_level] = left_root->commit_root; 5416 extent_buffer_get(left_path->nodes[left_level]); 5417 5418 right_level = btrfs_header_level(right_root->commit_root); 5419 right_root_level = right_level; 5420 right_path->nodes[right_level] = right_root->commit_root; 5421 extent_buffer_get(right_path->nodes[right_level]); 5422 up_read(&left_root->fs_info->commit_root_sem); 5423 5424 if (left_level == 0) 5425 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5426 &left_key, left_path->slots[left_level]); 5427 else 5428 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5429 &left_key, left_path->slots[left_level]); 5430 if (right_level == 0) 5431 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5432 &right_key, right_path->slots[right_level]); 5433 else 5434 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5435 &right_key, right_path->slots[right_level]); 5436 5437 left_end_reached = right_end_reached = 0; 5438 advance_left = advance_right = 0; 5439 5440 while (1) { 5441 if (advance_left && !left_end_reached) { 5442 ret = tree_advance(left_root, left_path, &left_level, 5443 left_root_level, 5444 advance_left != ADVANCE_ONLY_NEXT, 5445 &left_key); 5446 if (ret < 0) 5447 left_end_reached = ADVANCE; 5448 advance_left = 0; 5449 } 5450 if (advance_right && !right_end_reached) { 5451 ret = tree_advance(right_root, right_path, &right_level, 5452 right_root_level, 5453 advance_right != ADVANCE_ONLY_NEXT, 5454 &right_key); 5455 if (ret < 0) 5456 right_end_reached = ADVANCE; 5457 advance_right = 0; 5458 } 5459 5460 if (left_end_reached && right_end_reached) { 5461 ret = 0; 5462 goto out; 5463 } else if (left_end_reached) { 5464 if (right_level == 0) { 5465 ret = changed_cb(left_root, right_root, 5466 left_path, right_path, 5467 &right_key, 5468 BTRFS_COMPARE_TREE_DELETED, 5469 ctx); 5470 if (ret < 0) 5471 goto out; 5472 } 5473 advance_right = ADVANCE; 5474 continue; 5475 } else if (right_end_reached) { 5476 if (left_level == 0) { 5477 ret = changed_cb(left_root, right_root, 5478 left_path, right_path, 5479 &left_key, 5480 BTRFS_COMPARE_TREE_NEW, 5481 ctx); 5482 if (ret < 0) 5483 goto out; 5484 } 5485 advance_left = ADVANCE; 5486 continue; 5487 } 5488 5489 if (left_level == 0 && right_level == 0) { 5490 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5491 if (cmp < 0) { 5492 ret = changed_cb(left_root, right_root, 5493 left_path, right_path, 5494 &left_key, 5495 BTRFS_COMPARE_TREE_NEW, 5496 ctx); 5497 if (ret < 0) 5498 goto out; 5499 advance_left = ADVANCE; 5500 } else if (cmp > 0) { 5501 ret = changed_cb(left_root, right_root, 5502 left_path, right_path, 5503 &right_key, 5504 BTRFS_COMPARE_TREE_DELETED, 5505 ctx); 5506 if (ret < 0) 5507 goto out; 5508 advance_right = ADVANCE; 5509 } else { 5510 enum btrfs_compare_tree_result result; 5511 5512 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5513 ret = tree_compare_item(left_root, left_path, 5514 right_path, tmp_buf); 5515 if (ret) 5516 result = BTRFS_COMPARE_TREE_CHANGED; 5517 else 5518 result = BTRFS_COMPARE_TREE_SAME; 5519 ret = changed_cb(left_root, right_root, 5520 left_path, right_path, 5521 &left_key, result, ctx); 5522 if (ret < 0) 5523 goto out; 5524 advance_left = ADVANCE; 5525 advance_right = ADVANCE; 5526 } 5527 } else if (left_level == right_level) { 5528 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5529 if (cmp < 0) { 5530 advance_left = ADVANCE; 5531 } else if (cmp > 0) { 5532 advance_right = ADVANCE; 5533 } else { 5534 left_blockptr = btrfs_node_blockptr( 5535 left_path->nodes[left_level], 5536 left_path->slots[left_level]); 5537 right_blockptr = btrfs_node_blockptr( 5538 right_path->nodes[right_level], 5539 right_path->slots[right_level]); 5540 left_gen = btrfs_node_ptr_generation( 5541 left_path->nodes[left_level], 5542 left_path->slots[left_level]); 5543 right_gen = btrfs_node_ptr_generation( 5544 right_path->nodes[right_level], 5545 right_path->slots[right_level]); 5546 if (left_blockptr == right_blockptr && 5547 left_gen == right_gen) { 5548 /* 5549 * As we're on a shared block, don't 5550 * allow to go deeper. 5551 */ 5552 advance_left = ADVANCE_ONLY_NEXT; 5553 advance_right = ADVANCE_ONLY_NEXT; 5554 } else { 5555 advance_left = ADVANCE; 5556 advance_right = ADVANCE; 5557 } 5558 } 5559 } else if (left_level < right_level) { 5560 advance_right = ADVANCE; 5561 } else { 5562 advance_left = ADVANCE; 5563 } 5564 } 5565 5566 out: 5567 btrfs_free_path(left_path); 5568 btrfs_free_path(right_path); 5569 kfree(tmp_buf); 5570 return ret; 5571 } 5572 5573 /* 5574 * this is similar to btrfs_next_leaf, but does not try to preserve 5575 * and fixup the path. It looks for and returns the next key in the 5576 * tree based on the current path and the min_trans parameters. 5577 * 5578 * 0 is returned if another key is found, < 0 if there are any errors 5579 * and 1 is returned if there are no higher keys in the tree 5580 * 5581 * path->keep_locks should be set to 1 on the search made before 5582 * calling this function. 5583 */ 5584 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5585 struct btrfs_key *key, int level, u64 min_trans) 5586 { 5587 int slot; 5588 struct extent_buffer *c; 5589 5590 WARN_ON(!path->keep_locks); 5591 while (level < BTRFS_MAX_LEVEL) { 5592 if (!path->nodes[level]) 5593 return 1; 5594 5595 slot = path->slots[level] + 1; 5596 c = path->nodes[level]; 5597 next: 5598 if (slot >= btrfs_header_nritems(c)) { 5599 int ret; 5600 int orig_lowest; 5601 struct btrfs_key cur_key; 5602 if (level + 1 >= BTRFS_MAX_LEVEL || 5603 !path->nodes[level + 1]) 5604 return 1; 5605 5606 if (path->locks[level + 1]) { 5607 level++; 5608 continue; 5609 } 5610 5611 slot = btrfs_header_nritems(c) - 1; 5612 if (level == 0) 5613 btrfs_item_key_to_cpu(c, &cur_key, slot); 5614 else 5615 btrfs_node_key_to_cpu(c, &cur_key, slot); 5616 5617 orig_lowest = path->lowest_level; 5618 btrfs_release_path(path); 5619 path->lowest_level = level; 5620 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5621 0, 0); 5622 path->lowest_level = orig_lowest; 5623 if (ret < 0) 5624 return ret; 5625 5626 c = path->nodes[level]; 5627 slot = path->slots[level]; 5628 if (ret == 0) 5629 slot++; 5630 goto next; 5631 } 5632 5633 if (level == 0) 5634 btrfs_item_key_to_cpu(c, key, slot); 5635 else { 5636 u64 gen = btrfs_node_ptr_generation(c, slot); 5637 5638 if (gen < min_trans) { 5639 slot++; 5640 goto next; 5641 } 5642 btrfs_node_key_to_cpu(c, key, slot); 5643 } 5644 return 0; 5645 } 5646 return 1; 5647 } 5648 5649 /* 5650 * search the tree again to find a leaf with greater keys 5651 * returns 0 if it found something or 1 if there are no greater leaves. 5652 * returns < 0 on io errors. 5653 */ 5654 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5655 { 5656 return btrfs_next_old_leaf(root, path, 0); 5657 } 5658 5659 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5660 u64 time_seq) 5661 { 5662 int slot; 5663 int level; 5664 struct extent_buffer *c; 5665 struct extent_buffer *next; 5666 struct btrfs_key key; 5667 u32 nritems; 5668 int ret; 5669 int old_spinning = path->leave_spinning; 5670 int next_rw_lock = 0; 5671 5672 nritems = btrfs_header_nritems(path->nodes[0]); 5673 if (nritems == 0) 5674 return 1; 5675 5676 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5677 again: 5678 level = 1; 5679 next = NULL; 5680 next_rw_lock = 0; 5681 btrfs_release_path(path); 5682 5683 path->keep_locks = 1; 5684 path->leave_spinning = 1; 5685 5686 if (time_seq) 5687 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5688 else 5689 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5690 path->keep_locks = 0; 5691 5692 if (ret < 0) 5693 return ret; 5694 5695 nritems = btrfs_header_nritems(path->nodes[0]); 5696 /* 5697 * by releasing the path above we dropped all our locks. A balance 5698 * could have added more items next to the key that used to be 5699 * at the very end of the block. So, check again here and 5700 * advance the path if there are now more items available. 5701 */ 5702 if (nritems > 0 && path->slots[0] < nritems - 1) { 5703 if (ret == 0) 5704 path->slots[0]++; 5705 ret = 0; 5706 goto done; 5707 } 5708 /* 5709 * So the above check misses one case: 5710 * - after releasing the path above, someone has removed the item that 5711 * used to be at the very end of the block, and balance between leafs 5712 * gets another one with bigger key.offset to replace it. 5713 * 5714 * This one should be returned as well, or we can get leaf corruption 5715 * later(esp. in __btrfs_drop_extents()). 5716 * 5717 * And a bit more explanation about this check, 5718 * with ret > 0, the key isn't found, the path points to the slot 5719 * where it should be inserted, so the path->slots[0] item must be the 5720 * bigger one. 5721 */ 5722 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5723 ret = 0; 5724 goto done; 5725 } 5726 5727 while (level < BTRFS_MAX_LEVEL) { 5728 if (!path->nodes[level]) { 5729 ret = 1; 5730 goto done; 5731 } 5732 5733 slot = path->slots[level] + 1; 5734 c = path->nodes[level]; 5735 if (slot >= btrfs_header_nritems(c)) { 5736 level++; 5737 if (level == BTRFS_MAX_LEVEL) { 5738 ret = 1; 5739 goto done; 5740 } 5741 continue; 5742 } 5743 5744 if (next) { 5745 btrfs_tree_unlock_rw(next, next_rw_lock); 5746 free_extent_buffer(next); 5747 } 5748 5749 next = c; 5750 next_rw_lock = path->locks[level]; 5751 ret = read_block_for_search(NULL, root, path, &next, level, 5752 slot, &key, 0); 5753 if (ret == -EAGAIN) 5754 goto again; 5755 5756 if (ret < 0) { 5757 btrfs_release_path(path); 5758 goto done; 5759 } 5760 5761 if (!path->skip_locking) { 5762 ret = btrfs_try_tree_read_lock(next); 5763 if (!ret && time_seq) { 5764 /* 5765 * If we don't get the lock, we may be racing 5766 * with push_leaf_left, holding that lock while 5767 * itself waiting for the leaf we've currently 5768 * locked. To solve this situation, we give up 5769 * on our lock and cycle. 5770 */ 5771 free_extent_buffer(next); 5772 btrfs_release_path(path); 5773 cond_resched(); 5774 goto again; 5775 } 5776 if (!ret) { 5777 btrfs_set_path_blocking(path); 5778 btrfs_tree_read_lock(next); 5779 btrfs_clear_path_blocking(path, next, 5780 BTRFS_READ_LOCK); 5781 } 5782 next_rw_lock = BTRFS_READ_LOCK; 5783 } 5784 break; 5785 } 5786 path->slots[level] = slot; 5787 while (1) { 5788 level--; 5789 c = path->nodes[level]; 5790 if (path->locks[level]) 5791 btrfs_tree_unlock_rw(c, path->locks[level]); 5792 5793 free_extent_buffer(c); 5794 path->nodes[level] = next; 5795 path->slots[level] = 0; 5796 if (!path->skip_locking) 5797 path->locks[level] = next_rw_lock; 5798 if (!level) 5799 break; 5800 5801 ret = read_block_for_search(NULL, root, path, &next, level, 5802 0, &key, 0); 5803 if (ret == -EAGAIN) 5804 goto again; 5805 5806 if (ret < 0) { 5807 btrfs_release_path(path); 5808 goto done; 5809 } 5810 5811 if (!path->skip_locking) { 5812 ret = btrfs_try_tree_read_lock(next); 5813 if (!ret) { 5814 btrfs_set_path_blocking(path); 5815 btrfs_tree_read_lock(next); 5816 btrfs_clear_path_blocking(path, next, 5817 BTRFS_READ_LOCK); 5818 } 5819 next_rw_lock = BTRFS_READ_LOCK; 5820 } 5821 } 5822 ret = 0; 5823 done: 5824 unlock_up(path, 0, 1, 0, NULL); 5825 path->leave_spinning = old_spinning; 5826 if (!old_spinning) 5827 btrfs_set_path_blocking(path); 5828 5829 return ret; 5830 } 5831 5832 /* 5833 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5834 * searching until it gets past min_objectid or finds an item of 'type' 5835 * 5836 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5837 */ 5838 int btrfs_previous_item(struct btrfs_root *root, 5839 struct btrfs_path *path, u64 min_objectid, 5840 int type) 5841 { 5842 struct btrfs_key found_key; 5843 struct extent_buffer *leaf; 5844 u32 nritems; 5845 int ret; 5846 5847 while (1) { 5848 if (path->slots[0] == 0) { 5849 btrfs_set_path_blocking(path); 5850 ret = btrfs_prev_leaf(root, path); 5851 if (ret != 0) 5852 return ret; 5853 } else { 5854 path->slots[0]--; 5855 } 5856 leaf = path->nodes[0]; 5857 nritems = btrfs_header_nritems(leaf); 5858 if (nritems == 0) 5859 return 1; 5860 if (path->slots[0] == nritems) 5861 path->slots[0]--; 5862 5863 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5864 if (found_key.objectid < min_objectid) 5865 break; 5866 if (found_key.type == type) 5867 return 0; 5868 if (found_key.objectid == min_objectid && 5869 found_key.type < type) 5870 break; 5871 } 5872 return 1; 5873 } 5874 5875 /* 5876 * search in extent tree to find a previous Metadata/Data extent item with 5877 * min objecitd. 5878 * 5879 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5880 */ 5881 int btrfs_previous_extent_item(struct btrfs_root *root, 5882 struct btrfs_path *path, u64 min_objectid) 5883 { 5884 struct btrfs_key found_key; 5885 struct extent_buffer *leaf; 5886 u32 nritems; 5887 int ret; 5888 5889 while (1) { 5890 if (path->slots[0] == 0) { 5891 btrfs_set_path_blocking(path); 5892 ret = btrfs_prev_leaf(root, path); 5893 if (ret != 0) 5894 return ret; 5895 } else { 5896 path->slots[0]--; 5897 } 5898 leaf = path->nodes[0]; 5899 nritems = btrfs_header_nritems(leaf); 5900 if (nritems == 0) 5901 return 1; 5902 if (path->slots[0] == nritems) 5903 path->slots[0]--; 5904 5905 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5906 if (found_key.objectid < min_objectid) 5907 break; 5908 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5909 found_key.type == BTRFS_METADATA_ITEM_KEY) 5910 return 0; 5911 if (found_key.objectid == min_objectid && 5912 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5913 break; 5914 } 5915 return 1; 5916 } 5917