1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include <linux/error-injection.h> 11 #include "ctree.h" 12 #include "disk-io.h" 13 #include "transaction.h" 14 #include "print-tree.h" 15 #include "locking.h" 16 #include "volumes.h" 17 #include "qgroup.h" 18 #include "tree-mod-log.h" 19 #include "tree-checker.h" 20 21 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 22 *root, struct btrfs_path *path, int level); 23 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 24 const struct btrfs_key *ins_key, struct btrfs_path *path, 25 int data_size, int extend); 26 static int push_node_left(struct btrfs_trans_handle *trans, 27 struct extent_buffer *dst, 28 struct extent_buffer *src, int empty); 29 static int balance_node_right(struct btrfs_trans_handle *trans, 30 struct extent_buffer *dst_buf, 31 struct extent_buffer *src_buf); 32 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 33 int level, int slot); 34 35 static const struct btrfs_csums { 36 u16 size; 37 const char name[10]; 38 const char driver[12]; 39 } btrfs_csums[] = { 40 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 41 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 42 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 43 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 44 .driver = "blake2b-256" }, 45 }; 46 47 int btrfs_super_csum_size(const struct btrfs_super_block *s) 48 { 49 u16 t = btrfs_super_csum_type(s); 50 /* 51 * csum type is validated at mount time 52 */ 53 return btrfs_csums[t].size; 54 } 55 56 const char *btrfs_super_csum_name(u16 csum_type) 57 { 58 /* csum type is validated at mount time */ 59 return btrfs_csums[csum_type].name; 60 } 61 62 /* 63 * Return driver name if defined, otherwise the name that's also a valid driver 64 * name 65 */ 66 const char *btrfs_super_csum_driver(u16 csum_type) 67 { 68 /* csum type is validated at mount time */ 69 return btrfs_csums[csum_type].driver[0] ? 70 btrfs_csums[csum_type].driver : 71 btrfs_csums[csum_type].name; 72 } 73 74 size_t __attribute_const__ btrfs_get_num_csums(void) 75 { 76 return ARRAY_SIZE(btrfs_csums); 77 } 78 79 struct btrfs_path *btrfs_alloc_path(void) 80 { 81 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 82 } 83 84 /* this also releases the path */ 85 void btrfs_free_path(struct btrfs_path *p) 86 { 87 if (!p) 88 return; 89 btrfs_release_path(p); 90 kmem_cache_free(btrfs_path_cachep, p); 91 } 92 93 /* 94 * path release drops references on the extent buffers in the path 95 * and it drops any locks held by this path 96 * 97 * It is safe to call this on paths that no locks or extent buffers held. 98 */ 99 noinline void btrfs_release_path(struct btrfs_path *p) 100 { 101 int i; 102 103 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 104 p->slots[i] = 0; 105 if (!p->nodes[i]) 106 continue; 107 if (p->locks[i]) { 108 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 109 p->locks[i] = 0; 110 } 111 free_extent_buffer(p->nodes[i]); 112 p->nodes[i] = NULL; 113 } 114 } 115 116 /* 117 * safely gets a reference on the root node of a tree. A lock 118 * is not taken, so a concurrent writer may put a different node 119 * at the root of the tree. See btrfs_lock_root_node for the 120 * looping required. 121 * 122 * The extent buffer returned by this has a reference taken, so 123 * it won't disappear. It may stop being the root of the tree 124 * at any time because there are no locks held. 125 */ 126 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 127 { 128 struct extent_buffer *eb; 129 130 while (1) { 131 rcu_read_lock(); 132 eb = rcu_dereference(root->node); 133 134 /* 135 * RCU really hurts here, we could free up the root node because 136 * it was COWed but we may not get the new root node yet so do 137 * the inc_not_zero dance and if it doesn't work then 138 * synchronize_rcu and try again. 139 */ 140 if (atomic_inc_not_zero(&eb->refs)) { 141 rcu_read_unlock(); 142 break; 143 } 144 rcu_read_unlock(); 145 synchronize_rcu(); 146 } 147 return eb; 148 } 149 150 /* 151 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 152 * just get put onto a simple dirty list. Transaction walks this list to make 153 * sure they get properly updated on disk. 154 */ 155 static void add_root_to_dirty_list(struct btrfs_root *root) 156 { 157 struct btrfs_fs_info *fs_info = root->fs_info; 158 159 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 160 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 161 return; 162 163 spin_lock(&fs_info->trans_lock); 164 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 165 /* Want the extent tree to be the last on the list */ 166 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 167 list_move_tail(&root->dirty_list, 168 &fs_info->dirty_cowonly_roots); 169 else 170 list_move(&root->dirty_list, 171 &fs_info->dirty_cowonly_roots); 172 } 173 spin_unlock(&fs_info->trans_lock); 174 } 175 176 /* 177 * used by snapshot creation to make a copy of a root for a tree with 178 * a given objectid. The buffer with the new root node is returned in 179 * cow_ret, and this func returns zero on success or a negative error code. 180 */ 181 int btrfs_copy_root(struct btrfs_trans_handle *trans, 182 struct btrfs_root *root, 183 struct extent_buffer *buf, 184 struct extent_buffer **cow_ret, u64 new_root_objectid) 185 { 186 struct btrfs_fs_info *fs_info = root->fs_info; 187 struct extent_buffer *cow; 188 int ret = 0; 189 int level; 190 struct btrfs_disk_key disk_key; 191 192 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 193 trans->transid != fs_info->running_transaction->transid); 194 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 195 trans->transid != root->last_trans); 196 197 level = btrfs_header_level(buf); 198 if (level == 0) 199 btrfs_item_key(buf, &disk_key, 0); 200 else 201 btrfs_node_key(buf, &disk_key, 0); 202 203 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 204 &disk_key, level, buf->start, 0, 205 BTRFS_NESTING_NEW_ROOT); 206 if (IS_ERR(cow)) 207 return PTR_ERR(cow); 208 209 copy_extent_buffer_full(cow, buf); 210 btrfs_set_header_bytenr(cow, cow->start); 211 btrfs_set_header_generation(cow, trans->transid); 212 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 213 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 214 BTRFS_HEADER_FLAG_RELOC); 215 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 216 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 217 else 218 btrfs_set_header_owner(cow, new_root_objectid); 219 220 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 221 222 WARN_ON(btrfs_header_generation(buf) > trans->transid); 223 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 224 ret = btrfs_inc_ref(trans, root, cow, 1); 225 else 226 ret = btrfs_inc_ref(trans, root, cow, 0); 227 if (ret) { 228 btrfs_tree_unlock(cow); 229 free_extent_buffer(cow); 230 btrfs_abort_transaction(trans, ret); 231 return ret; 232 } 233 234 btrfs_mark_buffer_dirty(cow); 235 *cow_ret = cow; 236 return 0; 237 } 238 239 /* 240 * check if the tree block can be shared by multiple trees 241 */ 242 int btrfs_block_can_be_shared(struct btrfs_root *root, 243 struct extent_buffer *buf) 244 { 245 /* 246 * Tree blocks not in shareable trees and tree roots are never shared. 247 * If a block was allocated after the last snapshot and the block was 248 * not allocated by tree relocation, we know the block is not shared. 249 */ 250 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 251 buf != root->node && buf != root->commit_root && 252 (btrfs_header_generation(buf) <= 253 btrfs_root_last_snapshot(&root->root_item) || 254 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 255 return 1; 256 257 return 0; 258 } 259 260 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 261 struct btrfs_root *root, 262 struct extent_buffer *buf, 263 struct extent_buffer *cow, 264 int *last_ref) 265 { 266 struct btrfs_fs_info *fs_info = root->fs_info; 267 u64 refs; 268 u64 owner; 269 u64 flags; 270 u64 new_flags = 0; 271 int ret; 272 273 /* 274 * Backrefs update rules: 275 * 276 * Always use full backrefs for extent pointers in tree block 277 * allocated by tree relocation. 278 * 279 * If a shared tree block is no longer referenced by its owner 280 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 281 * use full backrefs for extent pointers in tree block. 282 * 283 * If a tree block is been relocating 284 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 285 * use full backrefs for extent pointers in tree block. 286 * The reason for this is some operations (such as drop tree) 287 * are only allowed for blocks use full backrefs. 288 */ 289 290 if (btrfs_block_can_be_shared(root, buf)) { 291 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 292 btrfs_header_level(buf), 1, 293 &refs, &flags); 294 if (ret) 295 return ret; 296 if (refs == 0) { 297 ret = -EROFS; 298 btrfs_handle_fs_error(fs_info, ret, NULL); 299 return ret; 300 } 301 } else { 302 refs = 1; 303 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 304 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 305 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 306 else 307 flags = 0; 308 } 309 310 owner = btrfs_header_owner(buf); 311 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 312 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 313 314 if (refs > 1) { 315 if ((owner == root->root_key.objectid || 316 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 317 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 318 ret = btrfs_inc_ref(trans, root, buf, 1); 319 if (ret) 320 return ret; 321 322 if (root->root_key.objectid == 323 BTRFS_TREE_RELOC_OBJECTID) { 324 ret = btrfs_dec_ref(trans, root, buf, 0); 325 if (ret) 326 return ret; 327 ret = btrfs_inc_ref(trans, root, cow, 1); 328 if (ret) 329 return ret; 330 } 331 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 332 } else { 333 334 if (root->root_key.objectid == 335 BTRFS_TREE_RELOC_OBJECTID) 336 ret = btrfs_inc_ref(trans, root, cow, 1); 337 else 338 ret = btrfs_inc_ref(trans, root, cow, 0); 339 if (ret) 340 return ret; 341 } 342 if (new_flags != 0) { 343 int level = btrfs_header_level(buf); 344 345 ret = btrfs_set_disk_extent_flags(trans, buf, 346 new_flags, level); 347 if (ret) 348 return ret; 349 } 350 } else { 351 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 352 if (root->root_key.objectid == 353 BTRFS_TREE_RELOC_OBJECTID) 354 ret = btrfs_inc_ref(trans, root, cow, 1); 355 else 356 ret = btrfs_inc_ref(trans, root, cow, 0); 357 if (ret) 358 return ret; 359 ret = btrfs_dec_ref(trans, root, buf, 1); 360 if (ret) 361 return ret; 362 } 363 btrfs_clean_tree_block(buf); 364 *last_ref = 1; 365 } 366 return 0; 367 } 368 369 /* 370 * does the dirty work in cow of a single block. The parent block (if 371 * supplied) is updated to point to the new cow copy. The new buffer is marked 372 * dirty and returned locked. If you modify the block it needs to be marked 373 * dirty again. 374 * 375 * search_start -- an allocation hint for the new block 376 * 377 * empty_size -- a hint that you plan on doing more cow. This is the size in 378 * bytes the allocator should try to find free next to the block it returns. 379 * This is just a hint and may be ignored by the allocator. 380 */ 381 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 382 struct btrfs_root *root, 383 struct extent_buffer *buf, 384 struct extent_buffer *parent, int parent_slot, 385 struct extent_buffer **cow_ret, 386 u64 search_start, u64 empty_size, 387 enum btrfs_lock_nesting nest) 388 { 389 struct btrfs_fs_info *fs_info = root->fs_info; 390 struct btrfs_disk_key disk_key; 391 struct extent_buffer *cow; 392 int level, ret; 393 int last_ref = 0; 394 int unlock_orig = 0; 395 u64 parent_start = 0; 396 397 if (*cow_ret == buf) 398 unlock_orig = 1; 399 400 btrfs_assert_tree_write_locked(buf); 401 402 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 403 trans->transid != fs_info->running_transaction->transid); 404 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 405 trans->transid != root->last_trans); 406 407 level = btrfs_header_level(buf); 408 409 if (level == 0) 410 btrfs_item_key(buf, &disk_key, 0); 411 else 412 btrfs_node_key(buf, &disk_key, 0); 413 414 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 415 parent_start = parent->start; 416 417 cow = btrfs_alloc_tree_block(trans, root, parent_start, 418 root->root_key.objectid, &disk_key, level, 419 search_start, empty_size, nest); 420 if (IS_ERR(cow)) 421 return PTR_ERR(cow); 422 423 /* cow is set to blocking by btrfs_init_new_buffer */ 424 425 copy_extent_buffer_full(cow, buf); 426 btrfs_set_header_bytenr(cow, cow->start); 427 btrfs_set_header_generation(cow, trans->transid); 428 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 429 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 430 BTRFS_HEADER_FLAG_RELOC); 431 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 432 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 433 else 434 btrfs_set_header_owner(cow, root->root_key.objectid); 435 436 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 437 438 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 439 if (ret) { 440 btrfs_tree_unlock(cow); 441 free_extent_buffer(cow); 442 btrfs_abort_transaction(trans, ret); 443 return ret; 444 } 445 446 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 447 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 448 if (ret) { 449 btrfs_tree_unlock(cow); 450 free_extent_buffer(cow); 451 btrfs_abort_transaction(trans, ret); 452 return ret; 453 } 454 } 455 456 if (buf == root->node) { 457 WARN_ON(parent && parent != buf); 458 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 459 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 460 parent_start = buf->start; 461 462 atomic_inc(&cow->refs); 463 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true); 464 BUG_ON(ret < 0); 465 rcu_assign_pointer(root->node, cow); 466 467 btrfs_free_tree_block(trans, btrfs_root_id(root), buf, 468 parent_start, last_ref); 469 free_extent_buffer(buf); 470 add_root_to_dirty_list(root); 471 } else { 472 WARN_ON(trans->transid != btrfs_header_generation(parent)); 473 btrfs_tree_mod_log_insert_key(parent, parent_slot, 474 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 475 btrfs_set_node_blockptr(parent, parent_slot, 476 cow->start); 477 btrfs_set_node_ptr_generation(parent, parent_slot, 478 trans->transid); 479 btrfs_mark_buffer_dirty(parent); 480 if (last_ref) { 481 ret = btrfs_tree_mod_log_free_eb(buf); 482 if (ret) { 483 btrfs_tree_unlock(cow); 484 free_extent_buffer(cow); 485 btrfs_abort_transaction(trans, ret); 486 return ret; 487 } 488 } 489 btrfs_free_tree_block(trans, btrfs_root_id(root), buf, 490 parent_start, last_ref); 491 } 492 if (unlock_orig) 493 btrfs_tree_unlock(buf); 494 free_extent_buffer_stale(buf); 495 btrfs_mark_buffer_dirty(cow); 496 *cow_ret = cow; 497 return 0; 498 } 499 500 static inline int should_cow_block(struct btrfs_trans_handle *trans, 501 struct btrfs_root *root, 502 struct extent_buffer *buf) 503 { 504 if (btrfs_is_testing(root->fs_info)) 505 return 0; 506 507 /* Ensure we can see the FORCE_COW bit */ 508 smp_mb__before_atomic(); 509 510 /* 511 * We do not need to cow a block if 512 * 1) this block is not created or changed in this transaction; 513 * 2) this block does not belong to TREE_RELOC tree; 514 * 3) the root is not forced COW. 515 * 516 * What is forced COW: 517 * when we create snapshot during committing the transaction, 518 * after we've finished copying src root, we must COW the shared 519 * block to ensure the metadata consistency. 520 */ 521 if (btrfs_header_generation(buf) == trans->transid && 522 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 523 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 524 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 525 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 526 return 0; 527 return 1; 528 } 529 530 /* 531 * cows a single block, see __btrfs_cow_block for the real work. 532 * This version of it has extra checks so that a block isn't COWed more than 533 * once per transaction, as long as it hasn't been written yet 534 */ 535 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 536 struct btrfs_root *root, struct extent_buffer *buf, 537 struct extent_buffer *parent, int parent_slot, 538 struct extent_buffer **cow_ret, 539 enum btrfs_lock_nesting nest) 540 { 541 struct btrfs_fs_info *fs_info = root->fs_info; 542 u64 search_start; 543 int ret; 544 545 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 546 btrfs_err(fs_info, 547 "COW'ing blocks on a fs root that's being dropped"); 548 549 if (trans->transaction != fs_info->running_transaction) 550 WARN(1, KERN_CRIT "trans %llu running %llu\n", 551 trans->transid, 552 fs_info->running_transaction->transid); 553 554 if (trans->transid != fs_info->generation) 555 WARN(1, KERN_CRIT "trans %llu running %llu\n", 556 trans->transid, fs_info->generation); 557 558 if (!should_cow_block(trans, root, buf)) { 559 *cow_ret = buf; 560 return 0; 561 } 562 563 search_start = buf->start & ~((u64)SZ_1G - 1); 564 565 /* 566 * Before CoWing this block for later modification, check if it's 567 * the subtree root and do the delayed subtree trace if needed. 568 * 569 * Also We don't care about the error, as it's handled internally. 570 */ 571 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 572 ret = __btrfs_cow_block(trans, root, buf, parent, 573 parent_slot, cow_ret, search_start, 0, nest); 574 575 trace_btrfs_cow_block(root, buf, *cow_ret); 576 577 return ret; 578 } 579 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO); 580 581 /* 582 * helper function for defrag to decide if two blocks pointed to by a 583 * node are actually close by 584 */ 585 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 586 { 587 if (blocknr < other && other - (blocknr + blocksize) < 32768) 588 return 1; 589 if (blocknr > other && blocknr - (other + blocksize) < 32768) 590 return 1; 591 return 0; 592 } 593 594 #ifdef __LITTLE_ENDIAN 595 596 /* 597 * Compare two keys, on little-endian the disk order is same as CPU order and 598 * we can avoid the conversion. 599 */ 600 static int comp_keys(const struct btrfs_disk_key *disk_key, 601 const struct btrfs_key *k2) 602 { 603 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 604 605 return btrfs_comp_cpu_keys(k1, k2); 606 } 607 608 #else 609 610 /* 611 * compare two keys in a memcmp fashion 612 */ 613 static int comp_keys(const struct btrfs_disk_key *disk, 614 const struct btrfs_key *k2) 615 { 616 struct btrfs_key k1; 617 618 btrfs_disk_key_to_cpu(&k1, disk); 619 620 return btrfs_comp_cpu_keys(&k1, k2); 621 } 622 #endif 623 624 /* 625 * same as comp_keys only with two btrfs_key's 626 */ 627 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 628 { 629 if (k1->objectid > k2->objectid) 630 return 1; 631 if (k1->objectid < k2->objectid) 632 return -1; 633 if (k1->type > k2->type) 634 return 1; 635 if (k1->type < k2->type) 636 return -1; 637 if (k1->offset > k2->offset) 638 return 1; 639 if (k1->offset < k2->offset) 640 return -1; 641 return 0; 642 } 643 644 /* 645 * this is used by the defrag code to go through all the 646 * leaves pointed to by a node and reallocate them so that 647 * disk order is close to key order 648 */ 649 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 650 struct btrfs_root *root, struct extent_buffer *parent, 651 int start_slot, u64 *last_ret, 652 struct btrfs_key *progress) 653 { 654 struct btrfs_fs_info *fs_info = root->fs_info; 655 struct extent_buffer *cur; 656 u64 blocknr; 657 u64 search_start = *last_ret; 658 u64 last_block = 0; 659 u64 other; 660 u32 parent_nritems; 661 int end_slot; 662 int i; 663 int err = 0; 664 u32 blocksize; 665 int progress_passed = 0; 666 struct btrfs_disk_key disk_key; 667 668 WARN_ON(trans->transaction != fs_info->running_transaction); 669 WARN_ON(trans->transid != fs_info->generation); 670 671 parent_nritems = btrfs_header_nritems(parent); 672 blocksize = fs_info->nodesize; 673 end_slot = parent_nritems - 1; 674 675 if (parent_nritems <= 1) 676 return 0; 677 678 for (i = start_slot; i <= end_slot; i++) { 679 int close = 1; 680 681 btrfs_node_key(parent, &disk_key, i); 682 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 683 continue; 684 685 progress_passed = 1; 686 blocknr = btrfs_node_blockptr(parent, i); 687 if (last_block == 0) 688 last_block = blocknr; 689 690 if (i > 0) { 691 other = btrfs_node_blockptr(parent, i - 1); 692 close = close_blocks(blocknr, other, blocksize); 693 } 694 if (!close && i < end_slot) { 695 other = btrfs_node_blockptr(parent, i + 1); 696 close = close_blocks(blocknr, other, blocksize); 697 } 698 if (close) { 699 last_block = blocknr; 700 continue; 701 } 702 703 cur = btrfs_read_node_slot(parent, i); 704 if (IS_ERR(cur)) 705 return PTR_ERR(cur); 706 if (search_start == 0) 707 search_start = last_block; 708 709 btrfs_tree_lock(cur); 710 err = __btrfs_cow_block(trans, root, cur, parent, i, 711 &cur, search_start, 712 min(16 * blocksize, 713 (end_slot - i) * blocksize), 714 BTRFS_NESTING_COW); 715 if (err) { 716 btrfs_tree_unlock(cur); 717 free_extent_buffer(cur); 718 break; 719 } 720 search_start = cur->start; 721 last_block = cur->start; 722 *last_ret = search_start; 723 btrfs_tree_unlock(cur); 724 free_extent_buffer(cur); 725 } 726 return err; 727 } 728 729 /* 730 * Search for a key in the given extent_buffer. 731 * 732 * The lower boundary for the search is specified by the slot number @low. Use a 733 * value of 0 to search over the whole extent buffer. 734 * 735 * The slot in the extent buffer is returned via @slot. If the key exists in the 736 * extent buffer, then @slot will point to the slot where the key is, otherwise 737 * it points to the slot where you would insert the key. 738 * 739 * Slot may point to the total number of items (i.e. one position beyond the last 740 * key) if the key is bigger than the last key in the extent buffer. 741 */ 742 static noinline int generic_bin_search(struct extent_buffer *eb, int low, 743 const struct btrfs_key *key, int *slot) 744 { 745 unsigned long p; 746 int item_size; 747 int high = btrfs_header_nritems(eb); 748 int ret; 749 const int key_size = sizeof(struct btrfs_disk_key); 750 751 if (low > high) { 752 btrfs_err(eb->fs_info, 753 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 754 __func__, low, high, eb->start, 755 btrfs_header_owner(eb), btrfs_header_level(eb)); 756 return -EINVAL; 757 } 758 759 if (btrfs_header_level(eb) == 0) { 760 p = offsetof(struct btrfs_leaf, items); 761 item_size = sizeof(struct btrfs_item); 762 } else { 763 p = offsetof(struct btrfs_node, ptrs); 764 item_size = sizeof(struct btrfs_key_ptr); 765 } 766 767 while (low < high) { 768 unsigned long oip; 769 unsigned long offset; 770 struct btrfs_disk_key *tmp; 771 struct btrfs_disk_key unaligned; 772 int mid; 773 774 mid = (low + high) / 2; 775 offset = p + mid * item_size; 776 oip = offset_in_page(offset); 777 778 if (oip + key_size <= PAGE_SIZE) { 779 const unsigned long idx = get_eb_page_index(offset); 780 char *kaddr = page_address(eb->pages[idx]); 781 782 oip = get_eb_offset_in_page(eb, offset); 783 tmp = (struct btrfs_disk_key *)(kaddr + oip); 784 } else { 785 read_extent_buffer(eb, &unaligned, offset, key_size); 786 tmp = &unaligned; 787 } 788 789 ret = comp_keys(tmp, key); 790 791 if (ret < 0) 792 low = mid + 1; 793 else if (ret > 0) 794 high = mid; 795 else { 796 *slot = mid; 797 return 0; 798 } 799 } 800 *slot = low; 801 return 1; 802 } 803 804 /* 805 * Simple binary search on an extent buffer. Works for both leaves and nodes, and 806 * always searches over the whole range of keys (slot 0 to slot 'nritems - 1'). 807 */ 808 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 809 int *slot) 810 { 811 return generic_bin_search(eb, 0, key, slot); 812 } 813 814 static void root_add_used(struct btrfs_root *root, u32 size) 815 { 816 spin_lock(&root->accounting_lock); 817 btrfs_set_root_used(&root->root_item, 818 btrfs_root_used(&root->root_item) + size); 819 spin_unlock(&root->accounting_lock); 820 } 821 822 static void root_sub_used(struct btrfs_root *root, u32 size) 823 { 824 spin_lock(&root->accounting_lock); 825 btrfs_set_root_used(&root->root_item, 826 btrfs_root_used(&root->root_item) - size); 827 spin_unlock(&root->accounting_lock); 828 } 829 830 /* given a node and slot number, this reads the blocks it points to. The 831 * extent buffer is returned with a reference taken (but unlocked). 832 */ 833 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 834 int slot) 835 { 836 int level = btrfs_header_level(parent); 837 struct extent_buffer *eb; 838 struct btrfs_key first_key; 839 840 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 841 return ERR_PTR(-ENOENT); 842 843 BUG_ON(level == 0); 844 845 btrfs_node_key_to_cpu(parent, &first_key, slot); 846 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 847 btrfs_header_owner(parent), 848 btrfs_node_ptr_generation(parent, slot), 849 level - 1, &first_key); 850 if (IS_ERR(eb)) 851 return eb; 852 if (!extent_buffer_uptodate(eb)) { 853 free_extent_buffer(eb); 854 return ERR_PTR(-EIO); 855 } 856 857 return eb; 858 } 859 860 /* 861 * node level balancing, used to make sure nodes are in proper order for 862 * item deletion. We balance from the top down, so we have to make sure 863 * that a deletion won't leave an node completely empty later on. 864 */ 865 static noinline int balance_level(struct btrfs_trans_handle *trans, 866 struct btrfs_root *root, 867 struct btrfs_path *path, int level) 868 { 869 struct btrfs_fs_info *fs_info = root->fs_info; 870 struct extent_buffer *right = NULL; 871 struct extent_buffer *mid; 872 struct extent_buffer *left = NULL; 873 struct extent_buffer *parent = NULL; 874 int ret = 0; 875 int wret; 876 int pslot; 877 int orig_slot = path->slots[level]; 878 u64 orig_ptr; 879 880 ASSERT(level > 0); 881 882 mid = path->nodes[level]; 883 884 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK); 885 WARN_ON(btrfs_header_generation(mid) != trans->transid); 886 887 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 888 889 if (level < BTRFS_MAX_LEVEL - 1) { 890 parent = path->nodes[level + 1]; 891 pslot = path->slots[level + 1]; 892 } 893 894 /* 895 * deal with the case where there is only one pointer in the root 896 * by promoting the node below to a root 897 */ 898 if (!parent) { 899 struct extent_buffer *child; 900 901 if (btrfs_header_nritems(mid) != 1) 902 return 0; 903 904 /* promote the child to a root */ 905 child = btrfs_read_node_slot(mid, 0); 906 if (IS_ERR(child)) { 907 ret = PTR_ERR(child); 908 btrfs_handle_fs_error(fs_info, ret, NULL); 909 goto enospc; 910 } 911 912 btrfs_tree_lock(child); 913 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 914 BTRFS_NESTING_COW); 915 if (ret) { 916 btrfs_tree_unlock(child); 917 free_extent_buffer(child); 918 goto enospc; 919 } 920 921 ret = btrfs_tree_mod_log_insert_root(root->node, child, true); 922 BUG_ON(ret < 0); 923 rcu_assign_pointer(root->node, child); 924 925 add_root_to_dirty_list(root); 926 btrfs_tree_unlock(child); 927 928 path->locks[level] = 0; 929 path->nodes[level] = NULL; 930 btrfs_clean_tree_block(mid); 931 btrfs_tree_unlock(mid); 932 /* once for the path */ 933 free_extent_buffer(mid); 934 935 root_sub_used(root, mid->len); 936 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); 937 /* once for the root ptr */ 938 free_extent_buffer_stale(mid); 939 return 0; 940 } 941 if (btrfs_header_nritems(mid) > 942 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 943 return 0; 944 945 left = btrfs_read_node_slot(parent, pslot - 1); 946 if (IS_ERR(left)) 947 left = NULL; 948 949 if (left) { 950 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 951 wret = btrfs_cow_block(trans, root, left, 952 parent, pslot - 1, &left, 953 BTRFS_NESTING_LEFT_COW); 954 if (wret) { 955 ret = wret; 956 goto enospc; 957 } 958 } 959 960 right = btrfs_read_node_slot(parent, pslot + 1); 961 if (IS_ERR(right)) 962 right = NULL; 963 964 if (right) { 965 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 966 wret = btrfs_cow_block(trans, root, right, 967 parent, pslot + 1, &right, 968 BTRFS_NESTING_RIGHT_COW); 969 if (wret) { 970 ret = wret; 971 goto enospc; 972 } 973 } 974 975 /* first, try to make some room in the middle buffer */ 976 if (left) { 977 orig_slot += btrfs_header_nritems(left); 978 wret = push_node_left(trans, left, mid, 1); 979 if (wret < 0) 980 ret = wret; 981 } 982 983 /* 984 * then try to empty the right most buffer into the middle 985 */ 986 if (right) { 987 wret = push_node_left(trans, mid, right, 1); 988 if (wret < 0 && wret != -ENOSPC) 989 ret = wret; 990 if (btrfs_header_nritems(right) == 0) { 991 btrfs_clean_tree_block(right); 992 btrfs_tree_unlock(right); 993 del_ptr(root, path, level + 1, pslot + 1); 994 root_sub_used(root, right->len); 995 btrfs_free_tree_block(trans, btrfs_root_id(root), right, 996 0, 1); 997 free_extent_buffer_stale(right); 998 right = NULL; 999 } else { 1000 struct btrfs_disk_key right_key; 1001 btrfs_node_key(right, &right_key, 0); 1002 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1003 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1004 BUG_ON(ret < 0); 1005 btrfs_set_node_key(parent, &right_key, pslot + 1); 1006 btrfs_mark_buffer_dirty(parent); 1007 } 1008 } 1009 if (btrfs_header_nritems(mid) == 1) { 1010 /* 1011 * we're not allowed to leave a node with one item in the 1012 * tree during a delete. A deletion from lower in the tree 1013 * could try to delete the only pointer in this node. 1014 * So, pull some keys from the left. 1015 * There has to be a left pointer at this point because 1016 * otherwise we would have pulled some pointers from the 1017 * right 1018 */ 1019 if (!left) { 1020 ret = -EROFS; 1021 btrfs_handle_fs_error(fs_info, ret, NULL); 1022 goto enospc; 1023 } 1024 wret = balance_node_right(trans, mid, left); 1025 if (wret < 0) { 1026 ret = wret; 1027 goto enospc; 1028 } 1029 if (wret == 1) { 1030 wret = push_node_left(trans, left, mid, 1); 1031 if (wret < 0) 1032 ret = wret; 1033 } 1034 BUG_ON(wret == 1); 1035 } 1036 if (btrfs_header_nritems(mid) == 0) { 1037 btrfs_clean_tree_block(mid); 1038 btrfs_tree_unlock(mid); 1039 del_ptr(root, path, level + 1, pslot); 1040 root_sub_used(root, mid->len); 1041 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); 1042 free_extent_buffer_stale(mid); 1043 mid = NULL; 1044 } else { 1045 /* update the parent key to reflect our changes */ 1046 struct btrfs_disk_key mid_key; 1047 btrfs_node_key(mid, &mid_key, 0); 1048 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1049 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1050 BUG_ON(ret < 0); 1051 btrfs_set_node_key(parent, &mid_key, pslot); 1052 btrfs_mark_buffer_dirty(parent); 1053 } 1054 1055 /* update the path */ 1056 if (left) { 1057 if (btrfs_header_nritems(left) > orig_slot) { 1058 atomic_inc(&left->refs); 1059 /* left was locked after cow */ 1060 path->nodes[level] = left; 1061 path->slots[level + 1] -= 1; 1062 path->slots[level] = orig_slot; 1063 if (mid) { 1064 btrfs_tree_unlock(mid); 1065 free_extent_buffer(mid); 1066 } 1067 } else { 1068 orig_slot -= btrfs_header_nritems(left); 1069 path->slots[level] = orig_slot; 1070 } 1071 } 1072 /* double check we haven't messed things up */ 1073 if (orig_ptr != 1074 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1075 BUG(); 1076 enospc: 1077 if (right) { 1078 btrfs_tree_unlock(right); 1079 free_extent_buffer(right); 1080 } 1081 if (left) { 1082 if (path->nodes[level] != left) 1083 btrfs_tree_unlock(left); 1084 free_extent_buffer(left); 1085 } 1086 return ret; 1087 } 1088 1089 /* Node balancing for insertion. Here we only split or push nodes around 1090 * when they are completely full. This is also done top down, so we 1091 * have to be pessimistic. 1092 */ 1093 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1094 struct btrfs_root *root, 1095 struct btrfs_path *path, int level) 1096 { 1097 struct btrfs_fs_info *fs_info = root->fs_info; 1098 struct extent_buffer *right = NULL; 1099 struct extent_buffer *mid; 1100 struct extent_buffer *left = NULL; 1101 struct extent_buffer *parent = NULL; 1102 int ret = 0; 1103 int wret; 1104 int pslot; 1105 int orig_slot = path->slots[level]; 1106 1107 if (level == 0) 1108 return 1; 1109 1110 mid = path->nodes[level]; 1111 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1112 1113 if (level < BTRFS_MAX_LEVEL - 1) { 1114 parent = path->nodes[level + 1]; 1115 pslot = path->slots[level + 1]; 1116 } 1117 1118 if (!parent) 1119 return 1; 1120 1121 left = btrfs_read_node_slot(parent, pslot - 1); 1122 if (IS_ERR(left)) 1123 left = NULL; 1124 1125 /* first, try to make some room in the middle buffer */ 1126 if (left) { 1127 u32 left_nr; 1128 1129 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 1130 1131 left_nr = btrfs_header_nritems(left); 1132 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1133 wret = 1; 1134 } else { 1135 ret = btrfs_cow_block(trans, root, left, parent, 1136 pslot - 1, &left, 1137 BTRFS_NESTING_LEFT_COW); 1138 if (ret) 1139 wret = 1; 1140 else { 1141 wret = push_node_left(trans, left, mid, 0); 1142 } 1143 } 1144 if (wret < 0) 1145 ret = wret; 1146 if (wret == 0) { 1147 struct btrfs_disk_key disk_key; 1148 orig_slot += left_nr; 1149 btrfs_node_key(mid, &disk_key, 0); 1150 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1151 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1152 BUG_ON(ret < 0); 1153 btrfs_set_node_key(parent, &disk_key, pslot); 1154 btrfs_mark_buffer_dirty(parent); 1155 if (btrfs_header_nritems(left) > orig_slot) { 1156 path->nodes[level] = left; 1157 path->slots[level + 1] -= 1; 1158 path->slots[level] = orig_slot; 1159 btrfs_tree_unlock(mid); 1160 free_extent_buffer(mid); 1161 } else { 1162 orig_slot -= 1163 btrfs_header_nritems(left); 1164 path->slots[level] = orig_slot; 1165 btrfs_tree_unlock(left); 1166 free_extent_buffer(left); 1167 } 1168 return 0; 1169 } 1170 btrfs_tree_unlock(left); 1171 free_extent_buffer(left); 1172 } 1173 right = btrfs_read_node_slot(parent, pslot + 1); 1174 if (IS_ERR(right)) 1175 right = NULL; 1176 1177 /* 1178 * then try to empty the right most buffer into the middle 1179 */ 1180 if (right) { 1181 u32 right_nr; 1182 1183 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 1184 1185 right_nr = btrfs_header_nritems(right); 1186 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1187 wret = 1; 1188 } else { 1189 ret = btrfs_cow_block(trans, root, right, 1190 parent, pslot + 1, 1191 &right, BTRFS_NESTING_RIGHT_COW); 1192 if (ret) 1193 wret = 1; 1194 else { 1195 wret = balance_node_right(trans, right, mid); 1196 } 1197 } 1198 if (wret < 0) 1199 ret = wret; 1200 if (wret == 0) { 1201 struct btrfs_disk_key disk_key; 1202 1203 btrfs_node_key(right, &disk_key, 0); 1204 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1205 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1206 BUG_ON(ret < 0); 1207 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1208 btrfs_mark_buffer_dirty(parent); 1209 1210 if (btrfs_header_nritems(mid) <= orig_slot) { 1211 path->nodes[level] = right; 1212 path->slots[level + 1] += 1; 1213 path->slots[level] = orig_slot - 1214 btrfs_header_nritems(mid); 1215 btrfs_tree_unlock(mid); 1216 free_extent_buffer(mid); 1217 } else { 1218 btrfs_tree_unlock(right); 1219 free_extent_buffer(right); 1220 } 1221 return 0; 1222 } 1223 btrfs_tree_unlock(right); 1224 free_extent_buffer(right); 1225 } 1226 return 1; 1227 } 1228 1229 /* 1230 * readahead one full node of leaves, finding things that are close 1231 * to the block in 'slot', and triggering ra on them. 1232 */ 1233 static void reada_for_search(struct btrfs_fs_info *fs_info, 1234 struct btrfs_path *path, 1235 int level, int slot, u64 objectid) 1236 { 1237 struct extent_buffer *node; 1238 struct btrfs_disk_key disk_key; 1239 u32 nritems; 1240 u64 search; 1241 u64 target; 1242 u64 nread = 0; 1243 u64 nread_max; 1244 u32 nr; 1245 u32 blocksize; 1246 u32 nscan = 0; 1247 1248 if (level != 1 && path->reada != READA_FORWARD_ALWAYS) 1249 return; 1250 1251 if (!path->nodes[level]) 1252 return; 1253 1254 node = path->nodes[level]; 1255 1256 /* 1257 * Since the time between visiting leaves is much shorter than the time 1258 * between visiting nodes, limit read ahead of nodes to 1, to avoid too 1259 * much IO at once (possibly random). 1260 */ 1261 if (path->reada == READA_FORWARD_ALWAYS) { 1262 if (level > 1) 1263 nread_max = node->fs_info->nodesize; 1264 else 1265 nread_max = SZ_128K; 1266 } else { 1267 nread_max = SZ_64K; 1268 } 1269 1270 search = btrfs_node_blockptr(node, slot); 1271 blocksize = fs_info->nodesize; 1272 if (path->reada != READA_FORWARD_ALWAYS) { 1273 struct extent_buffer *eb; 1274 1275 eb = find_extent_buffer(fs_info, search); 1276 if (eb) { 1277 free_extent_buffer(eb); 1278 return; 1279 } 1280 } 1281 1282 target = search; 1283 1284 nritems = btrfs_header_nritems(node); 1285 nr = slot; 1286 1287 while (1) { 1288 if (path->reada == READA_BACK) { 1289 if (nr == 0) 1290 break; 1291 nr--; 1292 } else if (path->reada == READA_FORWARD || 1293 path->reada == READA_FORWARD_ALWAYS) { 1294 nr++; 1295 if (nr >= nritems) 1296 break; 1297 } 1298 if (path->reada == READA_BACK && objectid) { 1299 btrfs_node_key(node, &disk_key, nr); 1300 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1301 break; 1302 } 1303 search = btrfs_node_blockptr(node, nr); 1304 if (path->reada == READA_FORWARD_ALWAYS || 1305 (search <= target && target - search <= 65536) || 1306 (search > target && search - target <= 65536)) { 1307 btrfs_readahead_node_child(node, nr); 1308 nread += blocksize; 1309 } 1310 nscan++; 1311 if (nread > nread_max || nscan > 32) 1312 break; 1313 } 1314 } 1315 1316 static noinline void reada_for_balance(struct btrfs_path *path, int level) 1317 { 1318 struct extent_buffer *parent; 1319 int slot; 1320 int nritems; 1321 1322 parent = path->nodes[level + 1]; 1323 if (!parent) 1324 return; 1325 1326 nritems = btrfs_header_nritems(parent); 1327 slot = path->slots[level + 1]; 1328 1329 if (slot > 0) 1330 btrfs_readahead_node_child(parent, slot - 1); 1331 if (slot + 1 < nritems) 1332 btrfs_readahead_node_child(parent, slot + 1); 1333 } 1334 1335 1336 /* 1337 * when we walk down the tree, it is usually safe to unlock the higher layers 1338 * in the tree. The exceptions are when our path goes through slot 0, because 1339 * operations on the tree might require changing key pointers higher up in the 1340 * tree. 1341 * 1342 * callers might also have set path->keep_locks, which tells this code to keep 1343 * the lock if the path points to the last slot in the block. This is part of 1344 * walking through the tree, and selecting the next slot in the higher block. 1345 * 1346 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1347 * if lowest_unlock is 1, level 0 won't be unlocked 1348 */ 1349 static noinline void unlock_up(struct btrfs_path *path, int level, 1350 int lowest_unlock, int min_write_lock_level, 1351 int *write_lock_level) 1352 { 1353 int i; 1354 int skip_level = level; 1355 bool check_skip = true; 1356 1357 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1358 if (!path->nodes[i]) 1359 break; 1360 if (!path->locks[i]) 1361 break; 1362 1363 if (check_skip) { 1364 if (path->slots[i] == 0) { 1365 skip_level = i + 1; 1366 continue; 1367 } 1368 1369 if (path->keep_locks) { 1370 u32 nritems; 1371 1372 nritems = btrfs_header_nritems(path->nodes[i]); 1373 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1374 skip_level = i + 1; 1375 continue; 1376 } 1377 } 1378 } 1379 1380 if (i >= lowest_unlock && i > skip_level) { 1381 check_skip = false; 1382 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 1383 path->locks[i] = 0; 1384 if (write_lock_level && 1385 i > min_write_lock_level && 1386 i <= *write_lock_level) { 1387 *write_lock_level = i - 1; 1388 } 1389 } 1390 } 1391 } 1392 1393 /* 1394 * Helper function for btrfs_search_slot() and other functions that do a search 1395 * on a btree. The goal is to find a tree block in the cache (the radix tree at 1396 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read 1397 * its pages from disk. 1398 * 1399 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the 1400 * whole btree search, starting again from the current root node. 1401 */ 1402 static int 1403 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 1404 struct extent_buffer **eb_ret, int level, int slot, 1405 const struct btrfs_key *key) 1406 { 1407 struct btrfs_fs_info *fs_info = root->fs_info; 1408 u64 blocknr; 1409 u64 gen; 1410 struct extent_buffer *tmp; 1411 struct btrfs_key first_key; 1412 int ret; 1413 int parent_level; 1414 bool unlock_up; 1415 1416 unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]); 1417 blocknr = btrfs_node_blockptr(*eb_ret, slot); 1418 gen = btrfs_node_ptr_generation(*eb_ret, slot); 1419 parent_level = btrfs_header_level(*eb_ret); 1420 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot); 1421 1422 /* 1423 * If we need to read an extent buffer from disk and we are holding locks 1424 * on upper level nodes, we unlock all the upper nodes before reading the 1425 * extent buffer, and then return -EAGAIN to the caller as it needs to 1426 * restart the search. We don't release the lock on the current level 1427 * because we need to walk this node to figure out which blocks to read. 1428 */ 1429 tmp = find_extent_buffer(fs_info, blocknr); 1430 if (tmp) { 1431 if (p->reada == READA_FORWARD_ALWAYS) 1432 reada_for_search(fs_info, p, level, slot, key->objectid); 1433 1434 /* first we do an atomic uptodate check */ 1435 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 1436 /* 1437 * Do extra check for first_key, eb can be stale due to 1438 * being cached, read from scrub, or have multiple 1439 * parents (shared tree blocks). 1440 */ 1441 if (btrfs_verify_level_key(tmp, 1442 parent_level - 1, &first_key, gen)) { 1443 free_extent_buffer(tmp); 1444 return -EUCLEAN; 1445 } 1446 *eb_ret = tmp; 1447 return 0; 1448 } 1449 1450 if (p->nowait) { 1451 free_extent_buffer(tmp); 1452 return -EAGAIN; 1453 } 1454 1455 if (unlock_up) 1456 btrfs_unlock_up_safe(p, level + 1); 1457 1458 /* now we're allowed to do a blocking uptodate check */ 1459 ret = btrfs_read_extent_buffer(tmp, gen, parent_level - 1, &first_key); 1460 if (ret) { 1461 free_extent_buffer(tmp); 1462 btrfs_release_path(p); 1463 return -EIO; 1464 } 1465 if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) { 1466 free_extent_buffer(tmp); 1467 btrfs_release_path(p); 1468 return -EUCLEAN; 1469 } 1470 1471 if (unlock_up) 1472 ret = -EAGAIN; 1473 1474 goto out; 1475 } else if (p->nowait) { 1476 return -EAGAIN; 1477 } 1478 1479 if (unlock_up) { 1480 btrfs_unlock_up_safe(p, level + 1); 1481 ret = -EAGAIN; 1482 } else { 1483 ret = 0; 1484 } 1485 1486 if (p->reada != READA_NONE) 1487 reada_for_search(fs_info, p, level, slot, key->objectid); 1488 1489 tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid, 1490 gen, parent_level - 1, &first_key); 1491 if (IS_ERR(tmp)) { 1492 btrfs_release_path(p); 1493 return PTR_ERR(tmp); 1494 } 1495 /* 1496 * If the read above didn't mark this buffer up to date, 1497 * it will never end up being up to date. Set ret to EIO now 1498 * and give up so that our caller doesn't loop forever 1499 * on our EAGAINs. 1500 */ 1501 if (!extent_buffer_uptodate(tmp)) 1502 ret = -EIO; 1503 1504 out: 1505 if (ret == 0) { 1506 *eb_ret = tmp; 1507 } else { 1508 free_extent_buffer(tmp); 1509 btrfs_release_path(p); 1510 } 1511 1512 return ret; 1513 } 1514 1515 /* 1516 * helper function for btrfs_search_slot. This does all of the checks 1517 * for node-level blocks and does any balancing required based on 1518 * the ins_len. 1519 * 1520 * If no extra work was required, zero is returned. If we had to 1521 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1522 * start over 1523 */ 1524 static int 1525 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1526 struct btrfs_root *root, struct btrfs_path *p, 1527 struct extent_buffer *b, int level, int ins_len, 1528 int *write_lock_level) 1529 { 1530 struct btrfs_fs_info *fs_info = root->fs_info; 1531 int ret = 0; 1532 1533 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1534 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 1535 1536 if (*write_lock_level < level + 1) { 1537 *write_lock_level = level + 1; 1538 btrfs_release_path(p); 1539 return -EAGAIN; 1540 } 1541 1542 reada_for_balance(p, level); 1543 ret = split_node(trans, root, p, level); 1544 1545 b = p->nodes[level]; 1546 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1547 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 1548 1549 if (*write_lock_level < level + 1) { 1550 *write_lock_level = level + 1; 1551 btrfs_release_path(p); 1552 return -EAGAIN; 1553 } 1554 1555 reada_for_balance(p, level); 1556 ret = balance_level(trans, root, p, level); 1557 if (ret) 1558 return ret; 1559 1560 b = p->nodes[level]; 1561 if (!b) { 1562 btrfs_release_path(p); 1563 return -EAGAIN; 1564 } 1565 BUG_ON(btrfs_header_nritems(b) == 1); 1566 } 1567 return ret; 1568 } 1569 1570 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 1571 u64 iobjectid, u64 ioff, u8 key_type, 1572 struct btrfs_key *found_key) 1573 { 1574 int ret; 1575 struct btrfs_key key; 1576 struct extent_buffer *eb; 1577 1578 ASSERT(path); 1579 ASSERT(found_key); 1580 1581 key.type = key_type; 1582 key.objectid = iobjectid; 1583 key.offset = ioff; 1584 1585 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1586 if (ret < 0) 1587 return ret; 1588 1589 eb = path->nodes[0]; 1590 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1591 ret = btrfs_next_leaf(fs_root, path); 1592 if (ret) 1593 return ret; 1594 eb = path->nodes[0]; 1595 } 1596 1597 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1598 if (found_key->type != key.type || 1599 found_key->objectid != key.objectid) 1600 return 1; 1601 1602 return 0; 1603 } 1604 1605 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 1606 struct btrfs_path *p, 1607 int write_lock_level) 1608 { 1609 struct extent_buffer *b; 1610 int root_lock = 0; 1611 int level = 0; 1612 1613 if (p->search_commit_root) { 1614 b = root->commit_root; 1615 atomic_inc(&b->refs); 1616 level = btrfs_header_level(b); 1617 /* 1618 * Ensure that all callers have set skip_locking when 1619 * p->search_commit_root = 1. 1620 */ 1621 ASSERT(p->skip_locking == 1); 1622 1623 goto out; 1624 } 1625 1626 if (p->skip_locking) { 1627 b = btrfs_root_node(root); 1628 level = btrfs_header_level(b); 1629 goto out; 1630 } 1631 1632 /* We try very hard to do read locks on the root */ 1633 root_lock = BTRFS_READ_LOCK; 1634 1635 /* 1636 * If the level is set to maximum, we can skip trying to get the read 1637 * lock. 1638 */ 1639 if (write_lock_level < BTRFS_MAX_LEVEL) { 1640 /* 1641 * We don't know the level of the root node until we actually 1642 * have it read locked 1643 */ 1644 if (p->nowait) { 1645 b = btrfs_try_read_lock_root_node(root); 1646 if (IS_ERR(b)) 1647 return b; 1648 } else { 1649 b = btrfs_read_lock_root_node(root); 1650 } 1651 level = btrfs_header_level(b); 1652 if (level > write_lock_level) 1653 goto out; 1654 1655 /* Whoops, must trade for write lock */ 1656 btrfs_tree_read_unlock(b); 1657 free_extent_buffer(b); 1658 } 1659 1660 b = btrfs_lock_root_node(root); 1661 root_lock = BTRFS_WRITE_LOCK; 1662 1663 /* The level might have changed, check again */ 1664 level = btrfs_header_level(b); 1665 1666 out: 1667 /* 1668 * The root may have failed to write out at some point, and thus is no 1669 * longer valid, return an error in this case. 1670 */ 1671 if (!extent_buffer_uptodate(b)) { 1672 if (root_lock) 1673 btrfs_tree_unlock_rw(b, root_lock); 1674 free_extent_buffer(b); 1675 return ERR_PTR(-EIO); 1676 } 1677 1678 p->nodes[level] = b; 1679 if (!p->skip_locking) 1680 p->locks[level] = root_lock; 1681 /* 1682 * Callers are responsible for dropping b's references. 1683 */ 1684 return b; 1685 } 1686 1687 /* 1688 * Replace the extent buffer at the lowest level of the path with a cloned 1689 * version. The purpose is to be able to use it safely, after releasing the 1690 * commit root semaphore, even if relocation is happening in parallel, the 1691 * transaction used for relocation is committed and the extent buffer is 1692 * reallocated in the next transaction. 1693 * 1694 * This is used in a context where the caller does not prevent transaction 1695 * commits from happening, either by holding a transaction handle or holding 1696 * some lock, while it's doing searches through a commit root. 1697 * At the moment it's only used for send operations. 1698 */ 1699 static int finish_need_commit_sem_search(struct btrfs_path *path) 1700 { 1701 const int i = path->lowest_level; 1702 const int slot = path->slots[i]; 1703 struct extent_buffer *lowest = path->nodes[i]; 1704 struct extent_buffer *clone; 1705 1706 ASSERT(path->need_commit_sem); 1707 1708 if (!lowest) 1709 return 0; 1710 1711 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem); 1712 1713 clone = btrfs_clone_extent_buffer(lowest); 1714 if (!clone) 1715 return -ENOMEM; 1716 1717 btrfs_release_path(path); 1718 path->nodes[i] = clone; 1719 path->slots[i] = slot; 1720 1721 return 0; 1722 } 1723 1724 static inline int search_for_key_slot(struct extent_buffer *eb, 1725 int search_low_slot, 1726 const struct btrfs_key *key, 1727 int prev_cmp, 1728 int *slot) 1729 { 1730 /* 1731 * If a previous call to btrfs_bin_search() on a parent node returned an 1732 * exact match (prev_cmp == 0), we can safely assume the target key will 1733 * always be at slot 0 on lower levels, since each key pointer 1734 * (struct btrfs_key_ptr) refers to the lowest key accessible from the 1735 * subtree it points to. Thus we can skip searching lower levels. 1736 */ 1737 if (prev_cmp == 0) { 1738 *slot = 0; 1739 return 0; 1740 } 1741 1742 return generic_bin_search(eb, search_low_slot, key, slot); 1743 } 1744 1745 static int search_leaf(struct btrfs_trans_handle *trans, 1746 struct btrfs_root *root, 1747 const struct btrfs_key *key, 1748 struct btrfs_path *path, 1749 int ins_len, 1750 int prev_cmp) 1751 { 1752 struct extent_buffer *leaf = path->nodes[0]; 1753 int leaf_free_space = -1; 1754 int search_low_slot = 0; 1755 int ret; 1756 bool do_bin_search = true; 1757 1758 /* 1759 * If we are doing an insertion, the leaf has enough free space and the 1760 * destination slot for the key is not slot 0, then we can unlock our 1761 * write lock on the parent, and any other upper nodes, before doing the 1762 * binary search on the leaf (with search_for_key_slot()), allowing other 1763 * tasks to lock the parent and any other upper nodes. 1764 */ 1765 if (ins_len > 0) { 1766 /* 1767 * Cache the leaf free space, since we will need it later and it 1768 * will not change until then. 1769 */ 1770 leaf_free_space = btrfs_leaf_free_space(leaf); 1771 1772 /* 1773 * !path->locks[1] means we have a single node tree, the leaf is 1774 * the root of the tree. 1775 */ 1776 if (path->locks[1] && leaf_free_space >= ins_len) { 1777 struct btrfs_disk_key first_key; 1778 1779 ASSERT(btrfs_header_nritems(leaf) > 0); 1780 btrfs_item_key(leaf, &first_key, 0); 1781 1782 /* 1783 * Doing the extra comparison with the first key is cheap, 1784 * taking into account that the first key is very likely 1785 * already in a cache line because it immediately follows 1786 * the extent buffer's header and we have recently accessed 1787 * the header's level field. 1788 */ 1789 ret = comp_keys(&first_key, key); 1790 if (ret < 0) { 1791 /* 1792 * The first key is smaller than the key we want 1793 * to insert, so we are safe to unlock all upper 1794 * nodes and we have to do the binary search. 1795 * 1796 * We do use btrfs_unlock_up_safe() and not 1797 * unlock_up() because the later does not unlock 1798 * nodes with a slot of 0 - we can safely unlock 1799 * any node even if its slot is 0 since in this 1800 * case the key does not end up at slot 0 of the 1801 * leaf and there's no need to split the leaf. 1802 */ 1803 btrfs_unlock_up_safe(path, 1); 1804 search_low_slot = 1; 1805 } else { 1806 /* 1807 * The first key is >= then the key we want to 1808 * insert, so we can skip the binary search as 1809 * the target key will be at slot 0. 1810 * 1811 * We can not unlock upper nodes when the key is 1812 * less than the first key, because we will need 1813 * to update the key at slot 0 of the parent node 1814 * and possibly of other upper nodes too. 1815 * If the key matches the first key, then we can 1816 * unlock all the upper nodes, using 1817 * btrfs_unlock_up_safe() instead of unlock_up() 1818 * as stated above. 1819 */ 1820 if (ret == 0) 1821 btrfs_unlock_up_safe(path, 1); 1822 /* 1823 * ret is already 0 or 1, matching the result of 1824 * a btrfs_bin_search() call, so there is no need 1825 * to adjust it. 1826 */ 1827 do_bin_search = false; 1828 path->slots[0] = 0; 1829 } 1830 } 1831 } 1832 1833 if (do_bin_search) { 1834 ret = search_for_key_slot(leaf, search_low_slot, key, 1835 prev_cmp, &path->slots[0]); 1836 if (ret < 0) 1837 return ret; 1838 } 1839 1840 if (ins_len > 0) { 1841 /* 1842 * Item key already exists. In this case, if we are allowed to 1843 * insert the item (for example, in dir_item case, item key 1844 * collision is allowed), it will be merged with the original 1845 * item. Only the item size grows, no new btrfs item will be 1846 * added. If search_for_extension is not set, ins_len already 1847 * accounts the size btrfs_item, deduct it here so leaf space 1848 * check will be correct. 1849 */ 1850 if (ret == 0 && !path->search_for_extension) { 1851 ASSERT(ins_len >= sizeof(struct btrfs_item)); 1852 ins_len -= sizeof(struct btrfs_item); 1853 } 1854 1855 ASSERT(leaf_free_space >= 0); 1856 1857 if (leaf_free_space < ins_len) { 1858 int err; 1859 1860 err = split_leaf(trans, root, key, path, ins_len, 1861 (ret == 0)); 1862 ASSERT(err <= 0); 1863 if (WARN_ON(err > 0)) 1864 err = -EUCLEAN; 1865 if (err) 1866 ret = err; 1867 } 1868 } 1869 1870 return ret; 1871 } 1872 1873 /* 1874 * btrfs_search_slot - look for a key in a tree and perform necessary 1875 * modifications to preserve tree invariants. 1876 * 1877 * @trans: Handle of transaction, used when modifying the tree 1878 * @p: Holds all btree nodes along the search path 1879 * @root: The root node of the tree 1880 * @key: The key we are looking for 1881 * @ins_len: Indicates purpose of search: 1882 * >0 for inserts it's size of item inserted (*) 1883 * <0 for deletions 1884 * 0 for plain searches, not modifying the tree 1885 * 1886 * (*) If size of item inserted doesn't include 1887 * sizeof(struct btrfs_item), then p->search_for_extension must 1888 * be set. 1889 * @cow: boolean should CoW operations be performed. Must always be 1 1890 * when modifying the tree. 1891 * 1892 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 1893 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 1894 * 1895 * If @key is found, 0 is returned and you can find the item in the leaf level 1896 * of the path (level 0) 1897 * 1898 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 1899 * points to the slot where it should be inserted 1900 * 1901 * If an error is encountered while searching the tree a negative error number 1902 * is returned 1903 */ 1904 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1905 const struct btrfs_key *key, struct btrfs_path *p, 1906 int ins_len, int cow) 1907 { 1908 struct btrfs_fs_info *fs_info = root->fs_info; 1909 struct extent_buffer *b; 1910 int slot; 1911 int ret; 1912 int err; 1913 int level; 1914 int lowest_unlock = 1; 1915 /* everything at write_lock_level or lower must be write locked */ 1916 int write_lock_level = 0; 1917 u8 lowest_level = 0; 1918 int min_write_lock_level; 1919 int prev_cmp; 1920 1921 lowest_level = p->lowest_level; 1922 WARN_ON(lowest_level && ins_len > 0); 1923 WARN_ON(p->nodes[0] != NULL); 1924 BUG_ON(!cow && ins_len); 1925 1926 /* 1927 * For now only allow nowait for read only operations. There's no 1928 * strict reason why we can't, we just only need it for reads so it's 1929 * only implemented for reads. 1930 */ 1931 ASSERT(!p->nowait || !cow); 1932 1933 if (ins_len < 0) { 1934 lowest_unlock = 2; 1935 1936 /* when we are removing items, we might have to go up to level 1937 * two as we update tree pointers Make sure we keep write 1938 * for those levels as well 1939 */ 1940 write_lock_level = 2; 1941 } else if (ins_len > 0) { 1942 /* 1943 * for inserting items, make sure we have a write lock on 1944 * level 1 so we can update keys 1945 */ 1946 write_lock_level = 1; 1947 } 1948 1949 if (!cow) 1950 write_lock_level = -1; 1951 1952 if (cow && (p->keep_locks || p->lowest_level)) 1953 write_lock_level = BTRFS_MAX_LEVEL; 1954 1955 min_write_lock_level = write_lock_level; 1956 1957 if (p->need_commit_sem) { 1958 ASSERT(p->search_commit_root); 1959 if (p->nowait) { 1960 if (!down_read_trylock(&fs_info->commit_root_sem)) 1961 return -EAGAIN; 1962 } else { 1963 down_read(&fs_info->commit_root_sem); 1964 } 1965 } 1966 1967 again: 1968 prev_cmp = -1; 1969 b = btrfs_search_slot_get_root(root, p, write_lock_level); 1970 if (IS_ERR(b)) { 1971 ret = PTR_ERR(b); 1972 goto done; 1973 } 1974 1975 while (b) { 1976 int dec = 0; 1977 1978 level = btrfs_header_level(b); 1979 1980 if (cow) { 1981 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 1982 1983 /* 1984 * if we don't really need to cow this block 1985 * then we don't want to set the path blocking, 1986 * so we test it here 1987 */ 1988 if (!should_cow_block(trans, root, b)) 1989 goto cow_done; 1990 1991 /* 1992 * must have write locks on this node and the 1993 * parent 1994 */ 1995 if (level > write_lock_level || 1996 (level + 1 > write_lock_level && 1997 level + 1 < BTRFS_MAX_LEVEL && 1998 p->nodes[level + 1])) { 1999 write_lock_level = level + 1; 2000 btrfs_release_path(p); 2001 goto again; 2002 } 2003 2004 if (last_level) 2005 err = btrfs_cow_block(trans, root, b, NULL, 0, 2006 &b, 2007 BTRFS_NESTING_COW); 2008 else 2009 err = btrfs_cow_block(trans, root, b, 2010 p->nodes[level + 1], 2011 p->slots[level + 1], &b, 2012 BTRFS_NESTING_COW); 2013 if (err) { 2014 ret = err; 2015 goto done; 2016 } 2017 } 2018 cow_done: 2019 p->nodes[level] = b; 2020 2021 /* 2022 * we have a lock on b and as long as we aren't changing 2023 * the tree, there is no way to for the items in b to change. 2024 * It is safe to drop the lock on our parent before we 2025 * go through the expensive btree search on b. 2026 * 2027 * If we're inserting or deleting (ins_len != 0), then we might 2028 * be changing slot zero, which may require changing the parent. 2029 * So, we can't drop the lock until after we know which slot 2030 * we're operating on. 2031 */ 2032 if (!ins_len && !p->keep_locks) { 2033 int u = level + 1; 2034 2035 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2036 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2037 p->locks[u] = 0; 2038 } 2039 } 2040 2041 if (level == 0) { 2042 if (ins_len > 0) 2043 ASSERT(write_lock_level >= 1); 2044 2045 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp); 2046 if (!p->search_for_split) 2047 unlock_up(p, level, lowest_unlock, 2048 min_write_lock_level, NULL); 2049 goto done; 2050 } 2051 2052 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot); 2053 if (ret < 0) 2054 goto done; 2055 prev_cmp = ret; 2056 2057 if (ret && slot > 0) { 2058 dec = 1; 2059 slot--; 2060 } 2061 p->slots[level] = slot; 2062 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2063 &write_lock_level); 2064 if (err == -EAGAIN) 2065 goto again; 2066 if (err) { 2067 ret = err; 2068 goto done; 2069 } 2070 b = p->nodes[level]; 2071 slot = p->slots[level]; 2072 2073 /* 2074 * Slot 0 is special, if we change the key we have to update 2075 * the parent pointer which means we must have a write lock on 2076 * the parent 2077 */ 2078 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2079 write_lock_level = level + 1; 2080 btrfs_release_path(p); 2081 goto again; 2082 } 2083 2084 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2085 &write_lock_level); 2086 2087 if (level == lowest_level) { 2088 if (dec) 2089 p->slots[level]++; 2090 goto done; 2091 } 2092 2093 err = read_block_for_search(root, p, &b, level, slot, key); 2094 if (err == -EAGAIN) 2095 goto again; 2096 if (err) { 2097 ret = err; 2098 goto done; 2099 } 2100 2101 if (!p->skip_locking) { 2102 level = btrfs_header_level(b); 2103 2104 btrfs_maybe_reset_lockdep_class(root, b); 2105 2106 if (level <= write_lock_level) { 2107 btrfs_tree_lock(b); 2108 p->locks[level] = BTRFS_WRITE_LOCK; 2109 } else { 2110 if (p->nowait) { 2111 if (!btrfs_try_tree_read_lock(b)) { 2112 free_extent_buffer(b); 2113 ret = -EAGAIN; 2114 goto done; 2115 } 2116 } else { 2117 btrfs_tree_read_lock(b); 2118 } 2119 p->locks[level] = BTRFS_READ_LOCK; 2120 } 2121 p->nodes[level] = b; 2122 } 2123 } 2124 ret = 1; 2125 done: 2126 if (ret < 0 && !p->skip_release_on_error) 2127 btrfs_release_path(p); 2128 2129 if (p->need_commit_sem) { 2130 int ret2; 2131 2132 ret2 = finish_need_commit_sem_search(p); 2133 up_read(&fs_info->commit_root_sem); 2134 if (ret2) 2135 ret = ret2; 2136 } 2137 2138 return ret; 2139 } 2140 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO); 2141 2142 /* 2143 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2144 * current state of the tree together with the operations recorded in the tree 2145 * modification log to search for the key in a previous version of this tree, as 2146 * denoted by the time_seq parameter. 2147 * 2148 * Naturally, there is no support for insert, delete or cow operations. 2149 * 2150 * The resulting path and return value will be set up as if we called 2151 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2152 */ 2153 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2154 struct btrfs_path *p, u64 time_seq) 2155 { 2156 struct btrfs_fs_info *fs_info = root->fs_info; 2157 struct extent_buffer *b; 2158 int slot; 2159 int ret; 2160 int err; 2161 int level; 2162 int lowest_unlock = 1; 2163 u8 lowest_level = 0; 2164 2165 lowest_level = p->lowest_level; 2166 WARN_ON(p->nodes[0] != NULL); 2167 ASSERT(!p->nowait); 2168 2169 if (p->search_commit_root) { 2170 BUG_ON(time_seq); 2171 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2172 } 2173 2174 again: 2175 b = btrfs_get_old_root(root, time_seq); 2176 if (!b) { 2177 ret = -EIO; 2178 goto done; 2179 } 2180 level = btrfs_header_level(b); 2181 p->locks[level] = BTRFS_READ_LOCK; 2182 2183 while (b) { 2184 int dec = 0; 2185 2186 level = btrfs_header_level(b); 2187 p->nodes[level] = b; 2188 2189 /* 2190 * we have a lock on b and as long as we aren't changing 2191 * the tree, there is no way to for the items in b to change. 2192 * It is safe to drop the lock on our parent before we 2193 * go through the expensive btree search on b. 2194 */ 2195 btrfs_unlock_up_safe(p, level + 1); 2196 2197 ret = btrfs_bin_search(b, key, &slot); 2198 if (ret < 0) 2199 goto done; 2200 2201 if (level == 0) { 2202 p->slots[level] = slot; 2203 unlock_up(p, level, lowest_unlock, 0, NULL); 2204 goto done; 2205 } 2206 2207 if (ret && slot > 0) { 2208 dec = 1; 2209 slot--; 2210 } 2211 p->slots[level] = slot; 2212 unlock_up(p, level, lowest_unlock, 0, NULL); 2213 2214 if (level == lowest_level) { 2215 if (dec) 2216 p->slots[level]++; 2217 goto done; 2218 } 2219 2220 err = read_block_for_search(root, p, &b, level, slot, key); 2221 if (err == -EAGAIN) 2222 goto again; 2223 if (err) { 2224 ret = err; 2225 goto done; 2226 } 2227 2228 level = btrfs_header_level(b); 2229 btrfs_tree_read_lock(b); 2230 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq); 2231 if (!b) { 2232 ret = -ENOMEM; 2233 goto done; 2234 } 2235 p->locks[level] = BTRFS_READ_LOCK; 2236 p->nodes[level] = b; 2237 } 2238 ret = 1; 2239 done: 2240 if (ret < 0) 2241 btrfs_release_path(p); 2242 2243 return ret; 2244 } 2245 2246 /* 2247 * helper to use instead of search slot if no exact match is needed but 2248 * instead the next or previous item should be returned. 2249 * When find_higher is true, the next higher item is returned, the next lower 2250 * otherwise. 2251 * When return_any and find_higher are both true, and no higher item is found, 2252 * return the next lower instead. 2253 * When return_any is true and find_higher is false, and no lower item is found, 2254 * return the next higher instead. 2255 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2256 * < 0 on error 2257 */ 2258 int btrfs_search_slot_for_read(struct btrfs_root *root, 2259 const struct btrfs_key *key, 2260 struct btrfs_path *p, int find_higher, 2261 int return_any) 2262 { 2263 int ret; 2264 struct extent_buffer *leaf; 2265 2266 again: 2267 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2268 if (ret <= 0) 2269 return ret; 2270 /* 2271 * a return value of 1 means the path is at the position where the 2272 * item should be inserted. Normally this is the next bigger item, 2273 * but in case the previous item is the last in a leaf, path points 2274 * to the first free slot in the previous leaf, i.e. at an invalid 2275 * item. 2276 */ 2277 leaf = p->nodes[0]; 2278 2279 if (find_higher) { 2280 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2281 ret = btrfs_next_leaf(root, p); 2282 if (ret <= 0) 2283 return ret; 2284 if (!return_any) 2285 return 1; 2286 /* 2287 * no higher item found, return the next 2288 * lower instead 2289 */ 2290 return_any = 0; 2291 find_higher = 0; 2292 btrfs_release_path(p); 2293 goto again; 2294 } 2295 } else { 2296 if (p->slots[0] == 0) { 2297 ret = btrfs_prev_leaf(root, p); 2298 if (ret < 0) 2299 return ret; 2300 if (!ret) { 2301 leaf = p->nodes[0]; 2302 if (p->slots[0] == btrfs_header_nritems(leaf)) 2303 p->slots[0]--; 2304 return 0; 2305 } 2306 if (!return_any) 2307 return 1; 2308 /* 2309 * no lower item found, return the next 2310 * higher instead 2311 */ 2312 return_any = 0; 2313 find_higher = 1; 2314 btrfs_release_path(p); 2315 goto again; 2316 } else { 2317 --p->slots[0]; 2318 } 2319 } 2320 return 0; 2321 } 2322 2323 /* 2324 * Execute search and call btrfs_previous_item to traverse backwards if the item 2325 * was not found. 2326 * 2327 * Return 0 if found, 1 if not found and < 0 if error. 2328 */ 2329 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 2330 struct btrfs_path *path) 2331 { 2332 int ret; 2333 2334 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 2335 if (ret > 0) 2336 ret = btrfs_previous_item(root, path, key->objectid, key->type); 2337 2338 if (ret == 0) 2339 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); 2340 2341 return ret; 2342 } 2343 2344 /** 2345 * Search for a valid slot for the given path. 2346 * 2347 * @root: The root node of the tree. 2348 * @key: Will contain a valid item if found. 2349 * @path: The starting point to validate the slot. 2350 * 2351 * Return: 0 if the item is valid 2352 * 1 if not found 2353 * <0 if error. 2354 */ 2355 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 2356 struct btrfs_path *path) 2357 { 2358 while (1) { 2359 int ret; 2360 const int slot = path->slots[0]; 2361 const struct extent_buffer *leaf = path->nodes[0]; 2362 2363 /* This is where we start walking the path. */ 2364 if (slot >= btrfs_header_nritems(leaf)) { 2365 /* 2366 * If we've reached the last slot in this leaf we need 2367 * to go to the next leaf and reset the path. 2368 */ 2369 ret = btrfs_next_leaf(root, path); 2370 if (ret) 2371 return ret; 2372 continue; 2373 } 2374 /* Store the found, valid item in @key. */ 2375 btrfs_item_key_to_cpu(leaf, key, slot); 2376 break; 2377 } 2378 return 0; 2379 } 2380 2381 /* 2382 * adjust the pointers going up the tree, starting at level 2383 * making sure the right key of each node is points to 'key'. 2384 * This is used after shifting pointers to the left, so it stops 2385 * fixing up pointers when a given leaf/node is not in slot 0 of the 2386 * higher levels 2387 * 2388 */ 2389 static void fixup_low_keys(struct btrfs_path *path, 2390 struct btrfs_disk_key *key, int level) 2391 { 2392 int i; 2393 struct extent_buffer *t; 2394 int ret; 2395 2396 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2397 int tslot = path->slots[i]; 2398 2399 if (!path->nodes[i]) 2400 break; 2401 t = path->nodes[i]; 2402 ret = btrfs_tree_mod_log_insert_key(t, tslot, 2403 BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC); 2404 BUG_ON(ret < 0); 2405 btrfs_set_node_key(t, key, tslot); 2406 btrfs_mark_buffer_dirty(path->nodes[i]); 2407 if (tslot != 0) 2408 break; 2409 } 2410 } 2411 2412 /* 2413 * update item key. 2414 * 2415 * This function isn't completely safe. It's the caller's responsibility 2416 * that the new key won't break the order 2417 */ 2418 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2419 struct btrfs_path *path, 2420 const struct btrfs_key *new_key) 2421 { 2422 struct btrfs_disk_key disk_key; 2423 struct extent_buffer *eb; 2424 int slot; 2425 2426 eb = path->nodes[0]; 2427 slot = path->slots[0]; 2428 if (slot > 0) { 2429 btrfs_item_key(eb, &disk_key, slot - 1); 2430 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 2431 btrfs_crit(fs_info, 2432 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2433 slot, btrfs_disk_key_objectid(&disk_key), 2434 btrfs_disk_key_type(&disk_key), 2435 btrfs_disk_key_offset(&disk_key), 2436 new_key->objectid, new_key->type, 2437 new_key->offset); 2438 btrfs_print_leaf(eb); 2439 BUG(); 2440 } 2441 } 2442 if (slot < btrfs_header_nritems(eb) - 1) { 2443 btrfs_item_key(eb, &disk_key, slot + 1); 2444 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 2445 btrfs_crit(fs_info, 2446 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2447 slot, btrfs_disk_key_objectid(&disk_key), 2448 btrfs_disk_key_type(&disk_key), 2449 btrfs_disk_key_offset(&disk_key), 2450 new_key->objectid, new_key->type, 2451 new_key->offset); 2452 btrfs_print_leaf(eb); 2453 BUG(); 2454 } 2455 } 2456 2457 btrfs_cpu_key_to_disk(&disk_key, new_key); 2458 btrfs_set_item_key(eb, &disk_key, slot); 2459 btrfs_mark_buffer_dirty(eb); 2460 if (slot == 0) 2461 fixup_low_keys(path, &disk_key, 1); 2462 } 2463 2464 /* 2465 * Check key order of two sibling extent buffers. 2466 * 2467 * Return true if something is wrong. 2468 * Return false if everything is fine. 2469 * 2470 * Tree-checker only works inside one tree block, thus the following 2471 * corruption can not be detected by tree-checker: 2472 * 2473 * Leaf @left | Leaf @right 2474 * -------------------------------------------------------------- 2475 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | 2476 * 2477 * Key f6 in leaf @left itself is valid, but not valid when the next 2478 * key in leaf @right is 7. 2479 * This can only be checked at tree block merge time. 2480 * And since tree checker has ensured all key order in each tree block 2481 * is correct, we only need to bother the last key of @left and the first 2482 * key of @right. 2483 */ 2484 static bool check_sibling_keys(struct extent_buffer *left, 2485 struct extent_buffer *right) 2486 { 2487 struct btrfs_key left_last; 2488 struct btrfs_key right_first; 2489 int level = btrfs_header_level(left); 2490 int nr_left = btrfs_header_nritems(left); 2491 int nr_right = btrfs_header_nritems(right); 2492 2493 /* No key to check in one of the tree blocks */ 2494 if (!nr_left || !nr_right) 2495 return false; 2496 2497 if (level) { 2498 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); 2499 btrfs_node_key_to_cpu(right, &right_first, 0); 2500 } else { 2501 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); 2502 btrfs_item_key_to_cpu(right, &right_first, 0); 2503 } 2504 2505 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) { 2506 btrfs_crit(left->fs_info, 2507 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", 2508 left_last.objectid, left_last.type, 2509 left_last.offset, right_first.objectid, 2510 right_first.type, right_first.offset); 2511 return true; 2512 } 2513 return false; 2514 } 2515 2516 /* 2517 * try to push data from one node into the next node left in the 2518 * tree. 2519 * 2520 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2521 * error, and > 0 if there was no room in the left hand block. 2522 */ 2523 static int push_node_left(struct btrfs_trans_handle *trans, 2524 struct extent_buffer *dst, 2525 struct extent_buffer *src, int empty) 2526 { 2527 struct btrfs_fs_info *fs_info = trans->fs_info; 2528 int push_items = 0; 2529 int src_nritems; 2530 int dst_nritems; 2531 int ret = 0; 2532 2533 src_nritems = btrfs_header_nritems(src); 2534 dst_nritems = btrfs_header_nritems(dst); 2535 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2536 WARN_ON(btrfs_header_generation(src) != trans->transid); 2537 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2538 2539 if (!empty && src_nritems <= 8) 2540 return 1; 2541 2542 if (push_items <= 0) 2543 return 1; 2544 2545 if (empty) { 2546 push_items = min(src_nritems, push_items); 2547 if (push_items < src_nritems) { 2548 /* leave at least 8 pointers in the node if 2549 * we aren't going to empty it 2550 */ 2551 if (src_nritems - push_items < 8) { 2552 if (push_items <= 8) 2553 return 1; 2554 push_items -= 8; 2555 } 2556 } 2557 } else 2558 push_items = min(src_nritems - 8, push_items); 2559 2560 /* dst is the left eb, src is the middle eb */ 2561 if (check_sibling_keys(dst, src)) { 2562 ret = -EUCLEAN; 2563 btrfs_abort_transaction(trans, ret); 2564 return ret; 2565 } 2566 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 2567 if (ret) { 2568 btrfs_abort_transaction(trans, ret); 2569 return ret; 2570 } 2571 copy_extent_buffer(dst, src, 2572 btrfs_node_key_ptr_offset(dst_nritems), 2573 btrfs_node_key_ptr_offset(0), 2574 push_items * sizeof(struct btrfs_key_ptr)); 2575 2576 if (push_items < src_nritems) { 2577 /* 2578 * Don't call btrfs_tree_mod_log_insert_move() here, key removal 2579 * was already fully logged by btrfs_tree_mod_log_eb_copy() above. 2580 */ 2581 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2582 btrfs_node_key_ptr_offset(push_items), 2583 (src_nritems - push_items) * 2584 sizeof(struct btrfs_key_ptr)); 2585 } 2586 btrfs_set_header_nritems(src, src_nritems - push_items); 2587 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2588 btrfs_mark_buffer_dirty(src); 2589 btrfs_mark_buffer_dirty(dst); 2590 2591 return ret; 2592 } 2593 2594 /* 2595 * try to push data from one node into the next node right in the 2596 * tree. 2597 * 2598 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2599 * error, and > 0 if there was no room in the right hand block. 2600 * 2601 * this will only push up to 1/2 the contents of the left node over 2602 */ 2603 static int balance_node_right(struct btrfs_trans_handle *trans, 2604 struct extent_buffer *dst, 2605 struct extent_buffer *src) 2606 { 2607 struct btrfs_fs_info *fs_info = trans->fs_info; 2608 int push_items = 0; 2609 int max_push; 2610 int src_nritems; 2611 int dst_nritems; 2612 int ret = 0; 2613 2614 WARN_ON(btrfs_header_generation(src) != trans->transid); 2615 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2616 2617 src_nritems = btrfs_header_nritems(src); 2618 dst_nritems = btrfs_header_nritems(dst); 2619 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2620 if (push_items <= 0) 2621 return 1; 2622 2623 if (src_nritems < 4) 2624 return 1; 2625 2626 max_push = src_nritems / 2 + 1; 2627 /* don't try to empty the node */ 2628 if (max_push >= src_nritems) 2629 return 1; 2630 2631 if (max_push < push_items) 2632 push_items = max_push; 2633 2634 /* dst is the right eb, src is the middle eb */ 2635 if (check_sibling_keys(src, dst)) { 2636 ret = -EUCLEAN; 2637 btrfs_abort_transaction(trans, ret); 2638 return ret; 2639 } 2640 ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 2641 BUG_ON(ret < 0); 2642 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2643 btrfs_node_key_ptr_offset(0), 2644 (dst_nritems) * 2645 sizeof(struct btrfs_key_ptr)); 2646 2647 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 2648 push_items); 2649 if (ret) { 2650 btrfs_abort_transaction(trans, ret); 2651 return ret; 2652 } 2653 copy_extent_buffer(dst, src, 2654 btrfs_node_key_ptr_offset(0), 2655 btrfs_node_key_ptr_offset(src_nritems - push_items), 2656 push_items * sizeof(struct btrfs_key_ptr)); 2657 2658 btrfs_set_header_nritems(src, src_nritems - push_items); 2659 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2660 2661 btrfs_mark_buffer_dirty(src); 2662 btrfs_mark_buffer_dirty(dst); 2663 2664 return ret; 2665 } 2666 2667 /* 2668 * helper function to insert a new root level in the tree. 2669 * A new node is allocated, and a single item is inserted to 2670 * point to the existing root 2671 * 2672 * returns zero on success or < 0 on failure. 2673 */ 2674 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2675 struct btrfs_root *root, 2676 struct btrfs_path *path, int level) 2677 { 2678 struct btrfs_fs_info *fs_info = root->fs_info; 2679 u64 lower_gen; 2680 struct extent_buffer *lower; 2681 struct extent_buffer *c; 2682 struct extent_buffer *old; 2683 struct btrfs_disk_key lower_key; 2684 int ret; 2685 2686 BUG_ON(path->nodes[level]); 2687 BUG_ON(path->nodes[level-1] != root->node); 2688 2689 lower = path->nodes[level-1]; 2690 if (level == 1) 2691 btrfs_item_key(lower, &lower_key, 0); 2692 else 2693 btrfs_node_key(lower, &lower_key, 0); 2694 2695 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 2696 &lower_key, level, root->node->start, 0, 2697 BTRFS_NESTING_NEW_ROOT); 2698 if (IS_ERR(c)) 2699 return PTR_ERR(c); 2700 2701 root_add_used(root, fs_info->nodesize); 2702 2703 btrfs_set_header_nritems(c, 1); 2704 btrfs_set_node_key(c, &lower_key, 0); 2705 btrfs_set_node_blockptr(c, 0, lower->start); 2706 lower_gen = btrfs_header_generation(lower); 2707 WARN_ON(lower_gen != trans->transid); 2708 2709 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2710 2711 btrfs_mark_buffer_dirty(c); 2712 2713 old = root->node; 2714 ret = btrfs_tree_mod_log_insert_root(root->node, c, false); 2715 BUG_ON(ret < 0); 2716 rcu_assign_pointer(root->node, c); 2717 2718 /* the super has an extra ref to root->node */ 2719 free_extent_buffer(old); 2720 2721 add_root_to_dirty_list(root); 2722 atomic_inc(&c->refs); 2723 path->nodes[level] = c; 2724 path->locks[level] = BTRFS_WRITE_LOCK; 2725 path->slots[level] = 0; 2726 return 0; 2727 } 2728 2729 /* 2730 * worker function to insert a single pointer in a node. 2731 * the node should have enough room for the pointer already 2732 * 2733 * slot and level indicate where you want the key to go, and 2734 * blocknr is the block the key points to. 2735 */ 2736 static void insert_ptr(struct btrfs_trans_handle *trans, 2737 struct btrfs_path *path, 2738 struct btrfs_disk_key *key, u64 bytenr, 2739 int slot, int level) 2740 { 2741 struct extent_buffer *lower; 2742 int nritems; 2743 int ret; 2744 2745 BUG_ON(!path->nodes[level]); 2746 btrfs_assert_tree_write_locked(path->nodes[level]); 2747 lower = path->nodes[level]; 2748 nritems = btrfs_header_nritems(lower); 2749 BUG_ON(slot > nritems); 2750 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 2751 if (slot != nritems) { 2752 if (level) { 2753 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1, 2754 slot, nritems - slot); 2755 BUG_ON(ret < 0); 2756 } 2757 memmove_extent_buffer(lower, 2758 btrfs_node_key_ptr_offset(slot + 1), 2759 btrfs_node_key_ptr_offset(slot), 2760 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2761 } 2762 if (level) { 2763 ret = btrfs_tree_mod_log_insert_key(lower, slot, 2764 BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS); 2765 BUG_ON(ret < 0); 2766 } 2767 btrfs_set_node_key(lower, key, slot); 2768 btrfs_set_node_blockptr(lower, slot, bytenr); 2769 WARN_ON(trans->transid == 0); 2770 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2771 btrfs_set_header_nritems(lower, nritems + 1); 2772 btrfs_mark_buffer_dirty(lower); 2773 } 2774 2775 /* 2776 * split the node at the specified level in path in two. 2777 * The path is corrected to point to the appropriate node after the split 2778 * 2779 * Before splitting this tries to make some room in the node by pushing 2780 * left and right, if either one works, it returns right away. 2781 * 2782 * returns 0 on success and < 0 on failure 2783 */ 2784 static noinline int split_node(struct btrfs_trans_handle *trans, 2785 struct btrfs_root *root, 2786 struct btrfs_path *path, int level) 2787 { 2788 struct btrfs_fs_info *fs_info = root->fs_info; 2789 struct extent_buffer *c; 2790 struct extent_buffer *split; 2791 struct btrfs_disk_key disk_key; 2792 int mid; 2793 int ret; 2794 u32 c_nritems; 2795 2796 c = path->nodes[level]; 2797 WARN_ON(btrfs_header_generation(c) != trans->transid); 2798 if (c == root->node) { 2799 /* 2800 * trying to split the root, lets make a new one 2801 * 2802 * tree mod log: We don't log_removal old root in 2803 * insert_new_root, because that root buffer will be kept as a 2804 * normal node. We are going to log removal of half of the 2805 * elements below with btrfs_tree_mod_log_eb_copy(). We're 2806 * holding a tree lock on the buffer, which is why we cannot 2807 * race with other tree_mod_log users. 2808 */ 2809 ret = insert_new_root(trans, root, path, level + 1); 2810 if (ret) 2811 return ret; 2812 } else { 2813 ret = push_nodes_for_insert(trans, root, path, level); 2814 c = path->nodes[level]; 2815 if (!ret && btrfs_header_nritems(c) < 2816 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 2817 return 0; 2818 if (ret < 0) 2819 return ret; 2820 } 2821 2822 c_nritems = btrfs_header_nritems(c); 2823 mid = (c_nritems + 1) / 2; 2824 btrfs_node_key(c, &disk_key, mid); 2825 2826 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 2827 &disk_key, level, c->start, 0, 2828 BTRFS_NESTING_SPLIT); 2829 if (IS_ERR(split)) 2830 return PTR_ERR(split); 2831 2832 root_add_used(root, fs_info->nodesize); 2833 ASSERT(btrfs_header_level(c) == level); 2834 2835 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 2836 if (ret) { 2837 btrfs_abort_transaction(trans, ret); 2838 return ret; 2839 } 2840 copy_extent_buffer(split, c, 2841 btrfs_node_key_ptr_offset(0), 2842 btrfs_node_key_ptr_offset(mid), 2843 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2844 btrfs_set_header_nritems(split, c_nritems - mid); 2845 btrfs_set_header_nritems(c, mid); 2846 2847 btrfs_mark_buffer_dirty(c); 2848 btrfs_mark_buffer_dirty(split); 2849 2850 insert_ptr(trans, path, &disk_key, split->start, 2851 path->slots[level + 1] + 1, level + 1); 2852 2853 if (path->slots[level] >= mid) { 2854 path->slots[level] -= mid; 2855 btrfs_tree_unlock(c); 2856 free_extent_buffer(c); 2857 path->nodes[level] = split; 2858 path->slots[level + 1] += 1; 2859 } else { 2860 btrfs_tree_unlock(split); 2861 free_extent_buffer(split); 2862 } 2863 return 0; 2864 } 2865 2866 /* 2867 * how many bytes are required to store the items in a leaf. start 2868 * and nr indicate which items in the leaf to check. This totals up the 2869 * space used both by the item structs and the item data 2870 */ 2871 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2872 { 2873 int data_len; 2874 int nritems = btrfs_header_nritems(l); 2875 int end = min(nritems, start + nr) - 1; 2876 2877 if (!nr) 2878 return 0; 2879 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start); 2880 data_len = data_len - btrfs_item_offset(l, end); 2881 data_len += sizeof(struct btrfs_item) * nr; 2882 WARN_ON(data_len < 0); 2883 return data_len; 2884 } 2885 2886 /* 2887 * The space between the end of the leaf items and 2888 * the start of the leaf data. IOW, how much room 2889 * the leaf has left for both items and data 2890 */ 2891 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 2892 { 2893 struct btrfs_fs_info *fs_info = leaf->fs_info; 2894 int nritems = btrfs_header_nritems(leaf); 2895 int ret; 2896 2897 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 2898 if (ret < 0) { 2899 btrfs_crit(fs_info, 2900 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 2901 ret, 2902 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 2903 leaf_space_used(leaf, 0, nritems), nritems); 2904 } 2905 return ret; 2906 } 2907 2908 /* 2909 * min slot controls the lowest index we're willing to push to the 2910 * right. We'll push up to and including min_slot, but no lower 2911 */ 2912 static noinline int __push_leaf_right(struct btrfs_path *path, 2913 int data_size, int empty, 2914 struct extent_buffer *right, 2915 int free_space, u32 left_nritems, 2916 u32 min_slot) 2917 { 2918 struct btrfs_fs_info *fs_info = right->fs_info; 2919 struct extent_buffer *left = path->nodes[0]; 2920 struct extent_buffer *upper = path->nodes[1]; 2921 struct btrfs_map_token token; 2922 struct btrfs_disk_key disk_key; 2923 int slot; 2924 u32 i; 2925 int push_space = 0; 2926 int push_items = 0; 2927 u32 nr; 2928 u32 right_nritems; 2929 u32 data_end; 2930 u32 this_item_size; 2931 2932 if (empty) 2933 nr = 0; 2934 else 2935 nr = max_t(u32, 1, min_slot); 2936 2937 if (path->slots[0] >= left_nritems) 2938 push_space += data_size; 2939 2940 slot = path->slots[1]; 2941 i = left_nritems - 1; 2942 while (i >= nr) { 2943 if (!empty && push_items > 0) { 2944 if (path->slots[0] > i) 2945 break; 2946 if (path->slots[0] == i) { 2947 int space = btrfs_leaf_free_space(left); 2948 2949 if (space + push_space * 2 > free_space) 2950 break; 2951 } 2952 } 2953 2954 if (path->slots[0] == i) 2955 push_space += data_size; 2956 2957 this_item_size = btrfs_item_size(left, i); 2958 if (this_item_size + sizeof(struct btrfs_item) + 2959 push_space > free_space) 2960 break; 2961 2962 push_items++; 2963 push_space += this_item_size + sizeof(struct btrfs_item); 2964 if (i == 0) 2965 break; 2966 i--; 2967 } 2968 2969 if (push_items == 0) 2970 goto out_unlock; 2971 2972 WARN_ON(!empty && push_items == left_nritems); 2973 2974 /* push left to right */ 2975 right_nritems = btrfs_header_nritems(right); 2976 2977 push_space = btrfs_item_data_end(left, left_nritems - push_items); 2978 push_space -= leaf_data_end(left); 2979 2980 /* make room in the right data area */ 2981 data_end = leaf_data_end(right); 2982 memmove_extent_buffer(right, 2983 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 2984 BTRFS_LEAF_DATA_OFFSET + data_end, 2985 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 2986 2987 /* copy from the left data area */ 2988 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 2989 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 2990 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 2991 push_space); 2992 2993 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2994 btrfs_item_nr_offset(0), 2995 right_nritems * sizeof(struct btrfs_item)); 2996 2997 /* copy the items from left to right */ 2998 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2999 btrfs_item_nr_offset(left_nritems - push_items), 3000 push_items * sizeof(struct btrfs_item)); 3001 3002 /* update the item pointers */ 3003 btrfs_init_map_token(&token, right); 3004 right_nritems += push_items; 3005 btrfs_set_header_nritems(right, right_nritems); 3006 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3007 for (i = 0; i < right_nritems; i++) { 3008 push_space -= btrfs_token_item_size(&token, i); 3009 btrfs_set_token_item_offset(&token, i, push_space); 3010 } 3011 3012 left_nritems -= push_items; 3013 btrfs_set_header_nritems(left, left_nritems); 3014 3015 if (left_nritems) 3016 btrfs_mark_buffer_dirty(left); 3017 else 3018 btrfs_clean_tree_block(left); 3019 3020 btrfs_mark_buffer_dirty(right); 3021 3022 btrfs_item_key(right, &disk_key, 0); 3023 btrfs_set_node_key(upper, &disk_key, slot + 1); 3024 btrfs_mark_buffer_dirty(upper); 3025 3026 /* then fixup the leaf pointer in the path */ 3027 if (path->slots[0] >= left_nritems) { 3028 path->slots[0] -= left_nritems; 3029 if (btrfs_header_nritems(path->nodes[0]) == 0) 3030 btrfs_clean_tree_block(path->nodes[0]); 3031 btrfs_tree_unlock(path->nodes[0]); 3032 free_extent_buffer(path->nodes[0]); 3033 path->nodes[0] = right; 3034 path->slots[1] += 1; 3035 } else { 3036 btrfs_tree_unlock(right); 3037 free_extent_buffer(right); 3038 } 3039 return 0; 3040 3041 out_unlock: 3042 btrfs_tree_unlock(right); 3043 free_extent_buffer(right); 3044 return 1; 3045 } 3046 3047 /* 3048 * push some data in the path leaf to the right, trying to free up at 3049 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3050 * 3051 * returns 1 if the push failed because the other node didn't have enough 3052 * room, 0 if everything worked out and < 0 if there were major errors. 3053 * 3054 * this will push starting from min_slot to the end of the leaf. It won't 3055 * push any slot lower than min_slot 3056 */ 3057 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3058 *root, struct btrfs_path *path, 3059 int min_data_size, int data_size, 3060 int empty, u32 min_slot) 3061 { 3062 struct extent_buffer *left = path->nodes[0]; 3063 struct extent_buffer *right; 3064 struct extent_buffer *upper; 3065 int slot; 3066 int free_space; 3067 u32 left_nritems; 3068 int ret; 3069 3070 if (!path->nodes[1]) 3071 return 1; 3072 3073 slot = path->slots[1]; 3074 upper = path->nodes[1]; 3075 if (slot >= btrfs_header_nritems(upper) - 1) 3076 return 1; 3077 3078 btrfs_assert_tree_write_locked(path->nodes[1]); 3079 3080 right = btrfs_read_node_slot(upper, slot + 1); 3081 /* 3082 * slot + 1 is not valid or we fail to read the right node, 3083 * no big deal, just return. 3084 */ 3085 if (IS_ERR(right)) 3086 return 1; 3087 3088 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 3089 3090 free_space = btrfs_leaf_free_space(right); 3091 if (free_space < data_size) 3092 goto out_unlock; 3093 3094 ret = btrfs_cow_block(trans, root, right, upper, 3095 slot + 1, &right, BTRFS_NESTING_RIGHT_COW); 3096 if (ret) 3097 goto out_unlock; 3098 3099 left_nritems = btrfs_header_nritems(left); 3100 if (left_nritems == 0) 3101 goto out_unlock; 3102 3103 if (check_sibling_keys(left, right)) { 3104 ret = -EUCLEAN; 3105 btrfs_tree_unlock(right); 3106 free_extent_buffer(right); 3107 return ret; 3108 } 3109 if (path->slots[0] == left_nritems && !empty) { 3110 /* Key greater than all keys in the leaf, right neighbor has 3111 * enough room for it and we're not emptying our leaf to delete 3112 * it, therefore use right neighbor to insert the new item and 3113 * no need to touch/dirty our left leaf. */ 3114 btrfs_tree_unlock(left); 3115 free_extent_buffer(left); 3116 path->nodes[0] = right; 3117 path->slots[0] = 0; 3118 path->slots[1]++; 3119 return 0; 3120 } 3121 3122 return __push_leaf_right(path, min_data_size, empty, 3123 right, free_space, left_nritems, min_slot); 3124 out_unlock: 3125 btrfs_tree_unlock(right); 3126 free_extent_buffer(right); 3127 return 1; 3128 } 3129 3130 /* 3131 * push some data in the path leaf to the left, trying to free up at 3132 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3133 * 3134 * max_slot can put a limit on how far into the leaf we'll push items. The 3135 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3136 * items 3137 */ 3138 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 3139 int empty, struct extent_buffer *left, 3140 int free_space, u32 right_nritems, 3141 u32 max_slot) 3142 { 3143 struct btrfs_fs_info *fs_info = left->fs_info; 3144 struct btrfs_disk_key disk_key; 3145 struct extent_buffer *right = path->nodes[0]; 3146 int i; 3147 int push_space = 0; 3148 int push_items = 0; 3149 u32 old_left_nritems; 3150 u32 nr; 3151 int ret = 0; 3152 u32 this_item_size; 3153 u32 old_left_item_size; 3154 struct btrfs_map_token token; 3155 3156 if (empty) 3157 nr = min(right_nritems, max_slot); 3158 else 3159 nr = min(right_nritems - 1, max_slot); 3160 3161 for (i = 0; i < nr; i++) { 3162 if (!empty && push_items > 0) { 3163 if (path->slots[0] < i) 3164 break; 3165 if (path->slots[0] == i) { 3166 int space = btrfs_leaf_free_space(right); 3167 3168 if (space + push_space * 2 > free_space) 3169 break; 3170 } 3171 } 3172 3173 if (path->slots[0] == i) 3174 push_space += data_size; 3175 3176 this_item_size = btrfs_item_size(right, i); 3177 if (this_item_size + sizeof(struct btrfs_item) + push_space > 3178 free_space) 3179 break; 3180 3181 push_items++; 3182 push_space += this_item_size + sizeof(struct btrfs_item); 3183 } 3184 3185 if (push_items == 0) { 3186 ret = 1; 3187 goto out; 3188 } 3189 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3190 3191 /* push data from right to left */ 3192 copy_extent_buffer(left, right, 3193 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3194 btrfs_item_nr_offset(0), 3195 push_items * sizeof(struct btrfs_item)); 3196 3197 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3198 btrfs_item_offset(right, push_items - 1); 3199 3200 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3201 leaf_data_end(left) - push_space, 3202 BTRFS_LEAF_DATA_OFFSET + 3203 btrfs_item_offset(right, push_items - 1), 3204 push_space); 3205 old_left_nritems = btrfs_header_nritems(left); 3206 BUG_ON(old_left_nritems <= 0); 3207 3208 btrfs_init_map_token(&token, left); 3209 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1); 3210 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3211 u32 ioff; 3212 3213 ioff = btrfs_token_item_offset(&token, i); 3214 btrfs_set_token_item_offset(&token, i, 3215 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 3216 } 3217 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3218 3219 /* fixup right node */ 3220 if (push_items > right_nritems) 3221 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3222 right_nritems); 3223 3224 if (push_items < right_nritems) { 3225 push_space = btrfs_item_offset(right, push_items - 1) - 3226 leaf_data_end(right); 3227 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3228 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3229 BTRFS_LEAF_DATA_OFFSET + 3230 leaf_data_end(right), push_space); 3231 3232 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3233 btrfs_item_nr_offset(push_items), 3234 (btrfs_header_nritems(right) - push_items) * 3235 sizeof(struct btrfs_item)); 3236 } 3237 3238 btrfs_init_map_token(&token, right); 3239 right_nritems -= push_items; 3240 btrfs_set_header_nritems(right, right_nritems); 3241 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3242 for (i = 0; i < right_nritems; i++) { 3243 push_space = push_space - btrfs_token_item_size(&token, i); 3244 btrfs_set_token_item_offset(&token, i, push_space); 3245 } 3246 3247 btrfs_mark_buffer_dirty(left); 3248 if (right_nritems) 3249 btrfs_mark_buffer_dirty(right); 3250 else 3251 btrfs_clean_tree_block(right); 3252 3253 btrfs_item_key(right, &disk_key, 0); 3254 fixup_low_keys(path, &disk_key, 1); 3255 3256 /* then fixup the leaf pointer in the path */ 3257 if (path->slots[0] < push_items) { 3258 path->slots[0] += old_left_nritems; 3259 btrfs_tree_unlock(path->nodes[0]); 3260 free_extent_buffer(path->nodes[0]); 3261 path->nodes[0] = left; 3262 path->slots[1] -= 1; 3263 } else { 3264 btrfs_tree_unlock(left); 3265 free_extent_buffer(left); 3266 path->slots[0] -= push_items; 3267 } 3268 BUG_ON(path->slots[0] < 0); 3269 return ret; 3270 out: 3271 btrfs_tree_unlock(left); 3272 free_extent_buffer(left); 3273 return ret; 3274 } 3275 3276 /* 3277 * push some data in the path leaf to the left, trying to free up at 3278 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3279 * 3280 * max_slot can put a limit on how far into the leaf we'll push items. The 3281 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3282 * items 3283 */ 3284 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3285 *root, struct btrfs_path *path, int min_data_size, 3286 int data_size, int empty, u32 max_slot) 3287 { 3288 struct extent_buffer *right = path->nodes[0]; 3289 struct extent_buffer *left; 3290 int slot; 3291 int free_space; 3292 u32 right_nritems; 3293 int ret = 0; 3294 3295 slot = path->slots[1]; 3296 if (slot == 0) 3297 return 1; 3298 if (!path->nodes[1]) 3299 return 1; 3300 3301 right_nritems = btrfs_header_nritems(right); 3302 if (right_nritems == 0) 3303 return 1; 3304 3305 btrfs_assert_tree_write_locked(path->nodes[1]); 3306 3307 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3308 /* 3309 * slot - 1 is not valid or we fail to read the left node, 3310 * no big deal, just return. 3311 */ 3312 if (IS_ERR(left)) 3313 return 1; 3314 3315 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 3316 3317 free_space = btrfs_leaf_free_space(left); 3318 if (free_space < data_size) { 3319 ret = 1; 3320 goto out; 3321 } 3322 3323 ret = btrfs_cow_block(trans, root, left, 3324 path->nodes[1], slot - 1, &left, 3325 BTRFS_NESTING_LEFT_COW); 3326 if (ret) { 3327 /* we hit -ENOSPC, but it isn't fatal here */ 3328 if (ret == -ENOSPC) 3329 ret = 1; 3330 goto out; 3331 } 3332 3333 if (check_sibling_keys(left, right)) { 3334 ret = -EUCLEAN; 3335 goto out; 3336 } 3337 return __push_leaf_left(path, min_data_size, 3338 empty, left, free_space, right_nritems, 3339 max_slot); 3340 out: 3341 btrfs_tree_unlock(left); 3342 free_extent_buffer(left); 3343 return ret; 3344 } 3345 3346 /* 3347 * split the path's leaf in two, making sure there is at least data_size 3348 * available for the resulting leaf level of the path. 3349 */ 3350 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3351 struct btrfs_path *path, 3352 struct extent_buffer *l, 3353 struct extent_buffer *right, 3354 int slot, int mid, int nritems) 3355 { 3356 struct btrfs_fs_info *fs_info = trans->fs_info; 3357 int data_copy_size; 3358 int rt_data_off; 3359 int i; 3360 struct btrfs_disk_key disk_key; 3361 struct btrfs_map_token token; 3362 3363 nritems = nritems - mid; 3364 btrfs_set_header_nritems(right, nritems); 3365 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l); 3366 3367 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3368 btrfs_item_nr_offset(mid), 3369 nritems * sizeof(struct btrfs_item)); 3370 3371 copy_extent_buffer(right, l, 3372 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 3373 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 3374 leaf_data_end(l), data_copy_size); 3375 3376 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid); 3377 3378 btrfs_init_map_token(&token, right); 3379 for (i = 0; i < nritems; i++) { 3380 u32 ioff; 3381 3382 ioff = btrfs_token_item_offset(&token, i); 3383 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off); 3384 } 3385 3386 btrfs_set_header_nritems(l, mid); 3387 btrfs_item_key(right, &disk_key, 0); 3388 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 3389 3390 btrfs_mark_buffer_dirty(right); 3391 btrfs_mark_buffer_dirty(l); 3392 BUG_ON(path->slots[0] != slot); 3393 3394 if (mid <= slot) { 3395 btrfs_tree_unlock(path->nodes[0]); 3396 free_extent_buffer(path->nodes[0]); 3397 path->nodes[0] = right; 3398 path->slots[0] -= mid; 3399 path->slots[1] += 1; 3400 } else { 3401 btrfs_tree_unlock(right); 3402 free_extent_buffer(right); 3403 } 3404 3405 BUG_ON(path->slots[0] < 0); 3406 } 3407 3408 /* 3409 * double splits happen when we need to insert a big item in the middle 3410 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3411 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3412 * A B C 3413 * 3414 * We avoid this by trying to push the items on either side of our target 3415 * into the adjacent leaves. If all goes well we can avoid the double split 3416 * completely. 3417 */ 3418 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3419 struct btrfs_root *root, 3420 struct btrfs_path *path, 3421 int data_size) 3422 { 3423 int ret; 3424 int progress = 0; 3425 int slot; 3426 u32 nritems; 3427 int space_needed = data_size; 3428 3429 slot = path->slots[0]; 3430 if (slot < btrfs_header_nritems(path->nodes[0])) 3431 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3432 3433 /* 3434 * try to push all the items after our slot into the 3435 * right leaf 3436 */ 3437 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 3438 if (ret < 0) 3439 return ret; 3440 3441 if (ret == 0) 3442 progress++; 3443 3444 nritems = btrfs_header_nritems(path->nodes[0]); 3445 /* 3446 * our goal is to get our slot at the start or end of a leaf. If 3447 * we've done so we're done 3448 */ 3449 if (path->slots[0] == 0 || path->slots[0] == nritems) 3450 return 0; 3451 3452 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3453 return 0; 3454 3455 /* try to push all the items before our slot into the next leaf */ 3456 slot = path->slots[0]; 3457 space_needed = data_size; 3458 if (slot > 0) 3459 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3460 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 3461 if (ret < 0) 3462 return ret; 3463 3464 if (ret == 0) 3465 progress++; 3466 3467 if (progress) 3468 return 0; 3469 return 1; 3470 } 3471 3472 /* 3473 * split the path's leaf in two, making sure there is at least data_size 3474 * available for the resulting leaf level of the path. 3475 * 3476 * returns 0 if all went well and < 0 on failure. 3477 */ 3478 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3479 struct btrfs_root *root, 3480 const struct btrfs_key *ins_key, 3481 struct btrfs_path *path, int data_size, 3482 int extend) 3483 { 3484 struct btrfs_disk_key disk_key; 3485 struct extent_buffer *l; 3486 u32 nritems; 3487 int mid; 3488 int slot; 3489 struct extent_buffer *right; 3490 struct btrfs_fs_info *fs_info = root->fs_info; 3491 int ret = 0; 3492 int wret; 3493 int split; 3494 int num_doubles = 0; 3495 int tried_avoid_double = 0; 3496 3497 l = path->nodes[0]; 3498 slot = path->slots[0]; 3499 if (extend && data_size + btrfs_item_size(l, slot) + 3500 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 3501 return -EOVERFLOW; 3502 3503 /* first try to make some room by pushing left and right */ 3504 if (data_size && path->nodes[1]) { 3505 int space_needed = data_size; 3506 3507 if (slot < btrfs_header_nritems(l)) 3508 space_needed -= btrfs_leaf_free_space(l); 3509 3510 wret = push_leaf_right(trans, root, path, space_needed, 3511 space_needed, 0, 0); 3512 if (wret < 0) 3513 return wret; 3514 if (wret) { 3515 space_needed = data_size; 3516 if (slot > 0) 3517 space_needed -= btrfs_leaf_free_space(l); 3518 wret = push_leaf_left(trans, root, path, space_needed, 3519 space_needed, 0, (u32)-1); 3520 if (wret < 0) 3521 return wret; 3522 } 3523 l = path->nodes[0]; 3524 3525 /* did the pushes work? */ 3526 if (btrfs_leaf_free_space(l) >= data_size) 3527 return 0; 3528 } 3529 3530 if (!path->nodes[1]) { 3531 ret = insert_new_root(trans, root, path, 1); 3532 if (ret) 3533 return ret; 3534 } 3535 again: 3536 split = 1; 3537 l = path->nodes[0]; 3538 slot = path->slots[0]; 3539 nritems = btrfs_header_nritems(l); 3540 mid = (nritems + 1) / 2; 3541 3542 if (mid <= slot) { 3543 if (nritems == 1 || 3544 leaf_space_used(l, mid, nritems - mid) + data_size > 3545 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3546 if (slot >= nritems) { 3547 split = 0; 3548 } else { 3549 mid = slot; 3550 if (mid != nritems && 3551 leaf_space_used(l, mid, nritems - mid) + 3552 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3553 if (data_size && !tried_avoid_double) 3554 goto push_for_double; 3555 split = 2; 3556 } 3557 } 3558 } 3559 } else { 3560 if (leaf_space_used(l, 0, mid) + data_size > 3561 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3562 if (!extend && data_size && slot == 0) { 3563 split = 0; 3564 } else if ((extend || !data_size) && slot == 0) { 3565 mid = 1; 3566 } else { 3567 mid = slot; 3568 if (mid != nritems && 3569 leaf_space_used(l, mid, nritems - mid) + 3570 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3571 if (data_size && !tried_avoid_double) 3572 goto push_for_double; 3573 split = 2; 3574 } 3575 } 3576 } 3577 } 3578 3579 if (split == 0) 3580 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3581 else 3582 btrfs_item_key(l, &disk_key, mid); 3583 3584 /* 3585 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double 3586 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES 3587 * subclasses, which is 8 at the time of this patch, and we've maxed it 3588 * out. In the future we could add a 3589 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just 3590 * use BTRFS_NESTING_NEW_ROOT. 3591 */ 3592 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3593 &disk_key, 0, l->start, 0, 3594 num_doubles ? BTRFS_NESTING_NEW_ROOT : 3595 BTRFS_NESTING_SPLIT); 3596 if (IS_ERR(right)) 3597 return PTR_ERR(right); 3598 3599 root_add_used(root, fs_info->nodesize); 3600 3601 if (split == 0) { 3602 if (mid <= slot) { 3603 btrfs_set_header_nritems(right, 0); 3604 insert_ptr(trans, path, &disk_key, 3605 right->start, path->slots[1] + 1, 1); 3606 btrfs_tree_unlock(path->nodes[0]); 3607 free_extent_buffer(path->nodes[0]); 3608 path->nodes[0] = right; 3609 path->slots[0] = 0; 3610 path->slots[1] += 1; 3611 } else { 3612 btrfs_set_header_nritems(right, 0); 3613 insert_ptr(trans, path, &disk_key, 3614 right->start, path->slots[1], 1); 3615 btrfs_tree_unlock(path->nodes[0]); 3616 free_extent_buffer(path->nodes[0]); 3617 path->nodes[0] = right; 3618 path->slots[0] = 0; 3619 if (path->slots[1] == 0) 3620 fixup_low_keys(path, &disk_key, 1); 3621 } 3622 /* 3623 * We create a new leaf 'right' for the required ins_len and 3624 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 3625 * the content of ins_len to 'right'. 3626 */ 3627 return ret; 3628 } 3629 3630 copy_for_split(trans, path, l, right, slot, mid, nritems); 3631 3632 if (split == 2) { 3633 BUG_ON(num_doubles != 0); 3634 num_doubles++; 3635 goto again; 3636 } 3637 3638 return 0; 3639 3640 push_for_double: 3641 push_for_double_split(trans, root, path, data_size); 3642 tried_avoid_double = 1; 3643 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3644 return 0; 3645 goto again; 3646 } 3647 3648 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3649 struct btrfs_root *root, 3650 struct btrfs_path *path, int ins_len) 3651 { 3652 struct btrfs_key key; 3653 struct extent_buffer *leaf; 3654 struct btrfs_file_extent_item *fi; 3655 u64 extent_len = 0; 3656 u32 item_size; 3657 int ret; 3658 3659 leaf = path->nodes[0]; 3660 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3661 3662 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3663 key.type != BTRFS_EXTENT_CSUM_KEY); 3664 3665 if (btrfs_leaf_free_space(leaf) >= ins_len) 3666 return 0; 3667 3668 item_size = btrfs_item_size(leaf, path->slots[0]); 3669 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3670 fi = btrfs_item_ptr(leaf, path->slots[0], 3671 struct btrfs_file_extent_item); 3672 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3673 } 3674 btrfs_release_path(path); 3675 3676 path->keep_locks = 1; 3677 path->search_for_split = 1; 3678 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3679 path->search_for_split = 0; 3680 if (ret > 0) 3681 ret = -EAGAIN; 3682 if (ret < 0) 3683 goto err; 3684 3685 ret = -EAGAIN; 3686 leaf = path->nodes[0]; 3687 /* if our item isn't there, return now */ 3688 if (item_size != btrfs_item_size(leaf, path->slots[0])) 3689 goto err; 3690 3691 /* the leaf has changed, it now has room. return now */ 3692 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 3693 goto err; 3694 3695 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3696 fi = btrfs_item_ptr(leaf, path->slots[0], 3697 struct btrfs_file_extent_item); 3698 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3699 goto err; 3700 } 3701 3702 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3703 if (ret) 3704 goto err; 3705 3706 path->keep_locks = 0; 3707 btrfs_unlock_up_safe(path, 1); 3708 return 0; 3709 err: 3710 path->keep_locks = 0; 3711 return ret; 3712 } 3713 3714 static noinline int split_item(struct btrfs_path *path, 3715 const struct btrfs_key *new_key, 3716 unsigned long split_offset) 3717 { 3718 struct extent_buffer *leaf; 3719 int orig_slot, slot; 3720 char *buf; 3721 u32 nritems; 3722 u32 item_size; 3723 u32 orig_offset; 3724 struct btrfs_disk_key disk_key; 3725 3726 leaf = path->nodes[0]; 3727 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 3728 3729 orig_slot = path->slots[0]; 3730 orig_offset = btrfs_item_offset(leaf, path->slots[0]); 3731 item_size = btrfs_item_size(leaf, path->slots[0]); 3732 3733 buf = kmalloc(item_size, GFP_NOFS); 3734 if (!buf) 3735 return -ENOMEM; 3736 3737 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3738 path->slots[0]), item_size); 3739 3740 slot = path->slots[0] + 1; 3741 nritems = btrfs_header_nritems(leaf); 3742 if (slot != nritems) { 3743 /* shift the items */ 3744 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3745 btrfs_item_nr_offset(slot), 3746 (nritems - slot) * sizeof(struct btrfs_item)); 3747 } 3748 3749 btrfs_cpu_key_to_disk(&disk_key, new_key); 3750 btrfs_set_item_key(leaf, &disk_key, slot); 3751 3752 btrfs_set_item_offset(leaf, slot, orig_offset); 3753 btrfs_set_item_size(leaf, slot, item_size - split_offset); 3754 3755 btrfs_set_item_offset(leaf, orig_slot, 3756 orig_offset + item_size - split_offset); 3757 btrfs_set_item_size(leaf, orig_slot, split_offset); 3758 3759 btrfs_set_header_nritems(leaf, nritems + 1); 3760 3761 /* write the data for the start of the original item */ 3762 write_extent_buffer(leaf, buf, 3763 btrfs_item_ptr_offset(leaf, path->slots[0]), 3764 split_offset); 3765 3766 /* write the data for the new item */ 3767 write_extent_buffer(leaf, buf + split_offset, 3768 btrfs_item_ptr_offset(leaf, slot), 3769 item_size - split_offset); 3770 btrfs_mark_buffer_dirty(leaf); 3771 3772 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 3773 kfree(buf); 3774 return 0; 3775 } 3776 3777 /* 3778 * This function splits a single item into two items, 3779 * giving 'new_key' to the new item and splitting the 3780 * old one at split_offset (from the start of the item). 3781 * 3782 * The path may be released by this operation. After 3783 * the split, the path is pointing to the old item. The 3784 * new item is going to be in the same node as the old one. 3785 * 3786 * Note, the item being split must be smaller enough to live alone on 3787 * a tree block with room for one extra struct btrfs_item 3788 * 3789 * This allows us to split the item in place, keeping a lock on the 3790 * leaf the entire time. 3791 */ 3792 int btrfs_split_item(struct btrfs_trans_handle *trans, 3793 struct btrfs_root *root, 3794 struct btrfs_path *path, 3795 const struct btrfs_key *new_key, 3796 unsigned long split_offset) 3797 { 3798 int ret; 3799 ret = setup_leaf_for_split(trans, root, path, 3800 sizeof(struct btrfs_item)); 3801 if (ret) 3802 return ret; 3803 3804 ret = split_item(path, new_key, split_offset); 3805 return ret; 3806 } 3807 3808 /* 3809 * make the item pointed to by the path smaller. new_size indicates 3810 * how small to make it, and from_end tells us if we just chop bytes 3811 * off the end of the item or if we shift the item to chop bytes off 3812 * the front. 3813 */ 3814 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 3815 { 3816 int slot; 3817 struct extent_buffer *leaf; 3818 u32 nritems; 3819 unsigned int data_end; 3820 unsigned int old_data_start; 3821 unsigned int old_size; 3822 unsigned int size_diff; 3823 int i; 3824 struct btrfs_map_token token; 3825 3826 leaf = path->nodes[0]; 3827 slot = path->slots[0]; 3828 3829 old_size = btrfs_item_size(leaf, slot); 3830 if (old_size == new_size) 3831 return; 3832 3833 nritems = btrfs_header_nritems(leaf); 3834 data_end = leaf_data_end(leaf); 3835 3836 old_data_start = btrfs_item_offset(leaf, slot); 3837 3838 size_diff = old_size - new_size; 3839 3840 BUG_ON(slot < 0); 3841 BUG_ON(slot >= nritems); 3842 3843 /* 3844 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3845 */ 3846 /* first correct the data pointers */ 3847 btrfs_init_map_token(&token, leaf); 3848 for (i = slot; i < nritems; i++) { 3849 u32 ioff; 3850 3851 ioff = btrfs_token_item_offset(&token, i); 3852 btrfs_set_token_item_offset(&token, i, ioff + size_diff); 3853 } 3854 3855 /* shift the data */ 3856 if (from_end) { 3857 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3858 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 3859 data_end, old_data_start + new_size - data_end); 3860 } else { 3861 struct btrfs_disk_key disk_key; 3862 u64 offset; 3863 3864 btrfs_item_key(leaf, &disk_key, slot); 3865 3866 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3867 unsigned long ptr; 3868 struct btrfs_file_extent_item *fi; 3869 3870 fi = btrfs_item_ptr(leaf, slot, 3871 struct btrfs_file_extent_item); 3872 fi = (struct btrfs_file_extent_item *)( 3873 (unsigned long)fi - size_diff); 3874 3875 if (btrfs_file_extent_type(leaf, fi) == 3876 BTRFS_FILE_EXTENT_INLINE) { 3877 ptr = btrfs_item_ptr_offset(leaf, slot); 3878 memmove_extent_buffer(leaf, ptr, 3879 (unsigned long)fi, 3880 BTRFS_FILE_EXTENT_INLINE_DATA_START); 3881 } 3882 } 3883 3884 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3885 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 3886 data_end, old_data_start - data_end); 3887 3888 offset = btrfs_disk_key_offset(&disk_key); 3889 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3890 btrfs_set_item_key(leaf, &disk_key, slot); 3891 if (slot == 0) 3892 fixup_low_keys(path, &disk_key, 1); 3893 } 3894 3895 btrfs_set_item_size(leaf, slot, new_size); 3896 btrfs_mark_buffer_dirty(leaf); 3897 3898 if (btrfs_leaf_free_space(leaf) < 0) { 3899 btrfs_print_leaf(leaf); 3900 BUG(); 3901 } 3902 } 3903 3904 /* 3905 * make the item pointed to by the path bigger, data_size is the added size. 3906 */ 3907 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 3908 { 3909 int slot; 3910 struct extent_buffer *leaf; 3911 u32 nritems; 3912 unsigned int data_end; 3913 unsigned int old_data; 3914 unsigned int old_size; 3915 int i; 3916 struct btrfs_map_token token; 3917 3918 leaf = path->nodes[0]; 3919 3920 nritems = btrfs_header_nritems(leaf); 3921 data_end = leaf_data_end(leaf); 3922 3923 if (btrfs_leaf_free_space(leaf) < data_size) { 3924 btrfs_print_leaf(leaf); 3925 BUG(); 3926 } 3927 slot = path->slots[0]; 3928 old_data = btrfs_item_data_end(leaf, slot); 3929 3930 BUG_ON(slot < 0); 3931 if (slot >= nritems) { 3932 btrfs_print_leaf(leaf); 3933 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 3934 slot, nritems); 3935 BUG(); 3936 } 3937 3938 /* 3939 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3940 */ 3941 /* first correct the data pointers */ 3942 btrfs_init_map_token(&token, leaf); 3943 for (i = slot; i < nritems; i++) { 3944 u32 ioff; 3945 3946 ioff = btrfs_token_item_offset(&token, i); 3947 btrfs_set_token_item_offset(&token, i, ioff - data_size); 3948 } 3949 3950 /* shift the data */ 3951 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3952 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 3953 data_end, old_data - data_end); 3954 3955 data_end = old_data; 3956 old_size = btrfs_item_size(leaf, slot); 3957 btrfs_set_item_size(leaf, slot, old_size + data_size); 3958 btrfs_mark_buffer_dirty(leaf); 3959 3960 if (btrfs_leaf_free_space(leaf) < 0) { 3961 btrfs_print_leaf(leaf); 3962 BUG(); 3963 } 3964 } 3965 3966 /** 3967 * setup_items_for_insert - Helper called before inserting one or more items 3968 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work 3969 * in a function that doesn't call btrfs_search_slot 3970 * 3971 * @root: root we are inserting items to 3972 * @path: points to the leaf/slot where we are going to insert new items 3973 * @batch: information about the batch of items to insert 3974 */ 3975 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 3976 const struct btrfs_item_batch *batch) 3977 { 3978 struct btrfs_fs_info *fs_info = root->fs_info; 3979 int i; 3980 u32 nritems; 3981 unsigned int data_end; 3982 struct btrfs_disk_key disk_key; 3983 struct extent_buffer *leaf; 3984 int slot; 3985 struct btrfs_map_token token; 3986 u32 total_size; 3987 3988 /* 3989 * Before anything else, update keys in the parent and other ancestors 3990 * if needed, then release the write locks on them, so that other tasks 3991 * can use them while we modify the leaf. 3992 */ 3993 if (path->slots[0] == 0) { 3994 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]); 3995 fixup_low_keys(path, &disk_key, 1); 3996 } 3997 btrfs_unlock_up_safe(path, 1); 3998 3999 leaf = path->nodes[0]; 4000 slot = path->slots[0]; 4001 4002 nritems = btrfs_header_nritems(leaf); 4003 data_end = leaf_data_end(leaf); 4004 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); 4005 4006 if (btrfs_leaf_free_space(leaf) < total_size) { 4007 btrfs_print_leaf(leaf); 4008 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4009 total_size, btrfs_leaf_free_space(leaf)); 4010 BUG(); 4011 } 4012 4013 btrfs_init_map_token(&token, leaf); 4014 if (slot != nritems) { 4015 unsigned int old_data = btrfs_item_data_end(leaf, slot); 4016 4017 if (old_data < data_end) { 4018 btrfs_print_leaf(leaf); 4019 btrfs_crit(fs_info, 4020 "item at slot %d with data offset %u beyond data end of leaf %u", 4021 slot, old_data, data_end); 4022 BUG(); 4023 } 4024 /* 4025 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4026 */ 4027 /* first correct the data pointers */ 4028 for (i = slot; i < nritems; i++) { 4029 u32 ioff; 4030 4031 ioff = btrfs_token_item_offset(&token, i); 4032 btrfs_set_token_item_offset(&token, i, 4033 ioff - batch->total_data_size); 4034 } 4035 /* shift the items */ 4036 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr), 4037 btrfs_item_nr_offset(slot), 4038 (nritems - slot) * sizeof(struct btrfs_item)); 4039 4040 /* shift the data */ 4041 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4042 data_end - batch->total_data_size, 4043 BTRFS_LEAF_DATA_OFFSET + data_end, 4044 old_data - data_end); 4045 data_end = old_data; 4046 } 4047 4048 /* setup the item for the new data */ 4049 for (i = 0; i < batch->nr; i++) { 4050 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]); 4051 btrfs_set_item_key(leaf, &disk_key, slot + i); 4052 data_end -= batch->data_sizes[i]; 4053 btrfs_set_token_item_offset(&token, slot + i, data_end); 4054 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]); 4055 } 4056 4057 btrfs_set_header_nritems(leaf, nritems + batch->nr); 4058 btrfs_mark_buffer_dirty(leaf); 4059 4060 if (btrfs_leaf_free_space(leaf) < 0) { 4061 btrfs_print_leaf(leaf); 4062 BUG(); 4063 } 4064 } 4065 4066 /* 4067 * Insert a new item into a leaf. 4068 * 4069 * @root: The root of the btree. 4070 * @path: A path pointing to the target leaf and slot. 4071 * @key: The key of the new item. 4072 * @data_size: The size of the data associated with the new key. 4073 */ 4074 void btrfs_setup_item_for_insert(struct btrfs_root *root, 4075 struct btrfs_path *path, 4076 const struct btrfs_key *key, 4077 u32 data_size) 4078 { 4079 struct btrfs_item_batch batch; 4080 4081 batch.keys = key; 4082 batch.data_sizes = &data_size; 4083 batch.total_data_size = data_size; 4084 batch.nr = 1; 4085 4086 setup_items_for_insert(root, path, &batch); 4087 } 4088 4089 /* 4090 * Given a key and some data, insert items into the tree. 4091 * This does all the path init required, making room in the tree if needed. 4092 */ 4093 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4094 struct btrfs_root *root, 4095 struct btrfs_path *path, 4096 const struct btrfs_item_batch *batch) 4097 { 4098 int ret = 0; 4099 int slot; 4100 u32 total_size; 4101 4102 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); 4103 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1); 4104 if (ret == 0) 4105 return -EEXIST; 4106 if (ret < 0) 4107 return ret; 4108 4109 slot = path->slots[0]; 4110 BUG_ON(slot < 0); 4111 4112 setup_items_for_insert(root, path, batch); 4113 return 0; 4114 } 4115 4116 /* 4117 * Given a key and some data, insert an item into the tree. 4118 * This does all the path init required, making room in the tree if needed. 4119 */ 4120 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4121 const struct btrfs_key *cpu_key, void *data, 4122 u32 data_size) 4123 { 4124 int ret = 0; 4125 struct btrfs_path *path; 4126 struct extent_buffer *leaf; 4127 unsigned long ptr; 4128 4129 path = btrfs_alloc_path(); 4130 if (!path) 4131 return -ENOMEM; 4132 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4133 if (!ret) { 4134 leaf = path->nodes[0]; 4135 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4136 write_extent_buffer(leaf, data, ptr, data_size); 4137 btrfs_mark_buffer_dirty(leaf); 4138 } 4139 btrfs_free_path(path); 4140 return ret; 4141 } 4142 4143 /* 4144 * This function duplicates an item, giving 'new_key' to the new item. 4145 * It guarantees both items live in the same tree leaf and the new item is 4146 * contiguous with the original item. 4147 * 4148 * This allows us to split a file extent in place, keeping a lock on the leaf 4149 * the entire time. 4150 */ 4151 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4152 struct btrfs_root *root, 4153 struct btrfs_path *path, 4154 const struct btrfs_key *new_key) 4155 { 4156 struct extent_buffer *leaf; 4157 int ret; 4158 u32 item_size; 4159 4160 leaf = path->nodes[0]; 4161 item_size = btrfs_item_size(leaf, path->slots[0]); 4162 ret = setup_leaf_for_split(trans, root, path, 4163 item_size + sizeof(struct btrfs_item)); 4164 if (ret) 4165 return ret; 4166 4167 path->slots[0]++; 4168 btrfs_setup_item_for_insert(root, path, new_key, item_size); 4169 leaf = path->nodes[0]; 4170 memcpy_extent_buffer(leaf, 4171 btrfs_item_ptr_offset(leaf, path->slots[0]), 4172 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4173 item_size); 4174 return 0; 4175 } 4176 4177 /* 4178 * delete the pointer from a given node. 4179 * 4180 * the tree should have been previously balanced so the deletion does not 4181 * empty a node. 4182 */ 4183 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4184 int level, int slot) 4185 { 4186 struct extent_buffer *parent = path->nodes[level]; 4187 u32 nritems; 4188 int ret; 4189 4190 nritems = btrfs_header_nritems(parent); 4191 if (slot != nritems - 1) { 4192 if (level) { 4193 ret = btrfs_tree_mod_log_insert_move(parent, slot, 4194 slot + 1, nritems - slot - 1); 4195 BUG_ON(ret < 0); 4196 } 4197 memmove_extent_buffer(parent, 4198 btrfs_node_key_ptr_offset(slot), 4199 btrfs_node_key_ptr_offset(slot + 1), 4200 sizeof(struct btrfs_key_ptr) * 4201 (nritems - slot - 1)); 4202 } else if (level) { 4203 ret = btrfs_tree_mod_log_insert_key(parent, slot, 4204 BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS); 4205 BUG_ON(ret < 0); 4206 } 4207 4208 nritems--; 4209 btrfs_set_header_nritems(parent, nritems); 4210 if (nritems == 0 && parent == root->node) { 4211 BUG_ON(btrfs_header_level(root->node) != 1); 4212 /* just turn the root into a leaf and break */ 4213 btrfs_set_header_level(root->node, 0); 4214 } else if (slot == 0) { 4215 struct btrfs_disk_key disk_key; 4216 4217 btrfs_node_key(parent, &disk_key, 0); 4218 fixup_low_keys(path, &disk_key, level + 1); 4219 } 4220 btrfs_mark_buffer_dirty(parent); 4221 } 4222 4223 /* 4224 * a helper function to delete the leaf pointed to by path->slots[1] and 4225 * path->nodes[1]. 4226 * 4227 * This deletes the pointer in path->nodes[1] and frees the leaf 4228 * block extent. zero is returned if it all worked out, < 0 otherwise. 4229 * 4230 * The path must have already been setup for deleting the leaf, including 4231 * all the proper balancing. path->nodes[1] must be locked. 4232 */ 4233 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4234 struct btrfs_root *root, 4235 struct btrfs_path *path, 4236 struct extent_buffer *leaf) 4237 { 4238 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4239 del_ptr(root, path, 1, path->slots[1]); 4240 4241 /* 4242 * btrfs_free_extent is expensive, we want to make sure we 4243 * aren't holding any locks when we call it 4244 */ 4245 btrfs_unlock_up_safe(path, 0); 4246 4247 root_sub_used(root, leaf->len); 4248 4249 atomic_inc(&leaf->refs); 4250 btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1); 4251 free_extent_buffer_stale(leaf); 4252 } 4253 /* 4254 * delete the item at the leaf level in path. If that empties 4255 * the leaf, remove it from the tree 4256 */ 4257 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4258 struct btrfs_path *path, int slot, int nr) 4259 { 4260 struct btrfs_fs_info *fs_info = root->fs_info; 4261 struct extent_buffer *leaf; 4262 int ret = 0; 4263 int wret; 4264 u32 nritems; 4265 4266 leaf = path->nodes[0]; 4267 nritems = btrfs_header_nritems(leaf); 4268 4269 if (slot + nr != nritems) { 4270 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1); 4271 const int data_end = leaf_data_end(leaf); 4272 struct btrfs_map_token token; 4273 u32 dsize = 0; 4274 int i; 4275 4276 for (i = 0; i < nr; i++) 4277 dsize += btrfs_item_size(leaf, slot + i); 4278 4279 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4280 data_end + dsize, 4281 BTRFS_LEAF_DATA_OFFSET + data_end, 4282 last_off - data_end); 4283 4284 btrfs_init_map_token(&token, leaf); 4285 for (i = slot + nr; i < nritems; i++) { 4286 u32 ioff; 4287 4288 ioff = btrfs_token_item_offset(&token, i); 4289 btrfs_set_token_item_offset(&token, i, ioff + dsize); 4290 } 4291 4292 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4293 btrfs_item_nr_offset(slot + nr), 4294 sizeof(struct btrfs_item) * 4295 (nritems - slot - nr)); 4296 } 4297 btrfs_set_header_nritems(leaf, nritems - nr); 4298 nritems -= nr; 4299 4300 /* delete the leaf if we've emptied it */ 4301 if (nritems == 0) { 4302 if (leaf == root->node) { 4303 btrfs_set_header_level(leaf, 0); 4304 } else { 4305 btrfs_clean_tree_block(leaf); 4306 btrfs_del_leaf(trans, root, path, leaf); 4307 } 4308 } else { 4309 int used = leaf_space_used(leaf, 0, nritems); 4310 if (slot == 0) { 4311 struct btrfs_disk_key disk_key; 4312 4313 btrfs_item_key(leaf, &disk_key, 0); 4314 fixup_low_keys(path, &disk_key, 1); 4315 } 4316 4317 /* 4318 * Try to delete the leaf if it is mostly empty. We do this by 4319 * trying to move all its items into its left and right neighbours. 4320 * If we can't move all the items, then we don't delete it - it's 4321 * not ideal, but future insertions might fill the leaf with more 4322 * items, or items from other leaves might be moved later into our 4323 * leaf due to deletions on those leaves. 4324 */ 4325 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4326 u32 min_push_space; 4327 4328 /* push_leaf_left fixes the path. 4329 * make sure the path still points to our leaf 4330 * for possible call to del_ptr below 4331 */ 4332 slot = path->slots[1]; 4333 atomic_inc(&leaf->refs); 4334 /* 4335 * We want to be able to at least push one item to the 4336 * left neighbour leaf, and that's the first item. 4337 */ 4338 min_push_space = sizeof(struct btrfs_item) + 4339 btrfs_item_size(leaf, 0); 4340 wret = push_leaf_left(trans, root, path, 0, 4341 min_push_space, 1, (u32)-1); 4342 if (wret < 0 && wret != -ENOSPC) 4343 ret = wret; 4344 4345 if (path->nodes[0] == leaf && 4346 btrfs_header_nritems(leaf)) { 4347 /* 4348 * If we were not able to push all items from our 4349 * leaf to its left neighbour, then attempt to 4350 * either push all the remaining items to the 4351 * right neighbour or none. There's no advantage 4352 * in pushing only some items, instead of all, as 4353 * it's pointless to end up with a leaf having 4354 * too few items while the neighbours can be full 4355 * or nearly full. 4356 */ 4357 nritems = btrfs_header_nritems(leaf); 4358 min_push_space = leaf_space_used(leaf, 0, nritems); 4359 wret = push_leaf_right(trans, root, path, 0, 4360 min_push_space, 1, 0); 4361 if (wret < 0 && wret != -ENOSPC) 4362 ret = wret; 4363 } 4364 4365 if (btrfs_header_nritems(leaf) == 0) { 4366 path->slots[1] = slot; 4367 btrfs_del_leaf(trans, root, path, leaf); 4368 free_extent_buffer(leaf); 4369 ret = 0; 4370 } else { 4371 /* if we're still in the path, make sure 4372 * we're dirty. Otherwise, one of the 4373 * push_leaf functions must have already 4374 * dirtied this buffer 4375 */ 4376 if (path->nodes[0] == leaf) 4377 btrfs_mark_buffer_dirty(leaf); 4378 free_extent_buffer(leaf); 4379 } 4380 } else { 4381 btrfs_mark_buffer_dirty(leaf); 4382 } 4383 } 4384 return ret; 4385 } 4386 4387 /* 4388 * search the tree again to find a leaf with lesser keys 4389 * returns 0 if it found something or 1 if there are no lesser leaves. 4390 * returns < 0 on io errors. 4391 * 4392 * This may release the path, and so you may lose any locks held at the 4393 * time you call it. 4394 */ 4395 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4396 { 4397 struct btrfs_key key; 4398 struct btrfs_disk_key found_key; 4399 int ret; 4400 4401 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4402 4403 if (key.offset > 0) { 4404 key.offset--; 4405 } else if (key.type > 0) { 4406 key.type--; 4407 key.offset = (u64)-1; 4408 } else if (key.objectid > 0) { 4409 key.objectid--; 4410 key.type = (u8)-1; 4411 key.offset = (u64)-1; 4412 } else { 4413 return 1; 4414 } 4415 4416 btrfs_release_path(path); 4417 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4418 if (ret < 0) 4419 return ret; 4420 btrfs_item_key(path->nodes[0], &found_key, 0); 4421 ret = comp_keys(&found_key, &key); 4422 /* 4423 * We might have had an item with the previous key in the tree right 4424 * before we released our path. And after we released our path, that 4425 * item might have been pushed to the first slot (0) of the leaf we 4426 * were holding due to a tree balance. Alternatively, an item with the 4427 * previous key can exist as the only element of a leaf (big fat item). 4428 * Therefore account for these 2 cases, so that our callers (like 4429 * btrfs_previous_item) don't miss an existing item with a key matching 4430 * the previous key we computed above. 4431 */ 4432 if (ret <= 0) 4433 return 0; 4434 return 1; 4435 } 4436 4437 /* 4438 * A helper function to walk down the tree starting at min_key, and looking 4439 * for nodes or leaves that are have a minimum transaction id. 4440 * This is used by the btree defrag code, and tree logging 4441 * 4442 * This does not cow, but it does stuff the starting key it finds back 4443 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4444 * key and get a writable path. 4445 * 4446 * This honors path->lowest_level to prevent descent past a given level 4447 * of the tree. 4448 * 4449 * min_trans indicates the oldest transaction that you are interested 4450 * in walking through. Any nodes or leaves older than min_trans are 4451 * skipped over (without reading them). 4452 * 4453 * returns zero if something useful was found, < 0 on error and 1 if there 4454 * was nothing in the tree that matched the search criteria. 4455 */ 4456 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4457 struct btrfs_path *path, 4458 u64 min_trans) 4459 { 4460 struct extent_buffer *cur; 4461 struct btrfs_key found_key; 4462 int slot; 4463 int sret; 4464 u32 nritems; 4465 int level; 4466 int ret = 1; 4467 int keep_locks = path->keep_locks; 4468 4469 ASSERT(!path->nowait); 4470 path->keep_locks = 1; 4471 again: 4472 cur = btrfs_read_lock_root_node(root); 4473 level = btrfs_header_level(cur); 4474 WARN_ON(path->nodes[level]); 4475 path->nodes[level] = cur; 4476 path->locks[level] = BTRFS_READ_LOCK; 4477 4478 if (btrfs_header_generation(cur) < min_trans) { 4479 ret = 1; 4480 goto out; 4481 } 4482 while (1) { 4483 nritems = btrfs_header_nritems(cur); 4484 level = btrfs_header_level(cur); 4485 sret = btrfs_bin_search(cur, min_key, &slot); 4486 if (sret < 0) { 4487 ret = sret; 4488 goto out; 4489 } 4490 4491 /* at the lowest level, we're done, setup the path and exit */ 4492 if (level == path->lowest_level) { 4493 if (slot >= nritems) 4494 goto find_next_key; 4495 ret = 0; 4496 path->slots[level] = slot; 4497 btrfs_item_key_to_cpu(cur, &found_key, slot); 4498 goto out; 4499 } 4500 if (sret && slot > 0) 4501 slot--; 4502 /* 4503 * check this node pointer against the min_trans parameters. 4504 * If it is too old, skip to the next one. 4505 */ 4506 while (slot < nritems) { 4507 u64 gen; 4508 4509 gen = btrfs_node_ptr_generation(cur, slot); 4510 if (gen < min_trans) { 4511 slot++; 4512 continue; 4513 } 4514 break; 4515 } 4516 find_next_key: 4517 /* 4518 * we didn't find a candidate key in this node, walk forward 4519 * and find another one 4520 */ 4521 if (slot >= nritems) { 4522 path->slots[level] = slot; 4523 sret = btrfs_find_next_key(root, path, min_key, level, 4524 min_trans); 4525 if (sret == 0) { 4526 btrfs_release_path(path); 4527 goto again; 4528 } else { 4529 goto out; 4530 } 4531 } 4532 /* save our key for returning back */ 4533 btrfs_node_key_to_cpu(cur, &found_key, slot); 4534 path->slots[level] = slot; 4535 if (level == path->lowest_level) { 4536 ret = 0; 4537 goto out; 4538 } 4539 cur = btrfs_read_node_slot(cur, slot); 4540 if (IS_ERR(cur)) { 4541 ret = PTR_ERR(cur); 4542 goto out; 4543 } 4544 4545 btrfs_tree_read_lock(cur); 4546 4547 path->locks[level - 1] = BTRFS_READ_LOCK; 4548 path->nodes[level - 1] = cur; 4549 unlock_up(path, level, 1, 0, NULL); 4550 } 4551 out: 4552 path->keep_locks = keep_locks; 4553 if (ret == 0) { 4554 btrfs_unlock_up_safe(path, path->lowest_level + 1); 4555 memcpy(min_key, &found_key, sizeof(found_key)); 4556 } 4557 return ret; 4558 } 4559 4560 /* 4561 * this is similar to btrfs_next_leaf, but does not try to preserve 4562 * and fixup the path. It looks for and returns the next key in the 4563 * tree based on the current path and the min_trans parameters. 4564 * 4565 * 0 is returned if another key is found, < 0 if there are any errors 4566 * and 1 is returned if there are no higher keys in the tree 4567 * 4568 * path->keep_locks should be set to 1 on the search made before 4569 * calling this function. 4570 */ 4571 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4572 struct btrfs_key *key, int level, u64 min_trans) 4573 { 4574 int slot; 4575 struct extent_buffer *c; 4576 4577 WARN_ON(!path->keep_locks && !path->skip_locking); 4578 while (level < BTRFS_MAX_LEVEL) { 4579 if (!path->nodes[level]) 4580 return 1; 4581 4582 slot = path->slots[level] + 1; 4583 c = path->nodes[level]; 4584 next: 4585 if (slot >= btrfs_header_nritems(c)) { 4586 int ret; 4587 int orig_lowest; 4588 struct btrfs_key cur_key; 4589 if (level + 1 >= BTRFS_MAX_LEVEL || 4590 !path->nodes[level + 1]) 4591 return 1; 4592 4593 if (path->locks[level + 1] || path->skip_locking) { 4594 level++; 4595 continue; 4596 } 4597 4598 slot = btrfs_header_nritems(c) - 1; 4599 if (level == 0) 4600 btrfs_item_key_to_cpu(c, &cur_key, slot); 4601 else 4602 btrfs_node_key_to_cpu(c, &cur_key, slot); 4603 4604 orig_lowest = path->lowest_level; 4605 btrfs_release_path(path); 4606 path->lowest_level = level; 4607 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4608 0, 0); 4609 path->lowest_level = orig_lowest; 4610 if (ret < 0) 4611 return ret; 4612 4613 c = path->nodes[level]; 4614 slot = path->slots[level]; 4615 if (ret == 0) 4616 slot++; 4617 goto next; 4618 } 4619 4620 if (level == 0) 4621 btrfs_item_key_to_cpu(c, key, slot); 4622 else { 4623 u64 gen = btrfs_node_ptr_generation(c, slot); 4624 4625 if (gen < min_trans) { 4626 slot++; 4627 goto next; 4628 } 4629 btrfs_node_key_to_cpu(c, key, slot); 4630 } 4631 return 0; 4632 } 4633 return 1; 4634 } 4635 4636 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 4637 u64 time_seq) 4638 { 4639 int slot; 4640 int level; 4641 struct extent_buffer *c; 4642 struct extent_buffer *next; 4643 struct btrfs_fs_info *fs_info = root->fs_info; 4644 struct btrfs_key key; 4645 bool need_commit_sem = false; 4646 u32 nritems; 4647 int ret; 4648 int i; 4649 4650 ASSERT(!path->nowait); 4651 4652 nritems = btrfs_header_nritems(path->nodes[0]); 4653 if (nritems == 0) 4654 return 1; 4655 4656 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4657 again: 4658 level = 1; 4659 next = NULL; 4660 btrfs_release_path(path); 4661 4662 path->keep_locks = 1; 4663 4664 if (time_seq) { 4665 ret = btrfs_search_old_slot(root, &key, path, time_seq); 4666 } else { 4667 if (path->need_commit_sem) { 4668 path->need_commit_sem = 0; 4669 need_commit_sem = true; 4670 down_read(&fs_info->commit_root_sem); 4671 } 4672 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4673 } 4674 path->keep_locks = 0; 4675 4676 if (ret < 0) 4677 goto done; 4678 4679 nritems = btrfs_header_nritems(path->nodes[0]); 4680 /* 4681 * by releasing the path above we dropped all our locks. A balance 4682 * could have added more items next to the key that used to be 4683 * at the very end of the block. So, check again here and 4684 * advance the path if there are now more items available. 4685 */ 4686 if (nritems > 0 && path->slots[0] < nritems - 1) { 4687 if (ret == 0) 4688 path->slots[0]++; 4689 ret = 0; 4690 goto done; 4691 } 4692 /* 4693 * So the above check misses one case: 4694 * - after releasing the path above, someone has removed the item that 4695 * used to be at the very end of the block, and balance between leafs 4696 * gets another one with bigger key.offset to replace it. 4697 * 4698 * This one should be returned as well, or we can get leaf corruption 4699 * later(esp. in __btrfs_drop_extents()). 4700 * 4701 * And a bit more explanation about this check, 4702 * with ret > 0, the key isn't found, the path points to the slot 4703 * where it should be inserted, so the path->slots[0] item must be the 4704 * bigger one. 4705 */ 4706 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 4707 ret = 0; 4708 goto done; 4709 } 4710 4711 while (level < BTRFS_MAX_LEVEL) { 4712 if (!path->nodes[level]) { 4713 ret = 1; 4714 goto done; 4715 } 4716 4717 slot = path->slots[level] + 1; 4718 c = path->nodes[level]; 4719 if (slot >= btrfs_header_nritems(c)) { 4720 level++; 4721 if (level == BTRFS_MAX_LEVEL) { 4722 ret = 1; 4723 goto done; 4724 } 4725 continue; 4726 } 4727 4728 4729 /* 4730 * Our current level is where we're going to start from, and to 4731 * make sure lockdep doesn't complain we need to drop our locks 4732 * and nodes from 0 to our current level. 4733 */ 4734 for (i = 0; i < level; i++) { 4735 if (path->locks[level]) { 4736 btrfs_tree_read_unlock(path->nodes[i]); 4737 path->locks[i] = 0; 4738 } 4739 free_extent_buffer(path->nodes[i]); 4740 path->nodes[i] = NULL; 4741 } 4742 4743 next = c; 4744 ret = read_block_for_search(root, path, &next, level, 4745 slot, &key); 4746 if (ret == -EAGAIN) 4747 goto again; 4748 4749 if (ret < 0) { 4750 btrfs_release_path(path); 4751 goto done; 4752 } 4753 4754 if (!path->skip_locking) { 4755 ret = btrfs_try_tree_read_lock(next); 4756 if (!ret && time_seq) { 4757 /* 4758 * If we don't get the lock, we may be racing 4759 * with push_leaf_left, holding that lock while 4760 * itself waiting for the leaf we've currently 4761 * locked. To solve this situation, we give up 4762 * on our lock and cycle. 4763 */ 4764 free_extent_buffer(next); 4765 btrfs_release_path(path); 4766 cond_resched(); 4767 goto again; 4768 } 4769 if (!ret) 4770 btrfs_tree_read_lock(next); 4771 } 4772 break; 4773 } 4774 path->slots[level] = slot; 4775 while (1) { 4776 level--; 4777 path->nodes[level] = next; 4778 path->slots[level] = 0; 4779 if (!path->skip_locking) 4780 path->locks[level] = BTRFS_READ_LOCK; 4781 if (!level) 4782 break; 4783 4784 ret = read_block_for_search(root, path, &next, level, 4785 0, &key); 4786 if (ret == -EAGAIN) 4787 goto again; 4788 4789 if (ret < 0) { 4790 btrfs_release_path(path); 4791 goto done; 4792 } 4793 4794 if (!path->skip_locking) 4795 btrfs_tree_read_lock(next); 4796 } 4797 ret = 0; 4798 done: 4799 unlock_up(path, 0, 1, 0, NULL); 4800 if (need_commit_sem) { 4801 int ret2; 4802 4803 path->need_commit_sem = 1; 4804 ret2 = finish_need_commit_sem_search(path); 4805 up_read(&fs_info->commit_root_sem); 4806 if (ret2) 4807 ret = ret2; 4808 } 4809 4810 return ret; 4811 } 4812 4813 /* 4814 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4815 * searching until it gets past min_objectid or finds an item of 'type' 4816 * 4817 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4818 */ 4819 int btrfs_previous_item(struct btrfs_root *root, 4820 struct btrfs_path *path, u64 min_objectid, 4821 int type) 4822 { 4823 struct btrfs_key found_key; 4824 struct extent_buffer *leaf; 4825 u32 nritems; 4826 int ret; 4827 4828 while (1) { 4829 if (path->slots[0] == 0) { 4830 ret = btrfs_prev_leaf(root, path); 4831 if (ret != 0) 4832 return ret; 4833 } else { 4834 path->slots[0]--; 4835 } 4836 leaf = path->nodes[0]; 4837 nritems = btrfs_header_nritems(leaf); 4838 if (nritems == 0) 4839 return 1; 4840 if (path->slots[0] == nritems) 4841 path->slots[0]--; 4842 4843 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4844 if (found_key.objectid < min_objectid) 4845 break; 4846 if (found_key.type == type) 4847 return 0; 4848 if (found_key.objectid == min_objectid && 4849 found_key.type < type) 4850 break; 4851 } 4852 return 1; 4853 } 4854 4855 /* 4856 * search in extent tree to find a previous Metadata/Data extent item with 4857 * min objecitd. 4858 * 4859 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4860 */ 4861 int btrfs_previous_extent_item(struct btrfs_root *root, 4862 struct btrfs_path *path, u64 min_objectid) 4863 { 4864 struct btrfs_key found_key; 4865 struct extent_buffer *leaf; 4866 u32 nritems; 4867 int ret; 4868 4869 while (1) { 4870 if (path->slots[0] == 0) { 4871 ret = btrfs_prev_leaf(root, path); 4872 if (ret != 0) 4873 return ret; 4874 } else { 4875 path->slots[0]--; 4876 } 4877 leaf = path->nodes[0]; 4878 nritems = btrfs_header_nritems(leaf); 4879 if (nritems == 0) 4880 return 1; 4881 if (path->slots[0] == nritems) 4882 path->slots[0]--; 4883 4884 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4885 if (found_key.objectid < min_objectid) 4886 break; 4887 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 4888 found_key.type == BTRFS_METADATA_ITEM_KEY) 4889 return 0; 4890 if (found_key.objectid == min_objectid && 4891 found_key.type < BTRFS_EXTENT_ITEM_KEY) 4892 break; 4893 } 4894 return 1; 4895 } 4896