1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 16 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 17 *root, struct btrfs_path *path, int level); 18 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 19 const struct btrfs_key *ins_key, struct btrfs_path *path, 20 int data_size, int extend); 21 static int push_node_left(struct btrfs_trans_handle *trans, 22 struct btrfs_fs_info *fs_info, 23 struct extent_buffer *dst, 24 struct extent_buffer *src, int empty); 25 static int balance_node_right(struct btrfs_trans_handle *trans, 26 struct btrfs_fs_info *fs_info, 27 struct extent_buffer *dst_buf, 28 struct extent_buffer *src_buf); 29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 30 int level, int slot); 31 32 struct btrfs_path *btrfs_alloc_path(void) 33 { 34 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 35 } 36 37 /* 38 * set all locked nodes in the path to blocking locks. This should 39 * be done before scheduling 40 */ 41 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 42 { 43 int i; 44 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 45 if (!p->nodes[i] || !p->locks[i]) 46 continue; 47 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 48 if (p->locks[i] == BTRFS_READ_LOCK) 49 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 50 else if (p->locks[i] == BTRFS_WRITE_LOCK) 51 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 52 } 53 } 54 55 /* this also releases the path */ 56 void btrfs_free_path(struct btrfs_path *p) 57 { 58 if (!p) 59 return; 60 btrfs_release_path(p); 61 kmem_cache_free(btrfs_path_cachep, p); 62 } 63 64 /* 65 * path release drops references on the extent buffers in the path 66 * and it drops any locks held by this path 67 * 68 * It is safe to call this on paths that no locks or extent buffers held. 69 */ 70 noinline void btrfs_release_path(struct btrfs_path *p) 71 { 72 int i; 73 74 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 75 p->slots[i] = 0; 76 if (!p->nodes[i]) 77 continue; 78 if (p->locks[i]) { 79 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 80 p->locks[i] = 0; 81 } 82 free_extent_buffer(p->nodes[i]); 83 p->nodes[i] = NULL; 84 } 85 } 86 87 /* 88 * safely gets a reference on the root node of a tree. A lock 89 * is not taken, so a concurrent writer may put a different node 90 * at the root of the tree. See btrfs_lock_root_node for the 91 * looping required. 92 * 93 * The extent buffer returned by this has a reference taken, so 94 * it won't disappear. It may stop being the root of the tree 95 * at any time because there are no locks held. 96 */ 97 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 98 { 99 struct extent_buffer *eb; 100 101 while (1) { 102 rcu_read_lock(); 103 eb = rcu_dereference(root->node); 104 105 /* 106 * RCU really hurts here, we could free up the root node because 107 * it was COWed but we may not get the new root node yet so do 108 * the inc_not_zero dance and if it doesn't work then 109 * synchronize_rcu and try again. 110 */ 111 if (atomic_inc_not_zero(&eb->refs)) { 112 rcu_read_unlock(); 113 break; 114 } 115 rcu_read_unlock(); 116 synchronize_rcu(); 117 } 118 return eb; 119 } 120 121 /* loop around taking references on and locking the root node of the 122 * tree until you end up with a lock on the root. A locked buffer 123 * is returned, with a reference held. 124 */ 125 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 126 { 127 struct extent_buffer *eb; 128 129 while (1) { 130 eb = btrfs_root_node(root); 131 btrfs_tree_lock(eb); 132 if (eb == root->node) 133 break; 134 btrfs_tree_unlock(eb); 135 free_extent_buffer(eb); 136 } 137 return eb; 138 } 139 140 /* loop around taking references on and locking the root node of the 141 * tree until you end up with a lock on the root. A locked buffer 142 * is returned, with a reference held. 143 */ 144 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 145 { 146 struct extent_buffer *eb; 147 148 while (1) { 149 eb = btrfs_root_node(root); 150 btrfs_tree_read_lock(eb); 151 if (eb == root->node) 152 break; 153 btrfs_tree_read_unlock(eb); 154 free_extent_buffer(eb); 155 } 156 return eb; 157 } 158 159 /* cowonly root (everything not a reference counted cow subvolume), just get 160 * put onto a simple dirty list. transaction.c walks this to make sure they 161 * get properly updated on disk. 162 */ 163 static void add_root_to_dirty_list(struct btrfs_root *root) 164 { 165 struct btrfs_fs_info *fs_info = root->fs_info; 166 167 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 168 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 169 return; 170 171 spin_lock(&fs_info->trans_lock); 172 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 173 /* Want the extent tree to be the last on the list */ 174 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 175 list_move_tail(&root->dirty_list, 176 &fs_info->dirty_cowonly_roots); 177 else 178 list_move(&root->dirty_list, 179 &fs_info->dirty_cowonly_roots); 180 } 181 spin_unlock(&fs_info->trans_lock); 182 } 183 184 /* 185 * used by snapshot creation to make a copy of a root for a tree with 186 * a given objectid. The buffer with the new root node is returned in 187 * cow_ret, and this func returns zero on success or a negative error code. 188 */ 189 int btrfs_copy_root(struct btrfs_trans_handle *trans, 190 struct btrfs_root *root, 191 struct extent_buffer *buf, 192 struct extent_buffer **cow_ret, u64 new_root_objectid) 193 { 194 struct btrfs_fs_info *fs_info = root->fs_info; 195 struct extent_buffer *cow; 196 int ret = 0; 197 int level; 198 struct btrfs_disk_key disk_key; 199 200 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 201 trans->transid != fs_info->running_transaction->transid); 202 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 203 trans->transid != root->last_trans); 204 205 level = btrfs_header_level(buf); 206 if (level == 0) 207 btrfs_item_key(buf, &disk_key, 0); 208 else 209 btrfs_node_key(buf, &disk_key, 0); 210 211 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 212 &disk_key, level, buf->start, 0); 213 if (IS_ERR(cow)) 214 return PTR_ERR(cow); 215 216 copy_extent_buffer_full(cow, buf); 217 btrfs_set_header_bytenr(cow, cow->start); 218 btrfs_set_header_generation(cow, trans->transid); 219 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 220 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 221 BTRFS_HEADER_FLAG_RELOC); 222 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 223 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 224 else 225 btrfs_set_header_owner(cow, new_root_objectid); 226 227 write_extent_buffer_fsid(cow, fs_info->fsid); 228 229 WARN_ON(btrfs_header_generation(buf) > trans->transid); 230 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 231 ret = btrfs_inc_ref(trans, root, cow, 1); 232 else 233 ret = btrfs_inc_ref(trans, root, cow, 0); 234 235 if (ret) 236 return ret; 237 238 btrfs_mark_buffer_dirty(cow); 239 *cow_ret = cow; 240 return 0; 241 } 242 243 enum mod_log_op { 244 MOD_LOG_KEY_REPLACE, 245 MOD_LOG_KEY_ADD, 246 MOD_LOG_KEY_REMOVE, 247 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 248 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 249 MOD_LOG_MOVE_KEYS, 250 MOD_LOG_ROOT_REPLACE, 251 }; 252 253 struct tree_mod_root { 254 u64 logical; 255 u8 level; 256 }; 257 258 struct tree_mod_elem { 259 struct rb_node node; 260 u64 logical; 261 u64 seq; 262 enum mod_log_op op; 263 264 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 265 int slot; 266 267 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 268 u64 generation; 269 270 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 271 struct btrfs_disk_key key; 272 u64 blockptr; 273 274 /* this is used for op == MOD_LOG_MOVE_KEYS */ 275 struct { 276 int dst_slot; 277 int nr_items; 278 } move; 279 280 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 281 struct tree_mod_root old_root; 282 }; 283 284 /* 285 * Pull a new tree mod seq number for our operation. 286 */ 287 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 288 { 289 return atomic64_inc_return(&fs_info->tree_mod_seq); 290 } 291 292 /* 293 * This adds a new blocker to the tree mod log's blocker list if the @elem 294 * passed does not already have a sequence number set. So when a caller expects 295 * to record tree modifications, it should ensure to set elem->seq to zero 296 * before calling btrfs_get_tree_mod_seq. 297 * Returns a fresh, unused tree log modification sequence number, even if no new 298 * blocker was added. 299 */ 300 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 301 struct seq_list *elem) 302 { 303 write_lock(&fs_info->tree_mod_log_lock); 304 spin_lock(&fs_info->tree_mod_seq_lock); 305 if (!elem->seq) { 306 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 307 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 308 } 309 spin_unlock(&fs_info->tree_mod_seq_lock); 310 write_unlock(&fs_info->tree_mod_log_lock); 311 312 return elem->seq; 313 } 314 315 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 316 struct seq_list *elem) 317 { 318 struct rb_root *tm_root; 319 struct rb_node *node; 320 struct rb_node *next; 321 struct seq_list *cur_elem; 322 struct tree_mod_elem *tm; 323 u64 min_seq = (u64)-1; 324 u64 seq_putting = elem->seq; 325 326 if (!seq_putting) 327 return; 328 329 spin_lock(&fs_info->tree_mod_seq_lock); 330 list_del(&elem->list); 331 elem->seq = 0; 332 333 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 334 if (cur_elem->seq < min_seq) { 335 if (seq_putting > cur_elem->seq) { 336 /* 337 * blocker with lower sequence number exists, we 338 * cannot remove anything from the log 339 */ 340 spin_unlock(&fs_info->tree_mod_seq_lock); 341 return; 342 } 343 min_seq = cur_elem->seq; 344 } 345 } 346 spin_unlock(&fs_info->tree_mod_seq_lock); 347 348 /* 349 * anything that's lower than the lowest existing (read: blocked) 350 * sequence number can be removed from the tree. 351 */ 352 write_lock(&fs_info->tree_mod_log_lock); 353 tm_root = &fs_info->tree_mod_log; 354 for (node = rb_first(tm_root); node; node = next) { 355 next = rb_next(node); 356 tm = rb_entry(node, struct tree_mod_elem, node); 357 if (tm->seq > min_seq) 358 continue; 359 rb_erase(node, tm_root); 360 kfree(tm); 361 } 362 write_unlock(&fs_info->tree_mod_log_lock); 363 } 364 365 /* 366 * key order of the log: 367 * node/leaf start address -> sequence 368 * 369 * The 'start address' is the logical address of the *new* root node 370 * for root replace operations, or the logical address of the affected 371 * block for all other operations. 372 * 373 * Note: must be called with write lock for fs_info::tree_mod_log_lock. 374 */ 375 static noinline int 376 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 377 { 378 struct rb_root *tm_root; 379 struct rb_node **new; 380 struct rb_node *parent = NULL; 381 struct tree_mod_elem *cur; 382 383 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 384 385 tm_root = &fs_info->tree_mod_log; 386 new = &tm_root->rb_node; 387 while (*new) { 388 cur = rb_entry(*new, struct tree_mod_elem, node); 389 parent = *new; 390 if (cur->logical < tm->logical) 391 new = &((*new)->rb_left); 392 else if (cur->logical > tm->logical) 393 new = &((*new)->rb_right); 394 else if (cur->seq < tm->seq) 395 new = &((*new)->rb_left); 396 else if (cur->seq > tm->seq) 397 new = &((*new)->rb_right); 398 else 399 return -EEXIST; 400 } 401 402 rb_link_node(&tm->node, parent, new); 403 rb_insert_color(&tm->node, tm_root); 404 return 0; 405 } 406 407 /* 408 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 409 * returns zero with the tree_mod_log_lock acquired. The caller must hold 410 * this until all tree mod log insertions are recorded in the rb tree and then 411 * write unlock fs_info::tree_mod_log_lock. 412 */ 413 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 414 struct extent_buffer *eb) { 415 smp_mb(); 416 if (list_empty(&(fs_info)->tree_mod_seq_list)) 417 return 1; 418 if (eb && btrfs_header_level(eb) == 0) 419 return 1; 420 421 write_lock(&fs_info->tree_mod_log_lock); 422 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 423 write_unlock(&fs_info->tree_mod_log_lock); 424 return 1; 425 } 426 427 return 0; 428 } 429 430 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 431 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 432 struct extent_buffer *eb) 433 { 434 smp_mb(); 435 if (list_empty(&(fs_info)->tree_mod_seq_list)) 436 return 0; 437 if (eb && btrfs_header_level(eb) == 0) 438 return 0; 439 440 return 1; 441 } 442 443 static struct tree_mod_elem * 444 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 445 enum mod_log_op op, gfp_t flags) 446 { 447 struct tree_mod_elem *tm; 448 449 tm = kzalloc(sizeof(*tm), flags); 450 if (!tm) 451 return NULL; 452 453 tm->logical = eb->start; 454 if (op != MOD_LOG_KEY_ADD) { 455 btrfs_node_key(eb, &tm->key, slot); 456 tm->blockptr = btrfs_node_blockptr(eb, slot); 457 } 458 tm->op = op; 459 tm->slot = slot; 460 tm->generation = btrfs_node_ptr_generation(eb, slot); 461 RB_CLEAR_NODE(&tm->node); 462 463 return tm; 464 } 465 466 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 467 enum mod_log_op op, gfp_t flags) 468 { 469 struct tree_mod_elem *tm; 470 int ret; 471 472 if (!tree_mod_need_log(eb->fs_info, eb)) 473 return 0; 474 475 tm = alloc_tree_mod_elem(eb, slot, op, flags); 476 if (!tm) 477 return -ENOMEM; 478 479 if (tree_mod_dont_log(eb->fs_info, eb)) { 480 kfree(tm); 481 return 0; 482 } 483 484 ret = __tree_mod_log_insert(eb->fs_info, tm); 485 write_unlock(&eb->fs_info->tree_mod_log_lock); 486 if (ret) 487 kfree(tm); 488 489 return ret; 490 } 491 492 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 493 int dst_slot, int src_slot, int nr_items) 494 { 495 struct tree_mod_elem *tm = NULL; 496 struct tree_mod_elem **tm_list = NULL; 497 int ret = 0; 498 int i; 499 int locked = 0; 500 501 if (!tree_mod_need_log(eb->fs_info, eb)) 502 return 0; 503 504 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 505 if (!tm_list) 506 return -ENOMEM; 507 508 tm = kzalloc(sizeof(*tm), GFP_NOFS); 509 if (!tm) { 510 ret = -ENOMEM; 511 goto free_tms; 512 } 513 514 tm->logical = eb->start; 515 tm->slot = src_slot; 516 tm->move.dst_slot = dst_slot; 517 tm->move.nr_items = nr_items; 518 tm->op = MOD_LOG_MOVE_KEYS; 519 520 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 521 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 522 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 523 if (!tm_list[i]) { 524 ret = -ENOMEM; 525 goto free_tms; 526 } 527 } 528 529 if (tree_mod_dont_log(eb->fs_info, eb)) 530 goto free_tms; 531 locked = 1; 532 533 /* 534 * When we override something during the move, we log these removals. 535 * This can only happen when we move towards the beginning of the 536 * buffer, i.e. dst_slot < src_slot. 537 */ 538 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 539 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 540 if (ret) 541 goto free_tms; 542 } 543 544 ret = __tree_mod_log_insert(eb->fs_info, tm); 545 if (ret) 546 goto free_tms; 547 write_unlock(&eb->fs_info->tree_mod_log_lock); 548 kfree(tm_list); 549 550 return 0; 551 free_tms: 552 for (i = 0; i < nr_items; i++) { 553 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 554 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 555 kfree(tm_list[i]); 556 } 557 if (locked) 558 write_unlock(&eb->fs_info->tree_mod_log_lock); 559 kfree(tm_list); 560 kfree(tm); 561 562 return ret; 563 } 564 565 static inline int 566 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 567 struct tree_mod_elem **tm_list, 568 int nritems) 569 { 570 int i, j; 571 int ret; 572 573 for (i = nritems - 1; i >= 0; i--) { 574 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 575 if (ret) { 576 for (j = nritems - 1; j > i; j--) 577 rb_erase(&tm_list[j]->node, 578 &fs_info->tree_mod_log); 579 return ret; 580 } 581 } 582 583 return 0; 584 } 585 586 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 587 struct extent_buffer *new_root, int log_removal) 588 { 589 struct btrfs_fs_info *fs_info = old_root->fs_info; 590 struct tree_mod_elem *tm = NULL; 591 struct tree_mod_elem **tm_list = NULL; 592 int nritems = 0; 593 int ret = 0; 594 int i; 595 596 if (!tree_mod_need_log(fs_info, NULL)) 597 return 0; 598 599 if (log_removal && btrfs_header_level(old_root) > 0) { 600 nritems = btrfs_header_nritems(old_root); 601 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 602 GFP_NOFS); 603 if (!tm_list) { 604 ret = -ENOMEM; 605 goto free_tms; 606 } 607 for (i = 0; i < nritems; i++) { 608 tm_list[i] = alloc_tree_mod_elem(old_root, i, 609 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 610 if (!tm_list[i]) { 611 ret = -ENOMEM; 612 goto free_tms; 613 } 614 } 615 } 616 617 tm = kzalloc(sizeof(*tm), GFP_NOFS); 618 if (!tm) { 619 ret = -ENOMEM; 620 goto free_tms; 621 } 622 623 tm->logical = new_root->start; 624 tm->old_root.logical = old_root->start; 625 tm->old_root.level = btrfs_header_level(old_root); 626 tm->generation = btrfs_header_generation(old_root); 627 tm->op = MOD_LOG_ROOT_REPLACE; 628 629 if (tree_mod_dont_log(fs_info, NULL)) 630 goto free_tms; 631 632 if (tm_list) 633 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 634 if (!ret) 635 ret = __tree_mod_log_insert(fs_info, tm); 636 637 write_unlock(&fs_info->tree_mod_log_lock); 638 if (ret) 639 goto free_tms; 640 kfree(tm_list); 641 642 return ret; 643 644 free_tms: 645 if (tm_list) { 646 for (i = 0; i < nritems; i++) 647 kfree(tm_list[i]); 648 kfree(tm_list); 649 } 650 kfree(tm); 651 652 return ret; 653 } 654 655 static struct tree_mod_elem * 656 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 657 int smallest) 658 { 659 struct rb_root *tm_root; 660 struct rb_node *node; 661 struct tree_mod_elem *cur = NULL; 662 struct tree_mod_elem *found = NULL; 663 664 read_lock(&fs_info->tree_mod_log_lock); 665 tm_root = &fs_info->tree_mod_log; 666 node = tm_root->rb_node; 667 while (node) { 668 cur = rb_entry(node, struct tree_mod_elem, node); 669 if (cur->logical < start) { 670 node = node->rb_left; 671 } else if (cur->logical > start) { 672 node = node->rb_right; 673 } else if (cur->seq < min_seq) { 674 node = node->rb_left; 675 } else if (!smallest) { 676 /* we want the node with the highest seq */ 677 if (found) 678 BUG_ON(found->seq > cur->seq); 679 found = cur; 680 node = node->rb_left; 681 } else if (cur->seq > min_seq) { 682 /* we want the node with the smallest seq */ 683 if (found) 684 BUG_ON(found->seq < cur->seq); 685 found = cur; 686 node = node->rb_right; 687 } else { 688 found = cur; 689 break; 690 } 691 } 692 read_unlock(&fs_info->tree_mod_log_lock); 693 694 return found; 695 } 696 697 /* 698 * this returns the element from the log with the smallest time sequence 699 * value that's in the log (the oldest log item). any element with a time 700 * sequence lower than min_seq will be ignored. 701 */ 702 static struct tree_mod_elem * 703 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 704 u64 min_seq) 705 { 706 return __tree_mod_log_search(fs_info, start, min_seq, 1); 707 } 708 709 /* 710 * this returns the element from the log with the largest time sequence 711 * value that's in the log (the most recent log item). any element with 712 * a time sequence lower than min_seq will be ignored. 713 */ 714 static struct tree_mod_elem * 715 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 716 { 717 return __tree_mod_log_search(fs_info, start, min_seq, 0); 718 } 719 720 static noinline int 721 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 722 struct extent_buffer *src, unsigned long dst_offset, 723 unsigned long src_offset, int nr_items) 724 { 725 int ret = 0; 726 struct tree_mod_elem **tm_list = NULL; 727 struct tree_mod_elem **tm_list_add, **tm_list_rem; 728 int i; 729 int locked = 0; 730 731 if (!tree_mod_need_log(fs_info, NULL)) 732 return 0; 733 734 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 735 return 0; 736 737 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 738 GFP_NOFS); 739 if (!tm_list) 740 return -ENOMEM; 741 742 tm_list_add = tm_list; 743 tm_list_rem = tm_list + nr_items; 744 for (i = 0; i < nr_items; i++) { 745 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 746 MOD_LOG_KEY_REMOVE, GFP_NOFS); 747 if (!tm_list_rem[i]) { 748 ret = -ENOMEM; 749 goto free_tms; 750 } 751 752 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 753 MOD_LOG_KEY_ADD, GFP_NOFS); 754 if (!tm_list_add[i]) { 755 ret = -ENOMEM; 756 goto free_tms; 757 } 758 } 759 760 if (tree_mod_dont_log(fs_info, NULL)) 761 goto free_tms; 762 locked = 1; 763 764 for (i = 0; i < nr_items; i++) { 765 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 766 if (ret) 767 goto free_tms; 768 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 769 if (ret) 770 goto free_tms; 771 } 772 773 write_unlock(&fs_info->tree_mod_log_lock); 774 kfree(tm_list); 775 776 return 0; 777 778 free_tms: 779 for (i = 0; i < nr_items * 2; i++) { 780 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 781 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 782 kfree(tm_list[i]); 783 } 784 if (locked) 785 write_unlock(&fs_info->tree_mod_log_lock); 786 kfree(tm_list); 787 788 return ret; 789 } 790 791 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 792 { 793 struct tree_mod_elem **tm_list = NULL; 794 int nritems = 0; 795 int i; 796 int ret = 0; 797 798 if (btrfs_header_level(eb) == 0) 799 return 0; 800 801 if (!tree_mod_need_log(eb->fs_info, NULL)) 802 return 0; 803 804 nritems = btrfs_header_nritems(eb); 805 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 806 if (!tm_list) 807 return -ENOMEM; 808 809 for (i = 0; i < nritems; i++) { 810 tm_list[i] = alloc_tree_mod_elem(eb, i, 811 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 812 if (!tm_list[i]) { 813 ret = -ENOMEM; 814 goto free_tms; 815 } 816 } 817 818 if (tree_mod_dont_log(eb->fs_info, eb)) 819 goto free_tms; 820 821 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 822 write_unlock(&eb->fs_info->tree_mod_log_lock); 823 if (ret) 824 goto free_tms; 825 kfree(tm_list); 826 827 return 0; 828 829 free_tms: 830 for (i = 0; i < nritems; i++) 831 kfree(tm_list[i]); 832 kfree(tm_list); 833 834 return ret; 835 } 836 837 /* 838 * check if the tree block can be shared by multiple trees 839 */ 840 int btrfs_block_can_be_shared(struct btrfs_root *root, 841 struct extent_buffer *buf) 842 { 843 /* 844 * Tree blocks not in reference counted trees and tree roots 845 * are never shared. If a block was allocated after the last 846 * snapshot and the block was not allocated by tree relocation, 847 * we know the block is not shared. 848 */ 849 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 850 buf != root->node && buf != root->commit_root && 851 (btrfs_header_generation(buf) <= 852 btrfs_root_last_snapshot(&root->root_item) || 853 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 854 return 1; 855 856 return 0; 857 } 858 859 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 860 struct btrfs_root *root, 861 struct extent_buffer *buf, 862 struct extent_buffer *cow, 863 int *last_ref) 864 { 865 struct btrfs_fs_info *fs_info = root->fs_info; 866 u64 refs; 867 u64 owner; 868 u64 flags; 869 u64 new_flags = 0; 870 int ret; 871 872 /* 873 * Backrefs update rules: 874 * 875 * Always use full backrefs for extent pointers in tree block 876 * allocated by tree relocation. 877 * 878 * If a shared tree block is no longer referenced by its owner 879 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 880 * use full backrefs for extent pointers in tree block. 881 * 882 * If a tree block is been relocating 883 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 884 * use full backrefs for extent pointers in tree block. 885 * The reason for this is some operations (such as drop tree) 886 * are only allowed for blocks use full backrefs. 887 */ 888 889 if (btrfs_block_can_be_shared(root, buf)) { 890 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 891 btrfs_header_level(buf), 1, 892 &refs, &flags); 893 if (ret) 894 return ret; 895 if (refs == 0) { 896 ret = -EROFS; 897 btrfs_handle_fs_error(fs_info, ret, NULL); 898 return ret; 899 } 900 } else { 901 refs = 1; 902 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 903 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 904 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 905 else 906 flags = 0; 907 } 908 909 owner = btrfs_header_owner(buf); 910 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 911 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 912 913 if (refs > 1) { 914 if ((owner == root->root_key.objectid || 915 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 916 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 917 ret = btrfs_inc_ref(trans, root, buf, 1); 918 if (ret) 919 return ret; 920 921 if (root->root_key.objectid == 922 BTRFS_TREE_RELOC_OBJECTID) { 923 ret = btrfs_dec_ref(trans, root, buf, 0); 924 if (ret) 925 return ret; 926 ret = btrfs_inc_ref(trans, root, cow, 1); 927 if (ret) 928 return ret; 929 } 930 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 931 } else { 932 933 if (root->root_key.objectid == 934 BTRFS_TREE_RELOC_OBJECTID) 935 ret = btrfs_inc_ref(trans, root, cow, 1); 936 else 937 ret = btrfs_inc_ref(trans, root, cow, 0); 938 if (ret) 939 return ret; 940 } 941 if (new_flags != 0) { 942 int level = btrfs_header_level(buf); 943 944 ret = btrfs_set_disk_extent_flags(trans, fs_info, 945 buf->start, 946 buf->len, 947 new_flags, level, 0); 948 if (ret) 949 return ret; 950 } 951 } else { 952 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 953 if (root->root_key.objectid == 954 BTRFS_TREE_RELOC_OBJECTID) 955 ret = btrfs_inc_ref(trans, root, cow, 1); 956 else 957 ret = btrfs_inc_ref(trans, root, cow, 0); 958 if (ret) 959 return ret; 960 ret = btrfs_dec_ref(trans, root, buf, 1); 961 if (ret) 962 return ret; 963 } 964 clean_tree_block(fs_info, buf); 965 *last_ref = 1; 966 } 967 return 0; 968 } 969 970 /* 971 * does the dirty work in cow of a single block. The parent block (if 972 * supplied) is updated to point to the new cow copy. The new buffer is marked 973 * dirty and returned locked. If you modify the block it needs to be marked 974 * dirty again. 975 * 976 * search_start -- an allocation hint for the new block 977 * 978 * empty_size -- a hint that you plan on doing more cow. This is the size in 979 * bytes the allocator should try to find free next to the block it returns. 980 * This is just a hint and may be ignored by the allocator. 981 */ 982 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 983 struct btrfs_root *root, 984 struct extent_buffer *buf, 985 struct extent_buffer *parent, int parent_slot, 986 struct extent_buffer **cow_ret, 987 u64 search_start, u64 empty_size) 988 { 989 struct btrfs_fs_info *fs_info = root->fs_info; 990 struct btrfs_disk_key disk_key; 991 struct extent_buffer *cow; 992 int level, ret; 993 int last_ref = 0; 994 int unlock_orig = 0; 995 u64 parent_start = 0; 996 997 if (*cow_ret == buf) 998 unlock_orig = 1; 999 1000 btrfs_assert_tree_locked(buf); 1001 1002 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1003 trans->transid != fs_info->running_transaction->transid); 1004 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1005 trans->transid != root->last_trans); 1006 1007 level = btrfs_header_level(buf); 1008 1009 if (level == 0) 1010 btrfs_item_key(buf, &disk_key, 0); 1011 else 1012 btrfs_node_key(buf, &disk_key, 0); 1013 1014 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1015 parent_start = parent->start; 1016 1017 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1018 root->root_key.objectid, &disk_key, level, 1019 search_start, empty_size); 1020 if (IS_ERR(cow)) 1021 return PTR_ERR(cow); 1022 1023 /* cow is set to blocking by btrfs_init_new_buffer */ 1024 1025 copy_extent_buffer_full(cow, buf); 1026 btrfs_set_header_bytenr(cow, cow->start); 1027 btrfs_set_header_generation(cow, trans->transid); 1028 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1029 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1030 BTRFS_HEADER_FLAG_RELOC); 1031 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1032 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1033 else 1034 btrfs_set_header_owner(cow, root->root_key.objectid); 1035 1036 write_extent_buffer_fsid(cow, fs_info->fsid); 1037 1038 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1039 if (ret) { 1040 btrfs_abort_transaction(trans, ret); 1041 return ret; 1042 } 1043 1044 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1045 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1046 if (ret) { 1047 btrfs_abort_transaction(trans, ret); 1048 return ret; 1049 } 1050 } 1051 1052 if (buf == root->node) { 1053 WARN_ON(parent && parent != buf); 1054 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1055 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1056 parent_start = buf->start; 1057 1058 extent_buffer_get(cow); 1059 ret = tree_mod_log_insert_root(root->node, cow, 1); 1060 BUG_ON(ret < 0); 1061 rcu_assign_pointer(root->node, cow); 1062 1063 btrfs_free_tree_block(trans, root, buf, parent_start, 1064 last_ref); 1065 free_extent_buffer(buf); 1066 add_root_to_dirty_list(root); 1067 } else { 1068 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1069 tree_mod_log_insert_key(parent, parent_slot, 1070 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1071 btrfs_set_node_blockptr(parent, parent_slot, 1072 cow->start); 1073 btrfs_set_node_ptr_generation(parent, parent_slot, 1074 trans->transid); 1075 btrfs_mark_buffer_dirty(parent); 1076 if (last_ref) { 1077 ret = tree_mod_log_free_eb(buf); 1078 if (ret) { 1079 btrfs_abort_transaction(trans, ret); 1080 return ret; 1081 } 1082 } 1083 btrfs_free_tree_block(trans, root, buf, parent_start, 1084 last_ref); 1085 } 1086 if (unlock_orig) 1087 btrfs_tree_unlock(buf); 1088 free_extent_buffer_stale(buf); 1089 btrfs_mark_buffer_dirty(cow); 1090 *cow_ret = cow; 1091 return 0; 1092 } 1093 1094 /* 1095 * returns the logical address of the oldest predecessor of the given root. 1096 * entries older than time_seq are ignored. 1097 */ 1098 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1099 struct extent_buffer *eb_root, u64 time_seq) 1100 { 1101 struct tree_mod_elem *tm; 1102 struct tree_mod_elem *found = NULL; 1103 u64 root_logical = eb_root->start; 1104 int looped = 0; 1105 1106 if (!time_seq) 1107 return NULL; 1108 1109 /* 1110 * the very last operation that's logged for a root is the 1111 * replacement operation (if it is replaced at all). this has 1112 * the logical address of the *new* root, making it the very 1113 * first operation that's logged for this root. 1114 */ 1115 while (1) { 1116 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1117 time_seq); 1118 if (!looped && !tm) 1119 return NULL; 1120 /* 1121 * if there are no tree operation for the oldest root, we simply 1122 * return it. this should only happen if that (old) root is at 1123 * level 0. 1124 */ 1125 if (!tm) 1126 break; 1127 1128 /* 1129 * if there's an operation that's not a root replacement, we 1130 * found the oldest version of our root. normally, we'll find a 1131 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1132 */ 1133 if (tm->op != MOD_LOG_ROOT_REPLACE) 1134 break; 1135 1136 found = tm; 1137 root_logical = tm->old_root.logical; 1138 looped = 1; 1139 } 1140 1141 /* if there's no old root to return, return what we found instead */ 1142 if (!found) 1143 found = tm; 1144 1145 return found; 1146 } 1147 1148 /* 1149 * tm is a pointer to the first operation to rewind within eb. then, all 1150 * previous operations will be rewound (until we reach something older than 1151 * time_seq). 1152 */ 1153 static void 1154 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1155 u64 time_seq, struct tree_mod_elem *first_tm) 1156 { 1157 u32 n; 1158 struct rb_node *next; 1159 struct tree_mod_elem *tm = first_tm; 1160 unsigned long o_dst; 1161 unsigned long o_src; 1162 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1163 1164 n = btrfs_header_nritems(eb); 1165 read_lock(&fs_info->tree_mod_log_lock); 1166 while (tm && tm->seq >= time_seq) { 1167 /* 1168 * all the operations are recorded with the operator used for 1169 * the modification. as we're going backwards, we do the 1170 * opposite of each operation here. 1171 */ 1172 switch (tm->op) { 1173 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1174 BUG_ON(tm->slot < n); 1175 /* Fallthrough */ 1176 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1177 case MOD_LOG_KEY_REMOVE: 1178 btrfs_set_node_key(eb, &tm->key, tm->slot); 1179 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1180 btrfs_set_node_ptr_generation(eb, tm->slot, 1181 tm->generation); 1182 n++; 1183 break; 1184 case MOD_LOG_KEY_REPLACE: 1185 BUG_ON(tm->slot >= n); 1186 btrfs_set_node_key(eb, &tm->key, tm->slot); 1187 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1188 btrfs_set_node_ptr_generation(eb, tm->slot, 1189 tm->generation); 1190 break; 1191 case MOD_LOG_KEY_ADD: 1192 /* if a move operation is needed it's in the log */ 1193 n--; 1194 break; 1195 case MOD_LOG_MOVE_KEYS: 1196 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1197 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1198 memmove_extent_buffer(eb, o_dst, o_src, 1199 tm->move.nr_items * p_size); 1200 break; 1201 case MOD_LOG_ROOT_REPLACE: 1202 /* 1203 * this operation is special. for roots, this must be 1204 * handled explicitly before rewinding. 1205 * for non-roots, this operation may exist if the node 1206 * was a root: root A -> child B; then A gets empty and 1207 * B is promoted to the new root. in the mod log, we'll 1208 * have a root-replace operation for B, a tree block 1209 * that is no root. we simply ignore that operation. 1210 */ 1211 break; 1212 } 1213 next = rb_next(&tm->node); 1214 if (!next) 1215 break; 1216 tm = rb_entry(next, struct tree_mod_elem, node); 1217 if (tm->logical != first_tm->logical) 1218 break; 1219 } 1220 read_unlock(&fs_info->tree_mod_log_lock); 1221 btrfs_set_header_nritems(eb, n); 1222 } 1223 1224 /* 1225 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1226 * is returned. If rewind operations happen, a fresh buffer is returned. The 1227 * returned buffer is always read-locked. If the returned buffer is not the 1228 * input buffer, the lock on the input buffer is released and the input buffer 1229 * is freed (its refcount is decremented). 1230 */ 1231 static struct extent_buffer * 1232 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1233 struct extent_buffer *eb, u64 time_seq) 1234 { 1235 struct extent_buffer *eb_rewin; 1236 struct tree_mod_elem *tm; 1237 1238 if (!time_seq) 1239 return eb; 1240 1241 if (btrfs_header_level(eb) == 0) 1242 return eb; 1243 1244 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1245 if (!tm) 1246 return eb; 1247 1248 btrfs_set_path_blocking(path); 1249 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1250 1251 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1252 BUG_ON(tm->slot != 0); 1253 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1254 if (!eb_rewin) { 1255 btrfs_tree_read_unlock_blocking(eb); 1256 free_extent_buffer(eb); 1257 return NULL; 1258 } 1259 btrfs_set_header_bytenr(eb_rewin, eb->start); 1260 btrfs_set_header_backref_rev(eb_rewin, 1261 btrfs_header_backref_rev(eb)); 1262 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1263 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1264 } else { 1265 eb_rewin = btrfs_clone_extent_buffer(eb); 1266 if (!eb_rewin) { 1267 btrfs_tree_read_unlock_blocking(eb); 1268 free_extent_buffer(eb); 1269 return NULL; 1270 } 1271 } 1272 1273 btrfs_tree_read_unlock_blocking(eb); 1274 free_extent_buffer(eb); 1275 1276 extent_buffer_get(eb_rewin); 1277 btrfs_tree_read_lock(eb_rewin); 1278 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1279 WARN_ON(btrfs_header_nritems(eb_rewin) > 1280 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1281 1282 return eb_rewin; 1283 } 1284 1285 /* 1286 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1287 * value. If there are no changes, the current root->root_node is returned. If 1288 * anything changed in between, there's a fresh buffer allocated on which the 1289 * rewind operations are done. In any case, the returned buffer is read locked. 1290 * Returns NULL on error (with no locks held). 1291 */ 1292 static inline struct extent_buffer * 1293 get_old_root(struct btrfs_root *root, u64 time_seq) 1294 { 1295 struct btrfs_fs_info *fs_info = root->fs_info; 1296 struct tree_mod_elem *tm; 1297 struct extent_buffer *eb = NULL; 1298 struct extent_buffer *eb_root; 1299 struct extent_buffer *old; 1300 struct tree_mod_root *old_root = NULL; 1301 u64 old_generation = 0; 1302 u64 logical; 1303 int level; 1304 1305 eb_root = btrfs_read_lock_root_node(root); 1306 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1307 if (!tm) 1308 return eb_root; 1309 1310 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1311 old_root = &tm->old_root; 1312 old_generation = tm->generation; 1313 logical = old_root->logical; 1314 level = old_root->level; 1315 } else { 1316 logical = eb_root->start; 1317 level = btrfs_header_level(eb_root); 1318 } 1319 1320 tm = tree_mod_log_search(fs_info, logical, time_seq); 1321 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1322 btrfs_tree_read_unlock(eb_root); 1323 free_extent_buffer(eb_root); 1324 old = read_tree_block(fs_info, logical, 0, level, NULL); 1325 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1326 if (!IS_ERR(old)) 1327 free_extent_buffer(old); 1328 btrfs_warn(fs_info, 1329 "failed to read tree block %llu from get_old_root", 1330 logical); 1331 } else { 1332 eb = btrfs_clone_extent_buffer(old); 1333 free_extent_buffer(old); 1334 } 1335 } else if (old_root) { 1336 btrfs_tree_read_unlock(eb_root); 1337 free_extent_buffer(eb_root); 1338 eb = alloc_dummy_extent_buffer(fs_info, logical); 1339 } else { 1340 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1341 eb = btrfs_clone_extent_buffer(eb_root); 1342 btrfs_tree_read_unlock_blocking(eb_root); 1343 free_extent_buffer(eb_root); 1344 } 1345 1346 if (!eb) 1347 return NULL; 1348 extent_buffer_get(eb); 1349 btrfs_tree_read_lock(eb); 1350 if (old_root) { 1351 btrfs_set_header_bytenr(eb, eb->start); 1352 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1353 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1354 btrfs_set_header_level(eb, old_root->level); 1355 btrfs_set_header_generation(eb, old_generation); 1356 } 1357 if (tm) 1358 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1359 else 1360 WARN_ON(btrfs_header_level(eb) != 0); 1361 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1362 1363 return eb; 1364 } 1365 1366 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1367 { 1368 struct tree_mod_elem *tm; 1369 int level; 1370 struct extent_buffer *eb_root = btrfs_root_node(root); 1371 1372 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1373 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1374 level = tm->old_root.level; 1375 } else { 1376 level = btrfs_header_level(eb_root); 1377 } 1378 free_extent_buffer(eb_root); 1379 1380 return level; 1381 } 1382 1383 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1384 struct btrfs_root *root, 1385 struct extent_buffer *buf) 1386 { 1387 if (btrfs_is_testing(root->fs_info)) 1388 return 0; 1389 1390 /* Ensure we can see the FORCE_COW bit */ 1391 smp_mb__before_atomic(); 1392 1393 /* 1394 * We do not need to cow a block if 1395 * 1) this block is not created or changed in this transaction; 1396 * 2) this block does not belong to TREE_RELOC tree; 1397 * 3) the root is not forced COW. 1398 * 1399 * What is forced COW: 1400 * when we create snapshot during committing the transaction, 1401 * after we've finished coping src root, we must COW the shared 1402 * block to ensure the metadata consistency. 1403 */ 1404 if (btrfs_header_generation(buf) == trans->transid && 1405 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1406 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1407 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1408 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1409 return 0; 1410 return 1; 1411 } 1412 1413 /* 1414 * cows a single block, see __btrfs_cow_block for the real work. 1415 * This version of it has extra checks so that a block isn't COWed more than 1416 * once per transaction, as long as it hasn't been written yet 1417 */ 1418 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1419 struct btrfs_root *root, struct extent_buffer *buf, 1420 struct extent_buffer *parent, int parent_slot, 1421 struct extent_buffer **cow_ret) 1422 { 1423 struct btrfs_fs_info *fs_info = root->fs_info; 1424 u64 search_start; 1425 int ret; 1426 1427 if (trans->transaction != fs_info->running_transaction) 1428 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1429 trans->transid, 1430 fs_info->running_transaction->transid); 1431 1432 if (trans->transid != fs_info->generation) 1433 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1434 trans->transid, fs_info->generation); 1435 1436 if (!should_cow_block(trans, root, buf)) { 1437 trans->dirty = true; 1438 *cow_ret = buf; 1439 return 0; 1440 } 1441 1442 search_start = buf->start & ~((u64)SZ_1G - 1); 1443 1444 if (parent) 1445 btrfs_set_lock_blocking(parent); 1446 btrfs_set_lock_blocking(buf); 1447 1448 ret = __btrfs_cow_block(trans, root, buf, parent, 1449 parent_slot, cow_ret, search_start, 0); 1450 1451 trace_btrfs_cow_block(root, buf, *cow_ret); 1452 1453 return ret; 1454 } 1455 1456 /* 1457 * helper function for defrag to decide if two blocks pointed to by a 1458 * node are actually close by 1459 */ 1460 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1461 { 1462 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1463 return 1; 1464 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1465 return 1; 1466 return 0; 1467 } 1468 1469 /* 1470 * compare two keys in a memcmp fashion 1471 */ 1472 static int comp_keys(const struct btrfs_disk_key *disk, 1473 const struct btrfs_key *k2) 1474 { 1475 struct btrfs_key k1; 1476 1477 btrfs_disk_key_to_cpu(&k1, disk); 1478 1479 return btrfs_comp_cpu_keys(&k1, k2); 1480 } 1481 1482 /* 1483 * same as comp_keys only with two btrfs_key's 1484 */ 1485 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1486 { 1487 if (k1->objectid > k2->objectid) 1488 return 1; 1489 if (k1->objectid < k2->objectid) 1490 return -1; 1491 if (k1->type > k2->type) 1492 return 1; 1493 if (k1->type < k2->type) 1494 return -1; 1495 if (k1->offset > k2->offset) 1496 return 1; 1497 if (k1->offset < k2->offset) 1498 return -1; 1499 return 0; 1500 } 1501 1502 /* 1503 * this is used by the defrag code to go through all the 1504 * leaves pointed to by a node and reallocate them so that 1505 * disk order is close to key order 1506 */ 1507 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1508 struct btrfs_root *root, struct extent_buffer *parent, 1509 int start_slot, u64 *last_ret, 1510 struct btrfs_key *progress) 1511 { 1512 struct btrfs_fs_info *fs_info = root->fs_info; 1513 struct extent_buffer *cur; 1514 u64 blocknr; 1515 u64 gen; 1516 u64 search_start = *last_ret; 1517 u64 last_block = 0; 1518 u64 other; 1519 u32 parent_nritems; 1520 int end_slot; 1521 int i; 1522 int err = 0; 1523 int parent_level; 1524 int uptodate; 1525 u32 blocksize; 1526 int progress_passed = 0; 1527 struct btrfs_disk_key disk_key; 1528 1529 parent_level = btrfs_header_level(parent); 1530 1531 WARN_ON(trans->transaction != fs_info->running_transaction); 1532 WARN_ON(trans->transid != fs_info->generation); 1533 1534 parent_nritems = btrfs_header_nritems(parent); 1535 blocksize = fs_info->nodesize; 1536 end_slot = parent_nritems - 1; 1537 1538 if (parent_nritems <= 1) 1539 return 0; 1540 1541 btrfs_set_lock_blocking(parent); 1542 1543 for (i = start_slot; i <= end_slot; i++) { 1544 struct btrfs_key first_key; 1545 int close = 1; 1546 1547 btrfs_node_key(parent, &disk_key, i); 1548 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1549 continue; 1550 1551 progress_passed = 1; 1552 blocknr = btrfs_node_blockptr(parent, i); 1553 gen = btrfs_node_ptr_generation(parent, i); 1554 btrfs_node_key_to_cpu(parent, &first_key, i); 1555 if (last_block == 0) 1556 last_block = blocknr; 1557 1558 if (i > 0) { 1559 other = btrfs_node_blockptr(parent, i - 1); 1560 close = close_blocks(blocknr, other, blocksize); 1561 } 1562 if (!close && i < end_slot) { 1563 other = btrfs_node_blockptr(parent, i + 1); 1564 close = close_blocks(blocknr, other, blocksize); 1565 } 1566 if (close) { 1567 last_block = blocknr; 1568 continue; 1569 } 1570 1571 cur = find_extent_buffer(fs_info, blocknr); 1572 if (cur) 1573 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1574 else 1575 uptodate = 0; 1576 if (!cur || !uptodate) { 1577 if (!cur) { 1578 cur = read_tree_block(fs_info, blocknr, gen, 1579 parent_level - 1, 1580 &first_key); 1581 if (IS_ERR(cur)) { 1582 return PTR_ERR(cur); 1583 } else if (!extent_buffer_uptodate(cur)) { 1584 free_extent_buffer(cur); 1585 return -EIO; 1586 } 1587 } else if (!uptodate) { 1588 err = btrfs_read_buffer(cur, gen, 1589 parent_level - 1,&first_key); 1590 if (err) { 1591 free_extent_buffer(cur); 1592 return err; 1593 } 1594 } 1595 } 1596 if (search_start == 0) 1597 search_start = last_block; 1598 1599 btrfs_tree_lock(cur); 1600 btrfs_set_lock_blocking(cur); 1601 err = __btrfs_cow_block(trans, root, cur, parent, i, 1602 &cur, search_start, 1603 min(16 * blocksize, 1604 (end_slot - i) * blocksize)); 1605 if (err) { 1606 btrfs_tree_unlock(cur); 1607 free_extent_buffer(cur); 1608 break; 1609 } 1610 search_start = cur->start; 1611 last_block = cur->start; 1612 *last_ret = search_start; 1613 btrfs_tree_unlock(cur); 1614 free_extent_buffer(cur); 1615 } 1616 return err; 1617 } 1618 1619 /* 1620 * search for key in the extent_buffer. The items start at offset p, 1621 * and they are item_size apart. There are 'max' items in p. 1622 * 1623 * the slot in the array is returned via slot, and it points to 1624 * the place where you would insert key if it is not found in 1625 * the array. 1626 * 1627 * slot may point to max if the key is bigger than all of the keys 1628 */ 1629 static noinline int generic_bin_search(struct extent_buffer *eb, 1630 unsigned long p, int item_size, 1631 const struct btrfs_key *key, 1632 int max, int *slot) 1633 { 1634 int low = 0; 1635 int high = max; 1636 int mid; 1637 int ret; 1638 struct btrfs_disk_key *tmp = NULL; 1639 struct btrfs_disk_key unaligned; 1640 unsigned long offset; 1641 char *kaddr = NULL; 1642 unsigned long map_start = 0; 1643 unsigned long map_len = 0; 1644 int err; 1645 1646 if (low > high) { 1647 btrfs_err(eb->fs_info, 1648 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1649 __func__, low, high, eb->start, 1650 btrfs_header_owner(eb), btrfs_header_level(eb)); 1651 return -EINVAL; 1652 } 1653 1654 while (low < high) { 1655 mid = (low + high) / 2; 1656 offset = p + mid * item_size; 1657 1658 if (!kaddr || offset < map_start || 1659 (offset + sizeof(struct btrfs_disk_key)) > 1660 map_start + map_len) { 1661 1662 err = map_private_extent_buffer(eb, offset, 1663 sizeof(struct btrfs_disk_key), 1664 &kaddr, &map_start, &map_len); 1665 1666 if (!err) { 1667 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1668 map_start); 1669 } else if (err == 1) { 1670 read_extent_buffer(eb, &unaligned, 1671 offset, sizeof(unaligned)); 1672 tmp = &unaligned; 1673 } else { 1674 return err; 1675 } 1676 1677 } else { 1678 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1679 map_start); 1680 } 1681 ret = comp_keys(tmp, key); 1682 1683 if (ret < 0) 1684 low = mid + 1; 1685 else if (ret > 0) 1686 high = mid; 1687 else { 1688 *slot = mid; 1689 return 0; 1690 } 1691 } 1692 *slot = low; 1693 return 1; 1694 } 1695 1696 /* 1697 * simple bin_search frontend that does the right thing for 1698 * leaves vs nodes 1699 */ 1700 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1701 int level, int *slot) 1702 { 1703 if (level == 0) 1704 return generic_bin_search(eb, 1705 offsetof(struct btrfs_leaf, items), 1706 sizeof(struct btrfs_item), 1707 key, btrfs_header_nritems(eb), 1708 slot); 1709 else 1710 return generic_bin_search(eb, 1711 offsetof(struct btrfs_node, ptrs), 1712 sizeof(struct btrfs_key_ptr), 1713 key, btrfs_header_nritems(eb), 1714 slot); 1715 } 1716 1717 static void root_add_used(struct btrfs_root *root, u32 size) 1718 { 1719 spin_lock(&root->accounting_lock); 1720 btrfs_set_root_used(&root->root_item, 1721 btrfs_root_used(&root->root_item) + size); 1722 spin_unlock(&root->accounting_lock); 1723 } 1724 1725 static void root_sub_used(struct btrfs_root *root, u32 size) 1726 { 1727 spin_lock(&root->accounting_lock); 1728 btrfs_set_root_used(&root->root_item, 1729 btrfs_root_used(&root->root_item) - size); 1730 spin_unlock(&root->accounting_lock); 1731 } 1732 1733 /* given a node and slot number, this reads the blocks it points to. The 1734 * extent buffer is returned with a reference taken (but unlocked). 1735 */ 1736 static noinline struct extent_buffer * 1737 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent, 1738 int slot) 1739 { 1740 int level = btrfs_header_level(parent); 1741 struct extent_buffer *eb; 1742 struct btrfs_key first_key; 1743 1744 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1745 return ERR_PTR(-ENOENT); 1746 1747 BUG_ON(level == 0); 1748 1749 btrfs_node_key_to_cpu(parent, &first_key, slot); 1750 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot), 1751 btrfs_node_ptr_generation(parent, slot), 1752 level - 1, &first_key); 1753 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1754 free_extent_buffer(eb); 1755 eb = ERR_PTR(-EIO); 1756 } 1757 1758 return eb; 1759 } 1760 1761 /* 1762 * node level balancing, used to make sure nodes are in proper order for 1763 * item deletion. We balance from the top down, so we have to make sure 1764 * that a deletion won't leave an node completely empty later on. 1765 */ 1766 static noinline int balance_level(struct btrfs_trans_handle *trans, 1767 struct btrfs_root *root, 1768 struct btrfs_path *path, int level) 1769 { 1770 struct btrfs_fs_info *fs_info = root->fs_info; 1771 struct extent_buffer *right = NULL; 1772 struct extent_buffer *mid; 1773 struct extent_buffer *left = NULL; 1774 struct extent_buffer *parent = NULL; 1775 int ret = 0; 1776 int wret; 1777 int pslot; 1778 int orig_slot = path->slots[level]; 1779 u64 orig_ptr; 1780 1781 ASSERT(level > 0); 1782 1783 mid = path->nodes[level]; 1784 1785 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1786 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1787 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1788 1789 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1790 1791 if (level < BTRFS_MAX_LEVEL - 1) { 1792 parent = path->nodes[level + 1]; 1793 pslot = path->slots[level + 1]; 1794 } 1795 1796 /* 1797 * deal with the case where there is only one pointer in the root 1798 * by promoting the node below to a root 1799 */ 1800 if (!parent) { 1801 struct extent_buffer *child; 1802 1803 if (btrfs_header_nritems(mid) != 1) 1804 return 0; 1805 1806 /* promote the child to a root */ 1807 child = read_node_slot(fs_info, mid, 0); 1808 if (IS_ERR(child)) { 1809 ret = PTR_ERR(child); 1810 btrfs_handle_fs_error(fs_info, ret, NULL); 1811 goto enospc; 1812 } 1813 1814 btrfs_tree_lock(child); 1815 btrfs_set_lock_blocking(child); 1816 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1817 if (ret) { 1818 btrfs_tree_unlock(child); 1819 free_extent_buffer(child); 1820 goto enospc; 1821 } 1822 1823 ret = tree_mod_log_insert_root(root->node, child, 1); 1824 BUG_ON(ret < 0); 1825 rcu_assign_pointer(root->node, child); 1826 1827 add_root_to_dirty_list(root); 1828 btrfs_tree_unlock(child); 1829 1830 path->locks[level] = 0; 1831 path->nodes[level] = NULL; 1832 clean_tree_block(fs_info, mid); 1833 btrfs_tree_unlock(mid); 1834 /* once for the path */ 1835 free_extent_buffer(mid); 1836 1837 root_sub_used(root, mid->len); 1838 btrfs_free_tree_block(trans, root, mid, 0, 1); 1839 /* once for the root ptr */ 1840 free_extent_buffer_stale(mid); 1841 return 0; 1842 } 1843 if (btrfs_header_nritems(mid) > 1844 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1845 return 0; 1846 1847 left = read_node_slot(fs_info, parent, pslot - 1); 1848 if (IS_ERR(left)) 1849 left = NULL; 1850 1851 if (left) { 1852 btrfs_tree_lock(left); 1853 btrfs_set_lock_blocking(left); 1854 wret = btrfs_cow_block(trans, root, left, 1855 parent, pslot - 1, &left); 1856 if (wret) { 1857 ret = wret; 1858 goto enospc; 1859 } 1860 } 1861 1862 right = read_node_slot(fs_info, parent, pslot + 1); 1863 if (IS_ERR(right)) 1864 right = NULL; 1865 1866 if (right) { 1867 btrfs_tree_lock(right); 1868 btrfs_set_lock_blocking(right); 1869 wret = btrfs_cow_block(trans, root, right, 1870 parent, pslot + 1, &right); 1871 if (wret) { 1872 ret = wret; 1873 goto enospc; 1874 } 1875 } 1876 1877 /* first, try to make some room in the middle buffer */ 1878 if (left) { 1879 orig_slot += btrfs_header_nritems(left); 1880 wret = push_node_left(trans, fs_info, left, mid, 1); 1881 if (wret < 0) 1882 ret = wret; 1883 } 1884 1885 /* 1886 * then try to empty the right most buffer into the middle 1887 */ 1888 if (right) { 1889 wret = push_node_left(trans, fs_info, mid, right, 1); 1890 if (wret < 0 && wret != -ENOSPC) 1891 ret = wret; 1892 if (btrfs_header_nritems(right) == 0) { 1893 clean_tree_block(fs_info, right); 1894 btrfs_tree_unlock(right); 1895 del_ptr(root, path, level + 1, pslot + 1); 1896 root_sub_used(root, right->len); 1897 btrfs_free_tree_block(trans, root, right, 0, 1); 1898 free_extent_buffer_stale(right); 1899 right = NULL; 1900 } else { 1901 struct btrfs_disk_key right_key; 1902 btrfs_node_key(right, &right_key, 0); 1903 ret = tree_mod_log_insert_key(parent, pslot + 1, 1904 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1905 BUG_ON(ret < 0); 1906 btrfs_set_node_key(parent, &right_key, pslot + 1); 1907 btrfs_mark_buffer_dirty(parent); 1908 } 1909 } 1910 if (btrfs_header_nritems(mid) == 1) { 1911 /* 1912 * we're not allowed to leave a node with one item in the 1913 * tree during a delete. A deletion from lower in the tree 1914 * could try to delete the only pointer in this node. 1915 * So, pull some keys from the left. 1916 * There has to be a left pointer at this point because 1917 * otherwise we would have pulled some pointers from the 1918 * right 1919 */ 1920 if (!left) { 1921 ret = -EROFS; 1922 btrfs_handle_fs_error(fs_info, ret, NULL); 1923 goto enospc; 1924 } 1925 wret = balance_node_right(trans, fs_info, mid, left); 1926 if (wret < 0) { 1927 ret = wret; 1928 goto enospc; 1929 } 1930 if (wret == 1) { 1931 wret = push_node_left(trans, fs_info, left, mid, 1); 1932 if (wret < 0) 1933 ret = wret; 1934 } 1935 BUG_ON(wret == 1); 1936 } 1937 if (btrfs_header_nritems(mid) == 0) { 1938 clean_tree_block(fs_info, mid); 1939 btrfs_tree_unlock(mid); 1940 del_ptr(root, path, level + 1, pslot); 1941 root_sub_used(root, mid->len); 1942 btrfs_free_tree_block(trans, root, mid, 0, 1); 1943 free_extent_buffer_stale(mid); 1944 mid = NULL; 1945 } else { 1946 /* update the parent key to reflect our changes */ 1947 struct btrfs_disk_key mid_key; 1948 btrfs_node_key(mid, &mid_key, 0); 1949 ret = tree_mod_log_insert_key(parent, pslot, 1950 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1951 BUG_ON(ret < 0); 1952 btrfs_set_node_key(parent, &mid_key, pslot); 1953 btrfs_mark_buffer_dirty(parent); 1954 } 1955 1956 /* update the path */ 1957 if (left) { 1958 if (btrfs_header_nritems(left) > orig_slot) { 1959 extent_buffer_get(left); 1960 /* left was locked after cow */ 1961 path->nodes[level] = left; 1962 path->slots[level + 1] -= 1; 1963 path->slots[level] = orig_slot; 1964 if (mid) { 1965 btrfs_tree_unlock(mid); 1966 free_extent_buffer(mid); 1967 } 1968 } else { 1969 orig_slot -= btrfs_header_nritems(left); 1970 path->slots[level] = orig_slot; 1971 } 1972 } 1973 /* double check we haven't messed things up */ 1974 if (orig_ptr != 1975 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1976 BUG(); 1977 enospc: 1978 if (right) { 1979 btrfs_tree_unlock(right); 1980 free_extent_buffer(right); 1981 } 1982 if (left) { 1983 if (path->nodes[level] != left) 1984 btrfs_tree_unlock(left); 1985 free_extent_buffer(left); 1986 } 1987 return ret; 1988 } 1989 1990 /* Node balancing for insertion. Here we only split or push nodes around 1991 * when they are completely full. This is also done top down, so we 1992 * have to be pessimistic. 1993 */ 1994 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1995 struct btrfs_root *root, 1996 struct btrfs_path *path, int level) 1997 { 1998 struct btrfs_fs_info *fs_info = root->fs_info; 1999 struct extent_buffer *right = NULL; 2000 struct extent_buffer *mid; 2001 struct extent_buffer *left = NULL; 2002 struct extent_buffer *parent = NULL; 2003 int ret = 0; 2004 int wret; 2005 int pslot; 2006 int orig_slot = path->slots[level]; 2007 2008 if (level == 0) 2009 return 1; 2010 2011 mid = path->nodes[level]; 2012 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2013 2014 if (level < BTRFS_MAX_LEVEL - 1) { 2015 parent = path->nodes[level + 1]; 2016 pslot = path->slots[level + 1]; 2017 } 2018 2019 if (!parent) 2020 return 1; 2021 2022 left = read_node_slot(fs_info, parent, pslot - 1); 2023 if (IS_ERR(left)) 2024 left = NULL; 2025 2026 /* first, try to make some room in the middle buffer */ 2027 if (left) { 2028 u32 left_nr; 2029 2030 btrfs_tree_lock(left); 2031 btrfs_set_lock_blocking(left); 2032 2033 left_nr = btrfs_header_nritems(left); 2034 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2035 wret = 1; 2036 } else { 2037 ret = btrfs_cow_block(trans, root, left, parent, 2038 pslot - 1, &left); 2039 if (ret) 2040 wret = 1; 2041 else { 2042 wret = push_node_left(trans, fs_info, 2043 left, mid, 0); 2044 } 2045 } 2046 if (wret < 0) 2047 ret = wret; 2048 if (wret == 0) { 2049 struct btrfs_disk_key disk_key; 2050 orig_slot += left_nr; 2051 btrfs_node_key(mid, &disk_key, 0); 2052 ret = tree_mod_log_insert_key(parent, pslot, 2053 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2054 BUG_ON(ret < 0); 2055 btrfs_set_node_key(parent, &disk_key, pslot); 2056 btrfs_mark_buffer_dirty(parent); 2057 if (btrfs_header_nritems(left) > orig_slot) { 2058 path->nodes[level] = left; 2059 path->slots[level + 1] -= 1; 2060 path->slots[level] = orig_slot; 2061 btrfs_tree_unlock(mid); 2062 free_extent_buffer(mid); 2063 } else { 2064 orig_slot -= 2065 btrfs_header_nritems(left); 2066 path->slots[level] = orig_slot; 2067 btrfs_tree_unlock(left); 2068 free_extent_buffer(left); 2069 } 2070 return 0; 2071 } 2072 btrfs_tree_unlock(left); 2073 free_extent_buffer(left); 2074 } 2075 right = read_node_slot(fs_info, parent, pslot + 1); 2076 if (IS_ERR(right)) 2077 right = NULL; 2078 2079 /* 2080 * then try to empty the right most buffer into the middle 2081 */ 2082 if (right) { 2083 u32 right_nr; 2084 2085 btrfs_tree_lock(right); 2086 btrfs_set_lock_blocking(right); 2087 2088 right_nr = btrfs_header_nritems(right); 2089 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2090 wret = 1; 2091 } else { 2092 ret = btrfs_cow_block(trans, root, right, 2093 parent, pslot + 1, 2094 &right); 2095 if (ret) 2096 wret = 1; 2097 else { 2098 wret = balance_node_right(trans, fs_info, 2099 right, mid); 2100 } 2101 } 2102 if (wret < 0) 2103 ret = wret; 2104 if (wret == 0) { 2105 struct btrfs_disk_key disk_key; 2106 2107 btrfs_node_key(right, &disk_key, 0); 2108 ret = tree_mod_log_insert_key(parent, pslot + 1, 2109 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2110 BUG_ON(ret < 0); 2111 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2112 btrfs_mark_buffer_dirty(parent); 2113 2114 if (btrfs_header_nritems(mid) <= orig_slot) { 2115 path->nodes[level] = right; 2116 path->slots[level + 1] += 1; 2117 path->slots[level] = orig_slot - 2118 btrfs_header_nritems(mid); 2119 btrfs_tree_unlock(mid); 2120 free_extent_buffer(mid); 2121 } else { 2122 btrfs_tree_unlock(right); 2123 free_extent_buffer(right); 2124 } 2125 return 0; 2126 } 2127 btrfs_tree_unlock(right); 2128 free_extent_buffer(right); 2129 } 2130 return 1; 2131 } 2132 2133 /* 2134 * readahead one full node of leaves, finding things that are close 2135 * to the block in 'slot', and triggering ra on them. 2136 */ 2137 static void reada_for_search(struct btrfs_fs_info *fs_info, 2138 struct btrfs_path *path, 2139 int level, int slot, u64 objectid) 2140 { 2141 struct extent_buffer *node; 2142 struct btrfs_disk_key disk_key; 2143 u32 nritems; 2144 u64 search; 2145 u64 target; 2146 u64 nread = 0; 2147 struct extent_buffer *eb; 2148 u32 nr; 2149 u32 blocksize; 2150 u32 nscan = 0; 2151 2152 if (level != 1) 2153 return; 2154 2155 if (!path->nodes[level]) 2156 return; 2157 2158 node = path->nodes[level]; 2159 2160 search = btrfs_node_blockptr(node, slot); 2161 blocksize = fs_info->nodesize; 2162 eb = find_extent_buffer(fs_info, search); 2163 if (eb) { 2164 free_extent_buffer(eb); 2165 return; 2166 } 2167 2168 target = search; 2169 2170 nritems = btrfs_header_nritems(node); 2171 nr = slot; 2172 2173 while (1) { 2174 if (path->reada == READA_BACK) { 2175 if (nr == 0) 2176 break; 2177 nr--; 2178 } else if (path->reada == READA_FORWARD) { 2179 nr++; 2180 if (nr >= nritems) 2181 break; 2182 } 2183 if (path->reada == READA_BACK && objectid) { 2184 btrfs_node_key(node, &disk_key, nr); 2185 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2186 break; 2187 } 2188 search = btrfs_node_blockptr(node, nr); 2189 if ((search <= target && target - search <= 65536) || 2190 (search > target && search - target <= 65536)) { 2191 readahead_tree_block(fs_info, search); 2192 nread += blocksize; 2193 } 2194 nscan++; 2195 if ((nread > 65536 || nscan > 32)) 2196 break; 2197 } 2198 } 2199 2200 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2201 struct btrfs_path *path, int level) 2202 { 2203 int slot; 2204 int nritems; 2205 struct extent_buffer *parent; 2206 struct extent_buffer *eb; 2207 u64 gen; 2208 u64 block1 = 0; 2209 u64 block2 = 0; 2210 2211 parent = path->nodes[level + 1]; 2212 if (!parent) 2213 return; 2214 2215 nritems = btrfs_header_nritems(parent); 2216 slot = path->slots[level + 1]; 2217 2218 if (slot > 0) { 2219 block1 = btrfs_node_blockptr(parent, slot - 1); 2220 gen = btrfs_node_ptr_generation(parent, slot - 1); 2221 eb = find_extent_buffer(fs_info, block1); 2222 /* 2223 * if we get -eagain from btrfs_buffer_uptodate, we 2224 * don't want to return eagain here. That will loop 2225 * forever 2226 */ 2227 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2228 block1 = 0; 2229 free_extent_buffer(eb); 2230 } 2231 if (slot + 1 < nritems) { 2232 block2 = btrfs_node_blockptr(parent, slot + 1); 2233 gen = btrfs_node_ptr_generation(parent, slot + 1); 2234 eb = find_extent_buffer(fs_info, block2); 2235 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2236 block2 = 0; 2237 free_extent_buffer(eb); 2238 } 2239 2240 if (block1) 2241 readahead_tree_block(fs_info, block1); 2242 if (block2) 2243 readahead_tree_block(fs_info, block2); 2244 } 2245 2246 2247 /* 2248 * when we walk down the tree, it is usually safe to unlock the higher layers 2249 * in the tree. The exceptions are when our path goes through slot 0, because 2250 * operations on the tree might require changing key pointers higher up in the 2251 * tree. 2252 * 2253 * callers might also have set path->keep_locks, which tells this code to keep 2254 * the lock if the path points to the last slot in the block. This is part of 2255 * walking through the tree, and selecting the next slot in the higher block. 2256 * 2257 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2258 * if lowest_unlock is 1, level 0 won't be unlocked 2259 */ 2260 static noinline void unlock_up(struct btrfs_path *path, int level, 2261 int lowest_unlock, int min_write_lock_level, 2262 int *write_lock_level) 2263 { 2264 int i; 2265 int skip_level = level; 2266 int no_skips = 0; 2267 struct extent_buffer *t; 2268 2269 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2270 if (!path->nodes[i]) 2271 break; 2272 if (!path->locks[i]) 2273 break; 2274 if (!no_skips && path->slots[i] == 0) { 2275 skip_level = i + 1; 2276 continue; 2277 } 2278 if (!no_skips && path->keep_locks) { 2279 u32 nritems; 2280 t = path->nodes[i]; 2281 nritems = btrfs_header_nritems(t); 2282 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2283 skip_level = i + 1; 2284 continue; 2285 } 2286 } 2287 if (skip_level < i && i >= lowest_unlock) 2288 no_skips = 1; 2289 2290 t = path->nodes[i]; 2291 if (i >= lowest_unlock && i > skip_level) { 2292 btrfs_tree_unlock_rw(t, path->locks[i]); 2293 path->locks[i] = 0; 2294 if (write_lock_level && 2295 i > min_write_lock_level && 2296 i <= *write_lock_level) { 2297 *write_lock_level = i - 1; 2298 } 2299 } 2300 } 2301 } 2302 2303 /* 2304 * This releases any locks held in the path starting at level and 2305 * going all the way up to the root. 2306 * 2307 * btrfs_search_slot will keep the lock held on higher nodes in a few 2308 * corner cases, such as COW of the block at slot zero in the node. This 2309 * ignores those rules, and it should only be called when there are no 2310 * more updates to be done higher up in the tree. 2311 */ 2312 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2313 { 2314 int i; 2315 2316 if (path->keep_locks) 2317 return; 2318 2319 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2320 if (!path->nodes[i]) 2321 continue; 2322 if (!path->locks[i]) 2323 continue; 2324 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2325 path->locks[i] = 0; 2326 } 2327 } 2328 2329 /* 2330 * helper function for btrfs_search_slot. The goal is to find a block 2331 * in cache without setting the path to blocking. If we find the block 2332 * we return zero and the path is unchanged. 2333 * 2334 * If we can't find the block, we set the path blocking and do some 2335 * reada. -EAGAIN is returned and the search must be repeated. 2336 */ 2337 static int 2338 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2339 struct extent_buffer **eb_ret, int level, int slot, 2340 const struct btrfs_key *key) 2341 { 2342 struct btrfs_fs_info *fs_info = root->fs_info; 2343 u64 blocknr; 2344 u64 gen; 2345 struct extent_buffer *b = *eb_ret; 2346 struct extent_buffer *tmp; 2347 struct btrfs_key first_key; 2348 int ret; 2349 int parent_level; 2350 2351 blocknr = btrfs_node_blockptr(b, slot); 2352 gen = btrfs_node_ptr_generation(b, slot); 2353 parent_level = btrfs_header_level(b); 2354 btrfs_node_key_to_cpu(b, &first_key, slot); 2355 2356 tmp = find_extent_buffer(fs_info, blocknr); 2357 if (tmp) { 2358 /* first we do an atomic uptodate check */ 2359 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2360 *eb_ret = tmp; 2361 return 0; 2362 } 2363 2364 /* the pages were up to date, but we failed 2365 * the generation number check. Do a full 2366 * read for the generation number that is correct. 2367 * We must do this without dropping locks so 2368 * we can trust our generation number 2369 */ 2370 btrfs_set_path_blocking(p); 2371 2372 /* now we're allowed to do a blocking uptodate check */ 2373 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2374 if (!ret) { 2375 *eb_ret = tmp; 2376 return 0; 2377 } 2378 free_extent_buffer(tmp); 2379 btrfs_release_path(p); 2380 return -EIO; 2381 } 2382 2383 /* 2384 * reduce lock contention at high levels 2385 * of the btree by dropping locks before 2386 * we read. Don't release the lock on the current 2387 * level because we need to walk this node to figure 2388 * out which blocks to read. 2389 */ 2390 btrfs_unlock_up_safe(p, level + 1); 2391 btrfs_set_path_blocking(p); 2392 2393 if (p->reada != READA_NONE) 2394 reada_for_search(fs_info, p, level, slot, key->objectid); 2395 2396 ret = -EAGAIN; 2397 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1, 2398 &first_key); 2399 if (!IS_ERR(tmp)) { 2400 /* 2401 * If the read above didn't mark this buffer up to date, 2402 * it will never end up being up to date. Set ret to EIO now 2403 * and give up so that our caller doesn't loop forever 2404 * on our EAGAINs. 2405 */ 2406 if (!extent_buffer_uptodate(tmp)) 2407 ret = -EIO; 2408 free_extent_buffer(tmp); 2409 } else { 2410 ret = PTR_ERR(tmp); 2411 } 2412 2413 btrfs_release_path(p); 2414 return ret; 2415 } 2416 2417 /* 2418 * helper function for btrfs_search_slot. This does all of the checks 2419 * for node-level blocks and does any balancing required based on 2420 * the ins_len. 2421 * 2422 * If no extra work was required, zero is returned. If we had to 2423 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2424 * start over 2425 */ 2426 static int 2427 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2428 struct btrfs_root *root, struct btrfs_path *p, 2429 struct extent_buffer *b, int level, int ins_len, 2430 int *write_lock_level) 2431 { 2432 struct btrfs_fs_info *fs_info = root->fs_info; 2433 int ret; 2434 2435 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2436 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2437 int sret; 2438 2439 if (*write_lock_level < level + 1) { 2440 *write_lock_level = level + 1; 2441 btrfs_release_path(p); 2442 goto again; 2443 } 2444 2445 btrfs_set_path_blocking(p); 2446 reada_for_balance(fs_info, p, level); 2447 sret = split_node(trans, root, p, level); 2448 2449 BUG_ON(sret > 0); 2450 if (sret) { 2451 ret = sret; 2452 goto done; 2453 } 2454 b = p->nodes[level]; 2455 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2456 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2457 int sret; 2458 2459 if (*write_lock_level < level + 1) { 2460 *write_lock_level = level + 1; 2461 btrfs_release_path(p); 2462 goto again; 2463 } 2464 2465 btrfs_set_path_blocking(p); 2466 reada_for_balance(fs_info, p, level); 2467 sret = balance_level(trans, root, p, level); 2468 2469 if (sret) { 2470 ret = sret; 2471 goto done; 2472 } 2473 b = p->nodes[level]; 2474 if (!b) { 2475 btrfs_release_path(p); 2476 goto again; 2477 } 2478 BUG_ON(btrfs_header_nritems(b) == 1); 2479 } 2480 return 0; 2481 2482 again: 2483 ret = -EAGAIN; 2484 done: 2485 return ret; 2486 } 2487 2488 static void key_search_validate(struct extent_buffer *b, 2489 const struct btrfs_key *key, 2490 int level) 2491 { 2492 #ifdef CONFIG_BTRFS_ASSERT 2493 struct btrfs_disk_key disk_key; 2494 2495 btrfs_cpu_key_to_disk(&disk_key, key); 2496 2497 if (level == 0) 2498 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2499 offsetof(struct btrfs_leaf, items[0].key), 2500 sizeof(disk_key))); 2501 else 2502 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2503 offsetof(struct btrfs_node, ptrs[0].key), 2504 sizeof(disk_key))); 2505 #endif 2506 } 2507 2508 static int key_search(struct extent_buffer *b, const struct btrfs_key *key, 2509 int level, int *prev_cmp, int *slot) 2510 { 2511 if (*prev_cmp != 0) { 2512 *prev_cmp = btrfs_bin_search(b, key, level, slot); 2513 return *prev_cmp; 2514 } 2515 2516 key_search_validate(b, key, level); 2517 *slot = 0; 2518 2519 return 0; 2520 } 2521 2522 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2523 u64 iobjectid, u64 ioff, u8 key_type, 2524 struct btrfs_key *found_key) 2525 { 2526 int ret; 2527 struct btrfs_key key; 2528 struct extent_buffer *eb; 2529 2530 ASSERT(path); 2531 ASSERT(found_key); 2532 2533 key.type = key_type; 2534 key.objectid = iobjectid; 2535 key.offset = ioff; 2536 2537 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2538 if (ret < 0) 2539 return ret; 2540 2541 eb = path->nodes[0]; 2542 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2543 ret = btrfs_next_leaf(fs_root, path); 2544 if (ret) 2545 return ret; 2546 eb = path->nodes[0]; 2547 } 2548 2549 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2550 if (found_key->type != key.type || 2551 found_key->objectid != key.objectid) 2552 return 1; 2553 2554 return 0; 2555 } 2556 2557 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2558 struct btrfs_path *p, 2559 int write_lock_level) 2560 { 2561 struct btrfs_fs_info *fs_info = root->fs_info; 2562 struct extent_buffer *b; 2563 int root_lock; 2564 int level = 0; 2565 2566 /* We try very hard to do read locks on the root */ 2567 root_lock = BTRFS_READ_LOCK; 2568 2569 if (p->search_commit_root) { 2570 /* The commit roots are read only so we always do read locks */ 2571 if (p->need_commit_sem) 2572 down_read(&fs_info->commit_root_sem); 2573 b = root->commit_root; 2574 extent_buffer_get(b); 2575 level = btrfs_header_level(b); 2576 if (p->need_commit_sem) 2577 up_read(&fs_info->commit_root_sem); 2578 /* 2579 * Ensure that all callers have set skip_locking when 2580 * p->search_commit_root = 1. 2581 */ 2582 ASSERT(p->skip_locking == 1); 2583 2584 goto out; 2585 } 2586 2587 if (p->skip_locking) { 2588 b = btrfs_root_node(root); 2589 level = btrfs_header_level(b); 2590 goto out; 2591 } 2592 2593 /* 2594 * If the level is set to maximum, we can skip trying to get the read 2595 * lock. 2596 */ 2597 if (write_lock_level < BTRFS_MAX_LEVEL) { 2598 /* 2599 * We don't know the level of the root node until we actually 2600 * have it read locked 2601 */ 2602 b = btrfs_read_lock_root_node(root); 2603 level = btrfs_header_level(b); 2604 if (level > write_lock_level) 2605 goto out; 2606 2607 /* Whoops, must trade for write lock */ 2608 btrfs_tree_read_unlock(b); 2609 free_extent_buffer(b); 2610 } 2611 2612 b = btrfs_lock_root_node(root); 2613 root_lock = BTRFS_WRITE_LOCK; 2614 2615 /* The level might have changed, check again */ 2616 level = btrfs_header_level(b); 2617 2618 out: 2619 p->nodes[level] = b; 2620 if (!p->skip_locking) 2621 p->locks[level] = root_lock; 2622 /* 2623 * Callers are responsible for dropping b's references. 2624 */ 2625 return b; 2626 } 2627 2628 2629 /* 2630 * btrfs_search_slot - look for a key in a tree and perform necessary 2631 * modifications to preserve tree invariants. 2632 * 2633 * @trans: Handle of transaction, used when modifying the tree 2634 * @p: Holds all btree nodes along the search path 2635 * @root: The root node of the tree 2636 * @key: The key we are looking for 2637 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2638 * deletions it's -1. 0 for plain searches 2639 * @cow: boolean should CoW operations be performed. Must always be 1 2640 * when modifying the tree. 2641 * 2642 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2643 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2644 * 2645 * If @key is found, 0 is returned and you can find the item in the leaf level 2646 * of the path (level 0) 2647 * 2648 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2649 * points to the slot where it should be inserted 2650 * 2651 * If an error is encountered while searching the tree a negative error number 2652 * is returned 2653 */ 2654 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2655 const struct btrfs_key *key, struct btrfs_path *p, 2656 int ins_len, int cow) 2657 { 2658 struct btrfs_fs_info *fs_info = root->fs_info; 2659 struct extent_buffer *b; 2660 int slot; 2661 int ret; 2662 int err; 2663 int level; 2664 int lowest_unlock = 1; 2665 /* everything at write_lock_level or lower must be write locked */ 2666 int write_lock_level = 0; 2667 u8 lowest_level = 0; 2668 int min_write_lock_level; 2669 int prev_cmp; 2670 2671 lowest_level = p->lowest_level; 2672 WARN_ON(lowest_level && ins_len > 0); 2673 WARN_ON(p->nodes[0] != NULL); 2674 BUG_ON(!cow && ins_len); 2675 2676 if (ins_len < 0) { 2677 lowest_unlock = 2; 2678 2679 /* when we are removing items, we might have to go up to level 2680 * two as we update tree pointers Make sure we keep write 2681 * for those levels as well 2682 */ 2683 write_lock_level = 2; 2684 } else if (ins_len > 0) { 2685 /* 2686 * for inserting items, make sure we have a write lock on 2687 * level 1 so we can update keys 2688 */ 2689 write_lock_level = 1; 2690 } 2691 2692 if (!cow) 2693 write_lock_level = -1; 2694 2695 if (cow && (p->keep_locks || p->lowest_level)) 2696 write_lock_level = BTRFS_MAX_LEVEL; 2697 2698 min_write_lock_level = write_lock_level; 2699 2700 again: 2701 prev_cmp = -1; 2702 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2703 2704 while (b) { 2705 level = btrfs_header_level(b); 2706 2707 /* 2708 * setup the path here so we can release it under lock 2709 * contention with the cow code 2710 */ 2711 if (cow) { 2712 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2713 2714 /* 2715 * if we don't really need to cow this block 2716 * then we don't want to set the path blocking, 2717 * so we test it here 2718 */ 2719 if (!should_cow_block(trans, root, b)) { 2720 trans->dirty = true; 2721 goto cow_done; 2722 } 2723 2724 /* 2725 * must have write locks on this node and the 2726 * parent 2727 */ 2728 if (level > write_lock_level || 2729 (level + 1 > write_lock_level && 2730 level + 1 < BTRFS_MAX_LEVEL && 2731 p->nodes[level + 1])) { 2732 write_lock_level = level + 1; 2733 btrfs_release_path(p); 2734 goto again; 2735 } 2736 2737 btrfs_set_path_blocking(p); 2738 if (last_level) 2739 err = btrfs_cow_block(trans, root, b, NULL, 0, 2740 &b); 2741 else 2742 err = btrfs_cow_block(trans, root, b, 2743 p->nodes[level + 1], 2744 p->slots[level + 1], &b); 2745 if (err) { 2746 ret = err; 2747 goto done; 2748 } 2749 } 2750 cow_done: 2751 p->nodes[level] = b; 2752 /* 2753 * Leave path with blocking locks to avoid massive 2754 * lock context switch, this is made on purpose. 2755 */ 2756 2757 /* 2758 * we have a lock on b and as long as we aren't changing 2759 * the tree, there is no way to for the items in b to change. 2760 * It is safe to drop the lock on our parent before we 2761 * go through the expensive btree search on b. 2762 * 2763 * If we're inserting or deleting (ins_len != 0), then we might 2764 * be changing slot zero, which may require changing the parent. 2765 * So, we can't drop the lock until after we know which slot 2766 * we're operating on. 2767 */ 2768 if (!ins_len && !p->keep_locks) { 2769 int u = level + 1; 2770 2771 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2772 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2773 p->locks[u] = 0; 2774 } 2775 } 2776 2777 ret = key_search(b, key, level, &prev_cmp, &slot); 2778 if (ret < 0) 2779 goto done; 2780 2781 if (level != 0) { 2782 int dec = 0; 2783 if (ret && slot > 0) { 2784 dec = 1; 2785 slot -= 1; 2786 } 2787 p->slots[level] = slot; 2788 err = setup_nodes_for_search(trans, root, p, b, level, 2789 ins_len, &write_lock_level); 2790 if (err == -EAGAIN) 2791 goto again; 2792 if (err) { 2793 ret = err; 2794 goto done; 2795 } 2796 b = p->nodes[level]; 2797 slot = p->slots[level]; 2798 2799 /* 2800 * slot 0 is special, if we change the key 2801 * we have to update the parent pointer 2802 * which means we must have a write lock 2803 * on the parent 2804 */ 2805 if (slot == 0 && ins_len && 2806 write_lock_level < level + 1) { 2807 write_lock_level = level + 1; 2808 btrfs_release_path(p); 2809 goto again; 2810 } 2811 2812 unlock_up(p, level, lowest_unlock, 2813 min_write_lock_level, &write_lock_level); 2814 2815 if (level == lowest_level) { 2816 if (dec) 2817 p->slots[level]++; 2818 goto done; 2819 } 2820 2821 err = read_block_for_search(root, p, &b, level, 2822 slot, key); 2823 if (err == -EAGAIN) 2824 goto again; 2825 if (err) { 2826 ret = err; 2827 goto done; 2828 } 2829 2830 if (!p->skip_locking) { 2831 level = btrfs_header_level(b); 2832 if (level <= write_lock_level) { 2833 err = btrfs_try_tree_write_lock(b); 2834 if (!err) { 2835 btrfs_set_path_blocking(p); 2836 btrfs_tree_lock(b); 2837 } 2838 p->locks[level] = BTRFS_WRITE_LOCK; 2839 } else { 2840 err = btrfs_tree_read_lock_atomic(b); 2841 if (!err) { 2842 btrfs_set_path_blocking(p); 2843 btrfs_tree_read_lock(b); 2844 } 2845 p->locks[level] = BTRFS_READ_LOCK; 2846 } 2847 p->nodes[level] = b; 2848 } 2849 } else { 2850 p->slots[level] = slot; 2851 if (ins_len > 0 && 2852 btrfs_leaf_free_space(fs_info, b) < ins_len) { 2853 if (write_lock_level < 1) { 2854 write_lock_level = 1; 2855 btrfs_release_path(p); 2856 goto again; 2857 } 2858 2859 btrfs_set_path_blocking(p); 2860 err = split_leaf(trans, root, key, 2861 p, ins_len, ret == 0); 2862 2863 BUG_ON(err > 0); 2864 if (err) { 2865 ret = err; 2866 goto done; 2867 } 2868 } 2869 if (!p->search_for_split) 2870 unlock_up(p, level, lowest_unlock, 2871 min_write_lock_level, NULL); 2872 goto done; 2873 } 2874 } 2875 ret = 1; 2876 done: 2877 /* 2878 * we don't really know what they plan on doing with the path 2879 * from here on, so for now just mark it as blocking 2880 */ 2881 if (!p->leave_spinning) 2882 btrfs_set_path_blocking(p); 2883 if (ret < 0 && !p->skip_release_on_error) 2884 btrfs_release_path(p); 2885 return ret; 2886 } 2887 2888 /* 2889 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2890 * current state of the tree together with the operations recorded in the tree 2891 * modification log to search for the key in a previous version of this tree, as 2892 * denoted by the time_seq parameter. 2893 * 2894 * Naturally, there is no support for insert, delete or cow operations. 2895 * 2896 * The resulting path and return value will be set up as if we called 2897 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2898 */ 2899 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2900 struct btrfs_path *p, u64 time_seq) 2901 { 2902 struct btrfs_fs_info *fs_info = root->fs_info; 2903 struct extent_buffer *b; 2904 int slot; 2905 int ret; 2906 int err; 2907 int level; 2908 int lowest_unlock = 1; 2909 u8 lowest_level = 0; 2910 int prev_cmp = -1; 2911 2912 lowest_level = p->lowest_level; 2913 WARN_ON(p->nodes[0] != NULL); 2914 2915 if (p->search_commit_root) { 2916 BUG_ON(time_seq); 2917 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2918 } 2919 2920 again: 2921 b = get_old_root(root, time_seq); 2922 if (!b) { 2923 ret = -EIO; 2924 goto done; 2925 } 2926 level = btrfs_header_level(b); 2927 p->locks[level] = BTRFS_READ_LOCK; 2928 2929 while (b) { 2930 level = btrfs_header_level(b); 2931 p->nodes[level] = b; 2932 2933 /* 2934 * we have a lock on b and as long as we aren't changing 2935 * the tree, there is no way to for the items in b to change. 2936 * It is safe to drop the lock on our parent before we 2937 * go through the expensive btree search on b. 2938 */ 2939 btrfs_unlock_up_safe(p, level + 1); 2940 2941 /* 2942 * Since we can unwind ebs we want to do a real search every 2943 * time. 2944 */ 2945 prev_cmp = -1; 2946 ret = key_search(b, key, level, &prev_cmp, &slot); 2947 2948 if (level != 0) { 2949 int dec = 0; 2950 if (ret && slot > 0) { 2951 dec = 1; 2952 slot -= 1; 2953 } 2954 p->slots[level] = slot; 2955 unlock_up(p, level, lowest_unlock, 0, NULL); 2956 2957 if (level == lowest_level) { 2958 if (dec) 2959 p->slots[level]++; 2960 goto done; 2961 } 2962 2963 err = read_block_for_search(root, p, &b, level, 2964 slot, key); 2965 if (err == -EAGAIN) 2966 goto again; 2967 if (err) { 2968 ret = err; 2969 goto done; 2970 } 2971 2972 level = btrfs_header_level(b); 2973 err = btrfs_tree_read_lock_atomic(b); 2974 if (!err) { 2975 btrfs_set_path_blocking(p); 2976 btrfs_tree_read_lock(b); 2977 } 2978 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 2979 if (!b) { 2980 ret = -ENOMEM; 2981 goto done; 2982 } 2983 p->locks[level] = BTRFS_READ_LOCK; 2984 p->nodes[level] = b; 2985 } else { 2986 p->slots[level] = slot; 2987 unlock_up(p, level, lowest_unlock, 0, NULL); 2988 goto done; 2989 } 2990 } 2991 ret = 1; 2992 done: 2993 if (!p->leave_spinning) 2994 btrfs_set_path_blocking(p); 2995 if (ret < 0) 2996 btrfs_release_path(p); 2997 2998 return ret; 2999 } 3000 3001 /* 3002 * helper to use instead of search slot if no exact match is needed but 3003 * instead the next or previous item should be returned. 3004 * When find_higher is true, the next higher item is returned, the next lower 3005 * otherwise. 3006 * When return_any and find_higher are both true, and no higher item is found, 3007 * return the next lower instead. 3008 * When return_any is true and find_higher is false, and no lower item is found, 3009 * return the next higher instead. 3010 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3011 * < 0 on error 3012 */ 3013 int btrfs_search_slot_for_read(struct btrfs_root *root, 3014 const struct btrfs_key *key, 3015 struct btrfs_path *p, int find_higher, 3016 int return_any) 3017 { 3018 int ret; 3019 struct extent_buffer *leaf; 3020 3021 again: 3022 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3023 if (ret <= 0) 3024 return ret; 3025 /* 3026 * a return value of 1 means the path is at the position where the 3027 * item should be inserted. Normally this is the next bigger item, 3028 * but in case the previous item is the last in a leaf, path points 3029 * to the first free slot in the previous leaf, i.e. at an invalid 3030 * item. 3031 */ 3032 leaf = p->nodes[0]; 3033 3034 if (find_higher) { 3035 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3036 ret = btrfs_next_leaf(root, p); 3037 if (ret <= 0) 3038 return ret; 3039 if (!return_any) 3040 return 1; 3041 /* 3042 * no higher item found, return the next 3043 * lower instead 3044 */ 3045 return_any = 0; 3046 find_higher = 0; 3047 btrfs_release_path(p); 3048 goto again; 3049 } 3050 } else { 3051 if (p->slots[0] == 0) { 3052 ret = btrfs_prev_leaf(root, p); 3053 if (ret < 0) 3054 return ret; 3055 if (!ret) { 3056 leaf = p->nodes[0]; 3057 if (p->slots[0] == btrfs_header_nritems(leaf)) 3058 p->slots[0]--; 3059 return 0; 3060 } 3061 if (!return_any) 3062 return 1; 3063 /* 3064 * no lower item found, return the next 3065 * higher instead 3066 */ 3067 return_any = 0; 3068 find_higher = 1; 3069 btrfs_release_path(p); 3070 goto again; 3071 } else { 3072 --p->slots[0]; 3073 } 3074 } 3075 return 0; 3076 } 3077 3078 /* 3079 * adjust the pointers going up the tree, starting at level 3080 * making sure the right key of each node is points to 'key'. 3081 * This is used after shifting pointers to the left, so it stops 3082 * fixing up pointers when a given leaf/node is not in slot 0 of the 3083 * higher levels 3084 * 3085 */ 3086 static void fixup_low_keys(struct btrfs_path *path, 3087 struct btrfs_disk_key *key, int level) 3088 { 3089 int i; 3090 struct extent_buffer *t; 3091 int ret; 3092 3093 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3094 int tslot = path->slots[i]; 3095 3096 if (!path->nodes[i]) 3097 break; 3098 t = path->nodes[i]; 3099 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3100 GFP_ATOMIC); 3101 BUG_ON(ret < 0); 3102 btrfs_set_node_key(t, key, tslot); 3103 btrfs_mark_buffer_dirty(path->nodes[i]); 3104 if (tslot != 0) 3105 break; 3106 } 3107 } 3108 3109 /* 3110 * update item key. 3111 * 3112 * This function isn't completely safe. It's the caller's responsibility 3113 * that the new key won't break the order 3114 */ 3115 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3116 struct btrfs_path *path, 3117 const struct btrfs_key *new_key) 3118 { 3119 struct btrfs_disk_key disk_key; 3120 struct extent_buffer *eb; 3121 int slot; 3122 3123 eb = path->nodes[0]; 3124 slot = path->slots[0]; 3125 if (slot > 0) { 3126 btrfs_item_key(eb, &disk_key, slot - 1); 3127 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3128 } 3129 if (slot < btrfs_header_nritems(eb) - 1) { 3130 btrfs_item_key(eb, &disk_key, slot + 1); 3131 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3132 } 3133 3134 btrfs_cpu_key_to_disk(&disk_key, new_key); 3135 btrfs_set_item_key(eb, &disk_key, slot); 3136 btrfs_mark_buffer_dirty(eb); 3137 if (slot == 0) 3138 fixup_low_keys(path, &disk_key, 1); 3139 } 3140 3141 /* 3142 * try to push data from one node into the next node left in the 3143 * tree. 3144 * 3145 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3146 * error, and > 0 if there was no room in the left hand block. 3147 */ 3148 static int push_node_left(struct btrfs_trans_handle *trans, 3149 struct btrfs_fs_info *fs_info, 3150 struct extent_buffer *dst, 3151 struct extent_buffer *src, int empty) 3152 { 3153 int push_items = 0; 3154 int src_nritems; 3155 int dst_nritems; 3156 int ret = 0; 3157 3158 src_nritems = btrfs_header_nritems(src); 3159 dst_nritems = btrfs_header_nritems(dst); 3160 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3161 WARN_ON(btrfs_header_generation(src) != trans->transid); 3162 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3163 3164 if (!empty && src_nritems <= 8) 3165 return 1; 3166 3167 if (push_items <= 0) 3168 return 1; 3169 3170 if (empty) { 3171 push_items = min(src_nritems, push_items); 3172 if (push_items < src_nritems) { 3173 /* leave at least 8 pointers in the node if 3174 * we aren't going to empty it 3175 */ 3176 if (src_nritems - push_items < 8) { 3177 if (push_items <= 8) 3178 return 1; 3179 push_items -= 8; 3180 } 3181 } 3182 } else 3183 push_items = min(src_nritems - 8, push_items); 3184 3185 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0, 3186 push_items); 3187 if (ret) { 3188 btrfs_abort_transaction(trans, ret); 3189 return ret; 3190 } 3191 copy_extent_buffer(dst, src, 3192 btrfs_node_key_ptr_offset(dst_nritems), 3193 btrfs_node_key_ptr_offset(0), 3194 push_items * sizeof(struct btrfs_key_ptr)); 3195 3196 if (push_items < src_nritems) { 3197 /* 3198 * Don't call tree_mod_log_insert_move here, key removal was 3199 * already fully logged by tree_mod_log_eb_copy above. 3200 */ 3201 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3202 btrfs_node_key_ptr_offset(push_items), 3203 (src_nritems - push_items) * 3204 sizeof(struct btrfs_key_ptr)); 3205 } 3206 btrfs_set_header_nritems(src, src_nritems - push_items); 3207 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3208 btrfs_mark_buffer_dirty(src); 3209 btrfs_mark_buffer_dirty(dst); 3210 3211 return ret; 3212 } 3213 3214 /* 3215 * try to push data from one node into the next node right in the 3216 * tree. 3217 * 3218 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3219 * error, and > 0 if there was no room in the right hand block. 3220 * 3221 * this will only push up to 1/2 the contents of the left node over 3222 */ 3223 static int balance_node_right(struct btrfs_trans_handle *trans, 3224 struct btrfs_fs_info *fs_info, 3225 struct extent_buffer *dst, 3226 struct extent_buffer *src) 3227 { 3228 int push_items = 0; 3229 int max_push; 3230 int src_nritems; 3231 int dst_nritems; 3232 int ret = 0; 3233 3234 WARN_ON(btrfs_header_generation(src) != trans->transid); 3235 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3236 3237 src_nritems = btrfs_header_nritems(src); 3238 dst_nritems = btrfs_header_nritems(dst); 3239 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3240 if (push_items <= 0) 3241 return 1; 3242 3243 if (src_nritems < 4) 3244 return 1; 3245 3246 max_push = src_nritems / 2 + 1; 3247 /* don't try to empty the node */ 3248 if (max_push >= src_nritems) 3249 return 1; 3250 3251 if (max_push < push_items) 3252 push_items = max_push; 3253 3254 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3255 BUG_ON(ret < 0); 3256 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3257 btrfs_node_key_ptr_offset(0), 3258 (dst_nritems) * 3259 sizeof(struct btrfs_key_ptr)); 3260 3261 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0, 3262 src_nritems - push_items, push_items); 3263 if (ret) { 3264 btrfs_abort_transaction(trans, ret); 3265 return ret; 3266 } 3267 copy_extent_buffer(dst, src, 3268 btrfs_node_key_ptr_offset(0), 3269 btrfs_node_key_ptr_offset(src_nritems - push_items), 3270 push_items * sizeof(struct btrfs_key_ptr)); 3271 3272 btrfs_set_header_nritems(src, src_nritems - push_items); 3273 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3274 3275 btrfs_mark_buffer_dirty(src); 3276 btrfs_mark_buffer_dirty(dst); 3277 3278 return ret; 3279 } 3280 3281 /* 3282 * helper function to insert a new root level in the tree. 3283 * A new node is allocated, and a single item is inserted to 3284 * point to the existing root 3285 * 3286 * returns zero on success or < 0 on failure. 3287 */ 3288 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3289 struct btrfs_root *root, 3290 struct btrfs_path *path, int level) 3291 { 3292 struct btrfs_fs_info *fs_info = root->fs_info; 3293 u64 lower_gen; 3294 struct extent_buffer *lower; 3295 struct extent_buffer *c; 3296 struct extent_buffer *old; 3297 struct btrfs_disk_key lower_key; 3298 int ret; 3299 3300 BUG_ON(path->nodes[level]); 3301 BUG_ON(path->nodes[level-1] != root->node); 3302 3303 lower = path->nodes[level-1]; 3304 if (level == 1) 3305 btrfs_item_key(lower, &lower_key, 0); 3306 else 3307 btrfs_node_key(lower, &lower_key, 0); 3308 3309 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3310 &lower_key, level, root->node->start, 0); 3311 if (IS_ERR(c)) 3312 return PTR_ERR(c); 3313 3314 root_add_used(root, fs_info->nodesize); 3315 3316 btrfs_set_header_nritems(c, 1); 3317 btrfs_set_node_key(c, &lower_key, 0); 3318 btrfs_set_node_blockptr(c, 0, lower->start); 3319 lower_gen = btrfs_header_generation(lower); 3320 WARN_ON(lower_gen != trans->transid); 3321 3322 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3323 3324 btrfs_mark_buffer_dirty(c); 3325 3326 old = root->node; 3327 ret = tree_mod_log_insert_root(root->node, c, 0); 3328 BUG_ON(ret < 0); 3329 rcu_assign_pointer(root->node, c); 3330 3331 /* the super has an extra ref to root->node */ 3332 free_extent_buffer(old); 3333 3334 add_root_to_dirty_list(root); 3335 extent_buffer_get(c); 3336 path->nodes[level] = c; 3337 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3338 path->slots[level] = 0; 3339 return 0; 3340 } 3341 3342 /* 3343 * worker function to insert a single pointer in a node. 3344 * the node should have enough room for the pointer already 3345 * 3346 * slot and level indicate where you want the key to go, and 3347 * blocknr is the block the key points to. 3348 */ 3349 static void insert_ptr(struct btrfs_trans_handle *trans, 3350 struct btrfs_fs_info *fs_info, struct btrfs_path *path, 3351 struct btrfs_disk_key *key, u64 bytenr, 3352 int slot, int level) 3353 { 3354 struct extent_buffer *lower; 3355 int nritems; 3356 int ret; 3357 3358 BUG_ON(!path->nodes[level]); 3359 btrfs_assert_tree_locked(path->nodes[level]); 3360 lower = path->nodes[level]; 3361 nritems = btrfs_header_nritems(lower); 3362 BUG_ON(slot > nritems); 3363 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 3364 if (slot != nritems) { 3365 if (level) { 3366 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3367 nritems - slot); 3368 BUG_ON(ret < 0); 3369 } 3370 memmove_extent_buffer(lower, 3371 btrfs_node_key_ptr_offset(slot + 1), 3372 btrfs_node_key_ptr_offset(slot), 3373 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3374 } 3375 if (level) { 3376 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3377 GFP_NOFS); 3378 BUG_ON(ret < 0); 3379 } 3380 btrfs_set_node_key(lower, key, slot); 3381 btrfs_set_node_blockptr(lower, slot, bytenr); 3382 WARN_ON(trans->transid == 0); 3383 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3384 btrfs_set_header_nritems(lower, nritems + 1); 3385 btrfs_mark_buffer_dirty(lower); 3386 } 3387 3388 /* 3389 * split the node at the specified level in path in two. 3390 * The path is corrected to point to the appropriate node after the split 3391 * 3392 * Before splitting this tries to make some room in the node by pushing 3393 * left and right, if either one works, it returns right away. 3394 * 3395 * returns 0 on success and < 0 on failure 3396 */ 3397 static noinline int split_node(struct btrfs_trans_handle *trans, 3398 struct btrfs_root *root, 3399 struct btrfs_path *path, int level) 3400 { 3401 struct btrfs_fs_info *fs_info = root->fs_info; 3402 struct extent_buffer *c; 3403 struct extent_buffer *split; 3404 struct btrfs_disk_key disk_key; 3405 int mid; 3406 int ret; 3407 u32 c_nritems; 3408 3409 c = path->nodes[level]; 3410 WARN_ON(btrfs_header_generation(c) != trans->transid); 3411 if (c == root->node) { 3412 /* 3413 * trying to split the root, lets make a new one 3414 * 3415 * tree mod log: We don't log_removal old root in 3416 * insert_new_root, because that root buffer will be kept as a 3417 * normal node. We are going to log removal of half of the 3418 * elements below with tree_mod_log_eb_copy. We're holding a 3419 * tree lock on the buffer, which is why we cannot race with 3420 * other tree_mod_log users. 3421 */ 3422 ret = insert_new_root(trans, root, path, level + 1); 3423 if (ret) 3424 return ret; 3425 } else { 3426 ret = push_nodes_for_insert(trans, root, path, level); 3427 c = path->nodes[level]; 3428 if (!ret && btrfs_header_nritems(c) < 3429 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3430 return 0; 3431 if (ret < 0) 3432 return ret; 3433 } 3434 3435 c_nritems = btrfs_header_nritems(c); 3436 mid = (c_nritems + 1) / 2; 3437 btrfs_node_key(c, &disk_key, mid); 3438 3439 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3440 &disk_key, level, c->start, 0); 3441 if (IS_ERR(split)) 3442 return PTR_ERR(split); 3443 3444 root_add_used(root, fs_info->nodesize); 3445 ASSERT(btrfs_header_level(c) == level); 3446 3447 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid); 3448 if (ret) { 3449 btrfs_abort_transaction(trans, ret); 3450 return ret; 3451 } 3452 copy_extent_buffer(split, c, 3453 btrfs_node_key_ptr_offset(0), 3454 btrfs_node_key_ptr_offset(mid), 3455 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3456 btrfs_set_header_nritems(split, c_nritems - mid); 3457 btrfs_set_header_nritems(c, mid); 3458 ret = 0; 3459 3460 btrfs_mark_buffer_dirty(c); 3461 btrfs_mark_buffer_dirty(split); 3462 3463 insert_ptr(trans, fs_info, path, &disk_key, split->start, 3464 path->slots[level + 1] + 1, level + 1); 3465 3466 if (path->slots[level] >= mid) { 3467 path->slots[level] -= mid; 3468 btrfs_tree_unlock(c); 3469 free_extent_buffer(c); 3470 path->nodes[level] = split; 3471 path->slots[level + 1] += 1; 3472 } else { 3473 btrfs_tree_unlock(split); 3474 free_extent_buffer(split); 3475 } 3476 return ret; 3477 } 3478 3479 /* 3480 * how many bytes are required to store the items in a leaf. start 3481 * and nr indicate which items in the leaf to check. This totals up the 3482 * space used both by the item structs and the item data 3483 */ 3484 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3485 { 3486 struct btrfs_item *start_item; 3487 struct btrfs_item *end_item; 3488 struct btrfs_map_token token; 3489 int data_len; 3490 int nritems = btrfs_header_nritems(l); 3491 int end = min(nritems, start + nr) - 1; 3492 3493 if (!nr) 3494 return 0; 3495 btrfs_init_map_token(&token); 3496 start_item = btrfs_item_nr(start); 3497 end_item = btrfs_item_nr(end); 3498 data_len = btrfs_token_item_offset(l, start_item, &token) + 3499 btrfs_token_item_size(l, start_item, &token); 3500 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3501 data_len += sizeof(struct btrfs_item) * nr; 3502 WARN_ON(data_len < 0); 3503 return data_len; 3504 } 3505 3506 /* 3507 * The space between the end of the leaf items and 3508 * the start of the leaf data. IOW, how much room 3509 * the leaf has left for both items and data 3510 */ 3511 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info, 3512 struct extent_buffer *leaf) 3513 { 3514 int nritems = btrfs_header_nritems(leaf); 3515 int ret; 3516 3517 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3518 if (ret < 0) { 3519 btrfs_crit(fs_info, 3520 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3521 ret, 3522 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3523 leaf_space_used(leaf, 0, nritems), nritems); 3524 } 3525 return ret; 3526 } 3527 3528 /* 3529 * min slot controls the lowest index we're willing to push to the 3530 * right. We'll push up to and including min_slot, but no lower 3531 */ 3532 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info, 3533 struct btrfs_path *path, 3534 int data_size, int empty, 3535 struct extent_buffer *right, 3536 int free_space, u32 left_nritems, 3537 u32 min_slot) 3538 { 3539 struct extent_buffer *left = path->nodes[0]; 3540 struct extent_buffer *upper = path->nodes[1]; 3541 struct btrfs_map_token token; 3542 struct btrfs_disk_key disk_key; 3543 int slot; 3544 u32 i; 3545 int push_space = 0; 3546 int push_items = 0; 3547 struct btrfs_item *item; 3548 u32 nr; 3549 u32 right_nritems; 3550 u32 data_end; 3551 u32 this_item_size; 3552 3553 btrfs_init_map_token(&token); 3554 3555 if (empty) 3556 nr = 0; 3557 else 3558 nr = max_t(u32, 1, min_slot); 3559 3560 if (path->slots[0] >= left_nritems) 3561 push_space += data_size; 3562 3563 slot = path->slots[1]; 3564 i = left_nritems - 1; 3565 while (i >= nr) { 3566 item = btrfs_item_nr(i); 3567 3568 if (!empty && push_items > 0) { 3569 if (path->slots[0] > i) 3570 break; 3571 if (path->slots[0] == i) { 3572 int space = btrfs_leaf_free_space(fs_info, left); 3573 if (space + push_space * 2 > free_space) 3574 break; 3575 } 3576 } 3577 3578 if (path->slots[0] == i) 3579 push_space += data_size; 3580 3581 this_item_size = btrfs_item_size(left, item); 3582 if (this_item_size + sizeof(*item) + push_space > free_space) 3583 break; 3584 3585 push_items++; 3586 push_space += this_item_size + sizeof(*item); 3587 if (i == 0) 3588 break; 3589 i--; 3590 } 3591 3592 if (push_items == 0) 3593 goto out_unlock; 3594 3595 WARN_ON(!empty && push_items == left_nritems); 3596 3597 /* push left to right */ 3598 right_nritems = btrfs_header_nritems(right); 3599 3600 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3601 push_space -= leaf_data_end(fs_info, left); 3602 3603 /* make room in the right data area */ 3604 data_end = leaf_data_end(fs_info, right); 3605 memmove_extent_buffer(right, 3606 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3607 BTRFS_LEAF_DATA_OFFSET + data_end, 3608 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3609 3610 /* copy from the left data area */ 3611 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3612 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3613 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left), 3614 push_space); 3615 3616 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3617 btrfs_item_nr_offset(0), 3618 right_nritems * sizeof(struct btrfs_item)); 3619 3620 /* copy the items from left to right */ 3621 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3622 btrfs_item_nr_offset(left_nritems - push_items), 3623 push_items * sizeof(struct btrfs_item)); 3624 3625 /* update the item pointers */ 3626 right_nritems += push_items; 3627 btrfs_set_header_nritems(right, right_nritems); 3628 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3629 for (i = 0; i < right_nritems; i++) { 3630 item = btrfs_item_nr(i); 3631 push_space -= btrfs_token_item_size(right, item, &token); 3632 btrfs_set_token_item_offset(right, item, push_space, &token); 3633 } 3634 3635 left_nritems -= push_items; 3636 btrfs_set_header_nritems(left, left_nritems); 3637 3638 if (left_nritems) 3639 btrfs_mark_buffer_dirty(left); 3640 else 3641 clean_tree_block(fs_info, left); 3642 3643 btrfs_mark_buffer_dirty(right); 3644 3645 btrfs_item_key(right, &disk_key, 0); 3646 btrfs_set_node_key(upper, &disk_key, slot + 1); 3647 btrfs_mark_buffer_dirty(upper); 3648 3649 /* then fixup the leaf pointer in the path */ 3650 if (path->slots[0] >= left_nritems) { 3651 path->slots[0] -= left_nritems; 3652 if (btrfs_header_nritems(path->nodes[0]) == 0) 3653 clean_tree_block(fs_info, path->nodes[0]); 3654 btrfs_tree_unlock(path->nodes[0]); 3655 free_extent_buffer(path->nodes[0]); 3656 path->nodes[0] = right; 3657 path->slots[1] += 1; 3658 } else { 3659 btrfs_tree_unlock(right); 3660 free_extent_buffer(right); 3661 } 3662 return 0; 3663 3664 out_unlock: 3665 btrfs_tree_unlock(right); 3666 free_extent_buffer(right); 3667 return 1; 3668 } 3669 3670 /* 3671 * push some data in the path leaf to the right, trying to free up at 3672 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3673 * 3674 * returns 1 if the push failed because the other node didn't have enough 3675 * room, 0 if everything worked out and < 0 if there were major errors. 3676 * 3677 * this will push starting from min_slot to the end of the leaf. It won't 3678 * push any slot lower than min_slot 3679 */ 3680 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3681 *root, struct btrfs_path *path, 3682 int min_data_size, int data_size, 3683 int empty, u32 min_slot) 3684 { 3685 struct btrfs_fs_info *fs_info = root->fs_info; 3686 struct extent_buffer *left = path->nodes[0]; 3687 struct extent_buffer *right; 3688 struct extent_buffer *upper; 3689 int slot; 3690 int free_space; 3691 u32 left_nritems; 3692 int ret; 3693 3694 if (!path->nodes[1]) 3695 return 1; 3696 3697 slot = path->slots[1]; 3698 upper = path->nodes[1]; 3699 if (slot >= btrfs_header_nritems(upper) - 1) 3700 return 1; 3701 3702 btrfs_assert_tree_locked(path->nodes[1]); 3703 3704 right = read_node_slot(fs_info, upper, slot + 1); 3705 /* 3706 * slot + 1 is not valid or we fail to read the right node, 3707 * no big deal, just return. 3708 */ 3709 if (IS_ERR(right)) 3710 return 1; 3711 3712 btrfs_tree_lock(right); 3713 btrfs_set_lock_blocking(right); 3714 3715 free_space = btrfs_leaf_free_space(fs_info, right); 3716 if (free_space < data_size) 3717 goto out_unlock; 3718 3719 /* cow and double check */ 3720 ret = btrfs_cow_block(trans, root, right, upper, 3721 slot + 1, &right); 3722 if (ret) 3723 goto out_unlock; 3724 3725 free_space = btrfs_leaf_free_space(fs_info, right); 3726 if (free_space < data_size) 3727 goto out_unlock; 3728 3729 left_nritems = btrfs_header_nritems(left); 3730 if (left_nritems == 0) 3731 goto out_unlock; 3732 3733 if (path->slots[0] == left_nritems && !empty) { 3734 /* Key greater than all keys in the leaf, right neighbor has 3735 * enough room for it and we're not emptying our leaf to delete 3736 * it, therefore use right neighbor to insert the new item and 3737 * no need to touch/dirty our left leaft. */ 3738 btrfs_tree_unlock(left); 3739 free_extent_buffer(left); 3740 path->nodes[0] = right; 3741 path->slots[0] = 0; 3742 path->slots[1]++; 3743 return 0; 3744 } 3745 3746 return __push_leaf_right(fs_info, path, min_data_size, empty, 3747 right, free_space, left_nritems, min_slot); 3748 out_unlock: 3749 btrfs_tree_unlock(right); 3750 free_extent_buffer(right); 3751 return 1; 3752 } 3753 3754 /* 3755 * push some data in the path leaf to the left, trying to free up at 3756 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3757 * 3758 * max_slot can put a limit on how far into the leaf we'll push items. The 3759 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3760 * items 3761 */ 3762 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info, 3763 struct btrfs_path *path, int data_size, 3764 int empty, struct extent_buffer *left, 3765 int free_space, u32 right_nritems, 3766 u32 max_slot) 3767 { 3768 struct btrfs_disk_key disk_key; 3769 struct extent_buffer *right = path->nodes[0]; 3770 int i; 3771 int push_space = 0; 3772 int push_items = 0; 3773 struct btrfs_item *item; 3774 u32 old_left_nritems; 3775 u32 nr; 3776 int ret = 0; 3777 u32 this_item_size; 3778 u32 old_left_item_size; 3779 struct btrfs_map_token token; 3780 3781 btrfs_init_map_token(&token); 3782 3783 if (empty) 3784 nr = min(right_nritems, max_slot); 3785 else 3786 nr = min(right_nritems - 1, max_slot); 3787 3788 for (i = 0; i < nr; i++) { 3789 item = btrfs_item_nr(i); 3790 3791 if (!empty && push_items > 0) { 3792 if (path->slots[0] < i) 3793 break; 3794 if (path->slots[0] == i) { 3795 int space = btrfs_leaf_free_space(fs_info, right); 3796 if (space + push_space * 2 > free_space) 3797 break; 3798 } 3799 } 3800 3801 if (path->slots[0] == i) 3802 push_space += data_size; 3803 3804 this_item_size = btrfs_item_size(right, item); 3805 if (this_item_size + sizeof(*item) + push_space > free_space) 3806 break; 3807 3808 push_items++; 3809 push_space += this_item_size + sizeof(*item); 3810 } 3811 3812 if (push_items == 0) { 3813 ret = 1; 3814 goto out; 3815 } 3816 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3817 3818 /* push data from right to left */ 3819 copy_extent_buffer(left, right, 3820 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3821 btrfs_item_nr_offset(0), 3822 push_items * sizeof(struct btrfs_item)); 3823 3824 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3825 btrfs_item_offset_nr(right, push_items - 1); 3826 3827 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3828 leaf_data_end(fs_info, left) - push_space, 3829 BTRFS_LEAF_DATA_OFFSET + 3830 btrfs_item_offset_nr(right, push_items - 1), 3831 push_space); 3832 old_left_nritems = btrfs_header_nritems(left); 3833 BUG_ON(old_left_nritems <= 0); 3834 3835 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3836 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3837 u32 ioff; 3838 3839 item = btrfs_item_nr(i); 3840 3841 ioff = btrfs_token_item_offset(left, item, &token); 3842 btrfs_set_token_item_offset(left, item, 3843 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), 3844 &token); 3845 } 3846 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3847 3848 /* fixup right node */ 3849 if (push_items > right_nritems) 3850 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3851 right_nritems); 3852 3853 if (push_items < right_nritems) { 3854 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3855 leaf_data_end(fs_info, right); 3856 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3857 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3858 BTRFS_LEAF_DATA_OFFSET + 3859 leaf_data_end(fs_info, right), push_space); 3860 3861 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3862 btrfs_item_nr_offset(push_items), 3863 (btrfs_header_nritems(right) - push_items) * 3864 sizeof(struct btrfs_item)); 3865 } 3866 right_nritems -= push_items; 3867 btrfs_set_header_nritems(right, right_nritems); 3868 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3869 for (i = 0; i < right_nritems; i++) { 3870 item = btrfs_item_nr(i); 3871 3872 push_space = push_space - btrfs_token_item_size(right, 3873 item, &token); 3874 btrfs_set_token_item_offset(right, item, push_space, &token); 3875 } 3876 3877 btrfs_mark_buffer_dirty(left); 3878 if (right_nritems) 3879 btrfs_mark_buffer_dirty(right); 3880 else 3881 clean_tree_block(fs_info, right); 3882 3883 btrfs_item_key(right, &disk_key, 0); 3884 fixup_low_keys(path, &disk_key, 1); 3885 3886 /* then fixup the leaf pointer in the path */ 3887 if (path->slots[0] < push_items) { 3888 path->slots[0] += old_left_nritems; 3889 btrfs_tree_unlock(path->nodes[0]); 3890 free_extent_buffer(path->nodes[0]); 3891 path->nodes[0] = left; 3892 path->slots[1] -= 1; 3893 } else { 3894 btrfs_tree_unlock(left); 3895 free_extent_buffer(left); 3896 path->slots[0] -= push_items; 3897 } 3898 BUG_ON(path->slots[0] < 0); 3899 return ret; 3900 out: 3901 btrfs_tree_unlock(left); 3902 free_extent_buffer(left); 3903 return ret; 3904 } 3905 3906 /* 3907 * push some data in the path leaf to the left, trying to free up at 3908 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3909 * 3910 * max_slot can put a limit on how far into the leaf we'll push items. The 3911 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3912 * items 3913 */ 3914 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3915 *root, struct btrfs_path *path, int min_data_size, 3916 int data_size, int empty, u32 max_slot) 3917 { 3918 struct btrfs_fs_info *fs_info = root->fs_info; 3919 struct extent_buffer *right = path->nodes[0]; 3920 struct extent_buffer *left; 3921 int slot; 3922 int free_space; 3923 u32 right_nritems; 3924 int ret = 0; 3925 3926 slot = path->slots[1]; 3927 if (slot == 0) 3928 return 1; 3929 if (!path->nodes[1]) 3930 return 1; 3931 3932 right_nritems = btrfs_header_nritems(right); 3933 if (right_nritems == 0) 3934 return 1; 3935 3936 btrfs_assert_tree_locked(path->nodes[1]); 3937 3938 left = read_node_slot(fs_info, path->nodes[1], slot - 1); 3939 /* 3940 * slot - 1 is not valid or we fail to read the left node, 3941 * no big deal, just return. 3942 */ 3943 if (IS_ERR(left)) 3944 return 1; 3945 3946 btrfs_tree_lock(left); 3947 btrfs_set_lock_blocking(left); 3948 3949 free_space = btrfs_leaf_free_space(fs_info, left); 3950 if (free_space < data_size) { 3951 ret = 1; 3952 goto out; 3953 } 3954 3955 /* cow and double check */ 3956 ret = btrfs_cow_block(trans, root, left, 3957 path->nodes[1], slot - 1, &left); 3958 if (ret) { 3959 /* we hit -ENOSPC, but it isn't fatal here */ 3960 if (ret == -ENOSPC) 3961 ret = 1; 3962 goto out; 3963 } 3964 3965 free_space = btrfs_leaf_free_space(fs_info, left); 3966 if (free_space < data_size) { 3967 ret = 1; 3968 goto out; 3969 } 3970 3971 return __push_leaf_left(fs_info, path, min_data_size, 3972 empty, left, free_space, right_nritems, 3973 max_slot); 3974 out: 3975 btrfs_tree_unlock(left); 3976 free_extent_buffer(left); 3977 return ret; 3978 } 3979 3980 /* 3981 * split the path's leaf in two, making sure there is at least data_size 3982 * available for the resulting leaf level of the path. 3983 */ 3984 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3985 struct btrfs_fs_info *fs_info, 3986 struct btrfs_path *path, 3987 struct extent_buffer *l, 3988 struct extent_buffer *right, 3989 int slot, int mid, int nritems) 3990 { 3991 int data_copy_size; 3992 int rt_data_off; 3993 int i; 3994 struct btrfs_disk_key disk_key; 3995 struct btrfs_map_token token; 3996 3997 btrfs_init_map_token(&token); 3998 3999 nritems = nritems - mid; 4000 btrfs_set_header_nritems(right, nritems); 4001 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l); 4002 4003 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4004 btrfs_item_nr_offset(mid), 4005 nritems * sizeof(struct btrfs_item)); 4006 4007 copy_extent_buffer(right, l, 4008 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4009 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4010 leaf_data_end(fs_info, l), data_copy_size); 4011 4012 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4013 4014 for (i = 0; i < nritems; i++) { 4015 struct btrfs_item *item = btrfs_item_nr(i); 4016 u32 ioff; 4017 4018 ioff = btrfs_token_item_offset(right, item, &token); 4019 btrfs_set_token_item_offset(right, item, 4020 ioff + rt_data_off, &token); 4021 } 4022 4023 btrfs_set_header_nritems(l, mid); 4024 btrfs_item_key(right, &disk_key, 0); 4025 insert_ptr(trans, fs_info, path, &disk_key, right->start, 4026 path->slots[1] + 1, 1); 4027 4028 btrfs_mark_buffer_dirty(right); 4029 btrfs_mark_buffer_dirty(l); 4030 BUG_ON(path->slots[0] != slot); 4031 4032 if (mid <= slot) { 4033 btrfs_tree_unlock(path->nodes[0]); 4034 free_extent_buffer(path->nodes[0]); 4035 path->nodes[0] = right; 4036 path->slots[0] -= mid; 4037 path->slots[1] += 1; 4038 } else { 4039 btrfs_tree_unlock(right); 4040 free_extent_buffer(right); 4041 } 4042 4043 BUG_ON(path->slots[0] < 0); 4044 } 4045 4046 /* 4047 * double splits happen when we need to insert a big item in the middle 4048 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4049 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4050 * A B C 4051 * 4052 * We avoid this by trying to push the items on either side of our target 4053 * into the adjacent leaves. If all goes well we can avoid the double split 4054 * completely. 4055 */ 4056 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4057 struct btrfs_root *root, 4058 struct btrfs_path *path, 4059 int data_size) 4060 { 4061 struct btrfs_fs_info *fs_info = root->fs_info; 4062 int ret; 4063 int progress = 0; 4064 int slot; 4065 u32 nritems; 4066 int space_needed = data_size; 4067 4068 slot = path->slots[0]; 4069 if (slot < btrfs_header_nritems(path->nodes[0])) 4070 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4071 4072 /* 4073 * try to push all the items after our slot into the 4074 * right leaf 4075 */ 4076 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4077 if (ret < 0) 4078 return ret; 4079 4080 if (ret == 0) 4081 progress++; 4082 4083 nritems = btrfs_header_nritems(path->nodes[0]); 4084 /* 4085 * our goal is to get our slot at the start or end of a leaf. If 4086 * we've done so we're done 4087 */ 4088 if (path->slots[0] == 0 || path->slots[0] == nritems) 4089 return 0; 4090 4091 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4092 return 0; 4093 4094 /* try to push all the items before our slot into the next leaf */ 4095 slot = path->slots[0]; 4096 space_needed = data_size; 4097 if (slot > 0) 4098 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4099 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4100 if (ret < 0) 4101 return ret; 4102 4103 if (ret == 0) 4104 progress++; 4105 4106 if (progress) 4107 return 0; 4108 return 1; 4109 } 4110 4111 /* 4112 * split the path's leaf in two, making sure there is at least data_size 4113 * available for the resulting leaf level of the path. 4114 * 4115 * returns 0 if all went well and < 0 on failure. 4116 */ 4117 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4118 struct btrfs_root *root, 4119 const struct btrfs_key *ins_key, 4120 struct btrfs_path *path, int data_size, 4121 int extend) 4122 { 4123 struct btrfs_disk_key disk_key; 4124 struct extent_buffer *l; 4125 u32 nritems; 4126 int mid; 4127 int slot; 4128 struct extent_buffer *right; 4129 struct btrfs_fs_info *fs_info = root->fs_info; 4130 int ret = 0; 4131 int wret; 4132 int split; 4133 int num_doubles = 0; 4134 int tried_avoid_double = 0; 4135 4136 l = path->nodes[0]; 4137 slot = path->slots[0]; 4138 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4139 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4140 return -EOVERFLOW; 4141 4142 /* first try to make some room by pushing left and right */ 4143 if (data_size && path->nodes[1]) { 4144 int space_needed = data_size; 4145 4146 if (slot < btrfs_header_nritems(l)) 4147 space_needed -= btrfs_leaf_free_space(fs_info, l); 4148 4149 wret = push_leaf_right(trans, root, path, space_needed, 4150 space_needed, 0, 0); 4151 if (wret < 0) 4152 return wret; 4153 if (wret) { 4154 space_needed = data_size; 4155 if (slot > 0) 4156 space_needed -= btrfs_leaf_free_space(fs_info, 4157 l); 4158 wret = push_leaf_left(trans, root, path, space_needed, 4159 space_needed, 0, (u32)-1); 4160 if (wret < 0) 4161 return wret; 4162 } 4163 l = path->nodes[0]; 4164 4165 /* did the pushes work? */ 4166 if (btrfs_leaf_free_space(fs_info, l) >= data_size) 4167 return 0; 4168 } 4169 4170 if (!path->nodes[1]) { 4171 ret = insert_new_root(trans, root, path, 1); 4172 if (ret) 4173 return ret; 4174 } 4175 again: 4176 split = 1; 4177 l = path->nodes[0]; 4178 slot = path->slots[0]; 4179 nritems = btrfs_header_nritems(l); 4180 mid = (nritems + 1) / 2; 4181 4182 if (mid <= slot) { 4183 if (nritems == 1 || 4184 leaf_space_used(l, mid, nritems - mid) + data_size > 4185 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4186 if (slot >= nritems) { 4187 split = 0; 4188 } else { 4189 mid = slot; 4190 if (mid != nritems && 4191 leaf_space_used(l, mid, nritems - mid) + 4192 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4193 if (data_size && !tried_avoid_double) 4194 goto push_for_double; 4195 split = 2; 4196 } 4197 } 4198 } 4199 } else { 4200 if (leaf_space_used(l, 0, mid) + data_size > 4201 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4202 if (!extend && data_size && slot == 0) { 4203 split = 0; 4204 } else if ((extend || !data_size) && slot == 0) { 4205 mid = 1; 4206 } else { 4207 mid = slot; 4208 if (mid != nritems && 4209 leaf_space_used(l, mid, nritems - mid) + 4210 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4211 if (data_size && !tried_avoid_double) 4212 goto push_for_double; 4213 split = 2; 4214 } 4215 } 4216 } 4217 } 4218 4219 if (split == 0) 4220 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4221 else 4222 btrfs_item_key(l, &disk_key, mid); 4223 4224 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4225 &disk_key, 0, l->start, 0); 4226 if (IS_ERR(right)) 4227 return PTR_ERR(right); 4228 4229 root_add_used(root, fs_info->nodesize); 4230 4231 if (split == 0) { 4232 if (mid <= slot) { 4233 btrfs_set_header_nritems(right, 0); 4234 insert_ptr(trans, fs_info, path, &disk_key, 4235 right->start, path->slots[1] + 1, 1); 4236 btrfs_tree_unlock(path->nodes[0]); 4237 free_extent_buffer(path->nodes[0]); 4238 path->nodes[0] = right; 4239 path->slots[0] = 0; 4240 path->slots[1] += 1; 4241 } else { 4242 btrfs_set_header_nritems(right, 0); 4243 insert_ptr(trans, fs_info, path, &disk_key, 4244 right->start, path->slots[1], 1); 4245 btrfs_tree_unlock(path->nodes[0]); 4246 free_extent_buffer(path->nodes[0]); 4247 path->nodes[0] = right; 4248 path->slots[0] = 0; 4249 if (path->slots[1] == 0) 4250 fixup_low_keys(path, &disk_key, 1); 4251 } 4252 /* 4253 * We create a new leaf 'right' for the required ins_len and 4254 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4255 * the content of ins_len to 'right'. 4256 */ 4257 return ret; 4258 } 4259 4260 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems); 4261 4262 if (split == 2) { 4263 BUG_ON(num_doubles != 0); 4264 num_doubles++; 4265 goto again; 4266 } 4267 4268 return 0; 4269 4270 push_for_double: 4271 push_for_double_split(trans, root, path, data_size); 4272 tried_avoid_double = 1; 4273 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4274 return 0; 4275 goto again; 4276 } 4277 4278 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4279 struct btrfs_root *root, 4280 struct btrfs_path *path, int ins_len) 4281 { 4282 struct btrfs_fs_info *fs_info = root->fs_info; 4283 struct btrfs_key key; 4284 struct extent_buffer *leaf; 4285 struct btrfs_file_extent_item *fi; 4286 u64 extent_len = 0; 4287 u32 item_size; 4288 int ret; 4289 4290 leaf = path->nodes[0]; 4291 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4292 4293 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4294 key.type != BTRFS_EXTENT_CSUM_KEY); 4295 4296 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len) 4297 return 0; 4298 4299 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4300 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4301 fi = btrfs_item_ptr(leaf, path->slots[0], 4302 struct btrfs_file_extent_item); 4303 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4304 } 4305 btrfs_release_path(path); 4306 4307 path->keep_locks = 1; 4308 path->search_for_split = 1; 4309 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4310 path->search_for_split = 0; 4311 if (ret > 0) 4312 ret = -EAGAIN; 4313 if (ret < 0) 4314 goto err; 4315 4316 ret = -EAGAIN; 4317 leaf = path->nodes[0]; 4318 /* if our item isn't there, return now */ 4319 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4320 goto err; 4321 4322 /* the leaf has changed, it now has room. return now */ 4323 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len) 4324 goto err; 4325 4326 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4327 fi = btrfs_item_ptr(leaf, path->slots[0], 4328 struct btrfs_file_extent_item); 4329 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4330 goto err; 4331 } 4332 4333 btrfs_set_path_blocking(path); 4334 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4335 if (ret) 4336 goto err; 4337 4338 path->keep_locks = 0; 4339 btrfs_unlock_up_safe(path, 1); 4340 return 0; 4341 err: 4342 path->keep_locks = 0; 4343 return ret; 4344 } 4345 4346 static noinline int split_item(struct btrfs_fs_info *fs_info, 4347 struct btrfs_path *path, 4348 const struct btrfs_key *new_key, 4349 unsigned long split_offset) 4350 { 4351 struct extent_buffer *leaf; 4352 struct btrfs_item *item; 4353 struct btrfs_item *new_item; 4354 int slot; 4355 char *buf; 4356 u32 nritems; 4357 u32 item_size; 4358 u32 orig_offset; 4359 struct btrfs_disk_key disk_key; 4360 4361 leaf = path->nodes[0]; 4362 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item)); 4363 4364 btrfs_set_path_blocking(path); 4365 4366 item = btrfs_item_nr(path->slots[0]); 4367 orig_offset = btrfs_item_offset(leaf, item); 4368 item_size = btrfs_item_size(leaf, item); 4369 4370 buf = kmalloc(item_size, GFP_NOFS); 4371 if (!buf) 4372 return -ENOMEM; 4373 4374 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4375 path->slots[0]), item_size); 4376 4377 slot = path->slots[0] + 1; 4378 nritems = btrfs_header_nritems(leaf); 4379 if (slot != nritems) { 4380 /* shift the items */ 4381 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4382 btrfs_item_nr_offset(slot), 4383 (nritems - slot) * sizeof(struct btrfs_item)); 4384 } 4385 4386 btrfs_cpu_key_to_disk(&disk_key, new_key); 4387 btrfs_set_item_key(leaf, &disk_key, slot); 4388 4389 new_item = btrfs_item_nr(slot); 4390 4391 btrfs_set_item_offset(leaf, new_item, orig_offset); 4392 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4393 4394 btrfs_set_item_offset(leaf, item, 4395 orig_offset + item_size - split_offset); 4396 btrfs_set_item_size(leaf, item, split_offset); 4397 4398 btrfs_set_header_nritems(leaf, nritems + 1); 4399 4400 /* write the data for the start of the original item */ 4401 write_extent_buffer(leaf, buf, 4402 btrfs_item_ptr_offset(leaf, path->slots[0]), 4403 split_offset); 4404 4405 /* write the data for the new item */ 4406 write_extent_buffer(leaf, buf + split_offset, 4407 btrfs_item_ptr_offset(leaf, slot), 4408 item_size - split_offset); 4409 btrfs_mark_buffer_dirty(leaf); 4410 4411 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0); 4412 kfree(buf); 4413 return 0; 4414 } 4415 4416 /* 4417 * This function splits a single item into two items, 4418 * giving 'new_key' to the new item and splitting the 4419 * old one at split_offset (from the start of the item). 4420 * 4421 * The path may be released by this operation. After 4422 * the split, the path is pointing to the old item. The 4423 * new item is going to be in the same node as the old one. 4424 * 4425 * Note, the item being split must be smaller enough to live alone on 4426 * a tree block with room for one extra struct btrfs_item 4427 * 4428 * This allows us to split the item in place, keeping a lock on the 4429 * leaf the entire time. 4430 */ 4431 int btrfs_split_item(struct btrfs_trans_handle *trans, 4432 struct btrfs_root *root, 4433 struct btrfs_path *path, 4434 const struct btrfs_key *new_key, 4435 unsigned long split_offset) 4436 { 4437 int ret; 4438 ret = setup_leaf_for_split(trans, root, path, 4439 sizeof(struct btrfs_item)); 4440 if (ret) 4441 return ret; 4442 4443 ret = split_item(root->fs_info, path, new_key, split_offset); 4444 return ret; 4445 } 4446 4447 /* 4448 * This function duplicate a item, giving 'new_key' to the new item. 4449 * It guarantees both items live in the same tree leaf and the new item 4450 * is contiguous with the original item. 4451 * 4452 * This allows us to split file extent in place, keeping a lock on the 4453 * leaf the entire time. 4454 */ 4455 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4456 struct btrfs_root *root, 4457 struct btrfs_path *path, 4458 const struct btrfs_key *new_key) 4459 { 4460 struct extent_buffer *leaf; 4461 int ret; 4462 u32 item_size; 4463 4464 leaf = path->nodes[0]; 4465 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4466 ret = setup_leaf_for_split(trans, root, path, 4467 item_size + sizeof(struct btrfs_item)); 4468 if (ret) 4469 return ret; 4470 4471 path->slots[0]++; 4472 setup_items_for_insert(root, path, new_key, &item_size, 4473 item_size, item_size + 4474 sizeof(struct btrfs_item), 1); 4475 leaf = path->nodes[0]; 4476 memcpy_extent_buffer(leaf, 4477 btrfs_item_ptr_offset(leaf, path->slots[0]), 4478 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4479 item_size); 4480 return 0; 4481 } 4482 4483 /* 4484 * make the item pointed to by the path smaller. new_size indicates 4485 * how small to make it, and from_end tells us if we just chop bytes 4486 * off the end of the item or if we shift the item to chop bytes off 4487 * the front. 4488 */ 4489 void btrfs_truncate_item(struct btrfs_fs_info *fs_info, 4490 struct btrfs_path *path, u32 new_size, int from_end) 4491 { 4492 int slot; 4493 struct extent_buffer *leaf; 4494 struct btrfs_item *item; 4495 u32 nritems; 4496 unsigned int data_end; 4497 unsigned int old_data_start; 4498 unsigned int old_size; 4499 unsigned int size_diff; 4500 int i; 4501 struct btrfs_map_token token; 4502 4503 btrfs_init_map_token(&token); 4504 4505 leaf = path->nodes[0]; 4506 slot = path->slots[0]; 4507 4508 old_size = btrfs_item_size_nr(leaf, slot); 4509 if (old_size == new_size) 4510 return; 4511 4512 nritems = btrfs_header_nritems(leaf); 4513 data_end = leaf_data_end(fs_info, leaf); 4514 4515 old_data_start = btrfs_item_offset_nr(leaf, slot); 4516 4517 size_diff = old_size - new_size; 4518 4519 BUG_ON(slot < 0); 4520 BUG_ON(slot >= nritems); 4521 4522 /* 4523 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4524 */ 4525 /* first correct the data pointers */ 4526 for (i = slot; i < nritems; i++) { 4527 u32 ioff; 4528 item = btrfs_item_nr(i); 4529 4530 ioff = btrfs_token_item_offset(leaf, item, &token); 4531 btrfs_set_token_item_offset(leaf, item, 4532 ioff + size_diff, &token); 4533 } 4534 4535 /* shift the data */ 4536 if (from_end) { 4537 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4538 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4539 data_end, old_data_start + new_size - data_end); 4540 } else { 4541 struct btrfs_disk_key disk_key; 4542 u64 offset; 4543 4544 btrfs_item_key(leaf, &disk_key, slot); 4545 4546 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4547 unsigned long ptr; 4548 struct btrfs_file_extent_item *fi; 4549 4550 fi = btrfs_item_ptr(leaf, slot, 4551 struct btrfs_file_extent_item); 4552 fi = (struct btrfs_file_extent_item *)( 4553 (unsigned long)fi - size_diff); 4554 4555 if (btrfs_file_extent_type(leaf, fi) == 4556 BTRFS_FILE_EXTENT_INLINE) { 4557 ptr = btrfs_item_ptr_offset(leaf, slot); 4558 memmove_extent_buffer(leaf, ptr, 4559 (unsigned long)fi, 4560 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4561 } 4562 } 4563 4564 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4565 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4566 data_end, old_data_start - data_end); 4567 4568 offset = btrfs_disk_key_offset(&disk_key); 4569 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4570 btrfs_set_item_key(leaf, &disk_key, slot); 4571 if (slot == 0) 4572 fixup_low_keys(path, &disk_key, 1); 4573 } 4574 4575 item = btrfs_item_nr(slot); 4576 btrfs_set_item_size(leaf, item, new_size); 4577 btrfs_mark_buffer_dirty(leaf); 4578 4579 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4580 btrfs_print_leaf(leaf); 4581 BUG(); 4582 } 4583 } 4584 4585 /* 4586 * make the item pointed to by the path bigger, data_size is the added size. 4587 */ 4588 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 4589 u32 data_size) 4590 { 4591 int slot; 4592 struct extent_buffer *leaf; 4593 struct btrfs_item *item; 4594 u32 nritems; 4595 unsigned int data_end; 4596 unsigned int old_data; 4597 unsigned int old_size; 4598 int i; 4599 struct btrfs_map_token token; 4600 4601 btrfs_init_map_token(&token); 4602 4603 leaf = path->nodes[0]; 4604 4605 nritems = btrfs_header_nritems(leaf); 4606 data_end = leaf_data_end(fs_info, leaf); 4607 4608 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) { 4609 btrfs_print_leaf(leaf); 4610 BUG(); 4611 } 4612 slot = path->slots[0]; 4613 old_data = btrfs_item_end_nr(leaf, slot); 4614 4615 BUG_ON(slot < 0); 4616 if (slot >= nritems) { 4617 btrfs_print_leaf(leaf); 4618 btrfs_crit(fs_info, "slot %d too large, nritems %d", 4619 slot, nritems); 4620 BUG_ON(1); 4621 } 4622 4623 /* 4624 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4625 */ 4626 /* first correct the data pointers */ 4627 for (i = slot; i < nritems; i++) { 4628 u32 ioff; 4629 item = btrfs_item_nr(i); 4630 4631 ioff = btrfs_token_item_offset(leaf, item, &token); 4632 btrfs_set_token_item_offset(leaf, item, 4633 ioff - data_size, &token); 4634 } 4635 4636 /* shift the data */ 4637 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4638 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4639 data_end, old_data - data_end); 4640 4641 data_end = old_data; 4642 old_size = btrfs_item_size_nr(leaf, slot); 4643 item = btrfs_item_nr(slot); 4644 btrfs_set_item_size(leaf, item, old_size + data_size); 4645 btrfs_mark_buffer_dirty(leaf); 4646 4647 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4648 btrfs_print_leaf(leaf); 4649 BUG(); 4650 } 4651 } 4652 4653 /* 4654 * this is a helper for btrfs_insert_empty_items, the main goal here is 4655 * to save stack depth by doing the bulk of the work in a function 4656 * that doesn't call btrfs_search_slot 4657 */ 4658 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4659 const struct btrfs_key *cpu_key, u32 *data_size, 4660 u32 total_data, u32 total_size, int nr) 4661 { 4662 struct btrfs_fs_info *fs_info = root->fs_info; 4663 struct btrfs_item *item; 4664 int i; 4665 u32 nritems; 4666 unsigned int data_end; 4667 struct btrfs_disk_key disk_key; 4668 struct extent_buffer *leaf; 4669 int slot; 4670 struct btrfs_map_token token; 4671 4672 if (path->slots[0] == 0) { 4673 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4674 fixup_low_keys(path, &disk_key, 1); 4675 } 4676 btrfs_unlock_up_safe(path, 1); 4677 4678 btrfs_init_map_token(&token); 4679 4680 leaf = path->nodes[0]; 4681 slot = path->slots[0]; 4682 4683 nritems = btrfs_header_nritems(leaf); 4684 data_end = leaf_data_end(fs_info, leaf); 4685 4686 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) { 4687 btrfs_print_leaf(leaf); 4688 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4689 total_size, btrfs_leaf_free_space(fs_info, leaf)); 4690 BUG(); 4691 } 4692 4693 if (slot != nritems) { 4694 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4695 4696 if (old_data < data_end) { 4697 btrfs_print_leaf(leaf); 4698 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4699 slot, old_data, data_end); 4700 BUG_ON(1); 4701 } 4702 /* 4703 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4704 */ 4705 /* first correct the data pointers */ 4706 for (i = slot; i < nritems; i++) { 4707 u32 ioff; 4708 4709 item = btrfs_item_nr(i); 4710 ioff = btrfs_token_item_offset(leaf, item, &token); 4711 btrfs_set_token_item_offset(leaf, item, 4712 ioff - total_data, &token); 4713 } 4714 /* shift the items */ 4715 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4716 btrfs_item_nr_offset(slot), 4717 (nritems - slot) * sizeof(struct btrfs_item)); 4718 4719 /* shift the data */ 4720 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4721 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4722 data_end, old_data - data_end); 4723 data_end = old_data; 4724 } 4725 4726 /* setup the item for the new data */ 4727 for (i = 0; i < nr; i++) { 4728 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4729 btrfs_set_item_key(leaf, &disk_key, slot + i); 4730 item = btrfs_item_nr(slot + i); 4731 btrfs_set_token_item_offset(leaf, item, 4732 data_end - data_size[i], &token); 4733 data_end -= data_size[i]; 4734 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4735 } 4736 4737 btrfs_set_header_nritems(leaf, nritems + nr); 4738 btrfs_mark_buffer_dirty(leaf); 4739 4740 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4741 btrfs_print_leaf(leaf); 4742 BUG(); 4743 } 4744 } 4745 4746 /* 4747 * Given a key and some data, insert items into the tree. 4748 * This does all the path init required, making room in the tree if needed. 4749 */ 4750 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4751 struct btrfs_root *root, 4752 struct btrfs_path *path, 4753 const struct btrfs_key *cpu_key, u32 *data_size, 4754 int nr) 4755 { 4756 int ret = 0; 4757 int slot; 4758 int i; 4759 u32 total_size = 0; 4760 u32 total_data = 0; 4761 4762 for (i = 0; i < nr; i++) 4763 total_data += data_size[i]; 4764 4765 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4766 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4767 if (ret == 0) 4768 return -EEXIST; 4769 if (ret < 0) 4770 return ret; 4771 4772 slot = path->slots[0]; 4773 BUG_ON(slot < 0); 4774 4775 setup_items_for_insert(root, path, cpu_key, data_size, 4776 total_data, total_size, nr); 4777 return 0; 4778 } 4779 4780 /* 4781 * Given a key and some data, insert an item into the tree. 4782 * This does all the path init required, making room in the tree if needed. 4783 */ 4784 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4785 const struct btrfs_key *cpu_key, void *data, 4786 u32 data_size) 4787 { 4788 int ret = 0; 4789 struct btrfs_path *path; 4790 struct extent_buffer *leaf; 4791 unsigned long ptr; 4792 4793 path = btrfs_alloc_path(); 4794 if (!path) 4795 return -ENOMEM; 4796 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4797 if (!ret) { 4798 leaf = path->nodes[0]; 4799 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4800 write_extent_buffer(leaf, data, ptr, data_size); 4801 btrfs_mark_buffer_dirty(leaf); 4802 } 4803 btrfs_free_path(path); 4804 return ret; 4805 } 4806 4807 /* 4808 * delete the pointer from a given node. 4809 * 4810 * the tree should have been previously balanced so the deletion does not 4811 * empty a node. 4812 */ 4813 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4814 int level, int slot) 4815 { 4816 struct extent_buffer *parent = path->nodes[level]; 4817 u32 nritems; 4818 int ret; 4819 4820 nritems = btrfs_header_nritems(parent); 4821 if (slot != nritems - 1) { 4822 if (level) { 4823 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4824 nritems - slot - 1); 4825 BUG_ON(ret < 0); 4826 } 4827 memmove_extent_buffer(parent, 4828 btrfs_node_key_ptr_offset(slot), 4829 btrfs_node_key_ptr_offset(slot + 1), 4830 sizeof(struct btrfs_key_ptr) * 4831 (nritems - slot - 1)); 4832 } else if (level) { 4833 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4834 GFP_NOFS); 4835 BUG_ON(ret < 0); 4836 } 4837 4838 nritems--; 4839 btrfs_set_header_nritems(parent, nritems); 4840 if (nritems == 0 && parent == root->node) { 4841 BUG_ON(btrfs_header_level(root->node) != 1); 4842 /* just turn the root into a leaf and break */ 4843 btrfs_set_header_level(root->node, 0); 4844 } else if (slot == 0) { 4845 struct btrfs_disk_key disk_key; 4846 4847 btrfs_node_key(parent, &disk_key, 0); 4848 fixup_low_keys(path, &disk_key, level + 1); 4849 } 4850 btrfs_mark_buffer_dirty(parent); 4851 } 4852 4853 /* 4854 * a helper function to delete the leaf pointed to by path->slots[1] and 4855 * path->nodes[1]. 4856 * 4857 * This deletes the pointer in path->nodes[1] and frees the leaf 4858 * block extent. zero is returned if it all worked out, < 0 otherwise. 4859 * 4860 * The path must have already been setup for deleting the leaf, including 4861 * all the proper balancing. path->nodes[1] must be locked. 4862 */ 4863 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4864 struct btrfs_root *root, 4865 struct btrfs_path *path, 4866 struct extent_buffer *leaf) 4867 { 4868 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4869 del_ptr(root, path, 1, path->slots[1]); 4870 4871 /* 4872 * btrfs_free_extent is expensive, we want to make sure we 4873 * aren't holding any locks when we call it 4874 */ 4875 btrfs_unlock_up_safe(path, 0); 4876 4877 root_sub_used(root, leaf->len); 4878 4879 extent_buffer_get(leaf); 4880 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4881 free_extent_buffer_stale(leaf); 4882 } 4883 /* 4884 * delete the item at the leaf level in path. If that empties 4885 * the leaf, remove it from the tree 4886 */ 4887 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4888 struct btrfs_path *path, int slot, int nr) 4889 { 4890 struct btrfs_fs_info *fs_info = root->fs_info; 4891 struct extent_buffer *leaf; 4892 struct btrfs_item *item; 4893 u32 last_off; 4894 u32 dsize = 0; 4895 int ret = 0; 4896 int wret; 4897 int i; 4898 u32 nritems; 4899 struct btrfs_map_token token; 4900 4901 btrfs_init_map_token(&token); 4902 4903 leaf = path->nodes[0]; 4904 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4905 4906 for (i = 0; i < nr; i++) 4907 dsize += btrfs_item_size_nr(leaf, slot + i); 4908 4909 nritems = btrfs_header_nritems(leaf); 4910 4911 if (slot + nr != nritems) { 4912 int data_end = leaf_data_end(fs_info, leaf); 4913 4914 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4915 data_end + dsize, 4916 BTRFS_LEAF_DATA_OFFSET + data_end, 4917 last_off - data_end); 4918 4919 for (i = slot + nr; i < nritems; i++) { 4920 u32 ioff; 4921 4922 item = btrfs_item_nr(i); 4923 ioff = btrfs_token_item_offset(leaf, item, &token); 4924 btrfs_set_token_item_offset(leaf, item, 4925 ioff + dsize, &token); 4926 } 4927 4928 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4929 btrfs_item_nr_offset(slot + nr), 4930 sizeof(struct btrfs_item) * 4931 (nritems - slot - nr)); 4932 } 4933 btrfs_set_header_nritems(leaf, nritems - nr); 4934 nritems -= nr; 4935 4936 /* delete the leaf if we've emptied it */ 4937 if (nritems == 0) { 4938 if (leaf == root->node) { 4939 btrfs_set_header_level(leaf, 0); 4940 } else { 4941 btrfs_set_path_blocking(path); 4942 clean_tree_block(fs_info, leaf); 4943 btrfs_del_leaf(trans, root, path, leaf); 4944 } 4945 } else { 4946 int used = leaf_space_used(leaf, 0, nritems); 4947 if (slot == 0) { 4948 struct btrfs_disk_key disk_key; 4949 4950 btrfs_item_key(leaf, &disk_key, 0); 4951 fixup_low_keys(path, &disk_key, 1); 4952 } 4953 4954 /* delete the leaf if it is mostly empty */ 4955 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4956 /* push_leaf_left fixes the path. 4957 * make sure the path still points to our leaf 4958 * for possible call to del_ptr below 4959 */ 4960 slot = path->slots[1]; 4961 extent_buffer_get(leaf); 4962 4963 btrfs_set_path_blocking(path); 4964 wret = push_leaf_left(trans, root, path, 1, 1, 4965 1, (u32)-1); 4966 if (wret < 0 && wret != -ENOSPC) 4967 ret = wret; 4968 4969 if (path->nodes[0] == leaf && 4970 btrfs_header_nritems(leaf)) { 4971 wret = push_leaf_right(trans, root, path, 1, 4972 1, 1, 0); 4973 if (wret < 0 && wret != -ENOSPC) 4974 ret = wret; 4975 } 4976 4977 if (btrfs_header_nritems(leaf) == 0) { 4978 path->slots[1] = slot; 4979 btrfs_del_leaf(trans, root, path, leaf); 4980 free_extent_buffer(leaf); 4981 ret = 0; 4982 } else { 4983 /* if we're still in the path, make sure 4984 * we're dirty. Otherwise, one of the 4985 * push_leaf functions must have already 4986 * dirtied this buffer 4987 */ 4988 if (path->nodes[0] == leaf) 4989 btrfs_mark_buffer_dirty(leaf); 4990 free_extent_buffer(leaf); 4991 } 4992 } else { 4993 btrfs_mark_buffer_dirty(leaf); 4994 } 4995 } 4996 return ret; 4997 } 4998 4999 /* 5000 * search the tree again to find a leaf with lesser keys 5001 * returns 0 if it found something or 1 if there are no lesser leaves. 5002 * returns < 0 on io errors. 5003 * 5004 * This may release the path, and so you may lose any locks held at the 5005 * time you call it. 5006 */ 5007 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5008 { 5009 struct btrfs_key key; 5010 struct btrfs_disk_key found_key; 5011 int ret; 5012 5013 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5014 5015 if (key.offset > 0) { 5016 key.offset--; 5017 } else if (key.type > 0) { 5018 key.type--; 5019 key.offset = (u64)-1; 5020 } else if (key.objectid > 0) { 5021 key.objectid--; 5022 key.type = (u8)-1; 5023 key.offset = (u64)-1; 5024 } else { 5025 return 1; 5026 } 5027 5028 btrfs_release_path(path); 5029 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5030 if (ret < 0) 5031 return ret; 5032 btrfs_item_key(path->nodes[0], &found_key, 0); 5033 ret = comp_keys(&found_key, &key); 5034 /* 5035 * We might have had an item with the previous key in the tree right 5036 * before we released our path. And after we released our path, that 5037 * item might have been pushed to the first slot (0) of the leaf we 5038 * were holding due to a tree balance. Alternatively, an item with the 5039 * previous key can exist as the only element of a leaf (big fat item). 5040 * Therefore account for these 2 cases, so that our callers (like 5041 * btrfs_previous_item) don't miss an existing item with a key matching 5042 * the previous key we computed above. 5043 */ 5044 if (ret <= 0) 5045 return 0; 5046 return 1; 5047 } 5048 5049 /* 5050 * A helper function to walk down the tree starting at min_key, and looking 5051 * for nodes or leaves that are have a minimum transaction id. 5052 * This is used by the btree defrag code, and tree logging 5053 * 5054 * This does not cow, but it does stuff the starting key it finds back 5055 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5056 * key and get a writable path. 5057 * 5058 * This honors path->lowest_level to prevent descent past a given level 5059 * of the tree. 5060 * 5061 * min_trans indicates the oldest transaction that you are interested 5062 * in walking through. Any nodes or leaves older than min_trans are 5063 * skipped over (without reading them). 5064 * 5065 * returns zero if something useful was found, < 0 on error and 1 if there 5066 * was nothing in the tree that matched the search criteria. 5067 */ 5068 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5069 struct btrfs_path *path, 5070 u64 min_trans) 5071 { 5072 struct btrfs_fs_info *fs_info = root->fs_info; 5073 struct extent_buffer *cur; 5074 struct btrfs_key found_key; 5075 int slot; 5076 int sret; 5077 u32 nritems; 5078 int level; 5079 int ret = 1; 5080 int keep_locks = path->keep_locks; 5081 5082 path->keep_locks = 1; 5083 again: 5084 cur = btrfs_read_lock_root_node(root); 5085 level = btrfs_header_level(cur); 5086 WARN_ON(path->nodes[level]); 5087 path->nodes[level] = cur; 5088 path->locks[level] = BTRFS_READ_LOCK; 5089 5090 if (btrfs_header_generation(cur) < min_trans) { 5091 ret = 1; 5092 goto out; 5093 } 5094 while (1) { 5095 nritems = btrfs_header_nritems(cur); 5096 level = btrfs_header_level(cur); 5097 sret = btrfs_bin_search(cur, min_key, level, &slot); 5098 5099 /* at the lowest level, we're done, setup the path and exit */ 5100 if (level == path->lowest_level) { 5101 if (slot >= nritems) 5102 goto find_next_key; 5103 ret = 0; 5104 path->slots[level] = slot; 5105 btrfs_item_key_to_cpu(cur, &found_key, slot); 5106 goto out; 5107 } 5108 if (sret && slot > 0) 5109 slot--; 5110 /* 5111 * check this node pointer against the min_trans parameters. 5112 * If it is too old, old, skip to the next one. 5113 */ 5114 while (slot < nritems) { 5115 u64 gen; 5116 5117 gen = btrfs_node_ptr_generation(cur, slot); 5118 if (gen < min_trans) { 5119 slot++; 5120 continue; 5121 } 5122 break; 5123 } 5124 find_next_key: 5125 /* 5126 * we didn't find a candidate key in this node, walk forward 5127 * and find another one 5128 */ 5129 if (slot >= nritems) { 5130 path->slots[level] = slot; 5131 btrfs_set_path_blocking(path); 5132 sret = btrfs_find_next_key(root, path, min_key, level, 5133 min_trans); 5134 if (sret == 0) { 5135 btrfs_release_path(path); 5136 goto again; 5137 } else { 5138 goto out; 5139 } 5140 } 5141 /* save our key for returning back */ 5142 btrfs_node_key_to_cpu(cur, &found_key, slot); 5143 path->slots[level] = slot; 5144 if (level == path->lowest_level) { 5145 ret = 0; 5146 goto out; 5147 } 5148 btrfs_set_path_blocking(path); 5149 cur = read_node_slot(fs_info, cur, slot); 5150 if (IS_ERR(cur)) { 5151 ret = PTR_ERR(cur); 5152 goto out; 5153 } 5154 5155 btrfs_tree_read_lock(cur); 5156 5157 path->locks[level - 1] = BTRFS_READ_LOCK; 5158 path->nodes[level - 1] = cur; 5159 unlock_up(path, level, 1, 0, NULL); 5160 } 5161 out: 5162 path->keep_locks = keep_locks; 5163 if (ret == 0) { 5164 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5165 btrfs_set_path_blocking(path); 5166 memcpy(min_key, &found_key, sizeof(found_key)); 5167 } 5168 return ret; 5169 } 5170 5171 static int tree_move_down(struct btrfs_fs_info *fs_info, 5172 struct btrfs_path *path, 5173 int *level) 5174 { 5175 struct extent_buffer *eb; 5176 5177 BUG_ON(*level == 0); 5178 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]); 5179 if (IS_ERR(eb)) 5180 return PTR_ERR(eb); 5181 5182 path->nodes[*level - 1] = eb; 5183 path->slots[*level - 1] = 0; 5184 (*level)--; 5185 return 0; 5186 } 5187 5188 static int tree_move_next_or_upnext(struct btrfs_path *path, 5189 int *level, int root_level) 5190 { 5191 int ret = 0; 5192 int nritems; 5193 nritems = btrfs_header_nritems(path->nodes[*level]); 5194 5195 path->slots[*level]++; 5196 5197 while (path->slots[*level] >= nritems) { 5198 if (*level == root_level) 5199 return -1; 5200 5201 /* move upnext */ 5202 path->slots[*level] = 0; 5203 free_extent_buffer(path->nodes[*level]); 5204 path->nodes[*level] = NULL; 5205 (*level)++; 5206 path->slots[*level]++; 5207 5208 nritems = btrfs_header_nritems(path->nodes[*level]); 5209 ret = 1; 5210 } 5211 return ret; 5212 } 5213 5214 /* 5215 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5216 * or down. 5217 */ 5218 static int tree_advance(struct btrfs_fs_info *fs_info, 5219 struct btrfs_path *path, 5220 int *level, int root_level, 5221 int allow_down, 5222 struct btrfs_key *key) 5223 { 5224 int ret; 5225 5226 if (*level == 0 || !allow_down) { 5227 ret = tree_move_next_or_upnext(path, level, root_level); 5228 } else { 5229 ret = tree_move_down(fs_info, path, level); 5230 } 5231 if (ret >= 0) { 5232 if (*level == 0) 5233 btrfs_item_key_to_cpu(path->nodes[*level], key, 5234 path->slots[*level]); 5235 else 5236 btrfs_node_key_to_cpu(path->nodes[*level], key, 5237 path->slots[*level]); 5238 } 5239 return ret; 5240 } 5241 5242 static int tree_compare_item(struct btrfs_path *left_path, 5243 struct btrfs_path *right_path, 5244 char *tmp_buf) 5245 { 5246 int cmp; 5247 int len1, len2; 5248 unsigned long off1, off2; 5249 5250 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5251 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5252 if (len1 != len2) 5253 return 1; 5254 5255 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5256 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5257 right_path->slots[0]); 5258 5259 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5260 5261 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5262 if (cmp) 5263 return 1; 5264 return 0; 5265 } 5266 5267 #define ADVANCE 1 5268 #define ADVANCE_ONLY_NEXT -1 5269 5270 /* 5271 * This function compares two trees and calls the provided callback for 5272 * every changed/new/deleted item it finds. 5273 * If shared tree blocks are encountered, whole subtrees are skipped, making 5274 * the compare pretty fast on snapshotted subvolumes. 5275 * 5276 * This currently works on commit roots only. As commit roots are read only, 5277 * we don't do any locking. The commit roots are protected with transactions. 5278 * Transactions are ended and rejoined when a commit is tried in between. 5279 * 5280 * This function checks for modifications done to the trees while comparing. 5281 * If it detects a change, it aborts immediately. 5282 */ 5283 int btrfs_compare_trees(struct btrfs_root *left_root, 5284 struct btrfs_root *right_root, 5285 btrfs_changed_cb_t changed_cb, void *ctx) 5286 { 5287 struct btrfs_fs_info *fs_info = left_root->fs_info; 5288 int ret; 5289 int cmp; 5290 struct btrfs_path *left_path = NULL; 5291 struct btrfs_path *right_path = NULL; 5292 struct btrfs_key left_key; 5293 struct btrfs_key right_key; 5294 char *tmp_buf = NULL; 5295 int left_root_level; 5296 int right_root_level; 5297 int left_level; 5298 int right_level; 5299 int left_end_reached; 5300 int right_end_reached; 5301 int advance_left; 5302 int advance_right; 5303 u64 left_blockptr; 5304 u64 right_blockptr; 5305 u64 left_gen; 5306 u64 right_gen; 5307 5308 left_path = btrfs_alloc_path(); 5309 if (!left_path) { 5310 ret = -ENOMEM; 5311 goto out; 5312 } 5313 right_path = btrfs_alloc_path(); 5314 if (!right_path) { 5315 ret = -ENOMEM; 5316 goto out; 5317 } 5318 5319 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 5320 if (!tmp_buf) { 5321 ret = -ENOMEM; 5322 goto out; 5323 } 5324 5325 left_path->search_commit_root = 1; 5326 left_path->skip_locking = 1; 5327 right_path->search_commit_root = 1; 5328 right_path->skip_locking = 1; 5329 5330 /* 5331 * Strategy: Go to the first items of both trees. Then do 5332 * 5333 * If both trees are at level 0 5334 * Compare keys of current items 5335 * If left < right treat left item as new, advance left tree 5336 * and repeat 5337 * If left > right treat right item as deleted, advance right tree 5338 * and repeat 5339 * If left == right do deep compare of items, treat as changed if 5340 * needed, advance both trees and repeat 5341 * If both trees are at the same level but not at level 0 5342 * Compare keys of current nodes/leafs 5343 * If left < right advance left tree and repeat 5344 * If left > right advance right tree and repeat 5345 * If left == right compare blockptrs of the next nodes/leafs 5346 * If they match advance both trees but stay at the same level 5347 * and repeat 5348 * If they don't match advance both trees while allowing to go 5349 * deeper and repeat 5350 * If tree levels are different 5351 * Advance the tree that needs it and repeat 5352 * 5353 * Advancing a tree means: 5354 * If we are at level 0, try to go to the next slot. If that's not 5355 * possible, go one level up and repeat. Stop when we found a level 5356 * where we could go to the next slot. We may at this point be on a 5357 * node or a leaf. 5358 * 5359 * If we are not at level 0 and not on shared tree blocks, go one 5360 * level deeper. 5361 * 5362 * If we are not at level 0 and on shared tree blocks, go one slot to 5363 * the right if possible or go up and right. 5364 */ 5365 5366 down_read(&fs_info->commit_root_sem); 5367 left_level = btrfs_header_level(left_root->commit_root); 5368 left_root_level = left_level; 5369 left_path->nodes[left_level] = 5370 btrfs_clone_extent_buffer(left_root->commit_root); 5371 if (!left_path->nodes[left_level]) { 5372 up_read(&fs_info->commit_root_sem); 5373 ret = -ENOMEM; 5374 goto out; 5375 } 5376 extent_buffer_get(left_path->nodes[left_level]); 5377 5378 right_level = btrfs_header_level(right_root->commit_root); 5379 right_root_level = right_level; 5380 right_path->nodes[right_level] = 5381 btrfs_clone_extent_buffer(right_root->commit_root); 5382 if (!right_path->nodes[right_level]) { 5383 up_read(&fs_info->commit_root_sem); 5384 ret = -ENOMEM; 5385 goto out; 5386 } 5387 extent_buffer_get(right_path->nodes[right_level]); 5388 up_read(&fs_info->commit_root_sem); 5389 5390 if (left_level == 0) 5391 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5392 &left_key, left_path->slots[left_level]); 5393 else 5394 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5395 &left_key, left_path->slots[left_level]); 5396 if (right_level == 0) 5397 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5398 &right_key, right_path->slots[right_level]); 5399 else 5400 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5401 &right_key, right_path->slots[right_level]); 5402 5403 left_end_reached = right_end_reached = 0; 5404 advance_left = advance_right = 0; 5405 5406 while (1) { 5407 if (advance_left && !left_end_reached) { 5408 ret = tree_advance(fs_info, left_path, &left_level, 5409 left_root_level, 5410 advance_left != ADVANCE_ONLY_NEXT, 5411 &left_key); 5412 if (ret == -1) 5413 left_end_reached = ADVANCE; 5414 else if (ret < 0) 5415 goto out; 5416 advance_left = 0; 5417 } 5418 if (advance_right && !right_end_reached) { 5419 ret = tree_advance(fs_info, right_path, &right_level, 5420 right_root_level, 5421 advance_right != ADVANCE_ONLY_NEXT, 5422 &right_key); 5423 if (ret == -1) 5424 right_end_reached = ADVANCE; 5425 else if (ret < 0) 5426 goto out; 5427 advance_right = 0; 5428 } 5429 5430 if (left_end_reached && right_end_reached) { 5431 ret = 0; 5432 goto out; 5433 } else if (left_end_reached) { 5434 if (right_level == 0) { 5435 ret = changed_cb(left_path, right_path, 5436 &right_key, 5437 BTRFS_COMPARE_TREE_DELETED, 5438 ctx); 5439 if (ret < 0) 5440 goto out; 5441 } 5442 advance_right = ADVANCE; 5443 continue; 5444 } else if (right_end_reached) { 5445 if (left_level == 0) { 5446 ret = changed_cb(left_path, right_path, 5447 &left_key, 5448 BTRFS_COMPARE_TREE_NEW, 5449 ctx); 5450 if (ret < 0) 5451 goto out; 5452 } 5453 advance_left = ADVANCE; 5454 continue; 5455 } 5456 5457 if (left_level == 0 && right_level == 0) { 5458 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5459 if (cmp < 0) { 5460 ret = changed_cb(left_path, right_path, 5461 &left_key, 5462 BTRFS_COMPARE_TREE_NEW, 5463 ctx); 5464 if (ret < 0) 5465 goto out; 5466 advance_left = ADVANCE; 5467 } else if (cmp > 0) { 5468 ret = changed_cb(left_path, right_path, 5469 &right_key, 5470 BTRFS_COMPARE_TREE_DELETED, 5471 ctx); 5472 if (ret < 0) 5473 goto out; 5474 advance_right = ADVANCE; 5475 } else { 5476 enum btrfs_compare_tree_result result; 5477 5478 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5479 ret = tree_compare_item(left_path, right_path, 5480 tmp_buf); 5481 if (ret) 5482 result = BTRFS_COMPARE_TREE_CHANGED; 5483 else 5484 result = BTRFS_COMPARE_TREE_SAME; 5485 ret = changed_cb(left_path, right_path, 5486 &left_key, result, ctx); 5487 if (ret < 0) 5488 goto out; 5489 advance_left = ADVANCE; 5490 advance_right = ADVANCE; 5491 } 5492 } else if (left_level == right_level) { 5493 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5494 if (cmp < 0) { 5495 advance_left = ADVANCE; 5496 } else if (cmp > 0) { 5497 advance_right = ADVANCE; 5498 } else { 5499 left_blockptr = btrfs_node_blockptr( 5500 left_path->nodes[left_level], 5501 left_path->slots[left_level]); 5502 right_blockptr = btrfs_node_blockptr( 5503 right_path->nodes[right_level], 5504 right_path->slots[right_level]); 5505 left_gen = btrfs_node_ptr_generation( 5506 left_path->nodes[left_level], 5507 left_path->slots[left_level]); 5508 right_gen = btrfs_node_ptr_generation( 5509 right_path->nodes[right_level], 5510 right_path->slots[right_level]); 5511 if (left_blockptr == right_blockptr && 5512 left_gen == right_gen) { 5513 /* 5514 * As we're on a shared block, don't 5515 * allow to go deeper. 5516 */ 5517 advance_left = ADVANCE_ONLY_NEXT; 5518 advance_right = ADVANCE_ONLY_NEXT; 5519 } else { 5520 advance_left = ADVANCE; 5521 advance_right = ADVANCE; 5522 } 5523 } 5524 } else if (left_level < right_level) { 5525 advance_right = ADVANCE; 5526 } else { 5527 advance_left = ADVANCE; 5528 } 5529 } 5530 5531 out: 5532 btrfs_free_path(left_path); 5533 btrfs_free_path(right_path); 5534 kvfree(tmp_buf); 5535 return ret; 5536 } 5537 5538 /* 5539 * this is similar to btrfs_next_leaf, but does not try to preserve 5540 * and fixup the path. It looks for and returns the next key in the 5541 * tree based on the current path and the min_trans parameters. 5542 * 5543 * 0 is returned if another key is found, < 0 if there are any errors 5544 * and 1 is returned if there are no higher keys in the tree 5545 * 5546 * path->keep_locks should be set to 1 on the search made before 5547 * calling this function. 5548 */ 5549 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5550 struct btrfs_key *key, int level, u64 min_trans) 5551 { 5552 int slot; 5553 struct extent_buffer *c; 5554 5555 WARN_ON(!path->keep_locks); 5556 while (level < BTRFS_MAX_LEVEL) { 5557 if (!path->nodes[level]) 5558 return 1; 5559 5560 slot = path->slots[level] + 1; 5561 c = path->nodes[level]; 5562 next: 5563 if (slot >= btrfs_header_nritems(c)) { 5564 int ret; 5565 int orig_lowest; 5566 struct btrfs_key cur_key; 5567 if (level + 1 >= BTRFS_MAX_LEVEL || 5568 !path->nodes[level + 1]) 5569 return 1; 5570 5571 if (path->locks[level + 1]) { 5572 level++; 5573 continue; 5574 } 5575 5576 slot = btrfs_header_nritems(c) - 1; 5577 if (level == 0) 5578 btrfs_item_key_to_cpu(c, &cur_key, slot); 5579 else 5580 btrfs_node_key_to_cpu(c, &cur_key, slot); 5581 5582 orig_lowest = path->lowest_level; 5583 btrfs_release_path(path); 5584 path->lowest_level = level; 5585 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5586 0, 0); 5587 path->lowest_level = orig_lowest; 5588 if (ret < 0) 5589 return ret; 5590 5591 c = path->nodes[level]; 5592 slot = path->slots[level]; 5593 if (ret == 0) 5594 slot++; 5595 goto next; 5596 } 5597 5598 if (level == 0) 5599 btrfs_item_key_to_cpu(c, key, slot); 5600 else { 5601 u64 gen = btrfs_node_ptr_generation(c, slot); 5602 5603 if (gen < min_trans) { 5604 slot++; 5605 goto next; 5606 } 5607 btrfs_node_key_to_cpu(c, key, slot); 5608 } 5609 return 0; 5610 } 5611 return 1; 5612 } 5613 5614 /* 5615 * search the tree again to find a leaf with greater keys 5616 * returns 0 if it found something or 1 if there are no greater leaves. 5617 * returns < 0 on io errors. 5618 */ 5619 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5620 { 5621 return btrfs_next_old_leaf(root, path, 0); 5622 } 5623 5624 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5625 u64 time_seq) 5626 { 5627 int slot; 5628 int level; 5629 struct extent_buffer *c; 5630 struct extent_buffer *next; 5631 struct btrfs_key key; 5632 u32 nritems; 5633 int ret; 5634 int old_spinning = path->leave_spinning; 5635 int next_rw_lock = 0; 5636 5637 nritems = btrfs_header_nritems(path->nodes[0]); 5638 if (nritems == 0) 5639 return 1; 5640 5641 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5642 again: 5643 level = 1; 5644 next = NULL; 5645 next_rw_lock = 0; 5646 btrfs_release_path(path); 5647 5648 path->keep_locks = 1; 5649 path->leave_spinning = 1; 5650 5651 if (time_seq) 5652 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5653 else 5654 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5655 path->keep_locks = 0; 5656 5657 if (ret < 0) 5658 return ret; 5659 5660 nritems = btrfs_header_nritems(path->nodes[0]); 5661 /* 5662 * by releasing the path above we dropped all our locks. A balance 5663 * could have added more items next to the key that used to be 5664 * at the very end of the block. So, check again here and 5665 * advance the path if there are now more items available. 5666 */ 5667 if (nritems > 0 && path->slots[0] < nritems - 1) { 5668 if (ret == 0) 5669 path->slots[0]++; 5670 ret = 0; 5671 goto done; 5672 } 5673 /* 5674 * So the above check misses one case: 5675 * - after releasing the path above, someone has removed the item that 5676 * used to be at the very end of the block, and balance between leafs 5677 * gets another one with bigger key.offset to replace it. 5678 * 5679 * This one should be returned as well, or we can get leaf corruption 5680 * later(esp. in __btrfs_drop_extents()). 5681 * 5682 * And a bit more explanation about this check, 5683 * with ret > 0, the key isn't found, the path points to the slot 5684 * where it should be inserted, so the path->slots[0] item must be the 5685 * bigger one. 5686 */ 5687 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5688 ret = 0; 5689 goto done; 5690 } 5691 5692 while (level < BTRFS_MAX_LEVEL) { 5693 if (!path->nodes[level]) { 5694 ret = 1; 5695 goto done; 5696 } 5697 5698 slot = path->slots[level] + 1; 5699 c = path->nodes[level]; 5700 if (slot >= btrfs_header_nritems(c)) { 5701 level++; 5702 if (level == BTRFS_MAX_LEVEL) { 5703 ret = 1; 5704 goto done; 5705 } 5706 continue; 5707 } 5708 5709 if (next) { 5710 btrfs_tree_unlock_rw(next, next_rw_lock); 5711 free_extent_buffer(next); 5712 } 5713 5714 next = c; 5715 next_rw_lock = path->locks[level]; 5716 ret = read_block_for_search(root, path, &next, level, 5717 slot, &key); 5718 if (ret == -EAGAIN) 5719 goto again; 5720 5721 if (ret < 0) { 5722 btrfs_release_path(path); 5723 goto done; 5724 } 5725 5726 if (!path->skip_locking) { 5727 ret = btrfs_try_tree_read_lock(next); 5728 if (!ret && time_seq) { 5729 /* 5730 * If we don't get the lock, we may be racing 5731 * with push_leaf_left, holding that lock while 5732 * itself waiting for the leaf we've currently 5733 * locked. To solve this situation, we give up 5734 * on our lock and cycle. 5735 */ 5736 free_extent_buffer(next); 5737 btrfs_release_path(path); 5738 cond_resched(); 5739 goto again; 5740 } 5741 if (!ret) { 5742 btrfs_set_path_blocking(path); 5743 btrfs_tree_read_lock(next); 5744 } 5745 next_rw_lock = BTRFS_READ_LOCK; 5746 } 5747 break; 5748 } 5749 path->slots[level] = slot; 5750 while (1) { 5751 level--; 5752 c = path->nodes[level]; 5753 if (path->locks[level]) 5754 btrfs_tree_unlock_rw(c, path->locks[level]); 5755 5756 free_extent_buffer(c); 5757 path->nodes[level] = next; 5758 path->slots[level] = 0; 5759 if (!path->skip_locking) 5760 path->locks[level] = next_rw_lock; 5761 if (!level) 5762 break; 5763 5764 ret = read_block_for_search(root, path, &next, level, 5765 0, &key); 5766 if (ret == -EAGAIN) 5767 goto again; 5768 5769 if (ret < 0) { 5770 btrfs_release_path(path); 5771 goto done; 5772 } 5773 5774 if (!path->skip_locking) { 5775 ret = btrfs_try_tree_read_lock(next); 5776 if (!ret) { 5777 btrfs_set_path_blocking(path); 5778 btrfs_tree_read_lock(next); 5779 } 5780 next_rw_lock = BTRFS_READ_LOCK; 5781 } 5782 } 5783 ret = 0; 5784 done: 5785 unlock_up(path, 0, 1, 0, NULL); 5786 path->leave_spinning = old_spinning; 5787 if (!old_spinning) 5788 btrfs_set_path_blocking(path); 5789 5790 return ret; 5791 } 5792 5793 /* 5794 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5795 * searching until it gets past min_objectid or finds an item of 'type' 5796 * 5797 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5798 */ 5799 int btrfs_previous_item(struct btrfs_root *root, 5800 struct btrfs_path *path, u64 min_objectid, 5801 int type) 5802 { 5803 struct btrfs_key found_key; 5804 struct extent_buffer *leaf; 5805 u32 nritems; 5806 int ret; 5807 5808 while (1) { 5809 if (path->slots[0] == 0) { 5810 btrfs_set_path_blocking(path); 5811 ret = btrfs_prev_leaf(root, path); 5812 if (ret != 0) 5813 return ret; 5814 } else { 5815 path->slots[0]--; 5816 } 5817 leaf = path->nodes[0]; 5818 nritems = btrfs_header_nritems(leaf); 5819 if (nritems == 0) 5820 return 1; 5821 if (path->slots[0] == nritems) 5822 path->slots[0]--; 5823 5824 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5825 if (found_key.objectid < min_objectid) 5826 break; 5827 if (found_key.type == type) 5828 return 0; 5829 if (found_key.objectid == min_objectid && 5830 found_key.type < type) 5831 break; 5832 } 5833 return 1; 5834 } 5835 5836 /* 5837 * search in extent tree to find a previous Metadata/Data extent item with 5838 * min objecitd. 5839 * 5840 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5841 */ 5842 int btrfs_previous_extent_item(struct btrfs_root *root, 5843 struct btrfs_path *path, u64 min_objectid) 5844 { 5845 struct btrfs_key found_key; 5846 struct extent_buffer *leaf; 5847 u32 nritems; 5848 int ret; 5849 5850 while (1) { 5851 if (path->slots[0] == 0) { 5852 btrfs_set_path_blocking(path); 5853 ret = btrfs_prev_leaf(root, path); 5854 if (ret != 0) 5855 return ret; 5856 } else { 5857 path->slots[0]--; 5858 } 5859 leaf = path->nodes[0]; 5860 nritems = btrfs_header_nritems(leaf); 5861 if (nritems == 0) 5862 return 1; 5863 if (path->slots[0] == nritems) 5864 path->slots[0]--; 5865 5866 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5867 if (found_key.objectid < min_objectid) 5868 break; 5869 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5870 found_key.type == BTRFS_METADATA_ITEM_KEY) 5871 return 0; 5872 if (found_key.objectid == min_objectid && 5873 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5874 break; 5875 } 5876 return 1; 5877 } 5878