1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include <linux/error-injection.h> 11 #include "messages.h" 12 #include "ctree.h" 13 #include "disk-io.h" 14 #include "transaction.h" 15 #include "print-tree.h" 16 #include "locking.h" 17 #include "volumes.h" 18 #include "qgroup.h" 19 #include "tree-mod-log.h" 20 #include "tree-checker.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 #include "relocation.h" 25 #include "file-item.h" 26 27 static struct kmem_cache *btrfs_path_cachep; 28 29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_path *path, int level); 31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 32 const struct btrfs_key *ins_key, struct btrfs_path *path, 33 int data_size, int extend); 34 static int push_node_left(struct btrfs_trans_handle *trans, 35 struct extent_buffer *dst, 36 struct extent_buffer *src, int empty); 37 static int balance_node_right(struct btrfs_trans_handle *trans, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 41 static const struct btrfs_csums { 42 u16 size; 43 const char name[10]; 44 const char driver[12]; 45 } btrfs_csums[] = { 46 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 47 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 48 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 49 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 50 .driver = "blake2b-256" }, 51 }; 52 53 /* 54 * The leaf data grows from end-to-front in the node. this returns the address 55 * of the start of the last item, which is the stop of the leaf data stack. 56 */ 57 static unsigned int leaf_data_end(const struct extent_buffer *leaf) 58 { 59 u32 nr = btrfs_header_nritems(leaf); 60 61 if (nr == 0) 62 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 63 return btrfs_item_offset(leaf, nr - 1); 64 } 65 66 /* 67 * Move data in a @leaf (using memmove, safe for overlapping ranges). 68 * 69 * @leaf: leaf that we're doing a memmove on 70 * @dst_offset: item data offset we're moving to 71 * @src_offset: item data offset were' moving from 72 * @len: length of the data we're moving 73 * 74 * Wrapper around memmove_extent_buffer() that takes into account the header on 75 * the leaf. The btrfs_item offset's start directly after the header, so we 76 * have to adjust any offsets to account for the header in the leaf. This 77 * handles that math to simplify the callers. 78 */ 79 static inline void memmove_leaf_data(const struct extent_buffer *leaf, 80 unsigned long dst_offset, 81 unsigned long src_offset, 82 unsigned long len) 83 { 84 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset, 85 btrfs_item_nr_offset(leaf, 0) + src_offset, len); 86 } 87 88 /* 89 * Copy item data from @src into @dst at the given @offset. 90 * 91 * @dst: destination leaf that we're copying into 92 * @src: source leaf that we're copying from 93 * @dst_offset: item data offset we're copying to 94 * @src_offset: item data offset were' copying from 95 * @len: length of the data we're copying 96 * 97 * Wrapper around copy_extent_buffer() that takes into account the header on 98 * the leaf. The btrfs_item offset's start directly after the header, so we 99 * have to adjust any offsets to account for the header in the leaf. This 100 * handles that math to simplify the callers. 101 */ 102 static inline void copy_leaf_data(const struct extent_buffer *dst, 103 const struct extent_buffer *src, 104 unsigned long dst_offset, 105 unsigned long src_offset, unsigned long len) 106 { 107 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset, 108 btrfs_item_nr_offset(src, 0) + src_offset, len); 109 } 110 111 /* 112 * Move items in a @leaf (using memmove). 113 * 114 * @dst: destination leaf for the items 115 * @dst_item: the item nr we're copying into 116 * @src_item: the item nr we're copying from 117 * @nr_items: the number of items to copy 118 * 119 * Wrapper around memmove_extent_buffer() that does the math to get the 120 * appropriate offsets into the leaf from the item numbers. 121 */ 122 static inline void memmove_leaf_items(const struct extent_buffer *leaf, 123 int dst_item, int src_item, int nr_items) 124 { 125 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item), 126 btrfs_item_nr_offset(leaf, src_item), 127 nr_items * sizeof(struct btrfs_item)); 128 } 129 130 /* 131 * Copy items from @src into @dst at the given @offset. 132 * 133 * @dst: destination leaf for the items 134 * @src: source leaf for the items 135 * @dst_item: the item nr we're copying into 136 * @src_item: the item nr we're copying from 137 * @nr_items: the number of items to copy 138 * 139 * Wrapper around copy_extent_buffer() that does the math to get the 140 * appropriate offsets into the leaf from the item numbers. 141 */ 142 static inline void copy_leaf_items(const struct extent_buffer *dst, 143 const struct extent_buffer *src, 144 int dst_item, int src_item, int nr_items) 145 { 146 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item), 147 btrfs_item_nr_offset(src, src_item), 148 nr_items * sizeof(struct btrfs_item)); 149 } 150 151 /* This exists for btrfs-progs usages. */ 152 u16 btrfs_csum_type_size(u16 type) 153 { 154 return btrfs_csums[type].size; 155 } 156 157 int btrfs_super_csum_size(const struct btrfs_super_block *s) 158 { 159 u16 t = btrfs_super_csum_type(s); 160 /* 161 * csum type is validated at mount time 162 */ 163 return btrfs_csum_type_size(t); 164 } 165 166 const char *btrfs_super_csum_name(u16 csum_type) 167 { 168 /* csum type is validated at mount time */ 169 return btrfs_csums[csum_type].name; 170 } 171 172 /* 173 * Return driver name if defined, otherwise the name that's also a valid driver 174 * name 175 */ 176 const char *btrfs_super_csum_driver(u16 csum_type) 177 { 178 /* csum type is validated at mount time */ 179 return btrfs_csums[csum_type].driver[0] ? 180 btrfs_csums[csum_type].driver : 181 btrfs_csums[csum_type].name; 182 } 183 184 size_t __attribute_const__ btrfs_get_num_csums(void) 185 { 186 return ARRAY_SIZE(btrfs_csums); 187 } 188 189 struct btrfs_path *btrfs_alloc_path(void) 190 { 191 might_sleep(); 192 193 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 194 } 195 196 /* this also releases the path */ 197 void btrfs_free_path(struct btrfs_path *p) 198 { 199 if (!p) 200 return; 201 btrfs_release_path(p); 202 kmem_cache_free(btrfs_path_cachep, p); 203 } 204 205 /* 206 * path release drops references on the extent buffers in the path 207 * and it drops any locks held by this path 208 * 209 * It is safe to call this on paths that no locks or extent buffers held. 210 */ 211 noinline void btrfs_release_path(struct btrfs_path *p) 212 { 213 int i; 214 215 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 216 p->slots[i] = 0; 217 if (!p->nodes[i]) 218 continue; 219 if (p->locks[i]) { 220 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 221 p->locks[i] = 0; 222 } 223 free_extent_buffer(p->nodes[i]); 224 p->nodes[i] = NULL; 225 } 226 } 227 228 /* 229 * We want the transaction abort to print stack trace only for errors where the 230 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are 231 * caused by external factors. 232 */ 233 bool __cold abort_should_print_stack(int error) 234 { 235 switch (error) { 236 case -EIO: 237 case -EROFS: 238 case -ENOMEM: 239 return false; 240 } 241 return true; 242 } 243 244 /* 245 * safely gets a reference on the root node of a tree. A lock 246 * is not taken, so a concurrent writer may put a different node 247 * at the root of the tree. See btrfs_lock_root_node for the 248 * looping required. 249 * 250 * The extent buffer returned by this has a reference taken, so 251 * it won't disappear. It may stop being the root of the tree 252 * at any time because there are no locks held. 253 */ 254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 255 { 256 struct extent_buffer *eb; 257 258 while (1) { 259 rcu_read_lock(); 260 eb = rcu_dereference(root->node); 261 262 /* 263 * RCU really hurts here, we could free up the root node because 264 * it was COWed but we may not get the new root node yet so do 265 * the inc_not_zero dance and if it doesn't work then 266 * synchronize_rcu and try again. 267 */ 268 if (atomic_inc_not_zero(&eb->refs)) { 269 rcu_read_unlock(); 270 break; 271 } 272 rcu_read_unlock(); 273 synchronize_rcu(); 274 } 275 return eb; 276 } 277 278 /* 279 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 280 * just get put onto a simple dirty list. Transaction walks this list to make 281 * sure they get properly updated on disk. 282 */ 283 static void add_root_to_dirty_list(struct btrfs_root *root) 284 { 285 struct btrfs_fs_info *fs_info = root->fs_info; 286 287 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 288 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 289 return; 290 291 spin_lock(&fs_info->trans_lock); 292 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 293 /* Want the extent tree to be the last on the list */ 294 if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID) 295 list_move_tail(&root->dirty_list, 296 &fs_info->dirty_cowonly_roots); 297 else 298 list_move(&root->dirty_list, 299 &fs_info->dirty_cowonly_roots); 300 } 301 spin_unlock(&fs_info->trans_lock); 302 } 303 304 /* 305 * used by snapshot creation to make a copy of a root for a tree with 306 * a given objectid. The buffer with the new root node is returned in 307 * cow_ret, and this func returns zero on success or a negative error code. 308 */ 309 int btrfs_copy_root(struct btrfs_trans_handle *trans, 310 struct btrfs_root *root, 311 struct extent_buffer *buf, 312 struct extent_buffer **cow_ret, u64 new_root_objectid) 313 { 314 struct btrfs_fs_info *fs_info = root->fs_info; 315 struct extent_buffer *cow; 316 int ret = 0; 317 int level; 318 struct btrfs_disk_key disk_key; 319 u64 reloc_src_root = 0; 320 321 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 322 trans->transid != fs_info->running_transaction->transid); 323 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 324 trans->transid != btrfs_get_root_last_trans(root)); 325 326 level = btrfs_header_level(buf); 327 if (level == 0) 328 btrfs_item_key(buf, &disk_key, 0); 329 else 330 btrfs_node_key(buf, &disk_key, 0); 331 332 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 333 reloc_src_root = btrfs_header_owner(buf); 334 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 335 &disk_key, level, buf->start, 0, 336 reloc_src_root, BTRFS_NESTING_NEW_ROOT); 337 if (IS_ERR(cow)) 338 return PTR_ERR(cow); 339 340 copy_extent_buffer_full(cow, buf); 341 btrfs_set_header_bytenr(cow, cow->start); 342 btrfs_set_header_generation(cow, trans->transid); 343 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 344 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 345 BTRFS_HEADER_FLAG_RELOC); 346 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 347 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 348 else 349 btrfs_set_header_owner(cow, new_root_objectid); 350 351 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 352 353 WARN_ON(btrfs_header_generation(buf) > trans->transid); 354 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 355 ret = btrfs_inc_ref(trans, root, cow, 1); 356 else 357 ret = btrfs_inc_ref(trans, root, cow, 0); 358 if (ret) { 359 btrfs_tree_unlock(cow); 360 free_extent_buffer(cow); 361 btrfs_abort_transaction(trans, ret); 362 return ret; 363 } 364 365 btrfs_mark_buffer_dirty(trans, cow); 366 *cow_ret = cow; 367 return 0; 368 } 369 370 /* 371 * check if the tree block can be shared by multiple trees 372 */ 373 bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans, 374 struct btrfs_root *root, 375 struct extent_buffer *buf) 376 { 377 const u64 buf_gen = btrfs_header_generation(buf); 378 379 /* 380 * Tree blocks not in shareable trees and tree roots are never shared. 381 * If a block was allocated after the last snapshot and the block was 382 * not allocated by tree relocation, we know the block is not shared. 383 */ 384 385 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 386 return false; 387 388 if (buf == root->node) 389 return false; 390 391 if (buf_gen > btrfs_root_last_snapshot(&root->root_item) && 392 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) 393 return false; 394 395 if (buf != root->commit_root) 396 return true; 397 398 /* 399 * An extent buffer that used to be the commit root may still be shared 400 * because the tree height may have increased and it became a child of a 401 * higher level root. This can happen when snapshotting a subvolume 402 * created in the current transaction. 403 */ 404 if (buf_gen == trans->transid) 405 return true; 406 407 return false; 408 } 409 410 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 411 struct btrfs_root *root, 412 struct extent_buffer *buf, 413 struct extent_buffer *cow, 414 int *last_ref) 415 { 416 struct btrfs_fs_info *fs_info = root->fs_info; 417 u64 refs; 418 u64 owner; 419 u64 flags; 420 int ret; 421 422 /* 423 * Backrefs update rules: 424 * 425 * Always use full backrefs for extent pointers in tree block 426 * allocated by tree relocation. 427 * 428 * If a shared tree block is no longer referenced by its owner 429 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 430 * use full backrefs for extent pointers in tree block. 431 * 432 * If a tree block is been relocating 433 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 434 * use full backrefs for extent pointers in tree block. 435 * The reason for this is some operations (such as drop tree) 436 * are only allowed for blocks use full backrefs. 437 */ 438 439 if (btrfs_block_can_be_shared(trans, root, buf)) { 440 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 441 btrfs_header_level(buf), 1, 442 &refs, &flags, NULL); 443 if (ret) 444 return ret; 445 if (unlikely(refs == 0)) { 446 btrfs_crit(fs_info, 447 "found 0 references for tree block at bytenr %llu level %d root %llu", 448 buf->start, btrfs_header_level(buf), 449 btrfs_root_id(root)); 450 ret = -EUCLEAN; 451 btrfs_abort_transaction(trans, ret); 452 return ret; 453 } 454 } else { 455 refs = 1; 456 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID || 457 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 458 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 459 else 460 flags = 0; 461 } 462 463 owner = btrfs_header_owner(buf); 464 if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID && 465 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) { 466 btrfs_crit(fs_info, 467 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set", 468 buf->start, btrfs_header_level(buf), 469 btrfs_root_id(root), refs, flags); 470 ret = -EUCLEAN; 471 btrfs_abort_transaction(trans, ret); 472 return ret; 473 } 474 475 if (refs > 1) { 476 if ((owner == btrfs_root_id(root) || 477 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) && 478 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 479 ret = btrfs_inc_ref(trans, root, buf, 1); 480 if (ret) 481 return ret; 482 483 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) { 484 ret = btrfs_dec_ref(trans, root, buf, 0); 485 if (ret) 486 return ret; 487 ret = btrfs_inc_ref(trans, root, cow, 1); 488 if (ret) 489 return ret; 490 } 491 ret = btrfs_set_disk_extent_flags(trans, buf, 492 BTRFS_BLOCK_FLAG_FULL_BACKREF); 493 if (ret) 494 return ret; 495 } else { 496 497 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 498 ret = btrfs_inc_ref(trans, root, cow, 1); 499 else 500 ret = btrfs_inc_ref(trans, root, cow, 0); 501 if (ret) 502 return ret; 503 } 504 } else { 505 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 506 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 507 ret = btrfs_inc_ref(trans, root, cow, 1); 508 else 509 ret = btrfs_inc_ref(trans, root, cow, 0); 510 if (ret) 511 return ret; 512 ret = btrfs_dec_ref(trans, root, buf, 1); 513 if (ret) 514 return ret; 515 } 516 btrfs_clear_buffer_dirty(trans, buf); 517 *last_ref = 1; 518 } 519 return 0; 520 } 521 522 /* 523 * does the dirty work in cow of a single block. The parent block (if 524 * supplied) is updated to point to the new cow copy. The new buffer is marked 525 * dirty and returned locked. If you modify the block it needs to be marked 526 * dirty again. 527 * 528 * search_start -- an allocation hint for the new block 529 * 530 * empty_size -- a hint that you plan on doing more cow. This is the size in 531 * bytes the allocator should try to find free next to the block it returns. 532 * This is just a hint and may be ignored by the allocator. 533 */ 534 int btrfs_force_cow_block(struct btrfs_trans_handle *trans, 535 struct btrfs_root *root, 536 struct extent_buffer *buf, 537 struct extent_buffer *parent, int parent_slot, 538 struct extent_buffer **cow_ret, 539 u64 search_start, u64 empty_size, 540 enum btrfs_lock_nesting nest) 541 { 542 struct btrfs_fs_info *fs_info = root->fs_info; 543 struct btrfs_disk_key disk_key; 544 struct extent_buffer *cow; 545 int level, ret; 546 int last_ref = 0; 547 int unlock_orig = 0; 548 u64 parent_start = 0; 549 u64 reloc_src_root = 0; 550 551 if (*cow_ret == buf) 552 unlock_orig = 1; 553 554 btrfs_assert_tree_write_locked(buf); 555 556 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 557 trans->transid != fs_info->running_transaction->transid); 558 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 559 trans->transid != btrfs_get_root_last_trans(root)); 560 561 level = btrfs_header_level(buf); 562 563 if (level == 0) 564 btrfs_item_key(buf, &disk_key, 0); 565 else 566 btrfs_node_key(buf, &disk_key, 0); 567 568 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) { 569 if (parent) 570 parent_start = parent->start; 571 reloc_src_root = btrfs_header_owner(buf); 572 } 573 cow = btrfs_alloc_tree_block(trans, root, parent_start, 574 btrfs_root_id(root), &disk_key, level, 575 search_start, empty_size, reloc_src_root, nest); 576 if (IS_ERR(cow)) 577 return PTR_ERR(cow); 578 579 /* cow is set to blocking by btrfs_init_new_buffer */ 580 581 copy_extent_buffer_full(cow, buf); 582 btrfs_set_header_bytenr(cow, cow->start); 583 btrfs_set_header_generation(cow, trans->transid); 584 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 585 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 586 BTRFS_HEADER_FLAG_RELOC); 587 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 588 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 589 else 590 btrfs_set_header_owner(cow, btrfs_root_id(root)); 591 592 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 593 594 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 595 if (ret) { 596 btrfs_abort_transaction(trans, ret); 597 goto error_unlock_cow; 598 } 599 600 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 601 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 602 if (ret) { 603 btrfs_abort_transaction(trans, ret); 604 goto error_unlock_cow; 605 } 606 } 607 608 if (buf == root->node) { 609 WARN_ON(parent && parent != buf); 610 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID || 611 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 612 parent_start = buf->start; 613 614 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true); 615 if (ret < 0) { 616 btrfs_abort_transaction(trans, ret); 617 goto error_unlock_cow; 618 } 619 atomic_inc(&cow->refs); 620 rcu_assign_pointer(root->node, cow); 621 622 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf, 623 parent_start, last_ref); 624 free_extent_buffer(buf); 625 add_root_to_dirty_list(root); 626 if (ret < 0) { 627 btrfs_abort_transaction(trans, ret); 628 goto error_unlock_cow; 629 } 630 } else { 631 WARN_ON(trans->transid != btrfs_header_generation(parent)); 632 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot, 633 BTRFS_MOD_LOG_KEY_REPLACE); 634 if (ret) { 635 btrfs_abort_transaction(trans, ret); 636 goto error_unlock_cow; 637 } 638 btrfs_set_node_blockptr(parent, parent_slot, 639 cow->start); 640 btrfs_set_node_ptr_generation(parent, parent_slot, 641 trans->transid); 642 btrfs_mark_buffer_dirty(trans, parent); 643 if (last_ref) { 644 ret = btrfs_tree_mod_log_free_eb(buf); 645 if (ret) { 646 btrfs_abort_transaction(trans, ret); 647 goto error_unlock_cow; 648 } 649 } 650 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf, 651 parent_start, last_ref); 652 if (ret < 0) { 653 btrfs_abort_transaction(trans, ret); 654 goto error_unlock_cow; 655 } 656 } 657 if (unlock_orig) 658 btrfs_tree_unlock(buf); 659 free_extent_buffer_stale(buf); 660 btrfs_mark_buffer_dirty(trans, cow); 661 *cow_ret = cow; 662 return 0; 663 664 error_unlock_cow: 665 btrfs_tree_unlock(cow); 666 free_extent_buffer(cow); 667 return ret; 668 } 669 670 static inline int should_cow_block(struct btrfs_trans_handle *trans, 671 struct btrfs_root *root, 672 struct extent_buffer *buf) 673 { 674 if (btrfs_is_testing(root->fs_info)) 675 return 0; 676 677 /* Ensure we can see the FORCE_COW bit */ 678 smp_mb__before_atomic(); 679 680 /* 681 * We do not need to cow a block if 682 * 1) this block is not created or changed in this transaction; 683 * 2) this block does not belong to TREE_RELOC tree; 684 * 3) the root is not forced COW. 685 * 686 * What is forced COW: 687 * when we create snapshot during committing the transaction, 688 * after we've finished copying src root, we must COW the shared 689 * block to ensure the metadata consistency. 690 */ 691 if (btrfs_header_generation(buf) == trans->transid && 692 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 693 !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 694 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 695 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 696 return 0; 697 return 1; 698 } 699 700 /* 701 * COWs a single block, see btrfs_force_cow_block() for the real work. 702 * This version of it has extra checks so that a block isn't COWed more than 703 * once per transaction, as long as it hasn't been written yet 704 */ 705 int btrfs_cow_block(struct btrfs_trans_handle *trans, 706 struct btrfs_root *root, struct extent_buffer *buf, 707 struct extent_buffer *parent, int parent_slot, 708 struct extent_buffer **cow_ret, 709 enum btrfs_lock_nesting nest) 710 { 711 struct btrfs_fs_info *fs_info = root->fs_info; 712 u64 search_start; 713 int ret; 714 715 if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) { 716 btrfs_abort_transaction(trans, -EUCLEAN); 717 btrfs_crit(fs_info, 718 "attempt to COW block %llu on root %llu that is being deleted", 719 buf->start, btrfs_root_id(root)); 720 return -EUCLEAN; 721 } 722 723 /* 724 * COWing must happen through a running transaction, which always 725 * matches the current fs generation (it's a transaction with a state 726 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs 727 * into error state to prevent the commit of any transaction. 728 */ 729 if (unlikely(trans->transaction != fs_info->running_transaction || 730 trans->transid != fs_info->generation)) { 731 btrfs_abort_transaction(trans, -EUCLEAN); 732 btrfs_crit(fs_info, 733 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu", 734 buf->start, btrfs_root_id(root), trans->transid, 735 fs_info->running_transaction->transid, 736 fs_info->generation); 737 return -EUCLEAN; 738 } 739 740 if (!should_cow_block(trans, root, buf)) { 741 *cow_ret = buf; 742 return 0; 743 } 744 745 search_start = round_down(buf->start, SZ_1G); 746 747 /* 748 * Before CoWing this block for later modification, check if it's 749 * the subtree root and do the delayed subtree trace if needed. 750 * 751 * Also We don't care about the error, as it's handled internally. 752 */ 753 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 754 ret = btrfs_force_cow_block(trans, root, buf, parent, parent_slot, 755 cow_ret, search_start, 0, nest); 756 757 trace_btrfs_cow_block(root, buf, *cow_ret); 758 759 return ret; 760 } 761 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO); 762 763 /* 764 * same as comp_keys only with two btrfs_key's 765 */ 766 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 767 { 768 if (k1->objectid > k2->objectid) 769 return 1; 770 if (k1->objectid < k2->objectid) 771 return -1; 772 if (k1->type > k2->type) 773 return 1; 774 if (k1->type < k2->type) 775 return -1; 776 if (k1->offset > k2->offset) 777 return 1; 778 if (k1->offset < k2->offset) 779 return -1; 780 return 0; 781 } 782 783 /* 784 * Search for a key in the given extent_buffer. 785 * 786 * The lower boundary for the search is specified by the slot number @first_slot. 787 * Use a value of 0 to search over the whole extent buffer. Works for both 788 * leaves and nodes. 789 * 790 * The slot in the extent buffer is returned via @slot. If the key exists in the 791 * extent buffer, then @slot will point to the slot where the key is, otherwise 792 * it points to the slot where you would insert the key. 793 * 794 * Slot may point to the total number of items (i.e. one position beyond the last 795 * key) if the key is bigger than the last key in the extent buffer. 796 */ 797 int btrfs_bin_search(struct extent_buffer *eb, int first_slot, 798 const struct btrfs_key *key, int *slot) 799 { 800 unsigned long p; 801 int item_size; 802 /* 803 * Use unsigned types for the low and high slots, so that we get a more 804 * efficient division in the search loop below. 805 */ 806 u32 low = first_slot; 807 u32 high = btrfs_header_nritems(eb); 808 int ret; 809 const int key_size = sizeof(struct btrfs_disk_key); 810 811 if (unlikely(low > high)) { 812 btrfs_err(eb->fs_info, 813 "%s: low (%u) > high (%u) eb %llu owner %llu level %d", 814 __func__, low, high, eb->start, 815 btrfs_header_owner(eb), btrfs_header_level(eb)); 816 return -EINVAL; 817 } 818 819 if (btrfs_header_level(eb) == 0) { 820 p = offsetof(struct btrfs_leaf, items); 821 item_size = sizeof(struct btrfs_item); 822 } else { 823 p = offsetof(struct btrfs_node, ptrs); 824 item_size = sizeof(struct btrfs_key_ptr); 825 } 826 827 while (low < high) { 828 const int unit_size = eb->folio_size; 829 unsigned long oil; 830 unsigned long offset; 831 struct btrfs_disk_key *tmp; 832 struct btrfs_disk_key unaligned; 833 int mid; 834 835 mid = (low + high) / 2; 836 offset = p + mid * item_size; 837 oil = get_eb_offset_in_folio(eb, offset); 838 839 if (oil + key_size <= unit_size) { 840 const unsigned long idx = get_eb_folio_index(eb, offset); 841 char *kaddr = folio_address(eb->folios[idx]); 842 843 oil = get_eb_offset_in_folio(eb, offset); 844 tmp = (struct btrfs_disk_key *)(kaddr + oil); 845 } else { 846 read_extent_buffer(eb, &unaligned, offset, key_size); 847 tmp = &unaligned; 848 } 849 850 ret = btrfs_comp_keys(tmp, key); 851 852 if (ret < 0) 853 low = mid + 1; 854 else if (ret > 0) 855 high = mid; 856 else { 857 *slot = mid; 858 return 0; 859 } 860 } 861 *slot = low; 862 return 1; 863 } 864 865 static void root_add_used_bytes(struct btrfs_root *root) 866 { 867 spin_lock(&root->accounting_lock); 868 btrfs_set_root_used(&root->root_item, 869 btrfs_root_used(&root->root_item) + root->fs_info->nodesize); 870 spin_unlock(&root->accounting_lock); 871 } 872 873 static void root_sub_used_bytes(struct btrfs_root *root) 874 { 875 spin_lock(&root->accounting_lock); 876 btrfs_set_root_used(&root->root_item, 877 btrfs_root_used(&root->root_item) - root->fs_info->nodesize); 878 spin_unlock(&root->accounting_lock); 879 } 880 881 /* given a node and slot number, this reads the blocks it points to. The 882 * extent buffer is returned with a reference taken (but unlocked). 883 */ 884 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 885 int slot) 886 { 887 int level = btrfs_header_level(parent); 888 struct btrfs_tree_parent_check check = { 0 }; 889 struct extent_buffer *eb; 890 891 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 892 return ERR_PTR(-ENOENT); 893 894 ASSERT(level); 895 896 check.level = level - 1; 897 check.transid = btrfs_node_ptr_generation(parent, slot); 898 check.owner_root = btrfs_header_owner(parent); 899 check.has_first_key = true; 900 btrfs_node_key_to_cpu(parent, &check.first_key, slot); 901 902 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 903 &check); 904 if (IS_ERR(eb)) 905 return eb; 906 if (!extent_buffer_uptodate(eb)) { 907 free_extent_buffer(eb); 908 return ERR_PTR(-EIO); 909 } 910 911 return eb; 912 } 913 914 /* 915 * node level balancing, used to make sure nodes are in proper order for 916 * item deletion. We balance from the top down, so we have to make sure 917 * that a deletion won't leave an node completely empty later on. 918 */ 919 static noinline int balance_level(struct btrfs_trans_handle *trans, 920 struct btrfs_root *root, 921 struct btrfs_path *path, int level) 922 { 923 struct btrfs_fs_info *fs_info = root->fs_info; 924 struct extent_buffer *right = NULL; 925 struct extent_buffer *mid; 926 struct extent_buffer *left = NULL; 927 struct extent_buffer *parent = NULL; 928 int ret = 0; 929 int wret; 930 int pslot; 931 int orig_slot = path->slots[level]; 932 u64 orig_ptr; 933 934 ASSERT(level > 0); 935 936 mid = path->nodes[level]; 937 938 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK); 939 WARN_ON(btrfs_header_generation(mid) != trans->transid); 940 941 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 942 943 if (level < BTRFS_MAX_LEVEL - 1) { 944 parent = path->nodes[level + 1]; 945 pslot = path->slots[level + 1]; 946 } 947 948 /* 949 * deal with the case where there is only one pointer in the root 950 * by promoting the node below to a root 951 */ 952 if (!parent) { 953 struct extent_buffer *child; 954 955 if (btrfs_header_nritems(mid) != 1) 956 return 0; 957 958 /* promote the child to a root */ 959 child = btrfs_read_node_slot(mid, 0); 960 if (IS_ERR(child)) { 961 ret = PTR_ERR(child); 962 goto out; 963 } 964 965 btrfs_tree_lock(child); 966 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 967 BTRFS_NESTING_COW); 968 if (ret) { 969 btrfs_tree_unlock(child); 970 free_extent_buffer(child); 971 goto out; 972 } 973 974 ret = btrfs_tree_mod_log_insert_root(root->node, child, true); 975 if (ret < 0) { 976 btrfs_tree_unlock(child); 977 free_extent_buffer(child); 978 btrfs_abort_transaction(trans, ret); 979 goto out; 980 } 981 rcu_assign_pointer(root->node, child); 982 983 add_root_to_dirty_list(root); 984 btrfs_tree_unlock(child); 985 986 path->locks[level] = 0; 987 path->nodes[level] = NULL; 988 btrfs_clear_buffer_dirty(trans, mid); 989 btrfs_tree_unlock(mid); 990 /* once for the path */ 991 free_extent_buffer(mid); 992 993 root_sub_used_bytes(root); 994 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); 995 /* once for the root ptr */ 996 free_extent_buffer_stale(mid); 997 if (ret < 0) { 998 btrfs_abort_transaction(trans, ret); 999 goto out; 1000 } 1001 return 0; 1002 } 1003 if (btrfs_header_nritems(mid) > 1004 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1005 return 0; 1006 1007 if (pslot) { 1008 left = btrfs_read_node_slot(parent, pslot - 1); 1009 if (IS_ERR(left)) { 1010 ret = PTR_ERR(left); 1011 left = NULL; 1012 goto out; 1013 } 1014 1015 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT); 1016 wret = btrfs_cow_block(trans, root, left, 1017 parent, pslot - 1, &left, 1018 BTRFS_NESTING_LEFT_COW); 1019 if (wret) { 1020 ret = wret; 1021 goto out; 1022 } 1023 } 1024 1025 if (pslot + 1 < btrfs_header_nritems(parent)) { 1026 right = btrfs_read_node_slot(parent, pslot + 1); 1027 if (IS_ERR(right)) { 1028 ret = PTR_ERR(right); 1029 right = NULL; 1030 goto out; 1031 } 1032 1033 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT); 1034 wret = btrfs_cow_block(trans, root, right, 1035 parent, pslot + 1, &right, 1036 BTRFS_NESTING_RIGHT_COW); 1037 if (wret) { 1038 ret = wret; 1039 goto out; 1040 } 1041 } 1042 1043 /* first, try to make some room in the middle buffer */ 1044 if (left) { 1045 orig_slot += btrfs_header_nritems(left); 1046 wret = push_node_left(trans, left, mid, 1); 1047 if (wret < 0) 1048 ret = wret; 1049 } 1050 1051 /* 1052 * then try to empty the right most buffer into the middle 1053 */ 1054 if (right) { 1055 wret = push_node_left(trans, mid, right, 1); 1056 if (wret < 0 && wret != -ENOSPC) 1057 ret = wret; 1058 if (btrfs_header_nritems(right) == 0) { 1059 btrfs_clear_buffer_dirty(trans, right); 1060 btrfs_tree_unlock(right); 1061 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1); 1062 if (ret < 0) { 1063 free_extent_buffer_stale(right); 1064 right = NULL; 1065 goto out; 1066 } 1067 root_sub_used_bytes(root); 1068 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), 1069 right, 0, 1); 1070 free_extent_buffer_stale(right); 1071 right = NULL; 1072 if (ret < 0) { 1073 btrfs_abort_transaction(trans, ret); 1074 goto out; 1075 } 1076 } else { 1077 struct btrfs_disk_key right_key; 1078 btrfs_node_key(right, &right_key, 0); 1079 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1080 BTRFS_MOD_LOG_KEY_REPLACE); 1081 if (ret < 0) { 1082 btrfs_abort_transaction(trans, ret); 1083 goto out; 1084 } 1085 btrfs_set_node_key(parent, &right_key, pslot + 1); 1086 btrfs_mark_buffer_dirty(trans, parent); 1087 } 1088 } 1089 if (btrfs_header_nritems(mid) == 1) { 1090 /* 1091 * we're not allowed to leave a node with one item in the 1092 * tree during a delete. A deletion from lower in the tree 1093 * could try to delete the only pointer in this node. 1094 * So, pull some keys from the left. 1095 * There has to be a left pointer at this point because 1096 * otherwise we would have pulled some pointers from the 1097 * right 1098 */ 1099 if (unlikely(!left)) { 1100 btrfs_crit(fs_info, 1101 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu", 1102 parent->start, btrfs_header_level(parent), 1103 mid->start, btrfs_root_id(root)); 1104 ret = -EUCLEAN; 1105 btrfs_abort_transaction(trans, ret); 1106 goto out; 1107 } 1108 wret = balance_node_right(trans, mid, left); 1109 if (wret < 0) { 1110 ret = wret; 1111 goto out; 1112 } 1113 if (wret == 1) { 1114 wret = push_node_left(trans, left, mid, 1); 1115 if (wret < 0) 1116 ret = wret; 1117 } 1118 BUG_ON(wret == 1); 1119 } 1120 if (btrfs_header_nritems(mid) == 0) { 1121 btrfs_clear_buffer_dirty(trans, mid); 1122 btrfs_tree_unlock(mid); 1123 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot); 1124 if (ret < 0) { 1125 free_extent_buffer_stale(mid); 1126 mid = NULL; 1127 goto out; 1128 } 1129 root_sub_used_bytes(root); 1130 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); 1131 free_extent_buffer_stale(mid); 1132 mid = NULL; 1133 if (ret < 0) { 1134 btrfs_abort_transaction(trans, ret); 1135 goto out; 1136 } 1137 } else { 1138 /* update the parent key to reflect our changes */ 1139 struct btrfs_disk_key mid_key; 1140 btrfs_node_key(mid, &mid_key, 0); 1141 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1142 BTRFS_MOD_LOG_KEY_REPLACE); 1143 if (ret < 0) { 1144 btrfs_abort_transaction(trans, ret); 1145 goto out; 1146 } 1147 btrfs_set_node_key(parent, &mid_key, pslot); 1148 btrfs_mark_buffer_dirty(trans, parent); 1149 } 1150 1151 /* update the path */ 1152 if (left) { 1153 if (btrfs_header_nritems(left) > orig_slot) { 1154 atomic_inc(&left->refs); 1155 /* left was locked after cow */ 1156 path->nodes[level] = left; 1157 path->slots[level + 1] -= 1; 1158 path->slots[level] = orig_slot; 1159 if (mid) { 1160 btrfs_tree_unlock(mid); 1161 free_extent_buffer(mid); 1162 } 1163 } else { 1164 orig_slot -= btrfs_header_nritems(left); 1165 path->slots[level] = orig_slot; 1166 } 1167 } 1168 /* double check we haven't messed things up */ 1169 if (orig_ptr != 1170 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1171 BUG(); 1172 out: 1173 if (right) { 1174 btrfs_tree_unlock(right); 1175 free_extent_buffer(right); 1176 } 1177 if (left) { 1178 if (path->nodes[level] != left) 1179 btrfs_tree_unlock(left); 1180 free_extent_buffer(left); 1181 } 1182 return ret; 1183 } 1184 1185 /* Node balancing for insertion. Here we only split or push nodes around 1186 * when they are completely full. This is also done top down, so we 1187 * have to be pessimistic. 1188 */ 1189 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1190 struct btrfs_root *root, 1191 struct btrfs_path *path, int level) 1192 { 1193 struct btrfs_fs_info *fs_info = root->fs_info; 1194 struct extent_buffer *right = NULL; 1195 struct extent_buffer *mid; 1196 struct extent_buffer *left = NULL; 1197 struct extent_buffer *parent = NULL; 1198 int ret = 0; 1199 int wret; 1200 int pslot; 1201 int orig_slot = path->slots[level]; 1202 1203 if (level == 0) 1204 return 1; 1205 1206 mid = path->nodes[level]; 1207 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1208 1209 if (level < BTRFS_MAX_LEVEL - 1) { 1210 parent = path->nodes[level + 1]; 1211 pslot = path->slots[level + 1]; 1212 } 1213 1214 if (!parent) 1215 return 1; 1216 1217 /* first, try to make some room in the middle buffer */ 1218 if (pslot) { 1219 u32 left_nr; 1220 1221 left = btrfs_read_node_slot(parent, pslot - 1); 1222 if (IS_ERR(left)) 1223 return PTR_ERR(left); 1224 1225 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT); 1226 1227 left_nr = btrfs_header_nritems(left); 1228 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1229 wret = 1; 1230 } else { 1231 ret = btrfs_cow_block(trans, root, left, parent, 1232 pslot - 1, &left, 1233 BTRFS_NESTING_LEFT_COW); 1234 if (ret) 1235 wret = 1; 1236 else { 1237 wret = push_node_left(trans, left, mid, 0); 1238 } 1239 } 1240 if (wret < 0) 1241 ret = wret; 1242 if (wret == 0) { 1243 struct btrfs_disk_key disk_key; 1244 orig_slot += left_nr; 1245 btrfs_node_key(mid, &disk_key, 0); 1246 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1247 BTRFS_MOD_LOG_KEY_REPLACE); 1248 if (ret < 0) { 1249 btrfs_tree_unlock(left); 1250 free_extent_buffer(left); 1251 btrfs_abort_transaction(trans, ret); 1252 return ret; 1253 } 1254 btrfs_set_node_key(parent, &disk_key, pslot); 1255 btrfs_mark_buffer_dirty(trans, parent); 1256 if (btrfs_header_nritems(left) > orig_slot) { 1257 path->nodes[level] = left; 1258 path->slots[level + 1] -= 1; 1259 path->slots[level] = orig_slot; 1260 btrfs_tree_unlock(mid); 1261 free_extent_buffer(mid); 1262 } else { 1263 orig_slot -= 1264 btrfs_header_nritems(left); 1265 path->slots[level] = orig_slot; 1266 btrfs_tree_unlock(left); 1267 free_extent_buffer(left); 1268 } 1269 return 0; 1270 } 1271 btrfs_tree_unlock(left); 1272 free_extent_buffer(left); 1273 } 1274 1275 /* 1276 * then try to empty the right most buffer into the middle 1277 */ 1278 if (pslot + 1 < btrfs_header_nritems(parent)) { 1279 u32 right_nr; 1280 1281 right = btrfs_read_node_slot(parent, pslot + 1); 1282 if (IS_ERR(right)) 1283 return PTR_ERR(right); 1284 1285 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT); 1286 1287 right_nr = btrfs_header_nritems(right); 1288 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1289 wret = 1; 1290 } else { 1291 ret = btrfs_cow_block(trans, root, right, 1292 parent, pslot + 1, 1293 &right, BTRFS_NESTING_RIGHT_COW); 1294 if (ret) 1295 wret = 1; 1296 else { 1297 wret = balance_node_right(trans, right, mid); 1298 } 1299 } 1300 if (wret < 0) 1301 ret = wret; 1302 if (wret == 0) { 1303 struct btrfs_disk_key disk_key; 1304 1305 btrfs_node_key(right, &disk_key, 0); 1306 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1307 BTRFS_MOD_LOG_KEY_REPLACE); 1308 if (ret < 0) { 1309 btrfs_tree_unlock(right); 1310 free_extent_buffer(right); 1311 btrfs_abort_transaction(trans, ret); 1312 return ret; 1313 } 1314 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1315 btrfs_mark_buffer_dirty(trans, parent); 1316 1317 if (btrfs_header_nritems(mid) <= orig_slot) { 1318 path->nodes[level] = right; 1319 path->slots[level + 1] += 1; 1320 path->slots[level] = orig_slot - 1321 btrfs_header_nritems(mid); 1322 btrfs_tree_unlock(mid); 1323 free_extent_buffer(mid); 1324 } else { 1325 btrfs_tree_unlock(right); 1326 free_extent_buffer(right); 1327 } 1328 return 0; 1329 } 1330 btrfs_tree_unlock(right); 1331 free_extent_buffer(right); 1332 } 1333 return 1; 1334 } 1335 1336 /* 1337 * readahead one full node of leaves, finding things that are close 1338 * to the block in 'slot', and triggering ra on them. 1339 */ 1340 static void reada_for_search(struct btrfs_fs_info *fs_info, 1341 struct btrfs_path *path, 1342 int level, int slot, u64 objectid) 1343 { 1344 struct extent_buffer *node; 1345 struct btrfs_disk_key disk_key; 1346 u32 nritems; 1347 u64 search; 1348 u64 target; 1349 u64 nread = 0; 1350 u64 nread_max; 1351 u32 nr; 1352 u32 blocksize; 1353 u32 nscan = 0; 1354 1355 if (level != 1 && path->reada != READA_FORWARD_ALWAYS) 1356 return; 1357 1358 if (!path->nodes[level]) 1359 return; 1360 1361 node = path->nodes[level]; 1362 1363 /* 1364 * Since the time between visiting leaves is much shorter than the time 1365 * between visiting nodes, limit read ahead of nodes to 1, to avoid too 1366 * much IO at once (possibly random). 1367 */ 1368 if (path->reada == READA_FORWARD_ALWAYS) { 1369 if (level > 1) 1370 nread_max = node->fs_info->nodesize; 1371 else 1372 nread_max = SZ_128K; 1373 } else { 1374 nread_max = SZ_64K; 1375 } 1376 1377 search = btrfs_node_blockptr(node, slot); 1378 blocksize = fs_info->nodesize; 1379 if (path->reada != READA_FORWARD_ALWAYS) { 1380 struct extent_buffer *eb; 1381 1382 eb = find_extent_buffer(fs_info, search); 1383 if (eb) { 1384 free_extent_buffer(eb); 1385 return; 1386 } 1387 } 1388 1389 target = search; 1390 1391 nritems = btrfs_header_nritems(node); 1392 nr = slot; 1393 1394 while (1) { 1395 if (path->reada == READA_BACK) { 1396 if (nr == 0) 1397 break; 1398 nr--; 1399 } else if (path->reada == READA_FORWARD || 1400 path->reada == READA_FORWARD_ALWAYS) { 1401 nr++; 1402 if (nr >= nritems) 1403 break; 1404 } 1405 if (path->reada == READA_BACK && objectid) { 1406 btrfs_node_key(node, &disk_key, nr); 1407 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1408 break; 1409 } 1410 search = btrfs_node_blockptr(node, nr); 1411 if (path->reada == READA_FORWARD_ALWAYS || 1412 (search <= target && target - search <= 65536) || 1413 (search > target && search - target <= 65536)) { 1414 btrfs_readahead_node_child(node, nr); 1415 nread += blocksize; 1416 } 1417 nscan++; 1418 if (nread > nread_max || nscan > 32) 1419 break; 1420 } 1421 } 1422 1423 static noinline void reada_for_balance(struct btrfs_path *path, int level) 1424 { 1425 struct extent_buffer *parent; 1426 int slot; 1427 int nritems; 1428 1429 parent = path->nodes[level + 1]; 1430 if (!parent) 1431 return; 1432 1433 nritems = btrfs_header_nritems(parent); 1434 slot = path->slots[level + 1]; 1435 1436 if (slot > 0) 1437 btrfs_readahead_node_child(parent, slot - 1); 1438 if (slot + 1 < nritems) 1439 btrfs_readahead_node_child(parent, slot + 1); 1440 } 1441 1442 1443 /* 1444 * when we walk down the tree, it is usually safe to unlock the higher layers 1445 * in the tree. The exceptions are when our path goes through slot 0, because 1446 * operations on the tree might require changing key pointers higher up in the 1447 * tree. 1448 * 1449 * callers might also have set path->keep_locks, which tells this code to keep 1450 * the lock if the path points to the last slot in the block. This is part of 1451 * walking through the tree, and selecting the next slot in the higher block. 1452 * 1453 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1454 * if lowest_unlock is 1, level 0 won't be unlocked 1455 */ 1456 static noinline void unlock_up(struct btrfs_path *path, int level, 1457 int lowest_unlock, int min_write_lock_level, 1458 int *write_lock_level) 1459 { 1460 int i; 1461 int skip_level = level; 1462 bool check_skip = true; 1463 1464 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1465 if (!path->nodes[i]) 1466 break; 1467 if (!path->locks[i]) 1468 break; 1469 1470 if (check_skip) { 1471 if (path->slots[i] == 0) { 1472 skip_level = i + 1; 1473 continue; 1474 } 1475 1476 if (path->keep_locks) { 1477 u32 nritems; 1478 1479 nritems = btrfs_header_nritems(path->nodes[i]); 1480 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1481 skip_level = i + 1; 1482 continue; 1483 } 1484 } 1485 } 1486 1487 if (i >= lowest_unlock && i > skip_level) { 1488 check_skip = false; 1489 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 1490 path->locks[i] = 0; 1491 if (write_lock_level && 1492 i > min_write_lock_level && 1493 i <= *write_lock_level) { 1494 *write_lock_level = i - 1; 1495 } 1496 } 1497 } 1498 } 1499 1500 /* 1501 * Helper function for btrfs_search_slot() and other functions that do a search 1502 * on a btree. The goal is to find a tree block in the cache (the radix tree at 1503 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read 1504 * its pages from disk. 1505 * 1506 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the 1507 * whole btree search, starting again from the current root node. 1508 */ 1509 static int 1510 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 1511 struct extent_buffer **eb_ret, int level, int slot, 1512 const struct btrfs_key *key) 1513 { 1514 struct btrfs_fs_info *fs_info = root->fs_info; 1515 struct btrfs_tree_parent_check check = { 0 }; 1516 u64 blocknr; 1517 u64 gen; 1518 struct extent_buffer *tmp; 1519 int ret; 1520 int parent_level; 1521 bool unlock_up; 1522 1523 unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]); 1524 blocknr = btrfs_node_blockptr(*eb_ret, slot); 1525 gen = btrfs_node_ptr_generation(*eb_ret, slot); 1526 parent_level = btrfs_header_level(*eb_ret); 1527 btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot); 1528 check.has_first_key = true; 1529 check.level = parent_level - 1; 1530 check.transid = gen; 1531 check.owner_root = btrfs_root_id(root); 1532 1533 /* 1534 * If we need to read an extent buffer from disk and we are holding locks 1535 * on upper level nodes, we unlock all the upper nodes before reading the 1536 * extent buffer, and then return -EAGAIN to the caller as it needs to 1537 * restart the search. We don't release the lock on the current level 1538 * because we need to walk this node to figure out which blocks to read. 1539 */ 1540 tmp = find_extent_buffer(fs_info, blocknr); 1541 if (tmp) { 1542 if (p->reada == READA_FORWARD_ALWAYS) 1543 reada_for_search(fs_info, p, level, slot, key->objectid); 1544 1545 /* first we do an atomic uptodate check */ 1546 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 1547 /* 1548 * Do extra check for first_key, eb can be stale due to 1549 * being cached, read from scrub, or have multiple 1550 * parents (shared tree blocks). 1551 */ 1552 if (btrfs_verify_level_key(tmp, 1553 parent_level - 1, &check.first_key, gen)) { 1554 free_extent_buffer(tmp); 1555 return -EUCLEAN; 1556 } 1557 *eb_ret = tmp; 1558 return 0; 1559 } 1560 1561 if (p->nowait) { 1562 free_extent_buffer(tmp); 1563 return -EAGAIN; 1564 } 1565 1566 if (unlock_up) 1567 btrfs_unlock_up_safe(p, level + 1); 1568 1569 /* now we're allowed to do a blocking uptodate check */ 1570 ret = btrfs_read_extent_buffer(tmp, &check); 1571 if (ret) { 1572 free_extent_buffer(tmp); 1573 btrfs_release_path(p); 1574 return ret; 1575 } 1576 1577 if (unlock_up) 1578 ret = -EAGAIN; 1579 1580 goto out; 1581 } else if (p->nowait) { 1582 return -EAGAIN; 1583 } 1584 1585 if (unlock_up) { 1586 btrfs_unlock_up_safe(p, level + 1); 1587 ret = -EAGAIN; 1588 } else { 1589 ret = 0; 1590 } 1591 1592 if (p->reada != READA_NONE) 1593 reada_for_search(fs_info, p, level, slot, key->objectid); 1594 1595 tmp = read_tree_block(fs_info, blocknr, &check); 1596 if (IS_ERR(tmp)) { 1597 btrfs_release_path(p); 1598 return PTR_ERR(tmp); 1599 } 1600 /* 1601 * If the read above didn't mark this buffer up to date, 1602 * it will never end up being up to date. Set ret to EIO now 1603 * and give up so that our caller doesn't loop forever 1604 * on our EAGAINs. 1605 */ 1606 if (!extent_buffer_uptodate(tmp)) 1607 ret = -EIO; 1608 1609 out: 1610 if (ret == 0) { 1611 *eb_ret = tmp; 1612 } else { 1613 free_extent_buffer(tmp); 1614 btrfs_release_path(p); 1615 } 1616 1617 return ret; 1618 } 1619 1620 /* 1621 * helper function for btrfs_search_slot. This does all of the checks 1622 * for node-level blocks and does any balancing required based on 1623 * the ins_len. 1624 * 1625 * If no extra work was required, zero is returned. If we had to 1626 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1627 * start over 1628 */ 1629 static int 1630 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1631 struct btrfs_root *root, struct btrfs_path *p, 1632 struct extent_buffer *b, int level, int ins_len, 1633 int *write_lock_level) 1634 { 1635 struct btrfs_fs_info *fs_info = root->fs_info; 1636 int ret = 0; 1637 1638 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1639 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 1640 1641 if (*write_lock_level < level + 1) { 1642 *write_lock_level = level + 1; 1643 btrfs_release_path(p); 1644 return -EAGAIN; 1645 } 1646 1647 reada_for_balance(p, level); 1648 ret = split_node(trans, root, p, level); 1649 1650 b = p->nodes[level]; 1651 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1652 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 1653 1654 if (*write_lock_level < level + 1) { 1655 *write_lock_level = level + 1; 1656 btrfs_release_path(p); 1657 return -EAGAIN; 1658 } 1659 1660 reada_for_balance(p, level); 1661 ret = balance_level(trans, root, p, level); 1662 if (ret) 1663 return ret; 1664 1665 b = p->nodes[level]; 1666 if (!b) { 1667 btrfs_release_path(p); 1668 return -EAGAIN; 1669 } 1670 BUG_ON(btrfs_header_nritems(b) == 1); 1671 } 1672 return ret; 1673 } 1674 1675 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 1676 u64 iobjectid, u64 ioff, u8 key_type, 1677 struct btrfs_key *found_key) 1678 { 1679 int ret; 1680 struct btrfs_key key; 1681 struct extent_buffer *eb; 1682 1683 ASSERT(path); 1684 ASSERT(found_key); 1685 1686 key.type = key_type; 1687 key.objectid = iobjectid; 1688 key.offset = ioff; 1689 1690 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1691 if (ret < 0) 1692 return ret; 1693 1694 eb = path->nodes[0]; 1695 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1696 ret = btrfs_next_leaf(fs_root, path); 1697 if (ret) 1698 return ret; 1699 eb = path->nodes[0]; 1700 } 1701 1702 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1703 if (found_key->type != key.type || 1704 found_key->objectid != key.objectid) 1705 return 1; 1706 1707 return 0; 1708 } 1709 1710 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 1711 struct btrfs_path *p, 1712 int write_lock_level) 1713 { 1714 struct extent_buffer *b; 1715 int root_lock = 0; 1716 int level = 0; 1717 1718 if (p->search_commit_root) { 1719 b = root->commit_root; 1720 atomic_inc(&b->refs); 1721 level = btrfs_header_level(b); 1722 /* 1723 * Ensure that all callers have set skip_locking when 1724 * p->search_commit_root = 1. 1725 */ 1726 ASSERT(p->skip_locking == 1); 1727 1728 goto out; 1729 } 1730 1731 if (p->skip_locking) { 1732 b = btrfs_root_node(root); 1733 level = btrfs_header_level(b); 1734 goto out; 1735 } 1736 1737 /* We try very hard to do read locks on the root */ 1738 root_lock = BTRFS_READ_LOCK; 1739 1740 /* 1741 * If the level is set to maximum, we can skip trying to get the read 1742 * lock. 1743 */ 1744 if (write_lock_level < BTRFS_MAX_LEVEL) { 1745 /* 1746 * We don't know the level of the root node until we actually 1747 * have it read locked 1748 */ 1749 if (p->nowait) { 1750 b = btrfs_try_read_lock_root_node(root); 1751 if (IS_ERR(b)) 1752 return b; 1753 } else { 1754 b = btrfs_read_lock_root_node(root); 1755 } 1756 level = btrfs_header_level(b); 1757 if (level > write_lock_level) 1758 goto out; 1759 1760 /* Whoops, must trade for write lock */ 1761 btrfs_tree_read_unlock(b); 1762 free_extent_buffer(b); 1763 } 1764 1765 b = btrfs_lock_root_node(root); 1766 root_lock = BTRFS_WRITE_LOCK; 1767 1768 /* The level might have changed, check again */ 1769 level = btrfs_header_level(b); 1770 1771 out: 1772 /* 1773 * The root may have failed to write out at some point, and thus is no 1774 * longer valid, return an error in this case. 1775 */ 1776 if (!extent_buffer_uptodate(b)) { 1777 if (root_lock) 1778 btrfs_tree_unlock_rw(b, root_lock); 1779 free_extent_buffer(b); 1780 return ERR_PTR(-EIO); 1781 } 1782 1783 p->nodes[level] = b; 1784 if (!p->skip_locking) 1785 p->locks[level] = root_lock; 1786 /* 1787 * Callers are responsible for dropping b's references. 1788 */ 1789 return b; 1790 } 1791 1792 /* 1793 * Replace the extent buffer at the lowest level of the path with a cloned 1794 * version. The purpose is to be able to use it safely, after releasing the 1795 * commit root semaphore, even if relocation is happening in parallel, the 1796 * transaction used for relocation is committed and the extent buffer is 1797 * reallocated in the next transaction. 1798 * 1799 * This is used in a context where the caller does not prevent transaction 1800 * commits from happening, either by holding a transaction handle or holding 1801 * some lock, while it's doing searches through a commit root. 1802 * At the moment it's only used for send operations. 1803 */ 1804 static int finish_need_commit_sem_search(struct btrfs_path *path) 1805 { 1806 const int i = path->lowest_level; 1807 const int slot = path->slots[i]; 1808 struct extent_buffer *lowest = path->nodes[i]; 1809 struct extent_buffer *clone; 1810 1811 ASSERT(path->need_commit_sem); 1812 1813 if (!lowest) 1814 return 0; 1815 1816 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem); 1817 1818 clone = btrfs_clone_extent_buffer(lowest); 1819 if (!clone) 1820 return -ENOMEM; 1821 1822 btrfs_release_path(path); 1823 path->nodes[i] = clone; 1824 path->slots[i] = slot; 1825 1826 return 0; 1827 } 1828 1829 static inline int search_for_key_slot(struct extent_buffer *eb, 1830 int search_low_slot, 1831 const struct btrfs_key *key, 1832 int prev_cmp, 1833 int *slot) 1834 { 1835 /* 1836 * If a previous call to btrfs_bin_search() on a parent node returned an 1837 * exact match (prev_cmp == 0), we can safely assume the target key will 1838 * always be at slot 0 on lower levels, since each key pointer 1839 * (struct btrfs_key_ptr) refers to the lowest key accessible from the 1840 * subtree it points to. Thus we can skip searching lower levels. 1841 */ 1842 if (prev_cmp == 0) { 1843 *slot = 0; 1844 return 0; 1845 } 1846 1847 return btrfs_bin_search(eb, search_low_slot, key, slot); 1848 } 1849 1850 static int search_leaf(struct btrfs_trans_handle *trans, 1851 struct btrfs_root *root, 1852 const struct btrfs_key *key, 1853 struct btrfs_path *path, 1854 int ins_len, 1855 int prev_cmp) 1856 { 1857 struct extent_buffer *leaf = path->nodes[0]; 1858 int leaf_free_space = -1; 1859 int search_low_slot = 0; 1860 int ret; 1861 bool do_bin_search = true; 1862 1863 /* 1864 * If we are doing an insertion, the leaf has enough free space and the 1865 * destination slot for the key is not slot 0, then we can unlock our 1866 * write lock on the parent, and any other upper nodes, before doing the 1867 * binary search on the leaf (with search_for_key_slot()), allowing other 1868 * tasks to lock the parent and any other upper nodes. 1869 */ 1870 if (ins_len > 0) { 1871 /* 1872 * Cache the leaf free space, since we will need it later and it 1873 * will not change until then. 1874 */ 1875 leaf_free_space = btrfs_leaf_free_space(leaf); 1876 1877 /* 1878 * !path->locks[1] means we have a single node tree, the leaf is 1879 * the root of the tree. 1880 */ 1881 if (path->locks[1] && leaf_free_space >= ins_len) { 1882 struct btrfs_disk_key first_key; 1883 1884 ASSERT(btrfs_header_nritems(leaf) > 0); 1885 btrfs_item_key(leaf, &first_key, 0); 1886 1887 /* 1888 * Doing the extra comparison with the first key is cheap, 1889 * taking into account that the first key is very likely 1890 * already in a cache line because it immediately follows 1891 * the extent buffer's header and we have recently accessed 1892 * the header's level field. 1893 */ 1894 ret = btrfs_comp_keys(&first_key, key); 1895 if (ret < 0) { 1896 /* 1897 * The first key is smaller than the key we want 1898 * to insert, so we are safe to unlock all upper 1899 * nodes and we have to do the binary search. 1900 * 1901 * We do use btrfs_unlock_up_safe() and not 1902 * unlock_up() because the later does not unlock 1903 * nodes with a slot of 0 - we can safely unlock 1904 * any node even if its slot is 0 since in this 1905 * case the key does not end up at slot 0 of the 1906 * leaf and there's no need to split the leaf. 1907 */ 1908 btrfs_unlock_up_safe(path, 1); 1909 search_low_slot = 1; 1910 } else { 1911 /* 1912 * The first key is >= then the key we want to 1913 * insert, so we can skip the binary search as 1914 * the target key will be at slot 0. 1915 * 1916 * We can not unlock upper nodes when the key is 1917 * less than the first key, because we will need 1918 * to update the key at slot 0 of the parent node 1919 * and possibly of other upper nodes too. 1920 * If the key matches the first key, then we can 1921 * unlock all the upper nodes, using 1922 * btrfs_unlock_up_safe() instead of unlock_up() 1923 * as stated above. 1924 */ 1925 if (ret == 0) 1926 btrfs_unlock_up_safe(path, 1); 1927 /* 1928 * ret is already 0 or 1, matching the result of 1929 * a btrfs_bin_search() call, so there is no need 1930 * to adjust it. 1931 */ 1932 do_bin_search = false; 1933 path->slots[0] = 0; 1934 } 1935 } 1936 } 1937 1938 if (do_bin_search) { 1939 ret = search_for_key_slot(leaf, search_low_slot, key, 1940 prev_cmp, &path->slots[0]); 1941 if (ret < 0) 1942 return ret; 1943 } 1944 1945 if (ins_len > 0) { 1946 /* 1947 * Item key already exists. In this case, if we are allowed to 1948 * insert the item (for example, in dir_item case, item key 1949 * collision is allowed), it will be merged with the original 1950 * item. Only the item size grows, no new btrfs item will be 1951 * added. If search_for_extension is not set, ins_len already 1952 * accounts the size btrfs_item, deduct it here so leaf space 1953 * check will be correct. 1954 */ 1955 if (ret == 0 && !path->search_for_extension) { 1956 ASSERT(ins_len >= sizeof(struct btrfs_item)); 1957 ins_len -= sizeof(struct btrfs_item); 1958 } 1959 1960 ASSERT(leaf_free_space >= 0); 1961 1962 if (leaf_free_space < ins_len) { 1963 int err; 1964 1965 err = split_leaf(trans, root, key, path, ins_len, 1966 (ret == 0)); 1967 ASSERT(err <= 0); 1968 if (WARN_ON(err > 0)) 1969 err = -EUCLEAN; 1970 if (err) 1971 ret = err; 1972 } 1973 } 1974 1975 return ret; 1976 } 1977 1978 /* 1979 * Look for a key in a tree and perform necessary modifications to preserve 1980 * tree invariants. 1981 * 1982 * @trans: Handle of transaction, used when modifying the tree 1983 * @p: Holds all btree nodes along the search path 1984 * @root: The root node of the tree 1985 * @key: The key we are looking for 1986 * @ins_len: Indicates purpose of search: 1987 * >0 for inserts it's size of item inserted (*) 1988 * <0 for deletions 1989 * 0 for plain searches, not modifying the tree 1990 * 1991 * (*) If size of item inserted doesn't include 1992 * sizeof(struct btrfs_item), then p->search_for_extension must 1993 * be set. 1994 * @cow: boolean should CoW operations be performed. Must always be 1 1995 * when modifying the tree. 1996 * 1997 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 1998 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 1999 * 2000 * If @key is found, 0 is returned and you can find the item in the leaf level 2001 * of the path (level 0) 2002 * 2003 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2004 * points to the slot where it should be inserted 2005 * 2006 * If an error is encountered while searching the tree a negative error number 2007 * is returned 2008 */ 2009 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2010 const struct btrfs_key *key, struct btrfs_path *p, 2011 int ins_len, int cow) 2012 { 2013 struct btrfs_fs_info *fs_info = root->fs_info; 2014 struct extent_buffer *b; 2015 int slot; 2016 int ret; 2017 int err; 2018 int level; 2019 int lowest_unlock = 1; 2020 /* everything at write_lock_level or lower must be write locked */ 2021 int write_lock_level = 0; 2022 u8 lowest_level = 0; 2023 int min_write_lock_level; 2024 int prev_cmp; 2025 2026 might_sleep(); 2027 2028 lowest_level = p->lowest_level; 2029 WARN_ON(lowest_level && ins_len > 0); 2030 WARN_ON(p->nodes[0] != NULL); 2031 BUG_ON(!cow && ins_len); 2032 2033 /* 2034 * For now only allow nowait for read only operations. There's no 2035 * strict reason why we can't, we just only need it for reads so it's 2036 * only implemented for reads. 2037 */ 2038 ASSERT(!p->nowait || !cow); 2039 2040 if (ins_len < 0) { 2041 lowest_unlock = 2; 2042 2043 /* when we are removing items, we might have to go up to level 2044 * two as we update tree pointers Make sure we keep write 2045 * for those levels as well 2046 */ 2047 write_lock_level = 2; 2048 } else if (ins_len > 0) { 2049 /* 2050 * for inserting items, make sure we have a write lock on 2051 * level 1 so we can update keys 2052 */ 2053 write_lock_level = 1; 2054 } 2055 2056 if (!cow) 2057 write_lock_level = -1; 2058 2059 if (cow && (p->keep_locks || p->lowest_level)) 2060 write_lock_level = BTRFS_MAX_LEVEL; 2061 2062 min_write_lock_level = write_lock_level; 2063 2064 if (p->need_commit_sem) { 2065 ASSERT(p->search_commit_root); 2066 if (p->nowait) { 2067 if (!down_read_trylock(&fs_info->commit_root_sem)) 2068 return -EAGAIN; 2069 } else { 2070 down_read(&fs_info->commit_root_sem); 2071 } 2072 } 2073 2074 again: 2075 prev_cmp = -1; 2076 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2077 if (IS_ERR(b)) { 2078 ret = PTR_ERR(b); 2079 goto done; 2080 } 2081 2082 while (b) { 2083 int dec = 0; 2084 2085 level = btrfs_header_level(b); 2086 2087 if (cow) { 2088 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2089 2090 /* 2091 * if we don't really need to cow this block 2092 * then we don't want to set the path blocking, 2093 * so we test it here 2094 */ 2095 if (!should_cow_block(trans, root, b)) 2096 goto cow_done; 2097 2098 /* 2099 * must have write locks on this node and the 2100 * parent 2101 */ 2102 if (level > write_lock_level || 2103 (level + 1 > write_lock_level && 2104 level + 1 < BTRFS_MAX_LEVEL && 2105 p->nodes[level + 1])) { 2106 write_lock_level = level + 1; 2107 btrfs_release_path(p); 2108 goto again; 2109 } 2110 2111 if (last_level) 2112 err = btrfs_cow_block(trans, root, b, NULL, 0, 2113 &b, 2114 BTRFS_NESTING_COW); 2115 else 2116 err = btrfs_cow_block(trans, root, b, 2117 p->nodes[level + 1], 2118 p->slots[level + 1], &b, 2119 BTRFS_NESTING_COW); 2120 if (err) { 2121 ret = err; 2122 goto done; 2123 } 2124 } 2125 cow_done: 2126 p->nodes[level] = b; 2127 2128 /* 2129 * we have a lock on b and as long as we aren't changing 2130 * the tree, there is no way to for the items in b to change. 2131 * It is safe to drop the lock on our parent before we 2132 * go through the expensive btree search on b. 2133 * 2134 * If we're inserting or deleting (ins_len != 0), then we might 2135 * be changing slot zero, which may require changing the parent. 2136 * So, we can't drop the lock until after we know which slot 2137 * we're operating on. 2138 */ 2139 if (!ins_len && !p->keep_locks) { 2140 int u = level + 1; 2141 2142 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2143 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2144 p->locks[u] = 0; 2145 } 2146 } 2147 2148 if (level == 0) { 2149 if (ins_len > 0) 2150 ASSERT(write_lock_level >= 1); 2151 2152 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp); 2153 if (!p->search_for_split) 2154 unlock_up(p, level, lowest_unlock, 2155 min_write_lock_level, NULL); 2156 goto done; 2157 } 2158 2159 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot); 2160 if (ret < 0) 2161 goto done; 2162 prev_cmp = ret; 2163 2164 if (ret && slot > 0) { 2165 dec = 1; 2166 slot--; 2167 } 2168 p->slots[level] = slot; 2169 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2170 &write_lock_level); 2171 if (err == -EAGAIN) 2172 goto again; 2173 if (err) { 2174 ret = err; 2175 goto done; 2176 } 2177 b = p->nodes[level]; 2178 slot = p->slots[level]; 2179 2180 /* 2181 * Slot 0 is special, if we change the key we have to update 2182 * the parent pointer which means we must have a write lock on 2183 * the parent 2184 */ 2185 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2186 write_lock_level = level + 1; 2187 btrfs_release_path(p); 2188 goto again; 2189 } 2190 2191 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2192 &write_lock_level); 2193 2194 if (level == lowest_level) { 2195 if (dec) 2196 p->slots[level]++; 2197 goto done; 2198 } 2199 2200 err = read_block_for_search(root, p, &b, level, slot, key); 2201 if (err == -EAGAIN) 2202 goto again; 2203 if (err) { 2204 ret = err; 2205 goto done; 2206 } 2207 2208 if (!p->skip_locking) { 2209 level = btrfs_header_level(b); 2210 2211 btrfs_maybe_reset_lockdep_class(root, b); 2212 2213 if (level <= write_lock_level) { 2214 btrfs_tree_lock(b); 2215 p->locks[level] = BTRFS_WRITE_LOCK; 2216 } else { 2217 if (p->nowait) { 2218 if (!btrfs_try_tree_read_lock(b)) { 2219 free_extent_buffer(b); 2220 ret = -EAGAIN; 2221 goto done; 2222 } 2223 } else { 2224 btrfs_tree_read_lock(b); 2225 } 2226 p->locks[level] = BTRFS_READ_LOCK; 2227 } 2228 p->nodes[level] = b; 2229 } 2230 } 2231 ret = 1; 2232 done: 2233 if (ret < 0 && !p->skip_release_on_error) 2234 btrfs_release_path(p); 2235 2236 if (p->need_commit_sem) { 2237 int ret2; 2238 2239 ret2 = finish_need_commit_sem_search(p); 2240 up_read(&fs_info->commit_root_sem); 2241 if (ret2) 2242 ret = ret2; 2243 } 2244 2245 return ret; 2246 } 2247 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO); 2248 2249 /* 2250 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2251 * current state of the tree together with the operations recorded in the tree 2252 * modification log to search for the key in a previous version of this tree, as 2253 * denoted by the time_seq parameter. 2254 * 2255 * Naturally, there is no support for insert, delete or cow operations. 2256 * 2257 * The resulting path and return value will be set up as if we called 2258 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2259 */ 2260 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2261 struct btrfs_path *p, u64 time_seq) 2262 { 2263 struct btrfs_fs_info *fs_info = root->fs_info; 2264 struct extent_buffer *b; 2265 int slot; 2266 int ret; 2267 int err; 2268 int level; 2269 int lowest_unlock = 1; 2270 u8 lowest_level = 0; 2271 2272 lowest_level = p->lowest_level; 2273 WARN_ON(p->nodes[0] != NULL); 2274 ASSERT(!p->nowait); 2275 2276 if (p->search_commit_root) { 2277 BUG_ON(time_seq); 2278 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2279 } 2280 2281 again: 2282 b = btrfs_get_old_root(root, time_seq); 2283 if (!b) { 2284 ret = -EIO; 2285 goto done; 2286 } 2287 level = btrfs_header_level(b); 2288 p->locks[level] = BTRFS_READ_LOCK; 2289 2290 while (b) { 2291 int dec = 0; 2292 2293 level = btrfs_header_level(b); 2294 p->nodes[level] = b; 2295 2296 /* 2297 * we have a lock on b and as long as we aren't changing 2298 * the tree, there is no way to for the items in b to change. 2299 * It is safe to drop the lock on our parent before we 2300 * go through the expensive btree search on b. 2301 */ 2302 btrfs_unlock_up_safe(p, level + 1); 2303 2304 ret = btrfs_bin_search(b, 0, key, &slot); 2305 if (ret < 0) 2306 goto done; 2307 2308 if (level == 0) { 2309 p->slots[level] = slot; 2310 unlock_up(p, level, lowest_unlock, 0, NULL); 2311 goto done; 2312 } 2313 2314 if (ret && slot > 0) { 2315 dec = 1; 2316 slot--; 2317 } 2318 p->slots[level] = slot; 2319 unlock_up(p, level, lowest_unlock, 0, NULL); 2320 2321 if (level == lowest_level) { 2322 if (dec) 2323 p->slots[level]++; 2324 goto done; 2325 } 2326 2327 err = read_block_for_search(root, p, &b, level, slot, key); 2328 if (err == -EAGAIN) 2329 goto again; 2330 if (err) { 2331 ret = err; 2332 goto done; 2333 } 2334 2335 level = btrfs_header_level(b); 2336 btrfs_tree_read_lock(b); 2337 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq); 2338 if (!b) { 2339 ret = -ENOMEM; 2340 goto done; 2341 } 2342 p->locks[level] = BTRFS_READ_LOCK; 2343 p->nodes[level] = b; 2344 } 2345 ret = 1; 2346 done: 2347 if (ret < 0) 2348 btrfs_release_path(p); 2349 2350 return ret; 2351 } 2352 2353 /* 2354 * Search the tree again to find a leaf with smaller keys. 2355 * Returns 0 if it found something. 2356 * Returns 1 if there are no smaller keys. 2357 * Returns < 0 on error. 2358 * 2359 * This may release the path, and so you may lose any locks held at the 2360 * time you call it. 2361 */ 2362 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 2363 { 2364 struct btrfs_key key; 2365 struct btrfs_key orig_key; 2366 struct btrfs_disk_key found_key; 2367 int ret; 2368 2369 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 2370 orig_key = key; 2371 2372 if (key.offset > 0) { 2373 key.offset--; 2374 } else if (key.type > 0) { 2375 key.type--; 2376 key.offset = (u64)-1; 2377 } else if (key.objectid > 0) { 2378 key.objectid--; 2379 key.type = (u8)-1; 2380 key.offset = (u64)-1; 2381 } else { 2382 return 1; 2383 } 2384 2385 btrfs_release_path(path); 2386 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2387 if (ret <= 0) 2388 return ret; 2389 2390 /* 2391 * Previous key not found. Even if we were at slot 0 of the leaf we had 2392 * before releasing the path and calling btrfs_search_slot(), we now may 2393 * be in a slot pointing to the same original key - this can happen if 2394 * after we released the path, one of more items were moved from a 2395 * sibling leaf into the front of the leaf we had due to an insertion 2396 * (see push_leaf_right()). 2397 * If we hit this case and our slot is > 0 and just decrement the slot 2398 * so that the caller does not process the same key again, which may or 2399 * may not break the caller, depending on its logic. 2400 */ 2401 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 2402 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]); 2403 ret = btrfs_comp_keys(&found_key, &orig_key); 2404 if (ret == 0) { 2405 if (path->slots[0] > 0) { 2406 path->slots[0]--; 2407 return 0; 2408 } 2409 /* 2410 * At slot 0, same key as before, it means orig_key is 2411 * the lowest, leftmost, key in the tree. We're done. 2412 */ 2413 return 1; 2414 } 2415 } 2416 2417 btrfs_item_key(path->nodes[0], &found_key, 0); 2418 ret = btrfs_comp_keys(&found_key, &key); 2419 /* 2420 * We might have had an item with the previous key in the tree right 2421 * before we released our path. And after we released our path, that 2422 * item might have been pushed to the first slot (0) of the leaf we 2423 * were holding due to a tree balance. Alternatively, an item with the 2424 * previous key can exist as the only element of a leaf (big fat item). 2425 * Therefore account for these 2 cases, so that our callers (like 2426 * btrfs_previous_item) don't miss an existing item with a key matching 2427 * the previous key we computed above. 2428 */ 2429 if (ret <= 0) 2430 return 0; 2431 return 1; 2432 } 2433 2434 /* 2435 * helper to use instead of search slot if no exact match is needed but 2436 * instead the next or previous item should be returned. 2437 * When find_higher is true, the next higher item is returned, the next lower 2438 * otherwise. 2439 * When return_any and find_higher are both true, and no higher item is found, 2440 * return the next lower instead. 2441 * When return_any is true and find_higher is false, and no lower item is found, 2442 * return the next higher instead. 2443 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2444 * < 0 on error 2445 */ 2446 int btrfs_search_slot_for_read(struct btrfs_root *root, 2447 const struct btrfs_key *key, 2448 struct btrfs_path *p, int find_higher, 2449 int return_any) 2450 { 2451 int ret; 2452 struct extent_buffer *leaf; 2453 2454 again: 2455 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2456 if (ret <= 0) 2457 return ret; 2458 /* 2459 * a return value of 1 means the path is at the position where the 2460 * item should be inserted. Normally this is the next bigger item, 2461 * but in case the previous item is the last in a leaf, path points 2462 * to the first free slot in the previous leaf, i.e. at an invalid 2463 * item. 2464 */ 2465 leaf = p->nodes[0]; 2466 2467 if (find_higher) { 2468 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2469 ret = btrfs_next_leaf(root, p); 2470 if (ret <= 0) 2471 return ret; 2472 if (!return_any) 2473 return 1; 2474 /* 2475 * no higher item found, return the next 2476 * lower instead 2477 */ 2478 return_any = 0; 2479 find_higher = 0; 2480 btrfs_release_path(p); 2481 goto again; 2482 } 2483 } else { 2484 if (p->slots[0] == 0) { 2485 ret = btrfs_prev_leaf(root, p); 2486 if (ret < 0) 2487 return ret; 2488 if (!ret) { 2489 leaf = p->nodes[0]; 2490 if (p->slots[0] == btrfs_header_nritems(leaf)) 2491 p->slots[0]--; 2492 return 0; 2493 } 2494 if (!return_any) 2495 return 1; 2496 /* 2497 * no lower item found, return the next 2498 * higher instead 2499 */ 2500 return_any = 0; 2501 find_higher = 1; 2502 btrfs_release_path(p); 2503 goto again; 2504 } else { 2505 --p->slots[0]; 2506 } 2507 } 2508 return 0; 2509 } 2510 2511 /* 2512 * Execute search and call btrfs_previous_item to traverse backwards if the item 2513 * was not found. 2514 * 2515 * Return 0 if found, 1 if not found and < 0 if error. 2516 */ 2517 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 2518 struct btrfs_path *path) 2519 { 2520 int ret; 2521 2522 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 2523 if (ret > 0) 2524 ret = btrfs_previous_item(root, path, key->objectid, key->type); 2525 2526 if (ret == 0) 2527 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); 2528 2529 return ret; 2530 } 2531 2532 /* 2533 * Search for a valid slot for the given path. 2534 * 2535 * @root: The root node of the tree. 2536 * @key: Will contain a valid item if found. 2537 * @path: The starting point to validate the slot. 2538 * 2539 * Return: 0 if the item is valid 2540 * 1 if not found 2541 * <0 if error. 2542 */ 2543 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 2544 struct btrfs_path *path) 2545 { 2546 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2547 int ret; 2548 2549 ret = btrfs_next_leaf(root, path); 2550 if (ret) 2551 return ret; 2552 } 2553 2554 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); 2555 return 0; 2556 } 2557 2558 /* 2559 * adjust the pointers going up the tree, starting at level 2560 * making sure the right key of each node is points to 'key'. 2561 * This is used after shifting pointers to the left, so it stops 2562 * fixing up pointers when a given leaf/node is not in slot 0 of the 2563 * higher levels 2564 * 2565 */ 2566 static void fixup_low_keys(struct btrfs_trans_handle *trans, 2567 const struct btrfs_path *path, 2568 const struct btrfs_disk_key *key, int level) 2569 { 2570 int i; 2571 struct extent_buffer *t; 2572 int ret; 2573 2574 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2575 int tslot = path->slots[i]; 2576 2577 if (!path->nodes[i]) 2578 break; 2579 t = path->nodes[i]; 2580 ret = btrfs_tree_mod_log_insert_key(t, tslot, 2581 BTRFS_MOD_LOG_KEY_REPLACE); 2582 BUG_ON(ret < 0); 2583 btrfs_set_node_key(t, key, tslot); 2584 btrfs_mark_buffer_dirty(trans, path->nodes[i]); 2585 if (tslot != 0) 2586 break; 2587 } 2588 } 2589 2590 /* 2591 * update item key. 2592 * 2593 * This function isn't completely safe. It's the caller's responsibility 2594 * that the new key won't break the order 2595 */ 2596 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 2597 const struct btrfs_path *path, 2598 const struct btrfs_key *new_key) 2599 { 2600 struct btrfs_fs_info *fs_info = trans->fs_info; 2601 struct btrfs_disk_key disk_key; 2602 struct extent_buffer *eb; 2603 int slot; 2604 2605 eb = path->nodes[0]; 2606 slot = path->slots[0]; 2607 if (slot > 0) { 2608 btrfs_item_key(eb, &disk_key, slot - 1); 2609 if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) { 2610 btrfs_print_leaf(eb); 2611 btrfs_crit(fs_info, 2612 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2613 slot, btrfs_disk_key_objectid(&disk_key), 2614 btrfs_disk_key_type(&disk_key), 2615 btrfs_disk_key_offset(&disk_key), 2616 new_key->objectid, new_key->type, 2617 new_key->offset); 2618 BUG(); 2619 } 2620 } 2621 if (slot < btrfs_header_nritems(eb) - 1) { 2622 btrfs_item_key(eb, &disk_key, slot + 1); 2623 if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) { 2624 btrfs_print_leaf(eb); 2625 btrfs_crit(fs_info, 2626 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2627 slot, btrfs_disk_key_objectid(&disk_key), 2628 btrfs_disk_key_type(&disk_key), 2629 btrfs_disk_key_offset(&disk_key), 2630 new_key->objectid, new_key->type, 2631 new_key->offset); 2632 BUG(); 2633 } 2634 } 2635 2636 btrfs_cpu_key_to_disk(&disk_key, new_key); 2637 btrfs_set_item_key(eb, &disk_key, slot); 2638 btrfs_mark_buffer_dirty(trans, eb); 2639 if (slot == 0) 2640 fixup_low_keys(trans, path, &disk_key, 1); 2641 } 2642 2643 /* 2644 * Check key order of two sibling extent buffers. 2645 * 2646 * Return true if something is wrong. 2647 * Return false if everything is fine. 2648 * 2649 * Tree-checker only works inside one tree block, thus the following 2650 * corruption can not be detected by tree-checker: 2651 * 2652 * Leaf @left | Leaf @right 2653 * -------------------------------------------------------------- 2654 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | 2655 * 2656 * Key f6 in leaf @left itself is valid, but not valid when the next 2657 * key in leaf @right is 7. 2658 * This can only be checked at tree block merge time. 2659 * And since tree checker has ensured all key order in each tree block 2660 * is correct, we only need to bother the last key of @left and the first 2661 * key of @right. 2662 */ 2663 static bool check_sibling_keys(const struct extent_buffer *left, 2664 const struct extent_buffer *right) 2665 { 2666 struct btrfs_key left_last; 2667 struct btrfs_key right_first; 2668 int level = btrfs_header_level(left); 2669 int nr_left = btrfs_header_nritems(left); 2670 int nr_right = btrfs_header_nritems(right); 2671 2672 /* No key to check in one of the tree blocks */ 2673 if (!nr_left || !nr_right) 2674 return false; 2675 2676 if (level) { 2677 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); 2678 btrfs_node_key_to_cpu(right, &right_first, 0); 2679 } else { 2680 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); 2681 btrfs_item_key_to_cpu(right, &right_first, 0); 2682 } 2683 2684 if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) { 2685 btrfs_crit(left->fs_info, "left extent buffer:"); 2686 btrfs_print_tree(left, false); 2687 btrfs_crit(left->fs_info, "right extent buffer:"); 2688 btrfs_print_tree(right, false); 2689 btrfs_crit(left->fs_info, 2690 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", 2691 left_last.objectid, left_last.type, 2692 left_last.offset, right_first.objectid, 2693 right_first.type, right_first.offset); 2694 return true; 2695 } 2696 return false; 2697 } 2698 2699 /* 2700 * try to push data from one node into the next node left in the 2701 * tree. 2702 * 2703 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2704 * error, and > 0 if there was no room in the left hand block. 2705 */ 2706 static int push_node_left(struct btrfs_trans_handle *trans, 2707 struct extent_buffer *dst, 2708 struct extent_buffer *src, int empty) 2709 { 2710 struct btrfs_fs_info *fs_info = trans->fs_info; 2711 int push_items = 0; 2712 int src_nritems; 2713 int dst_nritems; 2714 int ret = 0; 2715 2716 src_nritems = btrfs_header_nritems(src); 2717 dst_nritems = btrfs_header_nritems(dst); 2718 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2719 WARN_ON(btrfs_header_generation(src) != trans->transid); 2720 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2721 2722 if (!empty && src_nritems <= 8) 2723 return 1; 2724 2725 if (push_items <= 0) 2726 return 1; 2727 2728 if (empty) { 2729 push_items = min(src_nritems, push_items); 2730 if (push_items < src_nritems) { 2731 /* leave at least 8 pointers in the node if 2732 * we aren't going to empty it 2733 */ 2734 if (src_nritems - push_items < 8) { 2735 if (push_items <= 8) 2736 return 1; 2737 push_items -= 8; 2738 } 2739 } 2740 } else 2741 push_items = min(src_nritems - 8, push_items); 2742 2743 /* dst is the left eb, src is the middle eb */ 2744 if (check_sibling_keys(dst, src)) { 2745 ret = -EUCLEAN; 2746 btrfs_abort_transaction(trans, ret); 2747 return ret; 2748 } 2749 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 2750 if (ret) { 2751 btrfs_abort_transaction(trans, ret); 2752 return ret; 2753 } 2754 copy_extent_buffer(dst, src, 2755 btrfs_node_key_ptr_offset(dst, dst_nritems), 2756 btrfs_node_key_ptr_offset(src, 0), 2757 push_items * sizeof(struct btrfs_key_ptr)); 2758 2759 if (push_items < src_nritems) { 2760 /* 2761 * btrfs_tree_mod_log_eb_copy handles logging the move, so we 2762 * don't need to do an explicit tree mod log operation for it. 2763 */ 2764 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0), 2765 btrfs_node_key_ptr_offset(src, push_items), 2766 (src_nritems - push_items) * 2767 sizeof(struct btrfs_key_ptr)); 2768 } 2769 btrfs_set_header_nritems(src, src_nritems - push_items); 2770 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2771 btrfs_mark_buffer_dirty(trans, src); 2772 btrfs_mark_buffer_dirty(trans, dst); 2773 2774 return ret; 2775 } 2776 2777 /* 2778 * try to push data from one node into the next node right in the 2779 * tree. 2780 * 2781 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2782 * error, and > 0 if there was no room in the right hand block. 2783 * 2784 * this will only push up to 1/2 the contents of the left node over 2785 */ 2786 static int balance_node_right(struct btrfs_trans_handle *trans, 2787 struct extent_buffer *dst, 2788 struct extent_buffer *src) 2789 { 2790 struct btrfs_fs_info *fs_info = trans->fs_info; 2791 int push_items = 0; 2792 int max_push; 2793 int src_nritems; 2794 int dst_nritems; 2795 int ret = 0; 2796 2797 WARN_ON(btrfs_header_generation(src) != trans->transid); 2798 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2799 2800 src_nritems = btrfs_header_nritems(src); 2801 dst_nritems = btrfs_header_nritems(dst); 2802 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2803 if (push_items <= 0) 2804 return 1; 2805 2806 if (src_nritems < 4) 2807 return 1; 2808 2809 max_push = src_nritems / 2 + 1; 2810 /* don't try to empty the node */ 2811 if (max_push >= src_nritems) 2812 return 1; 2813 2814 if (max_push < push_items) 2815 push_items = max_push; 2816 2817 /* dst is the right eb, src is the middle eb */ 2818 if (check_sibling_keys(src, dst)) { 2819 ret = -EUCLEAN; 2820 btrfs_abort_transaction(trans, ret); 2821 return ret; 2822 } 2823 2824 /* 2825 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't 2826 * need to do an explicit tree mod log operation for it. 2827 */ 2828 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items), 2829 btrfs_node_key_ptr_offset(dst, 0), 2830 (dst_nritems) * 2831 sizeof(struct btrfs_key_ptr)); 2832 2833 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 2834 push_items); 2835 if (ret) { 2836 btrfs_abort_transaction(trans, ret); 2837 return ret; 2838 } 2839 copy_extent_buffer(dst, src, 2840 btrfs_node_key_ptr_offset(dst, 0), 2841 btrfs_node_key_ptr_offset(src, src_nritems - push_items), 2842 push_items * sizeof(struct btrfs_key_ptr)); 2843 2844 btrfs_set_header_nritems(src, src_nritems - push_items); 2845 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2846 2847 btrfs_mark_buffer_dirty(trans, src); 2848 btrfs_mark_buffer_dirty(trans, dst); 2849 2850 return ret; 2851 } 2852 2853 /* 2854 * helper function to insert a new root level in the tree. 2855 * A new node is allocated, and a single item is inserted to 2856 * point to the existing root 2857 * 2858 * returns zero on success or < 0 on failure. 2859 */ 2860 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2861 struct btrfs_root *root, 2862 struct btrfs_path *path, int level) 2863 { 2864 u64 lower_gen; 2865 struct extent_buffer *lower; 2866 struct extent_buffer *c; 2867 struct extent_buffer *old; 2868 struct btrfs_disk_key lower_key; 2869 int ret; 2870 2871 BUG_ON(path->nodes[level]); 2872 BUG_ON(path->nodes[level-1] != root->node); 2873 2874 lower = path->nodes[level-1]; 2875 if (level == 1) 2876 btrfs_item_key(lower, &lower_key, 0); 2877 else 2878 btrfs_node_key(lower, &lower_key, 0); 2879 2880 c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root), 2881 &lower_key, level, root->node->start, 0, 2882 0, BTRFS_NESTING_NEW_ROOT); 2883 if (IS_ERR(c)) 2884 return PTR_ERR(c); 2885 2886 root_add_used_bytes(root); 2887 2888 btrfs_set_header_nritems(c, 1); 2889 btrfs_set_node_key(c, &lower_key, 0); 2890 btrfs_set_node_blockptr(c, 0, lower->start); 2891 lower_gen = btrfs_header_generation(lower); 2892 WARN_ON(lower_gen != trans->transid); 2893 2894 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2895 2896 btrfs_mark_buffer_dirty(trans, c); 2897 2898 old = root->node; 2899 ret = btrfs_tree_mod_log_insert_root(root->node, c, false); 2900 if (ret < 0) { 2901 int ret2; 2902 2903 ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1); 2904 if (ret2 < 0) 2905 btrfs_abort_transaction(trans, ret2); 2906 btrfs_tree_unlock(c); 2907 free_extent_buffer(c); 2908 return ret; 2909 } 2910 rcu_assign_pointer(root->node, c); 2911 2912 /* the super has an extra ref to root->node */ 2913 free_extent_buffer(old); 2914 2915 add_root_to_dirty_list(root); 2916 atomic_inc(&c->refs); 2917 path->nodes[level] = c; 2918 path->locks[level] = BTRFS_WRITE_LOCK; 2919 path->slots[level] = 0; 2920 return 0; 2921 } 2922 2923 /* 2924 * worker function to insert a single pointer in a node. 2925 * the node should have enough room for the pointer already 2926 * 2927 * slot and level indicate where you want the key to go, and 2928 * blocknr is the block the key points to. 2929 */ 2930 static int insert_ptr(struct btrfs_trans_handle *trans, 2931 const struct btrfs_path *path, 2932 const struct btrfs_disk_key *key, u64 bytenr, 2933 int slot, int level) 2934 { 2935 struct extent_buffer *lower; 2936 int nritems; 2937 int ret; 2938 2939 BUG_ON(!path->nodes[level]); 2940 btrfs_assert_tree_write_locked(path->nodes[level]); 2941 lower = path->nodes[level]; 2942 nritems = btrfs_header_nritems(lower); 2943 BUG_ON(slot > nritems); 2944 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 2945 if (slot != nritems) { 2946 if (level) { 2947 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1, 2948 slot, nritems - slot); 2949 if (ret < 0) { 2950 btrfs_abort_transaction(trans, ret); 2951 return ret; 2952 } 2953 } 2954 memmove_extent_buffer(lower, 2955 btrfs_node_key_ptr_offset(lower, slot + 1), 2956 btrfs_node_key_ptr_offset(lower, slot), 2957 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2958 } 2959 if (level) { 2960 ret = btrfs_tree_mod_log_insert_key(lower, slot, 2961 BTRFS_MOD_LOG_KEY_ADD); 2962 if (ret < 0) { 2963 btrfs_abort_transaction(trans, ret); 2964 return ret; 2965 } 2966 } 2967 btrfs_set_node_key(lower, key, slot); 2968 btrfs_set_node_blockptr(lower, slot, bytenr); 2969 WARN_ON(trans->transid == 0); 2970 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2971 btrfs_set_header_nritems(lower, nritems + 1); 2972 btrfs_mark_buffer_dirty(trans, lower); 2973 2974 return 0; 2975 } 2976 2977 /* 2978 * split the node at the specified level in path in two. 2979 * The path is corrected to point to the appropriate node after the split 2980 * 2981 * Before splitting this tries to make some room in the node by pushing 2982 * left and right, if either one works, it returns right away. 2983 * 2984 * returns 0 on success and < 0 on failure 2985 */ 2986 static noinline int split_node(struct btrfs_trans_handle *trans, 2987 struct btrfs_root *root, 2988 struct btrfs_path *path, int level) 2989 { 2990 struct btrfs_fs_info *fs_info = root->fs_info; 2991 struct extent_buffer *c; 2992 struct extent_buffer *split; 2993 struct btrfs_disk_key disk_key; 2994 int mid; 2995 int ret; 2996 u32 c_nritems; 2997 2998 c = path->nodes[level]; 2999 WARN_ON(btrfs_header_generation(c) != trans->transid); 3000 if (c == root->node) { 3001 /* 3002 * trying to split the root, lets make a new one 3003 * 3004 * tree mod log: We don't log_removal old root in 3005 * insert_new_root, because that root buffer will be kept as a 3006 * normal node. We are going to log removal of half of the 3007 * elements below with btrfs_tree_mod_log_eb_copy(). We're 3008 * holding a tree lock on the buffer, which is why we cannot 3009 * race with other tree_mod_log users. 3010 */ 3011 ret = insert_new_root(trans, root, path, level + 1); 3012 if (ret) 3013 return ret; 3014 } else { 3015 ret = push_nodes_for_insert(trans, root, path, level); 3016 c = path->nodes[level]; 3017 if (!ret && btrfs_header_nritems(c) < 3018 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3019 return 0; 3020 if (ret < 0) 3021 return ret; 3022 } 3023 3024 c_nritems = btrfs_header_nritems(c); 3025 mid = (c_nritems + 1) / 2; 3026 btrfs_node_key(c, &disk_key, mid); 3027 3028 split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root), 3029 &disk_key, level, c->start, 0, 3030 0, BTRFS_NESTING_SPLIT); 3031 if (IS_ERR(split)) 3032 return PTR_ERR(split); 3033 3034 root_add_used_bytes(root); 3035 ASSERT(btrfs_header_level(c) == level); 3036 3037 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 3038 if (ret) { 3039 btrfs_tree_unlock(split); 3040 free_extent_buffer(split); 3041 btrfs_abort_transaction(trans, ret); 3042 return ret; 3043 } 3044 copy_extent_buffer(split, c, 3045 btrfs_node_key_ptr_offset(split, 0), 3046 btrfs_node_key_ptr_offset(c, mid), 3047 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3048 btrfs_set_header_nritems(split, c_nritems - mid); 3049 btrfs_set_header_nritems(c, mid); 3050 3051 btrfs_mark_buffer_dirty(trans, c); 3052 btrfs_mark_buffer_dirty(trans, split); 3053 3054 ret = insert_ptr(trans, path, &disk_key, split->start, 3055 path->slots[level + 1] + 1, level + 1); 3056 if (ret < 0) { 3057 btrfs_tree_unlock(split); 3058 free_extent_buffer(split); 3059 return ret; 3060 } 3061 3062 if (path->slots[level] >= mid) { 3063 path->slots[level] -= mid; 3064 btrfs_tree_unlock(c); 3065 free_extent_buffer(c); 3066 path->nodes[level] = split; 3067 path->slots[level + 1] += 1; 3068 } else { 3069 btrfs_tree_unlock(split); 3070 free_extent_buffer(split); 3071 } 3072 return 0; 3073 } 3074 3075 /* 3076 * how many bytes are required to store the items in a leaf. start 3077 * and nr indicate which items in the leaf to check. This totals up the 3078 * space used both by the item structs and the item data 3079 */ 3080 static int leaf_space_used(const struct extent_buffer *l, int start, int nr) 3081 { 3082 int data_len; 3083 int nritems = btrfs_header_nritems(l); 3084 int end = min(nritems, start + nr) - 1; 3085 3086 if (!nr) 3087 return 0; 3088 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start); 3089 data_len = data_len - btrfs_item_offset(l, end); 3090 data_len += sizeof(struct btrfs_item) * nr; 3091 WARN_ON(data_len < 0); 3092 return data_len; 3093 } 3094 3095 /* 3096 * The space between the end of the leaf items and 3097 * the start of the leaf data. IOW, how much room 3098 * the leaf has left for both items and data 3099 */ 3100 int btrfs_leaf_free_space(const struct extent_buffer *leaf) 3101 { 3102 struct btrfs_fs_info *fs_info = leaf->fs_info; 3103 int nritems = btrfs_header_nritems(leaf); 3104 int ret; 3105 3106 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3107 if (ret < 0) { 3108 btrfs_crit(fs_info, 3109 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3110 ret, 3111 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3112 leaf_space_used(leaf, 0, nritems), nritems); 3113 } 3114 return ret; 3115 } 3116 3117 /* 3118 * min slot controls the lowest index we're willing to push to the 3119 * right. We'll push up to and including min_slot, but no lower 3120 */ 3121 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3122 struct btrfs_path *path, 3123 int data_size, int empty, 3124 struct extent_buffer *right, 3125 int free_space, u32 left_nritems, 3126 u32 min_slot) 3127 { 3128 struct btrfs_fs_info *fs_info = right->fs_info; 3129 struct extent_buffer *left = path->nodes[0]; 3130 struct extent_buffer *upper = path->nodes[1]; 3131 struct btrfs_map_token token; 3132 struct btrfs_disk_key disk_key; 3133 int slot; 3134 u32 i; 3135 int push_space = 0; 3136 int push_items = 0; 3137 u32 nr; 3138 u32 right_nritems; 3139 u32 data_end; 3140 u32 this_item_size; 3141 3142 if (empty) 3143 nr = 0; 3144 else 3145 nr = max_t(u32, 1, min_slot); 3146 3147 if (path->slots[0] >= left_nritems) 3148 push_space += data_size; 3149 3150 slot = path->slots[1]; 3151 i = left_nritems - 1; 3152 while (i >= nr) { 3153 if (!empty && push_items > 0) { 3154 if (path->slots[0] > i) 3155 break; 3156 if (path->slots[0] == i) { 3157 int space = btrfs_leaf_free_space(left); 3158 3159 if (space + push_space * 2 > free_space) 3160 break; 3161 } 3162 } 3163 3164 if (path->slots[0] == i) 3165 push_space += data_size; 3166 3167 this_item_size = btrfs_item_size(left, i); 3168 if (this_item_size + sizeof(struct btrfs_item) + 3169 push_space > free_space) 3170 break; 3171 3172 push_items++; 3173 push_space += this_item_size + sizeof(struct btrfs_item); 3174 if (i == 0) 3175 break; 3176 i--; 3177 } 3178 3179 if (push_items == 0) 3180 goto out_unlock; 3181 3182 WARN_ON(!empty && push_items == left_nritems); 3183 3184 /* push left to right */ 3185 right_nritems = btrfs_header_nritems(right); 3186 3187 push_space = btrfs_item_data_end(left, left_nritems - push_items); 3188 push_space -= leaf_data_end(left); 3189 3190 /* make room in the right data area */ 3191 data_end = leaf_data_end(right); 3192 memmove_leaf_data(right, data_end - push_space, data_end, 3193 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3194 3195 /* copy from the left data area */ 3196 copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3197 leaf_data_end(left), push_space); 3198 3199 memmove_leaf_items(right, push_items, 0, right_nritems); 3200 3201 /* copy the items from left to right */ 3202 copy_leaf_items(right, left, 0, left_nritems - push_items, push_items); 3203 3204 /* update the item pointers */ 3205 btrfs_init_map_token(&token, right); 3206 right_nritems += push_items; 3207 btrfs_set_header_nritems(right, right_nritems); 3208 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3209 for (i = 0; i < right_nritems; i++) { 3210 push_space -= btrfs_token_item_size(&token, i); 3211 btrfs_set_token_item_offset(&token, i, push_space); 3212 } 3213 3214 left_nritems -= push_items; 3215 btrfs_set_header_nritems(left, left_nritems); 3216 3217 if (left_nritems) 3218 btrfs_mark_buffer_dirty(trans, left); 3219 else 3220 btrfs_clear_buffer_dirty(trans, left); 3221 3222 btrfs_mark_buffer_dirty(trans, right); 3223 3224 btrfs_item_key(right, &disk_key, 0); 3225 btrfs_set_node_key(upper, &disk_key, slot + 1); 3226 btrfs_mark_buffer_dirty(trans, upper); 3227 3228 /* then fixup the leaf pointer in the path */ 3229 if (path->slots[0] >= left_nritems) { 3230 path->slots[0] -= left_nritems; 3231 if (btrfs_header_nritems(path->nodes[0]) == 0) 3232 btrfs_clear_buffer_dirty(trans, path->nodes[0]); 3233 btrfs_tree_unlock(path->nodes[0]); 3234 free_extent_buffer(path->nodes[0]); 3235 path->nodes[0] = right; 3236 path->slots[1] += 1; 3237 } else { 3238 btrfs_tree_unlock(right); 3239 free_extent_buffer(right); 3240 } 3241 return 0; 3242 3243 out_unlock: 3244 btrfs_tree_unlock(right); 3245 free_extent_buffer(right); 3246 return 1; 3247 } 3248 3249 /* 3250 * push some data in the path leaf to the right, trying to free up at 3251 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3252 * 3253 * returns 1 if the push failed because the other node didn't have enough 3254 * room, 0 if everything worked out and < 0 if there were major errors. 3255 * 3256 * this will push starting from min_slot to the end of the leaf. It won't 3257 * push any slot lower than min_slot 3258 */ 3259 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3260 *root, struct btrfs_path *path, 3261 int min_data_size, int data_size, 3262 int empty, u32 min_slot) 3263 { 3264 struct extent_buffer *left = path->nodes[0]; 3265 struct extent_buffer *right; 3266 struct extent_buffer *upper; 3267 int slot; 3268 int free_space; 3269 u32 left_nritems; 3270 int ret; 3271 3272 if (!path->nodes[1]) 3273 return 1; 3274 3275 slot = path->slots[1]; 3276 upper = path->nodes[1]; 3277 if (slot >= btrfs_header_nritems(upper) - 1) 3278 return 1; 3279 3280 btrfs_assert_tree_write_locked(path->nodes[1]); 3281 3282 right = btrfs_read_node_slot(upper, slot + 1); 3283 if (IS_ERR(right)) 3284 return PTR_ERR(right); 3285 3286 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT); 3287 3288 free_space = btrfs_leaf_free_space(right); 3289 if (free_space < data_size) 3290 goto out_unlock; 3291 3292 ret = btrfs_cow_block(trans, root, right, upper, 3293 slot + 1, &right, BTRFS_NESTING_RIGHT_COW); 3294 if (ret) 3295 goto out_unlock; 3296 3297 left_nritems = btrfs_header_nritems(left); 3298 if (left_nritems == 0) 3299 goto out_unlock; 3300 3301 if (check_sibling_keys(left, right)) { 3302 ret = -EUCLEAN; 3303 btrfs_abort_transaction(trans, ret); 3304 btrfs_tree_unlock(right); 3305 free_extent_buffer(right); 3306 return ret; 3307 } 3308 if (path->slots[0] == left_nritems && !empty) { 3309 /* Key greater than all keys in the leaf, right neighbor has 3310 * enough room for it and we're not emptying our leaf to delete 3311 * it, therefore use right neighbor to insert the new item and 3312 * no need to touch/dirty our left leaf. */ 3313 btrfs_tree_unlock(left); 3314 free_extent_buffer(left); 3315 path->nodes[0] = right; 3316 path->slots[0] = 0; 3317 path->slots[1]++; 3318 return 0; 3319 } 3320 3321 return __push_leaf_right(trans, path, min_data_size, empty, right, 3322 free_space, left_nritems, min_slot); 3323 out_unlock: 3324 btrfs_tree_unlock(right); 3325 free_extent_buffer(right); 3326 return 1; 3327 } 3328 3329 /* 3330 * push some data in the path leaf to the left, trying to free up at 3331 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3332 * 3333 * max_slot can put a limit on how far into the leaf we'll push items. The 3334 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3335 * items 3336 */ 3337 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3338 struct btrfs_path *path, int data_size, 3339 int empty, struct extent_buffer *left, 3340 int free_space, u32 right_nritems, 3341 u32 max_slot) 3342 { 3343 struct btrfs_fs_info *fs_info = left->fs_info; 3344 struct btrfs_disk_key disk_key; 3345 struct extent_buffer *right = path->nodes[0]; 3346 int i; 3347 int push_space = 0; 3348 int push_items = 0; 3349 u32 old_left_nritems; 3350 u32 nr; 3351 int ret = 0; 3352 u32 this_item_size; 3353 u32 old_left_item_size; 3354 struct btrfs_map_token token; 3355 3356 if (empty) 3357 nr = min(right_nritems, max_slot); 3358 else 3359 nr = min(right_nritems - 1, max_slot); 3360 3361 for (i = 0; i < nr; i++) { 3362 if (!empty && push_items > 0) { 3363 if (path->slots[0] < i) 3364 break; 3365 if (path->slots[0] == i) { 3366 int space = btrfs_leaf_free_space(right); 3367 3368 if (space + push_space * 2 > free_space) 3369 break; 3370 } 3371 } 3372 3373 if (path->slots[0] == i) 3374 push_space += data_size; 3375 3376 this_item_size = btrfs_item_size(right, i); 3377 if (this_item_size + sizeof(struct btrfs_item) + push_space > 3378 free_space) 3379 break; 3380 3381 push_items++; 3382 push_space += this_item_size + sizeof(struct btrfs_item); 3383 } 3384 3385 if (push_items == 0) { 3386 ret = 1; 3387 goto out; 3388 } 3389 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3390 3391 /* push data from right to left */ 3392 copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items); 3393 3394 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3395 btrfs_item_offset(right, push_items - 1); 3396 3397 copy_leaf_data(left, right, leaf_data_end(left) - push_space, 3398 btrfs_item_offset(right, push_items - 1), push_space); 3399 old_left_nritems = btrfs_header_nritems(left); 3400 BUG_ON(old_left_nritems <= 0); 3401 3402 btrfs_init_map_token(&token, left); 3403 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1); 3404 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3405 u32 ioff; 3406 3407 ioff = btrfs_token_item_offset(&token, i); 3408 btrfs_set_token_item_offset(&token, i, 3409 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 3410 } 3411 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3412 3413 /* fixup right node */ 3414 if (push_items > right_nritems) 3415 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3416 right_nritems); 3417 3418 if (push_items < right_nritems) { 3419 push_space = btrfs_item_offset(right, push_items - 1) - 3420 leaf_data_end(right); 3421 memmove_leaf_data(right, 3422 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3423 leaf_data_end(right), push_space); 3424 3425 memmove_leaf_items(right, 0, push_items, 3426 btrfs_header_nritems(right) - push_items); 3427 } 3428 3429 btrfs_init_map_token(&token, right); 3430 right_nritems -= push_items; 3431 btrfs_set_header_nritems(right, right_nritems); 3432 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3433 for (i = 0; i < right_nritems; i++) { 3434 push_space = push_space - btrfs_token_item_size(&token, i); 3435 btrfs_set_token_item_offset(&token, i, push_space); 3436 } 3437 3438 btrfs_mark_buffer_dirty(trans, left); 3439 if (right_nritems) 3440 btrfs_mark_buffer_dirty(trans, right); 3441 else 3442 btrfs_clear_buffer_dirty(trans, right); 3443 3444 btrfs_item_key(right, &disk_key, 0); 3445 fixup_low_keys(trans, path, &disk_key, 1); 3446 3447 /* then fixup the leaf pointer in the path */ 3448 if (path->slots[0] < push_items) { 3449 path->slots[0] += old_left_nritems; 3450 btrfs_tree_unlock(path->nodes[0]); 3451 free_extent_buffer(path->nodes[0]); 3452 path->nodes[0] = left; 3453 path->slots[1] -= 1; 3454 } else { 3455 btrfs_tree_unlock(left); 3456 free_extent_buffer(left); 3457 path->slots[0] -= push_items; 3458 } 3459 BUG_ON(path->slots[0] < 0); 3460 return ret; 3461 out: 3462 btrfs_tree_unlock(left); 3463 free_extent_buffer(left); 3464 return ret; 3465 } 3466 3467 /* 3468 * push some data in the path leaf to the left, trying to free up at 3469 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3470 * 3471 * max_slot can put a limit on how far into the leaf we'll push items. The 3472 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3473 * items 3474 */ 3475 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3476 *root, struct btrfs_path *path, int min_data_size, 3477 int data_size, int empty, u32 max_slot) 3478 { 3479 struct extent_buffer *right = path->nodes[0]; 3480 struct extent_buffer *left; 3481 int slot; 3482 int free_space; 3483 u32 right_nritems; 3484 int ret = 0; 3485 3486 slot = path->slots[1]; 3487 if (slot == 0) 3488 return 1; 3489 if (!path->nodes[1]) 3490 return 1; 3491 3492 right_nritems = btrfs_header_nritems(right); 3493 if (right_nritems == 0) 3494 return 1; 3495 3496 btrfs_assert_tree_write_locked(path->nodes[1]); 3497 3498 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3499 if (IS_ERR(left)) 3500 return PTR_ERR(left); 3501 3502 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT); 3503 3504 free_space = btrfs_leaf_free_space(left); 3505 if (free_space < data_size) { 3506 ret = 1; 3507 goto out; 3508 } 3509 3510 ret = btrfs_cow_block(trans, root, left, 3511 path->nodes[1], slot - 1, &left, 3512 BTRFS_NESTING_LEFT_COW); 3513 if (ret) { 3514 /* we hit -ENOSPC, but it isn't fatal here */ 3515 if (ret == -ENOSPC) 3516 ret = 1; 3517 goto out; 3518 } 3519 3520 if (check_sibling_keys(left, right)) { 3521 ret = -EUCLEAN; 3522 btrfs_abort_transaction(trans, ret); 3523 goto out; 3524 } 3525 return __push_leaf_left(trans, path, min_data_size, empty, left, 3526 free_space, right_nritems, max_slot); 3527 out: 3528 btrfs_tree_unlock(left); 3529 free_extent_buffer(left); 3530 return ret; 3531 } 3532 3533 /* 3534 * split the path's leaf in two, making sure there is at least data_size 3535 * available for the resulting leaf level of the path. 3536 */ 3537 static noinline int copy_for_split(struct btrfs_trans_handle *trans, 3538 struct btrfs_path *path, 3539 struct extent_buffer *l, 3540 struct extent_buffer *right, 3541 int slot, int mid, int nritems) 3542 { 3543 struct btrfs_fs_info *fs_info = trans->fs_info; 3544 int data_copy_size; 3545 int rt_data_off; 3546 int i; 3547 int ret; 3548 struct btrfs_disk_key disk_key; 3549 struct btrfs_map_token token; 3550 3551 nritems = nritems - mid; 3552 btrfs_set_header_nritems(right, nritems); 3553 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l); 3554 3555 copy_leaf_items(right, l, 0, mid, nritems); 3556 3557 copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size, 3558 leaf_data_end(l), data_copy_size); 3559 3560 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid); 3561 3562 btrfs_init_map_token(&token, right); 3563 for (i = 0; i < nritems; i++) { 3564 u32 ioff; 3565 3566 ioff = btrfs_token_item_offset(&token, i); 3567 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off); 3568 } 3569 3570 btrfs_set_header_nritems(l, mid); 3571 btrfs_item_key(right, &disk_key, 0); 3572 ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 3573 if (ret < 0) 3574 return ret; 3575 3576 btrfs_mark_buffer_dirty(trans, right); 3577 btrfs_mark_buffer_dirty(trans, l); 3578 BUG_ON(path->slots[0] != slot); 3579 3580 if (mid <= slot) { 3581 btrfs_tree_unlock(path->nodes[0]); 3582 free_extent_buffer(path->nodes[0]); 3583 path->nodes[0] = right; 3584 path->slots[0] -= mid; 3585 path->slots[1] += 1; 3586 } else { 3587 btrfs_tree_unlock(right); 3588 free_extent_buffer(right); 3589 } 3590 3591 BUG_ON(path->slots[0] < 0); 3592 3593 return 0; 3594 } 3595 3596 /* 3597 * double splits happen when we need to insert a big item in the middle 3598 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3599 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3600 * A B C 3601 * 3602 * We avoid this by trying to push the items on either side of our target 3603 * into the adjacent leaves. If all goes well we can avoid the double split 3604 * completely. 3605 */ 3606 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3607 struct btrfs_root *root, 3608 struct btrfs_path *path, 3609 int data_size) 3610 { 3611 int ret; 3612 int progress = 0; 3613 int slot; 3614 u32 nritems; 3615 int space_needed = data_size; 3616 3617 slot = path->slots[0]; 3618 if (slot < btrfs_header_nritems(path->nodes[0])) 3619 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3620 3621 /* 3622 * try to push all the items after our slot into the 3623 * right leaf 3624 */ 3625 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 3626 if (ret < 0) 3627 return ret; 3628 3629 if (ret == 0) 3630 progress++; 3631 3632 nritems = btrfs_header_nritems(path->nodes[0]); 3633 /* 3634 * our goal is to get our slot at the start or end of a leaf. If 3635 * we've done so we're done 3636 */ 3637 if (path->slots[0] == 0 || path->slots[0] == nritems) 3638 return 0; 3639 3640 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3641 return 0; 3642 3643 /* try to push all the items before our slot into the next leaf */ 3644 slot = path->slots[0]; 3645 space_needed = data_size; 3646 if (slot > 0) 3647 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3648 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 3649 if (ret < 0) 3650 return ret; 3651 3652 if (ret == 0) 3653 progress++; 3654 3655 if (progress) 3656 return 0; 3657 return 1; 3658 } 3659 3660 /* 3661 * split the path's leaf in two, making sure there is at least data_size 3662 * available for the resulting leaf level of the path. 3663 * 3664 * returns 0 if all went well and < 0 on failure. 3665 */ 3666 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3667 struct btrfs_root *root, 3668 const struct btrfs_key *ins_key, 3669 struct btrfs_path *path, int data_size, 3670 int extend) 3671 { 3672 struct btrfs_disk_key disk_key; 3673 struct extent_buffer *l; 3674 u32 nritems; 3675 int mid; 3676 int slot; 3677 struct extent_buffer *right; 3678 struct btrfs_fs_info *fs_info = root->fs_info; 3679 int ret = 0; 3680 int wret; 3681 int split; 3682 int num_doubles = 0; 3683 int tried_avoid_double = 0; 3684 3685 l = path->nodes[0]; 3686 slot = path->slots[0]; 3687 if (extend && data_size + btrfs_item_size(l, slot) + 3688 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 3689 return -EOVERFLOW; 3690 3691 /* first try to make some room by pushing left and right */ 3692 if (data_size && path->nodes[1]) { 3693 int space_needed = data_size; 3694 3695 if (slot < btrfs_header_nritems(l)) 3696 space_needed -= btrfs_leaf_free_space(l); 3697 3698 wret = push_leaf_right(trans, root, path, space_needed, 3699 space_needed, 0, 0); 3700 if (wret < 0) 3701 return wret; 3702 if (wret) { 3703 space_needed = data_size; 3704 if (slot > 0) 3705 space_needed -= btrfs_leaf_free_space(l); 3706 wret = push_leaf_left(trans, root, path, space_needed, 3707 space_needed, 0, (u32)-1); 3708 if (wret < 0) 3709 return wret; 3710 } 3711 l = path->nodes[0]; 3712 3713 /* did the pushes work? */ 3714 if (btrfs_leaf_free_space(l) >= data_size) 3715 return 0; 3716 } 3717 3718 if (!path->nodes[1]) { 3719 ret = insert_new_root(trans, root, path, 1); 3720 if (ret) 3721 return ret; 3722 } 3723 again: 3724 split = 1; 3725 l = path->nodes[0]; 3726 slot = path->slots[0]; 3727 nritems = btrfs_header_nritems(l); 3728 mid = (nritems + 1) / 2; 3729 3730 if (mid <= slot) { 3731 if (nritems == 1 || 3732 leaf_space_used(l, mid, nritems - mid) + data_size > 3733 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3734 if (slot >= nritems) { 3735 split = 0; 3736 } else { 3737 mid = slot; 3738 if (mid != nritems && 3739 leaf_space_used(l, mid, nritems - mid) + 3740 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3741 if (data_size && !tried_avoid_double) 3742 goto push_for_double; 3743 split = 2; 3744 } 3745 } 3746 } 3747 } else { 3748 if (leaf_space_used(l, 0, mid) + data_size > 3749 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3750 if (!extend && data_size && slot == 0) { 3751 split = 0; 3752 } else if ((extend || !data_size) && slot == 0) { 3753 mid = 1; 3754 } else { 3755 mid = slot; 3756 if (mid != nritems && 3757 leaf_space_used(l, mid, nritems - mid) + 3758 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3759 if (data_size && !tried_avoid_double) 3760 goto push_for_double; 3761 split = 2; 3762 } 3763 } 3764 } 3765 } 3766 3767 if (split == 0) 3768 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3769 else 3770 btrfs_item_key(l, &disk_key, mid); 3771 3772 /* 3773 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double 3774 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES 3775 * subclasses, which is 8 at the time of this patch, and we've maxed it 3776 * out. In the future we could add a 3777 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just 3778 * use BTRFS_NESTING_NEW_ROOT. 3779 */ 3780 right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root), 3781 &disk_key, 0, l->start, 0, 0, 3782 num_doubles ? BTRFS_NESTING_NEW_ROOT : 3783 BTRFS_NESTING_SPLIT); 3784 if (IS_ERR(right)) 3785 return PTR_ERR(right); 3786 3787 root_add_used_bytes(root); 3788 3789 if (split == 0) { 3790 if (mid <= slot) { 3791 btrfs_set_header_nritems(right, 0); 3792 ret = insert_ptr(trans, path, &disk_key, 3793 right->start, path->slots[1] + 1, 1); 3794 if (ret < 0) { 3795 btrfs_tree_unlock(right); 3796 free_extent_buffer(right); 3797 return ret; 3798 } 3799 btrfs_tree_unlock(path->nodes[0]); 3800 free_extent_buffer(path->nodes[0]); 3801 path->nodes[0] = right; 3802 path->slots[0] = 0; 3803 path->slots[1] += 1; 3804 } else { 3805 btrfs_set_header_nritems(right, 0); 3806 ret = insert_ptr(trans, path, &disk_key, 3807 right->start, path->slots[1], 1); 3808 if (ret < 0) { 3809 btrfs_tree_unlock(right); 3810 free_extent_buffer(right); 3811 return ret; 3812 } 3813 btrfs_tree_unlock(path->nodes[0]); 3814 free_extent_buffer(path->nodes[0]); 3815 path->nodes[0] = right; 3816 path->slots[0] = 0; 3817 if (path->slots[1] == 0) 3818 fixup_low_keys(trans, path, &disk_key, 1); 3819 } 3820 /* 3821 * We create a new leaf 'right' for the required ins_len and 3822 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 3823 * the content of ins_len to 'right'. 3824 */ 3825 return ret; 3826 } 3827 3828 ret = copy_for_split(trans, path, l, right, slot, mid, nritems); 3829 if (ret < 0) { 3830 btrfs_tree_unlock(right); 3831 free_extent_buffer(right); 3832 return ret; 3833 } 3834 3835 if (split == 2) { 3836 BUG_ON(num_doubles != 0); 3837 num_doubles++; 3838 goto again; 3839 } 3840 3841 return 0; 3842 3843 push_for_double: 3844 push_for_double_split(trans, root, path, data_size); 3845 tried_avoid_double = 1; 3846 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3847 return 0; 3848 goto again; 3849 } 3850 3851 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3852 struct btrfs_root *root, 3853 struct btrfs_path *path, int ins_len) 3854 { 3855 struct btrfs_key key; 3856 struct extent_buffer *leaf; 3857 struct btrfs_file_extent_item *fi; 3858 u64 extent_len = 0; 3859 u32 item_size; 3860 int ret; 3861 3862 leaf = path->nodes[0]; 3863 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3864 3865 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3866 key.type != BTRFS_EXTENT_CSUM_KEY); 3867 3868 if (btrfs_leaf_free_space(leaf) >= ins_len) 3869 return 0; 3870 3871 item_size = btrfs_item_size(leaf, path->slots[0]); 3872 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3873 fi = btrfs_item_ptr(leaf, path->slots[0], 3874 struct btrfs_file_extent_item); 3875 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3876 } 3877 btrfs_release_path(path); 3878 3879 path->keep_locks = 1; 3880 path->search_for_split = 1; 3881 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3882 path->search_for_split = 0; 3883 if (ret > 0) 3884 ret = -EAGAIN; 3885 if (ret < 0) 3886 goto err; 3887 3888 ret = -EAGAIN; 3889 leaf = path->nodes[0]; 3890 /* if our item isn't there, return now */ 3891 if (item_size != btrfs_item_size(leaf, path->slots[0])) 3892 goto err; 3893 3894 /* the leaf has changed, it now has room. return now */ 3895 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 3896 goto err; 3897 3898 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3899 fi = btrfs_item_ptr(leaf, path->slots[0], 3900 struct btrfs_file_extent_item); 3901 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3902 goto err; 3903 } 3904 3905 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3906 if (ret) 3907 goto err; 3908 3909 path->keep_locks = 0; 3910 btrfs_unlock_up_safe(path, 1); 3911 return 0; 3912 err: 3913 path->keep_locks = 0; 3914 return ret; 3915 } 3916 3917 static noinline int split_item(struct btrfs_trans_handle *trans, 3918 struct btrfs_path *path, 3919 const struct btrfs_key *new_key, 3920 unsigned long split_offset) 3921 { 3922 struct extent_buffer *leaf; 3923 int orig_slot, slot; 3924 char *buf; 3925 u32 nritems; 3926 u32 item_size; 3927 u32 orig_offset; 3928 struct btrfs_disk_key disk_key; 3929 3930 leaf = path->nodes[0]; 3931 /* 3932 * Shouldn't happen because the caller must have previously called 3933 * setup_leaf_for_split() to make room for the new item in the leaf. 3934 */ 3935 if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item))) 3936 return -ENOSPC; 3937 3938 orig_slot = path->slots[0]; 3939 orig_offset = btrfs_item_offset(leaf, path->slots[0]); 3940 item_size = btrfs_item_size(leaf, path->slots[0]); 3941 3942 buf = kmalloc(item_size, GFP_NOFS); 3943 if (!buf) 3944 return -ENOMEM; 3945 3946 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3947 path->slots[0]), item_size); 3948 3949 slot = path->slots[0] + 1; 3950 nritems = btrfs_header_nritems(leaf); 3951 if (slot != nritems) { 3952 /* shift the items */ 3953 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot); 3954 } 3955 3956 btrfs_cpu_key_to_disk(&disk_key, new_key); 3957 btrfs_set_item_key(leaf, &disk_key, slot); 3958 3959 btrfs_set_item_offset(leaf, slot, orig_offset); 3960 btrfs_set_item_size(leaf, slot, item_size - split_offset); 3961 3962 btrfs_set_item_offset(leaf, orig_slot, 3963 orig_offset + item_size - split_offset); 3964 btrfs_set_item_size(leaf, orig_slot, split_offset); 3965 3966 btrfs_set_header_nritems(leaf, nritems + 1); 3967 3968 /* write the data for the start of the original item */ 3969 write_extent_buffer(leaf, buf, 3970 btrfs_item_ptr_offset(leaf, path->slots[0]), 3971 split_offset); 3972 3973 /* write the data for the new item */ 3974 write_extent_buffer(leaf, buf + split_offset, 3975 btrfs_item_ptr_offset(leaf, slot), 3976 item_size - split_offset); 3977 btrfs_mark_buffer_dirty(trans, leaf); 3978 3979 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 3980 kfree(buf); 3981 return 0; 3982 } 3983 3984 /* 3985 * This function splits a single item into two items, 3986 * giving 'new_key' to the new item and splitting the 3987 * old one at split_offset (from the start of the item). 3988 * 3989 * The path may be released by this operation. After 3990 * the split, the path is pointing to the old item. The 3991 * new item is going to be in the same node as the old one. 3992 * 3993 * Note, the item being split must be smaller enough to live alone on 3994 * a tree block with room for one extra struct btrfs_item 3995 * 3996 * This allows us to split the item in place, keeping a lock on the 3997 * leaf the entire time. 3998 */ 3999 int btrfs_split_item(struct btrfs_trans_handle *trans, 4000 struct btrfs_root *root, 4001 struct btrfs_path *path, 4002 const struct btrfs_key *new_key, 4003 unsigned long split_offset) 4004 { 4005 int ret; 4006 ret = setup_leaf_for_split(trans, root, path, 4007 sizeof(struct btrfs_item)); 4008 if (ret) 4009 return ret; 4010 4011 ret = split_item(trans, path, new_key, split_offset); 4012 return ret; 4013 } 4014 4015 /* 4016 * make the item pointed to by the path smaller. new_size indicates 4017 * how small to make it, and from_end tells us if we just chop bytes 4018 * off the end of the item or if we shift the item to chop bytes off 4019 * the front. 4020 */ 4021 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 4022 const struct btrfs_path *path, u32 new_size, int from_end) 4023 { 4024 int slot; 4025 struct extent_buffer *leaf; 4026 u32 nritems; 4027 unsigned int data_end; 4028 unsigned int old_data_start; 4029 unsigned int old_size; 4030 unsigned int size_diff; 4031 int i; 4032 struct btrfs_map_token token; 4033 4034 leaf = path->nodes[0]; 4035 slot = path->slots[0]; 4036 4037 old_size = btrfs_item_size(leaf, slot); 4038 if (old_size == new_size) 4039 return; 4040 4041 nritems = btrfs_header_nritems(leaf); 4042 data_end = leaf_data_end(leaf); 4043 4044 old_data_start = btrfs_item_offset(leaf, slot); 4045 4046 size_diff = old_size - new_size; 4047 4048 BUG_ON(slot < 0); 4049 BUG_ON(slot >= nritems); 4050 4051 /* 4052 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4053 */ 4054 /* first correct the data pointers */ 4055 btrfs_init_map_token(&token, leaf); 4056 for (i = slot; i < nritems; i++) { 4057 u32 ioff; 4058 4059 ioff = btrfs_token_item_offset(&token, i); 4060 btrfs_set_token_item_offset(&token, i, ioff + size_diff); 4061 } 4062 4063 /* shift the data */ 4064 if (from_end) { 4065 memmove_leaf_data(leaf, data_end + size_diff, data_end, 4066 old_data_start + new_size - data_end); 4067 } else { 4068 struct btrfs_disk_key disk_key; 4069 u64 offset; 4070 4071 btrfs_item_key(leaf, &disk_key, slot); 4072 4073 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4074 unsigned long ptr; 4075 struct btrfs_file_extent_item *fi; 4076 4077 fi = btrfs_item_ptr(leaf, slot, 4078 struct btrfs_file_extent_item); 4079 fi = (struct btrfs_file_extent_item *)( 4080 (unsigned long)fi - size_diff); 4081 4082 if (btrfs_file_extent_type(leaf, fi) == 4083 BTRFS_FILE_EXTENT_INLINE) { 4084 ptr = btrfs_item_ptr_offset(leaf, slot); 4085 memmove_extent_buffer(leaf, ptr, 4086 (unsigned long)fi, 4087 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4088 } 4089 } 4090 4091 memmove_leaf_data(leaf, data_end + size_diff, data_end, 4092 old_data_start - data_end); 4093 4094 offset = btrfs_disk_key_offset(&disk_key); 4095 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4096 btrfs_set_item_key(leaf, &disk_key, slot); 4097 if (slot == 0) 4098 fixup_low_keys(trans, path, &disk_key, 1); 4099 } 4100 4101 btrfs_set_item_size(leaf, slot, new_size); 4102 btrfs_mark_buffer_dirty(trans, leaf); 4103 4104 if (btrfs_leaf_free_space(leaf) < 0) { 4105 btrfs_print_leaf(leaf); 4106 BUG(); 4107 } 4108 } 4109 4110 /* 4111 * make the item pointed to by the path bigger, data_size is the added size. 4112 */ 4113 void btrfs_extend_item(struct btrfs_trans_handle *trans, 4114 const struct btrfs_path *path, u32 data_size) 4115 { 4116 int slot; 4117 struct extent_buffer *leaf; 4118 u32 nritems; 4119 unsigned int data_end; 4120 unsigned int old_data; 4121 unsigned int old_size; 4122 int i; 4123 struct btrfs_map_token token; 4124 4125 leaf = path->nodes[0]; 4126 4127 nritems = btrfs_header_nritems(leaf); 4128 data_end = leaf_data_end(leaf); 4129 4130 if (btrfs_leaf_free_space(leaf) < data_size) { 4131 btrfs_print_leaf(leaf); 4132 BUG(); 4133 } 4134 slot = path->slots[0]; 4135 old_data = btrfs_item_data_end(leaf, slot); 4136 4137 BUG_ON(slot < 0); 4138 if (slot >= nritems) { 4139 btrfs_print_leaf(leaf); 4140 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4141 slot, nritems); 4142 BUG(); 4143 } 4144 4145 /* 4146 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4147 */ 4148 /* first correct the data pointers */ 4149 btrfs_init_map_token(&token, leaf); 4150 for (i = slot; i < nritems; i++) { 4151 u32 ioff; 4152 4153 ioff = btrfs_token_item_offset(&token, i); 4154 btrfs_set_token_item_offset(&token, i, ioff - data_size); 4155 } 4156 4157 /* shift the data */ 4158 memmove_leaf_data(leaf, data_end - data_size, data_end, 4159 old_data - data_end); 4160 4161 data_end = old_data; 4162 old_size = btrfs_item_size(leaf, slot); 4163 btrfs_set_item_size(leaf, slot, old_size + data_size); 4164 btrfs_mark_buffer_dirty(trans, leaf); 4165 4166 if (btrfs_leaf_free_space(leaf) < 0) { 4167 btrfs_print_leaf(leaf); 4168 BUG(); 4169 } 4170 } 4171 4172 /* 4173 * Make space in the node before inserting one or more items. 4174 * 4175 * @trans: transaction handle 4176 * @root: root we are inserting items to 4177 * @path: points to the leaf/slot where we are going to insert new items 4178 * @batch: information about the batch of items to insert 4179 * 4180 * Main purpose is to save stack depth by doing the bulk of the work in a 4181 * function that doesn't call btrfs_search_slot 4182 */ 4183 static void setup_items_for_insert(struct btrfs_trans_handle *trans, 4184 struct btrfs_root *root, struct btrfs_path *path, 4185 const struct btrfs_item_batch *batch) 4186 { 4187 struct btrfs_fs_info *fs_info = root->fs_info; 4188 int i; 4189 u32 nritems; 4190 unsigned int data_end; 4191 struct btrfs_disk_key disk_key; 4192 struct extent_buffer *leaf; 4193 int slot; 4194 struct btrfs_map_token token; 4195 u32 total_size; 4196 4197 /* 4198 * Before anything else, update keys in the parent and other ancestors 4199 * if needed, then release the write locks on them, so that other tasks 4200 * can use them while we modify the leaf. 4201 */ 4202 if (path->slots[0] == 0) { 4203 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]); 4204 fixup_low_keys(trans, path, &disk_key, 1); 4205 } 4206 btrfs_unlock_up_safe(path, 1); 4207 4208 leaf = path->nodes[0]; 4209 slot = path->slots[0]; 4210 4211 nritems = btrfs_header_nritems(leaf); 4212 data_end = leaf_data_end(leaf); 4213 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); 4214 4215 if (btrfs_leaf_free_space(leaf) < total_size) { 4216 btrfs_print_leaf(leaf); 4217 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4218 total_size, btrfs_leaf_free_space(leaf)); 4219 BUG(); 4220 } 4221 4222 btrfs_init_map_token(&token, leaf); 4223 if (slot != nritems) { 4224 unsigned int old_data = btrfs_item_data_end(leaf, slot); 4225 4226 if (old_data < data_end) { 4227 btrfs_print_leaf(leaf); 4228 btrfs_crit(fs_info, 4229 "item at slot %d with data offset %u beyond data end of leaf %u", 4230 slot, old_data, data_end); 4231 BUG(); 4232 } 4233 /* 4234 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4235 */ 4236 /* first correct the data pointers */ 4237 for (i = slot; i < nritems; i++) { 4238 u32 ioff; 4239 4240 ioff = btrfs_token_item_offset(&token, i); 4241 btrfs_set_token_item_offset(&token, i, 4242 ioff - batch->total_data_size); 4243 } 4244 /* shift the items */ 4245 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot); 4246 4247 /* shift the data */ 4248 memmove_leaf_data(leaf, data_end - batch->total_data_size, 4249 data_end, old_data - data_end); 4250 data_end = old_data; 4251 } 4252 4253 /* setup the item for the new data */ 4254 for (i = 0; i < batch->nr; i++) { 4255 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]); 4256 btrfs_set_item_key(leaf, &disk_key, slot + i); 4257 data_end -= batch->data_sizes[i]; 4258 btrfs_set_token_item_offset(&token, slot + i, data_end); 4259 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]); 4260 } 4261 4262 btrfs_set_header_nritems(leaf, nritems + batch->nr); 4263 btrfs_mark_buffer_dirty(trans, leaf); 4264 4265 if (btrfs_leaf_free_space(leaf) < 0) { 4266 btrfs_print_leaf(leaf); 4267 BUG(); 4268 } 4269 } 4270 4271 /* 4272 * Insert a new item into a leaf. 4273 * 4274 * @trans: Transaction handle. 4275 * @root: The root of the btree. 4276 * @path: A path pointing to the target leaf and slot. 4277 * @key: The key of the new item. 4278 * @data_size: The size of the data associated with the new key. 4279 */ 4280 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans, 4281 struct btrfs_root *root, 4282 struct btrfs_path *path, 4283 const struct btrfs_key *key, 4284 u32 data_size) 4285 { 4286 struct btrfs_item_batch batch; 4287 4288 batch.keys = key; 4289 batch.data_sizes = &data_size; 4290 batch.total_data_size = data_size; 4291 batch.nr = 1; 4292 4293 setup_items_for_insert(trans, root, path, &batch); 4294 } 4295 4296 /* 4297 * Given a key and some data, insert items into the tree. 4298 * This does all the path init required, making room in the tree if needed. 4299 * 4300 * Returns: 0 on success 4301 * -EEXIST if the first key already exists 4302 * < 0 on other errors 4303 */ 4304 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4305 struct btrfs_root *root, 4306 struct btrfs_path *path, 4307 const struct btrfs_item_batch *batch) 4308 { 4309 int ret = 0; 4310 int slot; 4311 u32 total_size; 4312 4313 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); 4314 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1); 4315 if (ret == 0) 4316 return -EEXIST; 4317 if (ret < 0) 4318 return ret; 4319 4320 slot = path->slots[0]; 4321 BUG_ON(slot < 0); 4322 4323 setup_items_for_insert(trans, root, path, batch); 4324 return 0; 4325 } 4326 4327 /* 4328 * Given a key and some data, insert an item into the tree. 4329 * This does all the path init required, making room in the tree if needed. 4330 */ 4331 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4332 const struct btrfs_key *cpu_key, void *data, 4333 u32 data_size) 4334 { 4335 int ret = 0; 4336 struct btrfs_path *path; 4337 struct extent_buffer *leaf; 4338 unsigned long ptr; 4339 4340 path = btrfs_alloc_path(); 4341 if (!path) 4342 return -ENOMEM; 4343 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4344 if (!ret) { 4345 leaf = path->nodes[0]; 4346 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4347 write_extent_buffer(leaf, data, ptr, data_size); 4348 btrfs_mark_buffer_dirty(trans, leaf); 4349 } 4350 btrfs_free_path(path); 4351 return ret; 4352 } 4353 4354 /* 4355 * This function duplicates an item, giving 'new_key' to the new item. 4356 * It guarantees both items live in the same tree leaf and the new item is 4357 * contiguous with the original item. 4358 * 4359 * This allows us to split a file extent in place, keeping a lock on the leaf 4360 * the entire time. 4361 */ 4362 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4363 struct btrfs_root *root, 4364 struct btrfs_path *path, 4365 const struct btrfs_key *new_key) 4366 { 4367 struct extent_buffer *leaf; 4368 int ret; 4369 u32 item_size; 4370 4371 leaf = path->nodes[0]; 4372 item_size = btrfs_item_size(leaf, path->slots[0]); 4373 ret = setup_leaf_for_split(trans, root, path, 4374 item_size + sizeof(struct btrfs_item)); 4375 if (ret) 4376 return ret; 4377 4378 path->slots[0]++; 4379 btrfs_setup_item_for_insert(trans, root, path, new_key, item_size); 4380 leaf = path->nodes[0]; 4381 memcpy_extent_buffer(leaf, 4382 btrfs_item_ptr_offset(leaf, path->slots[0]), 4383 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4384 item_size); 4385 return 0; 4386 } 4387 4388 /* 4389 * delete the pointer from a given node. 4390 * 4391 * the tree should have been previously balanced so the deletion does not 4392 * empty a node. 4393 * 4394 * This is exported for use inside btrfs-progs, don't un-export it. 4395 */ 4396 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4397 struct btrfs_path *path, int level, int slot) 4398 { 4399 struct extent_buffer *parent = path->nodes[level]; 4400 u32 nritems; 4401 int ret; 4402 4403 nritems = btrfs_header_nritems(parent); 4404 if (slot != nritems - 1) { 4405 if (level) { 4406 ret = btrfs_tree_mod_log_insert_move(parent, slot, 4407 slot + 1, nritems - slot - 1); 4408 if (ret < 0) { 4409 btrfs_abort_transaction(trans, ret); 4410 return ret; 4411 } 4412 } 4413 memmove_extent_buffer(parent, 4414 btrfs_node_key_ptr_offset(parent, slot), 4415 btrfs_node_key_ptr_offset(parent, slot + 1), 4416 sizeof(struct btrfs_key_ptr) * 4417 (nritems - slot - 1)); 4418 } else if (level) { 4419 ret = btrfs_tree_mod_log_insert_key(parent, slot, 4420 BTRFS_MOD_LOG_KEY_REMOVE); 4421 if (ret < 0) { 4422 btrfs_abort_transaction(trans, ret); 4423 return ret; 4424 } 4425 } 4426 4427 nritems--; 4428 btrfs_set_header_nritems(parent, nritems); 4429 if (nritems == 0 && parent == root->node) { 4430 BUG_ON(btrfs_header_level(root->node) != 1); 4431 /* just turn the root into a leaf and break */ 4432 btrfs_set_header_level(root->node, 0); 4433 } else if (slot == 0) { 4434 struct btrfs_disk_key disk_key; 4435 4436 btrfs_node_key(parent, &disk_key, 0); 4437 fixup_low_keys(trans, path, &disk_key, level + 1); 4438 } 4439 btrfs_mark_buffer_dirty(trans, parent); 4440 return 0; 4441 } 4442 4443 /* 4444 * a helper function to delete the leaf pointed to by path->slots[1] and 4445 * path->nodes[1]. 4446 * 4447 * This deletes the pointer in path->nodes[1] and frees the leaf 4448 * block extent. zero is returned if it all worked out, < 0 otherwise. 4449 * 4450 * The path must have already been setup for deleting the leaf, including 4451 * all the proper balancing. path->nodes[1] must be locked. 4452 */ 4453 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 4454 struct btrfs_root *root, 4455 struct btrfs_path *path, 4456 struct extent_buffer *leaf) 4457 { 4458 int ret; 4459 4460 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4461 ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]); 4462 if (ret < 0) 4463 return ret; 4464 4465 /* 4466 * btrfs_free_extent is expensive, we want to make sure we 4467 * aren't holding any locks when we call it 4468 */ 4469 btrfs_unlock_up_safe(path, 0); 4470 4471 root_sub_used_bytes(root); 4472 4473 atomic_inc(&leaf->refs); 4474 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1); 4475 free_extent_buffer_stale(leaf); 4476 if (ret < 0) 4477 btrfs_abort_transaction(trans, ret); 4478 4479 return ret; 4480 } 4481 /* 4482 * delete the item at the leaf level in path. If that empties 4483 * the leaf, remove it from the tree 4484 */ 4485 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4486 struct btrfs_path *path, int slot, int nr) 4487 { 4488 struct btrfs_fs_info *fs_info = root->fs_info; 4489 struct extent_buffer *leaf; 4490 int ret = 0; 4491 int wret; 4492 u32 nritems; 4493 4494 leaf = path->nodes[0]; 4495 nritems = btrfs_header_nritems(leaf); 4496 4497 if (slot + nr != nritems) { 4498 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1); 4499 const int data_end = leaf_data_end(leaf); 4500 struct btrfs_map_token token; 4501 u32 dsize = 0; 4502 int i; 4503 4504 for (i = 0; i < nr; i++) 4505 dsize += btrfs_item_size(leaf, slot + i); 4506 4507 memmove_leaf_data(leaf, data_end + dsize, data_end, 4508 last_off - data_end); 4509 4510 btrfs_init_map_token(&token, leaf); 4511 for (i = slot + nr; i < nritems; i++) { 4512 u32 ioff; 4513 4514 ioff = btrfs_token_item_offset(&token, i); 4515 btrfs_set_token_item_offset(&token, i, ioff + dsize); 4516 } 4517 4518 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr); 4519 } 4520 btrfs_set_header_nritems(leaf, nritems - nr); 4521 nritems -= nr; 4522 4523 /* delete the leaf if we've emptied it */ 4524 if (nritems == 0) { 4525 if (leaf == root->node) { 4526 btrfs_set_header_level(leaf, 0); 4527 } else { 4528 btrfs_clear_buffer_dirty(trans, leaf); 4529 ret = btrfs_del_leaf(trans, root, path, leaf); 4530 if (ret < 0) 4531 return ret; 4532 } 4533 } else { 4534 int used = leaf_space_used(leaf, 0, nritems); 4535 if (slot == 0) { 4536 struct btrfs_disk_key disk_key; 4537 4538 btrfs_item_key(leaf, &disk_key, 0); 4539 fixup_low_keys(trans, path, &disk_key, 1); 4540 } 4541 4542 /* 4543 * Try to delete the leaf if it is mostly empty. We do this by 4544 * trying to move all its items into its left and right neighbours. 4545 * If we can't move all the items, then we don't delete it - it's 4546 * not ideal, but future insertions might fill the leaf with more 4547 * items, or items from other leaves might be moved later into our 4548 * leaf due to deletions on those leaves. 4549 */ 4550 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4551 u32 min_push_space; 4552 4553 /* push_leaf_left fixes the path. 4554 * make sure the path still points to our leaf 4555 * for possible call to btrfs_del_ptr below 4556 */ 4557 slot = path->slots[1]; 4558 atomic_inc(&leaf->refs); 4559 /* 4560 * We want to be able to at least push one item to the 4561 * left neighbour leaf, and that's the first item. 4562 */ 4563 min_push_space = sizeof(struct btrfs_item) + 4564 btrfs_item_size(leaf, 0); 4565 wret = push_leaf_left(trans, root, path, 0, 4566 min_push_space, 1, (u32)-1); 4567 if (wret < 0 && wret != -ENOSPC) 4568 ret = wret; 4569 4570 if (path->nodes[0] == leaf && 4571 btrfs_header_nritems(leaf)) { 4572 /* 4573 * If we were not able to push all items from our 4574 * leaf to its left neighbour, then attempt to 4575 * either push all the remaining items to the 4576 * right neighbour or none. There's no advantage 4577 * in pushing only some items, instead of all, as 4578 * it's pointless to end up with a leaf having 4579 * too few items while the neighbours can be full 4580 * or nearly full. 4581 */ 4582 nritems = btrfs_header_nritems(leaf); 4583 min_push_space = leaf_space_used(leaf, 0, nritems); 4584 wret = push_leaf_right(trans, root, path, 0, 4585 min_push_space, 1, 0); 4586 if (wret < 0 && wret != -ENOSPC) 4587 ret = wret; 4588 } 4589 4590 if (btrfs_header_nritems(leaf) == 0) { 4591 path->slots[1] = slot; 4592 ret = btrfs_del_leaf(trans, root, path, leaf); 4593 if (ret < 0) 4594 return ret; 4595 free_extent_buffer(leaf); 4596 ret = 0; 4597 } else { 4598 /* if we're still in the path, make sure 4599 * we're dirty. Otherwise, one of the 4600 * push_leaf functions must have already 4601 * dirtied this buffer 4602 */ 4603 if (path->nodes[0] == leaf) 4604 btrfs_mark_buffer_dirty(trans, leaf); 4605 free_extent_buffer(leaf); 4606 } 4607 } else { 4608 btrfs_mark_buffer_dirty(trans, leaf); 4609 } 4610 } 4611 return ret; 4612 } 4613 4614 /* 4615 * A helper function to walk down the tree starting at min_key, and looking 4616 * for nodes or leaves that are have a minimum transaction id. 4617 * This is used by the btree defrag code, and tree logging 4618 * 4619 * This does not cow, but it does stuff the starting key it finds back 4620 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4621 * key and get a writable path. 4622 * 4623 * This honors path->lowest_level to prevent descent past a given level 4624 * of the tree. 4625 * 4626 * min_trans indicates the oldest transaction that you are interested 4627 * in walking through. Any nodes or leaves older than min_trans are 4628 * skipped over (without reading them). 4629 * 4630 * returns zero if something useful was found, < 0 on error and 1 if there 4631 * was nothing in the tree that matched the search criteria. 4632 */ 4633 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4634 struct btrfs_path *path, 4635 u64 min_trans) 4636 { 4637 struct extent_buffer *cur; 4638 struct btrfs_key found_key; 4639 int slot; 4640 int sret; 4641 u32 nritems; 4642 int level; 4643 int ret = 1; 4644 int keep_locks = path->keep_locks; 4645 4646 ASSERT(!path->nowait); 4647 path->keep_locks = 1; 4648 again: 4649 cur = btrfs_read_lock_root_node(root); 4650 level = btrfs_header_level(cur); 4651 WARN_ON(path->nodes[level]); 4652 path->nodes[level] = cur; 4653 path->locks[level] = BTRFS_READ_LOCK; 4654 4655 if (btrfs_header_generation(cur) < min_trans) { 4656 ret = 1; 4657 goto out; 4658 } 4659 while (1) { 4660 nritems = btrfs_header_nritems(cur); 4661 level = btrfs_header_level(cur); 4662 sret = btrfs_bin_search(cur, 0, min_key, &slot); 4663 if (sret < 0) { 4664 ret = sret; 4665 goto out; 4666 } 4667 4668 /* at the lowest level, we're done, setup the path and exit */ 4669 if (level == path->lowest_level) { 4670 if (slot >= nritems) 4671 goto find_next_key; 4672 ret = 0; 4673 path->slots[level] = slot; 4674 btrfs_item_key_to_cpu(cur, &found_key, slot); 4675 goto out; 4676 } 4677 if (sret && slot > 0) 4678 slot--; 4679 /* 4680 * check this node pointer against the min_trans parameters. 4681 * If it is too old, skip to the next one. 4682 */ 4683 while (slot < nritems) { 4684 u64 gen; 4685 4686 gen = btrfs_node_ptr_generation(cur, slot); 4687 if (gen < min_trans) { 4688 slot++; 4689 continue; 4690 } 4691 break; 4692 } 4693 find_next_key: 4694 /* 4695 * we didn't find a candidate key in this node, walk forward 4696 * and find another one 4697 */ 4698 if (slot >= nritems) { 4699 path->slots[level] = slot; 4700 sret = btrfs_find_next_key(root, path, min_key, level, 4701 min_trans); 4702 if (sret == 0) { 4703 btrfs_release_path(path); 4704 goto again; 4705 } else { 4706 goto out; 4707 } 4708 } 4709 /* save our key for returning back */ 4710 btrfs_node_key_to_cpu(cur, &found_key, slot); 4711 path->slots[level] = slot; 4712 if (level == path->lowest_level) { 4713 ret = 0; 4714 goto out; 4715 } 4716 cur = btrfs_read_node_slot(cur, slot); 4717 if (IS_ERR(cur)) { 4718 ret = PTR_ERR(cur); 4719 goto out; 4720 } 4721 4722 btrfs_tree_read_lock(cur); 4723 4724 path->locks[level - 1] = BTRFS_READ_LOCK; 4725 path->nodes[level - 1] = cur; 4726 unlock_up(path, level, 1, 0, NULL); 4727 } 4728 out: 4729 path->keep_locks = keep_locks; 4730 if (ret == 0) { 4731 btrfs_unlock_up_safe(path, path->lowest_level + 1); 4732 memcpy(min_key, &found_key, sizeof(found_key)); 4733 } 4734 return ret; 4735 } 4736 4737 /* 4738 * this is similar to btrfs_next_leaf, but does not try to preserve 4739 * and fixup the path. It looks for and returns the next key in the 4740 * tree based on the current path and the min_trans parameters. 4741 * 4742 * 0 is returned if another key is found, < 0 if there are any errors 4743 * and 1 is returned if there are no higher keys in the tree 4744 * 4745 * path->keep_locks should be set to 1 on the search made before 4746 * calling this function. 4747 */ 4748 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4749 struct btrfs_key *key, int level, u64 min_trans) 4750 { 4751 int slot; 4752 struct extent_buffer *c; 4753 4754 WARN_ON(!path->keep_locks && !path->skip_locking); 4755 while (level < BTRFS_MAX_LEVEL) { 4756 if (!path->nodes[level]) 4757 return 1; 4758 4759 slot = path->slots[level] + 1; 4760 c = path->nodes[level]; 4761 next: 4762 if (slot >= btrfs_header_nritems(c)) { 4763 int ret; 4764 int orig_lowest; 4765 struct btrfs_key cur_key; 4766 if (level + 1 >= BTRFS_MAX_LEVEL || 4767 !path->nodes[level + 1]) 4768 return 1; 4769 4770 if (path->locks[level + 1] || path->skip_locking) { 4771 level++; 4772 continue; 4773 } 4774 4775 slot = btrfs_header_nritems(c) - 1; 4776 if (level == 0) 4777 btrfs_item_key_to_cpu(c, &cur_key, slot); 4778 else 4779 btrfs_node_key_to_cpu(c, &cur_key, slot); 4780 4781 orig_lowest = path->lowest_level; 4782 btrfs_release_path(path); 4783 path->lowest_level = level; 4784 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4785 0, 0); 4786 path->lowest_level = orig_lowest; 4787 if (ret < 0) 4788 return ret; 4789 4790 c = path->nodes[level]; 4791 slot = path->slots[level]; 4792 if (ret == 0) 4793 slot++; 4794 goto next; 4795 } 4796 4797 if (level == 0) 4798 btrfs_item_key_to_cpu(c, key, slot); 4799 else { 4800 u64 gen = btrfs_node_ptr_generation(c, slot); 4801 4802 if (gen < min_trans) { 4803 slot++; 4804 goto next; 4805 } 4806 btrfs_node_key_to_cpu(c, key, slot); 4807 } 4808 return 0; 4809 } 4810 return 1; 4811 } 4812 4813 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 4814 u64 time_seq) 4815 { 4816 int slot; 4817 int level; 4818 struct extent_buffer *c; 4819 struct extent_buffer *next; 4820 struct btrfs_fs_info *fs_info = root->fs_info; 4821 struct btrfs_key key; 4822 bool need_commit_sem = false; 4823 u32 nritems; 4824 int ret; 4825 int i; 4826 4827 /* 4828 * The nowait semantics are used only for write paths, where we don't 4829 * use the tree mod log and sequence numbers. 4830 */ 4831 if (time_seq) 4832 ASSERT(!path->nowait); 4833 4834 nritems = btrfs_header_nritems(path->nodes[0]); 4835 if (nritems == 0) 4836 return 1; 4837 4838 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4839 again: 4840 level = 1; 4841 next = NULL; 4842 btrfs_release_path(path); 4843 4844 path->keep_locks = 1; 4845 4846 if (time_seq) { 4847 ret = btrfs_search_old_slot(root, &key, path, time_seq); 4848 } else { 4849 if (path->need_commit_sem) { 4850 path->need_commit_sem = 0; 4851 need_commit_sem = true; 4852 if (path->nowait) { 4853 if (!down_read_trylock(&fs_info->commit_root_sem)) { 4854 ret = -EAGAIN; 4855 goto done; 4856 } 4857 } else { 4858 down_read(&fs_info->commit_root_sem); 4859 } 4860 } 4861 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4862 } 4863 path->keep_locks = 0; 4864 4865 if (ret < 0) 4866 goto done; 4867 4868 nritems = btrfs_header_nritems(path->nodes[0]); 4869 /* 4870 * by releasing the path above we dropped all our locks. A balance 4871 * could have added more items next to the key that used to be 4872 * at the very end of the block. So, check again here and 4873 * advance the path if there are now more items available. 4874 */ 4875 if (nritems > 0 && path->slots[0] < nritems - 1) { 4876 if (ret == 0) 4877 path->slots[0]++; 4878 ret = 0; 4879 goto done; 4880 } 4881 /* 4882 * So the above check misses one case: 4883 * - after releasing the path above, someone has removed the item that 4884 * used to be at the very end of the block, and balance between leafs 4885 * gets another one with bigger key.offset to replace it. 4886 * 4887 * This one should be returned as well, or we can get leaf corruption 4888 * later(esp. in __btrfs_drop_extents()). 4889 * 4890 * And a bit more explanation about this check, 4891 * with ret > 0, the key isn't found, the path points to the slot 4892 * where it should be inserted, so the path->slots[0] item must be the 4893 * bigger one. 4894 */ 4895 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 4896 ret = 0; 4897 goto done; 4898 } 4899 4900 while (level < BTRFS_MAX_LEVEL) { 4901 if (!path->nodes[level]) { 4902 ret = 1; 4903 goto done; 4904 } 4905 4906 slot = path->slots[level] + 1; 4907 c = path->nodes[level]; 4908 if (slot >= btrfs_header_nritems(c)) { 4909 level++; 4910 if (level == BTRFS_MAX_LEVEL) { 4911 ret = 1; 4912 goto done; 4913 } 4914 continue; 4915 } 4916 4917 4918 /* 4919 * Our current level is where we're going to start from, and to 4920 * make sure lockdep doesn't complain we need to drop our locks 4921 * and nodes from 0 to our current level. 4922 */ 4923 for (i = 0; i < level; i++) { 4924 if (path->locks[level]) { 4925 btrfs_tree_read_unlock(path->nodes[i]); 4926 path->locks[i] = 0; 4927 } 4928 free_extent_buffer(path->nodes[i]); 4929 path->nodes[i] = NULL; 4930 } 4931 4932 next = c; 4933 ret = read_block_for_search(root, path, &next, level, 4934 slot, &key); 4935 if (ret == -EAGAIN && !path->nowait) 4936 goto again; 4937 4938 if (ret < 0) { 4939 btrfs_release_path(path); 4940 goto done; 4941 } 4942 4943 if (!path->skip_locking) { 4944 ret = btrfs_try_tree_read_lock(next); 4945 if (!ret && path->nowait) { 4946 ret = -EAGAIN; 4947 goto done; 4948 } 4949 if (!ret && time_seq) { 4950 /* 4951 * If we don't get the lock, we may be racing 4952 * with push_leaf_left, holding that lock while 4953 * itself waiting for the leaf we've currently 4954 * locked. To solve this situation, we give up 4955 * on our lock and cycle. 4956 */ 4957 free_extent_buffer(next); 4958 btrfs_release_path(path); 4959 cond_resched(); 4960 goto again; 4961 } 4962 if (!ret) 4963 btrfs_tree_read_lock(next); 4964 } 4965 break; 4966 } 4967 path->slots[level] = slot; 4968 while (1) { 4969 level--; 4970 path->nodes[level] = next; 4971 path->slots[level] = 0; 4972 if (!path->skip_locking) 4973 path->locks[level] = BTRFS_READ_LOCK; 4974 if (!level) 4975 break; 4976 4977 ret = read_block_for_search(root, path, &next, level, 4978 0, &key); 4979 if (ret == -EAGAIN && !path->nowait) 4980 goto again; 4981 4982 if (ret < 0) { 4983 btrfs_release_path(path); 4984 goto done; 4985 } 4986 4987 if (!path->skip_locking) { 4988 if (path->nowait) { 4989 if (!btrfs_try_tree_read_lock(next)) { 4990 ret = -EAGAIN; 4991 goto done; 4992 } 4993 } else { 4994 btrfs_tree_read_lock(next); 4995 } 4996 } 4997 } 4998 ret = 0; 4999 done: 5000 unlock_up(path, 0, 1, 0, NULL); 5001 if (need_commit_sem) { 5002 int ret2; 5003 5004 path->need_commit_sem = 1; 5005 ret2 = finish_need_commit_sem_search(path); 5006 up_read(&fs_info->commit_root_sem); 5007 if (ret2) 5008 ret = ret2; 5009 } 5010 5011 return ret; 5012 } 5013 5014 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq) 5015 { 5016 path->slots[0]++; 5017 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 5018 return btrfs_next_old_leaf(root, path, time_seq); 5019 return 0; 5020 } 5021 5022 /* 5023 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5024 * searching until it gets past min_objectid or finds an item of 'type' 5025 * 5026 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5027 */ 5028 int btrfs_previous_item(struct btrfs_root *root, 5029 struct btrfs_path *path, u64 min_objectid, 5030 int type) 5031 { 5032 struct btrfs_key found_key; 5033 struct extent_buffer *leaf; 5034 u32 nritems; 5035 int ret; 5036 5037 while (1) { 5038 if (path->slots[0] == 0) { 5039 ret = btrfs_prev_leaf(root, path); 5040 if (ret != 0) 5041 return ret; 5042 } else { 5043 path->slots[0]--; 5044 } 5045 leaf = path->nodes[0]; 5046 nritems = btrfs_header_nritems(leaf); 5047 if (nritems == 0) 5048 return 1; 5049 if (path->slots[0] == nritems) 5050 path->slots[0]--; 5051 5052 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5053 if (found_key.objectid < min_objectid) 5054 break; 5055 if (found_key.type == type) 5056 return 0; 5057 if (found_key.objectid == min_objectid && 5058 found_key.type < type) 5059 break; 5060 } 5061 return 1; 5062 } 5063 5064 /* 5065 * search in extent tree to find a previous Metadata/Data extent item with 5066 * min objecitd. 5067 * 5068 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5069 */ 5070 int btrfs_previous_extent_item(struct btrfs_root *root, 5071 struct btrfs_path *path, u64 min_objectid) 5072 { 5073 struct btrfs_key found_key; 5074 struct extent_buffer *leaf; 5075 u32 nritems; 5076 int ret; 5077 5078 while (1) { 5079 if (path->slots[0] == 0) { 5080 ret = btrfs_prev_leaf(root, path); 5081 if (ret != 0) 5082 return ret; 5083 } else { 5084 path->slots[0]--; 5085 } 5086 leaf = path->nodes[0]; 5087 nritems = btrfs_header_nritems(leaf); 5088 if (nritems == 0) 5089 return 1; 5090 if (path->slots[0] == nritems) 5091 path->slots[0]--; 5092 5093 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5094 if (found_key.objectid < min_objectid) 5095 break; 5096 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5097 found_key.type == BTRFS_METADATA_ITEM_KEY) 5098 return 0; 5099 if (found_key.objectid == min_objectid && 5100 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5101 break; 5102 } 5103 return 1; 5104 } 5105 5106 int __init btrfs_ctree_init(void) 5107 { 5108 btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0); 5109 if (!btrfs_path_cachep) 5110 return -ENOMEM; 5111 return 0; 5112 } 5113 5114 void __cold btrfs_ctree_exit(void) 5115 { 5116 kmem_cache_destroy(btrfs_path_cachep); 5117 } 5118