1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 #include "qgroup.h" 17 18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 19 *root, struct btrfs_path *path, int level); 20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 21 const struct btrfs_key *ins_key, struct btrfs_path *path, 22 int data_size, int extend); 23 static int push_node_left(struct btrfs_trans_handle *trans, 24 struct extent_buffer *dst, 25 struct extent_buffer *src, int empty); 26 static int balance_node_right(struct btrfs_trans_handle *trans, 27 struct extent_buffer *dst_buf, 28 struct extent_buffer *src_buf); 29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 30 int level, int slot); 31 32 static const struct btrfs_csums { 33 u16 size; 34 const char name[10]; 35 const char driver[12]; 36 } btrfs_csums[] = { 37 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 38 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 39 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 40 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 41 .driver = "blake2b-256" }, 42 }; 43 44 int btrfs_super_csum_size(const struct btrfs_super_block *s) 45 { 46 u16 t = btrfs_super_csum_type(s); 47 /* 48 * csum type is validated at mount time 49 */ 50 return btrfs_csums[t].size; 51 } 52 53 const char *btrfs_super_csum_name(u16 csum_type) 54 { 55 /* csum type is validated at mount time */ 56 return btrfs_csums[csum_type].name; 57 } 58 59 /* 60 * Return driver name if defined, otherwise the name that's also a valid driver 61 * name 62 */ 63 const char *btrfs_super_csum_driver(u16 csum_type) 64 { 65 /* csum type is validated at mount time */ 66 return btrfs_csums[csum_type].driver[0] ? 67 btrfs_csums[csum_type].driver : 68 btrfs_csums[csum_type].name; 69 } 70 71 size_t __attribute_const__ btrfs_get_num_csums(void) 72 { 73 return ARRAY_SIZE(btrfs_csums); 74 } 75 76 struct btrfs_path *btrfs_alloc_path(void) 77 { 78 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 79 } 80 81 /* this also releases the path */ 82 void btrfs_free_path(struct btrfs_path *p) 83 { 84 if (!p) 85 return; 86 btrfs_release_path(p); 87 kmem_cache_free(btrfs_path_cachep, p); 88 } 89 90 /* 91 * path release drops references on the extent buffers in the path 92 * and it drops any locks held by this path 93 * 94 * It is safe to call this on paths that no locks or extent buffers held. 95 */ 96 noinline void btrfs_release_path(struct btrfs_path *p) 97 { 98 int i; 99 100 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 101 p->slots[i] = 0; 102 if (!p->nodes[i]) 103 continue; 104 if (p->locks[i]) { 105 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 106 p->locks[i] = 0; 107 } 108 free_extent_buffer(p->nodes[i]); 109 p->nodes[i] = NULL; 110 } 111 } 112 113 /* 114 * safely gets a reference on the root node of a tree. A lock 115 * is not taken, so a concurrent writer may put a different node 116 * at the root of the tree. See btrfs_lock_root_node for the 117 * looping required. 118 * 119 * The extent buffer returned by this has a reference taken, so 120 * it won't disappear. It may stop being the root of the tree 121 * at any time because there are no locks held. 122 */ 123 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 124 { 125 struct extent_buffer *eb; 126 127 while (1) { 128 rcu_read_lock(); 129 eb = rcu_dereference(root->node); 130 131 /* 132 * RCU really hurts here, we could free up the root node because 133 * it was COWed but we may not get the new root node yet so do 134 * the inc_not_zero dance and if it doesn't work then 135 * synchronize_rcu and try again. 136 */ 137 if (atomic_inc_not_zero(&eb->refs)) { 138 rcu_read_unlock(); 139 break; 140 } 141 rcu_read_unlock(); 142 synchronize_rcu(); 143 } 144 return eb; 145 } 146 147 /* 148 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 149 * just get put onto a simple dirty list. Transaction walks this list to make 150 * sure they get properly updated on disk. 151 */ 152 static void add_root_to_dirty_list(struct btrfs_root *root) 153 { 154 struct btrfs_fs_info *fs_info = root->fs_info; 155 156 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 157 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 158 return; 159 160 spin_lock(&fs_info->trans_lock); 161 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 162 /* Want the extent tree to be the last on the list */ 163 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 164 list_move_tail(&root->dirty_list, 165 &fs_info->dirty_cowonly_roots); 166 else 167 list_move(&root->dirty_list, 168 &fs_info->dirty_cowonly_roots); 169 } 170 spin_unlock(&fs_info->trans_lock); 171 } 172 173 /* 174 * used by snapshot creation to make a copy of a root for a tree with 175 * a given objectid. The buffer with the new root node is returned in 176 * cow_ret, and this func returns zero on success or a negative error code. 177 */ 178 int btrfs_copy_root(struct btrfs_trans_handle *trans, 179 struct btrfs_root *root, 180 struct extent_buffer *buf, 181 struct extent_buffer **cow_ret, u64 new_root_objectid) 182 { 183 struct btrfs_fs_info *fs_info = root->fs_info; 184 struct extent_buffer *cow; 185 int ret = 0; 186 int level; 187 struct btrfs_disk_key disk_key; 188 189 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 190 trans->transid != fs_info->running_transaction->transid); 191 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 192 trans->transid != root->last_trans); 193 194 level = btrfs_header_level(buf); 195 if (level == 0) 196 btrfs_item_key(buf, &disk_key, 0); 197 else 198 btrfs_node_key(buf, &disk_key, 0); 199 200 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 201 &disk_key, level, buf->start, 0, 202 BTRFS_NESTING_NEW_ROOT); 203 if (IS_ERR(cow)) 204 return PTR_ERR(cow); 205 206 copy_extent_buffer_full(cow, buf); 207 btrfs_set_header_bytenr(cow, cow->start); 208 btrfs_set_header_generation(cow, trans->transid); 209 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 210 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 211 BTRFS_HEADER_FLAG_RELOC); 212 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 213 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 214 else 215 btrfs_set_header_owner(cow, new_root_objectid); 216 217 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 218 219 WARN_ON(btrfs_header_generation(buf) > trans->transid); 220 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 221 ret = btrfs_inc_ref(trans, root, cow, 1); 222 else 223 ret = btrfs_inc_ref(trans, root, cow, 0); 224 225 if (ret) 226 return ret; 227 228 btrfs_mark_buffer_dirty(cow); 229 *cow_ret = cow; 230 return 0; 231 } 232 233 enum mod_log_op { 234 MOD_LOG_KEY_REPLACE, 235 MOD_LOG_KEY_ADD, 236 MOD_LOG_KEY_REMOVE, 237 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 238 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 239 MOD_LOG_MOVE_KEYS, 240 MOD_LOG_ROOT_REPLACE, 241 }; 242 243 struct tree_mod_root { 244 u64 logical; 245 u8 level; 246 }; 247 248 struct tree_mod_elem { 249 struct rb_node node; 250 u64 logical; 251 u64 seq; 252 enum mod_log_op op; 253 254 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 255 int slot; 256 257 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 258 u64 generation; 259 260 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 261 struct btrfs_disk_key key; 262 u64 blockptr; 263 264 /* this is used for op == MOD_LOG_MOVE_KEYS */ 265 struct { 266 int dst_slot; 267 int nr_items; 268 } move; 269 270 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 271 struct tree_mod_root old_root; 272 }; 273 274 /* 275 * Pull a new tree mod seq number for our operation. 276 */ 277 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 278 { 279 return atomic64_inc_return(&fs_info->tree_mod_seq); 280 } 281 282 /* 283 * This adds a new blocker to the tree mod log's blocker list if the @elem 284 * passed does not already have a sequence number set. So when a caller expects 285 * to record tree modifications, it should ensure to set elem->seq to zero 286 * before calling btrfs_get_tree_mod_seq. 287 * Returns a fresh, unused tree log modification sequence number, even if no new 288 * blocker was added. 289 */ 290 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 291 struct seq_list *elem) 292 { 293 write_lock(&fs_info->tree_mod_log_lock); 294 if (!elem->seq) { 295 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 296 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 297 } 298 write_unlock(&fs_info->tree_mod_log_lock); 299 300 return elem->seq; 301 } 302 303 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 304 struct seq_list *elem) 305 { 306 struct rb_root *tm_root; 307 struct rb_node *node; 308 struct rb_node *next; 309 struct tree_mod_elem *tm; 310 u64 min_seq = (u64)-1; 311 u64 seq_putting = elem->seq; 312 313 if (!seq_putting) 314 return; 315 316 write_lock(&fs_info->tree_mod_log_lock); 317 list_del(&elem->list); 318 elem->seq = 0; 319 320 if (!list_empty(&fs_info->tree_mod_seq_list)) { 321 struct seq_list *first; 322 323 first = list_first_entry(&fs_info->tree_mod_seq_list, 324 struct seq_list, list); 325 if (seq_putting > first->seq) { 326 /* 327 * Blocker with lower sequence number exists, we 328 * cannot remove anything from the log. 329 */ 330 write_unlock(&fs_info->tree_mod_log_lock); 331 return; 332 } 333 min_seq = first->seq; 334 } 335 336 /* 337 * anything that's lower than the lowest existing (read: blocked) 338 * sequence number can be removed from the tree. 339 */ 340 tm_root = &fs_info->tree_mod_log; 341 for (node = rb_first(tm_root); node; node = next) { 342 next = rb_next(node); 343 tm = rb_entry(node, struct tree_mod_elem, node); 344 if (tm->seq >= min_seq) 345 continue; 346 rb_erase(node, tm_root); 347 kfree(tm); 348 } 349 write_unlock(&fs_info->tree_mod_log_lock); 350 } 351 352 /* 353 * key order of the log: 354 * node/leaf start address -> sequence 355 * 356 * The 'start address' is the logical address of the *new* root node 357 * for root replace operations, or the logical address of the affected 358 * block for all other operations. 359 */ 360 static noinline int 361 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 362 { 363 struct rb_root *tm_root; 364 struct rb_node **new; 365 struct rb_node *parent = NULL; 366 struct tree_mod_elem *cur; 367 368 lockdep_assert_held_write(&fs_info->tree_mod_log_lock); 369 370 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 371 372 tm_root = &fs_info->tree_mod_log; 373 new = &tm_root->rb_node; 374 while (*new) { 375 cur = rb_entry(*new, struct tree_mod_elem, node); 376 parent = *new; 377 if (cur->logical < tm->logical) 378 new = &((*new)->rb_left); 379 else if (cur->logical > tm->logical) 380 new = &((*new)->rb_right); 381 else if (cur->seq < tm->seq) 382 new = &((*new)->rb_left); 383 else if (cur->seq > tm->seq) 384 new = &((*new)->rb_right); 385 else 386 return -EEXIST; 387 } 388 389 rb_link_node(&tm->node, parent, new); 390 rb_insert_color(&tm->node, tm_root); 391 return 0; 392 } 393 394 /* 395 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 396 * returns zero with the tree_mod_log_lock acquired. The caller must hold 397 * this until all tree mod log insertions are recorded in the rb tree and then 398 * write unlock fs_info::tree_mod_log_lock. 399 */ 400 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 401 struct extent_buffer *eb) { 402 smp_mb(); 403 if (list_empty(&(fs_info)->tree_mod_seq_list)) 404 return 1; 405 if (eb && btrfs_header_level(eb) == 0) 406 return 1; 407 408 write_lock(&fs_info->tree_mod_log_lock); 409 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 410 write_unlock(&fs_info->tree_mod_log_lock); 411 return 1; 412 } 413 414 return 0; 415 } 416 417 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 418 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 419 struct extent_buffer *eb) 420 { 421 smp_mb(); 422 if (list_empty(&(fs_info)->tree_mod_seq_list)) 423 return 0; 424 if (eb && btrfs_header_level(eb) == 0) 425 return 0; 426 427 return 1; 428 } 429 430 static struct tree_mod_elem * 431 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 432 enum mod_log_op op, gfp_t flags) 433 { 434 struct tree_mod_elem *tm; 435 436 tm = kzalloc(sizeof(*tm), flags); 437 if (!tm) 438 return NULL; 439 440 tm->logical = eb->start; 441 if (op != MOD_LOG_KEY_ADD) { 442 btrfs_node_key(eb, &tm->key, slot); 443 tm->blockptr = btrfs_node_blockptr(eb, slot); 444 } 445 tm->op = op; 446 tm->slot = slot; 447 tm->generation = btrfs_node_ptr_generation(eb, slot); 448 RB_CLEAR_NODE(&tm->node); 449 450 return tm; 451 } 452 453 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 454 enum mod_log_op op, gfp_t flags) 455 { 456 struct tree_mod_elem *tm; 457 int ret; 458 459 if (!tree_mod_need_log(eb->fs_info, eb)) 460 return 0; 461 462 tm = alloc_tree_mod_elem(eb, slot, op, flags); 463 if (!tm) 464 return -ENOMEM; 465 466 if (tree_mod_dont_log(eb->fs_info, eb)) { 467 kfree(tm); 468 return 0; 469 } 470 471 ret = __tree_mod_log_insert(eb->fs_info, tm); 472 write_unlock(&eb->fs_info->tree_mod_log_lock); 473 if (ret) 474 kfree(tm); 475 476 return ret; 477 } 478 479 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 480 int dst_slot, int src_slot, int nr_items) 481 { 482 struct tree_mod_elem *tm = NULL; 483 struct tree_mod_elem **tm_list = NULL; 484 int ret = 0; 485 int i; 486 int locked = 0; 487 488 if (!tree_mod_need_log(eb->fs_info, eb)) 489 return 0; 490 491 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 492 if (!tm_list) 493 return -ENOMEM; 494 495 tm = kzalloc(sizeof(*tm), GFP_NOFS); 496 if (!tm) { 497 ret = -ENOMEM; 498 goto free_tms; 499 } 500 501 tm->logical = eb->start; 502 tm->slot = src_slot; 503 tm->move.dst_slot = dst_slot; 504 tm->move.nr_items = nr_items; 505 tm->op = MOD_LOG_MOVE_KEYS; 506 507 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 508 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 509 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 510 if (!tm_list[i]) { 511 ret = -ENOMEM; 512 goto free_tms; 513 } 514 } 515 516 if (tree_mod_dont_log(eb->fs_info, eb)) 517 goto free_tms; 518 locked = 1; 519 520 /* 521 * When we override something during the move, we log these removals. 522 * This can only happen when we move towards the beginning of the 523 * buffer, i.e. dst_slot < src_slot. 524 */ 525 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 526 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 527 if (ret) 528 goto free_tms; 529 } 530 531 ret = __tree_mod_log_insert(eb->fs_info, tm); 532 if (ret) 533 goto free_tms; 534 write_unlock(&eb->fs_info->tree_mod_log_lock); 535 kfree(tm_list); 536 537 return 0; 538 free_tms: 539 for (i = 0; i < nr_items; i++) { 540 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 541 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 542 kfree(tm_list[i]); 543 } 544 if (locked) 545 write_unlock(&eb->fs_info->tree_mod_log_lock); 546 kfree(tm_list); 547 kfree(tm); 548 549 return ret; 550 } 551 552 static inline int 553 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 554 struct tree_mod_elem **tm_list, 555 int nritems) 556 { 557 int i, j; 558 int ret; 559 560 for (i = nritems - 1; i >= 0; i--) { 561 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 562 if (ret) { 563 for (j = nritems - 1; j > i; j--) 564 rb_erase(&tm_list[j]->node, 565 &fs_info->tree_mod_log); 566 return ret; 567 } 568 } 569 570 return 0; 571 } 572 573 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 574 struct extent_buffer *new_root, int log_removal) 575 { 576 struct btrfs_fs_info *fs_info = old_root->fs_info; 577 struct tree_mod_elem *tm = NULL; 578 struct tree_mod_elem **tm_list = NULL; 579 int nritems = 0; 580 int ret = 0; 581 int i; 582 583 if (!tree_mod_need_log(fs_info, NULL)) 584 return 0; 585 586 if (log_removal && btrfs_header_level(old_root) > 0) { 587 nritems = btrfs_header_nritems(old_root); 588 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 589 GFP_NOFS); 590 if (!tm_list) { 591 ret = -ENOMEM; 592 goto free_tms; 593 } 594 for (i = 0; i < nritems; i++) { 595 tm_list[i] = alloc_tree_mod_elem(old_root, i, 596 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 597 if (!tm_list[i]) { 598 ret = -ENOMEM; 599 goto free_tms; 600 } 601 } 602 } 603 604 tm = kzalloc(sizeof(*tm), GFP_NOFS); 605 if (!tm) { 606 ret = -ENOMEM; 607 goto free_tms; 608 } 609 610 tm->logical = new_root->start; 611 tm->old_root.logical = old_root->start; 612 tm->old_root.level = btrfs_header_level(old_root); 613 tm->generation = btrfs_header_generation(old_root); 614 tm->op = MOD_LOG_ROOT_REPLACE; 615 616 if (tree_mod_dont_log(fs_info, NULL)) 617 goto free_tms; 618 619 if (tm_list) 620 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 621 if (!ret) 622 ret = __tree_mod_log_insert(fs_info, tm); 623 624 write_unlock(&fs_info->tree_mod_log_lock); 625 if (ret) 626 goto free_tms; 627 kfree(tm_list); 628 629 return ret; 630 631 free_tms: 632 if (tm_list) { 633 for (i = 0; i < nritems; i++) 634 kfree(tm_list[i]); 635 kfree(tm_list); 636 } 637 kfree(tm); 638 639 return ret; 640 } 641 642 static struct tree_mod_elem * 643 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 644 int smallest) 645 { 646 struct rb_root *tm_root; 647 struct rb_node *node; 648 struct tree_mod_elem *cur = NULL; 649 struct tree_mod_elem *found = NULL; 650 651 read_lock(&fs_info->tree_mod_log_lock); 652 tm_root = &fs_info->tree_mod_log; 653 node = tm_root->rb_node; 654 while (node) { 655 cur = rb_entry(node, struct tree_mod_elem, node); 656 if (cur->logical < start) { 657 node = node->rb_left; 658 } else if (cur->logical > start) { 659 node = node->rb_right; 660 } else if (cur->seq < min_seq) { 661 node = node->rb_left; 662 } else if (!smallest) { 663 /* we want the node with the highest seq */ 664 if (found) 665 BUG_ON(found->seq > cur->seq); 666 found = cur; 667 node = node->rb_left; 668 } else if (cur->seq > min_seq) { 669 /* we want the node with the smallest seq */ 670 if (found) 671 BUG_ON(found->seq < cur->seq); 672 found = cur; 673 node = node->rb_right; 674 } else { 675 found = cur; 676 break; 677 } 678 } 679 read_unlock(&fs_info->tree_mod_log_lock); 680 681 return found; 682 } 683 684 /* 685 * this returns the element from the log with the smallest time sequence 686 * value that's in the log (the oldest log item). any element with a time 687 * sequence lower than min_seq will be ignored. 688 */ 689 static struct tree_mod_elem * 690 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 691 u64 min_seq) 692 { 693 return __tree_mod_log_search(fs_info, start, min_seq, 1); 694 } 695 696 /* 697 * this returns the element from the log with the largest time sequence 698 * value that's in the log (the most recent log item). any element with 699 * a time sequence lower than min_seq will be ignored. 700 */ 701 static struct tree_mod_elem * 702 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 703 { 704 return __tree_mod_log_search(fs_info, start, min_seq, 0); 705 } 706 707 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst, 708 struct extent_buffer *src, unsigned long dst_offset, 709 unsigned long src_offset, int nr_items) 710 { 711 struct btrfs_fs_info *fs_info = dst->fs_info; 712 int ret = 0; 713 struct tree_mod_elem **tm_list = NULL; 714 struct tree_mod_elem **tm_list_add, **tm_list_rem; 715 int i; 716 int locked = 0; 717 718 if (!tree_mod_need_log(fs_info, NULL)) 719 return 0; 720 721 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 722 return 0; 723 724 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 725 GFP_NOFS); 726 if (!tm_list) 727 return -ENOMEM; 728 729 tm_list_add = tm_list; 730 tm_list_rem = tm_list + nr_items; 731 for (i = 0; i < nr_items; i++) { 732 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 733 MOD_LOG_KEY_REMOVE, GFP_NOFS); 734 if (!tm_list_rem[i]) { 735 ret = -ENOMEM; 736 goto free_tms; 737 } 738 739 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 740 MOD_LOG_KEY_ADD, GFP_NOFS); 741 if (!tm_list_add[i]) { 742 ret = -ENOMEM; 743 goto free_tms; 744 } 745 } 746 747 if (tree_mod_dont_log(fs_info, NULL)) 748 goto free_tms; 749 locked = 1; 750 751 for (i = 0; i < nr_items; i++) { 752 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 753 if (ret) 754 goto free_tms; 755 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 756 if (ret) 757 goto free_tms; 758 } 759 760 write_unlock(&fs_info->tree_mod_log_lock); 761 kfree(tm_list); 762 763 return 0; 764 765 free_tms: 766 for (i = 0; i < nr_items * 2; i++) { 767 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 768 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 769 kfree(tm_list[i]); 770 } 771 if (locked) 772 write_unlock(&fs_info->tree_mod_log_lock); 773 kfree(tm_list); 774 775 return ret; 776 } 777 778 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 779 { 780 struct tree_mod_elem **tm_list = NULL; 781 int nritems = 0; 782 int i; 783 int ret = 0; 784 785 if (btrfs_header_level(eb) == 0) 786 return 0; 787 788 if (!tree_mod_need_log(eb->fs_info, NULL)) 789 return 0; 790 791 nritems = btrfs_header_nritems(eb); 792 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 793 if (!tm_list) 794 return -ENOMEM; 795 796 for (i = 0; i < nritems; i++) { 797 tm_list[i] = alloc_tree_mod_elem(eb, i, 798 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 799 if (!tm_list[i]) { 800 ret = -ENOMEM; 801 goto free_tms; 802 } 803 } 804 805 if (tree_mod_dont_log(eb->fs_info, eb)) 806 goto free_tms; 807 808 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 809 write_unlock(&eb->fs_info->tree_mod_log_lock); 810 if (ret) 811 goto free_tms; 812 kfree(tm_list); 813 814 return 0; 815 816 free_tms: 817 for (i = 0; i < nritems; i++) 818 kfree(tm_list[i]); 819 kfree(tm_list); 820 821 return ret; 822 } 823 824 /* 825 * check if the tree block can be shared by multiple trees 826 */ 827 int btrfs_block_can_be_shared(struct btrfs_root *root, 828 struct extent_buffer *buf) 829 { 830 /* 831 * Tree blocks not in shareable trees and tree roots are never shared. 832 * If a block was allocated after the last snapshot and the block was 833 * not allocated by tree relocation, we know the block is not shared. 834 */ 835 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 836 buf != root->node && buf != root->commit_root && 837 (btrfs_header_generation(buf) <= 838 btrfs_root_last_snapshot(&root->root_item) || 839 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 840 return 1; 841 842 return 0; 843 } 844 845 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 846 struct btrfs_root *root, 847 struct extent_buffer *buf, 848 struct extent_buffer *cow, 849 int *last_ref) 850 { 851 struct btrfs_fs_info *fs_info = root->fs_info; 852 u64 refs; 853 u64 owner; 854 u64 flags; 855 u64 new_flags = 0; 856 int ret; 857 858 /* 859 * Backrefs update rules: 860 * 861 * Always use full backrefs for extent pointers in tree block 862 * allocated by tree relocation. 863 * 864 * If a shared tree block is no longer referenced by its owner 865 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 866 * use full backrefs for extent pointers in tree block. 867 * 868 * If a tree block is been relocating 869 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 870 * use full backrefs for extent pointers in tree block. 871 * The reason for this is some operations (such as drop tree) 872 * are only allowed for blocks use full backrefs. 873 */ 874 875 if (btrfs_block_can_be_shared(root, buf)) { 876 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 877 btrfs_header_level(buf), 1, 878 &refs, &flags); 879 if (ret) 880 return ret; 881 if (refs == 0) { 882 ret = -EROFS; 883 btrfs_handle_fs_error(fs_info, ret, NULL); 884 return ret; 885 } 886 } else { 887 refs = 1; 888 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 889 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 890 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 891 else 892 flags = 0; 893 } 894 895 owner = btrfs_header_owner(buf); 896 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 897 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 898 899 if (refs > 1) { 900 if ((owner == root->root_key.objectid || 901 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 902 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 903 ret = btrfs_inc_ref(trans, root, buf, 1); 904 if (ret) 905 return ret; 906 907 if (root->root_key.objectid == 908 BTRFS_TREE_RELOC_OBJECTID) { 909 ret = btrfs_dec_ref(trans, root, buf, 0); 910 if (ret) 911 return ret; 912 ret = btrfs_inc_ref(trans, root, cow, 1); 913 if (ret) 914 return ret; 915 } 916 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 917 } else { 918 919 if (root->root_key.objectid == 920 BTRFS_TREE_RELOC_OBJECTID) 921 ret = btrfs_inc_ref(trans, root, cow, 1); 922 else 923 ret = btrfs_inc_ref(trans, root, cow, 0); 924 if (ret) 925 return ret; 926 } 927 if (new_flags != 0) { 928 int level = btrfs_header_level(buf); 929 930 ret = btrfs_set_disk_extent_flags(trans, buf, 931 new_flags, level, 0); 932 if (ret) 933 return ret; 934 } 935 } else { 936 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 937 if (root->root_key.objectid == 938 BTRFS_TREE_RELOC_OBJECTID) 939 ret = btrfs_inc_ref(trans, root, cow, 1); 940 else 941 ret = btrfs_inc_ref(trans, root, cow, 0); 942 if (ret) 943 return ret; 944 ret = btrfs_dec_ref(trans, root, buf, 1); 945 if (ret) 946 return ret; 947 } 948 btrfs_clean_tree_block(buf); 949 *last_ref = 1; 950 } 951 return 0; 952 } 953 954 static struct extent_buffer *alloc_tree_block_no_bg_flush( 955 struct btrfs_trans_handle *trans, 956 struct btrfs_root *root, 957 u64 parent_start, 958 const struct btrfs_disk_key *disk_key, 959 int level, 960 u64 hint, 961 u64 empty_size, 962 enum btrfs_lock_nesting nest) 963 { 964 struct btrfs_fs_info *fs_info = root->fs_info; 965 struct extent_buffer *ret; 966 967 /* 968 * If we are COWing a node/leaf from the extent, chunk, device or free 969 * space trees, make sure that we do not finish block group creation of 970 * pending block groups. We do this to avoid a deadlock. 971 * COWing can result in allocation of a new chunk, and flushing pending 972 * block groups (btrfs_create_pending_block_groups()) can be triggered 973 * when finishing allocation of a new chunk. Creation of a pending block 974 * group modifies the extent, chunk, device and free space trees, 975 * therefore we could deadlock with ourselves since we are holding a 976 * lock on an extent buffer that btrfs_create_pending_block_groups() may 977 * try to COW later. 978 * For similar reasons, we also need to delay flushing pending block 979 * groups when splitting a leaf or node, from one of those trees, since 980 * we are holding a write lock on it and its parent or when inserting a 981 * new root node for one of those trees. 982 */ 983 if (root == fs_info->extent_root || 984 root == fs_info->chunk_root || 985 root == fs_info->dev_root || 986 root == fs_info->free_space_root) 987 trans->can_flush_pending_bgs = false; 988 989 ret = btrfs_alloc_tree_block(trans, root, parent_start, 990 root->root_key.objectid, disk_key, level, 991 hint, empty_size, nest); 992 trans->can_flush_pending_bgs = true; 993 994 return ret; 995 } 996 997 /* 998 * does the dirty work in cow of a single block. The parent block (if 999 * supplied) is updated to point to the new cow copy. The new buffer is marked 1000 * dirty and returned locked. If you modify the block it needs to be marked 1001 * dirty again. 1002 * 1003 * search_start -- an allocation hint for the new block 1004 * 1005 * empty_size -- a hint that you plan on doing more cow. This is the size in 1006 * bytes the allocator should try to find free next to the block it returns. 1007 * This is just a hint and may be ignored by the allocator. 1008 */ 1009 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1010 struct btrfs_root *root, 1011 struct extent_buffer *buf, 1012 struct extent_buffer *parent, int parent_slot, 1013 struct extent_buffer **cow_ret, 1014 u64 search_start, u64 empty_size, 1015 enum btrfs_lock_nesting nest) 1016 { 1017 struct btrfs_fs_info *fs_info = root->fs_info; 1018 struct btrfs_disk_key disk_key; 1019 struct extent_buffer *cow; 1020 int level, ret; 1021 int last_ref = 0; 1022 int unlock_orig = 0; 1023 u64 parent_start = 0; 1024 1025 if (*cow_ret == buf) 1026 unlock_orig = 1; 1027 1028 btrfs_assert_tree_locked(buf); 1029 1030 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 1031 trans->transid != fs_info->running_transaction->transid); 1032 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 1033 trans->transid != root->last_trans); 1034 1035 level = btrfs_header_level(buf); 1036 1037 if (level == 0) 1038 btrfs_item_key(buf, &disk_key, 0); 1039 else 1040 btrfs_node_key(buf, &disk_key, 0); 1041 1042 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1043 parent_start = parent->start; 1044 1045 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key, 1046 level, search_start, empty_size, nest); 1047 if (IS_ERR(cow)) 1048 return PTR_ERR(cow); 1049 1050 /* cow is set to blocking by btrfs_init_new_buffer */ 1051 1052 copy_extent_buffer_full(cow, buf); 1053 btrfs_set_header_bytenr(cow, cow->start); 1054 btrfs_set_header_generation(cow, trans->transid); 1055 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1056 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1057 BTRFS_HEADER_FLAG_RELOC); 1058 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1059 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1060 else 1061 btrfs_set_header_owner(cow, root->root_key.objectid); 1062 1063 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 1064 1065 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1066 if (ret) { 1067 btrfs_tree_unlock(cow); 1068 free_extent_buffer(cow); 1069 btrfs_abort_transaction(trans, ret); 1070 return ret; 1071 } 1072 1073 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 1074 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1075 if (ret) { 1076 btrfs_tree_unlock(cow); 1077 free_extent_buffer(cow); 1078 btrfs_abort_transaction(trans, ret); 1079 return ret; 1080 } 1081 } 1082 1083 if (buf == root->node) { 1084 WARN_ON(parent && parent != buf); 1085 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1086 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1087 parent_start = buf->start; 1088 1089 atomic_inc(&cow->refs); 1090 ret = tree_mod_log_insert_root(root->node, cow, 1); 1091 BUG_ON(ret < 0); 1092 rcu_assign_pointer(root->node, cow); 1093 1094 btrfs_free_tree_block(trans, root, buf, parent_start, 1095 last_ref); 1096 free_extent_buffer(buf); 1097 add_root_to_dirty_list(root); 1098 } else { 1099 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1100 tree_mod_log_insert_key(parent, parent_slot, 1101 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1102 btrfs_set_node_blockptr(parent, parent_slot, 1103 cow->start); 1104 btrfs_set_node_ptr_generation(parent, parent_slot, 1105 trans->transid); 1106 btrfs_mark_buffer_dirty(parent); 1107 if (last_ref) { 1108 ret = tree_mod_log_free_eb(buf); 1109 if (ret) { 1110 btrfs_tree_unlock(cow); 1111 free_extent_buffer(cow); 1112 btrfs_abort_transaction(trans, ret); 1113 return ret; 1114 } 1115 } 1116 btrfs_free_tree_block(trans, root, buf, parent_start, 1117 last_ref); 1118 } 1119 if (unlock_orig) 1120 btrfs_tree_unlock(buf); 1121 free_extent_buffer_stale(buf); 1122 btrfs_mark_buffer_dirty(cow); 1123 *cow_ret = cow; 1124 return 0; 1125 } 1126 1127 /* 1128 * returns the logical address of the oldest predecessor of the given root. 1129 * entries older than time_seq are ignored. 1130 */ 1131 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1132 struct extent_buffer *eb_root, u64 time_seq) 1133 { 1134 struct tree_mod_elem *tm; 1135 struct tree_mod_elem *found = NULL; 1136 u64 root_logical = eb_root->start; 1137 int looped = 0; 1138 1139 if (!time_seq) 1140 return NULL; 1141 1142 /* 1143 * the very last operation that's logged for a root is the 1144 * replacement operation (if it is replaced at all). this has 1145 * the logical address of the *new* root, making it the very 1146 * first operation that's logged for this root. 1147 */ 1148 while (1) { 1149 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1150 time_seq); 1151 if (!looped && !tm) 1152 return NULL; 1153 /* 1154 * if there are no tree operation for the oldest root, we simply 1155 * return it. this should only happen if that (old) root is at 1156 * level 0. 1157 */ 1158 if (!tm) 1159 break; 1160 1161 /* 1162 * if there's an operation that's not a root replacement, we 1163 * found the oldest version of our root. normally, we'll find a 1164 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1165 */ 1166 if (tm->op != MOD_LOG_ROOT_REPLACE) 1167 break; 1168 1169 found = tm; 1170 root_logical = tm->old_root.logical; 1171 looped = 1; 1172 } 1173 1174 /* if there's no old root to return, return what we found instead */ 1175 if (!found) 1176 found = tm; 1177 1178 return found; 1179 } 1180 1181 /* 1182 * tm is a pointer to the first operation to rewind within eb. then, all 1183 * previous operations will be rewound (until we reach something older than 1184 * time_seq). 1185 */ 1186 static void 1187 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1188 u64 time_seq, struct tree_mod_elem *first_tm) 1189 { 1190 u32 n; 1191 struct rb_node *next; 1192 struct tree_mod_elem *tm = first_tm; 1193 unsigned long o_dst; 1194 unsigned long o_src; 1195 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1196 1197 n = btrfs_header_nritems(eb); 1198 read_lock(&fs_info->tree_mod_log_lock); 1199 while (tm && tm->seq >= time_seq) { 1200 /* 1201 * all the operations are recorded with the operator used for 1202 * the modification. as we're going backwards, we do the 1203 * opposite of each operation here. 1204 */ 1205 switch (tm->op) { 1206 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1207 BUG_ON(tm->slot < n); 1208 fallthrough; 1209 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1210 case MOD_LOG_KEY_REMOVE: 1211 btrfs_set_node_key(eb, &tm->key, tm->slot); 1212 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1213 btrfs_set_node_ptr_generation(eb, tm->slot, 1214 tm->generation); 1215 n++; 1216 break; 1217 case MOD_LOG_KEY_REPLACE: 1218 BUG_ON(tm->slot >= n); 1219 btrfs_set_node_key(eb, &tm->key, tm->slot); 1220 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1221 btrfs_set_node_ptr_generation(eb, tm->slot, 1222 tm->generation); 1223 break; 1224 case MOD_LOG_KEY_ADD: 1225 /* if a move operation is needed it's in the log */ 1226 n--; 1227 break; 1228 case MOD_LOG_MOVE_KEYS: 1229 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1230 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1231 memmove_extent_buffer(eb, o_dst, o_src, 1232 tm->move.nr_items * p_size); 1233 break; 1234 case MOD_LOG_ROOT_REPLACE: 1235 /* 1236 * this operation is special. for roots, this must be 1237 * handled explicitly before rewinding. 1238 * for non-roots, this operation may exist if the node 1239 * was a root: root A -> child B; then A gets empty and 1240 * B is promoted to the new root. in the mod log, we'll 1241 * have a root-replace operation for B, a tree block 1242 * that is no root. we simply ignore that operation. 1243 */ 1244 break; 1245 } 1246 next = rb_next(&tm->node); 1247 if (!next) 1248 break; 1249 tm = rb_entry(next, struct tree_mod_elem, node); 1250 if (tm->logical != first_tm->logical) 1251 break; 1252 } 1253 read_unlock(&fs_info->tree_mod_log_lock); 1254 btrfs_set_header_nritems(eb, n); 1255 } 1256 1257 /* 1258 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1259 * is returned. If rewind operations happen, a fresh buffer is returned. The 1260 * returned buffer is always read-locked. If the returned buffer is not the 1261 * input buffer, the lock on the input buffer is released and the input buffer 1262 * is freed (its refcount is decremented). 1263 */ 1264 static struct extent_buffer * 1265 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1266 struct extent_buffer *eb, u64 time_seq) 1267 { 1268 struct extent_buffer *eb_rewin; 1269 struct tree_mod_elem *tm; 1270 1271 if (!time_seq) 1272 return eb; 1273 1274 if (btrfs_header_level(eb) == 0) 1275 return eb; 1276 1277 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1278 if (!tm) 1279 return eb; 1280 1281 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1282 BUG_ON(tm->slot != 0); 1283 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1284 if (!eb_rewin) { 1285 btrfs_tree_read_unlock(eb); 1286 free_extent_buffer(eb); 1287 return NULL; 1288 } 1289 btrfs_set_header_bytenr(eb_rewin, eb->start); 1290 btrfs_set_header_backref_rev(eb_rewin, 1291 btrfs_header_backref_rev(eb)); 1292 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1293 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1294 } else { 1295 eb_rewin = btrfs_clone_extent_buffer(eb); 1296 if (!eb_rewin) { 1297 btrfs_tree_read_unlock(eb); 1298 free_extent_buffer(eb); 1299 return NULL; 1300 } 1301 } 1302 1303 btrfs_tree_read_unlock(eb); 1304 free_extent_buffer(eb); 1305 1306 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin), 1307 eb_rewin, btrfs_header_level(eb_rewin)); 1308 btrfs_tree_read_lock(eb_rewin); 1309 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1310 WARN_ON(btrfs_header_nritems(eb_rewin) > 1311 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1312 1313 return eb_rewin; 1314 } 1315 1316 /* 1317 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1318 * value. If there are no changes, the current root->root_node is returned. If 1319 * anything changed in between, there's a fresh buffer allocated on which the 1320 * rewind operations are done. In any case, the returned buffer is read locked. 1321 * Returns NULL on error (with no locks held). 1322 */ 1323 static inline struct extent_buffer * 1324 get_old_root(struct btrfs_root *root, u64 time_seq) 1325 { 1326 struct btrfs_fs_info *fs_info = root->fs_info; 1327 struct tree_mod_elem *tm; 1328 struct extent_buffer *eb = NULL; 1329 struct extent_buffer *eb_root; 1330 u64 eb_root_owner = 0; 1331 struct extent_buffer *old; 1332 struct tree_mod_root *old_root = NULL; 1333 u64 old_generation = 0; 1334 u64 logical; 1335 int level; 1336 1337 eb_root = btrfs_read_lock_root_node(root); 1338 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1339 if (!tm) 1340 return eb_root; 1341 1342 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1343 old_root = &tm->old_root; 1344 old_generation = tm->generation; 1345 logical = old_root->logical; 1346 level = old_root->level; 1347 } else { 1348 logical = eb_root->start; 1349 level = btrfs_header_level(eb_root); 1350 } 1351 1352 tm = tree_mod_log_search(fs_info, logical, time_seq); 1353 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1354 btrfs_tree_read_unlock(eb_root); 1355 free_extent_buffer(eb_root); 1356 old = read_tree_block(fs_info, logical, root->root_key.objectid, 1357 0, level, NULL); 1358 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1359 if (!IS_ERR(old)) 1360 free_extent_buffer(old); 1361 btrfs_warn(fs_info, 1362 "failed to read tree block %llu from get_old_root", 1363 logical); 1364 } else { 1365 eb = btrfs_clone_extent_buffer(old); 1366 free_extent_buffer(old); 1367 } 1368 } else if (old_root) { 1369 eb_root_owner = btrfs_header_owner(eb_root); 1370 btrfs_tree_read_unlock(eb_root); 1371 free_extent_buffer(eb_root); 1372 eb = alloc_dummy_extent_buffer(fs_info, logical); 1373 } else { 1374 eb = btrfs_clone_extent_buffer(eb_root); 1375 btrfs_tree_read_unlock(eb_root); 1376 free_extent_buffer(eb_root); 1377 } 1378 1379 if (!eb) 1380 return NULL; 1381 if (old_root) { 1382 btrfs_set_header_bytenr(eb, eb->start); 1383 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1384 btrfs_set_header_owner(eb, eb_root_owner); 1385 btrfs_set_header_level(eb, old_root->level); 1386 btrfs_set_header_generation(eb, old_generation); 1387 } 1388 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb, 1389 btrfs_header_level(eb)); 1390 btrfs_tree_read_lock(eb); 1391 if (tm) 1392 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1393 else 1394 WARN_ON(btrfs_header_level(eb) != 0); 1395 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1396 1397 return eb; 1398 } 1399 1400 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1401 { 1402 struct tree_mod_elem *tm; 1403 int level; 1404 struct extent_buffer *eb_root = btrfs_root_node(root); 1405 1406 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1407 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1408 level = tm->old_root.level; 1409 } else { 1410 level = btrfs_header_level(eb_root); 1411 } 1412 free_extent_buffer(eb_root); 1413 1414 return level; 1415 } 1416 1417 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1418 struct btrfs_root *root, 1419 struct extent_buffer *buf) 1420 { 1421 if (btrfs_is_testing(root->fs_info)) 1422 return 0; 1423 1424 /* Ensure we can see the FORCE_COW bit */ 1425 smp_mb__before_atomic(); 1426 1427 /* 1428 * We do not need to cow a block if 1429 * 1) this block is not created or changed in this transaction; 1430 * 2) this block does not belong to TREE_RELOC tree; 1431 * 3) the root is not forced COW. 1432 * 1433 * What is forced COW: 1434 * when we create snapshot during committing the transaction, 1435 * after we've finished copying src root, we must COW the shared 1436 * block to ensure the metadata consistency. 1437 */ 1438 if (btrfs_header_generation(buf) == trans->transid && 1439 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1440 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1441 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1442 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1443 return 0; 1444 return 1; 1445 } 1446 1447 /* 1448 * cows a single block, see __btrfs_cow_block for the real work. 1449 * This version of it has extra checks so that a block isn't COWed more than 1450 * once per transaction, as long as it hasn't been written yet 1451 */ 1452 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1453 struct btrfs_root *root, struct extent_buffer *buf, 1454 struct extent_buffer *parent, int parent_slot, 1455 struct extent_buffer **cow_ret, 1456 enum btrfs_lock_nesting nest) 1457 { 1458 struct btrfs_fs_info *fs_info = root->fs_info; 1459 u64 search_start; 1460 int ret; 1461 1462 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 1463 btrfs_err(fs_info, 1464 "COW'ing blocks on a fs root that's being dropped"); 1465 1466 if (trans->transaction != fs_info->running_transaction) 1467 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1468 trans->transid, 1469 fs_info->running_transaction->transid); 1470 1471 if (trans->transid != fs_info->generation) 1472 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1473 trans->transid, fs_info->generation); 1474 1475 if (!should_cow_block(trans, root, buf)) { 1476 trans->dirty = true; 1477 *cow_ret = buf; 1478 return 0; 1479 } 1480 1481 search_start = buf->start & ~((u64)SZ_1G - 1); 1482 1483 /* 1484 * Before CoWing this block for later modification, check if it's 1485 * the subtree root and do the delayed subtree trace if needed. 1486 * 1487 * Also We don't care about the error, as it's handled internally. 1488 */ 1489 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 1490 ret = __btrfs_cow_block(trans, root, buf, parent, 1491 parent_slot, cow_ret, search_start, 0, nest); 1492 1493 trace_btrfs_cow_block(root, buf, *cow_ret); 1494 1495 return ret; 1496 } 1497 1498 /* 1499 * helper function for defrag to decide if two blocks pointed to by a 1500 * node are actually close by 1501 */ 1502 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1503 { 1504 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1505 return 1; 1506 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1507 return 1; 1508 return 0; 1509 } 1510 1511 #ifdef __LITTLE_ENDIAN 1512 1513 /* 1514 * Compare two keys, on little-endian the disk order is same as CPU order and 1515 * we can avoid the conversion. 1516 */ 1517 static int comp_keys(const struct btrfs_disk_key *disk_key, 1518 const struct btrfs_key *k2) 1519 { 1520 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 1521 1522 return btrfs_comp_cpu_keys(k1, k2); 1523 } 1524 1525 #else 1526 1527 /* 1528 * compare two keys in a memcmp fashion 1529 */ 1530 static int comp_keys(const struct btrfs_disk_key *disk, 1531 const struct btrfs_key *k2) 1532 { 1533 struct btrfs_key k1; 1534 1535 btrfs_disk_key_to_cpu(&k1, disk); 1536 1537 return btrfs_comp_cpu_keys(&k1, k2); 1538 } 1539 #endif 1540 1541 /* 1542 * same as comp_keys only with two btrfs_key's 1543 */ 1544 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1545 { 1546 if (k1->objectid > k2->objectid) 1547 return 1; 1548 if (k1->objectid < k2->objectid) 1549 return -1; 1550 if (k1->type > k2->type) 1551 return 1; 1552 if (k1->type < k2->type) 1553 return -1; 1554 if (k1->offset > k2->offset) 1555 return 1; 1556 if (k1->offset < k2->offset) 1557 return -1; 1558 return 0; 1559 } 1560 1561 /* 1562 * this is used by the defrag code to go through all the 1563 * leaves pointed to by a node and reallocate them so that 1564 * disk order is close to key order 1565 */ 1566 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1567 struct btrfs_root *root, struct extent_buffer *parent, 1568 int start_slot, u64 *last_ret, 1569 struct btrfs_key *progress) 1570 { 1571 struct btrfs_fs_info *fs_info = root->fs_info; 1572 struct extent_buffer *cur; 1573 u64 blocknr; 1574 u64 search_start = *last_ret; 1575 u64 last_block = 0; 1576 u64 other; 1577 u32 parent_nritems; 1578 int end_slot; 1579 int i; 1580 int err = 0; 1581 u32 blocksize; 1582 int progress_passed = 0; 1583 struct btrfs_disk_key disk_key; 1584 1585 WARN_ON(trans->transaction != fs_info->running_transaction); 1586 WARN_ON(trans->transid != fs_info->generation); 1587 1588 parent_nritems = btrfs_header_nritems(parent); 1589 blocksize = fs_info->nodesize; 1590 end_slot = parent_nritems - 1; 1591 1592 if (parent_nritems <= 1) 1593 return 0; 1594 1595 for (i = start_slot; i <= end_slot; i++) { 1596 int close = 1; 1597 1598 btrfs_node_key(parent, &disk_key, i); 1599 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1600 continue; 1601 1602 progress_passed = 1; 1603 blocknr = btrfs_node_blockptr(parent, i); 1604 if (last_block == 0) 1605 last_block = blocknr; 1606 1607 if (i > 0) { 1608 other = btrfs_node_blockptr(parent, i - 1); 1609 close = close_blocks(blocknr, other, blocksize); 1610 } 1611 if (!close && i < end_slot) { 1612 other = btrfs_node_blockptr(parent, i + 1); 1613 close = close_blocks(blocknr, other, blocksize); 1614 } 1615 if (close) { 1616 last_block = blocknr; 1617 continue; 1618 } 1619 1620 cur = btrfs_read_node_slot(parent, i); 1621 if (IS_ERR(cur)) 1622 return PTR_ERR(cur); 1623 if (search_start == 0) 1624 search_start = last_block; 1625 1626 btrfs_tree_lock(cur); 1627 err = __btrfs_cow_block(trans, root, cur, parent, i, 1628 &cur, search_start, 1629 min(16 * blocksize, 1630 (end_slot - i) * blocksize), 1631 BTRFS_NESTING_COW); 1632 if (err) { 1633 btrfs_tree_unlock(cur); 1634 free_extent_buffer(cur); 1635 break; 1636 } 1637 search_start = cur->start; 1638 last_block = cur->start; 1639 *last_ret = search_start; 1640 btrfs_tree_unlock(cur); 1641 free_extent_buffer(cur); 1642 } 1643 return err; 1644 } 1645 1646 /* 1647 * search for key in the extent_buffer. The items start at offset p, 1648 * and they are item_size apart. There are 'max' items in p. 1649 * 1650 * the slot in the array is returned via slot, and it points to 1651 * the place where you would insert key if it is not found in 1652 * the array. 1653 * 1654 * slot may point to max if the key is bigger than all of the keys 1655 */ 1656 static noinline int generic_bin_search(struct extent_buffer *eb, 1657 unsigned long p, int item_size, 1658 const struct btrfs_key *key, 1659 int max, int *slot) 1660 { 1661 int low = 0; 1662 int high = max; 1663 int ret; 1664 const int key_size = sizeof(struct btrfs_disk_key); 1665 1666 if (low > high) { 1667 btrfs_err(eb->fs_info, 1668 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1669 __func__, low, high, eb->start, 1670 btrfs_header_owner(eb), btrfs_header_level(eb)); 1671 return -EINVAL; 1672 } 1673 1674 while (low < high) { 1675 unsigned long oip; 1676 unsigned long offset; 1677 struct btrfs_disk_key *tmp; 1678 struct btrfs_disk_key unaligned; 1679 int mid; 1680 1681 mid = (low + high) / 2; 1682 offset = p + mid * item_size; 1683 oip = offset_in_page(offset); 1684 1685 if (oip + key_size <= PAGE_SIZE) { 1686 const unsigned long idx = get_eb_page_index(offset); 1687 char *kaddr = page_address(eb->pages[idx]); 1688 1689 oip = get_eb_offset_in_page(eb, offset); 1690 tmp = (struct btrfs_disk_key *)(kaddr + oip); 1691 } else { 1692 read_extent_buffer(eb, &unaligned, offset, key_size); 1693 tmp = &unaligned; 1694 } 1695 1696 ret = comp_keys(tmp, key); 1697 1698 if (ret < 0) 1699 low = mid + 1; 1700 else if (ret > 0) 1701 high = mid; 1702 else { 1703 *slot = mid; 1704 return 0; 1705 } 1706 } 1707 *slot = low; 1708 return 1; 1709 } 1710 1711 /* 1712 * simple bin_search frontend that does the right thing for 1713 * leaves vs nodes 1714 */ 1715 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1716 int *slot) 1717 { 1718 if (btrfs_header_level(eb) == 0) 1719 return generic_bin_search(eb, 1720 offsetof(struct btrfs_leaf, items), 1721 sizeof(struct btrfs_item), 1722 key, btrfs_header_nritems(eb), 1723 slot); 1724 else 1725 return generic_bin_search(eb, 1726 offsetof(struct btrfs_node, ptrs), 1727 sizeof(struct btrfs_key_ptr), 1728 key, btrfs_header_nritems(eb), 1729 slot); 1730 } 1731 1732 static void root_add_used(struct btrfs_root *root, u32 size) 1733 { 1734 spin_lock(&root->accounting_lock); 1735 btrfs_set_root_used(&root->root_item, 1736 btrfs_root_used(&root->root_item) + size); 1737 spin_unlock(&root->accounting_lock); 1738 } 1739 1740 static void root_sub_used(struct btrfs_root *root, u32 size) 1741 { 1742 spin_lock(&root->accounting_lock); 1743 btrfs_set_root_used(&root->root_item, 1744 btrfs_root_used(&root->root_item) - size); 1745 spin_unlock(&root->accounting_lock); 1746 } 1747 1748 /* given a node and slot number, this reads the blocks it points to. The 1749 * extent buffer is returned with a reference taken (but unlocked). 1750 */ 1751 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 1752 int slot) 1753 { 1754 int level = btrfs_header_level(parent); 1755 struct extent_buffer *eb; 1756 struct btrfs_key first_key; 1757 1758 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1759 return ERR_PTR(-ENOENT); 1760 1761 BUG_ON(level == 0); 1762 1763 btrfs_node_key_to_cpu(parent, &first_key, slot); 1764 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 1765 btrfs_header_owner(parent), 1766 btrfs_node_ptr_generation(parent, slot), 1767 level - 1, &first_key); 1768 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1769 free_extent_buffer(eb); 1770 eb = ERR_PTR(-EIO); 1771 } 1772 1773 return eb; 1774 } 1775 1776 /* 1777 * node level balancing, used to make sure nodes are in proper order for 1778 * item deletion. We balance from the top down, so we have to make sure 1779 * that a deletion won't leave an node completely empty later on. 1780 */ 1781 static noinline int balance_level(struct btrfs_trans_handle *trans, 1782 struct btrfs_root *root, 1783 struct btrfs_path *path, int level) 1784 { 1785 struct btrfs_fs_info *fs_info = root->fs_info; 1786 struct extent_buffer *right = NULL; 1787 struct extent_buffer *mid; 1788 struct extent_buffer *left = NULL; 1789 struct extent_buffer *parent = NULL; 1790 int ret = 0; 1791 int wret; 1792 int pslot; 1793 int orig_slot = path->slots[level]; 1794 u64 orig_ptr; 1795 1796 ASSERT(level > 0); 1797 1798 mid = path->nodes[level]; 1799 1800 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK); 1801 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1802 1803 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1804 1805 if (level < BTRFS_MAX_LEVEL - 1) { 1806 parent = path->nodes[level + 1]; 1807 pslot = path->slots[level + 1]; 1808 } 1809 1810 /* 1811 * deal with the case where there is only one pointer in the root 1812 * by promoting the node below to a root 1813 */ 1814 if (!parent) { 1815 struct extent_buffer *child; 1816 1817 if (btrfs_header_nritems(mid) != 1) 1818 return 0; 1819 1820 /* promote the child to a root */ 1821 child = btrfs_read_node_slot(mid, 0); 1822 if (IS_ERR(child)) { 1823 ret = PTR_ERR(child); 1824 btrfs_handle_fs_error(fs_info, ret, NULL); 1825 goto enospc; 1826 } 1827 1828 btrfs_tree_lock(child); 1829 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 1830 BTRFS_NESTING_COW); 1831 if (ret) { 1832 btrfs_tree_unlock(child); 1833 free_extent_buffer(child); 1834 goto enospc; 1835 } 1836 1837 ret = tree_mod_log_insert_root(root->node, child, 1); 1838 BUG_ON(ret < 0); 1839 rcu_assign_pointer(root->node, child); 1840 1841 add_root_to_dirty_list(root); 1842 btrfs_tree_unlock(child); 1843 1844 path->locks[level] = 0; 1845 path->nodes[level] = NULL; 1846 btrfs_clean_tree_block(mid); 1847 btrfs_tree_unlock(mid); 1848 /* once for the path */ 1849 free_extent_buffer(mid); 1850 1851 root_sub_used(root, mid->len); 1852 btrfs_free_tree_block(trans, root, mid, 0, 1); 1853 /* once for the root ptr */ 1854 free_extent_buffer_stale(mid); 1855 return 0; 1856 } 1857 if (btrfs_header_nritems(mid) > 1858 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1859 return 0; 1860 1861 left = btrfs_read_node_slot(parent, pslot - 1); 1862 if (IS_ERR(left)) 1863 left = NULL; 1864 1865 if (left) { 1866 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 1867 wret = btrfs_cow_block(trans, root, left, 1868 parent, pslot - 1, &left, 1869 BTRFS_NESTING_LEFT_COW); 1870 if (wret) { 1871 ret = wret; 1872 goto enospc; 1873 } 1874 } 1875 1876 right = btrfs_read_node_slot(parent, pslot + 1); 1877 if (IS_ERR(right)) 1878 right = NULL; 1879 1880 if (right) { 1881 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 1882 wret = btrfs_cow_block(trans, root, right, 1883 parent, pslot + 1, &right, 1884 BTRFS_NESTING_RIGHT_COW); 1885 if (wret) { 1886 ret = wret; 1887 goto enospc; 1888 } 1889 } 1890 1891 /* first, try to make some room in the middle buffer */ 1892 if (left) { 1893 orig_slot += btrfs_header_nritems(left); 1894 wret = push_node_left(trans, left, mid, 1); 1895 if (wret < 0) 1896 ret = wret; 1897 } 1898 1899 /* 1900 * then try to empty the right most buffer into the middle 1901 */ 1902 if (right) { 1903 wret = push_node_left(trans, mid, right, 1); 1904 if (wret < 0 && wret != -ENOSPC) 1905 ret = wret; 1906 if (btrfs_header_nritems(right) == 0) { 1907 btrfs_clean_tree_block(right); 1908 btrfs_tree_unlock(right); 1909 del_ptr(root, path, level + 1, pslot + 1); 1910 root_sub_used(root, right->len); 1911 btrfs_free_tree_block(trans, root, right, 0, 1); 1912 free_extent_buffer_stale(right); 1913 right = NULL; 1914 } else { 1915 struct btrfs_disk_key right_key; 1916 btrfs_node_key(right, &right_key, 0); 1917 ret = tree_mod_log_insert_key(parent, pslot + 1, 1918 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1919 BUG_ON(ret < 0); 1920 btrfs_set_node_key(parent, &right_key, pslot + 1); 1921 btrfs_mark_buffer_dirty(parent); 1922 } 1923 } 1924 if (btrfs_header_nritems(mid) == 1) { 1925 /* 1926 * we're not allowed to leave a node with one item in the 1927 * tree during a delete. A deletion from lower in the tree 1928 * could try to delete the only pointer in this node. 1929 * So, pull some keys from the left. 1930 * There has to be a left pointer at this point because 1931 * otherwise we would have pulled some pointers from the 1932 * right 1933 */ 1934 if (!left) { 1935 ret = -EROFS; 1936 btrfs_handle_fs_error(fs_info, ret, NULL); 1937 goto enospc; 1938 } 1939 wret = balance_node_right(trans, mid, left); 1940 if (wret < 0) { 1941 ret = wret; 1942 goto enospc; 1943 } 1944 if (wret == 1) { 1945 wret = push_node_left(trans, left, mid, 1); 1946 if (wret < 0) 1947 ret = wret; 1948 } 1949 BUG_ON(wret == 1); 1950 } 1951 if (btrfs_header_nritems(mid) == 0) { 1952 btrfs_clean_tree_block(mid); 1953 btrfs_tree_unlock(mid); 1954 del_ptr(root, path, level + 1, pslot); 1955 root_sub_used(root, mid->len); 1956 btrfs_free_tree_block(trans, root, mid, 0, 1); 1957 free_extent_buffer_stale(mid); 1958 mid = NULL; 1959 } else { 1960 /* update the parent key to reflect our changes */ 1961 struct btrfs_disk_key mid_key; 1962 btrfs_node_key(mid, &mid_key, 0); 1963 ret = tree_mod_log_insert_key(parent, pslot, 1964 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1965 BUG_ON(ret < 0); 1966 btrfs_set_node_key(parent, &mid_key, pslot); 1967 btrfs_mark_buffer_dirty(parent); 1968 } 1969 1970 /* update the path */ 1971 if (left) { 1972 if (btrfs_header_nritems(left) > orig_slot) { 1973 atomic_inc(&left->refs); 1974 /* left was locked after cow */ 1975 path->nodes[level] = left; 1976 path->slots[level + 1] -= 1; 1977 path->slots[level] = orig_slot; 1978 if (mid) { 1979 btrfs_tree_unlock(mid); 1980 free_extent_buffer(mid); 1981 } 1982 } else { 1983 orig_slot -= btrfs_header_nritems(left); 1984 path->slots[level] = orig_slot; 1985 } 1986 } 1987 /* double check we haven't messed things up */ 1988 if (orig_ptr != 1989 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1990 BUG(); 1991 enospc: 1992 if (right) { 1993 btrfs_tree_unlock(right); 1994 free_extent_buffer(right); 1995 } 1996 if (left) { 1997 if (path->nodes[level] != left) 1998 btrfs_tree_unlock(left); 1999 free_extent_buffer(left); 2000 } 2001 return ret; 2002 } 2003 2004 /* Node balancing for insertion. Here we only split or push nodes around 2005 * when they are completely full. This is also done top down, so we 2006 * have to be pessimistic. 2007 */ 2008 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2009 struct btrfs_root *root, 2010 struct btrfs_path *path, int level) 2011 { 2012 struct btrfs_fs_info *fs_info = root->fs_info; 2013 struct extent_buffer *right = NULL; 2014 struct extent_buffer *mid; 2015 struct extent_buffer *left = NULL; 2016 struct extent_buffer *parent = NULL; 2017 int ret = 0; 2018 int wret; 2019 int pslot; 2020 int orig_slot = path->slots[level]; 2021 2022 if (level == 0) 2023 return 1; 2024 2025 mid = path->nodes[level]; 2026 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2027 2028 if (level < BTRFS_MAX_LEVEL - 1) { 2029 parent = path->nodes[level + 1]; 2030 pslot = path->slots[level + 1]; 2031 } 2032 2033 if (!parent) 2034 return 1; 2035 2036 left = btrfs_read_node_slot(parent, pslot - 1); 2037 if (IS_ERR(left)) 2038 left = NULL; 2039 2040 /* first, try to make some room in the middle buffer */ 2041 if (left) { 2042 u32 left_nr; 2043 2044 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 2045 2046 left_nr = btrfs_header_nritems(left); 2047 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2048 wret = 1; 2049 } else { 2050 ret = btrfs_cow_block(trans, root, left, parent, 2051 pslot - 1, &left, 2052 BTRFS_NESTING_LEFT_COW); 2053 if (ret) 2054 wret = 1; 2055 else { 2056 wret = push_node_left(trans, left, mid, 0); 2057 } 2058 } 2059 if (wret < 0) 2060 ret = wret; 2061 if (wret == 0) { 2062 struct btrfs_disk_key disk_key; 2063 orig_slot += left_nr; 2064 btrfs_node_key(mid, &disk_key, 0); 2065 ret = tree_mod_log_insert_key(parent, pslot, 2066 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2067 BUG_ON(ret < 0); 2068 btrfs_set_node_key(parent, &disk_key, pslot); 2069 btrfs_mark_buffer_dirty(parent); 2070 if (btrfs_header_nritems(left) > orig_slot) { 2071 path->nodes[level] = left; 2072 path->slots[level + 1] -= 1; 2073 path->slots[level] = orig_slot; 2074 btrfs_tree_unlock(mid); 2075 free_extent_buffer(mid); 2076 } else { 2077 orig_slot -= 2078 btrfs_header_nritems(left); 2079 path->slots[level] = orig_slot; 2080 btrfs_tree_unlock(left); 2081 free_extent_buffer(left); 2082 } 2083 return 0; 2084 } 2085 btrfs_tree_unlock(left); 2086 free_extent_buffer(left); 2087 } 2088 right = btrfs_read_node_slot(parent, pslot + 1); 2089 if (IS_ERR(right)) 2090 right = NULL; 2091 2092 /* 2093 * then try to empty the right most buffer into the middle 2094 */ 2095 if (right) { 2096 u32 right_nr; 2097 2098 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 2099 2100 right_nr = btrfs_header_nritems(right); 2101 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2102 wret = 1; 2103 } else { 2104 ret = btrfs_cow_block(trans, root, right, 2105 parent, pslot + 1, 2106 &right, BTRFS_NESTING_RIGHT_COW); 2107 if (ret) 2108 wret = 1; 2109 else { 2110 wret = balance_node_right(trans, right, mid); 2111 } 2112 } 2113 if (wret < 0) 2114 ret = wret; 2115 if (wret == 0) { 2116 struct btrfs_disk_key disk_key; 2117 2118 btrfs_node_key(right, &disk_key, 0); 2119 ret = tree_mod_log_insert_key(parent, pslot + 1, 2120 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2121 BUG_ON(ret < 0); 2122 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2123 btrfs_mark_buffer_dirty(parent); 2124 2125 if (btrfs_header_nritems(mid) <= orig_slot) { 2126 path->nodes[level] = right; 2127 path->slots[level + 1] += 1; 2128 path->slots[level] = orig_slot - 2129 btrfs_header_nritems(mid); 2130 btrfs_tree_unlock(mid); 2131 free_extent_buffer(mid); 2132 } else { 2133 btrfs_tree_unlock(right); 2134 free_extent_buffer(right); 2135 } 2136 return 0; 2137 } 2138 btrfs_tree_unlock(right); 2139 free_extent_buffer(right); 2140 } 2141 return 1; 2142 } 2143 2144 /* 2145 * readahead one full node of leaves, finding things that are close 2146 * to the block in 'slot', and triggering ra on them. 2147 */ 2148 static void reada_for_search(struct btrfs_fs_info *fs_info, 2149 struct btrfs_path *path, 2150 int level, int slot, u64 objectid) 2151 { 2152 struct extent_buffer *node; 2153 struct btrfs_disk_key disk_key; 2154 u32 nritems; 2155 u64 search; 2156 u64 target; 2157 u64 nread = 0; 2158 struct extent_buffer *eb; 2159 u32 nr; 2160 u32 blocksize; 2161 u32 nscan = 0; 2162 2163 if (level != 1) 2164 return; 2165 2166 if (!path->nodes[level]) 2167 return; 2168 2169 node = path->nodes[level]; 2170 2171 search = btrfs_node_blockptr(node, slot); 2172 blocksize = fs_info->nodesize; 2173 eb = find_extent_buffer(fs_info, search); 2174 if (eb) { 2175 free_extent_buffer(eb); 2176 return; 2177 } 2178 2179 target = search; 2180 2181 nritems = btrfs_header_nritems(node); 2182 nr = slot; 2183 2184 while (1) { 2185 if (path->reada == READA_BACK) { 2186 if (nr == 0) 2187 break; 2188 nr--; 2189 } else if (path->reada == READA_FORWARD) { 2190 nr++; 2191 if (nr >= nritems) 2192 break; 2193 } 2194 if (path->reada == READA_BACK && objectid) { 2195 btrfs_node_key(node, &disk_key, nr); 2196 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2197 break; 2198 } 2199 search = btrfs_node_blockptr(node, nr); 2200 if ((search <= target && target - search <= 65536) || 2201 (search > target && search - target <= 65536)) { 2202 btrfs_readahead_node_child(node, nr); 2203 nread += blocksize; 2204 } 2205 nscan++; 2206 if ((nread > 65536 || nscan > 32)) 2207 break; 2208 } 2209 } 2210 2211 static noinline void reada_for_balance(struct btrfs_path *path, int level) 2212 { 2213 struct extent_buffer *parent; 2214 int slot; 2215 int nritems; 2216 2217 parent = path->nodes[level + 1]; 2218 if (!parent) 2219 return; 2220 2221 nritems = btrfs_header_nritems(parent); 2222 slot = path->slots[level + 1]; 2223 2224 if (slot > 0) 2225 btrfs_readahead_node_child(parent, slot - 1); 2226 if (slot + 1 < nritems) 2227 btrfs_readahead_node_child(parent, slot + 1); 2228 } 2229 2230 2231 /* 2232 * when we walk down the tree, it is usually safe to unlock the higher layers 2233 * in the tree. The exceptions are when our path goes through slot 0, because 2234 * operations on the tree might require changing key pointers higher up in the 2235 * tree. 2236 * 2237 * callers might also have set path->keep_locks, which tells this code to keep 2238 * the lock if the path points to the last slot in the block. This is part of 2239 * walking through the tree, and selecting the next slot in the higher block. 2240 * 2241 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2242 * if lowest_unlock is 1, level 0 won't be unlocked 2243 */ 2244 static noinline void unlock_up(struct btrfs_path *path, int level, 2245 int lowest_unlock, int min_write_lock_level, 2246 int *write_lock_level) 2247 { 2248 int i; 2249 int skip_level = level; 2250 int no_skips = 0; 2251 struct extent_buffer *t; 2252 2253 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2254 if (!path->nodes[i]) 2255 break; 2256 if (!path->locks[i]) 2257 break; 2258 if (!no_skips && path->slots[i] == 0) { 2259 skip_level = i + 1; 2260 continue; 2261 } 2262 if (!no_skips && path->keep_locks) { 2263 u32 nritems; 2264 t = path->nodes[i]; 2265 nritems = btrfs_header_nritems(t); 2266 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2267 skip_level = i + 1; 2268 continue; 2269 } 2270 } 2271 if (skip_level < i && i >= lowest_unlock) 2272 no_skips = 1; 2273 2274 t = path->nodes[i]; 2275 if (i >= lowest_unlock && i > skip_level) { 2276 btrfs_tree_unlock_rw(t, path->locks[i]); 2277 path->locks[i] = 0; 2278 if (write_lock_level && 2279 i > min_write_lock_level && 2280 i <= *write_lock_level) { 2281 *write_lock_level = i - 1; 2282 } 2283 } 2284 } 2285 } 2286 2287 /* 2288 * helper function for btrfs_search_slot. The goal is to find a block 2289 * in cache without setting the path to blocking. If we find the block 2290 * we return zero and the path is unchanged. 2291 * 2292 * If we can't find the block, we set the path blocking and do some 2293 * reada. -EAGAIN is returned and the search must be repeated. 2294 */ 2295 static int 2296 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2297 struct extent_buffer **eb_ret, int level, int slot, 2298 const struct btrfs_key *key) 2299 { 2300 struct btrfs_fs_info *fs_info = root->fs_info; 2301 u64 blocknr; 2302 u64 gen; 2303 struct extent_buffer *tmp; 2304 struct btrfs_key first_key; 2305 int ret; 2306 int parent_level; 2307 2308 blocknr = btrfs_node_blockptr(*eb_ret, slot); 2309 gen = btrfs_node_ptr_generation(*eb_ret, slot); 2310 parent_level = btrfs_header_level(*eb_ret); 2311 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot); 2312 2313 tmp = find_extent_buffer(fs_info, blocknr); 2314 if (tmp) { 2315 /* first we do an atomic uptodate check */ 2316 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2317 /* 2318 * Do extra check for first_key, eb can be stale due to 2319 * being cached, read from scrub, or have multiple 2320 * parents (shared tree blocks). 2321 */ 2322 if (btrfs_verify_level_key(tmp, 2323 parent_level - 1, &first_key, gen)) { 2324 free_extent_buffer(tmp); 2325 return -EUCLEAN; 2326 } 2327 *eb_ret = tmp; 2328 return 0; 2329 } 2330 2331 /* now we're allowed to do a blocking uptodate check */ 2332 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2333 if (!ret) { 2334 *eb_ret = tmp; 2335 return 0; 2336 } 2337 free_extent_buffer(tmp); 2338 btrfs_release_path(p); 2339 return -EIO; 2340 } 2341 2342 /* 2343 * reduce lock contention at high levels 2344 * of the btree by dropping locks before 2345 * we read. Don't release the lock on the current 2346 * level because we need to walk this node to figure 2347 * out which blocks to read. 2348 */ 2349 btrfs_unlock_up_safe(p, level + 1); 2350 2351 if (p->reada != READA_NONE) 2352 reada_for_search(fs_info, p, level, slot, key->objectid); 2353 2354 ret = -EAGAIN; 2355 tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid, 2356 gen, parent_level - 1, &first_key); 2357 if (!IS_ERR(tmp)) { 2358 /* 2359 * If the read above didn't mark this buffer up to date, 2360 * it will never end up being up to date. Set ret to EIO now 2361 * and give up so that our caller doesn't loop forever 2362 * on our EAGAINs. 2363 */ 2364 if (!extent_buffer_uptodate(tmp)) 2365 ret = -EIO; 2366 free_extent_buffer(tmp); 2367 } else { 2368 ret = PTR_ERR(tmp); 2369 } 2370 2371 btrfs_release_path(p); 2372 return ret; 2373 } 2374 2375 /* 2376 * helper function for btrfs_search_slot. This does all of the checks 2377 * for node-level blocks and does any balancing required based on 2378 * the ins_len. 2379 * 2380 * If no extra work was required, zero is returned. If we had to 2381 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2382 * start over 2383 */ 2384 static int 2385 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2386 struct btrfs_root *root, struct btrfs_path *p, 2387 struct extent_buffer *b, int level, int ins_len, 2388 int *write_lock_level) 2389 { 2390 struct btrfs_fs_info *fs_info = root->fs_info; 2391 int ret = 0; 2392 2393 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2394 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2395 2396 if (*write_lock_level < level + 1) { 2397 *write_lock_level = level + 1; 2398 btrfs_release_path(p); 2399 return -EAGAIN; 2400 } 2401 2402 reada_for_balance(p, level); 2403 ret = split_node(trans, root, p, level); 2404 2405 b = p->nodes[level]; 2406 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2407 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2408 2409 if (*write_lock_level < level + 1) { 2410 *write_lock_level = level + 1; 2411 btrfs_release_path(p); 2412 return -EAGAIN; 2413 } 2414 2415 reada_for_balance(p, level); 2416 ret = balance_level(trans, root, p, level); 2417 if (ret) 2418 return ret; 2419 2420 b = p->nodes[level]; 2421 if (!b) { 2422 btrfs_release_path(p); 2423 return -EAGAIN; 2424 } 2425 BUG_ON(btrfs_header_nritems(b) == 1); 2426 } 2427 return ret; 2428 } 2429 2430 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2431 u64 iobjectid, u64 ioff, u8 key_type, 2432 struct btrfs_key *found_key) 2433 { 2434 int ret; 2435 struct btrfs_key key; 2436 struct extent_buffer *eb; 2437 2438 ASSERT(path); 2439 ASSERT(found_key); 2440 2441 key.type = key_type; 2442 key.objectid = iobjectid; 2443 key.offset = ioff; 2444 2445 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2446 if (ret < 0) 2447 return ret; 2448 2449 eb = path->nodes[0]; 2450 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2451 ret = btrfs_next_leaf(fs_root, path); 2452 if (ret) 2453 return ret; 2454 eb = path->nodes[0]; 2455 } 2456 2457 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2458 if (found_key->type != key.type || 2459 found_key->objectid != key.objectid) 2460 return 1; 2461 2462 return 0; 2463 } 2464 2465 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2466 struct btrfs_path *p, 2467 int write_lock_level) 2468 { 2469 struct btrfs_fs_info *fs_info = root->fs_info; 2470 struct extent_buffer *b; 2471 int root_lock; 2472 int level = 0; 2473 2474 /* We try very hard to do read locks on the root */ 2475 root_lock = BTRFS_READ_LOCK; 2476 2477 if (p->search_commit_root) { 2478 /* 2479 * The commit roots are read only so we always do read locks, 2480 * and we always must hold the commit_root_sem when doing 2481 * searches on them, the only exception is send where we don't 2482 * want to block transaction commits for a long time, so 2483 * we need to clone the commit root in order to avoid races 2484 * with transaction commits that create a snapshot of one of 2485 * the roots used by a send operation. 2486 */ 2487 if (p->need_commit_sem) { 2488 down_read(&fs_info->commit_root_sem); 2489 b = btrfs_clone_extent_buffer(root->commit_root); 2490 up_read(&fs_info->commit_root_sem); 2491 if (!b) 2492 return ERR_PTR(-ENOMEM); 2493 2494 } else { 2495 b = root->commit_root; 2496 atomic_inc(&b->refs); 2497 } 2498 level = btrfs_header_level(b); 2499 /* 2500 * Ensure that all callers have set skip_locking when 2501 * p->search_commit_root = 1. 2502 */ 2503 ASSERT(p->skip_locking == 1); 2504 2505 goto out; 2506 } 2507 2508 if (p->skip_locking) { 2509 b = btrfs_root_node(root); 2510 level = btrfs_header_level(b); 2511 goto out; 2512 } 2513 2514 /* 2515 * If the level is set to maximum, we can skip trying to get the read 2516 * lock. 2517 */ 2518 if (write_lock_level < BTRFS_MAX_LEVEL) { 2519 /* 2520 * We don't know the level of the root node until we actually 2521 * have it read locked 2522 */ 2523 b = btrfs_read_lock_root_node(root); 2524 level = btrfs_header_level(b); 2525 if (level > write_lock_level) 2526 goto out; 2527 2528 /* Whoops, must trade for write lock */ 2529 btrfs_tree_read_unlock(b); 2530 free_extent_buffer(b); 2531 } 2532 2533 b = btrfs_lock_root_node(root); 2534 root_lock = BTRFS_WRITE_LOCK; 2535 2536 /* The level might have changed, check again */ 2537 level = btrfs_header_level(b); 2538 2539 out: 2540 p->nodes[level] = b; 2541 if (!p->skip_locking) 2542 p->locks[level] = root_lock; 2543 /* 2544 * Callers are responsible for dropping b's references. 2545 */ 2546 return b; 2547 } 2548 2549 2550 /* 2551 * btrfs_search_slot - look for a key in a tree and perform necessary 2552 * modifications to preserve tree invariants. 2553 * 2554 * @trans: Handle of transaction, used when modifying the tree 2555 * @p: Holds all btree nodes along the search path 2556 * @root: The root node of the tree 2557 * @key: The key we are looking for 2558 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2559 * deletions it's -1. 0 for plain searches 2560 * @cow: boolean should CoW operations be performed. Must always be 1 2561 * when modifying the tree. 2562 * 2563 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2564 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2565 * 2566 * If @key is found, 0 is returned and you can find the item in the leaf level 2567 * of the path (level 0) 2568 * 2569 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2570 * points to the slot where it should be inserted 2571 * 2572 * If an error is encountered while searching the tree a negative error number 2573 * is returned 2574 */ 2575 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2576 const struct btrfs_key *key, struct btrfs_path *p, 2577 int ins_len, int cow) 2578 { 2579 struct extent_buffer *b; 2580 int slot; 2581 int ret; 2582 int err; 2583 int level; 2584 int lowest_unlock = 1; 2585 /* everything at write_lock_level or lower must be write locked */ 2586 int write_lock_level = 0; 2587 u8 lowest_level = 0; 2588 int min_write_lock_level; 2589 int prev_cmp; 2590 2591 lowest_level = p->lowest_level; 2592 WARN_ON(lowest_level && ins_len > 0); 2593 WARN_ON(p->nodes[0] != NULL); 2594 BUG_ON(!cow && ins_len); 2595 2596 if (ins_len < 0) { 2597 lowest_unlock = 2; 2598 2599 /* when we are removing items, we might have to go up to level 2600 * two as we update tree pointers Make sure we keep write 2601 * for those levels as well 2602 */ 2603 write_lock_level = 2; 2604 } else if (ins_len > 0) { 2605 /* 2606 * for inserting items, make sure we have a write lock on 2607 * level 1 so we can update keys 2608 */ 2609 write_lock_level = 1; 2610 } 2611 2612 if (!cow) 2613 write_lock_level = -1; 2614 2615 if (cow && (p->keep_locks || p->lowest_level)) 2616 write_lock_level = BTRFS_MAX_LEVEL; 2617 2618 min_write_lock_level = write_lock_level; 2619 2620 again: 2621 prev_cmp = -1; 2622 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2623 if (IS_ERR(b)) { 2624 ret = PTR_ERR(b); 2625 goto done; 2626 } 2627 2628 while (b) { 2629 int dec = 0; 2630 2631 level = btrfs_header_level(b); 2632 2633 if (cow) { 2634 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2635 2636 /* 2637 * if we don't really need to cow this block 2638 * then we don't want to set the path blocking, 2639 * so we test it here 2640 */ 2641 if (!should_cow_block(trans, root, b)) { 2642 trans->dirty = true; 2643 goto cow_done; 2644 } 2645 2646 /* 2647 * must have write locks on this node and the 2648 * parent 2649 */ 2650 if (level > write_lock_level || 2651 (level + 1 > write_lock_level && 2652 level + 1 < BTRFS_MAX_LEVEL && 2653 p->nodes[level + 1])) { 2654 write_lock_level = level + 1; 2655 btrfs_release_path(p); 2656 goto again; 2657 } 2658 2659 if (last_level) 2660 err = btrfs_cow_block(trans, root, b, NULL, 0, 2661 &b, 2662 BTRFS_NESTING_COW); 2663 else 2664 err = btrfs_cow_block(trans, root, b, 2665 p->nodes[level + 1], 2666 p->slots[level + 1], &b, 2667 BTRFS_NESTING_COW); 2668 if (err) { 2669 ret = err; 2670 goto done; 2671 } 2672 } 2673 cow_done: 2674 p->nodes[level] = b; 2675 /* 2676 * Leave path with blocking locks to avoid massive 2677 * lock context switch, this is made on purpose. 2678 */ 2679 2680 /* 2681 * we have a lock on b and as long as we aren't changing 2682 * the tree, there is no way to for the items in b to change. 2683 * It is safe to drop the lock on our parent before we 2684 * go through the expensive btree search on b. 2685 * 2686 * If we're inserting or deleting (ins_len != 0), then we might 2687 * be changing slot zero, which may require changing the parent. 2688 * So, we can't drop the lock until after we know which slot 2689 * we're operating on. 2690 */ 2691 if (!ins_len && !p->keep_locks) { 2692 int u = level + 1; 2693 2694 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2695 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2696 p->locks[u] = 0; 2697 } 2698 } 2699 2700 /* 2701 * If btrfs_bin_search returns an exact match (prev_cmp == 0) 2702 * we can safely assume the target key will always be in slot 0 2703 * on lower levels due to the invariants BTRFS' btree provides, 2704 * namely that a btrfs_key_ptr entry always points to the 2705 * lowest key in the child node, thus we can skip searching 2706 * lower levels 2707 */ 2708 if (prev_cmp == 0) { 2709 slot = 0; 2710 ret = 0; 2711 } else { 2712 ret = btrfs_bin_search(b, key, &slot); 2713 prev_cmp = ret; 2714 if (ret < 0) 2715 goto done; 2716 } 2717 2718 if (level == 0) { 2719 p->slots[level] = slot; 2720 if (ins_len > 0 && 2721 btrfs_leaf_free_space(b) < ins_len) { 2722 if (write_lock_level < 1) { 2723 write_lock_level = 1; 2724 btrfs_release_path(p); 2725 goto again; 2726 } 2727 2728 err = split_leaf(trans, root, key, 2729 p, ins_len, ret == 0); 2730 2731 BUG_ON(err > 0); 2732 if (err) { 2733 ret = err; 2734 goto done; 2735 } 2736 } 2737 if (!p->search_for_split) 2738 unlock_up(p, level, lowest_unlock, 2739 min_write_lock_level, NULL); 2740 goto done; 2741 } 2742 if (ret && slot > 0) { 2743 dec = 1; 2744 slot--; 2745 } 2746 p->slots[level] = slot; 2747 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2748 &write_lock_level); 2749 if (err == -EAGAIN) 2750 goto again; 2751 if (err) { 2752 ret = err; 2753 goto done; 2754 } 2755 b = p->nodes[level]; 2756 slot = p->slots[level]; 2757 2758 /* 2759 * Slot 0 is special, if we change the key we have to update 2760 * the parent pointer which means we must have a write lock on 2761 * the parent 2762 */ 2763 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2764 write_lock_level = level + 1; 2765 btrfs_release_path(p); 2766 goto again; 2767 } 2768 2769 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2770 &write_lock_level); 2771 2772 if (level == lowest_level) { 2773 if (dec) 2774 p->slots[level]++; 2775 goto done; 2776 } 2777 2778 err = read_block_for_search(root, p, &b, level, slot, key); 2779 if (err == -EAGAIN) 2780 goto again; 2781 if (err) { 2782 ret = err; 2783 goto done; 2784 } 2785 2786 if (!p->skip_locking) { 2787 level = btrfs_header_level(b); 2788 if (level <= write_lock_level) { 2789 btrfs_tree_lock(b); 2790 p->locks[level] = BTRFS_WRITE_LOCK; 2791 } else { 2792 btrfs_tree_read_lock(b); 2793 p->locks[level] = BTRFS_READ_LOCK; 2794 } 2795 p->nodes[level] = b; 2796 } 2797 } 2798 ret = 1; 2799 done: 2800 if (ret < 0 && !p->skip_release_on_error) 2801 btrfs_release_path(p); 2802 return ret; 2803 } 2804 2805 /* 2806 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2807 * current state of the tree together with the operations recorded in the tree 2808 * modification log to search for the key in a previous version of this tree, as 2809 * denoted by the time_seq parameter. 2810 * 2811 * Naturally, there is no support for insert, delete or cow operations. 2812 * 2813 * The resulting path and return value will be set up as if we called 2814 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2815 */ 2816 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2817 struct btrfs_path *p, u64 time_seq) 2818 { 2819 struct btrfs_fs_info *fs_info = root->fs_info; 2820 struct extent_buffer *b; 2821 int slot; 2822 int ret; 2823 int err; 2824 int level; 2825 int lowest_unlock = 1; 2826 u8 lowest_level = 0; 2827 2828 lowest_level = p->lowest_level; 2829 WARN_ON(p->nodes[0] != NULL); 2830 2831 if (p->search_commit_root) { 2832 BUG_ON(time_seq); 2833 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2834 } 2835 2836 again: 2837 b = get_old_root(root, time_seq); 2838 if (!b) { 2839 ret = -EIO; 2840 goto done; 2841 } 2842 level = btrfs_header_level(b); 2843 p->locks[level] = BTRFS_READ_LOCK; 2844 2845 while (b) { 2846 int dec = 0; 2847 2848 level = btrfs_header_level(b); 2849 p->nodes[level] = b; 2850 2851 /* 2852 * we have a lock on b and as long as we aren't changing 2853 * the tree, there is no way to for the items in b to change. 2854 * It is safe to drop the lock on our parent before we 2855 * go through the expensive btree search on b. 2856 */ 2857 btrfs_unlock_up_safe(p, level + 1); 2858 2859 ret = btrfs_bin_search(b, key, &slot); 2860 if (ret < 0) 2861 goto done; 2862 2863 if (level == 0) { 2864 p->slots[level] = slot; 2865 unlock_up(p, level, lowest_unlock, 0, NULL); 2866 goto done; 2867 } 2868 2869 if (ret && slot > 0) { 2870 dec = 1; 2871 slot--; 2872 } 2873 p->slots[level] = slot; 2874 unlock_up(p, level, lowest_unlock, 0, NULL); 2875 2876 if (level == lowest_level) { 2877 if (dec) 2878 p->slots[level]++; 2879 goto done; 2880 } 2881 2882 err = read_block_for_search(root, p, &b, level, slot, key); 2883 if (err == -EAGAIN) 2884 goto again; 2885 if (err) { 2886 ret = err; 2887 goto done; 2888 } 2889 2890 level = btrfs_header_level(b); 2891 btrfs_tree_read_lock(b); 2892 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 2893 if (!b) { 2894 ret = -ENOMEM; 2895 goto done; 2896 } 2897 p->locks[level] = BTRFS_READ_LOCK; 2898 p->nodes[level] = b; 2899 } 2900 ret = 1; 2901 done: 2902 if (ret < 0) 2903 btrfs_release_path(p); 2904 2905 return ret; 2906 } 2907 2908 /* 2909 * helper to use instead of search slot if no exact match is needed but 2910 * instead the next or previous item should be returned. 2911 * When find_higher is true, the next higher item is returned, the next lower 2912 * otherwise. 2913 * When return_any and find_higher are both true, and no higher item is found, 2914 * return the next lower instead. 2915 * When return_any is true and find_higher is false, and no lower item is found, 2916 * return the next higher instead. 2917 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2918 * < 0 on error 2919 */ 2920 int btrfs_search_slot_for_read(struct btrfs_root *root, 2921 const struct btrfs_key *key, 2922 struct btrfs_path *p, int find_higher, 2923 int return_any) 2924 { 2925 int ret; 2926 struct extent_buffer *leaf; 2927 2928 again: 2929 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2930 if (ret <= 0) 2931 return ret; 2932 /* 2933 * a return value of 1 means the path is at the position where the 2934 * item should be inserted. Normally this is the next bigger item, 2935 * but in case the previous item is the last in a leaf, path points 2936 * to the first free slot in the previous leaf, i.e. at an invalid 2937 * item. 2938 */ 2939 leaf = p->nodes[0]; 2940 2941 if (find_higher) { 2942 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2943 ret = btrfs_next_leaf(root, p); 2944 if (ret <= 0) 2945 return ret; 2946 if (!return_any) 2947 return 1; 2948 /* 2949 * no higher item found, return the next 2950 * lower instead 2951 */ 2952 return_any = 0; 2953 find_higher = 0; 2954 btrfs_release_path(p); 2955 goto again; 2956 } 2957 } else { 2958 if (p->slots[0] == 0) { 2959 ret = btrfs_prev_leaf(root, p); 2960 if (ret < 0) 2961 return ret; 2962 if (!ret) { 2963 leaf = p->nodes[0]; 2964 if (p->slots[0] == btrfs_header_nritems(leaf)) 2965 p->slots[0]--; 2966 return 0; 2967 } 2968 if (!return_any) 2969 return 1; 2970 /* 2971 * no lower item found, return the next 2972 * higher instead 2973 */ 2974 return_any = 0; 2975 find_higher = 1; 2976 btrfs_release_path(p); 2977 goto again; 2978 } else { 2979 --p->slots[0]; 2980 } 2981 } 2982 return 0; 2983 } 2984 2985 /* 2986 * adjust the pointers going up the tree, starting at level 2987 * making sure the right key of each node is points to 'key'. 2988 * This is used after shifting pointers to the left, so it stops 2989 * fixing up pointers when a given leaf/node is not in slot 0 of the 2990 * higher levels 2991 * 2992 */ 2993 static void fixup_low_keys(struct btrfs_path *path, 2994 struct btrfs_disk_key *key, int level) 2995 { 2996 int i; 2997 struct extent_buffer *t; 2998 int ret; 2999 3000 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3001 int tslot = path->slots[i]; 3002 3003 if (!path->nodes[i]) 3004 break; 3005 t = path->nodes[i]; 3006 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3007 GFP_ATOMIC); 3008 BUG_ON(ret < 0); 3009 btrfs_set_node_key(t, key, tslot); 3010 btrfs_mark_buffer_dirty(path->nodes[i]); 3011 if (tslot != 0) 3012 break; 3013 } 3014 } 3015 3016 /* 3017 * update item key. 3018 * 3019 * This function isn't completely safe. It's the caller's responsibility 3020 * that the new key won't break the order 3021 */ 3022 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3023 struct btrfs_path *path, 3024 const struct btrfs_key *new_key) 3025 { 3026 struct btrfs_disk_key disk_key; 3027 struct extent_buffer *eb; 3028 int slot; 3029 3030 eb = path->nodes[0]; 3031 slot = path->slots[0]; 3032 if (slot > 0) { 3033 btrfs_item_key(eb, &disk_key, slot - 1); 3034 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 3035 btrfs_crit(fs_info, 3036 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3037 slot, btrfs_disk_key_objectid(&disk_key), 3038 btrfs_disk_key_type(&disk_key), 3039 btrfs_disk_key_offset(&disk_key), 3040 new_key->objectid, new_key->type, 3041 new_key->offset); 3042 btrfs_print_leaf(eb); 3043 BUG(); 3044 } 3045 } 3046 if (slot < btrfs_header_nritems(eb) - 1) { 3047 btrfs_item_key(eb, &disk_key, slot + 1); 3048 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 3049 btrfs_crit(fs_info, 3050 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3051 slot, btrfs_disk_key_objectid(&disk_key), 3052 btrfs_disk_key_type(&disk_key), 3053 btrfs_disk_key_offset(&disk_key), 3054 new_key->objectid, new_key->type, 3055 new_key->offset); 3056 btrfs_print_leaf(eb); 3057 BUG(); 3058 } 3059 } 3060 3061 btrfs_cpu_key_to_disk(&disk_key, new_key); 3062 btrfs_set_item_key(eb, &disk_key, slot); 3063 btrfs_mark_buffer_dirty(eb); 3064 if (slot == 0) 3065 fixup_low_keys(path, &disk_key, 1); 3066 } 3067 3068 /* 3069 * Check key order of two sibling extent buffers. 3070 * 3071 * Return true if something is wrong. 3072 * Return false if everything is fine. 3073 * 3074 * Tree-checker only works inside one tree block, thus the following 3075 * corruption can not be detected by tree-checker: 3076 * 3077 * Leaf @left | Leaf @right 3078 * -------------------------------------------------------------- 3079 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | 3080 * 3081 * Key f6 in leaf @left itself is valid, but not valid when the next 3082 * key in leaf @right is 7. 3083 * This can only be checked at tree block merge time. 3084 * And since tree checker has ensured all key order in each tree block 3085 * is correct, we only need to bother the last key of @left and the first 3086 * key of @right. 3087 */ 3088 static bool check_sibling_keys(struct extent_buffer *left, 3089 struct extent_buffer *right) 3090 { 3091 struct btrfs_key left_last; 3092 struct btrfs_key right_first; 3093 int level = btrfs_header_level(left); 3094 int nr_left = btrfs_header_nritems(left); 3095 int nr_right = btrfs_header_nritems(right); 3096 3097 /* No key to check in one of the tree blocks */ 3098 if (!nr_left || !nr_right) 3099 return false; 3100 3101 if (level) { 3102 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); 3103 btrfs_node_key_to_cpu(right, &right_first, 0); 3104 } else { 3105 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); 3106 btrfs_item_key_to_cpu(right, &right_first, 0); 3107 } 3108 3109 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) { 3110 btrfs_crit(left->fs_info, 3111 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", 3112 left_last.objectid, left_last.type, 3113 left_last.offset, right_first.objectid, 3114 right_first.type, right_first.offset); 3115 return true; 3116 } 3117 return false; 3118 } 3119 3120 /* 3121 * try to push data from one node into the next node left in the 3122 * tree. 3123 * 3124 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3125 * error, and > 0 if there was no room in the left hand block. 3126 */ 3127 static int push_node_left(struct btrfs_trans_handle *trans, 3128 struct extent_buffer *dst, 3129 struct extent_buffer *src, int empty) 3130 { 3131 struct btrfs_fs_info *fs_info = trans->fs_info; 3132 int push_items = 0; 3133 int src_nritems; 3134 int dst_nritems; 3135 int ret = 0; 3136 3137 src_nritems = btrfs_header_nritems(src); 3138 dst_nritems = btrfs_header_nritems(dst); 3139 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3140 WARN_ON(btrfs_header_generation(src) != trans->transid); 3141 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3142 3143 if (!empty && src_nritems <= 8) 3144 return 1; 3145 3146 if (push_items <= 0) 3147 return 1; 3148 3149 if (empty) { 3150 push_items = min(src_nritems, push_items); 3151 if (push_items < src_nritems) { 3152 /* leave at least 8 pointers in the node if 3153 * we aren't going to empty it 3154 */ 3155 if (src_nritems - push_items < 8) { 3156 if (push_items <= 8) 3157 return 1; 3158 push_items -= 8; 3159 } 3160 } 3161 } else 3162 push_items = min(src_nritems - 8, push_items); 3163 3164 /* dst is the left eb, src is the middle eb */ 3165 if (check_sibling_keys(dst, src)) { 3166 ret = -EUCLEAN; 3167 btrfs_abort_transaction(trans, ret); 3168 return ret; 3169 } 3170 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 3171 if (ret) { 3172 btrfs_abort_transaction(trans, ret); 3173 return ret; 3174 } 3175 copy_extent_buffer(dst, src, 3176 btrfs_node_key_ptr_offset(dst_nritems), 3177 btrfs_node_key_ptr_offset(0), 3178 push_items * sizeof(struct btrfs_key_ptr)); 3179 3180 if (push_items < src_nritems) { 3181 /* 3182 * Don't call tree_mod_log_insert_move here, key removal was 3183 * already fully logged by tree_mod_log_eb_copy above. 3184 */ 3185 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3186 btrfs_node_key_ptr_offset(push_items), 3187 (src_nritems - push_items) * 3188 sizeof(struct btrfs_key_ptr)); 3189 } 3190 btrfs_set_header_nritems(src, src_nritems - push_items); 3191 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3192 btrfs_mark_buffer_dirty(src); 3193 btrfs_mark_buffer_dirty(dst); 3194 3195 return ret; 3196 } 3197 3198 /* 3199 * try to push data from one node into the next node right in the 3200 * tree. 3201 * 3202 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3203 * error, and > 0 if there was no room in the right hand block. 3204 * 3205 * this will only push up to 1/2 the contents of the left node over 3206 */ 3207 static int balance_node_right(struct btrfs_trans_handle *trans, 3208 struct extent_buffer *dst, 3209 struct extent_buffer *src) 3210 { 3211 struct btrfs_fs_info *fs_info = trans->fs_info; 3212 int push_items = 0; 3213 int max_push; 3214 int src_nritems; 3215 int dst_nritems; 3216 int ret = 0; 3217 3218 WARN_ON(btrfs_header_generation(src) != trans->transid); 3219 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3220 3221 src_nritems = btrfs_header_nritems(src); 3222 dst_nritems = btrfs_header_nritems(dst); 3223 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3224 if (push_items <= 0) 3225 return 1; 3226 3227 if (src_nritems < 4) 3228 return 1; 3229 3230 max_push = src_nritems / 2 + 1; 3231 /* don't try to empty the node */ 3232 if (max_push >= src_nritems) 3233 return 1; 3234 3235 if (max_push < push_items) 3236 push_items = max_push; 3237 3238 /* dst is the right eb, src is the middle eb */ 3239 if (check_sibling_keys(src, dst)) { 3240 ret = -EUCLEAN; 3241 btrfs_abort_transaction(trans, ret); 3242 return ret; 3243 } 3244 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3245 BUG_ON(ret < 0); 3246 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3247 btrfs_node_key_ptr_offset(0), 3248 (dst_nritems) * 3249 sizeof(struct btrfs_key_ptr)); 3250 3251 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 3252 push_items); 3253 if (ret) { 3254 btrfs_abort_transaction(trans, ret); 3255 return ret; 3256 } 3257 copy_extent_buffer(dst, src, 3258 btrfs_node_key_ptr_offset(0), 3259 btrfs_node_key_ptr_offset(src_nritems - push_items), 3260 push_items * sizeof(struct btrfs_key_ptr)); 3261 3262 btrfs_set_header_nritems(src, src_nritems - push_items); 3263 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3264 3265 btrfs_mark_buffer_dirty(src); 3266 btrfs_mark_buffer_dirty(dst); 3267 3268 return ret; 3269 } 3270 3271 /* 3272 * helper function to insert a new root level in the tree. 3273 * A new node is allocated, and a single item is inserted to 3274 * point to the existing root 3275 * 3276 * returns zero on success or < 0 on failure. 3277 */ 3278 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3279 struct btrfs_root *root, 3280 struct btrfs_path *path, int level) 3281 { 3282 struct btrfs_fs_info *fs_info = root->fs_info; 3283 u64 lower_gen; 3284 struct extent_buffer *lower; 3285 struct extent_buffer *c; 3286 struct extent_buffer *old; 3287 struct btrfs_disk_key lower_key; 3288 int ret; 3289 3290 BUG_ON(path->nodes[level]); 3291 BUG_ON(path->nodes[level-1] != root->node); 3292 3293 lower = path->nodes[level-1]; 3294 if (level == 1) 3295 btrfs_item_key(lower, &lower_key, 0); 3296 else 3297 btrfs_node_key(lower, &lower_key, 0); 3298 3299 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level, 3300 root->node->start, 0, 3301 BTRFS_NESTING_NEW_ROOT); 3302 if (IS_ERR(c)) 3303 return PTR_ERR(c); 3304 3305 root_add_used(root, fs_info->nodesize); 3306 3307 btrfs_set_header_nritems(c, 1); 3308 btrfs_set_node_key(c, &lower_key, 0); 3309 btrfs_set_node_blockptr(c, 0, lower->start); 3310 lower_gen = btrfs_header_generation(lower); 3311 WARN_ON(lower_gen != trans->transid); 3312 3313 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3314 3315 btrfs_mark_buffer_dirty(c); 3316 3317 old = root->node; 3318 ret = tree_mod_log_insert_root(root->node, c, 0); 3319 BUG_ON(ret < 0); 3320 rcu_assign_pointer(root->node, c); 3321 3322 /* the super has an extra ref to root->node */ 3323 free_extent_buffer(old); 3324 3325 add_root_to_dirty_list(root); 3326 atomic_inc(&c->refs); 3327 path->nodes[level] = c; 3328 path->locks[level] = BTRFS_WRITE_LOCK; 3329 path->slots[level] = 0; 3330 return 0; 3331 } 3332 3333 /* 3334 * worker function to insert a single pointer in a node. 3335 * the node should have enough room for the pointer already 3336 * 3337 * slot and level indicate where you want the key to go, and 3338 * blocknr is the block the key points to. 3339 */ 3340 static void insert_ptr(struct btrfs_trans_handle *trans, 3341 struct btrfs_path *path, 3342 struct btrfs_disk_key *key, u64 bytenr, 3343 int slot, int level) 3344 { 3345 struct extent_buffer *lower; 3346 int nritems; 3347 int ret; 3348 3349 BUG_ON(!path->nodes[level]); 3350 btrfs_assert_tree_locked(path->nodes[level]); 3351 lower = path->nodes[level]; 3352 nritems = btrfs_header_nritems(lower); 3353 BUG_ON(slot > nritems); 3354 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 3355 if (slot != nritems) { 3356 if (level) { 3357 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3358 nritems - slot); 3359 BUG_ON(ret < 0); 3360 } 3361 memmove_extent_buffer(lower, 3362 btrfs_node_key_ptr_offset(slot + 1), 3363 btrfs_node_key_ptr_offset(slot), 3364 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3365 } 3366 if (level) { 3367 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3368 GFP_NOFS); 3369 BUG_ON(ret < 0); 3370 } 3371 btrfs_set_node_key(lower, key, slot); 3372 btrfs_set_node_blockptr(lower, slot, bytenr); 3373 WARN_ON(trans->transid == 0); 3374 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3375 btrfs_set_header_nritems(lower, nritems + 1); 3376 btrfs_mark_buffer_dirty(lower); 3377 } 3378 3379 /* 3380 * split the node at the specified level in path in two. 3381 * The path is corrected to point to the appropriate node after the split 3382 * 3383 * Before splitting this tries to make some room in the node by pushing 3384 * left and right, if either one works, it returns right away. 3385 * 3386 * returns 0 on success and < 0 on failure 3387 */ 3388 static noinline int split_node(struct btrfs_trans_handle *trans, 3389 struct btrfs_root *root, 3390 struct btrfs_path *path, int level) 3391 { 3392 struct btrfs_fs_info *fs_info = root->fs_info; 3393 struct extent_buffer *c; 3394 struct extent_buffer *split; 3395 struct btrfs_disk_key disk_key; 3396 int mid; 3397 int ret; 3398 u32 c_nritems; 3399 3400 c = path->nodes[level]; 3401 WARN_ON(btrfs_header_generation(c) != trans->transid); 3402 if (c == root->node) { 3403 /* 3404 * trying to split the root, lets make a new one 3405 * 3406 * tree mod log: We don't log_removal old root in 3407 * insert_new_root, because that root buffer will be kept as a 3408 * normal node. We are going to log removal of half of the 3409 * elements below with tree_mod_log_eb_copy. We're holding a 3410 * tree lock on the buffer, which is why we cannot race with 3411 * other tree_mod_log users. 3412 */ 3413 ret = insert_new_root(trans, root, path, level + 1); 3414 if (ret) 3415 return ret; 3416 } else { 3417 ret = push_nodes_for_insert(trans, root, path, level); 3418 c = path->nodes[level]; 3419 if (!ret && btrfs_header_nritems(c) < 3420 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3421 return 0; 3422 if (ret < 0) 3423 return ret; 3424 } 3425 3426 c_nritems = btrfs_header_nritems(c); 3427 mid = (c_nritems + 1) / 2; 3428 btrfs_node_key(c, &disk_key, mid); 3429 3430 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level, 3431 c->start, 0, BTRFS_NESTING_SPLIT); 3432 if (IS_ERR(split)) 3433 return PTR_ERR(split); 3434 3435 root_add_used(root, fs_info->nodesize); 3436 ASSERT(btrfs_header_level(c) == level); 3437 3438 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 3439 if (ret) { 3440 btrfs_abort_transaction(trans, ret); 3441 return ret; 3442 } 3443 copy_extent_buffer(split, c, 3444 btrfs_node_key_ptr_offset(0), 3445 btrfs_node_key_ptr_offset(mid), 3446 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3447 btrfs_set_header_nritems(split, c_nritems - mid); 3448 btrfs_set_header_nritems(c, mid); 3449 3450 btrfs_mark_buffer_dirty(c); 3451 btrfs_mark_buffer_dirty(split); 3452 3453 insert_ptr(trans, path, &disk_key, split->start, 3454 path->slots[level + 1] + 1, level + 1); 3455 3456 if (path->slots[level] >= mid) { 3457 path->slots[level] -= mid; 3458 btrfs_tree_unlock(c); 3459 free_extent_buffer(c); 3460 path->nodes[level] = split; 3461 path->slots[level + 1] += 1; 3462 } else { 3463 btrfs_tree_unlock(split); 3464 free_extent_buffer(split); 3465 } 3466 return 0; 3467 } 3468 3469 /* 3470 * how many bytes are required to store the items in a leaf. start 3471 * and nr indicate which items in the leaf to check. This totals up the 3472 * space used both by the item structs and the item data 3473 */ 3474 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3475 { 3476 struct btrfs_item *start_item; 3477 struct btrfs_item *end_item; 3478 int data_len; 3479 int nritems = btrfs_header_nritems(l); 3480 int end = min(nritems, start + nr) - 1; 3481 3482 if (!nr) 3483 return 0; 3484 start_item = btrfs_item_nr(start); 3485 end_item = btrfs_item_nr(end); 3486 data_len = btrfs_item_offset(l, start_item) + 3487 btrfs_item_size(l, start_item); 3488 data_len = data_len - btrfs_item_offset(l, end_item); 3489 data_len += sizeof(struct btrfs_item) * nr; 3490 WARN_ON(data_len < 0); 3491 return data_len; 3492 } 3493 3494 /* 3495 * The space between the end of the leaf items and 3496 * the start of the leaf data. IOW, how much room 3497 * the leaf has left for both items and data 3498 */ 3499 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 3500 { 3501 struct btrfs_fs_info *fs_info = leaf->fs_info; 3502 int nritems = btrfs_header_nritems(leaf); 3503 int ret; 3504 3505 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3506 if (ret < 0) { 3507 btrfs_crit(fs_info, 3508 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3509 ret, 3510 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3511 leaf_space_used(leaf, 0, nritems), nritems); 3512 } 3513 return ret; 3514 } 3515 3516 /* 3517 * min slot controls the lowest index we're willing to push to the 3518 * right. We'll push up to and including min_slot, but no lower 3519 */ 3520 static noinline int __push_leaf_right(struct btrfs_path *path, 3521 int data_size, int empty, 3522 struct extent_buffer *right, 3523 int free_space, u32 left_nritems, 3524 u32 min_slot) 3525 { 3526 struct btrfs_fs_info *fs_info = right->fs_info; 3527 struct extent_buffer *left = path->nodes[0]; 3528 struct extent_buffer *upper = path->nodes[1]; 3529 struct btrfs_map_token token; 3530 struct btrfs_disk_key disk_key; 3531 int slot; 3532 u32 i; 3533 int push_space = 0; 3534 int push_items = 0; 3535 struct btrfs_item *item; 3536 u32 nr; 3537 u32 right_nritems; 3538 u32 data_end; 3539 u32 this_item_size; 3540 3541 if (empty) 3542 nr = 0; 3543 else 3544 nr = max_t(u32, 1, min_slot); 3545 3546 if (path->slots[0] >= left_nritems) 3547 push_space += data_size; 3548 3549 slot = path->slots[1]; 3550 i = left_nritems - 1; 3551 while (i >= nr) { 3552 item = btrfs_item_nr(i); 3553 3554 if (!empty && push_items > 0) { 3555 if (path->slots[0] > i) 3556 break; 3557 if (path->slots[0] == i) { 3558 int space = btrfs_leaf_free_space(left); 3559 3560 if (space + push_space * 2 > free_space) 3561 break; 3562 } 3563 } 3564 3565 if (path->slots[0] == i) 3566 push_space += data_size; 3567 3568 this_item_size = btrfs_item_size(left, item); 3569 if (this_item_size + sizeof(*item) + push_space > free_space) 3570 break; 3571 3572 push_items++; 3573 push_space += this_item_size + sizeof(*item); 3574 if (i == 0) 3575 break; 3576 i--; 3577 } 3578 3579 if (push_items == 0) 3580 goto out_unlock; 3581 3582 WARN_ON(!empty && push_items == left_nritems); 3583 3584 /* push left to right */ 3585 right_nritems = btrfs_header_nritems(right); 3586 3587 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3588 push_space -= leaf_data_end(left); 3589 3590 /* make room in the right data area */ 3591 data_end = leaf_data_end(right); 3592 memmove_extent_buffer(right, 3593 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3594 BTRFS_LEAF_DATA_OFFSET + data_end, 3595 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3596 3597 /* copy from the left data area */ 3598 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3599 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3600 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 3601 push_space); 3602 3603 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3604 btrfs_item_nr_offset(0), 3605 right_nritems * sizeof(struct btrfs_item)); 3606 3607 /* copy the items from left to right */ 3608 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3609 btrfs_item_nr_offset(left_nritems - push_items), 3610 push_items * sizeof(struct btrfs_item)); 3611 3612 /* update the item pointers */ 3613 btrfs_init_map_token(&token, right); 3614 right_nritems += push_items; 3615 btrfs_set_header_nritems(right, right_nritems); 3616 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3617 for (i = 0; i < right_nritems; i++) { 3618 item = btrfs_item_nr(i); 3619 push_space -= btrfs_token_item_size(&token, item); 3620 btrfs_set_token_item_offset(&token, item, push_space); 3621 } 3622 3623 left_nritems -= push_items; 3624 btrfs_set_header_nritems(left, left_nritems); 3625 3626 if (left_nritems) 3627 btrfs_mark_buffer_dirty(left); 3628 else 3629 btrfs_clean_tree_block(left); 3630 3631 btrfs_mark_buffer_dirty(right); 3632 3633 btrfs_item_key(right, &disk_key, 0); 3634 btrfs_set_node_key(upper, &disk_key, slot + 1); 3635 btrfs_mark_buffer_dirty(upper); 3636 3637 /* then fixup the leaf pointer in the path */ 3638 if (path->slots[0] >= left_nritems) { 3639 path->slots[0] -= left_nritems; 3640 if (btrfs_header_nritems(path->nodes[0]) == 0) 3641 btrfs_clean_tree_block(path->nodes[0]); 3642 btrfs_tree_unlock(path->nodes[0]); 3643 free_extent_buffer(path->nodes[0]); 3644 path->nodes[0] = right; 3645 path->slots[1] += 1; 3646 } else { 3647 btrfs_tree_unlock(right); 3648 free_extent_buffer(right); 3649 } 3650 return 0; 3651 3652 out_unlock: 3653 btrfs_tree_unlock(right); 3654 free_extent_buffer(right); 3655 return 1; 3656 } 3657 3658 /* 3659 * push some data in the path leaf to the right, trying to free up at 3660 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3661 * 3662 * returns 1 if the push failed because the other node didn't have enough 3663 * room, 0 if everything worked out and < 0 if there were major errors. 3664 * 3665 * this will push starting from min_slot to the end of the leaf. It won't 3666 * push any slot lower than min_slot 3667 */ 3668 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3669 *root, struct btrfs_path *path, 3670 int min_data_size, int data_size, 3671 int empty, u32 min_slot) 3672 { 3673 struct extent_buffer *left = path->nodes[0]; 3674 struct extent_buffer *right; 3675 struct extent_buffer *upper; 3676 int slot; 3677 int free_space; 3678 u32 left_nritems; 3679 int ret; 3680 3681 if (!path->nodes[1]) 3682 return 1; 3683 3684 slot = path->slots[1]; 3685 upper = path->nodes[1]; 3686 if (slot >= btrfs_header_nritems(upper) - 1) 3687 return 1; 3688 3689 btrfs_assert_tree_locked(path->nodes[1]); 3690 3691 right = btrfs_read_node_slot(upper, slot + 1); 3692 /* 3693 * slot + 1 is not valid or we fail to read the right node, 3694 * no big deal, just return. 3695 */ 3696 if (IS_ERR(right)) 3697 return 1; 3698 3699 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 3700 3701 free_space = btrfs_leaf_free_space(right); 3702 if (free_space < data_size) 3703 goto out_unlock; 3704 3705 /* cow and double check */ 3706 ret = btrfs_cow_block(trans, root, right, upper, 3707 slot + 1, &right, BTRFS_NESTING_RIGHT_COW); 3708 if (ret) 3709 goto out_unlock; 3710 3711 free_space = btrfs_leaf_free_space(right); 3712 if (free_space < data_size) 3713 goto out_unlock; 3714 3715 left_nritems = btrfs_header_nritems(left); 3716 if (left_nritems == 0) 3717 goto out_unlock; 3718 3719 if (check_sibling_keys(left, right)) { 3720 ret = -EUCLEAN; 3721 btrfs_tree_unlock(right); 3722 free_extent_buffer(right); 3723 return ret; 3724 } 3725 if (path->slots[0] == left_nritems && !empty) { 3726 /* Key greater than all keys in the leaf, right neighbor has 3727 * enough room for it and we're not emptying our leaf to delete 3728 * it, therefore use right neighbor to insert the new item and 3729 * no need to touch/dirty our left leaf. */ 3730 btrfs_tree_unlock(left); 3731 free_extent_buffer(left); 3732 path->nodes[0] = right; 3733 path->slots[0] = 0; 3734 path->slots[1]++; 3735 return 0; 3736 } 3737 3738 return __push_leaf_right(path, min_data_size, empty, 3739 right, free_space, left_nritems, min_slot); 3740 out_unlock: 3741 btrfs_tree_unlock(right); 3742 free_extent_buffer(right); 3743 return 1; 3744 } 3745 3746 /* 3747 * push some data in the path leaf to the left, trying to free up at 3748 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3749 * 3750 * max_slot can put a limit on how far into the leaf we'll push items. The 3751 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3752 * items 3753 */ 3754 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 3755 int empty, struct extent_buffer *left, 3756 int free_space, u32 right_nritems, 3757 u32 max_slot) 3758 { 3759 struct btrfs_fs_info *fs_info = left->fs_info; 3760 struct btrfs_disk_key disk_key; 3761 struct extent_buffer *right = path->nodes[0]; 3762 int i; 3763 int push_space = 0; 3764 int push_items = 0; 3765 struct btrfs_item *item; 3766 u32 old_left_nritems; 3767 u32 nr; 3768 int ret = 0; 3769 u32 this_item_size; 3770 u32 old_left_item_size; 3771 struct btrfs_map_token token; 3772 3773 if (empty) 3774 nr = min(right_nritems, max_slot); 3775 else 3776 nr = min(right_nritems - 1, max_slot); 3777 3778 for (i = 0; i < nr; i++) { 3779 item = btrfs_item_nr(i); 3780 3781 if (!empty && push_items > 0) { 3782 if (path->slots[0] < i) 3783 break; 3784 if (path->slots[0] == i) { 3785 int space = btrfs_leaf_free_space(right); 3786 3787 if (space + push_space * 2 > free_space) 3788 break; 3789 } 3790 } 3791 3792 if (path->slots[0] == i) 3793 push_space += data_size; 3794 3795 this_item_size = btrfs_item_size(right, item); 3796 if (this_item_size + sizeof(*item) + push_space > free_space) 3797 break; 3798 3799 push_items++; 3800 push_space += this_item_size + sizeof(*item); 3801 } 3802 3803 if (push_items == 0) { 3804 ret = 1; 3805 goto out; 3806 } 3807 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3808 3809 /* push data from right to left */ 3810 copy_extent_buffer(left, right, 3811 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3812 btrfs_item_nr_offset(0), 3813 push_items * sizeof(struct btrfs_item)); 3814 3815 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3816 btrfs_item_offset_nr(right, push_items - 1); 3817 3818 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3819 leaf_data_end(left) - push_space, 3820 BTRFS_LEAF_DATA_OFFSET + 3821 btrfs_item_offset_nr(right, push_items - 1), 3822 push_space); 3823 old_left_nritems = btrfs_header_nritems(left); 3824 BUG_ON(old_left_nritems <= 0); 3825 3826 btrfs_init_map_token(&token, left); 3827 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3828 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3829 u32 ioff; 3830 3831 item = btrfs_item_nr(i); 3832 3833 ioff = btrfs_token_item_offset(&token, item); 3834 btrfs_set_token_item_offset(&token, item, 3835 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 3836 } 3837 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3838 3839 /* fixup right node */ 3840 if (push_items > right_nritems) 3841 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3842 right_nritems); 3843 3844 if (push_items < right_nritems) { 3845 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3846 leaf_data_end(right); 3847 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3848 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3849 BTRFS_LEAF_DATA_OFFSET + 3850 leaf_data_end(right), push_space); 3851 3852 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3853 btrfs_item_nr_offset(push_items), 3854 (btrfs_header_nritems(right) - push_items) * 3855 sizeof(struct btrfs_item)); 3856 } 3857 3858 btrfs_init_map_token(&token, right); 3859 right_nritems -= push_items; 3860 btrfs_set_header_nritems(right, right_nritems); 3861 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3862 for (i = 0; i < right_nritems; i++) { 3863 item = btrfs_item_nr(i); 3864 3865 push_space = push_space - btrfs_token_item_size(&token, item); 3866 btrfs_set_token_item_offset(&token, item, push_space); 3867 } 3868 3869 btrfs_mark_buffer_dirty(left); 3870 if (right_nritems) 3871 btrfs_mark_buffer_dirty(right); 3872 else 3873 btrfs_clean_tree_block(right); 3874 3875 btrfs_item_key(right, &disk_key, 0); 3876 fixup_low_keys(path, &disk_key, 1); 3877 3878 /* then fixup the leaf pointer in the path */ 3879 if (path->slots[0] < push_items) { 3880 path->slots[0] += old_left_nritems; 3881 btrfs_tree_unlock(path->nodes[0]); 3882 free_extent_buffer(path->nodes[0]); 3883 path->nodes[0] = left; 3884 path->slots[1] -= 1; 3885 } else { 3886 btrfs_tree_unlock(left); 3887 free_extent_buffer(left); 3888 path->slots[0] -= push_items; 3889 } 3890 BUG_ON(path->slots[0] < 0); 3891 return ret; 3892 out: 3893 btrfs_tree_unlock(left); 3894 free_extent_buffer(left); 3895 return ret; 3896 } 3897 3898 /* 3899 * push some data in the path leaf to the left, trying to free up at 3900 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3901 * 3902 * max_slot can put a limit on how far into the leaf we'll push items. The 3903 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3904 * items 3905 */ 3906 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3907 *root, struct btrfs_path *path, int min_data_size, 3908 int data_size, int empty, u32 max_slot) 3909 { 3910 struct extent_buffer *right = path->nodes[0]; 3911 struct extent_buffer *left; 3912 int slot; 3913 int free_space; 3914 u32 right_nritems; 3915 int ret = 0; 3916 3917 slot = path->slots[1]; 3918 if (slot == 0) 3919 return 1; 3920 if (!path->nodes[1]) 3921 return 1; 3922 3923 right_nritems = btrfs_header_nritems(right); 3924 if (right_nritems == 0) 3925 return 1; 3926 3927 btrfs_assert_tree_locked(path->nodes[1]); 3928 3929 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3930 /* 3931 * slot - 1 is not valid or we fail to read the left node, 3932 * no big deal, just return. 3933 */ 3934 if (IS_ERR(left)) 3935 return 1; 3936 3937 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 3938 3939 free_space = btrfs_leaf_free_space(left); 3940 if (free_space < data_size) { 3941 ret = 1; 3942 goto out; 3943 } 3944 3945 /* cow and double check */ 3946 ret = btrfs_cow_block(trans, root, left, 3947 path->nodes[1], slot - 1, &left, 3948 BTRFS_NESTING_LEFT_COW); 3949 if (ret) { 3950 /* we hit -ENOSPC, but it isn't fatal here */ 3951 if (ret == -ENOSPC) 3952 ret = 1; 3953 goto out; 3954 } 3955 3956 free_space = btrfs_leaf_free_space(left); 3957 if (free_space < data_size) { 3958 ret = 1; 3959 goto out; 3960 } 3961 3962 if (check_sibling_keys(left, right)) { 3963 ret = -EUCLEAN; 3964 goto out; 3965 } 3966 return __push_leaf_left(path, min_data_size, 3967 empty, left, free_space, right_nritems, 3968 max_slot); 3969 out: 3970 btrfs_tree_unlock(left); 3971 free_extent_buffer(left); 3972 return ret; 3973 } 3974 3975 /* 3976 * split the path's leaf in two, making sure there is at least data_size 3977 * available for the resulting leaf level of the path. 3978 */ 3979 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3980 struct btrfs_path *path, 3981 struct extent_buffer *l, 3982 struct extent_buffer *right, 3983 int slot, int mid, int nritems) 3984 { 3985 struct btrfs_fs_info *fs_info = trans->fs_info; 3986 int data_copy_size; 3987 int rt_data_off; 3988 int i; 3989 struct btrfs_disk_key disk_key; 3990 struct btrfs_map_token token; 3991 3992 nritems = nritems - mid; 3993 btrfs_set_header_nritems(right, nritems); 3994 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l); 3995 3996 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3997 btrfs_item_nr_offset(mid), 3998 nritems * sizeof(struct btrfs_item)); 3999 4000 copy_extent_buffer(right, l, 4001 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4002 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4003 leaf_data_end(l), data_copy_size); 4004 4005 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4006 4007 btrfs_init_map_token(&token, right); 4008 for (i = 0; i < nritems; i++) { 4009 struct btrfs_item *item = btrfs_item_nr(i); 4010 u32 ioff; 4011 4012 ioff = btrfs_token_item_offset(&token, item); 4013 btrfs_set_token_item_offset(&token, item, ioff + rt_data_off); 4014 } 4015 4016 btrfs_set_header_nritems(l, mid); 4017 btrfs_item_key(right, &disk_key, 0); 4018 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 4019 4020 btrfs_mark_buffer_dirty(right); 4021 btrfs_mark_buffer_dirty(l); 4022 BUG_ON(path->slots[0] != slot); 4023 4024 if (mid <= slot) { 4025 btrfs_tree_unlock(path->nodes[0]); 4026 free_extent_buffer(path->nodes[0]); 4027 path->nodes[0] = right; 4028 path->slots[0] -= mid; 4029 path->slots[1] += 1; 4030 } else { 4031 btrfs_tree_unlock(right); 4032 free_extent_buffer(right); 4033 } 4034 4035 BUG_ON(path->slots[0] < 0); 4036 } 4037 4038 /* 4039 * double splits happen when we need to insert a big item in the middle 4040 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4041 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4042 * A B C 4043 * 4044 * We avoid this by trying to push the items on either side of our target 4045 * into the adjacent leaves. If all goes well we can avoid the double split 4046 * completely. 4047 */ 4048 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4049 struct btrfs_root *root, 4050 struct btrfs_path *path, 4051 int data_size) 4052 { 4053 int ret; 4054 int progress = 0; 4055 int slot; 4056 u32 nritems; 4057 int space_needed = data_size; 4058 4059 slot = path->slots[0]; 4060 if (slot < btrfs_header_nritems(path->nodes[0])) 4061 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4062 4063 /* 4064 * try to push all the items after our slot into the 4065 * right leaf 4066 */ 4067 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4068 if (ret < 0) 4069 return ret; 4070 4071 if (ret == 0) 4072 progress++; 4073 4074 nritems = btrfs_header_nritems(path->nodes[0]); 4075 /* 4076 * our goal is to get our slot at the start or end of a leaf. If 4077 * we've done so we're done 4078 */ 4079 if (path->slots[0] == 0 || path->slots[0] == nritems) 4080 return 0; 4081 4082 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4083 return 0; 4084 4085 /* try to push all the items before our slot into the next leaf */ 4086 slot = path->slots[0]; 4087 space_needed = data_size; 4088 if (slot > 0) 4089 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4090 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4091 if (ret < 0) 4092 return ret; 4093 4094 if (ret == 0) 4095 progress++; 4096 4097 if (progress) 4098 return 0; 4099 return 1; 4100 } 4101 4102 /* 4103 * split the path's leaf in two, making sure there is at least data_size 4104 * available for the resulting leaf level of the path. 4105 * 4106 * returns 0 if all went well and < 0 on failure. 4107 */ 4108 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4109 struct btrfs_root *root, 4110 const struct btrfs_key *ins_key, 4111 struct btrfs_path *path, int data_size, 4112 int extend) 4113 { 4114 struct btrfs_disk_key disk_key; 4115 struct extent_buffer *l; 4116 u32 nritems; 4117 int mid; 4118 int slot; 4119 struct extent_buffer *right; 4120 struct btrfs_fs_info *fs_info = root->fs_info; 4121 int ret = 0; 4122 int wret; 4123 int split; 4124 int num_doubles = 0; 4125 int tried_avoid_double = 0; 4126 4127 l = path->nodes[0]; 4128 slot = path->slots[0]; 4129 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4130 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4131 return -EOVERFLOW; 4132 4133 /* first try to make some room by pushing left and right */ 4134 if (data_size && path->nodes[1]) { 4135 int space_needed = data_size; 4136 4137 if (slot < btrfs_header_nritems(l)) 4138 space_needed -= btrfs_leaf_free_space(l); 4139 4140 wret = push_leaf_right(trans, root, path, space_needed, 4141 space_needed, 0, 0); 4142 if (wret < 0) 4143 return wret; 4144 if (wret) { 4145 space_needed = data_size; 4146 if (slot > 0) 4147 space_needed -= btrfs_leaf_free_space(l); 4148 wret = push_leaf_left(trans, root, path, space_needed, 4149 space_needed, 0, (u32)-1); 4150 if (wret < 0) 4151 return wret; 4152 } 4153 l = path->nodes[0]; 4154 4155 /* did the pushes work? */ 4156 if (btrfs_leaf_free_space(l) >= data_size) 4157 return 0; 4158 } 4159 4160 if (!path->nodes[1]) { 4161 ret = insert_new_root(trans, root, path, 1); 4162 if (ret) 4163 return ret; 4164 } 4165 again: 4166 split = 1; 4167 l = path->nodes[0]; 4168 slot = path->slots[0]; 4169 nritems = btrfs_header_nritems(l); 4170 mid = (nritems + 1) / 2; 4171 4172 if (mid <= slot) { 4173 if (nritems == 1 || 4174 leaf_space_used(l, mid, nritems - mid) + data_size > 4175 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4176 if (slot >= nritems) { 4177 split = 0; 4178 } else { 4179 mid = slot; 4180 if (mid != nritems && 4181 leaf_space_used(l, mid, nritems - mid) + 4182 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4183 if (data_size && !tried_avoid_double) 4184 goto push_for_double; 4185 split = 2; 4186 } 4187 } 4188 } 4189 } else { 4190 if (leaf_space_used(l, 0, mid) + data_size > 4191 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4192 if (!extend && data_size && slot == 0) { 4193 split = 0; 4194 } else if ((extend || !data_size) && slot == 0) { 4195 mid = 1; 4196 } else { 4197 mid = slot; 4198 if (mid != nritems && 4199 leaf_space_used(l, mid, nritems - mid) + 4200 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4201 if (data_size && !tried_avoid_double) 4202 goto push_for_double; 4203 split = 2; 4204 } 4205 } 4206 } 4207 } 4208 4209 if (split == 0) 4210 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4211 else 4212 btrfs_item_key(l, &disk_key, mid); 4213 4214 /* 4215 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double 4216 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES 4217 * subclasses, which is 8 at the time of this patch, and we've maxed it 4218 * out. In the future we could add a 4219 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just 4220 * use BTRFS_NESTING_NEW_ROOT. 4221 */ 4222 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0, 4223 l->start, 0, num_doubles ? 4224 BTRFS_NESTING_NEW_ROOT : 4225 BTRFS_NESTING_SPLIT); 4226 if (IS_ERR(right)) 4227 return PTR_ERR(right); 4228 4229 root_add_used(root, fs_info->nodesize); 4230 4231 if (split == 0) { 4232 if (mid <= slot) { 4233 btrfs_set_header_nritems(right, 0); 4234 insert_ptr(trans, path, &disk_key, 4235 right->start, path->slots[1] + 1, 1); 4236 btrfs_tree_unlock(path->nodes[0]); 4237 free_extent_buffer(path->nodes[0]); 4238 path->nodes[0] = right; 4239 path->slots[0] = 0; 4240 path->slots[1] += 1; 4241 } else { 4242 btrfs_set_header_nritems(right, 0); 4243 insert_ptr(trans, path, &disk_key, 4244 right->start, path->slots[1], 1); 4245 btrfs_tree_unlock(path->nodes[0]); 4246 free_extent_buffer(path->nodes[0]); 4247 path->nodes[0] = right; 4248 path->slots[0] = 0; 4249 if (path->slots[1] == 0) 4250 fixup_low_keys(path, &disk_key, 1); 4251 } 4252 /* 4253 * We create a new leaf 'right' for the required ins_len and 4254 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4255 * the content of ins_len to 'right'. 4256 */ 4257 return ret; 4258 } 4259 4260 copy_for_split(trans, path, l, right, slot, mid, nritems); 4261 4262 if (split == 2) { 4263 BUG_ON(num_doubles != 0); 4264 num_doubles++; 4265 goto again; 4266 } 4267 4268 return 0; 4269 4270 push_for_double: 4271 push_for_double_split(trans, root, path, data_size); 4272 tried_avoid_double = 1; 4273 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4274 return 0; 4275 goto again; 4276 } 4277 4278 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4279 struct btrfs_root *root, 4280 struct btrfs_path *path, int ins_len) 4281 { 4282 struct btrfs_key key; 4283 struct extent_buffer *leaf; 4284 struct btrfs_file_extent_item *fi; 4285 u64 extent_len = 0; 4286 u32 item_size; 4287 int ret; 4288 4289 leaf = path->nodes[0]; 4290 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4291 4292 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4293 key.type != BTRFS_EXTENT_CSUM_KEY); 4294 4295 if (btrfs_leaf_free_space(leaf) >= ins_len) 4296 return 0; 4297 4298 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4299 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4300 fi = btrfs_item_ptr(leaf, path->slots[0], 4301 struct btrfs_file_extent_item); 4302 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4303 } 4304 btrfs_release_path(path); 4305 4306 path->keep_locks = 1; 4307 path->search_for_split = 1; 4308 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4309 path->search_for_split = 0; 4310 if (ret > 0) 4311 ret = -EAGAIN; 4312 if (ret < 0) 4313 goto err; 4314 4315 ret = -EAGAIN; 4316 leaf = path->nodes[0]; 4317 /* if our item isn't there, return now */ 4318 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4319 goto err; 4320 4321 /* the leaf has changed, it now has room. return now */ 4322 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 4323 goto err; 4324 4325 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4326 fi = btrfs_item_ptr(leaf, path->slots[0], 4327 struct btrfs_file_extent_item); 4328 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4329 goto err; 4330 } 4331 4332 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4333 if (ret) 4334 goto err; 4335 4336 path->keep_locks = 0; 4337 btrfs_unlock_up_safe(path, 1); 4338 return 0; 4339 err: 4340 path->keep_locks = 0; 4341 return ret; 4342 } 4343 4344 static noinline int split_item(struct btrfs_path *path, 4345 const struct btrfs_key *new_key, 4346 unsigned long split_offset) 4347 { 4348 struct extent_buffer *leaf; 4349 struct btrfs_item *item; 4350 struct btrfs_item *new_item; 4351 int slot; 4352 char *buf; 4353 u32 nritems; 4354 u32 item_size; 4355 u32 orig_offset; 4356 struct btrfs_disk_key disk_key; 4357 4358 leaf = path->nodes[0]; 4359 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 4360 4361 item = btrfs_item_nr(path->slots[0]); 4362 orig_offset = btrfs_item_offset(leaf, item); 4363 item_size = btrfs_item_size(leaf, item); 4364 4365 buf = kmalloc(item_size, GFP_NOFS); 4366 if (!buf) 4367 return -ENOMEM; 4368 4369 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4370 path->slots[0]), item_size); 4371 4372 slot = path->slots[0] + 1; 4373 nritems = btrfs_header_nritems(leaf); 4374 if (slot != nritems) { 4375 /* shift the items */ 4376 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4377 btrfs_item_nr_offset(slot), 4378 (nritems - slot) * sizeof(struct btrfs_item)); 4379 } 4380 4381 btrfs_cpu_key_to_disk(&disk_key, new_key); 4382 btrfs_set_item_key(leaf, &disk_key, slot); 4383 4384 new_item = btrfs_item_nr(slot); 4385 4386 btrfs_set_item_offset(leaf, new_item, orig_offset); 4387 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4388 4389 btrfs_set_item_offset(leaf, item, 4390 orig_offset + item_size - split_offset); 4391 btrfs_set_item_size(leaf, item, split_offset); 4392 4393 btrfs_set_header_nritems(leaf, nritems + 1); 4394 4395 /* write the data for the start of the original item */ 4396 write_extent_buffer(leaf, buf, 4397 btrfs_item_ptr_offset(leaf, path->slots[0]), 4398 split_offset); 4399 4400 /* write the data for the new item */ 4401 write_extent_buffer(leaf, buf + split_offset, 4402 btrfs_item_ptr_offset(leaf, slot), 4403 item_size - split_offset); 4404 btrfs_mark_buffer_dirty(leaf); 4405 4406 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 4407 kfree(buf); 4408 return 0; 4409 } 4410 4411 /* 4412 * This function splits a single item into two items, 4413 * giving 'new_key' to the new item and splitting the 4414 * old one at split_offset (from the start of the item). 4415 * 4416 * The path may be released by this operation. After 4417 * the split, the path is pointing to the old item. The 4418 * new item is going to be in the same node as the old one. 4419 * 4420 * Note, the item being split must be smaller enough to live alone on 4421 * a tree block with room for one extra struct btrfs_item 4422 * 4423 * This allows us to split the item in place, keeping a lock on the 4424 * leaf the entire time. 4425 */ 4426 int btrfs_split_item(struct btrfs_trans_handle *trans, 4427 struct btrfs_root *root, 4428 struct btrfs_path *path, 4429 const struct btrfs_key *new_key, 4430 unsigned long split_offset) 4431 { 4432 int ret; 4433 ret = setup_leaf_for_split(trans, root, path, 4434 sizeof(struct btrfs_item)); 4435 if (ret) 4436 return ret; 4437 4438 ret = split_item(path, new_key, split_offset); 4439 return ret; 4440 } 4441 4442 /* 4443 * This function duplicate a item, giving 'new_key' to the new item. 4444 * It guarantees both items live in the same tree leaf and the new item 4445 * is contiguous with the original item. 4446 * 4447 * This allows us to split file extent in place, keeping a lock on the 4448 * leaf the entire time. 4449 */ 4450 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4451 struct btrfs_root *root, 4452 struct btrfs_path *path, 4453 const struct btrfs_key *new_key) 4454 { 4455 struct extent_buffer *leaf; 4456 int ret; 4457 u32 item_size; 4458 4459 leaf = path->nodes[0]; 4460 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4461 ret = setup_leaf_for_split(trans, root, path, 4462 item_size + sizeof(struct btrfs_item)); 4463 if (ret) 4464 return ret; 4465 4466 path->slots[0]++; 4467 setup_items_for_insert(root, path, new_key, &item_size, 1); 4468 leaf = path->nodes[0]; 4469 memcpy_extent_buffer(leaf, 4470 btrfs_item_ptr_offset(leaf, path->slots[0]), 4471 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4472 item_size); 4473 return 0; 4474 } 4475 4476 /* 4477 * make the item pointed to by the path smaller. new_size indicates 4478 * how small to make it, and from_end tells us if we just chop bytes 4479 * off the end of the item or if we shift the item to chop bytes off 4480 * the front. 4481 */ 4482 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 4483 { 4484 int slot; 4485 struct extent_buffer *leaf; 4486 struct btrfs_item *item; 4487 u32 nritems; 4488 unsigned int data_end; 4489 unsigned int old_data_start; 4490 unsigned int old_size; 4491 unsigned int size_diff; 4492 int i; 4493 struct btrfs_map_token token; 4494 4495 leaf = path->nodes[0]; 4496 slot = path->slots[0]; 4497 4498 old_size = btrfs_item_size_nr(leaf, slot); 4499 if (old_size == new_size) 4500 return; 4501 4502 nritems = btrfs_header_nritems(leaf); 4503 data_end = leaf_data_end(leaf); 4504 4505 old_data_start = btrfs_item_offset_nr(leaf, slot); 4506 4507 size_diff = old_size - new_size; 4508 4509 BUG_ON(slot < 0); 4510 BUG_ON(slot >= nritems); 4511 4512 /* 4513 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4514 */ 4515 /* first correct the data pointers */ 4516 btrfs_init_map_token(&token, leaf); 4517 for (i = slot; i < nritems; i++) { 4518 u32 ioff; 4519 item = btrfs_item_nr(i); 4520 4521 ioff = btrfs_token_item_offset(&token, item); 4522 btrfs_set_token_item_offset(&token, item, ioff + size_diff); 4523 } 4524 4525 /* shift the data */ 4526 if (from_end) { 4527 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4528 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4529 data_end, old_data_start + new_size - data_end); 4530 } else { 4531 struct btrfs_disk_key disk_key; 4532 u64 offset; 4533 4534 btrfs_item_key(leaf, &disk_key, slot); 4535 4536 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4537 unsigned long ptr; 4538 struct btrfs_file_extent_item *fi; 4539 4540 fi = btrfs_item_ptr(leaf, slot, 4541 struct btrfs_file_extent_item); 4542 fi = (struct btrfs_file_extent_item *)( 4543 (unsigned long)fi - size_diff); 4544 4545 if (btrfs_file_extent_type(leaf, fi) == 4546 BTRFS_FILE_EXTENT_INLINE) { 4547 ptr = btrfs_item_ptr_offset(leaf, slot); 4548 memmove_extent_buffer(leaf, ptr, 4549 (unsigned long)fi, 4550 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4551 } 4552 } 4553 4554 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4555 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4556 data_end, old_data_start - data_end); 4557 4558 offset = btrfs_disk_key_offset(&disk_key); 4559 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4560 btrfs_set_item_key(leaf, &disk_key, slot); 4561 if (slot == 0) 4562 fixup_low_keys(path, &disk_key, 1); 4563 } 4564 4565 item = btrfs_item_nr(slot); 4566 btrfs_set_item_size(leaf, item, new_size); 4567 btrfs_mark_buffer_dirty(leaf); 4568 4569 if (btrfs_leaf_free_space(leaf) < 0) { 4570 btrfs_print_leaf(leaf); 4571 BUG(); 4572 } 4573 } 4574 4575 /* 4576 * make the item pointed to by the path bigger, data_size is the added size. 4577 */ 4578 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 4579 { 4580 int slot; 4581 struct extent_buffer *leaf; 4582 struct btrfs_item *item; 4583 u32 nritems; 4584 unsigned int data_end; 4585 unsigned int old_data; 4586 unsigned int old_size; 4587 int i; 4588 struct btrfs_map_token token; 4589 4590 leaf = path->nodes[0]; 4591 4592 nritems = btrfs_header_nritems(leaf); 4593 data_end = leaf_data_end(leaf); 4594 4595 if (btrfs_leaf_free_space(leaf) < data_size) { 4596 btrfs_print_leaf(leaf); 4597 BUG(); 4598 } 4599 slot = path->slots[0]; 4600 old_data = btrfs_item_end_nr(leaf, slot); 4601 4602 BUG_ON(slot < 0); 4603 if (slot >= nritems) { 4604 btrfs_print_leaf(leaf); 4605 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4606 slot, nritems); 4607 BUG(); 4608 } 4609 4610 /* 4611 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4612 */ 4613 /* first correct the data pointers */ 4614 btrfs_init_map_token(&token, leaf); 4615 for (i = slot; i < nritems; i++) { 4616 u32 ioff; 4617 item = btrfs_item_nr(i); 4618 4619 ioff = btrfs_token_item_offset(&token, item); 4620 btrfs_set_token_item_offset(&token, item, ioff - data_size); 4621 } 4622 4623 /* shift the data */ 4624 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4625 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4626 data_end, old_data - data_end); 4627 4628 data_end = old_data; 4629 old_size = btrfs_item_size_nr(leaf, slot); 4630 item = btrfs_item_nr(slot); 4631 btrfs_set_item_size(leaf, item, old_size + data_size); 4632 btrfs_mark_buffer_dirty(leaf); 4633 4634 if (btrfs_leaf_free_space(leaf) < 0) { 4635 btrfs_print_leaf(leaf); 4636 BUG(); 4637 } 4638 } 4639 4640 /** 4641 * setup_items_for_insert - Helper called before inserting one or more items 4642 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work 4643 * in a function that doesn't call btrfs_search_slot 4644 * 4645 * @root: root we are inserting items to 4646 * @path: points to the leaf/slot where we are going to insert new items 4647 * @cpu_key: array of keys for items to be inserted 4648 * @data_size: size of the body of each item we are going to insert 4649 * @nr: size of @cpu_key/@data_size arrays 4650 */ 4651 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4652 const struct btrfs_key *cpu_key, u32 *data_size, 4653 int nr) 4654 { 4655 struct btrfs_fs_info *fs_info = root->fs_info; 4656 struct btrfs_item *item; 4657 int i; 4658 u32 nritems; 4659 unsigned int data_end; 4660 struct btrfs_disk_key disk_key; 4661 struct extent_buffer *leaf; 4662 int slot; 4663 struct btrfs_map_token token; 4664 u32 total_size; 4665 u32 total_data = 0; 4666 4667 for (i = 0; i < nr; i++) 4668 total_data += data_size[i]; 4669 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4670 4671 if (path->slots[0] == 0) { 4672 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4673 fixup_low_keys(path, &disk_key, 1); 4674 } 4675 btrfs_unlock_up_safe(path, 1); 4676 4677 leaf = path->nodes[0]; 4678 slot = path->slots[0]; 4679 4680 nritems = btrfs_header_nritems(leaf); 4681 data_end = leaf_data_end(leaf); 4682 4683 if (btrfs_leaf_free_space(leaf) < total_size) { 4684 btrfs_print_leaf(leaf); 4685 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4686 total_size, btrfs_leaf_free_space(leaf)); 4687 BUG(); 4688 } 4689 4690 btrfs_init_map_token(&token, leaf); 4691 if (slot != nritems) { 4692 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4693 4694 if (old_data < data_end) { 4695 btrfs_print_leaf(leaf); 4696 btrfs_crit(fs_info, 4697 "item at slot %d with data offset %u beyond data end of leaf %u", 4698 slot, old_data, data_end); 4699 BUG(); 4700 } 4701 /* 4702 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4703 */ 4704 /* first correct the data pointers */ 4705 for (i = slot; i < nritems; i++) { 4706 u32 ioff; 4707 4708 item = btrfs_item_nr(i); 4709 ioff = btrfs_token_item_offset(&token, item); 4710 btrfs_set_token_item_offset(&token, item, 4711 ioff - total_data); 4712 } 4713 /* shift the items */ 4714 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4715 btrfs_item_nr_offset(slot), 4716 (nritems - slot) * sizeof(struct btrfs_item)); 4717 4718 /* shift the data */ 4719 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4720 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4721 data_end, old_data - data_end); 4722 data_end = old_data; 4723 } 4724 4725 /* setup the item for the new data */ 4726 for (i = 0; i < nr; i++) { 4727 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4728 btrfs_set_item_key(leaf, &disk_key, slot + i); 4729 item = btrfs_item_nr(slot + i); 4730 data_end -= data_size[i]; 4731 btrfs_set_token_item_offset(&token, item, data_end); 4732 btrfs_set_token_item_size(&token, item, data_size[i]); 4733 } 4734 4735 btrfs_set_header_nritems(leaf, nritems + nr); 4736 btrfs_mark_buffer_dirty(leaf); 4737 4738 if (btrfs_leaf_free_space(leaf) < 0) { 4739 btrfs_print_leaf(leaf); 4740 BUG(); 4741 } 4742 } 4743 4744 /* 4745 * Given a key and some data, insert items into the tree. 4746 * This does all the path init required, making room in the tree if needed. 4747 */ 4748 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4749 struct btrfs_root *root, 4750 struct btrfs_path *path, 4751 const struct btrfs_key *cpu_key, u32 *data_size, 4752 int nr) 4753 { 4754 int ret = 0; 4755 int slot; 4756 int i; 4757 u32 total_size = 0; 4758 u32 total_data = 0; 4759 4760 for (i = 0; i < nr; i++) 4761 total_data += data_size[i]; 4762 4763 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4764 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4765 if (ret == 0) 4766 return -EEXIST; 4767 if (ret < 0) 4768 return ret; 4769 4770 slot = path->slots[0]; 4771 BUG_ON(slot < 0); 4772 4773 setup_items_for_insert(root, path, cpu_key, data_size, nr); 4774 return 0; 4775 } 4776 4777 /* 4778 * Given a key and some data, insert an item into the tree. 4779 * This does all the path init required, making room in the tree if needed. 4780 */ 4781 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4782 const struct btrfs_key *cpu_key, void *data, 4783 u32 data_size) 4784 { 4785 int ret = 0; 4786 struct btrfs_path *path; 4787 struct extent_buffer *leaf; 4788 unsigned long ptr; 4789 4790 path = btrfs_alloc_path(); 4791 if (!path) 4792 return -ENOMEM; 4793 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4794 if (!ret) { 4795 leaf = path->nodes[0]; 4796 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4797 write_extent_buffer(leaf, data, ptr, data_size); 4798 btrfs_mark_buffer_dirty(leaf); 4799 } 4800 btrfs_free_path(path); 4801 return ret; 4802 } 4803 4804 /* 4805 * delete the pointer from a given node. 4806 * 4807 * the tree should have been previously balanced so the deletion does not 4808 * empty a node. 4809 */ 4810 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4811 int level, int slot) 4812 { 4813 struct extent_buffer *parent = path->nodes[level]; 4814 u32 nritems; 4815 int ret; 4816 4817 nritems = btrfs_header_nritems(parent); 4818 if (slot != nritems - 1) { 4819 if (level) { 4820 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4821 nritems - slot - 1); 4822 BUG_ON(ret < 0); 4823 } 4824 memmove_extent_buffer(parent, 4825 btrfs_node_key_ptr_offset(slot), 4826 btrfs_node_key_ptr_offset(slot + 1), 4827 sizeof(struct btrfs_key_ptr) * 4828 (nritems - slot - 1)); 4829 } else if (level) { 4830 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4831 GFP_NOFS); 4832 BUG_ON(ret < 0); 4833 } 4834 4835 nritems--; 4836 btrfs_set_header_nritems(parent, nritems); 4837 if (nritems == 0 && parent == root->node) { 4838 BUG_ON(btrfs_header_level(root->node) != 1); 4839 /* just turn the root into a leaf and break */ 4840 btrfs_set_header_level(root->node, 0); 4841 } else if (slot == 0) { 4842 struct btrfs_disk_key disk_key; 4843 4844 btrfs_node_key(parent, &disk_key, 0); 4845 fixup_low_keys(path, &disk_key, level + 1); 4846 } 4847 btrfs_mark_buffer_dirty(parent); 4848 } 4849 4850 /* 4851 * a helper function to delete the leaf pointed to by path->slots[1] and 4852 * path->nodes[1]. 4853 * 4854 * This deletes the pointer in path->nodes[1] and frees the leaf 4855 * block extent. zero is returned if it all worked out, < 0 otherwise. 4856 * 4857 * The path must have already been setup for deleting the leaf, including 4858 * all the proper balancing. path->nodes[1] must be locked. 4859 */ 4860 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4861 struct btrfs_root *root, 4862 struct btrfs_path *path, 4863 struct extent_buffer *leaf) 4864 { 4865 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4866 del_ptr(root, path, 1, path->slots[1]); 4867 4868 /* 4869 * btrfs_free_extent is expensive, we want to make sure we 4870 * aren't holding any locks when we call it 4871 */ 4872 btrfs_unlock_up_safe(path, 0); 4873 4874 root_sub_used(root, leaf->len); 4875 4876 atomic_inc(&leaf->refs); 4877 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4878 free_extent_buffer_stale(leaf); 4879 } 4880 /* 4881 * delete the item at the leaf level in path. If that empties 4882 * the leaf, remove it from the tree 4883 */ 4884 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4885 struct btrfs_path *path, int slot, int nr) 4886 { 4887 struct btrfs_fs_info *fs_info = root->fs_info; 4888 struct extent_buffer *leaf; 4889 struct btrfs_item *item; 4890 u32 last_off; 4891 u32 dsize = 0; 4892 int ret = 0; 4893 int wret; 4894 int i; 4895 u32 nritems; 4896 4897 leaf = path->nodes[0]; 4898 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4899 4900 for (i = 0; i < nr; i++) 4901 dsize += btrfs_item_size_nr(leaf, slot + i); 4902 4903 nritems = btrfs_header_nritems(leaf); 4904 4905 if (slot + nr != nritems) { 4906 int data_end = leaf_data_end(leaf); 4907 struct btrfs_map_token token; 4908 4909 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4910 data_end + dsize, 4911 BTRFS_LEAF_DATA_OFFSET + data_end, 4912 last_off - data_end); 4913 4914 btrfs_init_map_token(&token, leaf); 4915 for (i = slot + nr; i < nritems; i++) { 4916 u32 ioff; 4917 4918 item = btrfs_item_nr(i); 4919 ioff = btrfs_token_item_offset(&token, item); 4920 btrfs_set_token_item_offset(&token, item, ioff + dsize); 4921 } 4922 4923 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4924 btrfs_item_nr_offset(slot + nr), 4925 sizeof(struct btrfs_item) * 4926 (nritems - slot - nr)); 4927 } 4928 btrfs_set_header_nritems(leaf, nritems - nr); 4929 nritems -= nr; 4930 4931 /* delete the leaf if we've emptied it */ 4932 if (nritems == 0) { 4933 if (leaf == root->node) { 4934 btrfs_set_header_level(leaf, 0); 4935 } else { 4936 btrfs_clean_tree_block(leaf); 4937 btrfs_del_leaf(trans, root, path, leaf); 4938 } 4939 } else { 4940 int used = leaf_space_used(leaf, 0, nritems); 4941 if (slot == 0) { 4942 struct btrfs_disk_key disk_key; 4943 4944 btrfs_item_key(leaf, &disk_key, 0); 4945 fixup_low_keys(path, &disk_key, 1); 4946 } 4947 4948 /* delete the leaf if it is mostly empty */ 4949 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4950 /* push_leaf_left fixes the path. 4951 * make sure the path still points to our leaf 4952 * for possible call to del_ptr below 4953 */ 4954 slot = path->slots[1]; 4955 atomic_inc(&leaf->refs); 4956 4957 wret = push_leaf_left(trans, root, path, 1, 1, 4958 1, (u32)-1); 4959 if (wret < 0 && wret != -ENOSPC) 4960 ret = wret; 4961 4962 if (path->nodes[0] == leaf && 4963 btrfs_header_nritems(leaf)) { 4964 wret = push_leaf_right(trans, root, path, 1, 4965 1, 1, 0); 4966 if (wret < 0 && wret != -ENOSPC) 4967 ret = wret; 4968 } 4969 4970 if (btrfs_header_nritems(leaf) == 0) { 4971 path->slots[1] = slot; 4972 btrfs_del_leaf(trans, root, path, leaf); 4973 free_extent_buffer(leaf); 4974 ret = 0; 4975 } else { 4976 /* if we're still in the path, make sure 4977 * we're dirty. Otherwise, one of the 4978 * push_leaf functions must have already 4979 * dirtied this buffer 4980 */ 4981 if (path->nodes[0] == leaf) 4982 btrfs_mark_buffer_dirty(leaf); 4983 free_extent_buffer(leaf); 4984 } 4985 } else { 4986 btrfs_mark_buffer_dirty(leaf); 4987 } 4988 } 4989 return ret; 4990 } 4991 4992 /* 4993 * search the tree again to find a leaf with lesser keys 4994 * returns 0 if it found something or 1 if there are no lesser leaves. 4995 * returns < 0 on io errors. 4996 * 4997 * This may release the path, and so you may lose any locks held at the 4998 * time you call it. 4999 */ 5000 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5001 { 5002 struct btrfs_key key; 5003 struct btrfs_disk_key found_key; 5004 int ret; 5005 5006 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5007 5008 if (key.offset > 0) { 5009 key.offset--; 5010 } else if (key.type > 0) { 5011 key.type--; 5012 key.offset = (u64)-1; 5013 } else if (key.objectid > 0) { 5014 key.objectid--; 5015 key.type = (u8)-1; 5016 key.offset = (u64)-1; 5017 } else { 5018 return 1; 5019 } 5020 5021 btrfs_release_path(path); 5022 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5023 if (ret < 0) 5024 return ret; 5025 btrfs_item_key(path->nodes[0], &found_key, 0); 5026 ret = comp_keys(&found_key, &key); 5027 /* 5028 * We might have had an item with the previous key in the tree right 5029 * before we released our path. And after we released our path, that 5030 * item might have been pushed to the first slot (0) of the leaf we 5031 * were holding due to a tree balance. Alternatively, an item with the 5032 * previous key can exist as the only element of a leaf (big fat item). 5033 * Therefore account for these 2 cases, so that our callers (like 5034 * btrfs_previous_item) don't miss an existing item with a key matching 5035 * the previous key we computed above. 5036 */ 5037 if (ret <= 0) 5038 return 0; 5039 return 1; 5040 } 5041 5042 /* 5043 * A helper function to walk down the tree starting at min_key, and looking 5044 * for nodes or leaves that are have a minimum transaction id. 5045 * This is used by the btree defrag code, and tree logging 5046 * 5047 * This does not cow, but it does stuff the starting key it finds back 5048 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5049 * key and get a writable path. 5050 * 5051 * This honors path->lowest_level to prevent descent past a given level 5052 * of the tree. 5053 * 5054 * min_trans indicates the oldest transaction that you are interested 5055 * in walking through. Any nodes or leaves older than min_trans are 5056 * skipped over (without reading them). 5057 * 5058 * returns zero if something useful was found, < 0 on error and 1 if there 5059 * was nothing in the tree that matched the search criteria. 5060 */ 5061 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5062 struct btrfs_path *path, 5063 u64 min_trans) 5064 { 5065 struct extent_buffer *cur; 5066 struct btrfs_key found_key; 5067 int slot; 5068 int sret; 5069 u32 nritems; 5070 int level; 5071 int ret = 1; 5072 int keep_locks = path->keep_locks; 5073 5074 path->keep_locks = 1; 5075 again: 5076 cur = btrfs_read_lock_root_node(root); 5077 level = btrfs_header_level(cur); 5078 WARN_ON(path->nodes[level]); 5079 path->nodes[level] = cur; 5080 path->locks[level] = BTRFS_READ_LOCK; 5081 5082 if (btrfs_header_generation(cur) < min_trans) { 5083 ret = 1; 5084 goto out; 5085 } 5086 while (1) { 5087 nritems = btrfs_header_nritems(cur); 5088 level = btrfs_header_level(cur); 5089 sret = btrfs_bin_search(cur, min_key, &slot); 5090 if (sret < 0) { 5091 ret = sret; 5092 goto out; 5093 } 5094 5095 /* at the lowest level, we're done, setup the path and exit */ 5096 if (level == path->lowest_level) { 5097 if (slot >= nritems) 5098 goto find_next_key; 5099 ret = 0; 5100 path->slots[level] = slot; 5101 btrfs_item_key_to_cpu(cur, &found_key, slot); 5102 goto out; 5103 } 5104 if (sret && slot > 0) 5105 slot--; 5106 /* 5107 * check this node pointer against the min_trans parameters. 5108 * If it is too old, skip to the next one. 5109 */ 5110 while (slot < nritems) { 5111 u64 gen; 5112 5113 gen = btrfs_node_ptr_generation(cur, slot); 5114 if (gen < min_trans) { 5115 slot++; 5116 continue; 5117 } 5118 break; 5119 } 5120 find_next_key: 5121 /* 5122 * we didn't find a candidate key in this node, walk forward 5123 * and find another one 5124 */ 5125 if (slot >= nritems) { 5126 path->slots[level] = slot; 5127 sret = btrfs_find_next_key(root, path, min_key, level, 5128 min_trans); 5129 if (sret == 0) { 5130 btrfs_release_path(path); 5131 goto again; 5132 } else { 5133 goto out; 5134 } 5135 } 5136 /* save our key for returning back */ 5137 btrfs_node_key_to_cpu(cur, &found_key, slot); 5138 path->slots[level] = slot; 5139 if (level == path->lowest_level) { 5140 ret = 0; 5141 goto out; 5142 } 5143 cur = btrfs_read_node_slot(cur, slot); 5144 if (IS_ERR(cur)) { 5145 ret = PTR_ERR(cur); 5146 goto out; 5147 } 5148 5149 btrfs_tree_read_lock(cur); 5150 5151 path->locks[level - 1] = BTRFS_READ_LOCK; 5152 path->nodes[level - 1] = cur; 5153 unlock_up(path, level, 1, 0, NULL); 5154 } 5155 out: 5156 path->keep_locks = keep_locks; 5157 if (ret == 0) { 5158 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5159 memcpy(min_key, &found_key, sizeof(found_key)); 5160 } 5161 return ret; 5162 } 5163 5164 /* 5165 * this is similar to btrfs_next_leaf, but does not try to preserve 5166 * and fixup the path. It looks for and returns the next key in the 5167 * tree based on the current path and the min_trans parameters. 5168 * 5169 * 0 is returned if another key is found, < 0 if there are any errors 5170 * and 1 is returned if there are no higher keys in the tree 5171 * 5172 * path->keep_locks should be set to 1 on the search made before 5173 * calling this function. 5174 */ 5175 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5176 struct btrfs_key *key, int level, u64 min_trans) 5177 { 5178 int slot; 5179 struct extent_buffer *c; 5180 5181 WARN_ON(!path->keep_locks && !path->skip_locking); 5182 while (level < BTRFS_MAX_LEVEL) { 5183 if (!path->nodes[level]) 5184 return 1; 5185 5186 slot = path->slots[level] + 1; 5187 c = path->nodes[level]; 5188 next: 5189 if (slot >= btrfs_header_nritems(c)) { 5190 int ret; 5191 int orig_lowest; 5192 struct btrfs_key cur_key; 5193 if (level + 1 >= BTRFS_MAX_LEVEL || 5194 !path->nodes[level + 1]) 5195 return 1; 5196 5197 if (path->locks[level + 1] || path->skip_locking) { 5198 level++; 5199 continue; 5200 } 5201 5202 slot = btrfs_header_nritems(c) - 1; 5203 if (level == 0) 5204 btrfs_item_key_to_cpu(c, &cur_key, slot); 5205 else 5206 btrfs_node_key_to_cpu(c, &cur_key, slot); 5207 5208 orig_lowest = path->lowest_level; 5209 btrfs_release_path(path); 5210 path->lowest_level = level; 5211 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5212 0, 0); 5213 path->lowest_level = orig_lowest; 5214 if (ret < 0) 5215 return ret; 5216 5217 c = path->nodes[level]; 5218 slot = path->slots[level]; 5219 if (ret == 0) 5220 slot++; 5221 goto next; 5222 } 5223 5224 if (level == 0) 5225 btrfs_item_key_to_cpu(c, key, slot); 5226 else { 5227 u64 gen = btrfs_node_ptr_generation(c, slot); 5228 5229 if (gen < min_trans) { 5230 slot++; 5231 goto next; 5232 } 5233 btrfs_node_key_to_cpu(c, key, slot); 5234 } 5235 return 0; 5236 } 5237 return 1; 5238 } 5239 5240 /* 5241 * search the tree again to find a leaf with greater keys 5242 * returns 0 if it found something or 1 if there are no greater leaves. 5243 * returns < 0 on io errors. 5244 */ 5245 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5246 { 5247 return btrfs_next_old_leaf(root, path, 0); 5248 } 5249 5250 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5251 u64 time_seq) 5252 { 5253 int slot; 5254 int level; 5255 struct extent_buffer *c; 5256 struct extent_buffer *next; 5257 struct btrfs_key key; 5258 u32 nritems; 5259 int ret; 5260 int i; 5261 5262 nritems = btrfs_header_nritems(path->nodes[0]); 5263 if (nritems == 0) 5264 return 1; 5265 5266 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5267 again: 5268 level = 1; 5269 next = NULL; 5270 btrfs_release_path(path); 5271 5272 path->keep_locks = 1; 5273 5274 if (time_seq) 5275 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5276 else 5277 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5278 path->keep_locks = 0; 5279 5280 if (ret < 0) 5281 return ret; 5282 5283 nritems = btrfs_header_nritems(path->nodes[0]); 5284 /* 5285 * by releasing the path above we dropped all our locks. A balance 5286 * could have added more items next to the key that used to be 5287 * at the very end of the block. So, check again here and 5288 * advance the path if there are now more items available. 5289 */ 5290 if (nritems > 0 && path->slots[0] < nritems - 1) { 5291 if (ret == 0) 5292 path->slots[0]++; 5293 ret = 0; 5294 goto done; 5295 } 5296 /* 5297 * So the above check misses one case: 5298 * - after releasing the path above, someone has removed the item that 5299 * used to be at the very end of the block, and balance between leafs 5300 * gets another one with bigger key.offset to replace it. 5301 * 5302 * This one should be returned as well, or we can get leaf corruption 5303 * later(esp. in __btrfs_drop_extents()). 5304 * 5305 * And a bit more explanation about this check, 5306 * with ret > 0, the key isn't found, the path points to the slot 5307 * where it should be inserted, so the path->slots[0] item must be the 5308 * bigger one. 5309 */ 5310 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5311 ret = 0; 5312 goto done; 5313 } 5314 5315 while (level < BTRFS_MAX_LEVEL) { 5316 if (!path->nodes[level]) { 5317 ret = 1; 5318 goto done; 5319 } 5320 5321 slot = path->slots[level] + 1; 5322 c = path->nodes[level]; 5323 if (slot >= btrfs_header_nritems(c)) { 5324 level++; 5325 if (level == BTRFS_MAX_LEVEL) { 5326 ret = 1; 5327 goto done; 5328 } 5329 continue; 5330 } 5331 5332 5333 /* 5334 * Our current level is where we're going to start from, and to 5335 * make sure lockdep doesn't complain we need to drop our locks 5336 * and nodes from 0 to our current level. 5337 */ 5338 for (i = 0; i < level; i++) { 5339 if (path->locks[level]) { 5340 btrfs_tree_read_unlock(path->nodes[i]); 5341 path->locks[i] = 0; 5342 } 5343 free_extent_buffer(path->nodes[i]); 5344 path->nodes[i] = NULL; 5345 } 5346 5347 next = c; 5348 ret = read_block_for_search(root, path, &next, level, 5349 slot, &key); 5350 if (ret == -EAGAIN) 5351 goto again; 5352 5353 if (ret < 0) { 5354 btrfs_release_path(path); 5355 goto done; 5356 } 5357 5358 if (!path->skip_locking) { 5359 ret = btrfs_try_tree_read_lock(next); 5360 if (!ret && time_seq) { 5361 /* 5362 * If we don't get the lock, we may be racing 5363 * with push_leaf_left, holding that lock while 5364 * itself waiting for the leaf we've currently 5365 * locked. To solve this situation, we give up 5366 * on our lock and cycle. 5367 */ 5368 free_extent_buffer(next); 5369 btrfs_release_path(path); 5370 cond_resched(); 5371 goto again; 5372 } 5373 if (!ret) 5374 btrfs_tree_read_lock(next); 5375 } 5376 break; 5377 } 5378 path->slots[level] = slot; 5379 while (1) { 5380 level--; 5381 path->nodes[level] = next; 5382 path->slots[level] = 0; 5383 if (!path->skip_locking) 5384 path->locks[level] = BTRFS_READ_LOCK; 5385 if (!level) 5386 break; 5387 5388 ret = read_block_for_search(root, path, &next, level, 5389 0, &key); 5390 if (ret == -EAGAIN) 5391 goto again; 5392 5393 if (ret < 0) { 5394 btrfs_release_path(path); 5395 goto done; 5396 } 5397 5398 if (!path->skip_locking) 5399 btrfs_tree_read_lock(next); 5400 } 5401 ret = 0; 5402 done: 5403 unlock_up(path, 0, 1, 0, NULL); 5404 5405 return ret; 5406 } 5407 5408 /* 5409 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5410 * searching until it gets past min_objectid or finds an item of 'type' 5411 * 5412 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5413 */ 5414 int btrfs_previous_item(struct btrfs_root *root, 5415 struct btrfs_path *path, u64 min_objectid, 5416 int type) 5417 { 5418 struct btrfs_key found_key; 5419 struct extent_buffer *leaf; 5420 u32 nritems; 5421 int ret; 5422 5423 while (1) { 5424 if (path->slots[0] == 0) { 5425 ret = btrfs_prev_leaf(root, path); 5426 if (ret != 0) 5427 return ret; 5428 } else { 5429 path->slots[0]--; 5430 } 5431 leaf = path->nodes[0]; 5432 nritems = btrfs_header_nritems(leaf); 5433 if (nritems == 0) 5434 return 1; 5435 if (path->slots[0] == nritems) 5436 path->slots[0]--; 5437 5438 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5439 if (found_key.objectid < min_objectid) 5440 break; 5441 if (found_key.type == type) 5442 return 0; 5443 if (found_key.objectid == min_objectid && 5444 found_key.type < type) 5445 break; 5446 } 5447 return 1; 5448 } 5449 5450 /* 5451 * search in extent tree to find a previous Metadata/Data extent item with 5452 * min objecitd. 5453 * 5454 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5455 */ 5456 int btrfs_previous_extent_item(struct btrfs_root *root, 5457 struct btrfs_path *path, u64 min_objectid) 5458 { 5459 struct btrfs_key found_key; 5460 struct extent_buffer *leaf; 5461 u32 nritems; 5462 int ret; 5463 5464 while (1) { 5465 if (path->slots[0] == 0) { 5466 ret = btrfs_prev_leaf(root, path); 5467 if (ret != 0) 5468 return ret; 5469 } else { 5470 path->slots[0]--; 5471 } 5472 leaf = path->nodes[0]; 5473 nritems = btrfs_header_nritems(leaf); 5474 if (nritems == 0) 5475 return 1; 5476 if (path->slots[0] == nritems) 5477 path->slots[0]--; 5478 5479 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5480 if (found_key.objectid < min_objectid) 5481 break; 5482 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5483 found_key.type == BTRFS_METADATA_ITEM_KEY) 5484 return 0; 5485 if (found_key.objectid == min_objectid && 5486 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5487 break; 5488 } 5489 return 1; 5490 } 5491