1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include <linux/error-injection.h> 11 #include "messages.h" 12 #include "ctree.h" 13 #include "disk-io.h" 14 #include "transaction.h" 15 #include "print-tree.h" 16 #include "locking.h" 17 #include "volumes.h" 18 #include "qgroup.h" 19 #include "tree-mod-log.h" 20 #include "tree-checker.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 #include "relocation.h" 25 #include "file-item.h" 26 27 static struct kmem_cache *btrfs_path_cachep; 28 29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_path *path, int level); 31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 32 const struct btrfs_key *ins_key, struct btrfs_path *path, 33 int data_size, int extend); 34 static int push_node_left(struct btrfs_trans_handle *trans, 35 struct extent_buffer *dst, 36 struct extent_buffer *src, int empty); 37 static int balance_node_right(struct btrfs_trans_handle *trans, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 /* 41 * The leaf data grows from end-to-front in the node. this returns the address 42 * of the start of the last item, which is the stop of the leaf data stack. 43 */ 44 static unsigned int leaf_data_end(const struct extent_buffer *leaf) 45 { 46 u32 nr = btrfs_header_nritems(leaf); 47 48 if (nr == 0) 49 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 50 return btrfs_item_offset(leaf, nr - 1); 51 } 52 53 /* 54 * Move data in a @leaf (using memmove, safe for overlapping ranges). 55 * 56 * @leaf: leaf that we're doing a memmove on 57 * @dst_offset: item data offset we're moving to 58 * @src_offset: item data offset were' moving from 59 * @len: length of the data we're moving 60 * 61 * Wrapper around memmove_extent_buffer() that takes into account the header on 62 * the leaf. The btrfs_item offset's start directly after the header, so we 63 * have to adjust any offsets to account for the header in the leaf. This 64 * handles that math to simplify the callers. 65 */ 66 static inline void memmove_leaf_data(const struct extent_buffer *leaf, 67 unsigned long dst_offset, 68 unsigned long src_offset, 69 unsigned long len) 70 { 71 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset, 72 btrfs_item_nr_offset(leaf, 0) + src_offset, len); 73 } 74 75 /* 76 * Copy item data from @src into @dst at the given @offset. 77 * 78 * @dst: destination leaf that we're copying into 79 * @src: source leaf that we're copying from 80 * @dst_offset: item data offset we're copying to 81 * @src_offset: item data offset were' copying from 82 * @len: length of the data we're copying 83 * 84 * Wrapper around copy_extent_buffer() that takes into account the header on 85 * the leaf. The btrfs_item offset's start directly after the header, so we 86 * have to adjust any offsets to account for the header in the leaf. This 87 * handles that math to simplify the callers. 88 */ 89 static inline void copy_leaf_data(const struct extent_buffer *dst, 90 const struct extent_buffer *src, 91 unsigned long dst_offset, 92 unsigned long src_offset, unsigned long len) 93 { 94 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset, 95 btrfs_item_nr_offset(src, 0) + src_offset, len); 96 } 97 98 /* 99 * Move items in a @leaf (using memmove). 100 * 101 * @dst: destination leaf for the items 102 * @dst_item: the item nr we're copying into 103 * @src_item: the item nr we're copying from 104 * @nr_items: the number of items to copy 105 * 106 * Wrapper around memmove_extent_buffer() that does the math to get the 107 * appropriate offsets into the leaf from the item numbers. 108 */ 109 static inline void memmove_leaf_items(const struct extent_buffer *leaf, 110 int dst_item, int src_item, int nr_items) 111 { 112 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item), 113 btrfs_item_nr_offset(leaf, src_item), 114 nr_items * sizeof(struct btrfs_item)); 115 } 116 117 /* 118 * Copy items from @src into @dst at the given @offset. 119 * 120 * @dst: destination leaf for the items 121 * @src: source leaf for the items 122 * @dst_item: the item nr we're copying into 123 * @src_item: the item nr we're copying from 124 * @nr_items: the number of items to copy 125 * 126 * Wrapper around copy_extent_buffer() that does the math to get the 127 * appropriate offsets into the leaf from the item numbers. 128 */ 129 static inline void copy_leaf_items(const struct extent_buffer *dst, 130 const struct extent_buffer *src, 131 int dst_item, int src_item, int nr_items) 132 { 133 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item), 134 btrfs_item_nr_offset(src, src_item), 135 nr_items * sizeof(struct btrfs_item)); 136 } 137 138 struct btrfs_path *btrfs_alloc_path(void) 139 { 140 might_sleep(); 141 142 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 143 } 144 145 /* this also releases the path */ 146 void btrfs_free_path(struct btrfs_path *p) 147 { 148 if (!p) 149 return; 150 btrfs_release_path(p); 151 kmem_cache_free(btrfs_path_cachep, p); 152 } 153 154 /* 155 * path release drops references on the extent buffers in the path 156 * and it drops any locks held by this path 157 * 158 * It is safe to call this on paths that no locks or extent buffers held. 159 */ 160 noinline void btrfs_release_path(struct btrfs_path *p) 161 { 162 int i; 163 164 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 165 p->slots[i] = 0; 166 if (!p->nodes[i]) 167 continue; 168 if (p->locks[i]) { 169 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 170 p->locks[i] = 0; 171 } 172 free_extent_buffer(p->nodes[i]); 173 p->nodes[i] = NULL; 174 } 175 } 176 177 /* 178 * safely gets a reference on the root node of a tree. A lock 179 * is not taken, so a concurrent writer may put a different node 180 * at the root of the tree. See btrfs_lock_root_node for the 181 * looping required. 182 * 183 * The extent buffer returned by this has a reference taken, so 184 * it won't disappear. It may stop being the root of the tree 185 * at any time because there are no locks held. 186 */ 187 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 188 { 189 struct extent_buffer *eb; 190 191 while (1) { 192 rcu_read_lock(); 193 eb = rcu_dereference(root->node); 194 195 /* 196 * RCU really hurts here, we could free up the root node because 197 * it was COWed but we may not get the new root node yet so do 198 * the inc_not_zero dance and if it doesn't work then 199 * synchronize_rcu and try again. 200 */ 201 if (atomic_inc_not_zero(&eb->refs)) { 202 rcu_read_unlock(); 203 break; 204 } 205 rcu_read_unlock(); 206 synchronize_rcu(); 207 } 208 return eb; 209 } 210 211 /* 212 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 213 * just get put onto a simple dirty list. Transaction walks this list to make 214 * sure they get properly updated on disk. 215 */ 216 static void add_root_to_dirty_list(struct btrfs_root *root) 217 { 218 struct btrfs_fs_info *fs_info = root->fs_info; 219 220 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 221 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 222 return; 223 224 spin_lock(&fs_info->trans_lock); 225 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 226 /* Want the extent tree to be the last on the list */ 227 if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID) 228 list_move_tail(&root->dirty_list, 229 &fs_info->dirty_cowonly_roots); 230 else 231 list_move(&root->dirty_list, 232 &fs_info->dirty_cowonly_roots); 233 } 234 spin_unlock(&fs_info->trans_lock); 235 } 236 237 /* 238 * used by snapshot creation to make a copy of a root for a tree with 239 * a given objectid. The buffer with the new root node is returned in 240 * cow_ret, and this func returns zero on success or a negative error code. 241 */ 242 int btrfs_copy_root(struct btrfs_trans_handle *trans, 243 struct btrfs_root *root, 244 struct extent_buffer *buf, 245 struct extent_buffer **cow_ret, u64 new_root_objectid) 246 { 247 struct btrfs_fs_info *fs_info = root->fs_info; 248 struct extent_buffer *cow; 249 int ret = 0; 250 int level; 251 struct btrfs_disk_key disk_key; 252 u64 reloc_src_root = 0; 253 254 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 255 trans->transid != fs_info->running_transaction->transid); 256 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 257 trans->transid != btrfs_get_root_last_trans(root)); 258 259 level = btrfs_header_level(buf); 260 if (level == 0) 261 btrfs_item_key(buf, &disk_key, 0); 262 else 263 btrfs_node_key(buf, &disk_key, 0); 264 265 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 266 reloc_src_root = btrfs_header_owner(buf); 267 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 268 &disk_key, level, buf->start, 0, 269 reloc_src_root, BTRFS_NESTING_NEW_ROOT); 270 if (IS_ERR(cow)) 271 return PTR_ERR(cow); 272 273 copy_extent_buffer_full(cow, buf); 274 btrfs_set_header_bytenr(cow, cow->start); 275 btrfs_set_header_generation(cow, trans->transid); 276 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 277 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 278 BTRFS_HEADER_FLAG_RELOC); 279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 280 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 281 else 282 btrfs_set_header_owner(cow, new_root_objectid); 283 284 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 285 286 WARN_ON(btrfs_header_generation(buf) > trans->transid); 287 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 288 ret = btrfs_inc_ref(trans, root, cow, 1); 289 else 290 ret = btrfs_inc_ref(trans, root, cow, 0); 291 if (ret) { 292 btrfs_tree_unlock(cow); 293 free_extent_buffer(cow); 294 btrfs_abort_transaction(trans, ret); 295 return ret; 296 } 297 298 btrfs_mark_buffer_dirty(trans, cow); 299 *cow_ret = cow; 300 return 0; 301 } 302 303 /* 304 * check if the tree block can be shared by multiple trees 305 */ 306 bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans, 307 struct btrfs_root *root, 308 struct extent_buffer *buf) 309 { 310 const u64 buf_gen = btrfs_header_generation(buf); 311 312 /* 313 * Tree blocks not in shareable trees and tree roots are never shared. 314 * If a block was allocated after the last snapshot and the block was 315 * not allocated by tree relocation, we know the block is not shared. 316 */ 317 318 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 319 return false; 320 321 if (buf == root->node) 322 return false; 323 324 if (buf_gen > btrfs_root_last_snapshot(&root->root_item) && 325 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) 326 return false; 327 328 if (buf != root->commit_root) 329 return true; 330 331 /* 332 * An extent buffer that used to be the commit root may still be shared 333 * because the tree height may have increased and it became a child of a 334 * higher level root. This can happen when snapshotting a subvolume 335 * created in the current transaction. 336 */ 337 if (buf_gen == trans->transid) 338 return true; 339 340 return false; 341 } 342 343 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 344 struct btrfs_root *root, 345 struct extent_buffer *buf, 346 struct extent_buffer *cow, 347 int *last_ref) 348 { 349 struct btrfs_fs_info *fs_info = root->fs_info; 350 u64 refs; 351 u64 owner; 352 u64 flags; 353 int ret; 354 355 /* 356 * Backrefs update rules: 357 * 358 * Always use full backrefs for extent pointers in tree block 359 * allocated by tree relocation. 360 * 361 * If a shared tree block is no longer referenced by its owner 362 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 363 * use full backrefs for extent pointers in tree block. 364 * 365 * If a tree block is been relocating 366 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 367 * use full backrefs for extent pointers in tree block. 368 * The reason for this is some operations (such as drop tree) 369 * are only allowed for blocks use full backrefs. 370 */ 371 372 if (btrfs_block_can_be_shared(trans, root, buf)) { 373 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 374 btrfs_header_level(buf), 1, 375 &refs, &flags, NULL); 376 if (ret) 377 return ret; 378 if (unlikely(refs == 0)) { 379 btrfs_crit(fs_info, 380 "found 0 references for tree block at bytenr %llu level %d root %llu", 381 buf->start, btrfs_header_level(buf), 382 btrfs_root_id(root)); 383 ret = -EUCLEAN; 384 btrfs_abort_transaction(trans, ret); 385 return ret; 386 } 387 } else { 388 refs = 1; 389 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID || 390 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 391 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 392 else 393 flags = 0; 394 } 395 396 owner = btrfs_header_owner(buf); 397 if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID && 398 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) { 399 btrfs_crit(fs_info, 400 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set", 401 buf->start, btrfs_header_level(buf), 402 btrfs_root_id(root), refs, flags); 403 ret = -EUCLEAN; 404 btrfs_abort_transaction(trans, ret); 405 return ret; 406 } 407 408 if (refs > 1) { 409 if ((owner == btrfs_root_id(root) || 410 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) && 411 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 412 ret = btrfs_inc_ref(trans, root, buf, 1); 413 if (ret) 414 return ret; 415 416 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) { 417 ret = btrfs_dec_ref(trans, root, buf, 0); 418 if (ret) 419 return ret; 420 ret = btrfs_inc_ref(trans, root, cow, 1); 421 if (ret) 422 return ret; 423 } 424 ret = btrfs_set_disk_extent_flags(trans, buf, 425 BTRFS_BLOCK_FLAG_FULL_BACKREF); 426 if (ret) 427 return ret; 428 } else { 429 430 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 431 ret = btrfs_inc_ref(trans, root, cow, 1); 432 else 433 ret = btrfs_inc_ref(trans, root, cow, 0); 434 if (ret) 435 return ret; 436 } 437 } else { 438 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 439 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 440 ret = btrfs_inc_ref(trans, root, cow, 1); 441 else 442 ret = btrfs_inc_ref(trans, root, cow, 0); 443 if (ret) 444 return ret; 445 ret = btrfs_dec_ref(trans, root, buf, 1); 446 if (ret) 447 return ret; 448 } 449 btrfs_clear_buffer_dirty(trans, buf); 450 *last_ref = 1; 451 } 452 return 0; 453 } 454 455 /* 456 * does the dirty work in cow of a single block. The parent block (if 457 * supplied) is updated to point to the new cow copy. The new buffer is marked 458 * dirty and returned locked. If you modify the block it needs to be marked 459 * dirty again. 460 * 461 * search_start -- an allocation hint for the new block 462 * 463 * empty_size -- a hint that you plan on doing more cow. This is the size in 464 * bytes the allocator should try to find free next to the block it returns. 465 * This is just a hint and may be ignored by the allocator. 466 */ 467 int btrfs_force_cow_block(struct btrfs_trans_handle *trans, 468 struct btrfs_root *root, 469 struct extent_buffer *buf, 470 struct extent_buffer *parent, int parent_slot, 471 struct extent_buffer **cow_ret, 472 u64 search_start, u64 empty_size, 473 enum btrfs_lock_nesting nest) 474 { 475 struct btrfs_fs_info *fs_info = root->fs_info; 476 struct btrfs_disk_key disk_key; 477 struct extent_buffer *cow; 478 int level, ret; 479 int last_ref = 0; 480 int unlock_orig = 0; 481 u64 parent_start = 0; 482 u64 reloc_src_root = 0; 483 484 if (*cow_ret == buf) 485 unlock_orig = 1; 486 487 btrfs_assert_tree_write_locked(buf); 488 489 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 490 trans->transid != fs_info->running_transaction->transid); 491 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 492 trans->transid != btrfs_get_root_last_trans(root)); 493 494 level = btrfs_header_level(buf); 495 496 if (level == 0) 497 btrfs_item_key(buf, &disk_key, 0); 498 else 499 btrfs_node_key(buf, &disk_key, 0); 500 501 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) { 502 if (parent) 503 parent_start = parent->start; 504 reloc_src_root = btrfs_header_owner(buf); 505 } 506 cow = btrfs_alloc_tree_block(trans, root, parent_start, 507 btrfs_root_id(root), &disk_key, level, 508 search_start, empty_size, reloc_src_root, nest); 509 if (IS_ERR(cow)) 510 return PTR_ERR(cow); 511 512 /* cow is set to blocking by btrfs_init_new_buffer */ 513 514 copy_extent_buffer_full(cow, buf); 515 btrfs_set_header_bytenr(cow, cow->start); 516 btrfs_set_header_generation(cow, trans->transid); 517 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 518 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 519 BTRFS_HEADER_FLAG_RELOC); 520 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 521 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 522 else 523 btrfs_set_header_owner(cow, btrfs_root_id(root)); 524 525 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 526 527 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 528 if (ret) { 529 btrfs_abort_transaction(trans, ret); 530 goto error_unlock_cow; 531 } 532 533 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 534 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 535 if (ret) { 536 btrfs_abort_transaction(trans, ret); 537 goto error_unlock_cow; 538 } 539 } 540 541 if (buf == root->node) { 542 WARN_ON(parent && parent != buf); 543 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID || 544 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 545 parent_start = buf->start; 546 547 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true); 548 if (ret < 0) { 549 btrfs_abort_transaction(trans, ret); 550 goto error_unlock_cow; 551 } 552 atomic_inc(&cow->refs); 553 rcu_assign_pointer(root->node, cow); 554 555 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf, 556 parent_start, last_ref); 557 free_extent_buffer(buf); 558 add_root_to_dirty_list(root); 559 if (ret < 0) { 560 btrfs_abort_transaction(trans, ret); 561 goto error_unlock_cow; 562 } 563 } else { 564 WARN_ON(trans->transid != btrfs_header_generation(parent)); 565 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot, 566 BTRFS_MOD_LOG_KEY_REPLACE); 567 if (ret) { 568 btrfs_abort_transaction(trans, ret); 569 goto error_unlock_cow; 570 } 571 btrfs_set_node_blockptr(parent, parent_slot, 572 cow->start); 573 btrfs_set_node_ptr_generation(parent, parent_slot, 574 trans->transid); 575 btrfs_mark_buffer_dirty(trans, parent); 576 if (last_ref) { 577 ret = btrfs_tree_mod_log_free_eb(buf); 578 if (ret) { 579 btrfs_abort_transaction(trans, ret); 580 goto error_unlock_cow; 581 } 582 } 583 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf, 584 parent_start, last_ref); 585 if (ret < 0) { 586 btrfs_abort_transaction(trans, ret); 587 goto error_unlock_cow; 588 } 589 } 590 591 trace_btrfs_cow_block(root, buf, cow); 592 if (unlock_orig) 593 btrfs_tree_unlock(buf); 594 free_extent_buffer_stale(buf); 595 btrfs_mark_buffer_dirty(trans, cow); 596 *cow_ret = cow; 597 return 0; 598 599 error_unlock_cow: 600 btrfs_tree_unlock(cow); 601 free_extent_buffer(cow); 602 return ret; 603 } 604 605 static inline int should_cow_block(struct btrfs_trans_handle *trans, 606 struct btrfs_root *root, 607 struct extent_buffer *buf) 608 { 609 if (btrfs_is_testing(root->fs_info)) 610 return 0; 611 612 /* Ensure we can see the FORCE_COW bit */ 613 smp_mb__before_atomic(); 614 615 /* 616 * We do not need to cow a block if 617 * 1) this block is not created or changed in this transaction; 618 * 2) this block does not belong to TREE_RELOC tree; 619 * 3) the root is not forced COW. 620 * 621 * What is forced COW: 622 * when we create snapshot during committing the transaction, 623 * after we've finished copying src root, we must COW the shared 624 * block to ensure the metadata consistency. 625 */ 626 if (btrfs_header_generation(buf) == trans->transid && 627 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 628 !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 629 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 630 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 631 return 0; 632 return 1; 633 } 634 635 /* 636 * COWs a single block, see btrfs_force_cow_block() for the real work. 637 * This version of it has extra checks so that a block isn't COWed more than 638 * once per transaction, as long as it hasn't been written yet 639 */ 640 int btrfs_cow_block(struct btrfs_trans_handle *trans, 641 struct btrfs_root *root, struct extent_buffer *buf, 642 struct extent_buffer *parent, int parent_slot, 643 struct extent_buffer **cow_ret, 644 enum btrfs_lock_nesting nest) 645 { 646 struct btrfs_fs_info *fs_info = root->fs_info; 647 u64 search_start; 648 649 if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) { 650 btrfs_abort_transaction(trans, -EUCLEAN); 651 btrfs_crit(fs_info, 652 "attempt to COW block %llu on root %llu that is being deleted", 653 buf->start, btrfs_root_id(root)); 654 return -EUCLEAN; 655 } 656 657 /* 658 * COWing must happen through a running transaction, which always 659 * matches the current fs generation (it's a transaction with a state 660 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs 661 * into error state to prevent the commit of any transaction. 662 */ 663 if (unlikely(trans->transaction != fs_info->running_transaction || 664 trans->transid != fs_info->generation)) { 665 btrfs_abort_transaction(trans, -EUCLEAN); 666 btrfs_crit(fs_info, 667 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu", 668 buf->start, btrfs_root_id(root), trans->transid, 669 fs_info->running_transaction->transid, 670 fs_info->generation); 671 return -EUCLEAN; 672 } 673 674 if (!should_cow_block(trans, root, buf)) { 675 *cow_ret = buf; 676 return 0; 677 } 678 679 search_start = round_down(buf->start, SZ_1G); 680 681 /* 682 * Before CoWing this block for later modification, check if it's 683 * the subtree root and do the delayed subtree trace if needed. 684 * 685 * Also We don't care about the error, as it's handled internally. 686 */ 687 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 688 return btrfs_force_cow_block(trans, root, buf, parent, parent_slot, 689 cow_ret, search_start, 0, nest); 690 } 691 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO); 692 693 /* 694 * same as comp_keys only with two btrfs_key's 695 */ 696 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 697 { 698 if (k1->objectid > k2->objectid) 699 return 1; 700 if (k1->objectid < k2->objectid) 701 return -1; 702 if (k1->type > k2->type) 703 return 1; 704 if (k1->type < k2->type) 705 return -1; 706 if (k1->offset > k2->offset) 707 return 1; 708 if (k1->offset < k2->offset) 709 return -1; 710 return 0; 711 } 712 713 /* 714 * Search for a key in the given extent_buffer. 715 * 716 * The lower boundary for the search is specified by the slot number @first_slot. 717 * Use a value of 0 to search over the whole extent buffer. Works for both 718 * leaves and nodes. 719 * 720 * The slot in the extent buffer is returned via @slot. If the key exists in the 721 * extent buffer, then @slot will point to the slot where the key is, otherwise 722 * it points to the slot where you would insert the key. 723 * 724 * Slot may point to the total number of items (i.e. one position beyond the last 725 * key) if the key is bigger than the last key in the extent buffer. 726 */ 727 int btrfs_bin_search(struct extent_buffer *eb, int first_slot, 728 const struct btrfs_key *key, int *slot) 729 { 730 unsigned long p; 731 int item_size; 732 /* 733 * Use unsigned types for the low and high slots, so that we get a more 734 * efficient division in the search loop below. 735 */ 736 u32 low = first_slot; 737 u32 high = btrfs_header_nritems(eb); 738 int ret; 739 const int key_size = sizeof(struct btrfs_disk_key); 740 741 if (unlikely(low > high)) { 742 btrfs_err(eb->fs_info, 743 "%s: low (%u) > high (%u) eb %llu owner %llu level %d", 744 __func__, low, high, eb->start, 745 btrfs_header_owner(eb), btrfs_header_level(eb)); 746 return -EINVAL; 747 } 748 749 if (btrfs_header_level(eb) == 0) { 750 p = offsetof(struct btrfs_leaf, items); 751 item_size = sizeof(struct btrfs_item); 752 } else { 753 p = offsetof(struct btrfs_node, ptrs); 754 item_size = sizeof(struct btrfs_key_ptr); 755 } 756 757 while (low < high) { 758 const int unit_size = eb->folio_size; 759 unsigned long oil; 760 unsigned long offset; 761 struct btrfs_disk_key *tmp; 762 struct btrfs_disk_key unaligned; 763 int mid; 764 765 mid = (low + high) / 2; 766 offset = p + mid * item_size; 767 oil = get_eb_offset_in_folio(eb, offset); 768 769 if (oil + key_size <= unit_size) { 770 const unsigned long idx = get_eb_folio_index(eb, offset); 771 char *kaddr = folio_address(eb->folios[idx]); 772 773 oil = get_eb_offset_in_folio(eb, offset); 774 tmp = (struct btrfs_disk_key *)(kaddr + oil); 775 } else { 776 read_extent_buffer(eb, &unaligned, offset, key_size); 777 tmp = &unaligned; 778 } 779 780 ret = btrfs_comp_keys(tmp, key); 781 782 if (ret < 0) 783 low = mid + 1; 784 else if (ret > 0) 785 high = mid; 786 else { 787 *slot = mid; 788 return 0; 789 } 790 } 791 *slot = low; 792 return 1; 793 } 794 795 static void root_add_used_bytes(struct btrfs_root *root) 796 { 797 spin_lock(&root->accounting_lock); 798 btrfs_set_root_used(&root->root_item, 799 btrfs_root_used(&root->root_item) + root->fs_info->nodesize); 800 spin_unlock(&root->accounting_lock); 801 } 802 803 static void root_sub_used_bytes(struct btrfs_root *root) 804 { 805 spin_lock(&root->accounting_lock); 806 btrfs_set_root_used(&root->root_item, 807 btrfs_root_used(&root->root_item) - root->fs_info->nodesize); 808 spin_unlock(&root->accounting_lock); 809 } 810 811 /* given a node and slot number, this reads the blocks it points to. The 812 * extent buffer is returned with a reference taken (but unlocked). 813 */ 814 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 815 int slot) 816 { 817 int level = btrfs_header_level(parent); 818 struct btrfs_tree_parent_check check = { 0 }; 819 struct extent_buffer *eb; 820 821 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 822 return ERR_PTR(-ENOENT); 823 824 ASSERT(level); 825 826 check.level = level - 1; 827 check.transid = btrfs_node_ptr_generation(parent, slot); 828 check.owner_root = btrfs_header_owner(parent); 829 check.has_first_key = true; 830 btrfs_node_key_to_cpu(parent, &check.first_key, slot); 831 832 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 833 &check); 834 if (IS_ERR(eb)) 835 return eb; 836 if (!extent_buffer_uptodate(eb)) { 837 free_extent_buffer(eb); 838 return ERR_PTR(-EIO); 839 } 840 841 return eb; 842 } 843 844 /* 845 * node level balancing, used to make sure nodes are in proper order for 846 * item deletion. We balance from the top down, so we have to make sure 847 * that a deletion won't leave an node completely empty later on. 848 */ 849 static noinline int balance_level(struct btrfs_trans_handle *trans, 850 struct btrfs_root *root, 851 struct btrfs_path *path, int level) 852 { 853 struct btrfs_fs_info *fs_info = root->fs_info; 854 struct extent_buffer *right = NULL; 855 struct extent_buffer *mid; 856 struct extent_buffer *left = NULL; 857 struct extent_buffer *parent = NULL; 858 int ret = 0; 859 int wret; 860 int pslot; 861 int orig_slot = path->slots[level]; 862 u64 orig_ptr; 863 864 ASSERT(level > 0); 865 866 mid = path->nodes[level]; 867 868 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK); 869 WARN_ON(btrfs_header_generation(mid) != trans->transid); 870 871 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 872 873 if (level < BTRFS_MAX_LEVEL - 1) { 874 parent = path->nodes[level + 1]; 875 pslot = path->slots[level + 1]; 876 } 877 878 /* 879 * deal with the case where there is only one pointer in the root 880 * by promoting the node below to a root 881 */ 882 if (!parent) { 883 struct extent_buffer *child; 884 885 if (btrfs_header_nritems(mid) != 1) 886 return 0; 887 888 /* promote the child to a root */ 889 child = btrfs_read_node_slot(mid, 0); 890 if (IS_ERR(child)) { 891 ret = PTR_ERR(child); 892 goto out; 893 } 894 895 btrfs_tree_lock(child); 896 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 897 BTRFS_NESTING_COW); 898 if (ret) { 899 btrfs_tree_unlock(child); 900 free_extent_buffer(child); 901 goto out; 902 } 903 904 ret = btrfs_tree_mod_log_insert_root(root->node, child, true); 905 if (ret < 0) { 906 btrfs_tree_unlock(child); 907 free_extent_buffer(child); 908 btrfs_abort_transaction(trans, ret); 909 goto out; 910 } 911 rcu_assign_pointer(root->node, child); 912 913 add_root_to_dirty_list(root); 914 btrfs_tree_unlock(child); 915 916 path->locks[level] = 0; 917 path->nodes[level] = NULL; 918 btrfs_clear_buffer_dirty(trans, mid); 919 btrfs_tree_unlock(mid); 920 /* once for the path */ 921 free_extent_buffer(mid); 922 923 root_sub_used_bytes(root); 924 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); 925 /* once for the root ptr */ 926 free_extent_buffer_stale(mid); 927 if (ret < 0) { 928 btrfs_abort_transaction(trans, ret); 929 goto out; 930 } 931 return 0; 932 } 933 if (btrfs_header_nritems(mid) > 934 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 935 return 0; 936 937 if (pslot) { 938 left = btrfs_read_node_slot(parent, pslot - 1); 939 if (IS_ERR(left)) { 940 ret = PTR_ERR(left); 941 left = NULL; 942 goto out; 943 } 944 945 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT); 946 wret = btrfs_cow_block(trans, root, left, 947 parent, pslot - 1, &left, 948 BTRFS_NESTING_LEFT_COW); 949 if (wret) { 950 ret = wret; 951 goto out; 952 } 953 } 954 955 if (pslot + 1 < btrfs_header_nritems(parent)) { 956 right = btrfs_read_node_slot(parent, pslot + 1); 957 if (IS_ERR(right)) { 958 ret = PTR_ERR(right); 959 right = NULL; 960 goto out; 961 } 962 963 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT); 964 wret = btrfs_cow_block(trans, root, right, 965 parent, pslot + 1, &right, 966 BTRFS_NESTING_RIGHT_COW); 967 if (wret) { 968 ret = wret; 969 goto out; 970 } 971 } 972 973 /* first, try to make some room in the middle buffer */ 974 if (left) { 975 orig_slot += btrfs_header_nritems(left); 976 wret = push_node_left(trans, left, mid, 1); 977 if (wret < 0) 978 ret = wret; 979 } 980 981 /* 982 * then try to empty the right most buffer into the middle 983 */ 984 if (right) { 985 wret = push_node_left(trans, mid, right, 1); 986 if (wret < 0 && wret != -ENOSPC) 987 ret = wret; 988 if (btrfs_header_nritems(right) == 0) { 989 btrfs_clear_buffer_dirty(trans, right); 990 btrfs_tree_unlock(right); 991 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1); 992 if (ret < 0) { 993 free_extent_buffer_stale(right); 994 right = NULL; 995 goto out; 996 } 997 root_sub_used_bytes(root); 998 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), 999 right, 0, 1); 1000 free_extent_buffer_stale(right); 1001 right = NULL; 1002 if (ret < 0) { 1003 btrfs_abort_transaction(trans, ret); 1004 goto out; 1005 } 1006 } else { 1007 struct btrfs_disk_key right_key; 1008 btrfs_node_key(right, &right_key, 0); 1009 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1010 BTRFS_MOD_LOG_KEY_REPLACE); 1011 if (ret < 0) { 1012 btrfs_abort_transaction(trans, ret); 1013 goto out; 1014 } 1015 btrfs_set_node_key(parent, &right_key, pslot + 1); 1016 btrfs_mark_buffer_dirty(trans, parent); 1017 } 1018 } 1019 if (btrfs_header_nritems(mid) == 1) { 1020 /* 1021 * we're not allowed to leave a node with one item in the 1022 * tree during a delete. A deletion from lower in the tree 1023 * could try to delete the only pointer in this node. 1024 * So, pull some keys from the left. 1025 * There has to be a left pointer at this point because 1026 * otherwise we would have pulled some pointers from the 1027 * right 1028 */ 1029 if (unlikely(!left)) { 1030 btrfs_crit(fs_info, 1031 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu", 1032 parent->start, btrfs_header_level(parent), 1033 mid->start, btrfs_root_id(root)); 1034 ret = -EUCLEAN; 1035 btrfs_abort_transaction(trans, ret); 1036 goto out; 1037 } 1038 wret = balance_node_right(trans, mid, left); 1039 if (wret < 0) { 1040 ret = wret; 1041 goto out; 1042 } 1043 if (wret == 1) { 1044 wret = push_node_left(trans, left, mid, 1); 1045 if (wret < 0) 1046 ret = wret; 1047 } 1048 BUG_ON(wret == 1); 1049 } 1050 if (btrfs_header_nritems(mid) == 0) { 1051 btrfs_clear_buffer_dirty(trans, mid); 1052 btrfs_tree_unlock(mid); 1053 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot); 1054 if (ret < 0) { 1055 free_extent_buffer_stale(mid); 1056 mid = NULL; 1057 goto out; 1058 } 1059 root_sub_used_bytes(root); 1060 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); 1061 free_extent_buffer_stale(mid); 1062 mid = NULL; 1063 if (ret < 0) { 1064 btrfs_abort_transaction(trans, ret); 1065 goto out; 1066 } 1067 } else { 1068 /* update the parent key to reflect our changes */ 1069 struct btrfs_disk_key mid_key; 1070 btrfs_node_key(mid, &mid_key, 0); 1071 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1072 BTRFS_MOD_LOG_KEY_REPLACE); 1073 if (ret < 0) { 1074 btrfs_abort_transaction(trans, ret); 1075 goto out; 1076 } 1077 btrfs_set_node_key(parent, &mid_key, pslot); 1078 btrfs_mark_buffer_dirty(trans, parent); 1079 } 1080 1081 /* update the path */ 1082 if (left) { 1083 if (btrfs_header_nritems(left) > orig_slot) { 1084 atomic_inc(&left->refs); 1085 /* left was locked after cow */ 1086 path->nodes[level] = left; 1087 path->slots[level + 1] -= 1; 1088 path->slots[level] = orig_slot; 1089 if (mid) { 1090 btrfs_tree_unlock(mid); 1091 free_extent_buffer(mid); 1092 } 1093 } else { 1094 orig_slot -= btrfs_header_nritems(left); 1095 path->slots[level] = orig_slot; 1096 } 1097 } 1098 /* double check we haven't messed things up */ 1099 if (orig_ptr != 1100 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1101 BUG(); 1102 out: 1103 if (right) { 1104 btrfs_tree_unlock(right); 1105 free_extent_buffer(right); 1106 } 1107 if (left) { 1108 if (path->nodes[level] != left) 1109 btrfs_tree_unlock(left); 1110 free_extent_buffer(left); 1111 } 1112 return ret; 1113 } 1114 1115 /* Node balancing for insertion. Here we only split or push nodes around 1116 * when they are completely full. This is also done top down, so we 1117 * have to be pessimistic. 1118 */ 1119 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1120 struct btrfs_root *root, 1121 struct btrfs_path *path, int level) 1122 { 1123 struct btrfs_fs_info *fs_info = root->fs_info; 1124 struct extent_buffer *right = NULL; 1125 struct extent_buffer *mid; 1126 struct extent_buffer *left = NULL; 1127 struct extent_buffer *parent = NULL; 1128 int ret = 0; 1129 int wret; 1130 int pslot; 1131 int orig_slot = path->slots[level]; 1132 1133 if (level == 0) 1134 return 1; 1135 1136 mid = path->nodes[level]; 1137 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1138 1139 if (level < BTRFS_MAX_LEVEL - 1) { 1140 parent = path->nodes[level + 1]; 1141 pslot = path->slots[level + 1]; 1142 } 1143 1144 if (!parent) 1145 return 1; 1146 1147 /* first, try to make some room in the middle buffer */ 1148 if (pslot) { 1149 u32 left_nr; 1150 1151 left = btrfs_read_node_slot(parent, pslot - 1); 1152 if (IS_ERR(left)) 1153 return PTR_ERR(left); 1154 1155 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT); 1156 1157 left_nr = btrfs_header_nritems(left); 1158 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1159 wret = 1; 1160 } else { 1161 ret = btrfs_cow_block(trans, root, left, parent, 1162 pslot - 1, &left, 1163 BTRFS_NESTING_LEFT_COW); 1164 if (ret) 1165 wret = 1; 1166 else { 1167 wret = push_node_left(trans, left, mid, 0); 1168 } 1169 } 1170 if (wret < 0) 1171 ret = wret; 1172 if (wret == 0) { 1173 struct btrfs_disk_key disk_key; 1174 orig_slot += left_nr; 1175 btrfs_node_key(mid, &disk_key, 0); 1176 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1177 BTRFS_MOD_LOG_KEY_REPLACE); 1178 if (ret < 0) { 1179 btrfs_tree_unlock(left); 1180 free_extent_buffer(left); 1181 btrfs_abort_transaction(trans, ret); 1182 return ret; 1183 } 1184 btrfs_set_node_key(parent, &disk_key, pslot); 1185 btrfs_mark_buffer_dirty(trans, parent); 1186 if (btrfs_header_nritems(left) > orig_slot) { 1187 path->nodes[level] = left; 1188 path->slots[level + 1] -= 1; 1189 path->slots[level] = orig_slot; 1190 btrfs_tree_unlock(mid); 1191 free_extent_buffer(mid); 1192 } else { 1193 orig_slot -= 1194 btrfs_header_nritems(left); 1195 path->slots[level] = orig_slot; 1196 btrfs_tree_unlock(left); 1197 free_extent_buffer(left); 1198 } 1199 return 0; 1200 } 1201 btrfs_tree_unlock(left); 1202 free_extent_buffer(left); 1203 } 1204 1205 /* 1206 * then try to empty the right most buffer into the middle 1207 */ 1208 if (pslot + 1 < btrfs_header_nritems(parent)) { 1209 u32 right_nr; 1210 1211 right = btrfs_read_node_slot(parent, pslot + 1); 1212 if (IS_ERR(right)) 1213 return PTR_ERR(right); 1214 1215 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT); 1216 1217 right_nr = btrfs_header_nritems(right); 1218 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1219 wret = 1; 1220 } else { 1221 ret = btrfs_cow_block(trans, root, right, 1222 parent, pslot + 1, 1223 &right, BTRFS_NESTING_RIGHT_COW); 1224 if (ret) 1225 wret = 1; 1226 else { 1227 wret = balance_node_right(trans, right, mid); 1228 } 1229 } 1230 if (wret < 0) 1231 ret = wret; 1232 if (wret == 0) { 1233 struct btrfs_disk_key disk_key; 1234 1235 btrfs_node_key(right, &disk_key, 0); 1236 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1237 BTRFS_MOD_LOG_KEY_REPLACE); 1238 if (ret < 0) { 1239 btrfs_tree_unlock(right); 1240 free_extent_buffer(right); 1241 btrfs_abort_transaction(trans, ret); 1242 return ret; 1243 } 1244 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1245 btrfs_mark_buffer_dirty(trans, parent); 1246 1247 if (btrfs_header_nritems(mid) <= orig_slot) { 1248 path->nodes[level] = right; 1249 path->slots[level + 1] += 1; 1250 path->slots[level] = orig_slot - 1251 btrfs_header_nritems(mid); 1252 btrfs_tree_unlock(mid); 1253 free_extent_buffer(mid); 1254 } else { 1255 btrfs_tree_unlock(right); 1256 free_extent_buffer(right); 1257 } 1258 return 0; 1259 } 1260 btrfs_tree_unlock(right); 1261 free_extent_buffer(right); 1262 } 1263 return 1; 1264 } 1265 1266 /* 1267 * readahead one full node of leaves, finding things that are close 1268 * to the block in 'slot', and triggering ra on them. 1269 */ 1270 static void reada_for_search(struct btrfs_fs_info *fs_info, 1271 struct btrfs_path *path, 1272 int level, int slot, u64 objectid) 1273 { 1274 struct extent_buffer *node; 1275 struct btrfs_disk_key disk_key; 1276 u32 nritems; 1277 u64 search; 1278 u64 target; 1279 u64 nread = 0; 1280 u64 nread_max; 1281 u32 nr; 1282 u32 blocksize; 1283 u32 nscan = 0; 1284 1285 if (level != 1 && path->reada != READA_FORWARD_ALWAYS) 1286 return; 1287 1288 if (!path->nodes[level]) 1289 return; 1290 1291 node = path->nodes[level]; 1292 1293 /* 1294 * Since the time between visiting leaves is much shorter than the time 1295 * between visiting nodes, limit read ahead of nodes to 1, to avoid too 1296 * much IO at once (possibly random). 1297 */ 1298 if (path->reada == READA_FORWARD_ALWAYS) { 1299 if (level > 1) 1300 nread_max = node->fs_info->nodesize; 1301 else 1302 nread_max = SZ_128K; 1303 } else { 1304 nread_max = SZ_64K; 1305 } 1306 1307 search = btrfs_node_blockptr(node, slot); 1308 blocksize = fs_info->nodesize; 1309 if (path->reada != READA_FORWARD_ALWAYS) { 1310 struct extent_buffer *eb; 1311 1312 eb = find_extent_buffer(fs_info, search); 1313 if (eb) { 1314 free_extent_buffer(eb); 1315 return; 1316 } 1317 } 1318 1319 target = search; 1320 1321 nritems = btrfs_header_nritems(node); 1322 nr = slot; 1323 1324 while (1) { 1325 if (path->reada == READA_BACK) { 1326 if (nr == 0) 1327 break; 1328 nr--; 1329 } else if (path->reada == READA_FORWARD || 1330 path->reada == READA_FORWARD_ALWAYS) { 1331 nr++; 1332 if (nr >= nritems) 1333 break; 1334 } 1335 if (path->reada == READA_BACK && objectid) { 1336 btrfs_node_key(node, &disk_key, nr); 1337 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1338 break; 1339 } 1340 search = btrfs_node_blockptr(node, nr); 1341 if (path->reada == READA_FORWARD_ALWAYS || 1342 (search <= target && target - search <= 65536) || 1343 (search > target && search - target <= 65536)) { 1344 btrfs_readahead_node_child(node, nr); 1345 nread += blocksize; 1346 } 1347 nscan++; 1348 if (nread > nread_max || nscan > 32) 1349 break; 1350 } 1351 } 1352 1353 static noinline void reada_for_balance(struct btrfs_path *path, int level) 1354 { 1355 struct extent_buffer *parent; 1356 int slot; 1357 int nritems; 1358 1359 parent = path->nodes[level + 1]; 1360 if (!parent) 1361 return; 1362 1363 nritems = btrfs_header_nritems(parent); 1364 slot = path->slots[level + 1]; 1365 1366 if (slot > 0) 1367 btrfs_readahead_node_child(parent, slot - 1); 1368 if (slot + 1 < nritems) 1369 btrfs_readahead_node_child(parent, slot + 1); 1370 } 1371 1372 1373 /* 1374 * when we walk down the tree, it is usually safe to unlock the higher layers 1375 * in the tree. The exceptions are when our path goes through slot 0, because 1376 * operations on the tree might require changing key pointers higher up in the 1377 * tree. 1378 * 1379 * callers might also have set path->keep_locks, which tells this code to keep 1380 * the lock if the path points to the last slot in the block. This is part of 1381 * walking through the tree, and selecting the next slot in the higher block. 1382 * 1383 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1384 * if lowest_unlock is 1, level 0 won't be unlocked 1385 */ 1386 static noinline void unlock_up(struct btrfs_path *path, int level, 1387 int lowest_unlock, int min_write_lock_level, 1388 int *write_lock_level) 1389 { 1390 int i; 1391 int skip_level = level; 1392 bool check_skip = true; 1393 1394 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1395 if (!path->nodes[i]) 1396 break; 1397 if (!path->locks[i]) 1398 break; 1399 1400 if (check_skip) { 1401 if (path->slots[i] == 0) { 1402 skip_level = i + 1; 1403 continue; 1404 } 1405 1406 if (path->keep_locks) { 1407 u32 nritems; 1408 1409 nritems = btrfs_header_nritems(path->nodes[i]); 1410 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1411 skip_level = i + 1; 1412 continue; 1413 } 1414 } 1415 } 1416 1417 if (i >= lowest_unlock && i > skip_level) { 1418 check_skip = false; 1419 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 1420 path->locks[i] = 0; 1421 if (write_lock_level && 1422 i > min_write_lock_level && 1423 i <= *write_lock_level) { 1424 *write_lock_level = i - 1; 1425 } 1426 } 1427 } 1428 } 1429 1430 /* 1431 * Helper function for btrfs_search_slot() and other functions that do a search 1432 * on a btree. The goal is to find a tree block in the cache (the radix tree at 1433 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read 1434 * its pages from disk. 1435 * 1436 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the 1437 * whole btree search, starting again from the current root node. 1438 */ 1439 static int 1440 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 1441 struct extent_buffer **eb_ret, int slot, 1442 const struct btrfs_key *key) 1443 { 1444 struct btrfs_fs_info *fs_info = root->fs_info; 1445 struct btrfs_tree_parent_check check = { 0 }; 1446 u64 blocknr; 1447 struct extent_buffer *tmp = NULL; 1448 int ret = 0; 1449 int parent_level; 1450 int err; 1451 bool read_tmp = false; 1452 bool tmp_locked = false; 1453 bool path_released = false; 1454 1455 blocknr = btrfs_node_blockptr(*eb_ret, slot); 1456 parent_level = btrfs_header_level(*eb_ret); 1457 btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot); 1458 check.has_first_key = true; 1459 check.level = parent_level - 1; 1460 check.transid = btrfs_node_ptr_generation(*eb_ret, slot); 1461 check.owner_root = btrfs_root_id(root); 1462 1463 /* 1464 * If we need to read an extent buffer from disk and we are holding locks 1465 * on upper level nodes, we unlock all the upper nodes before reading the 1466 * extent buffer, and then return -EAGAIN to the caller as it needs to 1467 * restart the search. We don't release the lock on the current level 1468 * because we need to walk this node to figure out which blocks to read. 1469 */ 1470 tmp = find_extent_buffer(fs_info, blocknr); 1471 if (tmp) { 1472 if (p->reada == READA_FORWARD_ALWAYS) 1473 reada_for_search(fs_info, p, parent_level, slot, key->objectid); 1474 1475 /* first we do an atomic uptodate check */ 1476 if (btrfs_buffer_uptodate(tmp, check.transid, 1) > 0) { 1477 /* 1478 * Do extra check for first_key, eb can be stale due to 1479 * being cached, read from scrub, or have multiple 1480 * parents (shared tree blocks). 1481 */ 1482 if (btrfs_verify_level_key(tmp, &check)) { 1483 ret = -EUCLEAN; 1484 goto out; 1485 } 1486 *eb_ret = tmp; 1487 tmp = NULL; 1488 ret = 0; 1489 goto out; 1490 } 1491 1492 if (p->nowait) { 1493 ret = -EAGAIN; 1494 goto out; 1495 } 1496 1497 if (!p->skip_locking) { 1498 btrfs_unlock_up_safe(p, parent_level + 1); 1499 btrfs_maybe_reset_lockdep_class(root, tmp); 1500 tmp_locked = true; 1501 btrfs_tree_read_lock(tmp); 1502 btrfs_release_path(p); 1503 ret = -EAGAIN; 1504 path_released = true; 1505 } 1506 1507 /* Now we're allowed to do a blocking uptodate check. */ 1508 err = btrfs_read_extent_buffer(tmp, &check); 1509 if (err) { 1510 ret = err; 1511 goto out; 1512 } 1513 1514 if (ret == 0) { 1515 ASSERT(!tmp_locked); 1516 *eb_ret = tmp; 1517 tmp = NULL; 1518 } 1519 goto out; 1520 } else if (p->nowait) { 1521 ret = -EAGAIN; 1522 goto out; 1523 } 1524 1525 if (!p->skip_locking) { 1526 btrfs_unlock_up_safe(p, parent_level + 1); 1527 ret = -EAGAIN; 1528 } 1529 1530 if (p->reada != READA_NONE) 1531 reada_for_search(fs_info, p, parent_level, slot, key->objectid); 1532 1533 tmp = btrfs_find_create_tree_block(fs_info, blocknr, check.owner_root, check.level); 1534 if (IS_ERR(tmp)) { 1535 ret = PTR_ERR(tmp); 1536 tmp = NULL; 1537 goto out; 1538 } 1539 read_tmp = true; 1540 1541 if (!p->skip_locking) { 1542 ASSERT(ret == -EAGAIN); 1543 btrfs_maybe_reset_lockdep_class(root, tmp); 1544 tmp_locked = true; 1545 btrfs_tree_read_lock(tmp); 1546 btrfs_release_path(p); 1547 path_released = true; 1548 } 1549 1550 /* Now we're allowed to do a blocking uptodate check. */ 1551 err = btrfs_read_extent_buffer(tmp, &check); 1552 if (err) { 1553 ret = err; 1554 goto out; 1555 } 1556 1557 /* 1558 * If the read above didn't mark this buffer up to date, 1559 * it will never end up being up to date. Set ret to EIO now 1560 * and give up so that our caller doesn't loop forever 1561 * on our EAGAINs. 1562 */ 1563 if (!extent_buffer_uptodate(tmp)) { 1564 ret = -EIO; 1565 goto out; 1566 } 1567 1568 if (ret == 0) { 1569 ASSERT(!tmp_locked); 1570 *eb_ret = tmp; 1571 tmp = NULL; 1572 } 1573 out: 1574 if (tmp) { 1575 if (tmp_locked) 1576 btrfs_tree_read_unlock(tmp); 1577 if (read_tmp && ret && ret != -EAGAIN) 1578 free_extent_buffer_stale(tmp); 1579 else 1580 free_extent_buffer(tmp); 1581 } 1582 if (ret && !path_released) 1583 btrfs_release_path(p); 1584 1585 return ret; 1586 } 1587 1588 /* 1589 * helper function for btrfs_search_slot. This does all of the checks 1590 * for node-level blocks and does any balancing required based on 1591 * the ins_len. 1592 * 1593 * If no extra work was required, zero is returned. If we had to 1594 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1595 * start over 1596 */ 1597 static int 1598 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1599 struct btrfs_root *root, struct btrfs_path *p, 1600 struct extent_buffer *b, int level, int ins_len, 1601 int *write_lock_level) 1602 { 1603 struct btrfs_fs_info *fs_info = root->fs_info; 1604 int ret = 0; 1605 1606 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1607 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 1608 1609 if (*write_lock_level < level + 1) { 1610 *write_lock_level = level + 1; 1611 btrfs_release_path(p); 1612 return -EAGAIN; 1613 } 1614 1615 reada_for_balance(p, level); 1616 ret = split_node(trans, root, p, level); 1617 1618 b = p->nodes[level]; 1619 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1620 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 1621 1622 if (*write_lock_level < level + 1) { 1623 *write_lock_level = level + 1; 1624 btrfs_release_path(p); 1625 return -EAGAIN; 1626 } 1627 1628 reada_for_balance(p, level); 1629 ret = balance_level(trans, root, p, level); 1630 if (ret) 1631 return ret; 1632 1633 b = p->nodes[level]; 1634 if (!b) { 1635 btrfs_release_path(p); 1636 return -EAGAIN; 1637 } 1638 BUG_ON(btrfs_header_nritems(b) == 1); 1639 } 1640 return ret; 1641 } 1642 1643 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 1644 u64 iobjectid, u64 ioff, u8 key_type, 1645 struct btrfs_key *found_key) 1646 { 1647 int ret; 1648 struct btrfs_key key; 1649 struct extent_buffer *eb; 1650 1651 ASSERT(path); 1652 ASSERT(found_key); 1653 1654 key.type = key_type; 1655 key.objectid = iobjectid; 1656 key.offset = ioff; 1657 1658 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1659 if (ret < 0) 1660 return ret; 1661 1662 eb = path->nodes[0]; 1663 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1664 ret = btrfs_next_leaf(fs_root, path); 1665 if (ret) 1666 return ret; 1667 eb = path->nodes[0]; 1668 } 1669 1670 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1671 if (found_key->type != key.type || 1672 found_key->objectid != key.objectid) 1673 return 1; 1674 1675 return 0; 1676 } 1677 1678 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 1679 struct btrfs_path *p, 1680 int write_lock_level) 1681 { 1682 struct extent_buffer *b; 1683 int root_lock = 0; 1684 int level = 0; 1685 1686 if (p->search_commit_root) { 1687 b = root->commit_root; 1688 atomic_inc(&b->refs); 1689 level = btrfs_header_level(b); 1690 /* 1691 * Ensure that all callers have set skip_locking when 1692 * p->search_commit_root = 1. 1693 */ 1694 ASSERT(p->skip_locking == 1); 1695 1696 goto out; 1697 } 1698 1699 if (p->skip_locking) { 1700 b = btrfs_root_node(root); 1701 level = btrfs_header_level(b); 1702 goto out; 1703 } 1704 1705 /* We try very hard to do read locks on the root */ 1706 root_lock = BTRFS_READ_LOCK; 1707 1708 /* 1709 * If the level is set to maximum, we can skip trying to get the read 1710 * lock. 1711 */ 1712 if (write_lock_level < BTRFS_MAX_LEVEL) { 1713 /* 1714 * We don't know the level of the root node until we actually 1715 * have it read locked 1716 */ 1717 if (p->nowait) { 1718 b = btrfs_try_read_lock_root_node(root); 1719 if (IS_ERR(b)) 1720 return b; 1721 } else { 1722 b = btrfs_read_lock_root_node(root); 1723 } 1724 level = btrfs_header_level(b); 1725 if (level > write_lock_level) 1726 goto out; 1727 1728 /* Whoops, must trade for write lock */ 1729 btrfs_tree_read_unlock(b); 1730 free_extent_buffer(b); 1731 } 1732 1733 b = btrfs_lock_root_node(root); 1734 root_lock = BTRFS_WRITE_LOCK; 1735 1736 /* The level might have changed, check again */ 1737 level = btrfs_header_level(b); 1738 1739 out: 1740 /* 1741 * The root may have failed to write out at some point, and thus is no 1742 * longer valid, return an error in this case. 1743 */ 1744 if (!extent_buffer_uptodate(b)) { 1745 if (root_lock) 1746 btrfs_tree_unlock_rw(b, root_lock); 1747 free_extent_buffer(b); 1748 return ERR_PTR(-EIO); 1749 } 1750 1751 p->nodes[level] = b; 1752 if (!p->skip_locking) 1753 p->locks[level] = root_lock; 1754 /* 1755 * Callers are responsible for dropping b's references. 1756 */ 1757 return b; 1758 } 1759 1760 /* 1761 * Replace the extent buffer at the lowest level of the path with a cloned 1762 * version. The purpose is to be able to use it safely, after releasing the 1763 * commit root semaphore, even if relocation is happening in parallel, the 1764 * transaction used for relocation is committed and the extent buffer is 1765 * reallocated in the next transaction. 1766 * 1767 * This is used in a context where the caller does not prevent transaction 1768 * commits from happening, either by holding a transaction handle or holding 1769 * some lock, while it's doing searches through a commit root. 1770 * At the moment it's only used for send operations. 1771 */ 1772 static int finish_need_commit_sem_search(struct btrfs_path *path) 1773 { 1774 const int i = path->lowest_level; 1775 const int slot = path->slots[i]; 1776 struct extent_buffer *lowest = path->nodes[i]; 1777 struct extent_buffer *clone; 1778 1779 ASSERT(path->need_commit_sem); 1780 1781 if (!lowest) 1782 return 0; 1783 1784 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem); 1785 1786 clone = btrfs_clone_extent_buffer(lowest); 1787 if (!clone) 1788 return -ENOMEM; 1789 1790 btrfs_release_path(path); 1791 path->nodes[i] = clone; 1792 path->slots[i] = slot; 1793 1794 return 0; 1795 } 1796 1797 static inline int search_for_key_slot(struct extent_buffer *eb, 1798 int search_low_slot, 1799 const struct btrfs_key *key, 1800 int prev_cmp, 1801 int *slot) 1802 { 1803 /* 1804 * If a previous call to btrfs_bin_search() on a parent node returned an 1805 * exact match (prev_cmp == 0), we can safely assume the target key will 1806 * always be at slot 0 on lower levels, since each key pointer 1807 * (struct btrfs_key_ptr) refers to the lowest key accessible from the 1808 * subtree it points to. Thus we can skip searching lower levels. 1809 */ 1810 if (prev_cmp == 0) { 1811 *slot = 0; 1812 return 0; 1813 } 1814 1815 return btrfs_bin_search(eb, search_low_slot, key, slot); 1816 } 1817 1818 static int search_leaf(struct btrfs_trans_handle *trans, 1819 struct btrfs_root *root, 1820 const struct btrfs_key *key, 1821 struct btrfs_path *path, 1822 int ins_len, 1823 int prev_cmp) 1824 { 1825 struct extent_buffer *leaf = path->nodes[0]; 1826 int leaf_free_space = -1; 1827 int search_low_slot = 0; 1828 int ret; 1829 bool do_bin_search = true; 1830 1831 /* 1832 * If we are doing an insertion, the leaf has enough free space and the 1833 * destination slot for the key is not slot 0, then we can unlock our 1834 * write lock on the parent, and any other upper nodes, before doing the 1835 * binary search on the leaf (with search_for_key_slot()), allowing other 1836 * tasks to lock the parent and any other upper nodes. 1837 */ 1838 if (ins_len > 0) { 1839 /* 1840 * Cache the leaf free space, since we will need it later and it 1841 * will not change until then. 1842 */ 1843 leaf_free_space = btrfs_leaf_free_space(leaf); 1844 1845 /* 1846 * !path->locks[1] means we have a single node tree, the leaf is 1847 * the root of the tree. 1848 */ 1849 if (path->locks[1] && leaf_free_space >= ins_len) { 1850 struct btrfs_disk_key first_key; 1851 1852 ASSERT(btrfs_header_nritems(leaf) > 0); 1853 btrfs_item_key(leaf, &first_key, 0); 1854 1855 /* 1856 * Doing the extra comparison with the first key is cheap, 1857 * taking into account that the first key is very likely 1858 * already in a cache line because it immediately follows 1859 * the extent buffer's header and we have recently accessed 1860 * the header's level field. 1861 */ 1862 ret = btrfs_comp_keys(&first_key, key); 1863 if (ret < 0) { 1864 /* 1865 * The first key is smaller than the key we want 1866 * to insert, so we are safe to unlock all upper 1867 * nodes and we have to do the binary search. 1868 * 1869 * We do use btrfs_unlock_up_safe() and not 1870 * unlock_up() because the later does not unlock 1871 * nodes with a slot of 0 - we can safely unlock 1872 * any node even if its slot is 0 since in this 1873 * case the key does not end up at slot 0 of the 1874 * leaf and there's no need to split the leaf. 1875 */ 1876 btrfs_unlock_up_safe(path, 1); 1877 search_low_slot = 1; 1878 } else { 1879 /* 1880 * The first key is >= then the key we want to 1881 * insert, so we can skip the binary search as 1882 * the target key will be at slot 0. 1883 * 1884 * We can not unlock upper nodes when the key is 1885 * less than the first key, because we will need 1886 * to update the key at slot 0 of the parent node 1887 * and possibly of other upper nodes too. 1888 * If the key matches the first key, then we can 1889 * unlock all the upper nodes, using 1890 * btrfs_unlock_up_safe() instead of unlock_up() 1891 * as stated above. 1892 */ 1893 if (ret == 0) 1894 btrfs_unlock_up_safe(path, 1); 1895 /* 1896 * ret is already 0 or 1, matching the result of 1897 * a btrfs_bin_search() call, so there is no need 1898 * to adjust it. 1899 */ 1900 do_bin_search = false; 1901 path->slots[0] = 0; 1902 } 1903 } 1904 } 1905 1906 if (do_bin_search) { 1907 ret = search_for_key_slot(leaf, search_low_slot, key, 1908 prev_cmp, &path->slots[0]); 1909 if (ret < 0) 1910 return ret; 1911 } 1912 1913 if (ins_len > 0) { 1914 /* 1915 * Item key already exists. In this case, if we are allowed to 1916 * insert the item (for example, in dir_item case, item key 1917 * collision is allowed), it will be merged with the original 1918 * item. Only the item size grows, no new btrfs item will be 1919 * added. If search_for_extension is not set, ins_len already 1920 * accounts the size btrfs_item, deduct it here so leaf space 1921 * check will be correct. 1922 */ 1923 if (ret == 0 && !path->search_for_extension) { 1924 ASSERT(ins_len >= sizeof(struct btrfs_item)); 1925 ins_len -= sizeof(struct btrfs_item); 1926 } 1927 1928 ASSERT(leaf_free_space >= 0); 1929 1930 if (leaf_free_space < ins_len) { 1931 int err; 1932 1933 err = split_leaf(trans, root, key, path, ins_len, 1934 (ret == 0)); 1935 ASSERT(err <= 0); 1936 if (WARN_ON(err > 0)) 1937 err = -EUCLEAN; 1938 if (err) 1939 ret = err; 1940 } 1941 } 1942 1943 return ret; 1944 } 1945 1946 /* 1947 * Look for a key in a tree and perform necessary modifications to preserve 1948 * tree invariants. 1949 * 1950 * @trans: Handle of transaction, used when modifying the tree 1951 * @p: Holds all btree nodes along the search path 1952 * @root: The root node of the tree 1953 * @key: The key we are looking for 1954 * @ins_len: Indicates purpose of search: 1955 * >0 for inserts it's size of item inserted (*) 1956 * <0 for deletions 1957 * 0 for plain searches, not modifying the tree 1958 * 1959 * (*) If size of item inserted doesn't include 1960 * sizeof(struct btrfs_item), then p->search_for_extension must 1961 * be set. 1962 * @cow: boolean should CoW operations be performed. Must always be 1 1963 * when modifying the tree. 1964 * 1965 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 1966 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 1967 * 1968 * If @key is found, 0 is returned and you can find the item in the leaf level 1969 * of the path (level 0) 1970 * 1971 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 1972 * points to the slot where it should be inserted 1973 * 1974 * If an error is encountered while searching the tree a negative error number 1975 * is returned 1976 */ 1977 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1978 const struct btrfs_key *key, struct btrfs_path *p, 1979 int ins_len, int cow) 1980 { 1981 struct btrfs_fs_info *fs_info; 1982 struct extent_buffer *b; 1983 int slot; 1984 int ret; 1985 int err; 1986 int level; 1987 int lowest_unlock = 1; 1988 /* everything at write_lock_level or lower must be write locked */ 1989 int write_lock_level = 0; 1990 u8 lowest_level = 0; 1991 int min_write_lock_level; 1992 int prev_cmp; 1993 1994 if (!root) 1995 return -EINVAL; 1996 1997 fs_info = root->fs_info; 1998 might_sleep(); 1999 2000 lowest_level = p->lowest_level; 2001 WARN_ON(lowest_level && ins_len > 0); 2002 WARN_ON(p->nodes[0] != NULL); 2003 BUG_ON(!cow && ins_len); 2004 2005 /* 2006 * For now only allow nowait for read only operations. There's no 2007 * strict reason why we can't, we just only need it for reads so it's 2008 * only implemented for reads. 2009 */ 2010 ASSERT(!p->nowait || !cow); 2011 2012 if (ins_len < 0) { 2013 lowest_unlock = 2; 2014 2015 /* when we are removing items, we might have to go up to level 2016 * two as we update tree pointers Make sure we keep write 2017 * for those levels as well 2018 */ 2019 write_lock_level = 2; 2020 } else if (ins_len > 0) { 2021 /* 2022 * for inserting items, make sure we have a write lock on 2023 * level 1 so we can update keys 2024 */ 2025 write_lock_level = 1; 2026 } 2027 2028 if (!cow) 2029 write_lock_level = -1; 2030 2031 if (cow && (p->keep_locks || p->lowest_level)) 2032 write_lock_level = BTRFS_MAX_LEVEL; 2033 2034 min_write_lock_level = write_lock_level; 2035 2036 if (p->need_commit_sem) { 2037 ASSERT(p->search_commit_root); 2038 if (p->nowait) { 2039 if (!down_read_trylock(&fs_info->commit_root_sem)) 2040 return -EAGAIN; 2041 } else { 2042 down_read(&fs_info->commit_root_sem); 2043 } 2044 } 2045 2046 again: 2047 prev_cmp = -1; 2048 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2049 if (IS_ERR(b)) { 2050 ret = PTR_ERR(b); 2051 goto done; 2052 } 2053 2054 while (b) { 2055 int dec = 0; 2056 2057 level = btrfs_header_level(b); 2058 2059 if (cow) { 2060 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2061 2062 /* 2063 * if we don't really need to cow this block 2064 * then we don't want to set the path blocking, 2065 * so we test it here 2066 */ 2067 if (!should_cow_block(trans, root, b)) 2068 goto cow_done; 2069 2070 /* 2071 * must have write locks on this node and the 2072 * parent 2073 */ 2074 if (level > write_lock_level || 2075 (level + 1 > write_lock_level && 2076 level + 1 < BTRFS_MAX_LEVEL && 2077 p->nodes[level + 1])) { 2078 write_lock_level = level + 1; 2079 btrfs_release_path(p); 2080 goto again; 2081 } 2082 2083 if (last_level) 2084 err = btrfs_cow_block(trans, root, b, NULL, 0, 2085 &b, 2086 BTRFS_NESTING_COW); 2087 else 2088 err = btrfs_cow_block(trans, root, b, 2089 p->nodes[level + 1], 2090 p->slots[level + 1], &b, 2091 BTRFS_NESTING_COW); 2092 if (err) { 2093 ret = err; 2094 goto done; 2095 } 2096 } 2097 cow_done: 2098 p->nodes[level] = b; 2099 2100 /* 2101 * we have a lock on b and as long as we aren't changing 2102 * the tree, there is no way to for the items in b to change. 2103 * It is safe to drop the lock on our parent before we 2104 * go through the expensive btree search on b. 2105 * 2106 * If we're inserting or deleting (ins_len != 0), then we might 2107 * be changing slot zero, which may require changing the parent. 2108 * So, we can't drop the lock until after we know which slot 2109 * we're operating on. 2110 */ 2111 if (!ins_len && !p->keep_locks) { 2112 int u = level + 1; 2113 2114 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2115 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2116 p->locks[u] = 0; 2117 } 2118 } 2119 2120 if (level == 0) { 2121 if (ins_len > 0) 2122 ASSERT(write_lock_level >= 1); 2123 2124 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp); 2125 if (!p->search_for_split) 2126 unlock_up(p, level, lowest_unlock, 2127 min_write_lock_level, NULL); 2128 goto done; 2129 } 2130 2131 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot); 2132 if (ret < 0) 2133 goto done; 2134 prev_cmp = ret; 2135 2136 if (ret && slot > 0) { 2137 dec = 1; 2138 slot--; 2139 } 2140 p->slots[level] = slot; 2141 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2142 &write_lock_level); 2143 if (err == -EAGAIN) 2144 goto again; 2145 if (err) { 2146 ret = err; 2147 goto done; 2148 } 2149 b = p->nodes[level]; 2150 slot = p->slots[level]; 2151 2152 /* 2153 * Slot 0 is special, if we change the key we have to update 2154 * the parent pointer which means we must have a write lock on 2155 * the parent 2156 */ 2157 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2158 write_lock_level = level + 1; 2159 btrfs_release_path(p); 2160 goto again; 2161 } 2162 2163 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2164 &write_lock_level); 2165 2166 if (level == lowest_level) { 2167 if (dec) 2168 p->slots[level]++; 2169 goto done; 2170 } 2171 2172 err = read_block_for_search(root, p, &b, slot, key); 2173 if (err == -EAGAIN && !p->nowait) 2174 goto again; 2175 if (err) { 2176 ret = err; 2177 goto done; 2178 } 2179 2180 if (!p->skip_locking) { 2181 level = btrfs_header_level(b); 2182 2183 btrfs_maybe_reset_lockdep_class(root, b); 2184 2185 if (level <= write_lock_level) { 2186 btrfs_tree_lock(b); 2187 p->locks[level] = BTRFS_WRITE_LOCK; 2188 } else { 2189 if (p->nowait) { 2190 if (!btrfs_try_tree_read_lock(b)) { 2191 free_extent_buffer(b); 2192 ret = -EAGAIN; 2193 goto done; 2194 } 2195 } else { 2196 btrfs_tree_read_lock(b); 2197 } 2198 p->locks[level] = BTRFS_READ_LOCK; 2199 } 2200 p->nodes[level] = b; 2201 } 2202 } 2203 ret = 1; 2204 done: 2205 if (ret < 0 && !p->skip_release_on_error) 2206 btrfs_release_path(p); 2207 2208 if (p->need_commit_sem) { 2209 int ret2; 2210 2211 ret2 = finish_need_commit_sem_search(p); 2212 up_read(&fs_info->commit_root_sem); 2213 if (ret2) 2214 ret = ret2; 2215 } 2216 2217 return ret; 2218 } 2219 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO); 2220 2221 /* 2222 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2223 * current state of the tree together with the operations recorded in the tree 2224 * modification log to search for the key in a previous version of this tree, as 2225 * denoted by the time_seq parameter. 2226 * 2227 * Naturally, there is no support for insert, delete or cow operations. 2228 * 2229 * The resulting path and return value will be set up as if we called 2230 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2231 */ 2232 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2233 struct btrfs_path *p, u64 time_seq) 2234 { 2235 struct btrfs_fs_info *fs_info = root->fs_info; 2236 struct extent_buffer *b; 2237 int slot; 2238 int ret; 2239 int err; 2240 int level; 2241 int lowest_unlock = 1; 2242 u8 lowest_level = 0; 2243 2244 lowest_level = p->lowest_level; 2245 WARN_ON(p->nodes[0] != NULL); 2246 ASSERT(!p->nowait); 2247 2248 if (p->search_commit_root) { 2249 BUG_ON(time_seq); 2250 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2251 } 2252 2253 again: 2254 b = btrfs_get_old_root(root, time_seq); 2255 if (!b) { 2256 ret = -EIO; 2257 goto done; 2258 } 2259 level = btrfs_header_level(b); 2260 p->locks[level] = BTRFS_READ_LOCK; 2261 2262 while (b) { 2263 int dec = 0; 2264 2265 level = btrfs_header_level(b); 2266 p->nodes[level] = b; 2267 2268 /* 2269 * we have a lock on b and as long as we aren't changing 2270 * the tree, there is no way to for the items in b to change. 2271 * It is safe to drop the lock on our parent before we 2272 * go through the expensive btree search on b. 2273 */ 2274 btrfs_unlock_up_safe(p, level + 1); 2275 2276 ret = btrfs_bin_search(b, 0, key, &slot); 2277 if (ret < 0) 2278 goto done; 2279 2280 if (level == 0) { 2281 p->slots[level] = slot; 2282 unlock_up(p, level, lowest_unlock, 0, NULL); 2283 goto done; 2284 } 2285 2286 if (ret && slot > 0) { 2287 dec = 1; 2288 slot--; 2289 } 2290 p->slots[level] = slot; 2291 unlock_up(p, level, lowest_unlock, 0, NULL); 2292 2293 if (level == lowest_level) { 2294 if (dec) 2295 p->slots[level]++; 2296 goto done; 2297 } 2298 2299 err = read_block_for_search(root, p, &b, slot, key); 2300 if (err == -EAGAIN && !p->nowait) 2301 goto again; 2302 if (err) { 2303 ret = err; 2304 goto done; 2305 } 2306 2307 level = btrfs_header_level(b); 2308 btrfs_tree_read_lock(b); 2309 b = btrfs_tree_mod_log_rewind(fs_info, b, time_seq); 2310 if (!b) { 2311 ret = -ENOMEM; 2312 goto done; 2313 } 2314 p->locks[level] = BTRFS_READ_LOCK; 2315 p->nodes[level] = b; 2316 } 2317 ret = 1; 2318 done: 2319 if (ret < 0) 2320 btrfs_release_path(p); 2321 2322 return ret; 2323 } 2324 2325 /* 2326 * Search the tree again to find a leaf with smaller keys. 2327 * Returns 0 if it found something. 2328 * Returns 1 if there are no smaller keys. 2329 * Returns < 0 on error. 2330 * 2331 * This may release the path, and so you may lose any locks held at the 2332 * time you call it. 2333 */ 2334 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 2335 { 2336 struct btrfs_key key; 2337 struct btrfs_key orig_key; 2338 struct btrfs_disk_key found_key; 2339 int ret; 2340 2341 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 2342 orig_key = key; 2343 2344 if (key.offset > 0) { 2345 key.offset--; 2346 } else if (key.type > 0) { 2347 key.type--; 2348 key.offset = (u64)-1; 2349 } else if (key.objectid > 0) { 2350 key.objectid--; 2351 key.type = (u8)-1; 2352 key.offset = (u64)-1; 2353 } else { 2354 return 1; 2355 } 2356 2357 btrfs_release_path(path); 2358 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2359 if (ret <= 0) 2360 return ret; 2361 2362 /* 2363 * Previous key not found. Even if we were at slot 0 of the leaf we had 2364 * before releasing the path and calling btrfs_search_slot(), we now may 2365 * be in a slot pointing to the same original key - this can happen if 2366 * after we released the path, one of more items were moved from a 2367 * sibling leaf into the front of the leaf we had due to an insertion 2368 * (see push_leaf_right()). 2369 * If we hit this case and our slot is > 0 and just decrement the slot 2370 * so that the caller does not process the same key again, which may or 2371 * may not break the caller, depending on its logic. 2372 */ 2373 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 2374 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]); 2375 ret = btrfs_comp_keys(&found_key, &orig_key); 2376 if (ret == 0) { 2377 if (path->slots[0] > 0) { 2378 path->slots[0]--; 2379 return 0; 2380 } 2381 /* 2382 * At slot 0, same key as before, it means orig_key is 2383 * the lowest, leftmost, key in the tree. We're done. 2384 */ 2385 return 1; 2386 } 2387 } 2388 2389 btrfs_item_key(path->nodes[0], &found_key, 0); 2390 ret = btrfs_comp_keys(&found_key, &key); 2391 /* 2392 * We might have had an item with the previous key in the tree right 2393 * before we released our path. And after we released our path, that 2394 * item might have been pushed to the first slot (0) of the leaf we 2395 * were holding due to a tree balance. Alternatively, an item with the 2396 * previous key can exist as the only element of a leaf (big fat item). 2397 * Therefore account for these 2 cases, so that our callers (like 2398 * btrfs_previous_item) don't miss an existing item with a key matching 2399 * the previous key we computed above. 2400 */ 2401 if (ret <= 0) 2402 return 0; 2403 return 1; 2404 } 2405 2406 /* 2407 * helper to use instead of search slot if no exact match is needed but 2408 * instead the next or previous item should be returned. 2409 * When find_higher is true, the next higher item is returned, the next lower 2410 * otherwise. 2411 * When return_any and find_higher are both true, and no higher item is found, 2412 * return the next lower instead. 2413 * When return_any is true and find_higher is false, and no lower item is found, 2414 * return the next higher instead. 2415 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2416 * < 0 on error 2417 */ 2418 int btrfs_search_slot_for_read(struct btrfs_root *root, 2419 const struct btrfs_key *key, 2420 struct btrfs_path *p, int find_higher, 2421 int return_any) 2422 { 2423 int ret; 2424 struct extent_buffer *leaf; 2425 2426 again: 2427 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2428 if (ret <= 0) 2429 return ret; 2430 /* 2431 * a return value of 1 means the path is at the position where the 2432 * item should be inserted. Normally this is the next bigger item, 2433 * but in case the previous item is the last in a leaf, path points 2434 * to the first free slot in the previous leaf, i.e. at an invalid 2435 * item. 2436 */ 2437 leaf = p->nodes[0]; 2438 2439 if (find_higher) { 2440 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2441 ret = btrfs_next_leaf(root, p); 2442 if (ret <= 0) 2443 return ret; 2444 if (!return_any) 2445 return 1; 2446 /* 2447 * no higher item found, return the next 2448 * lower instead 2449 */ 2450 return_any = 0; 2451 find_higher = 0; 2452 btrfs_release_path(p); 2453 goto again; 2454 } 2455 } else { 2456 if (p->slots[0] == 0) { 2457 ret = btrfs_prev_leaf(root, p); 2458 if (ret < 0) 2459 return ret; 2460 if (!ret) { 2461 leaf = p->nodes[0]; 2462 if (p->slots[0] == btrfs_header_nritems(leaf)) 2463 p->slots[0]--; 2464 return 0; 2465 } 2466 if (!return_any) 2467 return 1; 2468 /* 2469 * no lower item found, return the next 2470 * higher instead 2471 */ 2472 return_any = 0; 2473 find_higher = 1; 2474 btrfs_release_path(p); 2475 goto again; 2476 } else { 2477 --p->slots[0]; 2478 } 2479 } 2480 return 0; 2481 } 2482 2483 /* 2484 * Execute search and call btrfs_previous_item to traverse backwards if the item 2485 * was not found. 2486 * 2487 * Return 0 if found, 1 if not found and < 0 if error. 2488 */ 2489 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 2490 struct btrfs_path *path) 2491 { 2492 int ret; 2493 2494 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 2495 if (ret > 0) 2496 ret = btrfs_previous_item(root, path, key->objectid, key->type); 2497 2498 if (ret == 0) 2499 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); 2500 2501 return ret; 2502 } 2503 2504 /* 2505 * Search for a valid slot for the given path. 2506 * 2507 * @root: The root node of the tree. 2508 * @key: Will contain a valid item if found. 2509 * @path: The starting point to validate the slot. 2510 * 2511 * Return: 0 if the item is valid 2512 * 1 if not found 2513 * <0 if error. 2514 */ 2515 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 2516 struct btrfs_path *path) 2517 { 2518 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2519 int ret; 2520 2521 ret = btrfs_next_leaf(root, path); 2522 if (ret) 2523 return ret; 2524 } 2525 2526 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); 2527 return 0; 2528 } 2529 2530 /* 2531 * adjust the pointers going up the tree, starting at level 2532 * making sure the right key of each node is points to 'key'. 2533 * This is used after shifting pointers to the left, so it stops 2534 * fixing up pointers when a given leaf/node is not in slot 0 of the 2535 * higher levels 2536 * 2537 */ 2538 static void fixup_low_keys(struct btrfs_trans_handle *trans, 2539 const struct btrfs_path *path, 2540 const struct btrfs_disk_key *key, int level) 2541 { 2542 int i; 2543 struct extent_buffer *t; 2544 int ret; 2545 2546 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2547 int tslot = path->slots[i]; 2548 2549 if (!path->nodes[i]) 2550 break; 2551 t = path->nodes[i]; 2552 ret = btrfs_tree_mod_log_insert_key(t, tslot, 2553 BTRFS_MOD_LOG_KEY_REPLACE); 2554 BUG_ON(ret < 0); 2555 btrfs_set_node_key(t, key, tslot); 2556 btrfs_mark_buffer_dirty(trans, path->nodes[i]); 2557 if (tslot != 0) 2558 break; 2559 } 2560 } 2561 2562 /* 2563 * update item key. 2564 * 2565 * This function isn't completely safe. It's the caller's responsibility 2566 * that the new key won't break the order 2567 */ 2568 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 2569 const struct btrfs_path *path, 2570 const struct btrfs_key *new_key) 2571 { 2572 struct btrfs_fs_info *fs_info = trans->fs_info; 2573 struct btrfs_disk_key disk_key; 2574 struct extent_buffer *eb; 2575 int slot; 2576 2577 eb = path->nodes[0]; 2578 slot = path->slots[0]; 2579 if (slot > 0) { 2580 btrfs_item_key(eb, &disk_key, slot - 1); 2581 if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) { 2582 btrfs_print_leaf(eb); 2583 btrfs_crit(fs_info, 2584 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2585 slot, btrfs_disk_key_objectid(&disk_key), 2586 btrfs_disk_key_type(&disk_key), 2587 btrfs_disk_key_offset(&disk_key), 2588 new_key->objectid, new_key->type, 2589 new_key->offset); 2590 BUG(); 2591 } 2592 } 2593 if (slot < btrfs_header_nritems(eb) - 1) { 2594 btrfs_item_key(eb, &disk_key, slot + 1); 2595 if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) { 2596 btrfs_print_leaf(eb); 2597 btrfs_crit(fs_info, 2598 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2599 slot, btrfs_disk_key_objectid(&disk_key), 2600 btrfs_disk_key_type(&disk_key), 2601 btrfs_disk_key_offset(&disk_key), 2602 new_key->objectid, new_key->type, 2603 new_key->offset); 2604 BUG(); 2605 } 2606 } 2607 2608 btrfs_cpu_key_to_disk(&disk_key, new_key); 2609 btrfs_set_item_key(eb, &disk_key, slot); 2610 btrfs_mark_buffer_dirty(trans, eb); 2611 if (slot == 0) 2612 fixup_low_keys(trans, path, &disk_key, 1); 2613 } 2614 2615 /* 2616 * Check key order of two sibling extent buffers. 2617 * 2618 * Return true if something is wrong. 2619 * Return false if everything is fine. 2620 * 2621 * Tree-checker only works inside one tree block, thus the following 2622 * corruption can not be detected by tree-checker: 2623 * 2624 * Leaf @left | Leaf @right 2625 * -------------------------------------------------------------- 2626 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | 2627 * 2628 * Key f6 in leaf @left itself is valid, but not valid when the next 2629 * key in leaf @right is 7. 2630 * This can only be checked at tree block merge time. 2631 * And since tree checker has ensured all key order in each tree block 2632 * is correct, we only need to bother the last key of @left and the first 2633 * key of @right. 2634 */ 2635 static bool check_sibling_keys(const struct extent_buffer *left, 2636 const struct extent_buffer *right) 2637 { 2638 struct btrfs_key left_last; 2639 struct btrfs_key right_first; 2640 int level = btrfs_header_level(left); 2641 int nr_left = btrfs_header_nritems(left); 2642 int nr_right = btrfs_header_nritems(right); 2643 2644 /* No key to check in one of the tree blocks */ 2645 if (!nr_left || !nr_right) 2646 return false; 2647 2648 if (level) { 2649 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); 2650 btrfs_node_key_to_cpu(right, &right_first, 0); 2651 } else { 2652 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); 2653 btrfs_item_key_to_cpu(right, &right_first, 0); 2654 } 2655 2656 if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) { 2657 btrfs_crit(left->fs_info, "left extent buffer:"); 2658 btrfs_print_tree(left, false); 2659 btrfs_crit(left->fs_info, "right extent buffer:"); 2660 btrfs_print_tree(right, false); 2661 btrfs_crit(left->fs_info, 2662 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", 2663 left_last.objectid, left_last.type, 2664 left_last.offset, right_first.objectid, 2665 right_first.type, right_first.offset); 2666 return true; 2667 } 2668 return false; 2669 } 2670 2671 /* 2672 * try to push data from one node into the next node left in the 2673 * tree. 2674 * 2675 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2676 * error, and > 0 if there was no room in the left hand block. 2677 */ 2678 static int push_node_left(struct btrfs_trans_handle *trans, 2679 struct extent_buffer *dst, 2680 struct extent_buffer *src, int empty) 2681 { 2682 struct btrfs_fs_info *fs_info = trans->fs_info; 2683 int push_items = 0; 2684 int src_nritems; 2685 int dst_nritems; 2686 int ret = 0; 2687 2688 src_nritems = btrfs_header_nritems(src); 2689 dst_nritems = btrfs_header_nritems(dst); 2690 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2691 WARN_ON(btrfs_header_generation(src) != trans->transid); 2692 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2693 2694 if (!empty && src_nritems <= 8) 2695 return 1; 2696 2697 if (push_items <= 0) 2698 return 1; 2699 2700 if (empty) { 2701 push_items = min(src_nritems, push_items); 2702 if (push_items < src_nritems) { 2703 /* leave at least 8 pointers in the node if 2704 * we aren't going to empty it 2705 */ 2706 if (src_nritems - push_items < 8) { 2707 if (push_items <= 8) 2708 return 1; 2709 push_items -= 8; 2710 } 2711 } 2712 } else 2713 push_items = min(src_nritems - 8, push_items); 2714 2715 /* dst is the left eb, src is the middle eb */ 2716 if (check_sibling_keys(dst, src)) { 2717 ret = -EUCLEAN; 2718 btrfs_abort_transaction(trans, ret); 2719 return ret; 2720 } 2721 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 2722 if (ret) { 2723 btrfs_abort_transaction(trans, ret); 2724 return ret; 2725 } 2726 copy_extent_buffer(dst, src, 2727 btrfs_node_key_ptr_offset(dst, dst_nritems), 2728 btrfs_node_key_ptr_offset(src, 0), 2729 push_items * sizeof(struct btrfs_key_ptr)); 2730 2731 if (push_items < src_nritems) { 2732 /* 2733 * btrfs_tree_mod_log_eb_copy handles logging the move, so we 2734 * don't need to do an explicit tree mod log operation for it. 2735 */ 2736 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0), 2737 btrfs_node_key_ptr_offset(src, push_items), 2738 (src_nritems - push_items) * 2739 sizeof(struct btrfs_key_ptr)); 2740 } 2741 btrfs_set_header_nritems(src, src_nritems - push_items); 2742 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2743 btrfs_mark_buffer_dirty(trans, src); 2744 btrfs_mark_buffer_dirty(trans, dst); 2745 2746 return ret; 2747 } 2748 2749 /* 2750 * try to push data from one node into the next node right in the 2751 * tree. 2752 * 2753 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2754 * error, and > 0 if there was no room in the right hand block. 2755 * 2756 * this will only push up to 1/2 the contents of the left node over 2757 */ 2758 static int balance_node_right(struct btrfs_trans_handle *trans, 2759 struct extent_buffer *dst, 2760 struct extent_buffer *src) 2761 { 2762 struct btrfs_fs_info *fs_info = trans->fs_info; 2763 int push_items = 0; 2764 int max_push; 2765 int src_nritems; 2766 int dst_nritems; 2767 int ret = 0; 2768 2769 WARN_ON(btrfs_header_generation(src) != trans->transid); 2770 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2771 2772 src_nritems = btrfs_header_nritems(src); 2773 dst_nritems = btrfs_header_nritems(dst); 2774 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2775 if (push_items <= 0) 2776 return 1; 2777 2778 if (src_nritems < 4) 2779 return 1; 2780 2781 max_push = src_nritems / 2 + 1; 2782 /* don't try to empty the node */ 2783 if (max_push >= src_nritems) 2784 return 1; 2785 2786 if (max_push < push_items) 2787 push_items = max_push; 2788 2789 /* dst is the right eb, src is the middle eb */ 2790 if (check_sibling_keys(src, dst)) { 2791 ret = -EUCLEAN; 2792 btrfs_abort_transaction(trans, ret); 2793 return ret; 2794 } 2795 2796 /* 2797 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't 2798 * need to do an explicit tree mod log operation for it. 2799 */ 2800 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items), 2801 btrfs_node_key_ptr_offset(dst, 0), 2802 (dst_nritems) * 2803 sizeof(struct btrfs_key_ptr)); 2804 2805 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 2806 push_items); 2807 if (ret) { 2808 btrfs_abort_transaction(trans, ret); 2809 return ret; 2810 } 2811 copy_extent_buffer(dst, src, 2812 btrfs_node_key_ptr_offset(dst, 0), 2813 btrfs_node_key_ptr_offset(src, src_nritems - push_items), 2814 push_items * sizeof(struct btrfs_key_ptr)); 2815 2816 btrfs_set_header_nritems(src, src_nritems - push_items); 2817 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2818 2819 btrfs_mark_buffer_dirty(trans, src); 2820 btrfs_mark_buffer_dirty(trans, dst); 2821 2822 return ret; 2823 } 2824 2825 /* 2826 * helper function to insert a new root level in the tree. 2827 * A new node is allocated, and a single item is inserted to 2828 * point to the existing root 2829 * 2830 * returns zero on success or < 0 on failure. 2831 */ 2832 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2833 struct btrfs_root *root, 2834 struct btrfs_path *path, int level) 2835 { 2836 u64 lower_gen; 2837 struct extent_buffer *lower; 2838 struct extent_buffer *c; 2839 struct extent_buffer *old; 2840 struct btrfs_disk_key lower_key; 2841 int ret; 2842 2843 BUG_ON(path->nodes[level]); 2844 BUG_ON(path->nodes[level-1] != root->node); 2845 2846 lower = path->nodes[level-1]; 2847 if (level == 1) 2848 btrfs_item_key(lower, &lower_key, 0); 2849 else 2850 btrfs_node_key(lower, &lower_key, 0); 2851 2852 c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root), 2853 &lower_key, level, root->node->start, 0, 2854 0, BTRFS_NESTING_NEW_ROOT); 2855 if (IS_ERR(c)) 2856 return PTR_ERR(c); 2857 2858 root_add_used_bytes(root); 2859 2860 btrfs_set_header_nritems(c, 1); 2861 btrfs_set_node_key(c, &lower_key, 0); 2862 btrfs_set_node_blockptr(c, 0, lower->start); 2863 lower_gen = btrfs_header_generation(lower); 2864 WARN_ON(lower_gen != trans->transid); 2865 2866 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2867 2868 btrfs_mark_buffer_dirty(trans, c); 2869 2870 old = root->node; 2871 ret = btrfs_tree_mod_log_insert_root(root->node, c, false); 2872 if (ret < 0) { 2873 int ret2; 2874 2875 ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1); 2876 if (ret2 < 0) 2877 btrfs_abort_transaction(trans, ret2); 2878 btrfs_tree_unlock(c); 2879 free_extent_buffer(c); 2880 return ret; 2881 } 2882 rcu_assign_pointer(root->node, c); 2883 2884 /* the super has an extra ref to root->node */ 2885 free_extent_buffer(old); 2886 2887 add_root_to_dirty_list(root); 2888 atomic_inc(&c->refs); 2889 path->nodes[level] = c; 2890 path->locks[level] = BTRFS_WRITE_LOCK; 2891 path->slots[level] = 0; 2892 return 0; 2893 } 2894 2895 /* 2896 * worker function to insert a single pointer in a node. 2897 * the node should have enough room for the pointer already 2898 * 2899 * slot and level indicate where you want the key to go, and 2900 * blocknr is the block the key points to. 2901 */ 2902 static int insert_ptr(struct btrfs_trans_handle *trans, 2903 const struct btrfs_path *path, 2904 const struct btrfs_disk_key *key, u64 bytenr, 2905 int slot, int level) 2906 { 2907 struct extent_buffer *lower; 2908 int nritems; 2909 int ret; 2910 2911 BUG_ON(!path->nodes[level]); 2912 btrfs_assert_tree_write_locked(path->nodes[level]); 2913 lower = path->nodes[level]; 2914 nritems = btrfs_header_nritems(lower); 2915 BUG_ON(slot > nritems); 2916 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 2917 if (slot != nritems) { 2918 if (level) { 2919 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1, 2920 slot, nritems - slot); 2921 if (ret < 0) { 2922 btrfs_abort_transaction(trans, ret); 2923 return ret; 2924 } 2925 } 2926 memmove_extent_buffer(lower, 2927 btrfs_node_key_ptr_offset(lower, slot + 1), 2928 btrfs_node_key_ptr_offset(lower, slot), 2929 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2930 } 2931 if (level) { 2932 ret = btrfs_tree_mod_log_insert_key(lower, slot, 2933 BTRFS_MOD_LOG_KEY_ADD); 2934 if (ret < 0) { 2935 btrfs_abort_transaction(trans, ret); 2936 return ret; 2937 } 2938 } 2939 btrfs_set_node_key(lower, key, slot); 2940 btrfs_set_node_blockptr(lower, slot, bytenr); 2941 WARN_ON(trans->transid == 0); 2942 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2943 btrfs_set_header_nritems(lower, nritems + 1); 2944 btrfs_mark_buffer_dirty(trans, lower); 2945 2946 return 0; 2947 } 2948 2949 /* 2950 * split the node at the specified level in path in two. 2951 * The path is corrected to point to the appropriate node after the split 2952 * 2953 * Before splitting this tries to make some room in the node by pushing 2954 * left and right, if either one works, it returns right away. 2955 * 2956 * returns 0 on success and < 0 on failure 2957 */ 2958 static noinline int split_node(struct btrfs_trans_handle *trans, 2959 struct btrfs_root *root, 2960 struct btrfs_path *path, int level) 2961 { 2962 struct btrfs_fs_info *fs_info = root->fs_info; 2963 struct extent_buffer *c; 2964 struct extent_buffer *split; 2965 struct btrfs_disk_key disk_key; 2966 int mid; 2967 int ret; 2968 u32 c_nritems; 2969 2970 c = path->nodes[level]; 2971 WARN_ON(btrfs_header_generation(c) != trans->transid); 2972 if (c == root->node) { 2973 /* 2974 * trying to split the root, lets make a new one 2975 * 2976 * tree mod log: We don't log_removal old root in 2977 * insert_new_root, because that root buffer will be kept as a 2978 * normal node. We are going to log removal of half of the 2979 * elements below with btrfs_tree_mod_log_eb_copy(). We're 2980 * holding a tree lock on the buffer, which is why we cannot 2981 * race with other tree_mod_log users. 2982 */ 2983 ret = insert_new_root(trans, root, path, level + 1); 2984 if (ret) 2985 return ret; 2986 } else { 2987 ret = push_nodes_for_insert(trans, root, path, level); 2988 c = path->nodes[level]; 2989 if (!ret && btrfs_header_nritems(c) < 2990 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 2991 return 0; 2992 if (ret < 0) 2993 return ret; 2994 } 2995 2996 c_nritems = btrfs_header_nritems(c); 2997 mid = (c_nritems + 1) / 2; 2998 btrfs_node_key(c, &disk_key, mid); 2999 3000 split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root), 3001 &disk_key, level, c->start, 0, 3002 0, BTRFS_NESTING_SPLIT); 3003 if (IS_ERR(split)) 3004 return PTR_ERR(split); 3005 3006 root_add_used_bytes(root); 3007 ASSERT(btrfs_header_level(c) == level); 3008 3009 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 3010 if (ret) { 3011 btrfs_tree_unlock(split); 3012 free_extent_buffer(split); 3013 btrfs_abort_transaction(trans, ret); 3014 return ret; 3015 } 3016 copy_extent_buffer(split, c, 3017 btrfs_node_key_ptr_offset(split, 0), 3018 btrfs_node_key_ptr_offset(c, mid), 3019 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3020 btrfs_set_header_nritems(split, c_nritems - mid); 3021 btrfs_set_header_nritems(c, mid); 3022 3023 btrfs_mark_buffer_dirty(trans, c); 3024 btrfs_mark_buffer_dirty(trans, split); 3025 3026 ret = insert_ptr(trans, path, &disk_key, split->start, 3027 path->slots[level + 1] + 1, level + 1); 3028 if (ret < 0) { 3029 btrfs_tree_unlock(split); 3030 free_extent_buffer(split); 3031 return ret; 3032 } 3033 3034 if (path->slots[level] >= mid) { 3035 path->slots[level] -= mid; 3036 btrfs_tree_unlock(c); 3037 free_extent_buffer(c); 3038 path->nodes[level] = split; 3039 path->slots[level + 1] += 1; 3040 } else { 3041 btrfs_tree_unlock(split); 3042 free_extent_buffer(split); 3043 } 3044 return 0; 3045 } 3046 3047 /* 3048 * how many bytes are required to store the items in a leaf. start 3049 * and nr indicate which items in the leaf to check. This totals up the 3050 * space used both by the item structs and the item data 3051 */ 3052 static int leaf_space_used(const struct extent_buffer *l, int start, int nr) 3053 { 3054 int data_len; 3055 int nritems = btrfs_header_nritems(l); 3056 int end = min(nritems, start + nr) - 1; 3057 3058 if (!nr) 3059 return 0; 3060 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start); 3061 data_len = data_len - btrfs_item_offset(l, end); 3062 data_len += sizeof(struct btrfs_item) * nr; 3063 WARN_ON(data_len < 0); 3064 return data_len; 3065 } 3066 3067 /* 3068 * The space between the end of the leaf items and 3069 * the start of the leaf data. IOW, how much room 3070 * the leaf has left for both items and data 3071 */ 3072 int btrfs_leaf_free_space(const struct extent_buffer *leaf) 3073 { 3074 struct btrfs_fs_info *fs_info = leaf->fs_info; 3075 int nritems = btrfs_header_nritems(leaf); 3076 int ret; 3077 3078 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3079 if (ret < 0) { 3080 btrfs_crit(fs_info, 3081 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3082 ret, 3083 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3084 leaf_space_used(leaf, 0, nritems), nritems); 3085 } 3086 return ret; 3087 } 3088 3089 /* 3090 * min slot controls the lowest index we're willing to push to the 3091 * right. We'll push up to and including min_slot, but no lower 3092 */ 3093 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3094 struct btrfs_path *path, 3095 int data_size, int empty, 3096 struct extent_buffer *right, 3097 int free_space, u32 left_nritems, 3098 u32 min_slot) 3099 { 3100 struct btrfs_fs_info *fs_info = right->fs_info; 3101 struct extent_buffer *left = path->nodes[0]; 3102 struct extent_buffer *upper = path->nodes[1]; 3103 struct btrfs_map_token token; 3104 struct btrfs_disk_key disk_key; 3105 int slot; 3106 u32 i; 3107 int push_space = 0; 3108 int push_items = 0; 3109 u32 nr; 3110 u32 right_nritems; 3111 u32 data_end; 3112 u32 this_item_size; 3113 3114 if (empty) 3115 nr = 0; 3116 else 3117 nr = max_t(u32, 1, min_slot); 3118 3119 if (path->slots[0] >= left_nritems) 3120 push_space += data_size; 3121 3122 slot = path->slots[1]; 3123 i = left_nritems - 1; 3124 while (i >= nr) { 3125 if (!empty && push_items > 0) { 3126 if (path->slots[0] > i) 3127 break; 3128 if (path->slots[0] == i) { 3129 int space = btrfs_leaf_free_space(left); 3130 3131 if (space + push_space * 2 > free_space) 3132 break; 3133 } 3134 } 3135 3136 if (path->slots[0] == i) 3137 push_space += data_size; 3138 3139 this_item_size = btrfs_item_size(left, i); 3140 if (this_item_size + sizeof(struct btrfs_item) + 3141 push_space > free_space) 3142 break; 3143 3144 push_items++; 3145 push_space += this_item_size + sizeof(struct btrfs_item); 3146 if (i == 0) 3147 break; 3148 i--; 3149 } 3150 3151 if (push_items == 0) 3152 goto out_unlock; 3153 3154 WARN_ON(!empty && push_items == left_nritems); 3155 3156 /* push left to right */ 3157 right_nritems = btrfs_header_nritems(right); 3158 3159 push_space = btrfs_item_data_end(left, left_nritems - push_items); 3160 push_space -= leaf_data_end(left); 3161 3162 /* make room in the right data area */ 3163 data_end = leaf_data_end(right); 3164 memmove_leaf_data(right, data_end - push_space, data_end, 3165 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3166 3167 /* copy from the left data area */ 3168 copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3169 leaf_data_end(left), push_space); 3170 3171 memmove_leaf_items(right, push_items, 0, right_nritems); 3172 3173 /* copy the items from left to right */ 3174 copy_leaf_items(right, left, 0, left_nritems - push_items, push_items); 3175 3176 /* update the item pointers */ 3177 btrfs_init_map_token(&token, right); 3178 right_nritems += push_items; 3179 btrfs_set_header_nritems(right, right_nritems); 3180 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3181 for (i = 0; i < right_nritems; i++) { 3182 push_space -= btrfs_token_item_size(&token, i); 3183 btrfs_set_token_item_offset(&token, i, push_space); 3184 } 3185 3186 left_nritems -= push_items; 3187 btrfs_set_header_nritems(left, left_nritems); 3188 3189 if (left_nritems) 3190 btrfs_mark_buffer_dirty(trans, left); 3191 else 3192 btrfs_clear_buffer_dirty(trans, left); 3193 3194 btrfs_mark_buffer_dirty(trans, right); 3195 3196 btrfs_item_key(right, &disk_key, 0); 3197 btrfs_set_node_key(upper, &disk_key, slot + 1); 3198 btrfs_mark_buffer_dirty(trans, upper); 3199 3200 /* then fixup the leaf pointer in the path */ 3201 if (path->slots[0] >= left_nritems) { 3202 path->slots[0] -= left_nritems; 3203 if (btrfs_header_nritems(path->nodes[0]) == 0) 3204 btrfs_clear_buffer_dirty(trans, path->nodes[0]); 3205 btrfs_tree_unlock(path->nodes[0]); 3206 free_extent_buffer(path->nodes[0]); 3207 path->nodes[0] = right; 3208 path->slots[1] += 1; 3209 } else { 3210 btrfs_tree_unlock(right); 3211 free_extent_buffer(right); 3212 } 3213 return 0; 3214 3215 out_unlock: 3216 btrfs_tree_unlock(right); 3217 free_extent_buffer(right); 3218 return 1; 3219 } 3220 3221 /* 3222 * push some data in the path leaf to the right, trying to free up at 3223 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3224 * 3225 * returns 1 if the push failed because the other node didn't have enough 3226 * room, 0 if everything worked out and < 0 if there were major errors. 3227 * 3228 * this will push starting from min_slot to the end of the leaf. It won't 3229 * push any slot lower than min_slot 3230 */ 3231 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3232 *root, struct btrfs_path *path, 3233 int min_data_size, int data_size, 3234 int empty, u32 min_slot) 3235 { 3236 struct extent_buffer *left = path->nodes[0]; 3237 struct extent_buffer *right; 3238 struct extent_buffer *upper; 3239 int slot; 3240 int free_space; 3241 u32 left_nritems; 3242 int ret; 3243 3244 if (!path->nodes[1]) 3245 return 1; 3246 3247 slot = path->slots[1]; 3248 upper = path->nodes[1]; 3249 if (slot >= btrfs_header_nritems(upper) - 1) 3250 return 1; 3251 3252 btrfs_assert_tree_write_locked(path->nodes[1]); 3253 3254 right = btrfs_read_node_slot(upper, slot + 1); 3255 if (IS_ERR(right)) 3256 return PTR_ERR(right); 3257 3258 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT); 3259 3260 free_space = btrfs_leaf_free_space(right); 3261 if (free_space < data_size) 3262 goto out_unlock; 3263 3264 ret = btrfs_cow_block(trans, root, right, upper, 3265 slot + 1, &right, BTRFS_NESTING_RIGHT_COW); 3266 if (ret) 3267 goto out_unlock; 3268 3269 left_nritems = btrfs_header_nritems(left); 3270 if (left_nritems == 0) 3271 goto out_unlock; 3272 3273 if (check_sibling_keys(left, right)) { 3274 ret = -EUCLEAN; 3275 btrfs_abort_transaction(trans, ret); 3276 btrfs_tree_unlock(right); 3277 free_extent_buffer(right); 3278 return ret; 3279 } 3280 if (path->slots[0] == left_nritems && !empty) { 3281 /* Key greater than all keys in the leaf, right neighbor has 3282 * enough room for it and we're not emptying our leaf to delete 3283 * it, therefore use right neighbor to insert the new item and 3284 * no need to touch/dirty our left leaf. */ 3285 btrfs_tree_unlock(left); 3286 free_extent_buffer(left); 3287 path->nodes[0] = right; 3288 path->slots[0] = 0; 3289 path->slots[1]++; 3290 return 0; 3291 } 3292 3293 return __push_leaf_right(trans, path, min_data_size, empty, right, 3294 free_space, left_nritems, min_slot); 3295 out_unlock: 3296 btrfs_tree_unlock(right); 3297 free_extent_buffer(right); 3298 return 1; 3299 } 3300 3301 /* 3302 * push some data in the path leaf to the left, trying to free up at 3303 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3304 * 3305 * max_slot can put a limit on how far into the leaf we'll push items. The 3306 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3307 * items 3308 */ 3309 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3310 struct btrfs_path *path, int data_size, 3311 int empty, struct extent_buffer *left, 3312 int free_space, u32 right_nritems, 3313 u32 max_slot) 3314 { 3315 struct btrfs_fs_info *fs_info = left->fs_info; 3316 struct btrfs_disk_key disk_key; 3317 struct extent_buffer *right = path->nodes[0]; 3318 int i; 3319 int push_space = 0; 3320 int push_items = 0; 3321 u32 old_left_nritems; 3322 u32 nr; 3323 int ret = 0; 3324 u32 this_item_size; 3325 u32 old_left_item_size; 3326 struct btrfs_map_token token; 3327 3328 if (empty) 3329 nr = min(right_nritems, max_slot); 3330 else 3331 nr = min(right_nritems - 1, max_slot); 3332 3333 for (i = 0; i < nr; i++) { 3334 if (!empty && push_items > 0) { 3335 if (path->slots[0] < i) 3336 break; 3337 if (path->slots[0] == i) { 3338 int space = btrfs_leaf_free_space(right); 3339 3340 if (space + push_space * 2 > free_space) 3341 break; 3342 } 3343 } 3344 3345 if (path->slots[0] == i) 3346 push_space += data_size; 3347 3348 this_item_size = btrfs_item_size(right, i); 3349 if (this_item_size + sizeof(struct btrfs_item) + push_space > 3350 free_space) 3351 break; 3352 3353 push_items++; 3354 push_space += this_item_size + sizeof(struct btrfs_item); 3355 } 3356 3357 if (push_items == 0) { 3358 ret = 1; 3359 goto out; 3360 } 3361 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3362 3363 /* push data from right to left */ 3364 copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items); 3365 3366 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3367 btrfs_item_offset(right, push_items - 1); 3368 3369 copy_leaf_data(left, right, leaf_data_end(left) - push_space, 3370 btrfs_item_offset(right, push_items - 1), push_space); 3371 old_left_nritems = btrfs_header_nritems(left); 3372 BUG_ON(old_left_nritems <= 0); 3373 3374 btrfs_init_map_token(&token, left); 3375 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1); 3376 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3377 u32 ioff; 3378 3379 ioff = btrfs_token_item_offset(&token, i); 3380 btrfs_set_token_item_offset(&token, i, 3381 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 3382 } 3383 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3384 3385 /* fixup right node */ 3386 if (push_items > right_nritems) 3387 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3388 right_nritems); 3389 3390 if (push_items < right_nritems) { 3391 push_space = btrfs_item_offset(right, push_items - 1) - 3392 leaf_data_end(right); 3393 memmove_leaf_data(right, 3394 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3395 leaf_data_end(right), push_space); 3396 3397 memmove_leaf_items(right, 0, push_items, 3398 btrfs_header_nritems(right) - push_items); 3399 } 3400 3401 btrfs_init_map_token(&token, right); 3402 right_nritems -= push_items; 3403 btrfs_set_header_nritems(right, right_nritems); 3404 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3405 for (i = 0; i < right_nritems; i++) { 3406 push_space = push_space - btrfs_token_item_size(&token, i); 3407 btrfs_set_token_item_offset(&token, i, push_space); 3408 } 3409 3410 btrfs_mark_buffer_dirty(trans, left); 3411 if (right_nritems) 3412 btrfs_mark_buffer_dirty(trans, right); 3413 else 3414 btrfs_clear_buffer_dirty(trans, right); 3415 3416 btrfs_item_key(right, &disk_key, 0); 3417 fixup_low_keys(trans, path, &disk_key, 1); 3418 3419 /* then fixup the leaf pointer in the path */ 3420 if (path->slots[0] < push_items) { 3421 path->slots[0] += old_left_nritems; 3422 btrfs_tree_unlock(path->nodes[0]); 3423 free_extent_buffer(path->nodes[0]); 3424 path->nodes[0] = left; 3425 path->slots[1] -= 1; 3426 } else { 3427 btrfs_tree_unlock(left); 3428 free_extent_buffer(left); 3429 path->slots[0] -= push_items; 3430 } 3431 BUG_ON(path->slots[0] < 0); 3432 return ret; 3433 out: 3434 btrfs_tree_unlock(left); 3435 free_extent_buffer(left); 3436 return ret; 3437 } 3438 3439 /* 3440 * push some data in the path leaf to the left, trying to free up at 3441 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3442 * 3443 * max_slot can put a limit on how far into the leaf we'll push items. The 3444 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3445 * items 3446 */ 3447 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3448 *root, struct btrfs_path *path, int min_data_size, 3449 int data_size, int empty, u32 max_slot) 3450 { 3451 struct extent_buffer *right = path->nodes[0]; 3452 struct extent_buffer *left; 3453 int slot; 3454 int free_space; 3455 u32 right_nritems; 3456 int ret = 0; 3457 3458 slot = path->slots[1]; 3459 if (slot == 0) 3460 return 1; 3461 if (!path->nodes[1]) 3462 return 1; 3463 3464 right_nritems = btrfs_header_nritems(right); 3465 if (right_nritems == 0) 3466 return 1; 3467 3468 btrfs_assert_tree_write_locked(path->nodes[1]); 3469 3470 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3471 if (IS_ERR(left)) 3472 return PTR_ERR(left); 3473 3474 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT); 3475 3476 free_space = btrfs_leaf_free_space(left); 3477 if (free_space < data_size) { 3478 ret = 1; 3479 goto out; 3480 } 3481 3482 ret = btrfs_cow_block(trans, root, left, 3483 path->nodes[1], slot - 1, &left, 3484 BTRFS_NESTING_LEFT_COW); 3485 if (ret) { 3486 /* we hit -ENOSPC, but it isn't fatal here */ 3487 if (ret == -ENOSPC) 3488 ret = 1; 3489 goto out; 3490 } 3491 3492 if (check_sibling_keys(left, right)) { 3493 ret = -EUCLEAN; 3494 btrfs_abort_transaction(trans, ret); 3495 goto out; 3496 } 3497 return __push_leaf_left(trans, path, min_data_size, empty, left, 3498 free_space, right_nritems, max_slot); 3499 out: 3500 btrfs_tree_unlock(left); 3501 free_extent_buffer(left); 3502 return ret; 3503 } 3504 3505 /* 3506 * split the path's leaf in two, making sure there is at least data_size 3507 * available for the resulting leaf level of the path. 3508 */ 3509 static noinline int copy_for_split(struct btrfs_trans_handle *trans, 3510 struct btrfs_path *path, 3511 struct extent_buffer *l, 3512 struct extent_buffer *right, 3513 int slot, int mid, int nritems) 3514 { 3515 struct btrfs_fs_info *fs_info = trans->fs_info; 3516 int data_copy_size; 3517 int rt_data_off; 3518 int i; 3519 int ret; 3520 struct btrfs_disk_key disk_key; 3521 struct btrfs_map_token token; 3522 3523 nritems = nritems - mid; 3524 btrfs_set_header_nritems(right, nritems); 3525 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l); 3526 3527 copy_leaf_items(right, l, 0, mid, nritems); 3528 3529 copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size, 3530 leaf_data_end(l), data_copy_size); 3531 3532 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid); 3533 3534 btrfs_init_map_token(&token, right); 3535 for (i = 0; i < nritems; i++) { 3536 u32 ioff; 3537 3538 ioff = btrfs_token_item_offset(&token, i); 3539 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off); 3540 } 3541 3542 btrfs_set_header_nritems(l, mid); 3543 btrfs_item_key(right, &disk_key, 0); 3544 ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 3545 if (ret < 0) 3546 return ret; 3547 3548 btrfs_mark_buffer_dirty(trans, right); 3549 btrfs_mark_buffer_dirty(trans, l); 3550 BUG_ON(path->slots[0] != slot); 3551 3552 if (mid <= slot) { 3553 btrfs_tree_unlock(path->nodes[0]); 3554 free_extent_buffer(path->nodes[0]); 3555 path->nodes[0] = right; 3556 path->slots[0] -= mid; 3557 path->slots[1] += 1; 3558 } else { 3559 btrfs_tree_unlock(right); 3560 free_extent_buffer(right); 3561 } 3562 3563 BUG_ON(path->slots[0] < 0); 3564 3565 return 0; 3566 } 3567 3568 /* 3569 * double splits happen when we need to insert a big item in the middle 3570 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3571 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3572 * A B C 3573 * 3574 * We avoid this by trying to push the items on either side of our target 3575 * into the adjacent leaves. If all goes well we can avoid the double split 3576 * completely. 3577 */ 3578 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3579 struct btrfs_root *root, 3580 struct btrfs_path *path, 3581 int data_size) 3582 { 3583 int ret; 3584 int progress = 0; 3585 int slot; 3586 u32 nritems; 3587 int space_needed = data_size; 3588 3589 slot = path->slots[0]; 3590 if (slot < btrfs_header_nritems(path->nodes[0])) 3591 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3592 3593 /* 3594 * try to push all the items after our slot into the 3595 * right leaf 3596 */ 3597 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 3598 if (ret < 0) 3599 return ret; 3600 3601 if (ret == 0) 3602 progress++; 3603 3604 nritems = btrfs_header_nritems(path->nodes[0]); 3605 /* 3606 * our goal is to get our slot at the start or end of a leaf. If 3607 * we've done so we're done 3608 */ 3609 if (path->slots[0] == 0 || path->slots[0] == nritems) 3610 return 0; 3611 3612 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3613 return 0; 3614 3615 /* try to push all the items before our slot into the next leaf */ 3616 slot = path->slots[0]; 3617 space_needed = data_size; 3618 if (slot > 0) 3619 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3620 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 3621 if (ret < 0) 3622 return ret; 3623 3624 if (ret == 0) 3625 progress++; 3626 3627 if (progress) 3628 return 0; 3629 return 1; 3630 } 3631 3632 /* 3633 * split the path's leaf in two, making sure there is at least data_size 3634 * available for the resulting leaf level of the path. 3635 * 3636 * returns 0 if all went well and < 0 on failure. 3637 */ 3638 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3639 struct btrfs_root *root, 3640 const struct btrfs_key *ins_key, 3641 struct btrfs_path *path, int data_size, 3642 int extend) 3643 { 3644 struct btrfs_disk_key disk_key; 3645 struct extent_buffer *l; 3646 u32 nritems; 3647 int mid; 3648 int slot; 3649 struct extent_buffer *right; 3650 struct btrfs_fs_info *fs_info = root->fs_info; 3651 int ret = 0; 3652 int wret; 3653 int split; 3654 int num_doubles = 0; 3655 int tried_avoid_double = 0; 3656 3657 l = path->nodes[0]; 3658 slot = path->slots[0]; 3659 if (extend && data_size + btrfs_item_size(l, slot) + 3660 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 3661 return -EOVERFLOW; 3662 3663 /* first try to make some room by pushing left and right */ 3664 if (data_size && path->nodes[1]) { 3665 int space_needed = data_size; 3666 3667 if (slot < btrfs_header_nritems(l)) 3668 space_needed -= btrfs_leaf_free_space(l); 3669 3670 wret = push_leaf_right(trans, root, path, space_needed, 3671 space_needed, 0, 0); 3672 if (wret < 0) 3673 return wret; 3674 if (wret) { 3675 space_needed = data_size; 3676 if (slot > 0) 3677 space_needed -= btrfs_leaf_free_space(l); 3678 wret = push_leaf_left(trans, root, path, space_needed, 3679 space_needed, 0, (u32)-1); 3680 if (wret < 0) 3681 return wret; 3682 } 3683 l = path->nodes[0]; 3684 3685 /* did the pushes work? */ 3686 if (btrfs_leaf_free_space(l) >= data_size) 3687 return 0; 3688 } 3689 3690 if (!path->nodes[1]) { 3691 ret = insert_new_root(trans, root, path, 1); 3692 if (ret) 3693 return ret; 3694 } 3695 again: 3696 split = 1; 3697 l = path->nodes[0]; 3698 slot = path->slots[0]; 3699 nritems = btrfs_header_nritems(l); 3700 mid = (nritems + 1) / 2; 3701 3702 if (mid <= slot) { 3703 if (nritems == 1 || 3704 leaf_space_used(l, mid, nritems - mid) + data_size > 3705 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3706 if (slot >= nritems) { 3707 split = 0; 3708 } else { 3709 mid = slot; 3710 if (mid != nritems && 3711 leaf_space_used(l, mid, nritems - mid) + 3712 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3713 if (data_size && !tried_avoid_double) 3714 goto push_for_double; 3715 split = 2; 3716 } 3717 } 3718 } 3719 } else { 3720 if (leaf_space_used(l, 0, mid) + data_size > 3721 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3722 if (!extend && data_size && slot == 0) { 3723 split = 0; 3724 } else if ((extend || !data_size) && slot == 0) { 3725 mid = 1; 3726 } else { 3727 mid = slot; 3728 if (mid != nritems && 3729 leaf_space_used(l, mid, nritems - mid) + 3730 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3731 if (data_size && !tried_avoid_double) 3732 goto push_for_double; 3733 split = 2; 3734 } 3735 } 3736 } 3737 } 3738 3739 if (split == 0) 3740 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3741 else 3742 btrfs_item_key(l, &disk_key, mid); 3743 3744 /* 3745 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double 3746 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES 3747 * subclasses, which is 8 at the time of this patch, and we've maxed it 3748 * out. In the future we could add a 3749 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just 3750 * use BTRFS_NESTING_NEW_ROOT. 3751 */ 3752 right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root), 3753 &disk_key, 0, l->start, 0, 0, 3754 num_doubles ? BTRFS_NESTING_NEW_ROOT : 3755 BTRFS_NESTING_SPLIT); 3756 if (IS_ERR(right)) 3757 return PTR_ERR(right); 3758 3759 root_add_used_bytes(root); 3760 3761 if (split == 0) { 3762 if (mid <= slot) { 3763 btrfs_set_header_nritems(right, 0); 3764 ret = insert_ptr(trans, path, &disk_key, 3765 right->start, path->slots[1] + 1, 1); 3766 if (ret < 0) { 3767 btrfs_tree_unlock(right); 3768 free_extent_buffer(right); 3769 return ret; 3770 } 3771 btrfs_tree_unlock(path->nodes[0]); 3772 free_extent_buffer(path->nodes[0]); 3773 path->nodes[0] = right; 3774 path->slots[0] = 0; 3775 path->slots[1] += 1; 3776 } else { 3777 btrfs_set_header_nritems(right, 0); 3778 ret = insert_ptr(trans, path, &disk_key, 3779 right->start, path->slots[1], 1); 3780 if (ret < 0) { 3781 btrfs_tree_unlock(right); 3782 free_extent_buffer(right); 3783 return ret; 3784 } 3785 btrfs_tree_unlock(path->nodes[0]); 3786 free_extent_buffer(path->nodes[0]); 3787 path->nodes[0] = right; 3788 path->slots[0] = 0; 3789 if (path->slots[1] == 0) 3790 fixup_low_keys(trans, path, &disk_key, 1); 3791 } 3792 /* 3793 * We create a new leaf 'right' for the required ins_len and 3794 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 3795 * the content of ins_len to 'right'. 3796 */ 3797 return ret; 3798 } 3799 3800 ret = copy_for_split(trans, path, l, right, slot, mid, nritems); 3801 if (ret < 0) { 3802 btrfs_tree_unlock(right); 3803 free_extent_buffer(right); 3804 return ret; 3805 } 3806 3807 if (split == 2) { 3808 BUG_ON(num_doubles != 0); 3809 num_doubles++; 3810 goto again; 3811 } 3812 3813 return 0; 3814 3815 push_for_double: 3816 push_for_double_split(trans, root, path, data_size); 3817 tried_avoid_double = 1; 3818 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3819 return 0; 3820 goto again; 3821 } 3822 3823 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3824 struct btrfs_root *root, 3825 struct btrfs_path *path, int ins_len) 3826 { 3827 struct btrfs_key key; 3828 struct extent_buffer *leaf; 3829 struct btrfs_file_extent_item *fi; 3830 u64 extent_len = 0; 3831 u32 item_size; 3832 int ret; 3833 3834 leaf = path->nodes[0]; 3835 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3836 3837 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3838 key.type != BTRFS_RAID_STRIPE_KEY && 3839 key.type != BTRFS_EXTENT_CSUM_KEY); 3840 3841 if (btrfs_leaf_free_space(leaf) >= ins_len) 3842 return 0; 3843 3844 item_size = btrfs_item_size(leaf, path->slots[0]); 3845 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3846 fi = btrfs_item_ptr(leaf, path->slots[0], 3847 struct btrfs_file_extent_item); 3848 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3849 } 3850 btrfs_release_path(path); 3851 3852 path->keep_locks = 1; 3853 path->search_for_split = 1; 3854 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3855 path->search_for_split = 0; 3856 if (ret > 0) 3857 ret = -EAGAIN; 3858 if (ret < 0) 3859 goto err; 3860 3861 ret = -EAGAIN; 3862 leaf = path->nodes[0]; 3863 /* if our item isn't there, return now */ 3864 if (item_size != btrfs_item_size(leaf, path->slots[0])) 3865 goto err; 3866 3867 /* the leaf has changed, it now has room. return now */ 3868 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 3869 goto err; 3870 3871 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3872 fi = btrfs_item_ptr(leaf, path->slots[0], 3873 struct btrfs_file_extent_item); 3874 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3875 goto err; 3876 } 3877 3878 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3879 if (ret) 3880 goto err; 3881 3882 path->keep_locks = 0; 3883 btrfs_unlock_up_safe(path, 1); 3884 return 0; 3885 err: 3886 path->keep_locks = 0; 3887 return ret; 3888 } 3889 3890 static noinline int split_item(struct btrfs_trans_handle *trans, 3891 struct btrfs_path *path, 3892 const struct btrfs_key *new_key, 3893 unsigned long split_offset) 3894 { 3895 struct extent_buffer *leaf; 3896 int orig_slot, slot; 3897 char *buf; 3898 u32 nritems; 3899 u32 item_size; 3900 u32 orig_offset; 3901 struct btrfs_disk_key disk_key; 3902 3903 leaf = path->nodes[0]; 3904 /* 3905 * Shouldn't happen because the caller must have previously called 3906 * setup_leaf_for_split() to make room for the new item in the leaf. 3907 */ 3908 if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item))) 3909 return -ENOSPC; 3910 3911 orig_slot = path->slots[0]; 3912 orig_offset = btrfs_item_offset(leaf, path->slots[0]); 3913 item_size = btrfs_item_size(leaf, path->slots[0]); 3914 3915 buf = kmalloc(item_size, GFP_NOFS); 3916 if (!buf) 3917 return -ENOMEM; 3918 3919 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3920 path->slots[0]), item_size); 3921 3922 slot = path->slots[0] + 1; 3923 nritems = btrfs_header_nritems(leaf); 3924 if (slot != nritems) { 3925 /* shift the items */ 3926 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot); 3927 } 3928 3929 btrfs_cpu_key_to_disk(&disk_key, new_key); 3930 btrfs_set_item_key(leaf, &disk_key, slot); 3931 3932 btrfs_set_item_offset(leaf, slot, orig_offset); 3933 btrfs_set_item_size(leaf, slot, item_size - split_offset); 3934 3935 btrfs_set_item_offset(leaf, orig_slot, 3936 orig_offset + item_size - split_offset); 3937 btrfs_set_item_size(leaf, orig_slot, split_offset); 3938 3939 btrfs_set_header_nritems(leaf, nritems + 1); 3940 3941 /* write the data for the start of the original item */ 3942 write_extent_buffer(leaf, buf, 3943 btrfs_item_ptr_offset(leaf, path->slots[0]), 3944 split_offset); 3945 3946 /* write the data for the new item */ 3947 write_extent_buffer(leaf, buf + split_offset, 3948 btrfs_item_ptr_offset(leaf, slot), 3949 item_size - split_offset); 3950 btrfs_mark_buffer_dirty(trans, leaf); 3951 3952 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 3953 kfree(buf); 3954 return 0; 3955 } 3956 3957 /* 3958 * This function splits a single item into two items, 3959 * giving 'new_key' to the new item and splitting the 3960 * old one at split_offset (from the start of the item). 3961 * 3962 * The path may be released by this operation. After 3963 * the split, the path is pointing to the old item. The 3964 * new item is going to be in the same node as the old one. 3965 * 3966 * Note, the item being split must be smaller enough to live alone on 3967 * a tree block with room for one extra struct btrfs_item 3968 * 3969 * This allows us to split the item in place, keeping a lock on the 3970 * leaf the entire time. 3971 */ 3972 int btrfs_split_item(struct btrfs_trans_handle *trans, 3973 struct btrfs_root *root, 3974 struct btrfs_path *path, 3975 const struct btrfs_key *new_key, 3976 unsigned long split_offset) 3977 { 3978 int ret; 3979 ret = setup_leaf_for_split(trans, root, path, 3980 sizeof(struct btrfs_item)); 3981 if (ret) 3982 return ret; 3983 3984 ret = split_item(trans, path, new_key, split_offset); 3985 return ret; 3986 } 3987 3988 /* 3989 * make the item pointed to by the path smaller. new_size indicates 3990 * how small to make it, and from_end tells us if we just chop bytes 3991 * off the end of the item or if we shift the item to chop bytes off 3992 * the front. 3993 */ 3994 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 3995 const struct btrfs_path *path, u32 new_size, int from_end) 3996 { 3997 int slot; 3998 struct extent_buffer *leaf; 3999 u32 nritems; 4000 unsigned int data_end; 4001 unsigned int old_data_start; 4002 unsigned int old_size; 4003 unsigned int size_diff; 4004 int i; 4005 struct btrfs_map_token token; 4006 4007 leaf = path->nodes[0]; 4008 slot = path->slots[0]; 4009 4010 old_size = btrfs_item_size(leaf, slot); 4011 if (old_size == new_size) 4012 return; 4013 4014 nritems = btrfs_header_nritems(leaf); 4015 data_end = leaf_data_end(leaf); 4016 4017 old_data_start = btrfs_item_offset(leaf, slot); 4018 4019 size_diff = old_size - new_size; 4020 4021 BUG_ON(slot < 0); 4022 BUG_ON(slot >= nritems); 4023 4024 /* 4025 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4026 */ 4027 /* first correct the data pointers */ 4028 btrfs_init_map_token(&token, leaf); 4029 for (i = slot; i < nritems; i++) { 4030 u32 ioff; 4031 4032 ioff = btrfs_token_item_offset(&token, i); 4033 btrfs_set_token_item_offset(&token, i, ioff + size_diff); 4034 } 4035 4036 /* shift the data */ 4037 if (from_end) { 4038 memmove_leaf_data(leaf, data_end + size_diff, data_end, 4039 old_data_start + new_size - data_end); 4040 } else { 4041 struct btrfs_disk_key disk_key; 4042 u64 offset; 4043 4044 btrfs_item_key(leaf, &disk_key, slot); 4045 4046 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4047 unsigned long ptr; 4048 struct btrfs_file_extent_item *fi; 4049 4050 fi = btrfs_item_ptr(leaf, slot, 4051 struct btrfs_file_extent_item); 4052 fi = (struct btrfs_file_extent_item *)( 4053 (unsigned long)fi - size_diff); 4054 4055 if (btrfs_file_extent_type(leaf, fi) == 4056 BTRFS_FILE_EXTENT_INLINE) { 4057 ptr = btrfs_item_ptr_offset(leaf, slot); 4058 memmove_extent_buffer(leaf, ptr, 4059 (unsigned long)fi, 4060 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4061 } 4062 } 4063 4064 memmove_leaf_data(leaf, data_end + size_diff, data_end, 4065 old_data_start - data_end); 4066 4067 offset = btrfs_disk_key_offset(&disk_key); 4068 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4069 btrfs_set_item_key(leaf, &disk_key, slot); 4070 if (slot == 0) 4071 fixup_low_keys(trans, path, &disk_key, 1); 4072 } 4073 4074 btrfs_set_item_size(leaf, slot, new_size); 4075 btrfs_mark_buffer_dirty(trans, leaf); 4076 4077 if (btrfs_leaf_free_space(leaf) < 0) { 4078 btrfs_print_leaf(leaf); 4079 BUG(); 4080 } 4081 } 4082 4083 /* 4084 * make the item pointed to by the path bigger, data_size is the added size. 4085 */ 4086 void btrfs_extend_item(struct btrfs_trans_handle *trans, 4087 const struct btrfs_path *path, u32 data_size) 4088 { 4089 int slot; 4090 struct extent_buffer *leaf; 4091 u32 nritems; 4092 unsigned int data_end; 4093 unsigned int old_data; 4094 unsigned int old_size; 4095 int i; 4096 struct btrfs_map_token token; 4097 4098 leaf = path->nodes[0]; 4099 4100 nritems = btrfs_header_nritems(leaf); 4101 data_end = leaf_data_end(leaf); 4102 4103 if (btrfs_leaf_free_space(leaf) < data_size) { 4104 btrfs_print_leaf(leaf); 4105 BUG(); 4106 } 4107 slot = path->slots[0]; 4108 old_data = btrfs_item_data_end(leaf, slot); 4109 4110 BUG_ON(slot < 0); 4111 if (slot >= nritems) { 4112 btrfs_print_leaf(leaf); 4113 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4114 slot, nritems); 4115 BUG(); 4116 } 4117 4118 /* 4119 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4120 */ 4121 /* first correct the data pointers */ 4122 btrfs_init_map_token(&token, leaf); 4123 for (i = slot; i < nritems; i++) { 4124 u32 ioff; 4125 4126 ioff = btrfs_token_item_offset(&token, i); 4127 btrfs_set_token_item_offset(&token, i, ioff - data_size); 4128 } 4129 4130 /* shift the data */ 4131 memmove_leaf_data(leaf, data_end - data_size, data_end, 4132 old_data - data_end); 4133 4134 data_end = old_data; 4135 old_size = btrfs_item_size(leaf, slot); 4136 btrfs_set_item_size(leaf, slot, old_size + data_size); 4137 btrfs_mark_buffer_dirty(trans, leaf); 4138 4139 if (btrfs_leaf_free_space(leaf) < 0) { 4140 btrfs_print_leaf(leaf); 4141 BUG(); 4142 } 4143 } 4144 4145 /* 4146 * Make space in the node before inserting one or more items. 4147 * 4148 * @trans: transaction handle 4149 * @root: root we are inserting items to 4150 * @path: points to the leaf/slot where we are going to insert new items 4151 * @batch: information about the batch of items to insert 4152 * 4153 * Main purpose is to save stack depth by doing the bulk of the work in a 4154 * function that doesn't call btrfs_search_slot 4155 */ 4156 static void setup_items_for_insert(struct btrfs_trans_handle *trans, 4157 struct btrfs_root *root, struct btrfs_path *path, 4158 const struct btrfs_item_batch *batch) 4159 { 4160 struct btrfs_fs_info *fs_info = root->fs_info; 4161 int i; 4162 u32 nritems; 4163 unsigned int data_end; 4164 struct btrfs_disk_key disk_key; 4165 struct extent_buffer *leaf; 4166 int slot; 4167 struct btrfs_map_token token; 4168 u32 total_size; 4169 4170 /* 4171 * Before anything else, update keys in the parent and other ancestors 4172 * if needed, then release the write locks on them, so that other tasks 4173 * can use them while we modify the leaf. 4174 */ 4175 if (path->slots[0] == 0) { 4176 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]); 4177 fixup_low_keys(trans, path, &disk_key, 1); 4178 } 4179 btrfs_unlock_up_safe(path, 1); 4180 4181 leaf = path->nodes[0]; 4182 slot = path->slots[0]; 4183 4184 nritems = btrfs_header_nritems(leaf); 4185 data_end = leaf_data_end(leaf); 4186 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); 4187 4188 if (btrfs_leaf_free_space(leaf) < total_size) { 4189 btrfs_print_leaf(leaf); 4190 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4191 total_size, btrfs_leaf_free_space(leaf)); 4192 BUG(); 4193 } 4194 4195 btrfs_init_map_token(&token, leaf); 4196 if (slot != nritems) { 4197 unsigned int old_data = btrfs_item_data_end(leaf, slot); 4198 4199 if (old_data < data_end) { 4200 btrfs_print_leaf(leaf); 4201 btrfs_crit(fs_info, 4202 "item at slot %d with data offset %u beyond data end of leaf %u", 4203 slot, old_data, data_end); 4204 BUG(); 4205 } 4206 /* 4207 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4208 */ 4209 /* first correct the data pointers */ 4210 for (i = slot; i < nritems; i++) { 4211 u32 ioff; 4212 4213 ioff = btrfs_token_item_offset(&token, i); 4214 btrfs_set_token_item_offset(&token, i, 4215 ioff - batch->total_data_size); 4216 } 4217 /* shift the items */ 4218 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot); 4219 4220 /* shift the data */ 4221 memmove_leaf_data(leaf, data_end - batch->total_data_size, 4222 data_end, old_data - data_end); 4223 data_end = old_data; 4224 } 4225 4226 /* setup the item for the new data */ 4227 for (i = 0; i < batch->nr; i++) { 4228 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]); 4229 btrfs_set_item_key(leaf, &disk_key, slot + i); 4230 data_end -= batch->data_sizes[i]; 4231 btrfs_set_token_item_offset(&token, slot + i, data_end); 4232 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]); 4233 } 4234 4235 btrfs_set_header_nritems(leaf, nritems + batch->nr); 4236 btrfs_mark_buffer_dirty(trans, leaf); 4237 4238 if (btrfs_leaf_free_space(leaf) < 0) { 4239 btrfs_print_leaf(leaf); 4240 BUG(); 4241 } 4242 } 4243 4244 /* 4245 * Insert a new item into a leaf. 4246 * 4247 * @trans: Transaction handle. 4248 * @root: The root of the btree. 4249 * @path: A path pointing to the target leaf and slot. 4250 * @key: The key of the new item. 4251 * @data_size: The size of the data associated with the new key. 4252 */ 4253 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans, 4254 struct btrfs_root *root, 4255 struct btrfs_path *path, 4256 const struct btrfs_key *key, 4257 u32 data_size) 4258 { 4259 struct btrfs_item_batch batch; 4260 4261 batch.keys = key; 4262 batch.data_sizes = &data_size; 4263 batch.total_data_size = data_size; 4264 batch.nr = 1; 4265 4266 setup_items_for_insert(trans, root, path, &batch); 4267 } 4268 4269 /* 4270 * Given a key and some data, insert items into the tree. 4271 * This does all the path init required, making room in the tree if needed. 4272 * 4273 * Returns: 0 on success 4274 * -EEXIST if the first key already exists 4275 * < 0 on other errors 4276 */ 4277 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4278 struct btrfs_root *root, 4279 struct btrfs_path *path, 4280 const struct btrfs_item_batch *batch) 4281 { 4282 int ret = 0; 4283 int slot; 4284 u32 total_size; 4285 4286 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); 4287 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1); 4288 if (ret == 0) 4289 return -EEXIST; 4290 if (ret < 0) 4291 return ret; 4292 4293 slot = path->slots[0]; 4294 BUG_ON(slot < 0); 4295 4296 setup_items_for_insert(trans, root, path, batch); 4297 return 0; 4298 } 4299 4300 /* 4301 * Given a key and some data, insert an item into the tree. 4302 * This does all the path init required, making room in the tree if needed. 4303 */ 4304 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4305 const struct btrfs_key *cpu_key, void *data, 4306 u32 data_size) 4307 { 4308 int ret = 0; 4309 struct btrfs_path *path; 4310 struct extent_buffer *leaf; 4311 unsigned long ptr; 4312 4313 path = btrfs_alloc_path(); 4314 if (!path) 4315 return -ENOMEM; 4316 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4317 if (!ret) { 4318 leaf = path->nodes[0]; 4319 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4320 write_extent_buffer(leaf, data, ptr, data_size); 4321 btrfs_mark_buffer_dirty(trans, leaf); 4322 } 4323 btrfs_free_path(path); 4324 return ret; 4325 } 4326 4327 /* 4328 * This function duplicates an item, giving 'new_key' to the new item. 4329 * It guarantees both items live in the same tree leaf and the new item is 4330 * contiguous with the original item. 4331 * 4332 * This allows us to split a file extent in place, keeping a lock on the leaf 4333 * the entire time. 4334 */ 4335 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4336 struct btrfs_root *root, 4337 struct btrfs_path *path, 4338 const struct btrfs_key *new_key) 4339 { 4340 struct extent_buffer *leaf; 4341 int ret; 4342 u32 item_size; 4343 4344 leaf = path->nodes[0]; 4345 item_size = btrfs_item_size(leaf, path->slots[0]); 4346 ret = setup_leaf_for_split(trans, root, path, 4347 item_size + sizeof(struct btrfs_item)); 4348 if (ret) 4349 return ret; 4350 4351 path->slots[0]++; 4352 btrfs_setup_item_for_insert(trans, root, path, new_key, item_size); 4353 leaf = path->nodes[0]; 4354 memcpy_extent_buffer(leaf, 4355 btrfs_item_ptr_offset(leaf, path->slots[0]), 4356 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4357 item_size); 4358 return 0; 4359 } 4360 4361 /* 4362 * delete the pointer from a given node. 4363 * 4364 * the tree should have been previously balanced so the deletion does not 4365 * empty a node. 4366 * 4367 * This is exported for use inside btrfs-progs, don't un-export it. 4368 */ 4369 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4370 struct btrfs_path *path, int level, int slot) 4371 { 4372 struct extent_buffer *parent = path->nodes[level]; 4373 u32 nritems; 4374 int ret; 4375 4376 nritems = btrfs_header_nritems(parent); 4377 if (slot != nritems - 1) { 4378 if (level) { 4379 ret = btrfs_tree_mod_log_insert_move(parent, slot, 4380 slot + 1, nritems - slot - 1); 4381 if (ret < 0) { 4382 btrfs_abort_transaction(trans, ret); 4383 return ret; 4384 } 4385 } 4386 memmove_extent_buffer(parent, 4387 btrfs_node_key_ptr_offset(parent, slot), 4388 btrfs_node_key_ptr_offset(parent, slot + 1), 4389 sizeof(struct btrfs_key_ptr) * 4390 (nritems - slot - 1)); 4391 } else if (level) { 4392 ret = btrfs_tree_mod_log_insert_key(parent, slot, 4393 BTRFS_MOD_LOG_KEY_REMOVE); 4394 if (ret < 0) { 4395 btrfs_abort_transaction(trans, ret); 4396 return ret; 4397 } 4398 } 4399 4400 nritems--; 4401 btrfs_set_header_nritems(parent, nritems); 4402 if (nritems == 0 && parent == root->node) { 4403 BUG_ON(btrfs_header_level(root->node) != 1); 4404 /* just turn the root into a leaf and break */ 4405 btrfs_set_header_level(root->node, 0); 4406 } else if (slot == 0) { 4407 struct btrfs_disk_key disk_key; 4408 4409 btrfs_node_key(parent, &disk_key, 0); 4410 fixup_low_keys(trans, path, &disk_key, level + 1); 4411 } 4412 btrfs_mark_buffer_dirty(trans, parent); 4413 return 0; 4414 } 4415 4416 /* 4417 * a helper function to delete the leaf pointed to by path->slots[1] and 4418 * path->nodes[1]. 4419 * 4420 * This deletes the pointer in path->nodes[1] and frees the leaf 4421 * block extent. zero is returned if it all worked out, < 0 otherwise. 4422 * 4423 * The path must have already been setup for deleting the leaf, including 4424 * all the proper balancing. path->nodes[1] must be locked. 4425 */ 4426 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 4427 struct btrfs_root *root, 4428 struct btrfs_path *path, 4429 struct extent_buffer *leaf) 4430 { 4431 int ret; 4432 4433 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4434 ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]); 4435 if (ret < 0) 4436 return ret; 4437 4438 /* 4439 * btrfs_free_extent is expensive, we want to make sure we 4440 * aren't holding any locks when we call it 4441 */ 4442 btrfs_unlock_up_safe(path, 0); 4443 4444 root_sub_used_bytes(root); 4445 4446 atomic_inc(&leaf->refs); 4447 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1); 4448 free_extent_buffer_stale(leaf); 4449 if (ret < 0) 4450 btrfs_abort_transaction(trans, ret); 4451 4452 return ret; 4453 } 4454 /* 4455 * delete the item at the leaf level in path. If that empties 4456 * the leaf, remove it from the tree 4457 */ 4458 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4459 struct btrfs_path *path, int slot, int nr) 4460 { 4461 struct btrfs_fs_info *fs_info = root->fs_info; 4462 struct extent_buffer *leaf; 4463 int ret = 0; 4464 int wret; 4465 u32 nritems; 4466 4467 leaf = path->nodes[0]; 4468 nritems = btrfs_header_nritems(leaf); 4469 4470 if (slot + nr != nritems) { 4471 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1); 4472 const int data_end = leaf_data_end(leaf); 4473 struct btrfs_map_token token; 4474 u32 dsize = 0; 4475 int i; 4476 4477 for (i = 0; i < nr; i++) 4478 dsize += btrfs_item_size(leaf, slot + i); 4479 4480 memmove_leaf_data(leaf, data_end + dsize, data_end, 4481 last_off - data_end); 4482 4483 btrfs_init_map_token(&token, leaf); 4484 for (i = slot + nr; i < nritems; i++) { 4485 u32 ioff; 4486 4487 ioff = btrfs_token_item_offset(&token, i); 4488 btrfs_set_token_item_offset(&token, i, ioff + dsize); 4489 } 4490 4491 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr); 4492 } 4493 btrfs_set_header_nritems(leaf, nritems - nr); 4494 nritems -= nr; 4495 4496 /* delete the leaf if we've emptied it */ 4497 if (nritems == 0) { 4498 if (leaf == root->node) { 4499 btrfs_set_header_level(leaf, 0); 4500 } else { 4501 btrfs_clear_buffer_dirty(trans, leaf); 4502 ret = btrfs_del_leaf(trans, root, path, leaf); 4503 if (ret < 0) 4504 return ret; 4505 } 4506 } else { 4507 int used = leaf_space_used(leaf, 0, nritems); 4508 if (slot == 0) { 4509 struct btrfs_disk_key disk_key; 4510 4511 btrfs_item_key(leaf, &disk_key, 0); 4512 fixup_low_keys(trans, path, &disk_key, 1); 4513 } 4514 4515 /* 4516 * Try to delete the leaf if it is mostly empty. We do this by 4517 * trying to move all its items into its left and right neighbours. 4518 * If we can't move all the items, then we don't delete it - it's 4519 * not ideal, but future insertions might fill the leaf with more 4520 * items, or items from other leaves might be moved later into our 4521 * leaf due to deletions on those leaves. 4522 */ 4523 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4524 u32 min_push_space; 4525 4526 /* push_leaf_left fixes the path. 4527 * make sure the path still points to our leaf 4528 * for possible call to btrfs_del_ptr below 4529 */ 4530 slot = path->slots[1]; 4531 atomic_inc(&leaf->refs); 4532 /* 4533 * We want to be able to at least push one item to the 4534 * left neighbour leaf, and that's the first item. 4535 */ 4536 min_push_space = sizeof(struct btrfs_item) + 4537 btrfs_item_size(leaf, 0); 4538 wret = push_leaf_left(trans, root, path, 0, 4539 min_push_space, 1, (u32)-1); 4540 if (wret < 0 && wret != -ENOSPC) 4541 ret = wret; 4542 4543 if (path->nodes[0] == leaf && 4544 btrfs_header_nritems(leaf)) { 4545 /* 4546 * If we were not able to push all items from our 4547 * leaf to its left neighbour, then attempt to 4548 * either push all the remaining items to the 4549 * right neighbour or none. There's no advantage 4550 * in pushing only some items, instead of all, as 4551 * it's pointless to end up with a leaf having 4552 * too few items while the neighbours can be full 4553 * or nearly full. 4554 */ 4555 nritems = btrfs_header_nritems(leaf); 4556 min_push_space = leaf_space_used(leaf, 0, nritems); 4557 wret = push_leaf_right(trans, root, path, 0, 4558 min_push_space, 1, 0); 4559 if (wret < 0 && wret != -ENOSPC) 4560 ret = wret; 4561 } 4562 4563 if (btrfs_header_nritems(leaf) == 0) { 4564 path->slots[1] = slot; 4565 ret = btrfs_del_leaf(trans, root, path, leaf); 4566 if (ret < 0) 4567 return ret; 4568 free_extent_buffer(leaf); 4569 ret = 0; 4570 } else { 4571 /* if we're still in the path, make sure 4572 * we're dirty. Otherwise, one of the 4573 * push_leaf functions must have already 4574 * dirtied this buffer 4575 */ 4576 if (path->nodes[0] == leaf) 4577 btrfs_mark_buffer_dirty(trans, leaf); 4578 free_extent_buffer(leaf); 4579 } 4580 } else { 4581 btrfs_mark_buffer_dirty(trans, leaf); 4582 } 4583 } 4584 return ret; 4585 } 4586 4587 /* 4588 * A helper function to walk down the tree starting at min_key, and looking 4589 * for nodes or leaves that are have a minimum transaction id. 4590 * This is used by the btree defrag code, and tree logging 4591 * 4592 * This does not cow, but it does stuff the starting key it finds back 4593 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4594 * key and get a writable path. 4595 * 4596 * This honors path->lowest_level to prevent descent past a given level 4597 * of the tree. 4598 * 4599 * min_trans indicates the oldest transaction that you are interested 4600 * in walking through. Any nodes or leaves older than min_trans are 4601 * skipped over (without reading them). 4602 * 4603 * returns zero if something useful was found, < 0 on error and 1 if there 4604 * was nothing in the tree that matched the search criteria. 4605 */ 4606 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4607 struct btrfs_path *path, 4608 u64 min_trans) 4609 { 4610 struct extent_buffer *cur; 4611 struct btrfs_key found_key; 4612 int slot; 4613 int sret; 4614 u32 nritems; 4615 int level; 4616 int ret = 1; 4617 int keep_locks = path->keep_locks; 4618 4619 ASSERT(!path->nowait); 4620 path->keep_locks = 1; 4621 again: 4622 cur = btrfs_read_lock_root_node(root); 4623 level = btrfs_header_level(cur); 4624 WARN_ON(path->nodes[level]); 4625 path->nodes[level] = cur; 4626 path->locks[level] = BTRFS_READ_LOCK; 4627 4628 if (btrfs_header_generation(cur) < min_trans) { 4629 ret = 1; 4630 goto out; 4631 } 4632 while (1) { 4633 nritems = btrfs_header_nritems(cur); 4634 level = btrfs_header_level(cur); 4635 sret = btrfs_bin_search(cur, 0, min_key, &slot); 4636 if (sret < 0) { 4637 ret = sret; 4638 goto out; 4639 } 4640 4641 /* at the lowest level, we're done, setup the path and exit */ 4642 if (level == path->lowest_level) { 4643 if (slot >= nritems) 4644 goto find_next_key; 4645 ret = 0; 4646 path->slots[level] = slot; 4647 btrfs_item_key_to_cpu(cur, &found_key, slot); 4648 goto out; 4649 } 4650 if (sret && slot > 0) 4651 slot--; 4652 /* 4653 * check this node pointer against the min_trans parameters. 4654 * If it is too old, skip to the next one. 4655 */ 4656 while (slot < nritems) { 4657 u64 gen; 4658 4659 gen = btrfs_node_ptr_generation(cur, slot); 4660 if (gen < min_trans) { 4661 slot++; 4662 continue; 4663 } 4664 break; 4665 } 4666 find_next_key: 4667 /* 4668 * we didn't find a candidate key in this node, walk forward 4669 * and find another one 4670 */ 4671 if (slot >= nritems) { 4672 path->slots[level] = slot; 4673 sret = btrfs_find_next_key(root, path, min_key, level, 4674 min_trans); 4675 if (sret == 0) { 4676 btrfs_release_path(path); 4677 goto again; 4678 } else { 4679 goto out; 4680 } 4681 } 4682 /* save our key for returning back */ 4683 btrfs_node_key_to_cpu(cur, &found_key, slot); 4684 path->slots[level] = slot; 4685 if (level == path->lowest_level) { 4686 ret = 0; 4687 goto out; 4688 } 4689 cur = btrfs_read_node_slot(cur, slot); 4690 if (IS_ERR(cur)) { 4691 ret = PTR_ERR(cur); 4692 goto out; 4693 } 4694 4695 btrfs_tree_read_lock(cur); 4696 4697 path->locks[level - 1] = BTRFS_READ_LOCK; 4698 path->nodes[level - 1] = cur; 4699 unlock_up(path, level, 1, 0, NULL); 4700 } 4701 out: 4702 path->keep_locks = keep_locks; 4703 if (ret == 0) { 4704 btrfs_unlock_up_safe(path, path->lowest_level + 1); 4705 memcpy(min_key, &found_key, sizeof(found_key)); 4706 } 4707 return ret; 4708 } 4709 4710 /* 4711 * this is similar to btrfs_next_leaf, but does not try to preserve 4712 * and fixup the path. It looks for and returns the next key in the 4713 * tree based on the current path and the min_trans parameters. 4714 * 4715 * 0 is returned if another key is found, < 0 if there are any errors 4716 * and 1 is returned if there are no higher keys in the tree 4717 * 4718 * path->keep_locks should be set to 1 on the search made before 4719 * calling this function. 4720 */ 4721 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4722 struct btrfs_key *key, int level, u64 min_trans) 4723 { 4724 int slot; 4725 struct extent_buffer *c; 4726 4727 WARN_ON(!path->keep_locks && !path->skip_locking); 4728 while (level < BTRFS_MAX_LEVEL) { 4729 if (!path->nodes[level]) 4730 return 1; 4731 4732 slot = path->slots[level] + 1; 4733 c = path->nodes[level]; 4734 next: 4735 if (slot >= btrfs_header_nritems(c)) { 4736 int ret; 4737 int orig_lowest; 4738 struct btrfs_key cur_key; 4739 if (level + 1 >= BTRFS_MAX_LEVEL || 4740 !path->nodes[level + 1]) 4741 return 1; 4742 4743 if (path->locks[level + 1] || path->skip_locking) { 4744 level++; 4745 continue; 4746 } 4747 4748 slot = btrfs_header_nritems(c) - 1; 4749 if (level == 0) 4750 btrfs_item_key_to_cpu(c, &cur_key, slot); 4751 else 4752 btrfs_node_key_to_cpu(c, &cur_key, slot); 4753 4754 orig_lowest = path->lowest_level; 4755 btrfs_release_path(path); 4756 path->lowest_level = level; 4757 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4758 0, 0); 4759 path->lowest_level = orig_lowest; 4760 if (ret < 0) 4761 return ret; 4762 4763 c = path->nodes[level]; 4764 slot = path->slots[level]; 4765 if (ret == 0) 4766 slot++; 4767 goto next; 4768 } 4769 4770 if (level == 0) 4771 btrfs_item_key_to_cpu(c, key, slot); 4772 else { 4773 u64 gen = btrfs_node_ptr_generation(c, slot); 4774 4775 if (gen < min_trans) { 4776 slot++; 4777 goto next; 4778 } 4779 btrfs_node_key_to_cpu(c, key, slot); 4780 } 4781 return 0; 4782 } 4783 return 1; 4784 } 4785 4786 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 4787 u64 time_seq) 4788 { 4789 int slot; 4790 int level; 4791 struct extent_buffer *c; 4792 struct extent_buffer *next; 4793 struct btrfs_fs_info *fs_info = root->fs_info; 4794 struct btrfs_key key; 4795 bool need_commit_sem = false; 4796 u32 nritems; 4797 int ret; 4798 int i; 4799 4800 /* 4801 * The nowait semantics are used only for write paths, where we don't 4802 * use the tree mod log and sequence numbers. 4803 */ 4804 if (time_seq) 4805 ASSERT(!path->nowait); 4806 4807 nritems = btrfs_header_nritems(path->nodes[0]); 4808 if (nritems == 0) 4809 return 1; 4810 4811 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4812 again: 4813 level = 1; 4814 next = NULL; 4815 btrfs_release_path(path); 4816 4817 path->keep_locks = 1; 4818 4819 if (time_seq) { 4820 ret = btrfs_search_old_slot(root, &key, path, time_seq); 4821 } else { 4822 if (path->need_commit_sem) { 4823 path->need_commit_sem = 0; 4824 need_commit_sem = true; 4825 if (path->nowait) { 4826 if (!down_read_trylock(&fs_info->commit_root_sem)) { 4827 ret = -EAGAIN; 4828 goto done; 4829 } 4830 } else { 4831 down_read(&fs_info->commit_root_sem); 4832 } 4833 } 4834 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4835 } 4836 path->keep_locks = 0; 4837 4838 if (ret < 0) 4839 goto done; 4840 4841 nritems = btrfs_header_nritems(path->nodes[0]); 4842 /* 4843 * by releasing the path above we dropped all our locks. A balance 4844 * could have added more items next to the key that used to be 4845 * at the very end of the block. So, check again here and 4846 * advance the path if there are now more items available. 4847 */ 4848 if (nritems > 0 && path->slots[0] < nritems - 1) { 4849 if (ret == 0) 4850 path->slots[0]++; 4851 ret = 0; 4852 goto done; 4853 } 4854 /* 4855 * So the above check misses one case: 4856 * - after releasing the path above, someone has removed the item that 4857 * used to be at the very end of the block, and balance between leafs 4858 * gets another one with bigger key.offset to replace it. 4859 * 4860 * This one should be returned as well, or we can get leaf corruption 4861 * later(esp. in __btrfs_drop_extents()). 4862 * 4863 * And a bit more explanation about this check, 4864 * with ret > 0, the key isn't found, the path points to the slot 4865 * where it should be inserted, so the path->slots[0] item must be the 4866 * bigger one. 4867 */ 4868 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 4869 ret = 0; 4870 goto done; 4871 } 4872 4873 while (level < BTRFS_MAX_LEVEL) { 4874 if (!path->nodes[level]) { 4875 ret = 1; 4876 goto done; 4877 } 4878 4879 slot = path->slots[level] + 1; 4880 c = path->nodes[level]; 4881 if (slot >= btrfs_header_nritems(c)) { 4882 level++; 4883 if (level == BTRFS_MAX_LEVEL) { 4884 ret = 1; 4885 goto done; 4886 } 4887 continue; 4888 } 4889 4890 4891 /* 4892 * Our current level is where we're going to start from, and to 4893 * make sure lockdep doesn't complain we need to drop our locks 4894 * and nodes from 0 to our current level. 4895 */ 4896 for (i = 0; i < level; i++) { 4897 if (path->locks[level]) { 4898 btrfs_tree_read_unlock(path->nodes[i]); 4899 path->locks[i] = 0; 4900 } 4901 free_extent_buffer(path->nodes[i]); 4902 path->nodes[i] = NULL; 4903 } 4904 4905 next = c; 4906 ret = read_block_for_search(root, path, &next, slot, &key); 4907 if (ret == -EAGAIN && !path->nowait) 4908 goto again; 4909 4910 if (ret < 0) { 4911 btrfs_release_path(path); 4912 goto done; 4913 } 4914 4915 if (!path->skip_locking) { 4916 ret = btrfs_try_tree_read_lock(next); 4917 if (!ret && path->nowait) { 4918 ret = -EAGAIN; 4919 goto done; 4920 } 4921 if (!ret && time_seq) { 4922 /* 4923 * If we don't get the lock, we may be racing 4924 * with push_leaf_left, holding that lock while 4925 * itself waiting for the leaf we've currently 4926 * locked. To solve this situation, we give up 4927 * on our lock and cycle. 4928 */ 4929 free_extent_buffer(next); 4930 btrfs_release_path(path); 4931 cond_resched(); 4932 goto again; 4933 } 4934 if (!ret) 4935 btrfs_tree_read_lock(next); 4936 } 4937 break; 4938 } 4939 path->slots[level] = slot; 4940 while (1) { 4941 level--; 4942 path->nodes[level] = next; 4943 path->slots[level] = 0; 4944 if (!path->skip_locking) 4945 path->locks[level] = BTRFS_READ_LOCK; 4946 if (!level) 4947 break; 4948 4949 ret = read_block_for_search(root, path, &next, 0, &key); 4950 if (ret == -EAGAIN && !path->nowait) 4951 goto again; 4952 4953 if (ret < 0) { 4954 btrfs_release_path(path); 4955 goto done; 4956 } 4957 4958 if (!path->skip_locking) { 4959 if (path->nowait) { 4960 if (!btrfs_try_tree_read_lock(next)) { 4961 ret = -EAGAIN; 4962 goto done; 4963 } 4964 } else { 4965 btrfs_tree_read_lock(next); 4966 } 4967 } 4968 } 4969 ret = 0; 4970 done: 4971 unlock_up(path, 0, 1, 0, NULL); 4972 if (need_commit_sem) { 4973 int ret2; 4974 4975 path->need_commit_sem = 1; 4976 ret2 = finish_need_commit_sem_search(path); 4977 up_read(&fs_info->commit_root_sem); 4978 if (ret2) 4979 ret = ret2; 4980 } 4981 4982 return ret; 4983 } 4984 4985 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq) 4986 { 4987 path->slots[0]++; 4988 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 4989 return btrfs_next_old_leaf(root, path, time_seq); 4990 return 0; 4991 } 4992 4993 /* 4994 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4995 * searching until it gets past min_objectid or finds an item of 'type' 4996 * 4997 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4998 */ 4999 int btrfs_previous_item(struct btrfs_root *root, 5000 struct btrfs_path *path, u64 min_objectid, 5001 int type) 5002 { 5003 struct btrfs_key found_key; 5004 struct extent_buffer *leaf; 5005 u32 nritems; 5006 int ret; 5007 5008 while (1) { 5009 if (path->slots[0] == 0) { 5010 ret = btrfs_prev_leaf(root, path); 5011 if (ret != 0) 5012 return ret; 5013 } else { 5014 path->slots[0]--; 5015 } 5016 leaf = path->nodes[0]; 5017 nritems = btrfs_header_nritems(leaf); 5018 if (nritems == 0) 5019 return 1; 5020 if (path->slots[0] == nritems) 5021 path->slots[0]--; 5022 5023 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5024 if (found_key.objectid < min_objectid) 5025 break; 5026 if (found_key.type == type) 5027 return 0; 5028 if (found_key.objectid == min_objectid && 5029 found_key.type < type) 5030 break; 5031 } 5032 return 1; 5033 } 5034 5035 /* 5036 * search in extent tree to find a previous Metadata/Data extent item with 5037 * min objecitd. 5038 * 5039 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5040 */ 5041 int btrfs_previous_extent_item(struct btrfs_root *root, 5042 struct btrfs_path *path, u64 min_objectid) 5043 { 5044 struct btrfs_key found_key; 5045 struct extent_buffer *leaf; 5046 u32 nritems; 5047 int ret; 5048 5049 while (1) { 5050 if (path->slots[0] == 0) { 5051 ret = btrfs_prev_leaf(root, path); 5052 if (ret != 0) 5053 return ret; 5054 } else { 5055 path->slots[0]--; 5056 } 5057 leaf = path->nodes[0]; 5058 nritems = btrfs_header_nritems(leaf); 5059 if (nritems == 0) 5060 return 1; 5061 if (path->slots[0] == nritems) 5062 path->slots[0]--; 5063 5064 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5065 if (found_key.objectid < min_objectid) 5066 break; 5067 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5068 found_key.type == BTRFS_METADATA_ITEM_KEY) 5069 return 0; 5070 if (found_key.objectid == min_objectid && 5071 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5072 break; 5073 } 5074 return 1; 5075 } 5076 5077 int __init btrfs_ctree_init(void) 5078 { 5079 btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0); 5080 if (!btrfs_path_cachep) 5081 return -ENOMEM; 5082 return 0; 5083 } 5084 5085 void __cold btrfs_ctree_exit(void) 5086 { 5087 kmem_cache_destroy(btrfs_path_cachep); 5088 } 5089