xref: /linux/fs/btrfs/ctree.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27 
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 		      *root, struct btrfs_key *ins_key,
32 		      struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 			  struct btrfs_root *root, struct extent_buffer *dst,
35 			  struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 		    struct btrfs_path *path, int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 				 struct extent_buffer *eb);
44 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
45 					  u32 blocksize, u64 parent_transid,
46 					  u64 time_seq);
47 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
48 						u64 bytenr, u32 blocksize,
49 						u64 time_seq);
50 
51 struct btrfs_path *btrfs_alloc_path(void)
52 {
53 	struct btrfs_path *path;
54 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
55 	return path;
56 }
57 
58 /*
59  * set all locked nodes in the path to blocking locks.  This should
60  * be done before scheduling
61  */
62 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
63 {
64 	int i;
65 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
66 		if (!p->nodes[i] || !p->locks[i])
67 			continue;
68 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
69 		if (p->locks[i] == BTRFS_READ_LOCK)
70 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
71 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
72 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
73 	}
74 }
75 
76 /*
77  * reset all the locked nodes in the patch to spinning locks.
78  *
79  * held is used to keep lockdep happy, when lockdep is enabled
80  * we set held to a blocking lock before we go around and
81  * retake all the spinlocks in the path.  You can safely use NULL
82  * for held
83  */
84 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
85 					struct extent_buffer *held, int held_rw)
86 {
87 	int i;
88 
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90 	/* lockdep really cares that we take all of these spinlocks
91 	 * in the right order.  If any of the locks in the path are not
92 	 * currently blocking, it is going to complain.  So, make really
93 	 * really sure by forcing the path to blocking before we clear
94 	 * the path blocking.
95 	 */
96 	if (held) {
97 		btrfs_set_lock_blocking_rw(held, held_rw);
98 		if (held_rw == BTRFS_WRITE_LOCK)
99 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
100 		else if (held_rw == BTRFS_READ_LOCK)
101 			held_rw = BTRFS_READ_LOCK_BLOCKING;
102 	}
103 	btrfs_set_path_blocking(p);
104 #endif
105 
106 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
107 		if (p->nodes[i] && p->locks[i]) {
108 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
109 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
110 				p->locks[i] = BTRFS_WRITE_LOCK;
111 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
112 				p->locks[i] = BTRFS_READ_LOCK;
113 		}
114 	}
115 
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
117 	if (held)
118 		btrfs_clear_lock_blocking_rw(held, held_rw);
119 #endif
120 }
121 
122 /* this also releases the path */
123 void btrfs_free_path(struct btrfs_path *p)
124 {
125 	if (!p)
126 		return;
127 	btrfs_release_path(p);
128 	kmem_cache_free(btrfs_path_cachep, p);
129 }
130 
131 /*
132  * path release drops references on the extent buffers in the path
133  * and it drops any locks held by this path
134  *
135  * It is safe to call this on paths that no locks or extent buffers held.
136  */
137 noinline void btrfs_release_path(struct btrfs_path *p)
138 {
139 	int i;
140 
141 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
142 		p->slots[i] = 0;
143 		if (!p->nodes[i])
144 			continue;
145 		if (p->locks[i]) {
146 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
147 			p->locks[i] = 0;
148 		}
149 		free_extent_buffer(p->nodes[i]);
150 		p->nodes[i] = NULL;
151 	}
152 }
153 
154 /*
155  * safely gets a reference on the root node of a tree.  A lock
156  * is not taken, so a concurrent writer may put a different node
157  * at the root of the tree.  See btrfs_lock_root_node for the
158  * looping required.
159  *
160  * The extent buffer returned by this has a reference taken, so
161  * it won't disappear.  It may stop being the root of the tree
162  * at any time because there are no locks held.
163  */
164 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
165 {
166 	struct extent_buffer *eb;
167 
168 	while (1) {
169 		rcu_read_lock();
170 		eb = rcu_dereference(root->node);
171 
172 		/*
173 		 * RCU really hurts here, we could free up the root node because
174 		 * it was cow'ed but we may not get the new root node yet so do
175 		 * the inc_not_zero dance and if it doesn't work then
176 		 * synchronize_rcu and try again.
177 		 */
178 		if (atomic_inc_not_zero(&eb->refs)) {
179 			rcu_read_unlock();
180 			break;
181 		}
182 		rcu_read_unlock();
183 		synchronize_rcu();
184 	}
185 	return eb;
186 }
187 
188 /* loop around taking references on and locking the root node of the
189  * tree until you end up with a lock on the root.  A locked buffer
190  * is returned, with a reference held.
191  */
192 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
193 {
194 	struct extent_buffer *eb;
195 
196 	while (1) {
197 		eb = btrfs_root_node(root);
198 		btrfs_tree_lock(eb);
199 		if (eb == root->node)
200 			break;
201 		btrfs_tree_unlock(eb);
202 		free_extent_buffer(eb);
203 	}
204 	return eb;
205 }
206 
207 /* loop around taking references on and locking the root node of the
208  * tree until you end up with a lock on the root.  A locked buffer
209  * is returned, with a reference held.
210  */
211 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
212 {
213 	struct extent_buffer *eb;
214 
215 	while (1) {
216 		eb = btrfs_root_node(root);
217 		btrfs_tree_read_lock(eb);
218 		if (eb == root->node)
219 			break;
220 		btrfs_tree_read_unlock(eb);
221 		free_extent_buffer(eb);
222 	}
223 	return eb;
224 }
225 
226 /* cowonly root (everything not a reference counted cow subvolume), just get
227  * put onto a simple dirty list.  transaction.c walks this to make sure they
228  * get properly updated on disk.
229  */
230 static void add_root_to_dirty_list(struct btrfs_root *root)
231 {
232 	spin_lock(&root->fs_info->trans_lock);
233 	if (root->track_dirty && list_empty(&root->dirty_list)) {
234 		list_add(&root->dirty_list,
235 			 &root->fs_info->dirty_cowonly_roots);
236 	}
237 	spin_unlock(&root->fs_info->trans_lock);
238 }
239 
240 /*
241  * used by snapshot creation to make a copy of a root for a tree with
242  * a given objectid.  The buffer with the new root node is returned in
243  * cow_ret, and this func returns zero on success or a negative error code.
244  */
245 int btrfs_copy_root(struct btrfs_trans_handle *trans,
246 		      struct btrfs_root *root,
247 		      struct extent_buffer *buf,
248 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
249 {
250 	struct extent_buffer *cow;
251 	int ret = 0;
252 	int level;
253 	struct btrfs_disk_key disk_key;
254 
255 	WARN_ON(root->ref_cows && trans->transid !=
256 		root->fs_info->running_transaction->transid);
257 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
258 
259 	level = btrfs_header_level(buf);
260 	if (level == 0)
261 		btrfs_item_key(buf, &disk_key, 0);
262 	else
263 		btrfs_node_key(buf, &disk_key, 0);
264 
265 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
266 				     new_root_objectid, &disk_key, level,
267 				     buf->start, 0);
268 	if (IS_ERR(cow))
269 		return PTR_ERR(cow);
270 
271 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
272 	btrfs_set_header_bytenr(cow, cow->start);
273 	btrfs_set_header_generation(cow, trans->transid);
274 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
275 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
276 				     BTRFS_HEADER_FLAG_RELOC);
277 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
279 	else
280 		btrfs_set_header_owner(cow, new_root_objectid);
281 
282 	write_extent_buffer(cow, root->fs_info->fsid,
283 			    (unsigned long)btrfs_header_fsid(cow),
284 			    BTRFS_FSID_SIZE);
285 
286 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
287 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
288 		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
289 	else
290 		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
291 
292 	if (ret)
293 		return ret;
294 
295 	btrfs_mark_buffer_dirty(cow);
296 	*cow_ret = cow;
297 	return 0;
298 }
299 
300 enum mod_log_op {
301 	MOD_LOG_KEY_REPLACE,
302 	MOD_LOG_KEY_ADD,
303 	MOD_LOG_KEY_REMOVE,
304 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
305 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
306 	MOD_LOG_MOVE_KEYS,
307 	MOD_LOG_ROOT_REPLACE,
308 };
309 
310 struct tree_mod_move {
311 	int dst_slot;
312 	int nr_items;
313 };
314 
315 struct tree_mod_root {
316 	u64 logical;
317 	u8 level;
318 };
319 
320 struct tree_mod_elem {
321 	struct rb_node node;
322 	u64 index;		/* shifted logical */
323 	u64 seq;
324 	enum mod_log_op op;
325 
326 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
327 	int slot;
328 
329 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
330 	u64 generation;
331 
332 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333 	struct btrfs_disk_key key;
334 	u64 blockptr;
335 
336 	/* this is used for op == MOD_LOG_MOVE_KEYS */
337 	struct tree_mod_move move;
338 
339 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
340 	struct tree_mod_root old_root;
341 };
342 
343 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
344 {
345 	read_lock(&fs_info->tree_mod_log_lock);
346 }
347 
348 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
349 {
350 	read_unlock(&fs_info->tree_mod_log_lock);
351 }
352 
353 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
354 {
355 	write_lock(&fs_info->tree_mod_log_lock);
356 }
357 
358 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
359 {
360 	write_unlock(&fs_info->tree_mod_log_lock);
361 }
362 
363 /*
364  * This adds a new blocker to the tree mod log's blocker list if the @elem
365  * passed does not already have a sequence number set. So when a caller expects
366  * to record tree modifications, it should ensure to set elem->seq to zero
367  * before calling btrfs_get_tree_mod_seq.
368  * Returns a fresh, unused tree log modification sequence number, even if no new
369  * blocker was added.
370  */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 			   struct seq_list *elem)
373 {
374 	u64 seq;
375 
376 	tree_mod_log_write_lock(fs_info);
377 	spin_lock(&fs_info->tree_mod_seq_lock);
378 	if (!elem->seq) {
379 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 	}
382 	seq = btrfs_inc_tree_mod_seq(fs_info);
383 	spin_unlock(&fs_info->tree_mod_seq_lock);
384 	tree_mod_log_write_unlock(fs_info);
385 
386 	return seq;
387 }
388 
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390 			    struct seq_list *elem)
391 {
392 	struct rb_root *tm_root;
393 	struct rb_node *node;
394 	struct rb_node *next;
395 	struct seq_list *cur_elem;
396 	struct tree_mod_elem *tm;
397 	u64 min_seq = (u64)-1;
398 	u64 seq_putting = elem->seq;
399 
400 	if (!seq_putting)
401 		return;
402 
403 	spin_lock(&fs_info->tree_mod_seq_lock);
404 	list_del(&elem->list);
405 	elem->seq = 0;
406 
407 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
408 		if (cur_elem->seq < min_seq) {
409 			if (seq_putting > cur_elem->seq) {
410 				/*
411 				 * blocker with lower sequence number exists, we
412 				 * cannot remove anything from the log
413 				 */
414 				spin_unlock(&fs_info->tree_mod_seq_lock);
415 				return;
416 			}
417 			min_seq = cur_elem->seq;
418 		}
419 	}
420 	spin_unlock(&fs_info->tree_mod_seq_lock);
421 
422 	/*
423 	 * anything that's lower than the lowest existing (read: blocked)
424 	 * sequence number can be removed from the tree.
425 	 */
426 	tree_mod_log_write_lock(fs_info);
427 	tm_root = &fs_info->tree_mod_log;
428 	for (node = rb_first(tm_root); node; node = next) {
429 		next = rb_next(node);
430 		tm = container_of(node, struct tree_mod_elem, node);
431 		if (tm->seq > min_seq)
432 			continue;
433 		rb_erase(node, tm_root);
434 		kfree(tm);
435 	}
436 	tree_mod_log_write_unlock(fs_info);
437 }
438 
439 /*
440  * key order of the log:
441  *       index -> sequence
442  *
443  * the index is the shifted logical of the *new* root node for root replace
444  * operations, or the shifted logical of the affected block for all other
445  * operations.
446  */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450 	struct rb_root *tm_root;
451 	struct rb_node **new;
452 	struct rb_node *parent = NULL;
453 	struct tree_mod_elem *cur;
454 
455 	BUG_ON(!tm || !tm->seq);
456 
457 	tm_root = &fs_info->tree_mod_log;
458 	new = &tm_root->rb_node;
459 	while (*new) {
460 		cur = container_of(*new, struct tree_mod_elem, node);
461 		parent = *new;
462 		if (cur->index < tm->index)
463 			new = &((*new)->rb_left);
464 		else if (cur->index > tm->index)
465 			new = &((*new)->rb_right);
466 		else if (cur->seq < tm->seq)
467 			new = &((*new)->rb_left);
468 		else if (cur->seq > tm->seq)
469 			new = &((*new)->rb_right);
470 		else {
471 			kfree(tm);
472 			return -EEXIST;
473 		}
474 	}
475 
476 	rb_link_node(&tm->node, parent, new);
477 	rb_insert_color(&tm->node, tm_root);
478 	return 0;
479 }
480 
481 /*
482  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483  * returns zero with the tree_mod_log_lock acquired. The caller must hold
484  * this until all tree mod log insertions are recorded in the rb tree and then
485  * call tree_mod_log_write_unlock() to release.
486  */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 				    struct extent_buffer *eb) {
489 	smp_mb();
490 	if (list_empty(&(fs_info)->tree_mod_seq_list))
491 		return 1;
492 	if (eb && btrfs_header_level(eb) == 0)
493 		return 1;
494 
495 	tree_mod_log_write_lock(fs_info);
496 	if (list_empty(&fs_info->tree_mod_seq_list)) {
497 		/*
498 		 * someone emptied the list while we were waiting for the lock.
499 		 * we must not add to the list when no blocker exists.
500 		 */
501 		tree_mod_log_write_unlock(fs_info);
502 		return 1;
503 	}
504 
505 	return 0;
506 }
507 
508 /*
509  * This allocates memory and gets a tree modification sequence number.
510  *
511  * Returns <0 on error.
512  * Returns >0 (the added sequence number) on success.
513  */
514 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
515 				 struct tree_mod_elem **tm_ret)
516 {
517 	struct tree_mod_elem *tm;
518 
519 	/*
520 	 * once we switch from spin locks to something different, we should
521 	 * honor the flags parameter here.
522 	 */
523 	tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
524 	if (!tm)
525 		return -ENOMEM;
526 
527 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
528 	return tm->seq;
529 }
530 
531 static inline int
532 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533 			  struct extent_buffer *eb, int slot,
534 			  enum mod_log_op op, gfp_t flags)
535 {
536 	int ret;
537 	struct tree_mod_elem *tm;
538 
539 	ret = tree_mod_alloc(fs_info, flags, &tm);
540 	if (ret < 0)
541 		return ret;
542 
543 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
544 	if (op != MOD_LOG_KEY_ADD) {
545 		btrfs_node_key(eb, &tm->key, slot);
546 		tm->blockptr = btrfs_node_blockptr(eb, slot);
547 	}
548 	tm->op = op;
549 	tm->slot = slot;
550 	tm->generation = btrfs_node_ptr_generation(eb, slot);
551 
552 	return __tree_mod_log_insert(fs_info, tm);
553 }
554 
555 static noinline int
556 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
557 			     struct extent_buffer *eb, int slot,
558 			     enum mod_log_op op, gfp_t flags)
559 {
560 	int ret;
561 
562 	if (tree_mod_dont_log(fs_info, eb))
563 		return 0;
564 
565 	ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
566 
567 	tree_mod_log_write_unlock(fs_info);
568 	return ret;
569 }
570 
571 static noinline int
572 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
573 			int slot, enum mod_log_op op)
574 {
575 	return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
576 }
577 
578 static noinline int
579 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
580 			     struct extent_buffer *eb, int slot,
581 			     enum mod_log_op op)
582 {
583 	return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
584 }
585 
586 static noinline int
587 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
588 			 struct extent_buffer *eb, int dst_slot, int src_slot,
589 			 int nr_items, gfp_t flags)
590 {
591 	struct tree_mod_elem *tm;
592 	int ret;
593 	int i;
594 
595 	if (tree_mod_dont_log(fs_info, eb))
596 		return 0;
597 
598 	/*
599 	 * When we override something during the move, we log these removals.
600 	 * This can only happen when we move towards the beginning of the
601 	 * buffer, i.e. dst_slot < src_slot.
602 	 */
603 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
604 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
605 					      MOD_LOG_KEY_REMOVE_WHILE_MOVING);
606 		BUG_ON(ret < 0);
607 	}
608 
609 	ret = tree_mod_alloc(fs_info, flags, &tm);
610 	if (ret < 0)
611 		goto out;
612 
613 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
614 	tm->slot = src_slot;
615 	tm->move.dst_slot = dst_slot;
616 	tm->move.nr_items = nr_items;
617 	tm->op = MOD_LOG_MOVE_KEYS;
618 
619 	ret = __tree_mod_log_insert(fs_info, tm);
620 out:
621 	tree_mod_log_write_unlock(fs_info);
622 	return ret;
623 }
624 
625 static inline void
626 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
627 {
628 	int i;
629 	u32 nritems;
630 	int ret;
631 
632 	if (btrfs_header_level(eb) == 0)
633 		return;
634 
635 	nritems = btrfs_header_nritems(eb);
636 	for (i = nritems - 1; i >= 0; i--) {
637 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
638 					      MOD_LOG_KEY_REMOVE_WHILE_FREEING);
639 		BUG_ON(ret < 0);
640 	}
641 }
642 
643 static noinline int
644 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
645 			 struct extent_buffer *old_root,
646 			 struct extent_buffer *new_root, gfp_t flags)
647 {
648 	struct tree_mod_elem *tm;
649 	int ret;
650 
651 	if (tree_mod_dont_log(fs_info, NULL))
652 		return 0;
653 
654 	__tree_mod_log_free_eb(fs_info, old_root);
655 
656 	ret = tree_mod_alloc(fs_info, flags, &tm);
657 	if (ret < 0)
658 		goto out;
659 
660 	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
661 	tm->old_root.logical = old_root->start;
662 	tm->old_root.level = btrfs_header_level(old_root);
663 	tm->generation = btrfs_header_generation(old_root);
664 	tm->op = MOD_LOG_ROOT_REPLACE;
665 
666 	ret = __tree_mod_log_insert(fs_info, tm);
667 out:
668 	tree_mod_log_write_unlock(fs_info);
669 	return ret;
670 }
671 
672 static struct tree_mod_elem *
673 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
674 		      int smallest)
675 {
676 	struct rb_root *tm_root;
677 	struct rb_node *node;
678 	struct tree_mod_elem *cur = NULL;
679 	struct tree_mod_elem *found = NULL;
680 	u64 index = start >> PAGE_CACHE_SHIFT;
681 
682 	tree_mod_log_read_lock(fs_info);
683 	tm_root = &fs_info->tree_mod_log;
684 	node = tm_root->rb_node;
685 	while (node) {
686 		cur = container_of(node, struct tree_mod_elem, node);
687 		if (cur->index < index) {
688 			node = node->rb_left;
689 		} else if (cur->index > index) {
690 			node = node->rb_right;
691 		} else if (cur->seq < min_seq) {
692 			node = node->rb_left;
693 		} else if (!smallest) {
694 			/* we want the node with the highest seq */
695 			if (found)
696 				BUG_ON(found->seq > cur->seq);
697 			found = cur;
698 			node = node->rb_left;
699 		} else if (cur->seq > min_seq) {
700 			/* we want the node with the smallest seq */
701 			if (found)
702 				BUG_ON(found->seq < cur->seq);
703 			found = cur;
704 			node = node->rb_right;
705 		} else {
706 			found = cur;
707 			break;
708 		}
709 	}
710 	tree_mod_log_read_unlock(fs_info);
711 
712 	return found;
713 }
714 
715 /*
716  * this returns the element from the log with the smallest time sequence
717  * value that's in the log (the oldest log item). any element with a time
718  * sequence lower than min_seq will be ignored.
719  */
720 static struct tree_mod_elem *
721 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
722 			   u64 min_seq)
723 {
724 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
725 }
726 
727 /*
728  * this returns the element from the log with the largest time sequence
729  * value that's in the log (the most recent log item). any element with
730  * a time sequence lower than min_seq will be ignored.
731  */
732 static struct tree_mod_elem *
733 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
734 {
735 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
736 }
737 
738 static noinline void
739 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
740 		     struct extent_buffer *src, unsigned long dst_offset,
741 		     unsigned long src_offset, int nr_items, int log_removal)
742 {
743 	int ret;
744 	int i;
745 
746 	if (tree_mod_dont_log(fs_info, NULL))
747 		return;
748 
749 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
750 		tree_mod_log_write_unlock(fs_info);
751 		return;
752 	}
753 
754 	for (i = 0; i < nr_items; i++) {
755 		if (log_removal) {
756 			ret = tree_mod_log_insert_key_locked(fs_info, src,
757 							i + src_offset,
758 							MOD_LOG_KEY_REMOVE);
759 			BUG_ON(ret < 0);
760 		}
761 		ret = tree_mod_log_insert_key_locked(fs_info, dst,
762 						     i + dst_offset,
763 						     MOD_LOG_KEY_ADD);
764 		BUG_ON(ret < 0);
765 	}
766 
767 	tree_mod_log_write_unlock(fs_info);
768 }
769 
770 static inline void
771 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
772 		     int dst_offset, int src_offset, int nr_items)
773 {
774 	int ret;
775 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
776 				       nr_items, GFP_NOFS);
777 	BUG_ON(ret < 0);
778 }
779 
780 static noinline void
781 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
782 			  struct extent_buffer *eb, int slot, int atomic)
783 {
784 	int ret;
785 
786 	ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
787 					   MOD_LOG_KEY_REPLACE,
788 					   atomic ? GFP_ATOMIC : GFP_NOFS);
789 	BUG_ON(ret < 0);
790 }
791 
792 static noinline void
793 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
794 {
795 	if (tree_mod_dont_log(fs_info, eb))
796 		return;
797 
798 	__tree_mod_log_free_eb(fs_info, eb);
799 
800 	tree_mod_log_write_unlock(fs_info);
801 }
802 
803 static noinline void
804 tree_mod_log_set_root_pointer(struct btrfs_root *root,
805 			      struct extent_buffer *new_root_node)
806 {
807 	int ret;
808 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
809 				       new_root_node, GFP_NOFS);
810 	BUG_ON(ret < 0);
811 }
812 
813 /*
814  * check if the tree block can be shared by multiple trees
815  */
816 int btrfs_block_can_be_shared(struct btrfs_root *root,
817 			      struct extent_buffer *buf)
818 {
819 	/*
820 	 * Tree blocks not in refernece counted trees and tree roots
821 	 * are never shared. If a block was allocated after the last
822 	 * snapshot and the block was not allocated by tree relocation,
823 	 * we know the block is not shared.
824 	 */
825 	if (root->ref_cows &&
826 	    buf != root->node && buf != root->commit_root &&
827 	    (btrfs_header_generation(buf) <=
828 	     btrfs_root_last_snapshot(&root->root_item) ||
829 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
830 		return 1;
831 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
832 	if (root->ref_cows &&
833 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
834 		return 1;
835 #endif
836 	return 0;
837 }
838 
839 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
840 				       struct btrfs_root *root,
841 				       struct extent_buffer *buf,
842 				       struct extent_buffer *cow,
843 				       int *last_ref)
844 {
845 	u64 refs;
846 	u64 owner;
847 	u64 flags;
848 	u64 new_flags = 0;
849 	int ret;
850 
851 	/*
852 	 * Backrefs update rules:
853 	 *
854 	 * Always use full backrefs for extent pointers in tree block
855 	 * allocated by tree relocation.
856 	 *
857 	 * If a shared tree block is no longer referenced by its owner
858 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
859 	 * use full backrefs for extent pointers in tree block.
860 	 *
861 	 * If a tree block is been relocating
862 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
863 	 * use full backrefs for extent pointers in tree block.
864 	 * The reason for this is some operations (such as drop tree)
865 	 * are only allowed for blocks use full backrefs.
866 	 */
867 
868 	if (btrfs_block_can_be_shared(root, buf)) {
869 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
870 					       buf->len, &refs, &flags);
871 		if (ret)
872 			return ret;
873 		if (refs == 0) {
874 			ret = -EROFS;
875 			btrfs_std_error(root->fs_info, ret);
876 			return ret;
877 		}
878 	} else {
879 		refs = 1;
880 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
881 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
882 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
883 		else
884 			flags = 0;
885 	}
886 
887 	owner = btrfs_header_owner(buf);
888 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
889 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
890 
891 	if (refs > 1) {
892 		if ((owner == root->root_key.objectid ||
893 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
894 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
895 			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
896 			BUG_ON(ret); /* -ENOMEM */
897 
898 			if (root->root_key.objectid ==
899 			    BTRFS_TREE_RELOC_OBJECTID) {
900 				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
901 				BUG_ON(ret); /* -ENOMEM */
902 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
903 				BUG_ON(ret); /* -ENOMEM */
904 			}
905 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
906 		} else {
907 
908 			if (root->root_key.objectid ==
909 			    BTRFS_TREE_RELOC_OBJECTID)
910 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
911 			else
912 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
913 			BUG_ON(ret); /* -ENOMEM */
914 		}
915 		if (new_flags != 0) {
916 			ret = btrfs_set_disk_extent_flags(trans, root,
917 							  buf->start,
918 							  buf->len,
919 							  new_flags, 0);
920 			if (ret)
921 				return ret;
922 		}
923 	} else {
924 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
925 			if (root->root_key.objectid ==
926 			    BTRFS_TREE_RELOC_OBJECTID)
927 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
928 			else
929 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
930 			BUG_ON(ret); /* -ENOMEM */
931 			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
932 			BUG_ON(ret); /* -ENOMEM */
933 		}
934 		clean_tree_block(trans, root, buf);
935 		*last_ref = 1;
936 	}
937 	return 0;
938 }
939 
940 /*
941  * does the dirty work in cow of a single block.  The parent block (if
942  * supplied) is updated to point to the new cow copy.  The new buffer is marked
943  * dirty and returned locked.  If you modify the block it needs to be marked
944  * dirty again.
945  *
946  * search_start -- an allocation hint for the new block
947  *
948  * empty_size -- a hint that you plan on doing more cow.  This is the size in
949  * bytes the allocator should try to find free next to the block it returns.
950  * This is just a hint and may be ignored by the allocator.
951  */
952 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
953 			     struct btrfs_root *root,
954 			     struct extent_buffer *buf,
955 			     struct extent_buffer *parent, int parent_slot,
956 			     struct extent_buffer **cow_ret,
957 			     u64 search_start, u64 empty_size)
958 {
959 	struct btrfs_disk_key disk_key;
960 	struct extent_buffer *cow;
961 	int level, ret;
962 	int last_ref = 0;
963 	int unlock_orig = 0;
964 	u64 parent_start;
965 
966 	if (*cow_ret == buf)
967 		unlock_orig = 1;
968 
969 	btrfs_assert_tree_locked(buf);
970 
971 	WARN_ON(root->ref_cows && trans->transid !=
972 		root->fs_info->running_transaction->transid);
973 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
974 
975 	level = btrfs_header_level(buf);
976 
977 	if (level == 0)
978 		btrfs_item_key(buf, &disk_key, 0);
979 	else
980 		btrfs_node_key(buf, &disk_key, 0);
981 
982 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
983 		if (parent)
984 			parent_start = parent->start;
985 		else
986 			parent_start = 0;
987 	} else
988 		parent_start = 0;
989 
990 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
991 				     root->root_key.objectid, &disk_key,
992 				     level, search_start, empty_size);
993 	if (IS_ERR(cow))
994 		return PTR_ERR(cow);
995 
996 	/* cow is set to blocking by btrfs_init_new_buffer */
997 
998 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
999 	btrfs_set_header_bytenr(cow, cow->start);
1000 	btrfs_set_header_generation(cow, trans->transid);
1001 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1002 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1003 				     BTRFS_HEADER_FLAG_RELOC);
1004 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1005 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1006 	else
1007 		btrfs_set_header_owner(cow, root->root_key.objectid);
1008 
1009 	write_extent_buffer(cow, root->fs_info->fsid,
1010 			    (unsigned long)btrfs_header_fsid(cow),
1011 			    BTRFS_FSID_SIZE);
1012 
1013 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1014 	if (ret) {
1015 		btrfs_abort_transaction(trans, root, ret);
1016 		return ret;
1017 	}
1018 
1019 	if (root->ref_cows)
1020 		btrfs_reloc_cow_block(trans, root, buf, cow);
1021 
1022 	if (buf == root->node) {
1023 		WARN_ON(parent && parent != buf);
1024 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1025 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1026 			parent_start = buf->start;
1027 		else
1028 			parent_start = 0;
1029 
1030 		extent_buffer_get(cow);
1031 		tree_mod_log_set_root_pointer(root, cow);
1032 		rcu_assign_pointer(root->node, cow);
1033 
1034 		btrfs_free_tree_block(trans, root, buf, parent_start,
1035 				      last_ref);
1036 		free_extent_buffer(buf);
1037 		add_root_to_dirty_list(root);
1038 	} else {
1039 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1040 			parent_start = parent->start;
1041 		else
1042 			parent_start = 0;
1043 
1044 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1045 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1046 					MOD_LOG_KEY_REPLACE);
1047 		btrfs_set_node_blockptr(parent, parent_slot,
1048 					cow->start);
1049 		btrfs_set_node_ptr_generation(parent, parent_slot,
1050 					      trans->transid);
1051 		btrfs_mark_buffer_dirty(parent);
1052 		tree_mod_log_free_eb(root->fs_info, buf);
1053 		btrfs_free_tree_block(trans, root, buf, parent_start,
1054 				      last_ref);
1055 	}
1056 	if (unlock_orig)
1057 		btrfs_tree_unlock(buf);
1058 	free_extent_buffer_stale(buf);
1059 	btrfs_mark_buffer_dirty(cow);
1060 	*cow_ret = cow;
1061 	return 0;
1062 }
1063 
1064 /*
1065  * returns the logical address of the oldest predecessor of the given root.
1066  * entries older than time_seq are ignored.
1067  */
1068 static struct tree_mod_elem *
1069 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1070 			   struct btrfs_root *root, u64 time_seq)
1071 {
1072 	struct tree_mod_elem *tm;
1073 	struct tree_mod_elem *found = NULL;
1074 	u64 root_logical = root->node->start;
1075 	int looped = 0;
1076 
1077 	if (!time_seq)
1078 		return 0;
1079 
1080 	/*
1081 	 * the very last operation that's logged for a root is the replacement
1082 	 * operation (if it is replaced at all). this has the index of the *new*
1083 	 * root, making it the very first operation that's logged for this root.
1084 	 */
1085 	while (1) {
1086 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1087 						time_seq);
1088 		if (!looped && !tm)
1089 			return 0;
1090 		/*
1091 		 * if there are no tree operation for the oldest root, we simply
1092 		 * return it. this should only happen if that (old) root is at
1093 		 * level 0.
1094 		 */
1095 		if (!tm)
1096 			break;
1097 
1098 		/*
1099 		 * if there's an operation that's not a root replacement, we
1100 		 * found the oldest version of our root. normally, we'll find a
1101 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1102 		 */
1103 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1104 			break;
1105 
1106 		found = tm;
1107 		root_logical = tm->old_root.logical;
1108 		BUG_ON(root_logical == root->node->start);
1109 		looped = 1;
1110 	}
1111 
1112 	/* if there's no old root to return, return what we found instead */
1113 	if (!found)
1114 		found = tm;
1115 
1116 	return found;
1117 }
1118 
1119 /*
1120  * tm is a pointer to the first operation to rewind within eb. then, all
1121  * previous operations will be rewinded (until we reach something older than
1122  * time_seq).
1123  */
1124 static void
1125 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1126 		      struct tree_mod_elem *first_tm)
1127 {
1128 	u32 n;
1129 	struct rb_node *next;
1130 	struct tree_mod_elem *tm = first_tm;
1131 	unsigned long o_dst;
1132 	unsigned long o_src;
1133 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1134 
1135 	n = btrfs_header_nritems(eb);
1136 	while (tm && tm->seq >= time_seq) {
1137 		/*
1138 		 * all the operations are recorded with the operator used for
1139 		 * the modification. as we're going backwards, we do the
1140 		 * opposite of each operation here.
1141 		 */
1142 		switch (tm->op) {
1143 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1144 			BUG_ON(tm->slot < n);
1145 			/* Fallthrough */
1146 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1147 		case MOD_LOG_KEY_REMOVE:
1148 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1149 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1150 			btrfs_set_node_ptr_generation(eb, tm->slot,
1151 						      tm->generation);
1152 			n++;
1153 			break;
1154 		case MOD_LOG_KEY_REPLACE:
1155 			BUG_ON(tm->slot >= n);
1156 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1157 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1158 			btrfs_set_node_ptr_generation(eb, tm->slot,
1159 						      tm->generation);
1160 			break;
1161 		case MOD_LOG_KEY_ADD:
1162 			/* if a move operation is needed it's in the log */
1163 			n--;
1164 			break;
1165 		case MOD_LOG_MOVE_KEYS:
1166 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1167 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1168 			memmove_extent_buffer(eb, o_dst, o_src,
1169 					      tm->move.nr_items * p_size);
1170 			break;
1171 		case MOD_LOG_ROOT_REPLACE:
1172 			/*
1173 			 * this operation is special. for roots, this must be
1174 			 * handled explicitly before rewinding.
1175 			 * for non-roots, this operation may exist if the node
1176 			 * was a root: root A -> child B; then A gets empty and
1177 			 * B is promoted to the new root. in the mod log, we'll
1178 			 * have a root-replace operation for B, a tree block
1179 			 * that is no root. we simply ignore that operation.
1180 			 */
1181 			break;
1182 		}
1183 		next = rb_next(&tm->node);
1184 		if (!next)
1185 			break;
1186 		tm = container_of(next, struct tree_mod_elem, node);
1187 		if (tm->index != first_tm->index)
1188 			break;
1189 	}
1190 	btrfs_set_header_nritems(eb, n);
1191 }
1192 
1193 static struct extent_buffer *
1194 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1195 		    u64 time_seq)
1196 {
1197 	struct extent_buffer *eb_rewin;
1198 	struct tree_mod_elem *tm;
1199 
1200 	if (!time_seq)
1201 		return eb;
1202 
1203 	if (btrfs_header_level(eb) == 0)
1204 		return eb;
1205 
1206 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1207 	if (!tm)
1208 		return eb;
1209 
1210 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1211 		BUG_ON(tm->slot != 0);
1212 		eb_rewin = alloc_dummy_extent_buffer(eb->start,
1213 						fs_info->tree_root->nodesize);
1214 		BUG_ON(!eb_rewin);
1215 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1216 		btrfs_set_header_backref_rev(eb_rewin,
1217 					     btrfs_header_backref_rev(eb));
1218 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1219 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1220 	} else {
1221 		eb_rewin = btrfs_clone_extent_buffer(eb);
1222 		BUG_ON(!eb_rewin);
1223 	}
1224 
1225 	extent_buffer_get(eb_rewin);
1226 	free_extent_buffer(eb);
1227 
1228 	__tree_mod_log_rewind(eb_rewin, time_seq, tm);
1229 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1230 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1231 
1232 	return eb_rewin;
1233 }
1234 
1235 /*
1236  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1237  * value. If there are no changes, the current root->root_node is returned. If
1238  * anything changed in between, there's a fresh buffer allocated on which the
1239  * rewind operations are done. In any case, the returned buffer is read locked.
1240  * Returns NULL on error (with no locks held).
1241  */
1242 static inline struct extent_buffer *
1243 get_old_root(struct btrfs_root *root, u64 time_seq)
1244 {
1245 	struct tree_mod_elem *tm;
1246 	struct extent_buffer *eb;
1247 	struct extent_buffer *old;
1248 	struct tree_mod_root *old_root = NULL;
1249 	u64 old_generation = 0;
1250 	u64 logical;
1251 	u32 blocksize;
1252 
1253 	eb = btrfs_read_lock_root_node(root);
1254 	tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1255 	if (!tm)
1256 		return root->node;
1257 
1258 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1259 		old_root = &tm->old_root;
1260 		old_generation = tm->generation;
1261 		logical = old_root->logical;
1262 	} else {
1263 		logical = root->node->start;
1264 	}
1265 
1266 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1267 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1268 		btrfs_tree_read_unlock(root->node);
1269 		free_extent_buffer(root->node);
1270 		blocksize = btrfs_level_size(root, old_root->level);
1271 		old = read_tree_block(root, logical, blocksize, 0);
1272 		if (!old) {
1273 			pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1274 				logical);
1275 			WARN_ON(1);
1276 		} else {
1277 			eb = btrfs_clone_extent_buffer(old);
1278 			free_extent_buffer(old);
1279 		}
1280 	} else if (old_root) {
1281 		btrfs_tree_read_unlock(root->node);
1282 		free_extent_buffer(root->node);
1283 		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1284 	} else {
1285 		eb = btrfs_clone_extent_buffer(root->node);
1286 		btrfs_tree_read_unlock(root->node);
1287 		free_extent_buffer(root->node);
1288 	}
1289 
1290 	if (!eb)
1291 		return NULL;
1292 	extent_buffer_get(eb);
1293 	btrfs_tree_read_lock(eb);
1294 	if (old_root) {
1295 		btrfs_set_header_bytenr(eb, eb->start);
1296 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1297 		btrfs_set_header_owner(eb, root->root_key.objectid);
1298 		btrfs_set_header_level(eb, old_root->level);
1299 		btrfs_set_header_generation(eb, old_generation);
1300 	}
1301 	if (tm)
1302 		__tree_mod_log_rewind(eb, time_seq, tm);
1303 	else
1304 		WARN_ON(btrfs_header_level(eb) != 0);
1305 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1306 
1307 	return eb;
1308 }
1309 
1310 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1311 {
1312 	struct tree_mod_elem *tm;
1313 	int level;
1314 
1315 	tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1316 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1317 		level = tm->old_root.level;
1318 	} else {
1319 		rcu_read_lock();
1320 		level = btrfs_header_level(root->node);
1321 		rcu_read_unlock();
1322 	}
1323 
1324 	return level;
1325 }
1326 
1327 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1328 				   struct btrfs_root *root,
1329 				   struct extent_buffer *buf)
1330 {
1331 	/* ensure we can see the force_cow */
1332 	smp_rmb();
1333 
1334 	/*
1335 	 * We do not need to cow a block if
1336 	 * 1) this block is not created or changed in this transaction;
1337 	 * 2) this block does not belong to TREE_RELOC tree;
1338 	 * 3) the root is not forced COW.
1339 	 *
1340 	 * What is forced COW:
1341 	 *    when we create snapshot during commiting the transaction,
1342 	 *    after we've finished coping src root, we must COW the shared
1343 	 *    block to ensure the metadata consistency.
1344 	 */
1345 	if (btrfs_header_generation(buf) == trans->transid &&
1346 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1347 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1348 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1349 	    !root->force_cow)
1350 		return 0;
1351 	return 1;
1352 }
1353 
1354 /*
1355  * cows a single block, see __btrfs_cow_block for the real work.
1356  * This version of it has extra checks so that a block isn't cow'd more than
1357  * once per transaction, as long as it hasn't been written yet
1358  */
1359 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1360 		    struct btrfs_root *root, struct extent_buffer *buf,
1361 		    struct extent_buffer *parent, int parent_slot,
1362 		    struct extent_buffer **cow_ret)
1363 {
1364 	u64 search_start;
1365 	int ret;
1366 
1367 	if (trans->transaction != root->fs_info->running_transaction)
1368 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1369 		       (unsigned long long)trans->transid,
1370 		       (unsigned long long)
1371 		       root->fs_info->running_transaction->transid);
1372 
1373 	if (trans->transid != root->fs_info->generation)
1374 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1375 		       (unsigned long long)trans->transid,
1376 		       (unsigned long long)root->fs_info->generation);
1377 
1378 	if (!should_cow_block(trans, root, buf)) {
1379 		*cow_ret = buf;
1380 		return 0;
1381 	}
1382 
1383 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1384 
1385 	if (parent)
1386 		btrfs_set_lock_blocking(parent);
1387 	btrfs_set_lock_blocking(buf);
1388 
1389 	ret = __btrfs_cow_block(trans, root, buf, parent,
1390 				 parent_slot, cow_ret, search_start, 0);
1391 
1392 	trace_btrfs_cow_block(root, buf, *cow_ret);
1393 
1394 	return ret;
1395 }
1396 
1397 /*
1398  * helper function for defrag to decide if two blocks pointed to by a
1399  * node are actually close by
1400  */
1401 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1402 {
1403 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1404 		return 1;
1405 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1406 		return 1;
1407 	return 0;
1408 }
1409 
1410 /*
1411  * compare two keys in a memcmp fashion
1412  */
1413 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1414 {
1415 	struct btrfs_key k1;
1416 
1417 	btrfs_disk_key_to_cpu(&k1, disk);
1418 
1419 	return btrfs_comp_cpu_keys(&k1, k2);
1420 }
1421 
1422 /*
1423  * same as comp_keys only with two btrfs_key's
1424  */
1425 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1426 {
1427 	if (k1->objectid > k2->objectid)
1428 		return 1;
1429 	if (k1->objectid < k2->objectid)
1430 		return -1;
1431 	if (k1->type > k2->type)
1432 		return 1;
1433 	if (k1->type < k2->type)
1434 		return -1;
1435 	if (k1->offset > k2->offset)
1436 		return 1;
1437 	if (k1->offset < k2->offset)
1438 		return -1;
1439 	return 0;
1440 }
1441 
1442 /*
1443  * this is used by the defrag code to go through all the
1444  * leaves pointed to by a node and reallocate them so that
1445  * disk order is close to key order
1446  */
1447 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1448 		       struct btrfs_root *root, struct extent_buffer *parent,
1449 		       int start_slot, u64 *last_ret,
1450 		       struct btrfs_key *progress)
1451 {
1452 	struct extent_buffer *cur;
1453 	u64 blocknr;
1454 	u64 gen;
1455 	u64 search_start = *last_ret;
1456 	u64 last_block = 0;
1457 	u64 other;
1458 	u32 parent_nritems;
1459 	int end_slot;
1460 	int i;
1461 	int err = 0;
1462 	int parent_level;
1463 	int uptodate;
1464 	u32 blocksize;
1465 	int progress_passed = 0;
1466 	struct btrfs_disk_key disk_key;
1467 
1468 	parent_level = btrfs_header_level(parent);
1469 
1470 	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1471 	WARN_ON(trans->transid != root->fs_info->generation);
1472 
1473 	parent_nritems = btrfs_header_nritems(parent);
1474 	blocksize = btrfs_level_size(root, parent_level - 1);
1475 	end_slot = parent_nritems;
1476 
1477 	if (parent_nritems == 1)
1478 		return 0;
1479 
1480 	btrfs_set_lock_blocking(parent);
1481 
1482 	for (i = start_slot; i < end_slot; i++) {
1483 		int close = 1;
1484 
1485 		btrfs_node_key(parent, &disk_key, i);
1486 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1487 			continue;
1488 
1489 		progress_passed = 1;
1490 		blocknr = btrfs_node_blockptr(parent, i);
1491 		gen = btrfs_node_ptr_generation(parent, i);
1492 		if (last_block == 0)
1493 			last_block = blocknr;
1494 
1495 		if (i > 0) {
1496 			other = btrfs_node_blockptr(parent, i - 1);
1497 			close = close_blocks(blocknr, other, blocksize);
1498 		}
1499 		if (!close && i < end_slot - 2) {
1500 			other = btrfs_node_blockptr(parent, i + 1);
1501 			close = close_blocks(blocknr, other, blocksize);
1502 		}
1503 		if (close) {
1504 			last_block = blocknr;
1505 			continue;
1506 		}
1507 
1508 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
1509 		if (cur)
1510 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1511 		else
1512 			uptodate = 0;
1513 		if (!cur || !uptodate) {
1514 			if (!cur) {
1515 				cur = read_tree_block(root, blocknr,
1516 							 blocksize, gen);
1517 				if (!cur)
1518 					return -EIO;
1519 			} else if (!uptodate) {
1520 				err = btrfs_read_buffer(cur, gen);
1521 				if (err) {
1522 					free_extent_buffer(cur);
1523 					return err;
1524 				}
1525 			}
1526 		}
1527 		if (search_start == 0)
1528 			search_start = last_block;
1529 
1530 		btrfs_tree_lock(cur);
1531 		btrfs_set_lock_blocking(cur);
1532 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1533 					&cur, search_start,
1534 					min(16 * blocksize,
1535 					    (end_slot - i) * blocksize));
1536 		if (err) {
1537 			btrfs_tree_unlock(cur);
1538 			free_extent_buffer(cur);
1539 			break;
1540 		}
1541 		search_start = cur->start;
1542 		last_block = cur->start;
1543 		*last_ret = search_start;
1544 		btrfs_tree_unlock(cur);
1545 		free_extent_buffer(cur);
1546 	}
1547 	return err;
1548 }
1549 
1550 /*
1551  * The leaf data grows from end-to-front in the node.
1552  * this returns the address of the start of the last item,
1553  * which is the stop of the leaf data stack
1554  */
1555 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1556 					 struct extent_buffer *leaf)
1557 {
1558 	u32 nr = btrfs_header_nritems(leaf);
1559 	if (nr == 0)
1560 		return BTRFS_LEAF_DATA_SIZE(root);
1561 	return btrfs_item_offset_nr(leaf, nr - 1);
1562 }
1563 
1564 
1565 /*
1566  * search for key in the extent_buffer.  The items start at offset p,
1567  * and they are item_size apart.  There are 'max' items in p.
1568  *
1569  * the slot in the array is returned via slot, and it points to
1570  * the place where you would insert key if it is not found in
1571  * the array.
1572  *
1573  * slot may point to max if the key is bigger than all of the keys
1574  */
1575 static noinline int generic_bin_search(struct extent_buffer *eb,
1576 				       unsigned long p,
1577 				       int item_size, struct btrfs_key *key,
1578 				       int max, int *slot)
1579 {
1580 	int low = 0;
1581 	int high = max;
1582 	int mid;
1583 	int ret;
1584 	struct btrfs_disk_key *tmp = NULL;
1585 	struct btrfs_disk_key unaligned;
1586 	unsigned long offset;
1587 	char *kaddr = NULL;
1588 	unsigned long map_start = 0;
1589 	unsigned long map_len = 0;
1590 	int err;
1591 
1592 	while (low < high) {
1593 		mid = (low + high) / 2;
1594 		offset = p + mid * item_size;
1595 
1596 		if (!kaddr || offset < map_start ||
1597 		    (offset + sizeof(struct btrfs_disk_key)) >
1598 		    map_start + map_len) {
1599 
1600 			err = map_private_extent_buffer(eb, offset,
1601 						sizeof(struct btrfs_disk_key),
1602 						&kaddr, &map_start, &map_len);
1603 
1604 			if (!err) {
1605 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1606 							map_start);
1607 			} else {
1608 				read_extent_buffer(eb, &unaligned,
1609 						   offset, sizeof(unaligned));
1610 				tmp = &unaligned;
1611 			}
1612 
1613 		} else {
1614 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1615 							map_start);
1616 		}
1617 		ret = comp_keys(tmp, key);
1618 
1619 		if (ret < 0)
1620 			low = mid + 1;
1621 		else if (ret > 0)
1622 			high = mid;
1623 		else {
1624 			*slot = mid;
1625 			return 0;
1626 		}
1627 	}
1628 	*slot = low;
1629 	return 1;
1630 }
1631 
1632 /*
1633  * simple bin_search frontend that does the right thing for
1634  * leaves vs nodes
1635  */
1636 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1637 		      int level, int *slot)
1638 {
1639 	if (level == 0)
1640 		return generic_bin_search(eb,
1641 					  offsetof(struct btrfs_leaf, items),
1642 					  sizeof(struct btrfs_item),
1643 					  key, btrfs_header_nritems(eb),
1644 					  slot);
1645 	else
1646 		return generic_bin_search(eb,
1647 					  offsetof(struct btrfs_node, ptrs),
1648 					  sizeof(struct btrfs_key_ptr),
1649 					  key, btrfs_header_nritems(eb),
1650 					  slot);
1651 }
1652 
1653 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1654 		     int level, int *slot)
1655 {
1656 	return bin_search(eb, key, level, slot);
1657 }
1658 
1659 static void root_add_used(struct btrfs_root *root, u32 size)
1660 {
1661 	spin_lock(&root->accounting_lock);
1662 	btrfs_set_root_used(&root->root_item,
1663 			    btrfs_root_used(&root->root_item) + size);
1664 	spin_unlock(&root->accounting_lock);
1665 }
1666 
1667 static void root_sub_used(struct btrfs_root *root, u32 size)
1668 {
1669 	spin_lock(&root->accounting_lock);
1670 	btrfs_set_root_used(&root->root_item,
1671 			    btrfs_root_used(&root->root_item) - size);
1672 	spin_unlock(&root->accounting_lock);
1673 }
1674 
1675 /* given a node and slot number, this reads the blocks it points to.  The
1676  * extent buffer is returned with a reference taken (but unlocked).
1677  * NULL is returned on error.
1678  */
1679 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1680 				   struct extent_buffer *parent, int slot)
1681 {
1682 	int level = btrfs_header_level(parent);
1683 	if (slot < 0)
1684 		return NULL;
1685 	if (slot >= btrfs_header_nritems(parent))
1686 		return NULL;
1687 
1688 	BUG_ON(level == 0);
1689 
1690 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1691 		       btrfs_level_size(root, level - 1),
1692 		       btrfs_node_ptr_generation(parent, slot));
1693 }
1694 
1695 /*
1696  * node level balancing, used to make sure nodes are in proper order for
1697  * item deletion.  We balance from the top down, so we have to make sure
1698  * that a deletion won't leave an node completely empty later on.
1699  */
1700 static noinline int balance_level(struct btrfs_trans_handle *trans,
1701 			 struct btrfs_root *root,
1702 			 struct btrfs_path *path, int level)
1703 {
1704 	struct extent_buffer *right = NULL;
1705 	struct extent_buffer *mid;
1706 	struct extent_buffer *left = NULL;
1707 	struct extent_buffer *parent = NULL;
1708 	int ret = 0;
1709 	int wret;
1710 	int pslot;
1711 	int orig_slot = path->slots[level];
1712 	u64 orig_ptr;
1713 
1714 	if (level == 0)
1715 		return 0;
1716 
1717 	mid = path->nodes[level];
1718 
1719 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1720 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1721 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1722 
1723 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1724 
1725 	if (level < BTRFS_MAX_LEVEL - 1) {
1726 		parent = path->nodes[level + 1];
1727 		pslot = path->slots[level + 1];
1728 	}
1729 
1730 	/*
1731 	 * deal with the case where there is only one pointer in the root
1732 	 * by promoting the node below to a root
1733 	 */
1734 	if (!parent) {
1735 		struct extent_buffer *child;
1736 
1737 		if (btrfs_header_nritems(mid) != 1)
1738 			return 0;
1739 
1740 		/* promote the child to a root */
1741 		child = read_node_slot(root, mid, 0);
1742 		if (!child) {
1743 			ret = -EROFS;
1744 			btrfs_std_error(root->fs_info, ret);
1745 			goto enospc;
1746 		}
1747 
1748 		btrfs_tree_lock(child);
1749 		btrfs_set_lock_blocking(child);
1750 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1751 		if (ret) {
1752 			btrfs_tree_unlock(child);
1753 			free_extent_buffer(child);
1754 			goto enospc;
1755 		}
1756 
1757 		tree_mod_log_set_root_pointer(root, child);
1758 		rcu_assign_pointer(root->node, child);
1759 
1760 		add_root_to_dirty_list(root);
1761 		btrfs_tree_unlock(child);
1762 
1763 		path->locks[level] = 0;
1764 		path->nodes[level] = NULL;
1765 		clean_tree_block(trans, root, mid);
1766 		btrfs_tree_unlock(mid);
1767 		/* once for the path */
1768 		free_extent_buffer(mid);
1769 
1770 		root_sub_used(root, mid->len);
1771 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1772 		/* once for the root ptr */
1773 		free_extent_buffer_stale(mid);
1774 		return 0;
1775 	}
1776 	if (btrfs_header_nritems(mid) >
1777 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1778 		return 0;
1779 
1780 	left = read_node_slot(root, parent, pslot - 1);
1781 	if (left) {
1782 		btrfs_tree_lock(left);
1783 		btrfs_set_lock_blocking(left);
1784 		wret = btrfs_cow_block(trans, root, left,
1785 				       parent, pslot - 1, &left);
1786 		if (wret) {
1787 			ret = wret;
1788 			goto enospc;
1789 		}
1790 	}
1791 	right = read_node_slot(root, parent, pslot + 1);
1792 	if (right) {
1793 		btrfs_tree_lock(right);
1794 		btrfs_set_lock_blocking(right);
1795 		wret = btrfs_cow_block(trans, root, right,
1796 				       parent, pslot + 1, &right);
1797 		if (wret) {
1798 			ret = wret;
1799 			goto enospc;
1800 		}
1801 	}
1802 
1803 	/* first, try to make some room in the middle buffer */
1804 	if (left) {
1805 		orig_slot += btrfs_header_nritems(left);
1806 		wret = push_node_left(trans, root, left, mid, 1);
1807 		if (wret < 0)
1808 			ret = wret;
1809 	}
1810 
1811 	/*
1812 	 * then try to empty the right most buffer into the middle
1813 	 */
1814 	if (right) {
1815 		wret = push_node_left(trans, root, mid, right, 1);
1816 		if (wret < 0 && wret != -ENOSPC)
1817 			ret = wret;
1818 		if (btrfs_header_nritems(right) == 0) {
1819 			clean_tree_block(trans, root, right);
1820 			btrfs_tree_unlock(right);
1821 			del_ptr(trans, root, path, level + 1, pslot + 1);
1822 			root_sub_used(root, right->len);
1823 			btrfs_free_tree_block(trans, root, right, 0, 1);
1824 			free_extent_buffer_stale(right);
1825 			right = NULL;
1826 		} else {
1827 			struct btrfs_disk_key right_key;
1828 			btrfs_node_key(right, &right_key, 0);
1829 			tree_mod_log_set_node_key(root->fs_info, parent,
1830 						  pslot + 1, 0);
1831 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1832 			btrfs_mark_buffer_dirty(parent);
1833 		}
1834 	}
1835 	if (btrfs_header_nritems(mid) == 1) {
1836 		/*
1837 		 * we're not allowed to leave a node with one item in the
1838 		 * tree during a delete.  A deletion from lower in the tree
1839 		 * could try to delete the only pointer in this node.
1840 		 * So, pull some keys from the left.
1841 		 * There has to be a left pointer at this point because
1842 		 * otherwise we would have pulled some pointers from the
1843 		 * right
1844 		 */
1845 		if (!left) {
1846 			ret = -EROFS;
1847 			btrfs_std_error(root->fs_info, ret);
1848 			goto enospc;
1849 		}
1850 		wret = balance_node_right(trans, root, mid, left);
1851 		if (wret < 0) {
1852 			ret = wret;
1853 			goto enospc;
1854 		}
1855 		if (wret == 1) {
1856 			wret = push_node_left(trans, root, left, mid, 1);
1857 			if (wret < 0)
1858 				ret = wret;
1859 		}
1860 		BUG_ON(wret == 1);
1861 	}
1862 	if (btrfs_header_nritems(mid) == 0) {
1863 		clean_tree_block(trans, root, mid);
1864 		btrfs_tree_unlock(mid);
1865 		del_ptr(trans, root, path, level + 1, pslot);
1866 		root_sub_used(root, mid->len);
1867 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1868 		free_extent_buffer_stale(mid);
1869 		mid = NULL;
1870 	} else {
1871 		/* update the parent key to reflect our changes */
1872 		struct btrfs_disk_key mid_key;
1873 		btrfs_node_key(mid, &mid_key, 0);
1874 		tree_mod_log_set_node_key(root->fs_info, parent,
1875 					  pslot, 0);
1876 		btrfs_set_node_key(parent, &mid_key, pslot);
1877 		btrfs_mark_buffer_dirty(parent);
1878 	}
1879 
1880 	/* update the path */
1881 	if (left) {
1882 		if (btrfs_header_nritems(left) > orig_slot) {
1883 			extent_buffer_get(left);
1884 			/* left was locked after cow */
1885 			path->nodes[level] = left;
1886 			path->slots[level + 1] -= 1;
1887 			path->slots[level] = orig_slot;
1888 			if (mid) {
1889 				btrfs_tree_unlock(mid);
1890 				free_extent_buffer(mid);
1891 			}
1892 		} else {
1893 			orig_slot -= btrfs_header_nritems(left);
1894 			path->slots[level] = orig_slot;
1895 		}
1896 	}
1897 	/* double check we haven't messed things up */
1898 	if (orig_ptr !=
1899 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1900 		BUG();
1901 enospc:
1902 	if (right) {
1903 		btrfs_tree_unlock(right);
1904 		free_extent_buffer(right);
1905 	}
1906 	if (left) {
1907 		if (path->nodes[level] != left)
1908 			btrfs_tree_unlock(left);
1909 		free_extent_buffer(left);
1910 	}
1911 	return ret;
1912 }
1913 
1914 /* Node balancing for insertion.  Here we only split or push nodes around
1915  * when they are completely full.  This is also done top down, so we
1916  * have to be pessimistic.
1917  */
1918 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1919 					  struct btrfs_root *root,
1920 					  struct btrfs_path *path, int level)
1921 {
1922 	struct extent_buffer *right = NULL;
1923 	struct extent_buffer *mid;
1924 	struct extent_buffer *left = NULL;
1925 	struct extent_buffer *parent = NULL;
1926 	int ret = 0;
1927 	int wret;
1928 	int pslot;
1929 	int orig_slot = path->slots[level];
1930 
1931 	if (level == 0)
1932 		return 1;
1933 
1934 	mid = path->nodes[level];
1935 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1936 
1937 	if (level < BTRFS_MAX_LEVEL - 1) {
1938 		parent = path->nodes[level + 1];
1939 		pslot = path->slots[level + 1];
1940 	}
1941 
1942 	if (!parent)
1943 		return 1;
1944 
1945 	left = read_node_slot(root, parent, pslot - 1);
1946 
1947 	/* first, try to make some room in the middle buffer */
1948 	if (left) {
1949 		u32 left_nr;
1950 
1951 		btrfs_tree_lock(left);
1952 		btrfs_set_lock_blocking(left);
1953 
1954 		left_nr = btrfs_header_nritems(left);
1955 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1956 			wret = 1;
1957 		} else {
1958 			ret = btrfs_cow_block(trans, root, left, parent,
1959 					      pslot - 1, &left);
1960 			if (ret)
1961 				wret = 1;
1962 			else {
1963 				wret = push_node_left(trans, root,
1964 						      left, mid, 0);
1965 			}
1966 		}
1967 		if (wret < 0)
1968 			ret = wret;
1969 		if (wret == 0) {
1970 			struct btrfs_disk_key disk_key;
1971 			orig_slot += left_nr;
1972 			btrfs_node_key(mid, &disk_key, 0);
1973 			tree_mod_log_set_node_key(root->fs_info, parent,
1974 						  pslot, 0);
1975 			btrfs_set_node_key(parent, &disk_key, pslot);
1976 			btrfs_mark_buffer_dirty(parent);
1977 			if (btrfs_header_nritems(left) > orig_slot) {
1978 				path->nodes[level] = left;
1979 				path->slots[level + 1] -= 1;
1980 				path->slots[level] = orig_slot;
1981 				btrfs_tree_unlock(mid);
1982 				free_extent_buffer(mid);
1983 			} else {
1984 				orig_slot -=
1985 					btrfs_header_nritems(left);
1986 				path->slots[level] = orig_slot;
1987 				btrfs_tree_unlock(left);
1988 				free_extent_buffer(left);
1989 			}
1990 			return 0;
1991 		}
1992 		btrfs_tree_unlock(left);
1993 		free_extent_buffer(left);
1994 	}
1995 	right = read_node_slot(root, parent, pslot + 1);
1996 
1997 	/*
1998 	 * then try to empty the right most buffer into the middle
1999 	 */
2000 	if (right) {
2001 		u32 right_nr;
2002 
2003 		btrfs_tree_lock(right);
2004 		btrfs_set_lock_blocking(right);
2005 
2006 		right_nr = btrfs_header_nritems(right);
2007 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2008 			wret = 1;
2009 		} else {
2010 			ret = btrfs_cow_block(trans, root, right,
2011 					      parent, pslot + 1,
2012 					      &right);
2013 			if (ret)
2014 				wret = 1;
2015 			else {
2016 				wret = balance_node_right(trans, root,
2017 							  right, mid);
2018 			}
2019 		}
2020 		if (wret < 0)
2021 			ret = wret;
2022 		if (wret == 0) {
2023 			struct btrfs_disk_key disk_key;
2024 
2025 			btrfs_node_key(right, &disk_key, 0);
2026 			tree_mod_log_set_node_key(root->fs_info, parent,
2027 						  pslot + 1, 0);
2028 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2029 			btrfs_mark_buffer_dirty(parent);
2030 
2031 			if (btrfs_header_nritems(mid) <= orig_slot) {
2032 				path->nodes[level] = right;
2033 				path->slots[level + 1] += 1;
2034 				path->slots[level] = orig_slot -
2035 					btrfs_header_nritems(mid);
2036 				btrfs_tree_unlock(mid);
2037 				free_extent_buffer(mid);
2038 			} else {
2039 				btrfs_tree_unlock(right);
2040 				free_extent_buffer(right);
2041 			}
2042 			return 0;
2043 		}
2044 		btrfs_tree_unlock(right);
2045 		free_extent_buffer(right);
2046 	}
2047 	return 1;
2048 }
2049 
2050 /*
2051  * readahead one full node of leaves, finding things that are close
2052  * to the block in 'slot', and triggering ra on them.
2053  */
2054 static void reada_for_search(struct btrfs_root *root,
2055 			     struct btrfs_path *path,
2056 			     int level, int slot, u64 objectid)
2057 {
2058 	struct extent_buffer *node;
2059 	struct btrfs_disk_key disk_key;
2060 	u32 nritems;
2061 	u64 search;
2062 	u64 target;
2063 	u64 nread = 0;
2064 	u64 gen;
2065 	int direction = path->reada;
2066 	struct extent_buffer *eb;
2067 	u32 nr;
2068 	u32 blocksize;
2069 	u32 nscan = 0;
2070 
2071 	if (level != 1)
2072 		return;
2073 
2074 	if (!path->nodes[level])
2075 		return;
2076 
2077 	node = path->nodes[level];
2078 
2079 	search = btrfs_node_blockptr(node, slot);
2080 	blocksize = btrfs_level_size(root, level - 1);
2081 	eb = btrfs_find_tree_block(root, search, blocksize);
2082 	if (eb) {
2083 		free_extent_buffer(eb);
2084 		return;
2085 	}
2086 
2087 	target = search;
2088 
2089 	nritems = btrfs_header_nritems(node);
2090 	nr = slot;
2091 
2092 	while (1) {
2093 		if (direction < 0) {
2094 			if (nr == 0)
2095 				break;
2096 			nr--;
2097 		} else if (direction > 0) {
2098 			nr++;
2099 			if (nr >= nritems)
2100 				break;
2101 		}
2102 		if (path->reada < 0 && objectid) {
2103 			btrfs_node_key(node, &disk_key, nr);
2104 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2105 				break;
2106 		}
2107 		search = btrfs_node_blockptr(node, nr);
2108 		if ((search <= target && target - search <= 65536) ||
2109 		    (search > target && search - target <= 65536)) {
2110 			gen = btrfs_node_ptr_generation(node, nr);
2111 			readahead_tree_block(root, search, blocksize, gen);
2112 			nread += blocksize;
2113 		}
2114 		nscan++;
2115 		if ((nread > 65536 || nscan > 32))
2116 			break;
2117 	}
2118 }
2119 
2120 /*
2121  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2122  * cache
2123  */
2124 static noinline int reada_for_balance(struct btrfs_root *root,
2125 				      struct btrfs_path *path, int level)
2126 {
2127 	int slot;
2128 	int nritems;
2129 	struct extent_buffer *parent;
2130 	struct extent_buffer *eb;
2131 	u64 gen;
2132 	u64 block1 = 0;
2133 	u64 block2 = 0;
2134 	int ret = 0;
2135 	int blocksize;
2136 
2137 	parent = path->nodes[level + 1];
2138 	if (!parent)
2139 		return 0;
2140 
2141 	nritems = btrfs_header_nritems(parent);
2142 	slot = path->slots[level + 1];
2143 	blocksize = btrfs_level_size(root, level);
2144 
2145 	if (slot > 0) {
2146 		block1 = btrfs_node_blockptr(parent, slot - 1);
2147 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2148 		eb = btrfs_find_tree_block(root, block1, blocksize);
2149 		/*
2150 		 * if we get -eagain from btrfs_buffer_uptodate, we
2151 		 * don't want to return eagain here.  That will loop
2152 		 * forever
2153 		 */
2154 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2155 			block1 = 0;
2156 		free_extent_buffer(eb);
2157 	}
2158 	if (slot + 1 < nritems) {
2159 		block2 = btrfs_node_blockptr(parent, slot + 1);
2160 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2161 		eb = btrfs_find_tree_block(root, block2, blocksize);
2162 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2163 			block2 = 0;
2164 		free_extent_buffer(eb);
2165 	}
2166 	if (block1 || block2) {
2167 		ret = -EAGAIN;
2168 
2169 		/* release the whole path */
2170 		btrfs_release_path(path);
2171 
2172 		/* read the blocks */
2173 		if (block1)
2174 			readahead_tree_block(root, block1, blocksize, 0);
2175 		if (block2)
2176 			readahead_tree_block(root, block2, blocksize, 0);
2177 
2178 		if (block1) {
2179 			eb = read_tree_block(root, block1, blocksize, 0);
2180 			free_extent_buffer(eb);
2181 		}
2182 		if (block2) {
2183 			eb = read_tree_block(root, block2, blocksize, 0);
2184 			free_extent_buffer(eb);
2185 		}
2186 	}
2187 	return ret;
2188 }
2189 
2190 
2191 /*
2192  * when we walk down the tree, it is usually safe to unlock the higher layers
2193  * in the tree.  The exceptions are when our path goes through slot 0, because
2194  * operations on the tree might require changing key pointers higher up in the
2195  * tree.
2196  *
2197  * callers might also have set path->keep_locks, which tells this code to keep
2198  * the lock if the path points to the last slot in the block.  This is part of
2199  * walking through the tree, and selecting the next slot in the higher block.
2200  *
2201  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2202  * if lowest_unlock is 1, level 0 won't be unlocked
2203  */
2204 static noinline void unlock_up(struct btrfs_path *path, int level,
2205 			       int lowest_unlock, int min_write_lock_level,
2206 			       int *write_lock_level)
2207 {
2208 	int i;
2209 	int skip_level = level;
2210 	int no_skips = 0;
2211 	struct extent_buffer *t;
2212 
2213 	if (path->really_keep_locks)
2214 		return;
2215 
2216 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2217 		if (!path->nodes[i])
2218 			break;
2219 		if (!path->locks[i])
2220 			break;
2221 		if (!no_skips && path->slots[i] == 0) {
2222 			skip_level = i + 1;
2223 			continue;
2224 		}
2225 		if (!no_skips && path->keep_locks) {
2226 			u32 nritems;
2227 			t = path->nodes[i];
2228 			nritems = btrfs_header_nritems(t);
2229 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2230 				skip_level = i + 1;
2231 				continue;
2232 			}
2233 		}
2234 		if (skip_level < i && i >= lowest_unlock)
2235 			no_skips = 1;
2236 
2237 		t = path->nodes[i];
2238 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2239 			btrfs_tree_unlock_rw(t, path->locks[i]);
2240 			path->locks[i] = 0;
2241 			if (write_lock_level &&
2242 			    i > min_write_lock_level &&
2243 			    i <= *write_lock_level) {
2244 				*write_lock_level = i - 1;
2245 			}
2246 		}
2247 	}
2248 }
2249 
2250 /*
2251  * This releases any locks held in the path starting at level and
2252  * going all the way up to the root.
2253  *
2254  * btrfs_search_slot will keep the lock held on higher nodes in a few
2255  * corner cases, such as COW of the block at slot zero in the node.  This
2256  * ignores those rules, and it should only be called when there are no
2257  * more updates to be done higher up in the tree.
2258  */
2259 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2260 {
2261 	int i;
2262 
2263 	if (path->keep_locks || path->really_keep_locks)
2264 		return;
2265 
2266 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2267 		if (!path->nodes[i])
2268 			continue;
2269 		if (!path->locks[i])
2270 			continue;
2271 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2272 		path->locks[i] = 0;
2273 	}
2274 }
2275 
2276 /*
2277  * helper function for btrfs_search_slot.  The goal is to find a block
2278  * in cache without setting the path to blocking.  If we find the block
2279  * we return zero and the path is unchanged.
2280  *
2281  * If we can't find the block, we set the path blocking and do some
2282  * reada.  -EAGAIN is returned and the search must be repeated.
2283  */
2284 static int
2285 read_block_for_search(struct btrfs_trans_handle *trans,
2286 		       struct btrfs_root *root, struct btrfs_path *p,
2287 		       struct extent_buffer **eb_ret, int level, int slot,
2288 		       struct btrfs_key *key, u64 time_seq)
2289 {
2290 	u64 blocknr;
2291 	u64 gen;
2292 	u32 blocksize;
2293 	struct extent_buffer *b = *eb_ret;
2294 	struct extent_buffer *tmp;
2295 	int ret;
2296 
2297 	blocknr = btrfs_node_blockptr(b, slot);
2298 	gen = btrfs_node_ptr_generation(b, slot);
2299 	blocksize = btrfs_level_size(root, level - 1);
2300 
2301 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2302 	if (tmp) {
2303 		/* first we do an atomic uptodate check */
2304 		if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2305 			if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2306 				/*
2307 				 * we found an up to date block without
2308 				 * sleeping, return
2309 				 * right away
2310 				 */
2311 				*eb_ret = tmp;
2312 				return 0;
2313 			}
2314 			/* the pages were up to date, but we failed
2315 			 * the generation number check.  Do a full
2316 			 * read for the generation number that is correct.
2317 			 * We must do this without dropping locks so
2318 			 * we can trust our generation number
2319 			 */
2320 			free_extent_buffer(tmp);
2321 			btrfs_set_path_blocking(p);
2322 
2323 			/* now we're allowed to do a blocking uptodate check */
2324 			tmp = read_tree_block(root, blocknr, blocksize, gen);
2325 			if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2326 				*eb_ret = tmp;
2327 				return 0;
2328 			}
2329 			free_extent_buffer(tmp);
2330 			btrfs_release_path(p);
2331 			return -EIO;
2332 		}
2333 	}
2334 
2335 	/*
2336 	 * reduce lock contention at high levels
2337 	 * of the btree by dropping locks before
2338 	 * we read.  Don't release the lock on the current
2339 	 * level because we need to walk this node to figure
2340 	 * out which blocks to read.
2341 	 */
2342 	btrfs_unlock_up_safe(p, level + 1);
2343 	btrfs_set_path_blocking(p);
2344 
2345 	free_extent_buffer(tmp);
2346 	if (p->reada)
2347 		reada_for_search(root, p, level, slot, key->objectid);
2348 
2349 	btrfs_release_path(p);
2350 
2351 	ret = -EAGAIN;
2352 	tmp = read_tree_block(root, blocknr, blocksize, 0);
2353 	if (tmp) {
2354 		/*
2355 		 * If the read above didn't mark this buffer up to date,
2356 		 * it will never end up being up to date.  Set ret to EIO now
2357 		 * and give up so that our caller doesn't loop forever
2358 		 * on our EAGAINs.
2359 		 */
2360 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2361 			ret = -EIO;
2362 		free_extent_buffer(tmp);
2363 	}
2364 	return ret;
2365 }
2366 
2367 /*
2368  * helper function for btrfs_search_slot.  This does all of the checks
2369  * for node-level blocks and does any balancing required based on
2370  * the ins_len.
2371  *
2372  * If no extra work was required, zero is returned.  If we had to
2373  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2374  * start over
2375  */
2376 static int
2377 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2378 		       struct btrfs_root *root, struct btrfs_path *p,
2379 		       struct extent_buffer *b, int level, int ins_len,
2380 		       int *write_lock_level)
2381 {
2382 	int ret;
2383 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2384 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2385 		int sret;
2386 
2387 		if (*write_lock_level < level + 1) {
2388 			*write_lock_level = level + 1;
2389 			btrfs_release_path(p);
2390 			goto again;
2391 		}
2392 
2393 		sret = reada_for_balance(root, p, level);
2394 		if (sret)
2395 			goto again;
2396 
2397 		btrfs_set_path_blocking(p);
2398 		sret = split_node(trans, root, p, level);
2399 		btrfs_clear_path_blocking(p, NULL, 0);
2400 
2401 		BUG_ON(sret > 0);
2402 		if (sret) {
2403 			ret = sret;
2404 			goto done;
2405 		}
2406 		b = p->nodes[level];
2407 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2408 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2409 		int sret;
2410 
2411 		if (*write_lock_level < level + 1) {
2412 			*write_lock_level = level + 1;
2413 			btrfs_release_path(p);
2414 			goto again;
2415 		}
2416 
2417 		sret = reada_for_balance(root, p, level);
2418 		if (sret)
2419 			goto again;
2420 
2421 		btrfs_set_path_blocking(p);
2422 		sret = balance_level(trans, root, p, level);
2423 		btrfs_clear_path_blocking(p, NULL, 0);
2424 
2425 		if (sret) {
2426 			ret = sret;
2427 			goto done;
2428 		}
2429 		b = p->nodes[level];
2430 		if (!b) {
2431 			btrfs_release_path(p);
2432 			goto again;
2433 		}
2434 		BUG_ON(btrfs_header_nritems(b) == 1);
2435 	}
2436 	return 0;
2437 
2438 again:
2439 	ret = -EAGAIN;
2440 done:
2441 	return ret;
2442 }
2443 
2444 /*
2445  * look for key in the tree.  path is filled in with nodes along the way
2446  * if key is found, we return zero and you can find the item in the leaf
2447  * level of the path (level 0)
2448  *
2449  * If the key isn't found, the path points to the slot where it should
2450  * be inserted, and 1 is returned.  If there are other errors during the
2451  * search a negative error number is returned.
2452  *
2453  * if ins_len > 0, nodes and leaves will be split as we walk down the
2454  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2455  * possible)
2456  */
2457 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2458 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2459 		      ins_len, int cow)
2460 {
2461 	struct extent_buffer *b;
2462 	int slot;
2463 	int ret;
2464 	int err;
2465 	int level;
2466 	int lowest_unlock = 1;
2467 	int root_lock;
2468 	/* everything at write_lock_level or lower must be write locked */
2469 	int write_lock_level = 0;
2470 	u8 lowest_level = 0;
2471 	int min_write_lock_level;
2472 
2473 	lowest_level = p->lowest_level;
2474 	WARN_ON(lowest_level && ins_len > 0);
2475 	WARN_ON(p->nodes[0] != NULL);
2476 
2477 	if (ins_len < 0) {
2478 		lowest_unlock = 2;
2479 
2480 		/* when we are removing items, we might have to go up to level
2481 		 * two as we update tree pointers  Make sure we keep write
2482 		 * for those levels as well
2483 		 */
2484 		write_lock_level = 2;
2485 	} else if (ins_len > 0) {
2486 		/*
2487 		 * for inserting items, make sure we have a write lock on
2488 		 * level 1 so we can update keys
2489 		 */
2490 		write_lock_level = 1;
2491 	}
2492 
2493 	if (!cow)
2494 		write_lock_level = -1;
2495 
2496 	if (cow && (p->really_keep_locks || p->keep_locks || p->lowest_level))
2497 		write_lock_level = BTRFS_MAX_LEVEL;
2498 
2499 	min_write_lock_level = write_lock_level;
2500 
2501 again:
2502 	/*
2503 	 * we try very hard to do read locks on the root
2504 	 */
2505 	root_lock = BTRFS_READ_LOCK;
2506 	level = 0;
2507 	if (p->search_commit_root) {
2508 		/*
2509 		 * the commit roots are read only
2510 		 * so we always do read locks
2511 		 */
2512 		b = root->commit_root;
2513 		extent_buffer_get(b);
2514 		level = btrfs_header_level(b);
2515 		if (!p->skip_locking)
2516 			btrfs_tree_read_lock(b);
2517 	} else {
2518 		if (p->skip_locking) {
2519 			b = btrfs_root_node(root);
2520 			level = btrfs_header_level(b);
2521 		} else {
2522 			/* we don't know the level of the root node
2523 			 * until we actually have it read locked
2524 			 */
2525 			b = btrfs_read_lock_root_node(root);
2526 			level = btrfs_header_level(b);
2527 			if (level <= write_lock_level) {
2528 				/* whoops, must trade for write lock */
2529 				btrfs_tree_read_unlock(b);
2530 				free_extent_buffer(b);
2531 				b = btrfs_lock_root_node(root);
2532 				root_lock = BTRFS_WRITE_LOCK;
2533 
2534 				/* the level might have changed, check again */
2535 				level = btrfs_header_level(b);
2536 			}
2537 		}
2538 	}
2539 	p->nodes[level] = b;
2540 	if (!p->skip_locking)
2541 		p->locks[level] = root_lock;
2542 
2543 	while (b) {
2544 		level = btrfs_header_level(b);
2545 
2546 		/*
2547 		 * setup the path here so we can release it under lock
2548 		 * contention with the cow code
2549 		 */
2550 		if (cow) {
2551 			/*
2552 			 * if we don't really need to cow this block
2553 			 * then we don't want to set the path blocking,
2554 			 * so we test it here
2555 			 */
2556 			if (!should_cow_block(trans, root, b))
2557 				goto cow_done;
2558 
2559 			btrfs_set_path_blocking(p);
2560 
2561 			/*
2562 			 * must have write locks on this node and the
2563 			 * parent
2564 			 */
2565 			if (level > write_lock_level ||
2566 			    (level + 1 > write_lock_level &&
2567 			    level + 1 < BTRFS_MAX_LEVEL &&
2568 			    p->nodes[level + 1])) {
2569 				write_lock_level = level + 1;
2570 				btrfs_release_path(p);
2571 				goto again;
2572 			}
2573 
2574 			err = btrfs_cow_block(trans, root, b,
2575 					      p->nodes[level + 1],
2576 					      p->slots[level + 1], &b);
2577 			if (err) {
2578 				ret = err;
2579 				goto done;
2580 			}
2581 		}
2582 cow_done:
2583 		BUG_ON(!cow && ins_len);
2584 
2585 		p->nodes[level] = b;
2586 		btrfs_clear_path_blocking(p, NULL, 0);
2587 
2588 		/*
2589 		 * we have a lock on b and as long as we aren't changing
2590 		 * the tree, there is no way to for the items in b to change.
2591 		 * It is safe to drop the lock on our parent before we
2592 		 * go through the expensive btree search on b.
2593 		 *
2594 		 * If cow is true, then we might be changing slot zero,
2595 		 * which may require changing the parent.  So, we can't
2596 		 * drop the lock until after we know which slot we're
2597 		 * operating on.
2598 		 */
2599 		if (!cow)
2600 			btrfs_unlock_up_safe(p, level + 1);
2601 
2602 		ret = bin_search(b, key, level, &slot);
2603 
2604 		if (level != 0) {
2605 			int dec = 0;
2606 			if (ret && slot > 0) {
2607 				dec = 1;
2608 				slot -= 1;
2609 			}
2610 			p->slots[level] = slot;
2611 			err = setup_nodes_for_search(trans, root, p, b, level,
2612 					     ins_len, &write_lock_level);
2613 			if (err == -EAGAIN)
2614 				goto again;
2615 			if (err) {
2616 				ret = err;
2617 				goto done;
2618 			}
2619 			b = p->nodes[level];
2620 			slot = p->slots[level];
2621 
2622 			/*
2623 			 * slot 0 is special, if we change the key
2624 			 * we have to update the parent pointer
2625 			 * which means we must have a write lock
2626 			 * on the parent
2627 			 */
2628 			if (slot == 0 && cow &&
2629 			    write_lock_level < level + 1) {
2630 				write_lock_level = level + 1;
2631 				btrfs_release_path(p);
2632 				goto again;
2633 			}
2634 
2635 			unlock_up(p, level, lowest_unlock,
2636 				  min_write_lock_level, &write_lock_level);
2637 
2638 			if (level == lowest_level) {
2639 				if (dec)
2640 					p->slots[level]++;
2641 				goto done;
2642 			}
2643 
2644 			err = read_block_for_search(trans, root, p,
2645 						    &b, level, slot, key, 0);
2646 			if (err == -EAGAIN)
2647 				goto again;
2648 			if (err) {
2649 				ret = err;
2650 				goto done;
2651 			}
2652 
2653 			if (!p->skip_locking) {
2654 				level = btrfs_header_level(b);
2655 				if (level <= write_lock_level) {
2656 					err = btrfs_try_tree_write_lock(b);
2657 					if (!err) {
2658 						btrfs_set_path_blocking(p);
2659 						btrfs_tree_lock(b);
2660 						btrfs_clear_path_blocking(p, b,
2661 								  BTRFS_WRITE_LOCK);
2662 					}
2663 					p->locks[level] = BTRFS_WRITE_LOCK;
2664 				} else {
2665 					err = btrfs_try_tree_read_lock(b);
2666 					if (!err) {
2667 						btrfs_set_path_blocking(p);
2668 						btrfs_tree_read_lock(b);
2669 						btrfs_clear_path_blocking(p, b,
2670 								  BTRFS_READ_LOCK);
2671 					}
2672 					p->locks[level] = BTRFS_READ_LOCK;
2673 				}
2674 				p->nodes[level] = b;
2675 			}
2676 		} else {
2677 			p->slots[level] = slot;
2678 			if (ins_len > 0 &&
2679 			    btrfs_leaf_free_space(root, b) < ins_len) {
2680 				if (write_lock_level < 1) {
2681 					write_lock_level = 1;
2682 					btrfs_release_path(p);
2683 					goto again;
2684 				}
2685 
2686 				btrfs_set_path_blocking(p);
2687 				err = split_leaf(trans, root, key,
2688 						 p, ins_len, ret == 0);
2689 				btrfs_clear_path_blocking(p, NULL, 0);
2690 
2691 				BUG_ON(err > 0);
2692 				if (err) {
2693 					ret = err;
2694 					goto done;
2695 				}
2696 			}
2697 			if (!p->search_for_split)
2698 				unlock_up(p, level, lowest_unlock,
2699 					  min_write_lock_level, &write_lock_level);
2700 			goto done;
2701 		}
2702 	}
2703 	ret = 1;
2704 done:
2705 	/*
2706 	 * we don't really know what they plan on doing with the path
2707 	 * from here on, so for now just mark it as blocking
2708 	 */
2709 	if (!p->leave_spinning)
2710 		btrfs_set_path_blocking(p);
2711 	if (ret < 0)
2712 		btrfs_release_path(p);
2713 	return ret;
2714 }
2715 
2716 /*
2717  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2718  * current state of the tree together with the operations recorded in the tree
2719  * modification log to search for the key in a previous version of this tree, as
2720  * denoted by the time_seq parameter.
2721  *
2722  * Naturally, there is no support for insert, delete or cow operations.
2723  *
2724  * The resulting path and return value will be set up as if we called
2725  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2726  */
2727 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2728 			  struct btrfs_path *p, u64 time_seq)
2729 {
2730 	struct extent_buffer *b;
2731 	int slot;
2732 	int ret;
2733 	int err;
2734 	int level;
2735 	int lowest_unlock = 1;
2736 	u8 lowest_level = 0;
2737 
2738 	lowest_level = p->lowest_level;
2739 	WARN_ON(p->nodes[0] != NULL);
2740 
2741 	if (p->search_commit_root) {
2742 		BUG_ON(time_seq);
2743 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2744 	}
2745 
2746 again:
2747 	b = get_old_root(root, time_seq);
2748 	level = btrfs_header_level(b);
2749 	p->locks[level] = BTRFS_READ_LOCK;
2750 
2751 	while (b) {
2752 		level = btrfs_header_level(b);
2753 		p->nodes[level] = b;
2754 		btrfs_clear_path_blocking(p, NULL, 0);
2755 
2756 		/*
2757 		 * we have a lock on b and as long as we aren't changing
2758 		 * the tree, there is no way to for the items in b to change.
2759 		 * It is safe to drop the lock on our parent before we
2760 		 * go through the expensive btree search on b.
2761 		 */
2762 		btrfs_unlock_up_safe(p, level + 1);
2763 
2764 		ret = bin_search(b, key, level, &slot);
2765 
2766 		if (level != 0) {
2767 			int dec = 0;
2768 			if (ret && slot > 0) {
2769 				dec = 1;
2770 				slot -= 1;
2771 			}
2772 			p->slots[level] = slot;
2773 			unlock_up(p, level, lowest_unlock, 0, NULL);
2774 
2775 			if (level == lowest_level) {
2776 				if (dec)
2777 					p->slots[level]++;
2778 				goto done;
2779 			}
2780 
2781 			err = read_block_for_search(NULL, root, p, &b, level,
2782 						    slot, key, time_seq);
2783 			if (err == -EAGAIN)
2784 				goto again;
2785 			if (err) {
2786 				ret = err;
2787 				goto done;
2788 			}
2789 
2790 			level = btrfs_header_level(b);
2791 			err = btrfs_try_tree_read_lock(b);
2792 			if (!err) {
2793 				btrfs_set_path_blocking(p);
2794 				btrfs_tree_read_lock(b);
2795 				btrfs_clear_path_blocking(p, b,
2796 							  BTRFS_READ_LOCK);
2797 			}
2798 			p->locks[level] = BTRFS_READ_LOCK;
2799 			p->nodes[level] = b;
2800 			b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2801 			if (b != p->nodes[level]) {
2802 				btrfs_tree_unlock_rw(p->nodes[level],
2803 						     p->locks[level]);
2804 				p->locks[level] = 0;
2805 				p->nodes[level] = b;
2806 			}
2807 		} else {
2808 			p->slots[level] = slot;
2809 			unlock_up(p, level, lowest_unlock, 0, NULL);
2810 			goto done;
2811 		}
2812 	}
2813 	ret = 1;
2814 done:
2815 	if (!p->leave_spinning)
2816 		btrfs_set_path_blocking(p);
2817 	if (ret < 0)
2818 		btrfs_release_path(p);
2819 
2820 	return ret;
2821 }
2822 
2823 /*
2824  * helper to use instead of search slot if no exact match is needed but
2825  * instead the next or previous item should be returned.
2826  * When find_higher is true, the next higher item is returned, the next lower
2827  * otherwise.
2828  * When return_any and find_higher are both true, and no higher item is found,
2829  * return the next lower instead.
2830  * When return_any is true and find_higher is false, and no lower item is found,
2831  * return the next higher instead.
2832  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2833  * < 0 on error
2834  */
2835 int btrfs_search_slot_for_read(struct btrfs_root *root,
2836 			       struct btrfs_key *key, struct btrfs_path *p,
2837 			       int find_higher, int return_any)
2838 {
2839 	int ret;
2840 	struct extent_buffer *leaf;
2841 
2842 again:
2843 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2844 	if (ret <= 0)
2845 		return ret;
2846 	/*
2847 	 * a return value of 1 means the path is at the position where the
2848 	 * item should be inserted. Normally this is the next bigger item,
2849 	 * but in case the previous item is the last in a leaf, path points
2850 	 * to the first free slot in the previous leaf, i.e. at an invalid
2851 	 * item.
2852 	 */
2853 	leaf = p->nodes[0];
2854 
2855 	if (find_higher) {
2856 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2857 			ret = btrfs_next_leaf(root, p);
2858 			if (ret <= 0)
2859 				return ret;
2860 			if (!return_any)
2861 				return 1;
2862 			/*
2863 			 * no higher item found, return the next
2864 			 * lower instead
2865 			 */
2866 			return_any = 0;
2867 			find_higher = 0;
2868 			btrfs_release_path(p);
2869 			goto again;
2870 		}
2871 	} else {
2872 		if (p->slots[0] == 0) {
2873 			ret = btrfs_prev_leaf(root, p);
2874 			if (ret < 0)
2875 				return ret;
2876 			if (!ret) {
2877 				p->slots[0] = btrfs_header_nritems(leaf) - 1;
2878 				return 0;
2879 			}
2880 			if (!return_any)
2881 				return 1;
2882 			/*
2883 			 * no lower item found, return the next
2884 			 * higher instead
2885 			 */
2886 			return_any = 0;
2887 			find_higher = 1;
2888 			btrfs_release_path(p);
2889 			goto again;
2890 		} else {
2891 			--p->slots[0];
2892 		}
2893 	}
2894 	return 0;
2895 }
2896 
2897 /*
2898  * adjust the pointers going up the tree, starting at level
2899  * making sure the right key of each node is points to 'key'.
2900  * This is used after shifting pointers to the left, so it stops
2901  * fixing up pointers when a given leaf/node is not in slot 0 of the
2902  * higher levels
2903  *
2904  */
2905 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2906 			   struct btrfs_root *root, struct btrfs_path *path,
2907 			   struct btrfs_disk_key *key, int level)
2908 {
2909 	int i;
2910 	struct extent_buffer *t;
2911 
2912 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2913 		int tslot = path->slots[i];
2914 		if (!path->nodes[i])
2915 			break;
2916 		t = path->nodes[i];
2917 		tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2918 		btrfs_set_node_key(t, key, tslot);
2919 		btrfs_mark_buffer_dirty(path->nodes[i]);
2920 		if (tslot != 0)
2921 			break;
2922 	}
2923 }
2924 
2925 /*
2926  * update item key.
2927  *
2928  * This function isn't completely safe. It's the caller's responsibility
2929  * that the new key won't break the order
2930  */
2931 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2932 			     struct btrfs_root *root, struct btrfs_path *path,
2933 			     struct btrfs_key *new_key)
2934 {
2935 	struct btrfs_disk_key disk_key;
2936 	struct extent_buffer *eb;
2937 	int slot;
2938 
2939 	eb = path->nodes[0];
2940 	slot = path->slots[0];
2941 	if (slot > 0) {
2942 		btrfs_item_key(eb, &disk_key, slot - 1);
2943 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2944 	}
2945 	if (slot < btrfs_header_nritems(eb) - 1) {
2946 		btrfs_item_key(eb, &disk_key, slot + 1);
2947 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2948 	}
2949 
2950 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2951 	btrfs_set_item_key(eb, &disk_key, slot);
2952 	btrfs_mark_buffer_dirty(eb);
2953 	if (slot == 0)
2954 		fixup_low_keys(trans, root, path, &disk_key, 1);
2955 }
2956 
2957 /*
2958  * try to push data from one node into the next node left in the
2959  * tree.
2960  *
2961  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2962  * error, and > 0 if there was no room in the left hand block.
2963  */
2964 static int push_node_left(struct btrfs_trans_handle *trans,
2965 			  struct btrfs_root *root, struct extent_buffer *dst,
2966 			  struct extent_buffer *src, int empty)
2967 {
2968 	int push_items = 0;
2969 	int src_nritems;
2970 	int dst_nritems;
2971 	int ret = 0;
2972 
2973 	src_nritems = btrfs_header_nritems(src);
2974 	dst_nritems = btrfs_header_nritems(dst);
2975 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2976 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2977 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2978 
2979 	if (!empty && src_nritems <= 8)
2980 		return 1;
2981 
2982 	if (push_items <= 0)
2983 		return 1;
2984 
2985 	if (empty) {
2986 		push_items = min(src_nritems, push_items);
2987 		if (push_items < src_nritems) {
2988 			/* leave at least 8 pointers in the node if
2989 			 * we aren't going to empty it
2990 			 */
2991 			if (src_nritems - push_items < 8) {
2992 				if (push_items <= 8)
2993 					return 1;
2994 				push_items -= 8;
2995 			}
2996 		}
2997 	} else
2998 		push_items = min(src_nritems - 8, push_items);
2999 
3000 	tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3001 			     push_items, 1);
3002 	copy_extent_buffer(dst, src,
3003 			   btrfs_node_key_ptr_offset(dst_nritems),
3004 			   btrfs_node_key_ptr_offset(0),
3005 			   push_items * sizeof(struct btrfs_key_ptr));
3006 
3007 	if (push_items < src_nritems) {
3008 		/*
3009 		 * don't call tree_mod_log_eb_move here, key removal was already
3010 		 * fully logged by tree_mod_log_eb_copy above.
3011 		 */
3012 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3013 				      btrfs_node_key_ptr_offset(push_items),
3014 				      (src_nritems - push_items) *
3015 				      sizeof(struct btrfs_key_ptr));
3016 	}
3017 	btrfs_set_header_nritems(src, src_nritems - push_items);
3018 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3019 	btrfs_mark_buffer_dirty(src);
3020 	btrfs_mark_buffer_dirty(dst);
3021 
3022 	return ret;
3023 }
3024 
3025 /*
3026  * try to push data from one node into the next node right in the
3027  * tree.
3028  *
3029  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3030  * error, and > 0 if there was no room in the right hand block.
3031  *
3032  * this will  only push up to 1/2 the contents of the left node over
3033  */
3034 static int balance_node_right(struct btrfs_trans_handle *trans,
3035 			      struct btrfs_root *root,
3036 			      struct extent_buffer *dst,
3037 			      struct extent_buffer *src)
3038 {
3039 	int push_items = 0;
3040 	int max_push;
3041 	int src_nritems;
3042 	int dst_nritems;
3043 	int ret = 0;
3044 
3045 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3046 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3047 
3048 	src_nritems = btrfs_header_nritems(src);
3049 	dst_nritems = btrfs_header_nritems(dst);
3050 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3051 	if (push_items <= 0)
3052 		return 1;
3053 
3054 	if (src_nritems < 4)
3055 		return 1;
3056 
3057 	max_push = src_nritems / 2 + 1;
3058 	/* don't try to empty the node */
3059 	if (max_push >= src_nritems)
3060 		return 1;
3061 
3062 	if (max_push < push_items)
3063 		push_items = max_push;
3064 
3065 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3066 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3067 				      btrfs_node_key_ptr_offset(0),
3068 				      (dst_nritems) *
3069 				      sizeof(struct btrfs_key_ptr));
3070 
3071 	tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3072 			     src_nritems - push_items, push_items, 1);
3073 	copy_extent_buffer(dst, src,
3074 			   btrfs_node_key_ptr_offset(0),
3075 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3076 			   push_items * sizeof(struct btrfs_key_ptr));
3077 
3078 	btrfs_set_header_nritems(src, src_nritems - push_items);
3079 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3080 
3081 	btrfs_mark_buffer_dirty(src);
3082 	btrfs_mark_buffer_dirty(dst);
3083 
3084 	return ret;
3085 }
3086 
3087 /*
3088  * helper function to insert a new root level in the tree.
3089  * A new node is allocated, and a single item is inserted to
3090  * point to the existing root
3091  *
3092  * returns zero on success or < 0 on failure.
3093  */
3094 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3095 			   struct btrfs_root *root,
3096 			   struct btrfs_path *path, int level)
3097 {
3098 	u64 lower_gen;
3099 	struct extent_buffer *lower;
3100 	struct extent_buffer *c;
3101 	struct extent_buffer *old;
3102 	struct btrfs_disk_key lower_key;
3103 
3104 	BUG_ON(path->nodes[level]);
3105 	BUG_ON(path->nodes[level-1] != root->node);
3106 
3107 	lower = path->nodes[level-1];
3108 	if (level == 1)
3109 		btrfs_item_key(lower, &lower_key, 0);
3110 	else
3111 		btrfs_node_key(lower, &lower_key, 0);
3112 
3113 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3114 				   root->root_key.objectid, &lower_key,
3115 				   level, root->node->start, 0);
3116 	if (IS_ERR(c))
3117 		return PTR_ERR(c);
3118 
3119 	root_add_used(root, root->nodesize);
3120 
3121 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3122 	btrfs_set_header_nritems(c, 1);
3123 	btrfs_set_header_level(c, level);
3124 	btrfs_set_header_bytenr(c, c->start);
3125 	btrfs_set_header_generation(c, trans->transid);
3126 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3127 	btrfs_set_header_owner(c, root->root_key.objectid);
3128 
3129 	write_extent_buffer(c, root->fs_info->fsid,
3130 			    (unsigned long)btrfs_header_fsid(c),
3131 			    BTRFS_FSID_SIZE);
3132 
3133 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3134 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
3135 			    BTRFS_UUID_SIZE);
3136 
3137 	btrfs_set_node_key(c, &lower_key, 0);
3138 	btrfs_set_node_blockptr(c, 0, lower->start);
3139 	lower_gen = btrfs_header_generation(lower);
3140 	WARN_ON(lower_gen != trans->transid);
3141 
3142 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3143 
3144 	btrfs_mark_buffer_dirty(c);
3145 
3146 	old = root->node;
3147 	tree_mod_log_set_root_pointer(root, c);
3148 	rcu_assign_pointer(root->node, c);
3149 
3150 	/* the super has an extra ref to root->node */
3151 	free_extent_buffer(old);
3152 
3153 	add_root_to_dirty_list(root);
3154 	extent_buffer_get(c);
3155 	path->nodes[level] = c;
3156 	path->locks[level] = BTRFS_WRITE_LOCK;
3157 	path->slots[level] = 0;
3158 	return 0;
3159 }
3160 
3161 /*
3162  * worker function to insert a single pointer in a node.
3163  * the node should have enough room for the pointer already
3164  *
3165  * slot and level indicate where you want the key to go, and
3166  * blocknr is the block the key points to.
3167  */
3168 static void insert_ptr(struct btrfs_trans_handle *trans,
3169 		       struct btrfs_root *root, struct btrfs_path *path,
3170 		       struct btrfs_disk_key *key, u64 bytenr,
3171 		       int slot, int level)
3172 {
3173 	struct extent_buffer *lower;
3174 	int nritems;
3175 	int ret;
3176 
3177 	BUG_ON(!path->nodes[level]);
3178 	btrfs_assert_tree_locked(path->nodes[level]);
3179 	lower = path->nodes[level];
3180 	nritems = btrfs_header_nritems(lower);
3181 	BUG_ON(slot > nritems);
3182 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3183 	if (slot != nritems) {
3184 		if (level)
3185 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3186 					     slot, nritems - slot);
3187 		memmove_extent_buffer(lower,
3188 			      btrfs_node_key_ptr_offset(slot + 1),
3189 			      btrfs_node_key_ptr_offset(slot),
3190 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3191 	}
3192 	if (level) {
3193 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3194 					      MOD_LOG_KEY_ADD);
3195 		BUG_ON(ret < 0);
3196 	}
3197 	btrfs_set_node_key(lower, key, slot);
3198 	btrfs_set_node_blockptr(lower, slot, bytenr);
3199 	WARN_ON(trans->transid == 0);
3200 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3201 	btrfs_set_header_nritems(lower, nritems + 1);
3202 	btrfs_mark_buffer_dirty(lower);
3203 }
3204 
3205 /*
3206  * split the node at the specified level in path in two.
3207  * The path is corrected to point to the appropriate node after the split
3208  *
3209  * Before splitting this tries to make some room in the node by pushing
3210  * left and right, if either one works, it returns right away.
3211  *
3212  * returns 0 on success and < 0 on failure
3213  */
3214 static noinline int split_node(struct btrfs_trans_handle *trans,
3215 			       struct btrfs_root *root,
3216 			       struct btrfs_path *path, int level)
3217 {
3218 	struct extent_buffer *c;
3219 	struct extent_buffer *split;
3220 	struct btrfs_disk_key disk_key;
3221 	int mid;
3222 	int ret;
3223 	u32 c_nritems;
3224 	int tree_mod_log_removal = 1;
3225 
3226 	c = path->nodes[level];
3227 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3228 	if (c == root->node) {
3229 		/* trying to split the root, lets make a new one */
3230 		ret = insert_new_root(trans, root, path, level + 1);
3231 		/*
3232 		 * removal of root nodes has been logged by
3233 		 * tree_mod_log_set_root_pointer due to locking
3234 		 */
3235 		tree_mod_log_removal = 0;
3236 		if (ret)
3237 			return ret;
3238 	} else {
3239 		ret = push_nodes_for_insert(trans, root, path, level);
3240 		c = path->nodes[level];
3241 		if (!ret && btrfs_header_nritems(c) <
3242 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3243 			return 0;
3244 		if (ret < 0)
3245 			return ret;
3246 	}
3247 
3248 	c_nritems = btrfs_header_nritems(c);
3249 	mid = (c_nritems + 1) / 2;
3250 	btrfs_node_key(c, &disk_key, mid);
3251 
3252 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3253 					root->root_key.objectid,
3254 					&disk_key, level, c->start, 0);
3255 	if (IS_ERR(split))
3256 		return PTR_ERR(split);
3257 
3258 	root_add_used(root, root->nodesize);
3259 
3260 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3261 	btrfs_set_header_level(split, btrfs_header_level(c));
3262 	btrfs_set_header_bytenr(split, split->start);
3263 	btrfs_set_header_generation(split, trans->transid);
3264 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3265 	btrfs_set_header_owner(split, root->root_key.objectid);
3266 	write_extent_buffer(split, root->fs_info->fsid,
3267 			    (unsigned long)btrfs_header_fsid(split),
3268 			    BTRFS_FSID_SIZE);
3269 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3270 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
3271 			    BTRFS_UUID_SIZE);
3272 
3273 	tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid,
3274 			     tree_mod_log_removal);
3275 	copy_extent_buffer(split, c,
3276 			   btrfs_node_key_ptr_offset(0),
3277 			   btrfs_node_key_ptr_offset(mid),
3278 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3279 	btrfs_set_header_nritems(split, c_nritems - mid);
3280 	btrfs_set_header_nritems(c, mid);
3281 	ret = 0;
3282 
3283 	btrfs_mark_buffer_dirty(c);
3284 	btrfs_mark_buffer_dirty(split);
3285 
3286 	insert_ptr(trans, root, path, &disk_key, split->start,
3287 		   path->slots[level + 1] + 1, level + 1);
3288 
3289 	if (path->slots[level] >= mid) {
3290 		path->slots[level] -= mid;
3291 		btrfs_tree_unlock(c);
3292 		free_extent_buffer(c);
3293 		path->nodes[level] = split;
3294 		path->slots[level + 1] += 1;
3295 	} else {
3296 		btrfs_tree_unlock(split);
3297 		free_extent_buffer(split);
3298 	}
3299 	return ret;
3300 }
3301 
3302 /*
3303  * how many bytes are required to store the items in a leaf.  start
3304  * and nr indicate which items in the leaf to check.  This totals up the
3305  * space used both by the item structs and the item data
3306  */
3307 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3308 {
3309 	struct btrfs_item *start_item;
3310 	struct btrfs_item *end_item;
3311 	struct btrfs_map_token token;
3312 	int data_len;
3313 	int nritems = btrfs_header_nritems(l);
3314 	int end = min(nritems, start + nr) - 1;
3315 
3316 	if (!nr)
3317 		return 0;
3318 	btrfs_init_map_token(&token);
3319 	start_item = btrfs_item_nr(l, start);
3320 	end_item = btrfs_item_nr(l, end);
3321 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3322 		btrfs_token_item_size(l, start_item, &token);
3323 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3324 	data_len += sizeof(struct btrfs_item) * nr;
3325 	WARN_ON(data_len < 0);
3326 	return data_len;
3327 }
3328 
3329 /*
3330  * The space between the end of the leaf items and
3331  * the start of the leaf data.  IOW, how much room
3332  * the leaf has left for both items and data
3333  */
3334 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3335 				   struct extent_buffer *leaf)
3336 {
3337 	int nritems = btrfs_header_nritems(leaf);
3338 	int ret;
3339 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3340 	if (ret < 0) {
3341 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3342 		       "used %d nritems %d\n",
3343 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3344 		       leaf_space_used(leaf, 0, nritems), nritems);
3345 	}
3346 	return ret;
3347 }
3348 
3349 /*
3350  * min slot controls the lowest index we're willing to push to the
3351  * right.  We'll push up to and including min_slot, but no lower
3352  */
3353 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3354 				      struct btrfs_root *root,
3355 				      struct btrfs_path *path,
3356 				      int data_size, int empty,
3357 				      struct extent_buffer *right,
3358 				      int free_space, u32 left_nritems,
3359 				      u32 min_slot)
3360 {
3361 	struct extent_buffer *left = path->nodes[0];
3362 	struct extent_buffer *upper = path->nodes[1];
3363 	struct btrfs_map_token token;
3364 	struct btrfs_disk_key disk_key;
3365 	int slot;
3366 	u32 i;
3367 	int push_space = 0;
3368 	int push_items = 0;
3369 	struct btrfs_item *item;
3370 	u32 nr;
3371 	u32 right_nritems;
3372 	u32 data_end;
3373 	u32 this_item_size;
3374 
3375 	btrfs_init_map_token(&token);
3376 
3377 	if (empty)
3378 		nr = 0;
3379 	else
3380 		nr = max_t(u32, 1, min_slot);
3381 
3382 	if (path->slots[0] >= left_nritems)
3383 		push_space += data_size;
3384 
3385 	slot = path->slots[1];
3386 	i = left_nritems - 1;
3387 	while (i >= nr) {
3388 		item = btrfs_item_nr(left, i);
3389 
3390 		if (!empty && push_items > 0) {
3391 			if (path->slots[0] > i)
3392 				break;
3393 			if (path->slots[0] == i) {
3394 				int space = btrfs_leaf_free_space(root, left);
3395 				if (space + push_space * 2 > free_space)
3396 					break;
3397 			}
3398 		}
3399 
3400 		if (path->slots[0] == i)
3401 			push_space += data_size;
3402 
3403 		this_item_size = btrfs_item_size(left, item);
3404 		if (this_item_size + sizeof(*item) + push_space > free_space)
3405 			break;
3406 
3407 		push_items++;
3408 		push_space += this_item_size + sizeof(*item);
3409 		if (i == 0)
3410 			break;
3411 		i--;
3412 	}
3413 
3414 	if (push_items == 0)
3415 		goto out_unlock;
3416 
3417 	WARN_ON(!empty && push_items == left_nritems);
3418 
3419 	/* push left to right */
3420 	right_nritems = btrfs_header_nritems(right);
3421 
3422 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3423 	push_space -= leaf_data_end(root, left);
3424 
3425 	/* make room in the right data area */
3426 	data_end = leaf_data_end(root, right);
3427 	memmove_extent_buffer(right,
3428 			      btrfs_leaf_data(right) + data_end - push_space,
3429 			      btrfs_leaf_data(right) + data_end,
3430 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3431 
3432 	/* copy from the left data area */
3433 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3434 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3435 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3436 		     push_space);
3437 
3438 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3439 			      btrfs_item_nr_offset(0),
3440 			      right_nritems * sizeof(struct btrfs_item));
3441 
3442 	/* copy the items from left to right */
3443 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3444 		   btrfs_item_nr_offset(left_nritems - push_items),
3445 		   push_items * sizeof(struct btrfs_item));
3446 
3447 	/* update the item pointers */
3448 	right_nritems += push_items;
3449 	btrfs_set_header_nritems(right, right_nritems);
3450 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3451 	for (i = 0; i < right_nritems; i++) {
3452 		item = btrfs_item_nr(right, i);
3453 		push_space -= btrfs_token_item_size(right, item, &token);
3454 		btrfs_set_token_item_offset(right, item, push_space, &token);
3455 	}
3456 
3457 	left_nritems -= push_items;
3458 	btrfs_set_header_nritems(left, left_nritems);
3459 
3460 	if (left_nritems)
3461 		btrfs_mark_buffer_dirty(left);
3462 	else
3463 		clean_tree_block(trans, root, left);
3464 
3465 	btrfs_mark_buffer_dirty(right);
3466 
3467 	btrfs_item_key(right, &disk_key, 0);
3468 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3469 	btrfs_mark_buffer_dirty(upper);
3470 
3471 	/* then fixup the leaf pointer in the path */
3472 	if (path->slots[0] >= left_nritems) {
3473 		path->slots[0] -= left_nritems;
3474 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3475 			clean_tree_block(trans, root, path->nodes[0]);
3476 		btrfs_tree_unlock(path->nodes[0]);
3477 		free_extent_buffer(path->nodes[0]);
3478 		path->nodes[0] = right;
3479 		path->slots[1] += 1;
3480 	} else {
3481 		btrfs_tree_unlock(right);
3482 		free_extent_buffer(right);
3483 	}
3484 	return 0;
3485 
3486 out_unlock:
3487 	btrfs_tree_unlock(right);
3488 	free_extent_buffer(right);
3489 	return 1;
3490 }
3491 
3492 /*
3493  * push some data in the path leaf to the right, trying to free up at
3494  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3495  *
3496  * returns 1 if the push failed because the other node didn't have enough
3497  * room, 0 if everything worked out and < 0 if there were major errors.
3498  *
3499  * this will push starting from min_slot to the end of the leaf.  It won't
3500  * push any slot lower than min_slot
3501  */
3502 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3503 			   *root, struct btrfs_path *path,
3504 			   int min_data_size, int data_size,
3505 			   int empty, u32 min_slot)
3506 {
3507 	struct extent_buffer *left = path->nodes[0];
3508 	struct extent_buffer *right;
3509 	struct extent_buffer *upper;
3510 	int slot;
3511 	int free_space;
3512 	u32 left_nritems;
3513 	int ret;
3514 
3515 	if (!path->nodes[1])
3516 		return 1;
3517 
3518 	slot = path->slots[1];
3519 	upper = path->nodes[1];
3520 	if (slot >= btrfs_header_nritems(upper) - 1)
3521 		return 1;
3522 
3523 	btrfs_assert_tree_locked(path->nodes[1]);
3524 
3525 	right = read_node_slot(root, upper, slot + 1);
3526 	if (right == NULL)
3527 		return 1;
3528 
3529 	btrfs_tree_lock(right);
3530 	btrfs_set_lock_blocking(right);
3531 
3532 	free_space = btrfs_leaf_free_space(root, right);
3533 	if (free_space < data_size)
3534 		goto out_unlock;
3535 
3536 	/* cow and double check */
3537 	ret = btrfs_cow_block(trans, root, right, upper,
3538 			      slot + 1, &right);
3539 	if (ret)
3540 		goto out_unlock;
3541 
3542 	free_space = btrfs_leaf_free_space(root, right);
3543 	if (free_space < data_size)
3544 		goto out_unlock;
3545 
3546 	left_nritems = btrfs_header_nritems(left);
3547 	if (left_nritems == 0)
3548 		goto out_unlock;
3549 
3550 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3551 				right, free_space, left_nritems, min_slot);
3552 out_unlock:
3553 	btrfs_tree_unlock(right);
3554 	free_extent_buffer(right);
3555 	return 1;
3556 }
3557 
3558 /*
3559  * push some data in the path leaf to the left, trying to free up at
3560  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3561  *
3562  * max_slot can put a limit on how far into the leaf we'll push items.  The
3563  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3564  * items
3565  */
3566 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3567 				     struct btrfs_root *root,
3568 				     struct btrfs_path *path, int data_size,
3569 				     int empty, struct extent_buffer *left,
3570 				     int free_space, u32 right_nritems,
3571 				     u32 max_slot)
3572 {
3573 	struct btrfs_disk_key disk_key;
3574 	struct extent_buffer *right = path->nodes[0];
3575 	int i;
3576 	int push_space = 0;
3577 	int push_items = 0;
3578 	struct btrfs_item *item;
3579 	u32 old_left_nritems;
3580 	u32 nr;
3581 	int ret = 0;
3582 	u32 this_item_size;
3583 	u32 old_left_item_size;
3584 	struct btrfs_map_token token;
3585 
3586 	btrfs_init_map_token(&token);
3587 
3588 	if (empty)
3589 		nr = min(right_nritems, max_slot);
3590 	else
3591 		nr = min(right_nritems - 1, max_slot);
3592 
3593 	for (i = 0; i < nr; i++) {
3594 		item = btrfs_item_nr(right, i);
3595 
3596 		if (!empty && push_items > 0) {
3597 			if (path->slots[0] < i)
3598 				break;
3599 			if (path->slots[0] == i) {
3600 				int space = btrfs_leaf_free_space(root, right);
3601 				if (space + push_space * 2 > free_space)
3602 					break;
3603 			}
3604 		}
3605 
3606 		if (path->slots[0] == i)
3607 			push_space += data_size;
3608 
3609 		this_item_size = btrfs_item_size(right, item);
3610 		if (this_item_size + sizeof(*item) + push_space > free_space)
3611 			break;
3612 
3613 		push_items++;
3614 		push_space += this_item_size + sizeof(*item);
3615 	}
3616 
3617 	if (push_items == 0) {
3618 		ret = 1;
3619 		goto out;
3620 	}
3621 	if (!empty && push_items == btrfs_header_nritems(right))
3622 		WARN_ON(1);
3623 
3624 	/* push data from right to left */
3625 	copy_extent_buffer(left, right,
3626 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3627 			   btrfs_item_nr_offset(0),
3628 			   push_items * sizeof(struct btrfs_item));
3629 
3630 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3631 		     btrfs_item_offset_nr(right, push_items - 1);
3632 
3633 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3634 		     leaf_data_end(root, left) - push_space,
3635 		     btrfs_leaf_data(right) +
3636 		     btrfs_item_offset_nr(right, push_items - 1),
3637 		     push_space);
3638 	old_left_nritems = btrfs_header_nritems(left);
3639 	BUG_ON(old_left_nritems <= 0);
3640 
3641 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3642 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3643 		u32 ioff;
3644 
3645 		item = btrfs_item_nr(left, i);
3646 
3647 		ioff = btrfs_token_item_offset(left, item, &token);
3648 		btrfs_set_token_item_offset(left, item,
3649 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3650 		      &token);
3651 	}
3652 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3653 
3654 	/* fixup right node */
3655 	if (push_items > right_nritems)
3656 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3657 		       right_nritems);
3658 
3659 	if (push_items < right_nritems) {
3660 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3661 						  leaf_data_end(root, right);
3662 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3663 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3664 				      btrfs_leaf_data(right) +
3665 				      leaf_data_end(root, right), push_space);
3666 
3667 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3668 			      btrfs_item_nr_offset(push_items),
3669 			     (btrfs_header_nritems(right) - push_items) *
3670 			     sizeof(struct btrfs_item));
3671 	}
3672 	right_nritems -= push_items;
3673 	btrfs_set_header_nritems(right, right_nritems);
3674 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3675 	for (i = 0; i < right_nritems; i++) {
3676 		item = btrfs_item_nr(right, i);
3677 
3678 		push_space = push_space - btrfs_token_item_size(right,
3679 								item, &token);
3680 		btrfs_set_token_item_offset(right, item, push_space, &token);
3681 	}
3682 
3683 	btrfs_mark_buffer_dirty(left);
3684 	if (right_nritems)
3685 		btrfs_mark_buffer_dirty(right);
3686 	else
3687 		clean_tree_block(trans, root, right);
3688 
3689 	btrfs_item_key(right, &disk_key, 0);
3690 	fixup_low_keys(trans, root, path, &disk_key, 1);
3691 
3692 	/* then fixup the leaf pointer in the path */
3693 	if (path->slots[0] < push_items) {
3694 		path->slots[0] += old_left_nritems;
3695 		btrfs_tree_unlock(path->nodes[0]);
3696 		free_extent_buffer(path->nodes[0]);
3697 		path->nodes[0] = left;
3698 		path->slots[1] -= 1;
3699 	} else {
3700 		btrfs_tree_unlock(left);
3701 		free_extent_buffer(left);
3702 		path->slots[0] -= push_items;
3703 	}
3704 	BUG_ON(path->slots[0] < 0);
3705 	return ret;
3706 out:
3707 	btrfs_tree_unlock(left);
3708 	free_extent_buffer(left);
3709 	return ret;
3710 }
3711 
3712 /*
3713  * push some data in the path leaf to the left, trying to free up at
3714  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3715  *
3716  * max_slot can put a limit on how far into the leaf we'll push items.  The
3717  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3718  * items
3719  */
3720 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3721 			  *root, struct btrfs_path *path, int min_data_size,
3722 			  int data_size, int empty, u32 max_slot)
3723 {
3724 	struct extent_buffer *right = path->nodes[0];
3725 	struct extent_buffer *left;
3726 	int slot;
3727 	int free_space;
3728 	u32 right_nritems;
3729 	int ret = 0;
3730 
3731 	slot = path->slots[1];
3732 	if (slot == 0)
3733 		return 1;
3734 	if (!path->nodes[1])
3735 		return 1;
3736 
3737 	right_nritems = btrfs_header_nritems(right);
3738 	if (right_nritems == 0)
3739 		return 1;
3740 
3741 	btrfs_assert_tree_locked(path->nodes[1]);
3742 
3743 	left = read_node_slot(root, path->nodes[1], slot - 1);
3744 	if (left == NULL)
3745 		return 1;
3746 
3747 	btrfs_tree_lock(left);
3748 	btrfs_set_lock_blocking(left);
3749 
3750 	free_space = btrfs_leaf_free_space(root, left);
3751 	if (free_space < data_size) {
3752 		ret = 1;
3753 		goto out;
3754 	}
3755 
3756 	/* cow and double check */
3757 	ret = btrfs_cow_block(trans, root, left,
3758 			      path->nodes[1], slot - 1, &left);
3759 	if (ret) {
3760 		/* we hit -ENOSPC, but it isn't fatal here */
3761 		if (ret == -ENOSPC)
3762 			ret = 1;
3763 		goto out;
3764 	}
3765 
3766 	free_space = btrfs_leaf_free_space(root, left);
3767 	if (free_space < data_size) {
3768 		ret = 1;
3769 		goto out;
3770 	}
3771 
3772 	return __push_leaf_left(trans, root, path, min_data_size,
3773 			       empty, left, free_space, right_nritems,
3774 			       max_slot);
3775 out:
3776 	btrfs_tree_unlock(left);
3777 	free_extent_buffer(left);
3778 	return ret;
3779 }
3780 
3781 /*
3782  * split the path's leaf in two, making sure there is at least data_size
3783  * available for the resulting leaf level of the path.
3784  */
3785 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3786 				    struct btrfs_root *root,
3787 				    struct btrfs_path *path,
3788 				    struct extent_buffer *l,
3789 				    struct extent_buffer *right,
3790 				    int slot, int mid, int nritems)
3791 {
3792 	int data_copy_size;
3793 	int rt_data_off;
3794 	int i;
3795 	struct btrfs_disk_key disk_key;
3796 	struct btrfs_map_token token;
3797 
3798 	btrfs_init_map_token(&token);
3799 
3800 	nritems = nritems - mid;
3801 	btrfs_set_header_nritems(right, nritems);
3802 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3803 
3804 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3805 			   btrfs_item_nr_offset(mid),
3806 			   nritems * sizeof(struct btrfs_item));
3807 
3808 	copy_extent_buffer(right, l,
3809 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3810 		     data_copy_size, btrfs_leaf_data(l) +
3811 		     leaf_data_end(root, l), data_copy_size);
3812 
3813 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3814 		      btrfs_item_end_nr(l, mid);
3815 
3816 	for (i = 0; i < nritems; i++) {
3817 		struct btrfs_item *item = btrfs_item_nr(right, i);
3818 		u32 ioff;
3819 
3820 		ioff = btrfs_token_item_offset(right, item, &token);
3821 		btrfs_set_token_item_offset(right, item,
3822 					    ioff + rt_data_off, &token);
3823 	}
3824 
3825 	btrfs_set_header_nritems(l, mid);
3826 	btrfs_item_key(right, &disk_key, 0);
3827 	insert_ptr(trans, root, path, &disk_key, right->start,
3828 		   path->slots[1] + 1, 1);
3829 
3830 	btrfs_mark_buffer_dirty(right);
3831 	btrfs_mark_buffer_dirty(l);
3832 	BUG_ON(path->slots[0] != slot);
3833 
3834 	if (mid <= slot) {
3835 		btrfs_tree_unlock(path->nodes[0]);
3836 		free_extent_buffer(path->nodes[0]);
3837 		path->nodes[0] = right;
3838 		path->slots[0] -= mid;
3839 		path->slots[1] += 1;
3840 	} else {
3841 		btrfs_tree_unlock(right);
3842 		free_extent_buffer(right);
3843 	}
3844 
3845 	BUG_ON(path->slots[0] < 0);
3846 }
3847 
3848 /*
3849  * double splits happen when we need to insert a big item in the middle
3850  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3851  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3852  *          A                 B                 C
3853  *
3854  * We avoid this by trying to push the items on either side of our target
3855  * into the adjacent leaves.  If all goes well we can avoid the double split
3856  * completely.
3857  */
3858 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3859 					  struct btrfs_root *root,
3860 					  struct btrfs_path *path,
3861 					  int data_size)
3862 {
3863 	int ret;
3864 	int progress = 0;
3865 	int slot;
3866 	u32 nritems;
3867 
3868 	slot = path->slots[0];
3869 
3870 	/*
3871 	 * try to push all the items after our slot into the
3872 	 * right leaf
3873 	 */
3874 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3875 	if (ret < 0)
3876 		return ret;
3877 
3878 	if (ret == 0)
3879 		progress++;
3880 
3881 	nritems = btrfs_header_nritems(path->nodes[0]);
3882 	/*
3883 	 * our goal is to get our slot at the start or end of a leaf.  If
3884 	 * we've done so we're done
3885 	 */
3886 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3887 		return 0;
3888 
3889 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3890 		return 0;
3891 
3892 	/* try to push all the items before our slot into the next leaf */
3893 	slot = path->slots[0];
3894 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3895 	if (ret < 0)
3896 		return ret;
3897 
3898 	if (ret == 0)
3899 		progress++;
3900 
3901 	if (progress)
3902 		return 0;
3903 	return 1;
3904 }
3905 
3906 /*
3907  * split the path's leaf in two, making sure there is at least data_size
3908  * available for the resulting leaf level of the path.
3909  *
3910  * returns 0 if all went well and < 0 on failure.
3911  */
3912 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3913 			       struct btrfs_root *root,
3914 			       struct btrfs_key *ins_key,
3915 			       struct btrfs_path *path, int data_size,
3916 			       int extend)
3917 {
3918 	struct btrfs_disk_key disk_key;
3919 	struct extent_buffer *l;
3920 	u32 nritems;
3921 	int mid;
3922 	int slot;
3923 	struct extent_buffer *right;
3924 	int ret = 0;
3925 	int wret;
3926 	int split;
3927 	int num_doubles = 0;
3928 	int tried_avoid_double = 0;
3929 
3930 	l = path->nodes[0];
3931 	slot = path->slots[0];
3932 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3933 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3934 		return -EOVERFLOW;
3935 
3936 	/* first try to make some room by pushing left and right */
3937 	if (data_size) {
3938 		wret = push_leaf_right(trans, root, path, data_size,
3939 				       data_size, 0, 0);
3940 		if (wret < 0)
3941 			return wret;
3942 		if (wret) {
3943 			wret = push_leaf_left(trans, root, path, data_size,
3944 					      data_size, 0, (u32)-1);
3945 			if (wret < 0)
3946 				return wret;
3947 		}
3948 		l = path->nodes[0];
3949 
3950 		/* did the pushes work? */
3951 		if (btrfs_leaf_free_space(root, l) >= data_size)
3952 			return 0;
3953 	}
3954 
3955 	if (!path->nodes[1]) {
3956 		ret = insert_new_root(trans, root, path, 1);
3957 		if (ret)
3958 			return ret;
3959 	}
3960 again:
3961 	split = 1;
3962 	l = path->nodes[0];
3963 	slot = path->slots[0];
3964 	nritems = btrfs_header_nritems(l);
3965 	mid = (nritems + 1) / 2;
3966 
3967 	if (mid <= slot) {
3968 		if (nritems == 1 ||
3969 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3970 			BTRFS_LEAF_DATA_SIZE(root)) {
3971 			if (slot >= nritems) {
3972 				split = 0;
3973 			} else {
3974 				mid = slot;
3975 				if (mid != nritems &&
3976 				    leaf_space_used(l, mid, nritems - mid) +
3977 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3978 					if (data_size && !tried_avoid_double)
3979 						goto push_for_double;
3980 					split = 2;
3981 				}
3982 			}
3983 		}
3984 	} else {
3985 		if (leaf_space_used(l, 0, mid) + data_size >
3986 			BTRFS_LEAF_DATA_SIZE(root)) {
3987 			if (!extend && data_size && slot == 0) {
3988 				split = 0;
3989 			} else if ((extend || !data_size) && slot == 0) {
3990 				mid = 1;
3991 			} else {
3992 				mid = slot;
3993 				if (mid != nritems &&
3994 				    leaf_space_used(l, mid, nritems - mid) +
3995 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3996 					if (data_size && !tried_avoid_double)
3997 						goto push_for_double;
3998 					split = 2 ;
3999 				}
4000 			}
4001 		}
4002 	}
4003 
4004 	if (split == 0)
4005 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4006 	else
4007 		btrfs_item_key(l, &disk_key, mid);
4008 
4009 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4010 					root->root_key.objectid,
4011 					&disk_key, 0, l->start, 0);
4012 	if (IS_ERR(right))
4013 		return PTR_ERR(right);
4014 
4015 	root_add_used(root, root->leafsize);
4016 
4017 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4018 	btrfs_set_header_bytenr(right, right->start);
4019 	btrfs_set_header_generation(right, trans->transid);
4020 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4021 	btrfs_set_header_owner(right, root->root_key.objectid);
4022 	btrfs_set_header_level(right, 0);
4023 	write_extent_buffer(right, root->fs_info->fsid,
4024 			    (unsigned long)btrfs_header_fsid(right),
4025 			    BTRFS_FSID_SIZE);
4026 
4027 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4028 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
4029 			    BTRFS_UUID_SIZE);
4030 
4031 	if (split == 0) {
4032 		if (mid <= slot) {
4033 			btrfs_set_header_nritems(right, 0);
4034 			insert_ptr(trans, root, path, &disk_key, right->start,
4035 				   path->slots[1] + 1, 1);
4036 			btrfs_tree_unlock(path->nodes[0]);
4037 			free_extent_buffer(path->nodes[0]);
4038 			path->nodes[0] = right;
4039 			path->slots[0] = 0;
4040 			path->slots[1] += 1;
4041 		} else {
4042 			btrfs_set_header_nritems(right, 0);
4043 			insert_ptr(trans, root, path, &disk_key, right->start,
4044 					  path->slots[1], 1);
4045 			btrfs_tree_unlock(path->nodes[0]);
4046 			free_extent_buffer(path->nodes[0]);
4047 			path->nodes[0] = right;
4048 			path->slots[0] = 0;
4049 			if (path->slots[1] == 0)
4050 				fixup_low_keys(trans, root, path,
4051 					       &disk_key, 1);
4052 		}
4053 		btrfs_mark_buffer_dirty(right);
4054 		return ret;
4055 	}
4056 
4057 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4058 
4059 	if (split == 2) {
4060 		BUG_ON(num_doubles != 0);
4061 		num_doubles++;
4062 		goto again;
4063 	}
4064 
4065 	return 0;
4066 
4067 push_for_double:
4068 	push_for_double_split(trans, root, path, data_size);
4069 	tried_avoid_double = 1;
4070 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4071 		return 0;
4072 	goto again;
4073 }
4074 
4075 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4076 					 struct btrfs_root *root,
4077 					 struct btrfs_path *path, int ins_len)
4078 {
4079 	struct btrfs_key key;
4080 	struct extent_buffer *leaf;
4081 	struct btrfs_file_extent_item *fi;
4082 	u64 extent_len = 0;
4083 	u32 item_size;
4084 	int ret;
4085 
4086 	leaf = path->nodes[0];
4087 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4088 
4089 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4090 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4091 
4092 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4093 		return 0;
4094 
4095 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4096 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4097 		fi = btrfs_item_ptr(leaf, path->slots[0],
4098 				    struct btrfs_file_extent_item);
4099 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4100 	}
4101 	btrfs_release_path(path);
4102 
4103 	path->keep_locks = 1;
4104 	path->search_for_split = 1;
4105 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4106 	path->search_for_split = 0;
4107 	if (ret < 0)
4108 		goto err;
4109 
4110 	ret = -EAGAIN;
4111 	leaf = path->nodes[0];
4112 	/* if our item isn't there or got smaller, return now */
4113 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4114 		goto err;
4115 
4116 	/* the leaf has  changed, it now has room.  return now */
4117 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4118 		goto err;
4119 
4120 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4121 		fi = btrfs_item_ptr(leaf, path->slots[0],
4122 				    struct btrfs_file_extent_item);
4123 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4124 			goto err;
4125 	}
4126 
4127 	btrfs_set_path_blocking(path);
4128 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4129 	if (ret)
4130 		goto err;
4131 
4132 	path->keep_locks = 0;
4133 	btrfs_unlock_up_safe(path, 1);
4134 	return 0;
4135 err:
4136 	path->keep_locks = 0;
4137 	return ret;
4138 }
4139 
4140 static noinline int split_item(struct btrfs_trans_handle *trans,
4141 			       struct btrfs_root *root,
4142 			       struct btrfs_path *path,
4143 			       struct btrfs_key *new_key,
4144 			       unsigned long split_offset)
4145 {
4146 	struct extent_buffer *leaf;
4147 	struct btrfs_item *item;
4148 	struct btrfs_item *new_item;
4149 	int slot;
4150 	char *buf;
4151 	u32 nritems;
4152 	u32 item_size;
4153 	u32 orig_offset;
4154 	struct btrfs_disk_key disk_key;
4155 
4156 	leaf = path->nodes[0];
4157 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4158 
4159 	btrfs_set_path_blocking(path);
4160 
4161 	item = btrfs_item_nr(leaf, path->slots[0]);
4162 	orig_offset = btrfs_item_offset(leaf, item);
4163 	item_size = btrfs_item_size(leaf, item);
4164 
4165 	buf = kmalloc(item_size, GFP_NOFS);
4166 	if (!buf)
4167 		return -ENOMEM;
4168 
4169 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4170 			    path->slots[0]), item_size);
4171 
4172 	slot = path->slots[0] + 1;
4173 	nritems = btrfs_header_nritems(leaf);
4174 	if (slot != nritems) {
4175 		/* shift the items */
4176 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4177 				btrfs_item_nr_offset(slot),
4178 				(nritems - slot) * sizeof(struct btrfs_item));
4179 	}
4180 
4181 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4182 	btrfs_set_item_key(leaf, &disk_key, slot);
4183 
4184 	new_item = btrfs_item_nr(leaf, slot);
4185 
4186 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4187 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4188 
4189 	btrfs_set_item_offset(leaf, item,
4190 			      orig_offset + item_size - split_offset);
4191 	btrfs_set_item_size(leaf, item, split_offset);
4192 
4193 	btrfs_set_header_nritems(leaf, nritems + 1);
4194 
4195 	/* write the data for the start of the original item */
4196 	write_extent_buffer(leaf, buf,
4197 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4198 			    split_offset);
4199 
4200 	/* write the data for the new item */
4201 	write_extent_buffer(leaf, buf + split_offset,
4202 			    btrfs_item_ptr_offset(leaf, slot),
4203 			    item_size - split_offset);
4204 	btrfs_mark_buffer_dirty(leaf);
4205 
4206 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4207 	kfree(buf);
4208 	return 0;
4209 }
4210 
4211 /*
4212  * This function splits a single item into two items,
4213  * giving 'new_key' to the new item and splitting the
4214  * old one at split_offset (from the start of the item).
4215  *
4216  * The path may be released by this operation.  After
4217  * the split, the path is pointing to the old item.  The
4218  * new item is going to be in the same node as the old one.
4219  *
4220  * Note, the item being split must be smaller enough to live alone on
4221  * a tree block with room for one extra struct btrfs_item
4222  *
4223  * This allows us to split the item in place, keeping a lock on the
4224  * leaf the entire time.
4225  */
4226 int btrfs_split_item(struct btrfs_trans_handle *trans,
4227 		     struct btrfs_root *root,
4228 		     struct btrfs_path *path,
4229 		     struct btrfs_key *new_key,
4230 		     unsigned long split_offset)
4231 {
4232 	int ret;
4233 	ret = setup_leaf_for_split(trans, root, path,
4234 				   sizeof(struct btrfs_item));
4235 	if (ret)
4236 		return ret;
4237 
4238 	ret = split_item(trans, root, path, new_key, split_offset);
4239 	return ret;
4240 }
4241 
4242 /*
4243  * This function duplicate a item, giving 'new_key' to the new item.
4244  * It guarantees both items live in the same tree leaf and the new item
4245  * is contiguous with the original item.
4246  *
4247  * This allows us to split file extent in place, keeping a lock on the
4248  * leaf the entire time.
4249  */
4250 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4251 			 struct btrfs_root *root,
4252 			 struct btrfs_path *path,
4253 			 struct btrfs_key *new_key)
4254 {
4255 	struct extent_buffer *leaf;
4256 	int ret;
4257 	u32 item_size;
4258 
4259 	leaf = path->nodes[0];
4260 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4261 	ret = setup_leaf_for_split(trans, root, path,
4262 				   item_size + sizeof(struct btrfs_item));
4263 	if (ret)
4264 		return ret;
4265 
4266 	path->slots[0]++;
4267 	setup_items_for_insert(trans, root, path, new_key, &item_size,
4268 			       item_size, item_size +
4269 			       sizeof(struct btrfs_item), 1);
4270 	leaf = path->nodes[0];
4271 	memcpy_extent_buffer(leaf,
4272 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4273 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4274 			     item_size);
4275 	return 0;
4276 }
4277 
4278 /*
4279  * make the item pointed to by the path smaller.  new_size indicates
4280  * how small to make it, and from_end tells us if we just chop bytes
4281  * off the end of the item or if we shift the item to chop bytes off
4282  * the front.
4283  */
4284 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4285 			 struct btrfs_root *root,
4286 			 struct btrfs_path *path,
4287 			 u32 new_size, int from_end)
4288 {
4289 	int slot;
4290 	struct extent_buffer *leaf;
4291 	struct btrfs_item *item;
4292 	u32 nritems;
4293 	unsigned int data_end;
4294 	unsigned int old_data_start;
4295 	unsigned int old_size;
4296 	unsigned int size_diff;
4297 	int i;
4298 	struct btrfs_map_token token;
4299 
4300 	btrfs_init_map_token(&token);
4301 
4302 	leaf = path->nodes[0];
4303 	slot = path->slots[0];
4304 
4305 	old_size = btrfs_item_size_nr(leaf, slot);
4306 	if (old_size == new_size)
4307 		return;
4308 
4309 	nritems = btrfs_header_nritems(leaf);
4310 	data_end = leaf_data_end(root, leaf);
4311 
4312 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4313 
4314 	size_diff = old_size - new_size;
4315 
4316 	BUG_ON(slot < 0);
4317 	BUG_ON(slot >= nritems);
4318 
4319 	/*
4320 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4321 	 */
4322 	/* first correct the data pointers */
4323 	for (i = slot; i < nritems; i++) {
4324 		u32 ioff;
4325 		item = btrfs_item_nr(leaf, i);
4326 
4327 		ioff = btrfs_token_item_offset(leaf, item, &token);
4328 		btrfs_set_token_item_offset(leaf, item,
4329 					    ioff + size_diff, &token);
4330 	}
4331 
4332 	/* shift the data */
4333 	if (from_end) {
4334 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4335 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4336 			      data_end, old_data_start + new_size - data_end);
4337 	} else {
4338 		struct btrfs_disk_key disk_key;
4339 		u64 offset;
4340 
4341 		btrfs_item_key(leaf, &disk_key, slot);
4342 
4343 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4344 			unsigned long ptr;
4345 			struct btrfs_file_extent_item *fi;
4346 
4347 			fi = btrfs_item_ptr(leaf, slot,
4348 					    struct btrfs_file_extent_item);
4349 			fi = (struct btrfs_file_extent_item *)(
4350 			     (unsigned long)fi - size_diff);
4351 
4352 			if (btrfs_file_extent_type(leaf, fi) ==
4353 			    BTRFS_FILE_EXTENT_INLINE) {
4354 				ptr = btrfs_item_ptr_offset(leaf, slot);
4355 				memmove_extent_buffer(leaf, ptr,
4356 				      (unsigned long)fi,
4357 				      offsetof(struct btrfs_file_extent_item,
4358 						 disk_bytenr));
4359 			}
4360 		}
4361 
4362 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4363 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4364 			      data_end, old_data_start - data_end);
4365 
4366 		offset = btrfs_disk_key_offset(&disk_key);
4367 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4368 		btrfs_set_item_key(leaf, &disk_key, slot);
4369 		if (slot == 0)
4370 			fixup_low_keys(trans, root, path, &disk_key, 1);
4371 	}
4372 
4373 	item = btrfs_item_nr(leaf, slot);
4374 	btrfs_set_item_size(leaf, item, new_size);
4375 	btrfs_mark_buffer_dirty(leaf);
4376 
4377 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4378 		btrfs_print_leaf(root, leaf);
4379 		BUG();
4380 	}
4381 }
4382 
4383 /*
4384  * make the item pointed to by the path bigger, data_size is the new size.
4385  */
4386 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4387 		       struct btrfs_root *root, struct btrfs_path *path,
4388 		       u32 data_size)
4389 {
4390 	int slot;
4391 	struct extent_buffer *leaf;
4392 	struct btrfs_item *item;
4393 	u32 nritems;
4394 	unsigned int data_end;
4395 	unsigned int old_data;
4396 	unsigned int old_size;
4397 	int i;
4398 	struct btrfs_map_token token;
4399 
4400 	btrfs_init_map_token(&token);
4401 
4402 	leaf = path->nodes[0];
4403 
4404 	nritems = btrfs_header_nritems(leaf);
4405 	data_end = leaf_data_end(root, leaf);
4406 
4407 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4408 		btrfs_print_leaf(root, leaf);
4409 		BUG();
4410 	}
4411 	slot = path->slots[0];
4412 	old_data = btrfs_item_end_nr(leaf, slot);
4413 
4414 	BUG_ON(slot < 0);
4415 	if (slot >= nritems) {
4416 		btrfs_print_leaf(root, leaf);
4417 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
4418 		       slot, nritems);
4419 		BUG_ON(1);
4420 	}
4421 
4422 	/*
4423 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4424 	 */
4425 	/* first correct the data pointers */
4426 	for (i = slot; i < nritems; i++) {
4427 		u32 ioff;
4428 		item = btrfs_item_nr(leaf, i);
4429 
4430 		ioff = btrfs_token_item_offset(leaf, item, &token);
4431 		btrfs_set_token_item_offset(leaf, item,
4432 					    ioff - data_size, &token);
4433 	}
4434 
4435 	/* shift the data */
4436 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4437 		      data_end - data_size, btrfs_leaf_data(leaf) +
4438 		      data_end, old_data - data_end);
4439 
4440 	data_end = old_data;
4441 	old_size = btrfs_item_size_nr(leaf, slot);
4442 	item = btrfs_item_nr(leaf, slot);
4443 	btrfs_set_item_size(leaf, item, old_size + data_size);
4444 	btrfs_mark_buffer_dirty(leaf);
4445 
4446 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4447 		btrfs_print_leaf(root, leaf);
4448 		BUG();
4449 	}
4450 }
4451 
4452 /*
4453  * this is a helper for btrfs_insert_empty_items, the main goal here is
4454  * to save stack depth by doing the bulk of the work in a function
4455  * that doesn't call btrfs_search_slot
4456  */
4457 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4458 			    struct btrfs_root *root, struct btrfs_path *path,
4459 			    struct btrfs_key *cpu_key, u32 *data_size,
4460 			    u32 total_data, u32 total_size, int nr)
4461 {
4462 	struct btrfs_item *item;
4463 	int i;
4464 	u32 nritems;
4465 	unsigned int data_end;
4466 	struct btrfs_disk_key disk_key;
4467 	struct extent_buffer *leaf;
4468 	int slot;
4469 	struct btrfs_map_token token;
4470 
4471 	btrfs_init_map_token(&token);
4472 
4473 	leaf = path->nodes[0];
4474 	slot = path->slots[0];
4475 
4476 	nritems = btrfs_header_nritems(leaf);
4477 	data_end = leaf_data_end(root, leaf);
4478 
4479 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4480 		btrfs_print_leaf(root, leaf);
4481 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
4482 		       total_size, btrfs_leaf_free_space(root, leaf));
4483 		BUG();
4484 	}
4485 
4486 	if (slot != nritems) {
4487 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4488 
4489 		if (old_data < data_end) {
4490 			btrfs_print_leaf(root, leaf);
4491 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4492 			       slot, old_data, data_end);
4493 			BUG_ON(1);
4494 		}
4495 		/*
4496 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4497 		 */
4498 		/* first correct the data pointers */
4499 		for (i = slot; i < nritems; i++) {
4500 			u32 ioff;
4501 
4502 			item = btrfs_item_nr(leaf, i);
4503 			ioff = btrfs_token_item_offset(leaf, item, &token);
4504 			btrfs_set_token_item_offset(leaf, item,
4505 						    ioff - total_data, &token);
4506 		}
4507 		/* shift the items */
4508 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4509 			      btrfs_item_nr_offset(slot),
4510 			      (nritems - slot) * sizeof(struct btrfs_item));
4511 
4512 		/* shift the data */
4513 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4514 			      data_end - total_data, btrfs_leaf_data(leaf) +
4515 			      data_end, old_data - data_end);
4516 		data_end = old_data;
4517 	}
4518 
4519 	/* setup the item for the new data */
4520 	for (i = 0; i < nr; i++) {
4521 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4522 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4523 		item = btrfs_item_nr(leaf, slot + i);
4524 		btrfs_set_token_item_offset(leaf, item,
4525 					    data_end - data_size[i], &token);
4526 		data_end -= data_size[i];
4527 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4528 	}
4529 
4530 	btrfs_set_header_nritems(leaf, nritems + nr);
4531 
4532 	if (slot == 0) {
4533 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4534 		fixup_low_keys(trans, root, path, &disk_key, 1);
4535 	}
4536 	btrfs_unlock_up_safe(path, 1);
4537 	btrfs_mark_buffer_dirty(leaf);
4538 
4539 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4540 		btrfs_print_leaf(root, leaf);
4541 		BUG();
4542 	}
4543 }
4544 
4545 /*
4546  * Given a key and some data, insert items into the tree.
4547  * This does all the path init required, making room in the tree if needed.
4548  */
4549 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4550 			    struct btrfs_root *root,
4551 			    struct btrfs_path *path,
4552 			    struct btrfs_key *cpu_key, u32 *data_size,
4553 			    int nr)
4554 {
4555 	int ret = 0;
4556 	int slot;
4557 	int i;
4558 	u32 total_size = 0;
4559 	u32 total_data = 0;
4560 
4561 	for (i = 0; i < nr; i++)
4562 		total_data += data_size[i];
4563 
4564 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4565 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4566 	if (ret == 0)
4567 		return -EEXIST;
4568 	if (ret < 0)
4569 		return ret;
4570 
4571 	slot = path->slots[0];
4572 	BUG_ON(slot < 0);
4573 
4574 	setup_items_for_insert(trans, root, path, cpu_key, data_size,
4575 			       total_data, total_size, nr);
4576 	return 0;
4577 }
4578 
4579 /*
4580  * Given a key and some data, insert an item into the tree.
4581  * This does all the path init required, making room in the tree if needed.
4582  */
4583 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4584 		      *root, struct btrfs_key *cpu_key, void *data, u32
4585 		      data_size)
4586 {
4587 	int ret = 0;
4588 	struct btrfs_path *path;
4589 	struct extent_buffer *leaf;
4590 	unsigned long ptr;
4591 
4592 	path = btrfs_alloc_path();
4593 	if (!path)
4594 		return -ENOMEM;
4595 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4596 	if (!ret) {
4597 		leaf = path->nodes[0];
4598 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4599 		write_extent_buffer(leaf, data, ptr, data_size);
4600 		btrfs_mark_buffer_dirty(leaf);
4601 	}
4602 	btrfs_free_path(path);
4603 	return ret;
4604 }
4605 
4606 /*
4607  * delete the pointer from a given node.
4608  *
4609  * the tree should have been previously balanced so the deletion does not
4610  * empty a node.
4611  */
4612 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4613 		    struct btrfs_path *path, int level, int slot)
4614 {
4615 	struct extent_buffer *parent = path->nodes[level];
4616 	u32 nritems;
4617 	int ret;
4618 
4619 	nritems = btrfs_header_nritems(parent);
4620 	if (slot != nritems - 1) {
4621 		if (level)
4622 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4623 					     slot + 1, nritems - slot - 1);
4624 		memmove_extent_buffer(parent,
4625 			      btrfs_node_key_ptr_offset(slot),
4626 			      btrfs_node_key_ptr_offset(slot + 1),
4627 			      sizeof(struct btrfs_key_ptr) *
4628 			      (nritems - slot - 1));
4629 	} else if (level) {
4630 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4631 					      MOD_LOG_KEY_REMOVE);
4632 		BUG_ON(ret < 0);
4633 	}
4634 
4635 	nritems--;
4636 	btrfs_set_header_nritems(parent, nritems);
4637 	if (nritems == 0 && parent == root->node) {
4638 		BUG_ON(btrfs_header_level(root->node) != 1);
4639 		/* just turn the root into a leaf and break */
4640 		btrfs_set_header_level(root->node, 0);
4641 	} else if (slot == 0) {
4642 		struct btrfs_disk_key disk_key;
4643 
4644 		btrfs_node_key(parent, &disk_key, 0);
4645 		fixup_low_keys(trans, root, path, &disk_key, level + 1);
4646 	}
4647 	btrfs_mark_buffer_dirty(parent);
4648 }
4649 
4650 /*
4651  * a helper function to delete the leaf pointed to by path->slots[1] and
4652  * path->nodes[1].
4653  *
4654  * This deletes the pointer in path->nodes[1] and frees the leaf
4655  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4656  *
4657  * The path must have already been setup for deleting the leaf, including
4658  * all the proper balancing.  path->nodes[1] must be locked.
4659  */
4660 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4661 				    struct btrfs_root *root,
4662 				    struct btrfs_path *path,
4663 				    struct extent_buffer *leaf)
4664 {
4665 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4666 	del_ptr(trans, root, path, 1, path->slots[1]);
4667 
4668 	/*
4669 	 * btrfs_free_extent is expensive, we want to make sure we
4670 	 * aren't holding any locks when we call it
4671 	 */
4672 	btrfs_unlock_up_safe(path, 0);
4673 
4674 	root_sub_used(root, leaf->len);
4675 
4676 	extent_buffer_get(leaf);
4677 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4678 	free_extent_buffer_stale(leaf);
4679 }
4680 /*
4681  * delete the item at the leaf level in path.  If that empties
4682  * the leaf, remove it from the tree
4683  */
4684 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4685 		    struct btrfs_path *path, int slot, int nr)
4686 {
4687 	struct extent_buffer *leaf;
4688 	struct btrfs_item *item;
4689 	int last_off;
4690 	int dsize = 0;
4691 	int ret = 0;
4692 	int wret;
4693 	int i;
4694 	u32 nritems;
4695 	struct btrfs_map_token token;
4696 
4697 	btrfs_init_map_token(&token);
4698 
4699 	leaf = path->nodes[0];
4700 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4701 
4702 	for (i = 0; i < nr; i++)
4703 		dsize += btrfs_item_size_nr(leaf, slot + i);
4704 
4705 	nritems = btrfs_header_nritems(leaf);
4706 
4707 	if (slot + nr != nritems) {
4708 		int data_end = leaf_data_end(root, leaf);
4709 
4710 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4711 			      data_end + dsize,
4712 			      btrfs_leaf_data(leaf) + data_end,
4713 			      last_off - data_end);
4714 
4715 		for (i = slot + nr; i < nritems; i++) {
4716 			u32 ioff;
4717 
4718 			item = btrfs_item_nr(leaf, i);
4719 			ioff = btrfs_token_item_offset(leaf, item, &token);
4720 			btrfs_set_token_item_offset(leaf, item,
4721 						    ioff + dsize, &token);
4722 		}
4723 
4724 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4725 			      btrfs_item_nr_offset(slot + nr),
4726 			      sizeof(struct btrfs_item) *
4727 			      (nritems - slot - nr));
4728 	}
4729 	btrfs_set_header_nritems(leaf, nritems - nr);
4730 	nritems -= nr;
4731 
4732 	/* delete the leaf if we've emptied it */
4733 	if (nritems == 0) {
4734 		if (leaf == root->node) {
4735 			btrfs_set_header_level(leaf, 0);
4736 		} else {
4737 			btrfs_set_path_blocking(path);
4738 			clean_tree_block(trans, root, leaf);
4739 			btrfs_del_leaf(trans, root, path, leaf);
4740 		}
4741 	} else {
4742 		int used = leaf_space_used(leaf, 0, nritems);
4743 		if (slot == 0) {
4744 			struct btrfs_disk_key disk_key;
4745 
4746 			btrfs_item_key(leaf, &disk_key, 0);
4747 			fixup_low_keys(trans, root, path, &disk_key, 1);
4748 		}
4749 
4750 		/* delete the leaf if it is mostly empty */
4751 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4752 			/* push_leaf_left fixes the path.
4753 			 * make sure the path still points to our leaf
4754 			 * for possible call to del_ptr below
4755 			 */
4756 			slot = path->slots[1];
4757 			extent_buffer_get(leaf);
4758 
4759 			btrfs_set_path_blocking(path);
4760 			wret = push_leaf_left(trans, root, path, 1, 1,
4761 					      1, (u32)-1);
4762 			if (wret < 0 && wret != -ENOSPC)
4763 				ret = wret;
4764 
4765 			if (path->nodes[0] == leaf &&
4766 			    btrfs_header_nritems(leaf)) {
4767 				wret = push_leaf_right(trans, root, path, 1,
4768 						       1, 1, 0);
4769 				if (wret < 0 && wret != -ENOSPC)
4770 					ret = wret;
4771 			}
4772 
4773 			if (btrfs_header_nritems(leaf) == 0) {
4774 				path->slots[1] = slot;
4775 				btrfs_del_leaf(trans, root, path, leaf);
4776 				free_extent_buffer(leaf);
4777 				ret = 0;
4778 			} else {
4779 				/* if we're still in the path, make sure
4780 				 * we're dirty.  Otherwise, one of the
4781 				 * push_leaf functions must have already
4782 				 * dirtied this buffer
4783 				 */
4784 				if (path->nodes[0] == leaf)
4785 					btrfs_mark_buffer_dirty(leaf);
4786 				free_extent_buffer(leaf);
4787 			}
4788 		} else {
4789 			btrfs_mark_buffer_dirty(leaf);
4790 		}
4791 	}
4792 	return ret;
4793 }
4794 
4795 /*
4796  * search the tree again to find a leaf with lesser keys
4797  * returns 0 if it found something or 1 if there are no lesser leaves.
4798  * returns < 0 on io errors.
4799  *
4800  * This may release the path, and so you may lose any locks held at the
4801  * time you call it.
4802  */
4803 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4804 {
4805 	struct btrfs_key key;
4806 	struct btrfs_disk_key found_key;
4807 	int ret;
4808 
4809 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4810 
4811 	if (key.offset > 0)
4812 		key.offset--;
4813 	else if (key.type > 0)
4814 		key.type--;
4815 	else if (key.objectid > 0)
4816 		key.objectid--;
4817 	else
4818 		return 1;
4819 
4820 	btrfs_release_path(path);
4821 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4822 	if (ret < 0)
4823 		return ret;
4824 	btrfs_item_key(path->nodes[0], &found_key, 0);
4825 	ret = comp_keys(&found_key, &key);
4826 	if (ret < 0)
4827 		return 0;
4828 	return 1;
4829 }
4830 
4831 /*
4832  * A helper function to walk down the tree starting at min_key, and looking
4833  * for nodes or leaves that are have a minimum transaction id.
4834  * This is used by the btree defrag code, and tree logging
4835  *
4836  * This does not cow, but it does stuff the starting key it finds back
4837  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4838  * key and get a writable path.
4839  *
4840  * This does lock as it descends, and path->keep_locks should be set
4841  * to 1 by the caller.
4842  *
4843  * This honors path->lowest_level to prevent descent past a given level
4844  * of the tree.
4845  *
4846  * min_trans indicates the oldest transaction that you are interested
4847  * in walking through.  Any nodes or leaves older than min_trans are
4848  * skipped over (without reading them).
4849  *
4850  * returns zero if something useful was found, < 0 on error and 1 if there
4851  * was nothing in the tree that matched the search criteria.
4852  */
4853 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4854 			 struct btrfs_key *max_key,
4855 			 struct btrfs_path *path,
4856 			 u64 min_trans)
4857 {
4858 	struct extent_buffer *cur;
4859 	struct btrfs_key found_key;
4860 	int slot;
4861 	int sret;
4862 	u32 nritems;
4863 	int level;
4864 	int ret = 1;
4865 
4866 	WARN_ON(!path->keep_locks);
4867 again:
4868 	cur = btrfs_read_lock_root_node(root);
4869 	level = btrfs_header_level(cur);
4870 	WARN_ON(path->nodes[level]);
4871 	path->nodes[level] = cur;
4872 	path->locks[level] = BTRFS_READ_LOCK;
4873 
4874 	if (btrfs_header_generation(cur) < min_trans) {
4875 		ret = 1;
4876 		goto out;
4877 	}
4878 	while (1) {
4879 		nritems = btrfs_header_nritems(cur);
4880 		level = btrfs_header_level(cur);
4881 		sret = bin_search(cur, min_key, level, &slot);
4882 
4883 		/* at the lowest level, we're done, setup the path and exit */
4884 		if (level == path->lowest_level) {
4885 			if (slot >= nritems)
4886 				goto find_next_key;
4887 			ret = 0;
4888 			path->slots[level] = slot;
4889 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4890 			goto out;
4891 		}
4892 		if (sret && slot > 0)
4893 			slot--;
4894 		/*
4895 		 * check this node pointer against the min_trans parameters.
4896 		 * If it is too old, old, skip to the next one.
4897 		 */
4898 		while (slot < nritems) {
4899 			u64 blockptr;
4900 			u64 gen;
4901 
4902 			blockptr = btrfs_node_blockptr(cur, slot);
4903 			gen = btrfs_node_ptr_generation(cur, slot);
4904 			if (gen < min_trans) {
4905 				slot++;
4906 				continue;
4907 			}
4908 			break;
4909 		}
4910 find_next_key:
4911 		/*
4912 		 * we didn't find a candidate key in this node, walk forward
4913 		 * and find another one
4914 		 */
4915 		if (slot >= nritems) {
4916 			path->slots[level] = slot;
4917 			btrfs_set_path_blocking(path);
4918 			sret = btrfs_find_next_key(root, path, min_key, level,
4919 						  min_trans);
4920 			if (sret == 0) {
4921 				btrfs_release_path(path);
4922 				goto again;
4923 			} else {
4924 				goto out;
4925 			}
4926 		}
4927 		/* save our key for returning back */
4928 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4929 		path->slots[level] = slot;
4930 		if (level == path->lowest_level) {
4931 			ret = 0;
4932 			unlock_up(path, level, 1, 0, NULL);
4933 			goto out;
4934 		}
4935 		btrfs_set_path_blocking(path);
4936 		cur = read_node_slot(root, cur, slot);
4937 		BUG_ON(!cur); /* -ENOMEM */
4938 
4939 		btrfs_tree_read_lock(cur);
4940 
4941 		path->locks[level - 1] = BTRFS_READ_LOCK;
4942 		path->nodes[level - 1] = cur;
4943 		unlock_up(path, level, 1, 0, NULL);
4944 		btrfs_clear_path_blocking(path, NULL, 0);
4945 	}
4946 out:
4947 	if (ret == 0)
4948 		memcpy(min_key, &found_key, sizeof(found_key));
4949 	btrfs_set_path_blocking(path);
4950 	return ret;
4951 }
4952 
4953 static void tree_move_down(struct btrfs_root *root,
4954 			   struct btrfs_path *path,
4955 			   int *level, int root_level)
4956 {
4957 	BUG_ON(*level == 0);
4958 	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4959 					path->slots[*level]);
4960 	path->slots[*level - 1] = 0;
4961 	(*level)--;
4962 }
4963 
4964 static int tree_move_next_or_upnext(struct btrfs_root *root,
4965 				    struct btrfs_path *path,
4966 				    int *level, int root_level)
4967 {
4968 	int ret = 0;
4969 	int nritems;
4970 	nritems = btrfs_header_nritems(path->nodes[*level]);
4971 
4972 	path->slots[*level]++;
4973 
4974 	while (path->slots[*level] >= nritems) {
4975 		if (*level == root_level)
4976 			return -1;
4977 
4978 		/* move upnext */
4979 		path->slots[*level] = 0;
4980 		free_extent_buffer(path->nodes[*level]);
4981 		path->nodes[*level] = NULL;
4982 		(*level)++;
4983 		path->slots[*level]++;
4984 
4985 		nritems = btrfs_header_nritems(path->nodes[*level]);
4986 		ret = 1;
4987 	}
4988 	return ret;
4989 }
4990 
4991 /*
4992  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
4993  * or down.
4994  */
4995 static int tree_advance(struct btrfs_root *root,
4996 			struct btrfs_path *path,
4997 			int *level, int root_level,
4998 			int allow_down,
4999 			struct btrfs_key *key)
5000 {
5001 	int ret;
5002 
5003 	if (*level == 0 || !allow_down) {
5004 		ret = tree_move_next_or_upnext(root, path, level, root_level);
5005 	} else {
5006 		tree_move_down(root, path, level, root_level);
5007 		ret = 0;
5008 	}
5009 	if (ret >= 0) {
5010 		if (*level == 0)
5011 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5012 					path->slots[*level]);
5013 		else
5014 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5015 					path->slots[*level]);
5016 	}
5017 	return ret;
5018 }
5019 
5020 static int tree_compare_item(struct btrfs_root *left_root,
5021 			     struct btrfs_path *left_path,
5022 			     struct btrfs_path *right_path,
5023 			     char *tmp_buf)
5024 {
5025 	int cmp;
5026 	int len1, len2;
5027 	unsigned long off1, off2;
5028 
5029 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5030 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5031 	if (len1 != len2)
5032 		return 1;
5033 
5034 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5035 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5036 				right_path->slots[0]);
5037 
5038 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5039 
5040 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5041 	if (cmp)
5042 		return 1;
5043 	return 0;
5044 }
5045 
5046 #define ADVANCE 1
5047 #define ADVANCE_ONLY_NEXT -1
5048 
5049 /*
5050  * This function compares two trees and calls the provided callback for
5051  * every changed/new/deleted item it finds.
5052  * If shared tree blocks are encountered, whole subtrees are skipped, making
5053  * the compare pretty fast on snapshotted subvolumes.
5054  *
5055  * This currently works on commit roots only. As commit roots are read only,
5056  * we don't do any locking. The commit roots are protected with transactions.
5057  * Transactions are ended and rejoined when a commit is tried in between.
5058  *
5059  * This function checks for modifications done to the trees while comparing.
5060  * If it detects a change, it aborts immediately.
5061  */
5062 int btrfs_compare_trees(struct btrfs_root *left_root,
5063 			struct btrfs_root *right_root,
5064 			btrfs_changed_cb_t changed_cb, void *ctx)
5065 {
5066 	int ret;
5067 	int cmp;
5068 	struct btrfs_trans_handle *trans = NULL;
5069 	struct btrfs_path *left_path = NULL;
5070 	struct btrfs_path *right_path = NULL;
5071 	struct btrfs_key left_key;
5072 	struct btrfs_key right_key;
5073 	char *tmp_buf = NULL;
5074 	int left_root_level;
5075 	int right_root_level;
5076 	int left_level;
5077 	int right_level;
5078 	int left_end_reached;
5079 	int right_end_reached;
5080 	int advance_left;
5081 	int advance_right;
5082 	u64 left_blockptr;
5083 	u64 right_blockptr;
5084 	u64 left_start_ctransid;
5085 	u64 right_start_ctransid;
5086 	u64 ctransid;
5087 
5088 	left_path = btrfs_alloc_path();
5089 	if (!left_path) {
5090 		ret = -ENOMEM;
5091 		goto out;
5092 	}
5093 	right_path = btrfs_alloc_path();
5094 	if (!right_path) {
5095 		ret = -ENOMEM;
5096 		goto out;
5097 	}
5098 
5099 	tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5100 	if (!tmp_buf) {
5101 		ret = -ENOMEM;
5102 		goto out;
5103 	}
5104 
5105 	left_path->search_commit_root = 1;
5106 	left_path->skip_locking = 1;
5107 	right_path->search_commit_root = 1;
5108 	right_path->skip_locking = 1;
5109 
5110 	spin_lock(&left_root->root_item_lock);
5111 	left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5112 	spin_unlock(&left_root->root_item_lock);
5113 
5114 	spin_lock(&right_root->root_item_lock);
5115 	right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5116 	spin_unlock(&right_root->root_item_lock);
5117 
5118 	trans = btrfs_join_transaction(left_root);
5119 	if (IS_ERR(trans)) {
5120 		ret = PTR_ERR(trans);
5121 		trans = NULL;
5122 		goto out;
5123 	}
5124 
5125 	/*
5126 	 * Strategy: Go to the first items of both trees. Then do
5127 	 *
5128 	 * If both trees are at level 0
5129 	 *   Compare keys of current items
5130 	 *     If left < right treat left item as new, advance left tree
5131 	 *       and repeat
5132 	 *     If left > right treat right item as deleted, advance right tree
5133 	 *       and repeat
5134 	 *     If left == right do deep compare of items, treat as changed if
5135 	 *       needed, advance both trees and repeat
5136 	 * If both trees are at the same level but not at level 0
5137 	 *   Compare keys of current nodes/leafs
5138 	 *     If left < right advance left tree and repeat
5139 	 *     If left > right advance right tree and repeat
5140 	 *     If left == right compare blockptrs of the next nodes/leafs
5141 	 *       If they match advance both trees but stay at the same level
5142 	 *         and repeat
5143 	 *       If they don't match advance both trees while allowing to go
5144 	 *         deeper and repeat
5145 	 * If tree levels are different
5146 	 *   Advance the tree that needs it and repeat
5147 	 *
5148 	 * Advancing a tree means:
5149 	 *   If we are at level 0, try to go to the next slot. If that's not
5150 	 *   possible, go one level up and repeat. Stop when we found a level
5151 	 *   where we could go to the next slot. We may at this point be on a
5152 	 *   node or a leaf.
5153 	 *
5154 	 *   If we are not at level 0 and not on shared tree blocks, go one
5155 	 *   level deeper.
5156 	 *
5157 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5158 	 *   the right if possible or go up and right.
5159 	 */
5160 
5161 	left_level = btrfs_header_level(left_root->commit_root);
5162 	left_root_level = left_level;
5163 	left_path->nodes[left_level] = left_root->commit_root;
5164 	extent_buffer_get(left_path->nodes[left_level]);
5165 
5166 	right_level = btrfs_header_level(right_root->commit_root);
5167 	right_root_level = right_level;
5168 	right_path->nodes[right_level] = right_root->commit_root;
5169 	extent_buffer_get(right_path->nodes[right_level]);
5170 
5171 	if (left_level == 0)
5172 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5173 				&left_key, left_path->slots[left_level]);
5174 	else
5175 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5176 				&left_key, left_path->slots[left_level]);
5177 	if (right_level == 0)
5178 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5179 				&right_key, right_path->slots[right_level]);
5180 	else
5181 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5182 				&right_key, right_path->slots[right_level]);
5183 
5184 	left_end_reached = right_end_reached = 0;
5185 	advance_left = advance_right = 0;
5186 
5187 	while (1) {
5188 		/*
5189 		 * We need to make sure the transaction does not get committed
5190 		 * while we do anything on commit roots. This means, we need to
5191 		 * join and leave transactions for every item that we process.
5192 		 */
5193 		if (trans && btrfs_should_end_transaction(trans, left_root)) {
5194 			btrfs_release_path(left_path);
5195 			btrfs_release_path(right_path);
5196 
5197 			ret = btrfs_end_transaction(trans, left_root);
5198 			trans = NULL;
5199 			if (ret < 0)
5200 				goto out;
5201 		}
5202 		/* now rejoin the transaction */
5203 		if (!trans) {
5204 			trans = btrfs_join_transaction(left_root);
5205 			if (IS_ERR(trans)) {
5206 				ret = PTR_ERR(trans);
5207 				trans = NULL;
5208 				goto out;
5209 			}
5210 
5211 			spin_lock(&left_root->root_item_lock);
5212 			ctransid = btrfs_root_ctransid(&left_root->root_item);
5213 			spin_unlock(&left_root->root_item_lock);
5214 			if (ctransid != left_start_ctransid)
5215 				left_start_ctransid = 0;
5216 
5217 			spin_lock(&right_root->root_item_lock);
5218 			ctransid = btrfs_root_ctransid(&right_root->root_item);
5219 			spin_unlock(&right_root->root_item_lock);
5220 			if (ctransid != right_start_ctransid)
5221 				right_start_ctransid = 0;
5222 
5223 			if (!left_start_ctransid || !right_start_ctransid) {
5224 				WARN(1, KERN_WARNING
5225 					"btrfs: btrfs_compare_tree detected "
5226 					"a change in one of the trees while "
5227 					"iterating. This is probably a "
5228 					"bug.\n");
5229 				ret = -EIO;
5230 				goto out;
5231 			}
5232 
5233 			/*
5234 			 * the commit root may have changed, so start again
5235 			 * where we stopped
5236 			 */
5237 			left_path->lowest_level = left_level;
5238 			right_path->lowest_level = right_level;
5239 			ret = btrfs_search_slot(NULL, left_root,
5240 					&left_key, left_path, 0, 0);
5241 			if (ret < 0)
5242 				goto out;
5243 			ret = btrfs_search_slot(NULL, right_root,
5244 					&right_key, right_path, 0, 0);
5245 			if (ret < 0)
5246 				goto out;
5247 		}
5248 
5249 		if (advance_left && !left_end_reached) {
5250 			ret = tree_advance(left_root, left_path, &left_level,
5251 					left_root_level,
5252 					advance_left != ADVANCE_ONLY_NEXT,
5253 					&left_key);
5254 			if (ret < 0)
5255 				left_end_reached = ADVANCE;
5256 			advance_left = 0;
5257 		}
5258 		if (advance_right && !right_end_reached) {
5259 			ret = tree_advance(right_root, right_path, &right_level,
5260 					right_root_level,
5261 					advance_right != ADVANCE_ONLY_NEXT,
5262 					&right_key);
5263 			if (ret < 0)
5264 				right_end_reached = ADVANCE;
5265 			advance_right = 0;
5266 		}
5267 
5268 		if (left_end_reached && right_end_reached) {
5269 			ret = 0;
5270 			goto out;
5271 		} else if (left_end_reached) {
5272 			if (right_level == 0) {
5273 				ret = changed_cb(left_root, right_root,
5274 						left_path, right_path,
5275 						&right_key,
5276 						BTRFS_COMPARE_TREE_DELETED,
5277 						ctx);
5278 				if (ret < 0)
5279 					goto out;
5280 			}
5281 			advance_right = ADVANCE;
5282 			continue;
5283 		} else if (right_end_reached) {
5284 			if (left_level == 0) {
5285 				ret = changed_cb(left_root, right_root,
5286 						left_path, right_path,
5287 						&left_key,
5288 						BTRFS_COMPARE_TREE_NEW,
5289 						ctx);
5290 				if (ret < 0)
5291 					goto out;
5292 			}
5293 			advance_left = ADVANCE;
5294 			continue;
5295 		}
5296 
5297 		if (left_level == 0 && right_level == 0) {
5298 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5299 			if (cmp < 0) {
5300 				ret = changed_cb(left_root, right_root,
5301 						left_path, right_path,
5302 						&left_key,
5303 						BTRFS_COMPARE_TREE_NEW,
5304 						ctx);
5305 				if (ret < 0)
5306 					goto out;
5307 				advance_left = ADVANCE;
5308 			} else if (cmp > 0) {
5309 				ret = changed_cb(left_root, right_root,
5310 						left_path, right_path,
5311 						&right_key,
5312 						BTRFS_COMPARE_TREE_DELETED,
5313 						ctx);
5314 				if (ret < 0)
5315 					goto out;
5316 				advance_right = ADVANCE;
5317 			} else {
5318 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5319 				ret = tree_compare_item(left_root, left_path,
5320 						right_path, tmp_buf);
5321 				if (ret) {
5322 					WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5323 					ret = changed_cb(left_root, right_root,
5324 						left_path, right_path,
5325 						&left_key,
5326 						BTRFS_COMPARE_TREE_CHANGED,
5327 						ctx);
5328 					if (ret < 0)
5329 						goto out;
5330 				}
5331 				advance_left = ADVANCE;
5332 				advance_right = ADVANCE;
5333 			}
5334 		} else if (left_level == right_level) {
5335 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5336 			if (cmp < 0) {
5337 				advance_left = ADVANCE;
5338 			} else if (cmp > 0) {
5339 				advance_right = ADVANCE;
5340 			} else {
5341 				left_blockptr = btrfs_node_blockptr(
5342 						left_path->nodes[left_level],
5343 						left_path->slots[left_level]);
5344 				right_blockptr = btrfs_node_blockptr(
5345 						right_path->nodes[right_level],
5346 						right_path->slots[right_level]);
5347 				if (left_blockptr == right_blockptr) {
5348 					/*
5349 					 * As we're on a shared block, don't
5350 					 * allow to go deeper.
5351 					 */
5352 					advance_left = ADVANCE_ONLY_NEXT;
5353 					advance_right = ADVANCE_ONLY_NEXT;
5354 				} else {
5355 					advance_left = ADVANCE;
5356 					advance_right = ADVANCE;
5357 				}
5358 			}
5359 		} else if (left_level < right_level) {
5360 			advance_right = ADVANCE;
5361 		} else {
5362 			advance_left = ADVANCE;
5363 		}
5364 	}
5365 
5366 out:
5367 	btrfs_free_path(left_path);
5368 	btrfs_free_path(right_path);
5369 	kfree(tmp_buf);
5370 
5371 	if (trans) {
5372 		if (!ret)
5373 			ret = btrfs_end_transaction(trans, left_root);
5374 		else
5375 			btrfs_end_transaction(trans, left_root);
5376 	}
5377 
5378 	return ret;
5379 }
5380 
5381 /*
5382  * this is similar to btrfs_next_leaf, but does not try to preserve
5383  * and fixup the path.  It looks for and returns the next key in the
5384  * tree based on the current path and the min_trans parameters.
5385  *
5386  * 0 is returned if another key is found, < 0 if there are any errors
5387  * and 1 is returned if there are no higher keys in the tree
5388  *
5389  * path->keep_locks should be set to 1 on the search made before
5390  * calling this function.
5391  */
5392 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5393 			struct btrfs_key *key, int level, u64 min_trans)
5394 {
5395 	int slot;
5396 	struct extent_buffer *c;
5397 
5398 	WARN_ON(!path->keep_locks);
5399 	while (level < BTRFS_MAX_LEVEL) {
5400 		if (!path->nodes[level])
5401 			return 1;
5402 
5403 		slot = path->slots[level] + 1;
5404 		c = path->nodes[level];
5405 next:
5406 		if (slot >= btrfs_header_nritems(c)) {
5407 			int ret;
5408 			int orig_lowest;
5409 			struct btrfs_key cur_key;
5410 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5411 			    !path->nodes[level + 1])
5412 				return 1;
5413 
5414 			if (path->locks[level + 1]) {
5415 				level++;
5416 				continue;
5417 			}
5418 
5419 			slot = btrfs_header_nritems(c) - 1;
5420 			if (level == 0)
5421 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5422 			else
5423 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5424 
5425 			orig_lowest = path->lowest_level;
5426 			btrfs_release_path(path);
5427 			path->lowest_level = level;
5428 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5429 						0, 0);
5430 			path->lowest_level = orig_lowest;
5431 			if (ret < 0)
5432 				return ret;
5433 
5434 			c = path->nodes[level];
5435 			slot = path->slots[level];
5436 			if (ret == 0)
5437 				slot++;
5438 			goto next;
5439 		}
5440 
5441 		if (level == 0)
5442 			btrfs_item_key_to_cpu(c, key, slot);
5443 		else {
5444 			u64 gen = btrfs_node_ptr_generation(c, slot);
5445 
5446 			if (gen < min_trans) {
5447 				slot++;
5448 				goto next;
5449 			}
5450 			btrfs_node_key_to_cpu(c, key, slot);
5451 		}
5452 		return 0;
5453 	}
5454 	return 1;
5455 }
5456 
5457 /*
5458  * search the tree again to find a leaf with greater keys
5459  * returns 0 if it found something or 1 if there are no greater leaves.
5460  * returns < 0 on io errors.
5461  */
5462 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5463 {
5464 	return btrfs_next_old_leaf(root, path, 0);
5465 }
5466 
5467 /* Release the path up to but not including the given level */
5468 static void btrfs_release_level(struct btrfs_path *path, int level)
5469 {
5470 	int i;
5471 
5472 	for (i = 0; i < level; i++) {
5473 		path->slots[i] = 0;
5474 		if (!path->nodes[i])
5475 			continue;
5476 		if (path->locks[i]) {
5477 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
5478 			path->locks[i] = 0;
5479 		}
5480 		free_extent_buffer(path->nodes[i]);
5481 		path->nodes[i] = NULL;
5482 	}
5483 }
5484 
5485 /*
5486  * This function assumes 2 things
5487  *
5488  * 1) You are using path->keep_locks
5489  * 2) You are not inserting items.
5490  *
5491  * If either of these are not true do not use this function. If you need a next
5492  * leaf with either of these not being true then this function can be easily
5493  * adapted to do that, but at the moment these are the limitations.
5494  */
5495 int btrfs_next_leaf_write(struct btrfs_trans_handle *trans,
5496 			  struct btrfs_root *root, struct btrfs_path *path,
5497 			  int del)
5498 {
5499 	struct extent_buffer *b;
5500 	struct btrfs_key key;
5501 	u32 nritems;
5502 	int level = 1;
5503 	int slot;
5504 	int ret = 1;
5505 	int write_lock_level = BTRFS_MAX_LEVEL;
5506 	int ins_len = del ? -1 : 0;
5507 
5508 	WARN_ON(!(path->keep_locks || path->really_keep_locks));
5509 
5510 	nritems = btrfs_header_nritems(path->nodes[0]);
5511 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5512 
5513 	while (path->nodes[level]) {
5514 		nritems = btrfs_header_nritems(path->nodes[level]);
5515 		if (!(path->locks[level] & BTRFS_WRITE_LOCK)) {
5516 search:
5517 			btrfs_release_path(path);
5518 			ret = btrfs_search_slot(trans, root, &key, path,
5519 						ins_len, 1);
5520 			if (ret < 0)
5521 				goto out;
5522 			level = 1;
5523 			continue;
5524 		}
5525 
5526 		if (path->slots[level] >= nritems - 1) {
5527 			level++;
5528 			continue;
5529 		}
5530 
5531 		btrfs_release_level(path, level);
5532 		break;
5533 	}
5534 
5535 	if (!path->nodes[level]) {
5536 		ret = 1;
5537 		goto out;
5538 	}
5539 
5540 	path->slots[level]++;
5541 	b = path->nodes[level];
5542 
5543 	while (b) {
5544 		level = btrfs_header_level(b);
5545 
5546 		if (!should_cow_block(trans, root, b))
5547 			goto cow_done;
5548 
5549 		btrfs_set_path_blocking(path);
5550 		ret = btrfs_cow_block(trans, root, b,
5551 				      path->nodes[level + 1],
5552 				      path->slots[level + 1], &b);
5553 		if (ret)
5554 			goto out;
5555 cow_done:
5556 		path->nodes[level] = b;
5557 		btrfs_clear_path_blocking(path, NULL, 0);
5558 		if (level != 0) {
5559 			ret = setup_nodes_for_search(trans, root, path, b,
5560 						     level, ins_len,
5561 						     &write_lock_level);
5562 			if (ret == -EAGAIN)
5563 				goto search;
5564 			if (ret)
5565 				goto out;
5566 
5567 			b = path->nodes[level];
5568 			slot = path->slots[level];
5569 
5570 			ret = read_block_for_search(trans, root, path,
5571 						    &b, level, slot, &key, 0);
5572 			if (ret == -EAGAIN)
5573 				goto search;
5574 			if (ret)
5575 				goto out;
5576 			level = btrfs_header_level(b);
5577 			if (!btrfs_try_tree_write_lock(b)) {
5578 				btrfs_set_path_blocking(path);
5579 				btrfs_tree_lock(b);
5580 				btrfs_clear_path_blocking(path, b,
5581 							  BTRFS_WRITE_LOCK);
5582 			}
5583 			path->locks[level] = BTRFS_WRITE_LOCK;
5584 			path->nodes[level] = b;
5585 			path->slots[level] = 0;
5586 		} else {
5587 			path->slots[level] = 0;
5588 			ret = 0;
5589 			break;
5590 		}
5591 	}
5592 
5593 out:
5594 	if (ret)
5595 		btrfs_release_path(path);
5596 
5597 	return ret;
5598 }
5599 
5600 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5601 			u64 time_seq)
5602 {
5603 	int slot;
5604 	int level;
5605 	struct extent_buffer *c;
5606 	struct extent_buffer *next;
5607 	struct btrfs_key key;
5608 	u32 nritems;
5609 	int ret;
5610 	int old_spinning = path->leave_spinning;
5611 	int next_rw_lock = 0;
5612 
5613 	nritems = btrfs_header_nritems(path->nodes[0]);
5614 	if (nritems == 0)
5615 		return 1;
5616 
5617 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5618 again:
5619 	level = 1;
5620 	next = NULL;
5621 	next_rw_lock = 0;
5622 	btrfs_release_path(path);
5623 
5624 	path->keep_locks = 1;
5625 	path->leave_spinning = 1;
5626 
5627 	if (time_seq)
5628 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5629 	else
5630 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5631 	path->keep_locks = 0;
5632 
5633 	if (ret < 0)
5634 		return ret;
5635 
5636 	nritems = btrfs_header_nritems(path->nodes[0]);
5637 	/*
5638 	 * by releasing the path above we dropped all our locks.  A balance
5639 	 * could have added more items next to the key that used to be
5640 	 * at the very end of the block.  So, check again here and
5641 	 * advance the path if there are now more items available.
5642 	 */
5643 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5644 		if (ret == 0)
5645 			path->slots[0]++;
5646 		ret = 0;
5647 		goto done;
5648 	}
5649 
5650 	while (level < BTRFS_MAX_LEVEL) {
5651 		if (!path->nodes[level]) {
5652 			ret = 1;
5653 			goto done;
5654 		}
5655 
5656 		slot = path->slots[level] + 1;
5657 		c = path->nodes[level];
5658 		if (slot >= btrfs_header_nritems(c)) {
5659 			level++;
5660 			if (level == BTRFS_MAX_LEVEL) {
5661 				ret = 1;
5662 				goto done;
5663 			}
5664 			continue;
5665 		}
5666 
5667 		if (next) {
5668 			btrfs_tree_unlock_rw(next, next_rw_lock);
5669 			free_extent_buffer(next);
5670 		}
5671 
5672 		next = c;
5673 		next_rw_lock = path->locks[level];
5674 		ret = read_block_for_search(NULL, root, path, &next, level,
5675 					    slot, &key, 0);
5676 		if (ret == -EAGAIN)
5677 			goto again;
5678 
5679 		if (ret < 0) {
5680 			btrfs_release_path(path);
5681 			goto done;
5682 		}
5683 
5684 		if (!path->skip_locking) {
5685 			ret = btrfs_try_tree_read_lock(next);
5686 			if (!ret && time_seq) {
5687 				/*
5688 				 * If we don't get the lock, we may be racing
5689 				 * with push_leaf_left, holding that lock while
5690 				 * itself waiting for the leaf we've currently
5691 				 * locked. To solve this situation, we give up
5692 				 * on our lock and cycle.
5693 				 */
5694 				free_extent_buffer(next);
5695 				btrfs_release_path(path);
5696 				cond_resched();
5697 				goto again;
5698 			}
5699 			if (!ret) {
5700 				btrfs_set_path_blocking(path);
5701 				btrfs_tree_read_lock(next);
5702 				btrfs_clear_path_blocking(path, next,
5703 							  BTRFS_READ_LOCK);
5704 			}
5705 			next_rw_lock = BTRFS_READ_LOCK;
5706 		}
5707 		break;
5708 	}
5709 	path->slots[level] = slot;
5710 	while (1) {
5711 		level--;
5712 		c = path->nodes[level];
5713 		if (path->locks[level])
5714 			btrfs_tree_unlock_rw(c, path->locks[level]);
5715 
5716 		free_extent_buffer(c);
5717 		path->nodes[level] = next;
5718 		path->slots[level] = 0;
5719 		if (!path->skip_locking)
5720 			path->locks[level] = next_rw_lock;
5721 		if (!level)
5722 			break;
5723 
5724 		ret = read_block_for_search(NULL, root, path, &next, level,
5725 					    0, &key, 0);
5726 		if (ret == -EAGAIN)
5727 			goto again;
5728 
5729 		if (ret < 0) {
5730 			btrfs_release_path(path);
5731 			goto done;
5732 		}
5733 
5734 		if (!path->skip_locking) {
5735 			ret = btrfs_try_tree_read_lock(next);
5736 			if (!ret) {
5737 				btrfs_set_path_blocking(path);
5738 				btrfs_tree_read_lock(next);
5739 				btrfs_clear_path_blocking(path, next,
5740 							  BTRFS_READ_LOCK);
5741 			}
5742 			next_rw_lock = BTRFS_READ_LOCK;
5743 		}
5744 	}
5745 	ret = 0;
5746 done:
5747 	unlock_up(path, 0, 1, 0, NULL);
5748 	path->leave_spinning = old_spinning;
5749 	if (!old_spinning)
5750 		btrfs_set_path_blocking(path);
5751 
5752 	return ret;
5753 }
5754 
5755 /*
5756  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5757  * searching until it gets past min_objectid or finds an item of 'type'
5758  *
5759  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5760  */
5761 int btrfs_previous_item(struct btrfs_root *root,
5762 			struct btrfs_path *path, u64 min_objectid,
5763 			int type)
5764 {
5765 	struct btrfs_key found_key;
5766 	struct extent_buffer *leaf;
5767 	u32 nritems;
5768 	int ret;
5769 
5770 	while (1) {
5771 		if (path->slots[0] == 0) {
5772 			btrfs_set_path_blocking(path);
5773 			ret = btrfs_prev_leaf(root, path);
5774 			if (ret != 0)
5775 				return ret;
5776 		} else {
5777 			path->slots[0]--;
5778 		}
5779 		leaf = path->nodes[0];
5780 		nritems = btrfs_header_nritems(leaf);
5781 		if (nritems == 0)
5782 			return 1;
5783 		if (path->slots[0] == nritems)
5784 			path->slots[0]--;
5785 
5786 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5787 		if (found_key.objectid < min_objectid)
5788 			break;
5789 		if (found_key.type == type)
5790 			return 0;
5791 		if (found_key.objectid == min_objectid &&
5792 		    found_key.type < type)
5793 			break;
5794 	}
5795 	return 1;
5796 }
5797