1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 41 int level, int slot); 42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 43 struct extent_buffer *eb); 44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 45 46 struct btrfs_path *btrfs_alloc_path(void) 47 { 48 struct btrfs_path *path; 49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 50 return path; 51 } 52 53 /* 54 * set all locked nodes in the path to blocking locks. This should 55 * be done before scheduling 56 */ 57 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 58 { 59 int i; 60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 61 if (!p->nodes[i] || !p->locks[i]) 62 continue; 63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 64 if (p->locks[i] == BTRFS_READ_LOCK) 65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 66 else if (p->locks[i] == BTRFS_WRITE_LOCK) 67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 68 } 69 } 70 71 /* 72 * reset all the locked nodes in the patch to spinning locks. 73 * 74 * held is used to keep lockdep happy, when lockdep is enabled 75 * we set held to a blocking lock before we go around and 76 * retake all the spinlocks in the path. You can safely use NULL 77 * for held 78 */ 79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 80 struct extent_buffer *held, int held_rw) 81 { 82 int i; 83 84 #ifdef CONFIG_DEBUG_LOCK_ALLOC 85 /* lockdep really cares that we take all of these spinlocks 86 * in the right order. If any of the locks in the path are not 87 * currently blocking, it is going to complain. So, make really 88 * really sure by forcing the path to blocking before we clear 89 * the path blocking. 90 */ 91 if (held) { 92 btrfs_set_lock_blocking_rw(held, held_rw); 93 if (held_rw == BTRFS_WRITE_LOCK) 94 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 95 else if (held_rw == BTRFS_READ_LOCK) 96 held_rw = BTRFS_READ_LOCK_BLOCKING; 97 } 98 btrfs_set_path_blocking(p); 99 #endif 100 101 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 102 if (p->nodes[i] && p->locks[i]) { 103 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 104 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 105 p->locks[i] = BTRFS_WRITE_LOCK; 106 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 107 p->locks[i] = BTRFS_READ_LOCK; 108 } 109 } 110 111 #ifdef CONFIG_DEBUG_LOCK_ALLOC 112 if (held) 113 btrfs_clear_lock_blocking_rw(held, held_rw); 114 #endif 115 } 116 117 /* this also releases the path */ 118 void btrfs_free_path(struct btrfs_path *p) 119 { 120 if (!p) 121 return; 122 btrfs_release_path(p); 123 kmem_cache_free(btrfs_path_cachep, p); 124 } 125 126 /* 127 * path release drops references on the extent buffers in the path 128 * and it drops any locks held by this path 129 * 130 * It is safe to call this on paths that no locks or extent buffers held. 131 */ 132 noinline void btrfs_release_path(struct btrfs_path *p) 133 { 134 int i; 135 136 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 137 p->slots[i] = 0; 138 if (!p->nodes[i]) 139 continue; 140 if (p->locks[i]) { 141 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 142 p->locks[i] = 0; 143 } 144 free_extent_buffer(p->nodes[i]); 145 p->nodes[i] = NULL; 146 } 147 } 148 149 /* 150 * safely gets a reference on the root node of a tree. A lock 151 * is not taken, so a concurrent writer may put a different node 152 * at the root of the tree. See btrfs_lock_root_node for the 153 * looping required. 154 * 155 * The extent buffer returned by this has a reference taken, so 156 * it won't disappear. It may stop being the root of the tree 157 * at any time because there are no locks held. 158 */ 159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 160 { 161 struct extent_buffer *eb; 162 163 while (1) { 164 rcu_read_lock(); 165 eb = rcu_dereference(root->node); 166 167 /* 168 * RCU really hurts here, we could free up the root node because 169 * it was cow'ed but we may not get the new root node yet so do 170 * the inc_not_zero dance and if it doesn't work then 171 * synchronize_rcu and try again. 172 */ 173 if (atomic_inc_not_zero(&eb->refs)) { 174 rcu_read_unlock(); 175 break; 176 } 177 rcu_read_unlock(); 178 synchronize_rcu(); 179 } 180 return eb; 181 } 182 183 /* loop around taking references on and locking the root node of the 184 * tree until you end up with a lock on the root. A locked buffer 185 * is returned, with a reference held. 186 */ 187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 188 { 189 struct extent_buffer *eb; 190 191 while (1) { 192 eb = btrfs_root_node(root); 193 btrfs_tree_lock(eb); 194 if (eb == root->node) 195 break; 196 btrfs_tree_unlock(eb); 197 free_extent_buffer(eb); 198 } 199 return eb; 200 } 201 202 /* loop around taking references on and locking the root node of the 203 * tree until you end up with a lock on the root. A locked buffer 204 * is returned, with a reference held. 205 */ 206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 207 { 208 struct extent_buffer *eb; 209 210 while (1) { 211 eb = btrfs_root_node(root); 212 btrfs_tree_read_lock(eb); 213 if (eb == root->node) 214 break; 215 btrfs_tree_read_unlock(eb); 216 free_extent_buffer(eb); 217 } 218 return eb; 219 } 220 221 /* cowonly root (everything not a reference counted cow subvolume), just get 222 * put onto a simple dirty list. transaction.c walks this to make sure they 223 * get properly updated on disk. 224 */ 225 static void add_root_to_dirty_list(struct btrfs_root *root) 226 { 227 spin_lock(&root->fs_info->trans_lock); 228 if (root->track_dirty && list_empty(&root->dirty_list)) { 229 list_add(&root->dirty_list, 230 &root->fs_info->dirty_cowonly_roots); 231 } 232 spin_unlock(&root->fs_info->trans_lock); 233 } 234 235 /* 236 * used by snapshot creation to make a copy of a root for a tree with 237 * a given objectid. The buffer with the new root node is returned in 238 * cow_ret, and this func returns zero on success or a negative error code. 239 */ 240 int btrfs_copy_root(struct btrfs_trans_handle *trans, 241 struct btrfs_root *root, 242 struct extent_buffer *buf, 243 struct extent_buffer **cow_ret, u64 new_root_objectid) 244 { 245 struct extent_buffer *cow; 246 int ret = 0; 247 int level; 248 struct btrfs_disk_key disk_key; 249 250 WARN_ON(root->ref_cows && trans->transid != 251 root->fs_info->running_transaction->transid); 252 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 253 254 level = btrfs_header_level(buf); 255 if (level == 0) 256 btrfs_item_key(buf, &disk_key, 0); 257 else 258 btrfs_node_key(buf, &disk_key, 0); 259 260 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 261 new_root_objectid, &disk_key, level, 262 buf->start, 0); 263 if (IS_ERR(cow)) 264 return PTR_ERR(cow); 265 266 copy_extent_buffer(cow, buf, 0, 0, cow->len); 267 btrfs_set_header_bytenr(cow, cow->start); 268 btrfs_set_header_generation(cow, trans->transid); 269 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 270 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 271 BTRFS_HEADER_FLAG_RELOC); 272 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 273 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 274 else 275 btrfs_set_header_owner(cow, new_root_objectid); 276 277 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(cow), 278 BTRFS_FSID_SIZE); 279 280 WARN_ON(btrfs_header_generation(buf) > trans->transid); 281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 282 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 283 else 284 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 285 286 if (ret) 287 return ret; 288 289 btrfs_mark_buffer_dirty(cow); 290 *cow_ret = cow; 291 return 0; 292 } 293 294 enum mod_log_op { 295 MOD_LOG_KEY_REPLACE, 296 MOD_LOG_KEY_ADD, 297 MOD_LOG_KEY_REMOVE, 298 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 299 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 300 MOD_LOG_MOVE_KEYS, 301 MOD_LOG_ROOT_REPLACE, 302 }; 303 304 struct tree_mod_move { 305 int dst_slot; 306 int nr_items; 307 }; 308 309 struct tree_mod_root { 310 u64 logical; 311 u8 level; 312 }; 313 314 struct tree_mod_elem { 315 struct rb_node node; 316 u64 index; /* shifted logical */ 317 u64 seq; 318 enum mod_log_op op; 319 320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 321 int slot; 322 323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 324 u64 generation; 325 326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 327 struct btrfs_disk_key key; 328 u64 blockptr; 329 330 /* this is used for op == MOD_LOG_MOVE_KEYS */ 331 struct tree_mod_move move; 332 333 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 334 struct tree_mod_root old_root; 335 }; 336 337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 338 { 339 read_lock(&fs_info->tree_mod_log_lock); 340 } 341 342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 343 { 344 read_unlock(&fs_info->tree_mod_log_lock); 345 } 346 347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 348 { 349 write_lock(&fs_info->tree_mod_log_lock); 350 } 351 352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 353 { 354 write_unlock(&fs_info->tree_mod_log_lock); 355 } 356 357 /* 358 * Increment the upper half of tree_mod_seq, set lower half zero. 359 * 360 * Must be called with fs_info->tree_mod_seq_lock held. 361 */ 362 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info) 363 { 364 u64 seq = atomic64_read(&fs_info->tree_mod_seq); 365 seq &= 0xffffffff00000000ull; 366 seq += 1ull << 32; 367 atomic64_set(&fs_info->tree_mod_seq, seq); 368 return seq; 369 } 370 371 /* 372 * Increment the lower half of tree_mod_seq. 373 * 374 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers 375 * are generated should not technically require a spin lock here. (Rationale: 376 * incrementing the minor while incrementing the major seq number is between its 377 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it 378 * just returns a unique sequence number as usual.) We have decided to leave 379 * that requirement in here and rethink it once we notice it really imposes a 380 * problem on some workload. 381 */ 382 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info) 383 { 384 return atomic64_inc_return(&fs_info->tree_mod_seq); 385 } 386 387 /* 388 * return the last minor in the previous major tree_mod_seq number 389 */ 390 u64 btrfs_tree_mod_seq_prev(u64 seq) 391 { 392 return (seq & 0xffffffff00000000ull) - 1ull; 393 } 394 395 /* 396 * This adds a new blocker to the tree mod log's blocker list if the @elem 397 * passed does not already have a sequence number set. So when a caller expects 398 * to record tree modifications, it should ensure to set elem->seq to zero 399 * before calling btrfs_get_tree_mod_seq. 400 * Returns a fresh, unused tree log modification sequence number, even if no new 401 * blocker was added. 402 */ 403 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 404 struct seq_list *elem) 405 { 406 u64 seq; 407 408 tree_mod_log_write_lock(fs_info); 409 spin_lock(&fs_info->tree_mod_seq_lock); 410 if (!elem->seq) { 411 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info); 412 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 413 } 414 seq = btrfs_inc_tree_mod_seq_minor(fs_info); 415 spin_unlock(&fs_info->tree_mod_seq_lock); 416 tree_mod_log_write_unlock(fs_info); 417 418 return seq; 419 } 420 421 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 422 struct seq_list *elem) 423 { 424 struct rb_root *tm_root; 425 struct rb_node *node; 426 struct rb_node *next; 427 struct seq_list *cur_elem; 428 struct tree_mod_elem *tm; 429 u64 min_seq = (u64)-1; 430 u64 seq_putting = elem->seq; 431 432 if (!seq_putting) 433 return; 434 435 spin_lock(&fs_info->tree_mod_seq_lock); 436 list_del(&elem->list); 437 elem->seq = 0; 438 439 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 440 if (cur_elem->seq < min_seq) { 441 if (seq_putting > cur_elem->seq) { 442 /* 443 * blocker with lower sequence number exists, we 444 * cannot remove anything from the log 445 */ 446 spin_unlock(&fs_info->tree_mod_seq_lock); 447 return; 448 } 449 min_seq = cur_elem->seq; 450 } 451 } 452 spin_unlock(&fs_info->tree_mod_seq_lock); 453 454 /* 455 * anything that's lower than the lowest existing (read: blocked) 456 * sequence number can be removed from the tree. 457 */ 458 tree_mod_log_write_lock(fs_info); 459 tm_root = &fs_info->tree_mod_log; 460 for (node = rb_first(tm_root); node; node = next) { 461 next = rb_next(node); 462 tm = container_of(node, struct tree_mod_elem, node); 463 if (tm->seq > min_seq) 464 continue; 465 rb_erase(node, tm_root); 466 kfree(tm); 467 } 468 tree_mod_log_write_unlock(fs_info); 469 } 470 471 /* 472 * key order of the log: 473 * index -> sequence 474 * 475 * the index is the shifted logical of the *new* root node for root replace 476 * operations, or the shifted logical of the affected block for all other 477 * operations. 478 */ 479 static noinline int 480 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 481 { 482 struct rb_root *tm_root; 483 struct rb_node **new; 484 struct rb_node *parent = NULL; 485 struct tree_mod_elem *cur; 486 int ret = 0; 487 488 BUG_ON(!tm); 489 490 tree_mod_log_write_lock(fs_info); 491 if (list_empty(&fs_info->tree_mod_seq_list)) { 492 tree_mod_log_write_unlock(fs_info); 493 /* 494 * Ok we no longer care about logging modifications, free up tm 495 * and return 0. Any callers shouldn't be using tm after 496 * calling tree_mod_log_insert, but if they do we can just 497 * change this to return a special error code to let the callers 498 * do their own thing. 499 */ 500 kfree(tm); 501 return 0; 502 } 503 504 spin_lock(&fs_info->tree_mod_seq_lock); 505 tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info); 506 spin_unlock(&fs_info->tree_mod_seq_lock); 507 508 tm_root = &fs_info->tree_mod_log; 509 new = &tm_root->rb_node; 510 while (*new) { 511 cur = container_of(*new, struct tree_mod_elem, node); 512 parent = *new; 513 if (cur->index < tm->index) 514 new = &((*new)->rb_left); 515 else if (cur->index > tm->index) 516 new = &((*new)->rb_right); 517 else if (cur->seq < tm->seq) 518 new = &((*new)->rb_left); 519 else if (cur->seq > tm->seq) 520 new = &((*new)->rb_right); 521 else { 522 ret = -EEXIST; 523 kfree(tm); 524 goto out; 525 } 526 } 527 528 rb_link_node(&tm->node, parent, new); 529 rb_insert_color(&tm->node, tm_root); 530 out: 531 tree_mod_log_write_unlock(fs_info); 532 return ret; 533 } 534 535 /* 536 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 537 * returns zero with the tree_mod_log_lock acquired. The caller must hold 538 * this until all tree mod log insertions are recorded in the rb tree and then 539 * call tree_mod_log_write_unlock() to release. 540 */ 541 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 542 struct extent_buffer *eb) { 543 smp_mb(); 544 if (list_empty(&(fs_info)->tree_mod_seq_list)) 545 return 1; 546 if (eb && btrfs_header_level(eb) == 0) 547 return 1; 548 return 0; 549 } 550 551 static inline int 552 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 553 struct extent_buffer *eb, int slot, 554 enum mod_log_op op, gfp_t flags) 555 { 556 struct tree_mod_elem *tm; 557 558 tm = kzalloc(sizeof(*tm), flags); 559 if (!tm) 560 return -ENOMEM; 561 562 tm->index = eb->start >> PAGE_CACHE_SHIFT; 563 if (op != MOD_LOG_KEY_ADD) { 564 btrfs_node_key(eb, &tm->key, slot); 565 tm->blockptr = btrfs_node_blockptr(eb, slot); 566 } 567 tm->op = op; 568 tm->slot = slot; 569 tm->generation = btrfs_node_ptr_generation(eb, slot); 570 571 return __tree_mod_log_insert(fs_info, tm); 572 } 573 574 static noinline int 575 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 576 struct extent_buffer *eb, int slot, 577 enum mod_log_op op, gfp_t flags) 578 { 579 if (tree_mod_dont_log(fs_info, eb)) 580 return 0; 581 582 return __tree_mod_log_insert_key(fs_info, eb, slot, op, flags); 583 } 584 585 static noinline int 586 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 587 struct extent_buffer *eb, int dst_slot, int src_slot, 588 int nr_items, gfp_t flags) 589 { 590 struct tree_mod_elem *tm; 591 int ret; 592 int i; 593 594 if (tree_mod_dont_log(fs_info, eb)) 595 return 0; 596 597 /* 598 * When we override something during the move, we log these removals. 599 * This can only happen when we move towards the beginning of the 600 * buffer, i.e. dst_slot < src_slot. 601 */ 602 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 603 ret = __tree_mod_log_insert_key(fs_info, eb, i + dst_slot, 604 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 605 BUG_ON(ret < 0); 606 } 607 608 tm = kzalloc(sizeof(*tm), flags); 609 if (!tm) 610 return -ENOMEM; 611 612 tm->index = eb->start >> PAGE_CACHE_SHIFT; 613 tm->slot = src_slot; 614 tm->move.dst_slot = dst_slot; 615 tm->move.nr_items = nr_items; 616 tm->op = MOD_LOG_MOVE_KEYS; 617 618 return __tree_mod_log_insert(fs_info, tm); 619 } 620 621 static inline void 622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 623 { 624 int i; 625 u32 nritems; 626 int ret; 627 628 if (btrfs_header_level(eb) == 0) 629 return; 630 631 nritems = btrfs_header_nritems(eb); 632 for (i = nritems - 1; i >= 0; i--) { 633 ret = __tree_mod_log_insert_key(fs_info, eb, i, 634 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 635 BUG_ON(ret < 0); 636 } 637 } 638 639 static noinline int 640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 641 struct extent_buffer *old_root, 642 struct extent_buffer *new_root, gfp_t flags, 643 int log_removal) 644 { 645 struct tree_mod_elem *tm; 646 647 if (tree_mod_dont_log(fs_info, NULL)) 648 return 0; 649 650 if (log_removal) 651 __tree_mod_log_free_eb(fs_info, old_root); 652 653 tm = kzalloc(sizeof(*tm), flags); 654 if (!tm) 655 return -ENOMEM; 656 657 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 658 tm->old_root.logical = old_root->start; 659 tm->old_root.level = btrfs_header_level(old_root); 660 tm->generation = btrfs_header_generation(old_root); 661 tm->op = MOD_LOG_ROOT_REPLACE; 662 663 return __tree_mod_log_insert(fs_info, tm); 664 } 665 666 static struct tree_mod_elem * 667 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 668 int smallest) 669 { 670 struct rb_root *tm_root; 671 struct rb_node *node; 672 struct tree_mod_elem *cur = NULL; 673 struct tree_mod_elem *found = NULL; 674 u64 index = start >> PAGE_CACHE_SHIFT; 675 676 tree_mod_log_read_lock(fs_info); 677 tm_root = &fs_info->tree_mod_log; 678 node = tm_root->rb_node; 679 while (node) { 680 cur = container_of(node, struct tree_mod_elem, node); 681 if (cur->index < index) { 682 node = node->rb_left; 683 } else if (cur->index > index) { 684 node = node->rb_right; 685 } else if (cur->seq < min_seq) { 686 node = node->rb_left; 687 } else if (!smallest) { 688 /* we want the node with the highest seq */ 689 if (found) 690 BUG_ON(found->seq > cur->seq); 691 found = cur; 692 node = node->rb_left; 693 } else if (cur->seq > min_seq) { 694 /* we want the node with the smallest seq */ 695 if (found) 696 BUG_ON(found->seq < cur->seq); 697 found = cur; 698 node = node->rb_right; 699 } else { 700 found = cur; 701 break; 702 } 703 } 704 tree_mod_log_read_unlock(fs_info); 705 706 return found; 707 } 708 709 /* 710 * this returns the element from the log with the smallest time sequence 711 * value that's in the log (the oldest log item). any element with a time 712 * sequence lower than min_seq will be ignored. 713 */ 714 static struct tree_mod_elem * 715 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 716 u64 min_seq) 717 { 718 return __tree_mod_log_search(fs_info, start, min_seq, 1); 719 } 720 721 /* 722 * this returns the element from the log with the largest time sequence 723 * value that's in the log (the most recent log item). any element with 724 * a time sequence lower than min_seq will be ignored. 725 */ 726 static struct tree_mod_elem * 727 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 728 { 729 return __tree_mod_log_search(fs_info, start, min_seq, 0); 730 } 731 732 static noinline void 733 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 734 struct extent_buffer *src, unsigned long dst_offset, 735 unsigned long src_offset, int nr_items) 736 { 737 int ret; 738 int i; 739 740 if (tree_mod_dont_log(fs_info, NULL)) 741 return; 742 743 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 744 return; 745 746 for (i = 0; i < nr_items; i++) { 747 ret = __tree_mod_log_insert_key(fs_info, src, 748 i + src_offset, 749 MOD_LOG_KEY_REMOVE, GFP_NOFS); 750 BUG_ON(ret < 0); 751 ret = __tree_mod_log_insert_key(fs_info, dst, 752 i + dst_offset, 753 MOD_LOG_KEY_ADD, 754 GFP_NOFS); 755 BUG_ON(ret < 0); 756 } 757 } 758 759 static inline void 760 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 761 int dst_offset, int src_offset, int nr_items) 762 { 763 int ret; 764 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 765 nr_items, GFP_NOFS); 766 BUG_ON(ret < 0); 767 } 768 769 static noinline void 770 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 771 struct extent_buffer *eb, int slot, int atomic) 772 { 773 int ret; 774 775 ret = __tree_mod_log_insert_key(fs_info, eb, slot, 776 MOD_LOG_KEY_REPLACE, 777 atomic ? GFP_ATOMIC : GFP_NOFS); 778 BUG_ON(ret < 0); 779 } 780 781 static noinline void 782 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 783 { 784 if (tree_mod_dont_log(fs_info, eb)) 785 return; 786 __tree_mod_log_free_eb(fs_info, eb); 787 } 788 789 static noinline void 790 tree_mod_log_set_root_pointer(struct btrfs_root *root, 791 struct extent_buffer *new_root_node, 792 int log_removal) 793 { 794 int ret; 795 ret = tree_mod_log_insert_root(root->fs_info, root->node, 796 new_root_node, GFP_NOFS, log_removal); 797 BUG_ON(ret < 0); 798 } 799 800 /* 801 * check if the tree block can be shared by multiple trees 802 */ 803 int btrfs_block_can_be_shared(struct btrfs_root *root, 804 struct extent_buffer *buf) 805 { 806 /* 807 * Tree blocks not in refernece counted trees and tree roots 808 * are never shared. If a block was allocated after the last 809 * snapshot and the block was not allocated by tree relocation, 810 * we know the block is not shared. 811 */ 812 if (root->ref_cows && 813 buf != root->node && buf != root->commit_root && 814 (btrfs_header_generation(buf) <= 815 btrfs_root_last_snapshot(&root->root_item) || 816 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 817 return 1; 818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 819 if (root->ref_cows && 820 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 821 return 1; 822 #endif 823 return 0; 824 } 825 826 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 827 struct btrfs_root *root, 828 struct extent_buffer *buf, 829 struct extent_buffer *cow, 830 int *last_ref) 831 { 832 u64 refs; 833 u64 owner; 834 u64 flags; 835 u64 new_flags = 0; 836 int ret; 837 838 /* 839 * Backrefs update rules: 840 * 841 * Always use full backrefs for extent pointers in tree block 842 * allocated by tree relocation. 843 * 844 * If a shared tree block is no longer referenced by its owner 845 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 846 * use full backrefs for extent pointers in tree block. 847 * 848 * If a tree block is been relocating 849 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 850 * use full backrefs for extent pointers in tree block. 851 * The reason for this is some operations (such as drop tree) 852 * are only allowed for blocks use full backrefs. 853 */ 854 855 if (btrfs_block_can_be_shared(root, buf)) { 856 ret = btrfs_lookup_extent_info(trans, root, buf->start, 857 btrfs_header_level(buf), 1, 858 &refs, &flags); 859 if (ret) 860 return ret; 861 if (refs == 0) { 862 ret = -EROFS; 863 btrfs_std_error(root->fs_info, ret); 864 return ret; 865 } 866 } else { 867 refs = 1; 868 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 869 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 870 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 871 else 872 flags = 0; 873 } 874 875 owner = btrfs_header_owner(buf); 876 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 877 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 878 879 if (refs > 1) { 880 if ((owner == root->root_key.objectid || 881 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 882 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 883 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 884 BUG_ON(ret); /* -ENOMEM */ 885 886 if (root->root_key.objectid == 887 BTRFS_TREE_RELOC_OBJECTID) { 888 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 889 BUG_ON(ret); /* -ENOMEM */ 890 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 891 BUG_ON(ret); /* -ENOMEM */ 892 } 893 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 894 } else { 895 896 if (root->root_key.objectid == 897 BTRFS_TREE_RELOC_OBJECTID) 898 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 899 else 900 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 901 BUG_ON(ret); /* -ENOMEM */ 902 } 903 if (new_flags != 0) { 904 int level = btrfs_header_level(buf); 905 906 ret = btrfs_set_disk_extent_flags(trans, root, 907 buf->start, 908 buf->len, 909 new_flags, level, 0); 910 if (ret) 911 return ret; 912 } 913 } else { 914 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 915 if (root->root_key.objectid == 916 BTRFS_TREE_RELOC_OBJECTID) 917 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 918 else 919 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 920 BUG_ON(ret); /* -ENOMEM */ 921 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 922 BUG_ON(ret); /* -ENOMEM */ 923 } 924 clean_tree_block(trans, root, buf); 925 *last_ref = 1; 926 } 927 return 0; 928 } 929 930 /* 931 * does the dirty work in cow of a single block. The parent block (if 932 * supplied) is updated to point to the new cow copy. The new buffer is marked 933 * dirty and returned locked. If you modify the block it needs to be marked 934 * dirty again. 935 * 936 * search_start -- an allocation hint for the new block 937 * 938 * empty_size -- a hint that you plan on doing more cow. This is the size in 939 * bytes the allocator should try to find free next to the block it returns. 940 * This is just a hint and may be ignored by the allocator. 941 */ 942 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 943 struct btrfs_root *root, 944 struct extent_buffer *buf, 945 struct extent_buffer *parent, int parent_slot, 946 struct extent_buffer **cow_ret, 947 u64 search_start, u64 empty_size) 948 { 949 struct btrfs_disk_key disk_key; 950 struct extent_buffer *cow; 951 int level, ret; 952 int last_ref = 0; 953 int unlock_orig = 0; 954 u64 parent_start; 955 956 if (*cow_ret == buf) 957 unlock_orig = 1; 958 959 btrfs_assert_tree_locked(buf); 960 961 WARN_ON(root->ref_cows && trans->transid != 962 root->fs_info->running_transaction->transid); 963 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 964 965 level = btrfs_header_level(buf); 966 967 if (level == 0) 968 btrfs_item_key(buf, &disk_key, 0); 969 else 970 btrfs_node_key(buf, &disk_key, 0); 971 972 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 973 if (parent) 974 parent_start = parent->start; 975 else 976 parent_start = 0; 977 } else 978 parent_start = 0; 979 980 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 981 root->root_key.objectid, &disk_key, 982 level, search_start, empty_size); 983 if (IS_ERR(cow)) 984 return PTR_ERR(cow); 985 986 /* cow is set to blocking by btrfs_init_new_buffer */ 987 988 copy_extent_buffer(cow, buf, 0, 0, cow->len); 989 btrfs_set_header_bytenr(cow, cow->start); 990 btrfs_set_header_generation(cow, trans->transid); 991 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 992 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 993 BTRFS_HEADER_FLAG_RELOC); 994 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 995 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 996 else 997 btrfs_set_header_owner(cow, root->root_key.objectid); 998 999 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(cow), 1000 BTRFS_FSID_SIZE); 1001 1002 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1003 if (ret) { 1004 btrfs_abort_transaction(trans, root, ret); 1005 return ret; 1006 } 1007 1008 if (root->ref_cows) 1009 btrfs_reloc_cow_block(trans, root, buf, cow); 1010 1011 if (buf == root->node) { 1012 WARN_ON(parent && parent != buf); 1013 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1014 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1015 parent_start = buf->start; 1016 else 1017 parent_start = 0; 1018 1019 extent_buffer_get(cow); 1020 tree_mod_log_set_root_pointer(root, cow, 1); 1021 rcu_assign_pointer(root->node, cow); 1022 1023 btrfs_free_tree_block(trans, root, buf, parent_start, 1024 last_ref); 1025 free_extent_buffer(buf); 1026 add_root_to_dirty_list(root); 1027 } else { 1028 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1029 parent_start = parent->start; 1030 else 1031 parent_start = 0; 1032 1033 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1034 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1035 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1036 btrfs_set_node_blockptr(parent, parent_slot, 1037 cow->start); 1038 btrfs_set_node_ptr_generation(parent, parent_slot, 1039 trans->transid); 1040 btrfs_mark_buffer_dirty(parent); 1041 if (last_ref) 1042 tree_mod_log_free_eb(root->fs_info, buf); 1043 btrfs_free_tree_block(trans, root, buf, parent_start, 1044 last_ref); 1045 } 1046 if (unlock_orig) 1047 btrfs_tree_unlock(buf); 1048 free_extent_buffer_stale(buf); 1049 btrfs_mark_buffer_dirty(cow); 1050 *cow_ret = cow; 1051 return 0; 1052 } 1053 1054 /* 1055 * returns the logical address of the oldest predecessor of the given root. 1056 * entries older than time_seq are ignored. 1057 */ 1058 static struct tree_mod_elem * 1059 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1060 struct extent_buffer *eb_root, u64 time_seq) 1061 { 1062 struct tree_mod_elem *tm; 1063 struct tree_mod_elem *found = NULL; 1064 u64 root_logical = eb_root->start; 1065 int looped = 0; 1066 1067 if (!time_seq) 1068 return NULL; 1069 1070 /* 1071 * the very last operation that's logged for a root is the replacement 1072 * operation (if it is replaced at all). this has the index of the *new* 1073 * root, making it the very first operation that's logged for this root. 1074 */ 1075 while (1) { 1076 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1077 time_seq); 1078 if (!looped && !tm) 1079 return NULL; 1080 /* 1081 * if there are no tree operation for the oldest root, we simply 1082 * return it. this should only happen if that (old) root is at 1083 * level 0. 1084 */ 1085 if (!tm) 1086 break; 1087 1088 /* 1089 * if there's an operation that's not a root replacement, we 1090 * found the oldest version of our root. normally, we'll find a 1091 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1092 */ 1093 if (tm->op != MOD_LOG_ROOT_REPLACE) 1094 break; 1095 1096 found = tm; 1097 root_logical = tm->old_root.logical; 1098 looped = 1; 1099 } 1100 1101 /* if there's no old root to return, return what we found instead */ 1102 if (!found) 1103 found = tm; 1104 1105 return found; 1106 } 1107 1108 /* 1109 * tm is a pointer to the first operation to rewind within eb. then, all 1110 * previous operations will be rewinded (until we reach something older than 1111 * time_seq). 1112 */ 1113 static void 1114 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1115 u64 time_seq, struct tree_mod_elem *first_tm) 1116 { 1117 u32 n; 1118 struct rb_node *next; 1119 struct tree_mod_elem *tm = first_tm; 1120 unsigned long o_dst; 1121 unsigned long o_src; 1122 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1123 1124 n = btrfs_header_nritems(eb); 1125 tree_mod_log_read_lock(fs_info); 1126 while (tm && tm->seq >= time_seq) { 1127 /* 1128 * all the operations are recorded with the operator used for 1129 * the modification. as we're going backwards, we do the 1130 * opposite of each operation here. 1131 */ 1132 switch (tm->op) { 1133 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1134 BUG_ON(tm->slot < n); 1135 /* Fallthrough */ 1136 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1137 case MOD_LOG_KEY_REMOVE: 1138 btrfs_set_node_key(eb, &tm->key, tm->slot); 1139 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1140 btrfs_set_node_ptr_generation(eb, tm->slot, 1141 tm->generation); 1142 n++; 1143 break; 1144 case MOD_LOG_KEY_REPLACE: 1145 BUG_ON(tm->slot >= n); 1146 btrfs_set_node_key(eb, &tm->key, tm->slot); 1147 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1148 btrfs_set_node_ptr_generation(eb, tm->slot, 1149 tm->generation); 1150 break; 1151 case MOD_LOG_KEY_ADD: 1152 /* if a move operation is needed it's in the log */ 1153 n--; 1154 break; 1155 case MOD_LOG_MOVE_KEYS: 1156 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1157 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1158 memmove_extent_buffer(eb, o_dst, o_src, 1159 tm->move.nr_items * p_size); 1160 break; 1161 case MOD_LOG_ROOT_REPLACE: 1162 /* 1163 * this operation is special. for roots, this must be 1164 * handled explicitly before rewinding. 1165 * for non-roots, this operation may exist if the node 1166 * was a root: root A -> child B; then A gets empty and 1167 * B is promoted to the new root. in the mod log, we'll 1168 * have a root-replace operation for B, a tree block 1169 * that is no root. we simply ignore that operation. 1170 */ 1171 break; 1172 } 1173 next = rb_next(&tm->node); 1174 if (!next) 1175 break; 1176 tm = container_of(next, struct tree_mod_elem, node); 1177 if (tm->index != first_tm->index) 1178 break; 1179 } 1180 tree_mod_log_read_unlock(fs_info); 1181 btrfs_set_header_nritems(eb, n); 1182 } 1183 1184 /* 1185 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer 1186 * is returned. If rewind operations happen, a fresh buffer is returned. The 1187 * returned buffer is always read-locked. If the returned buffer is not the 1188 * input buffer, the lock on the input buffer is released and the input buffer 1189 * is freed (its refcount is decremented). 1190 */ 1191 static struct extent_buffer * 1192 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1193 struct extent_buffer *eb, u64 time_seq) 1194 { 1195 struct extent_buffer *eb_rewin; 1196 struct tree_mod_elem *tm; 1197 1198 if (!time_seq) 1199 return eb; 1200 1201 if (btrfs_header_level(eb) == 0) 1202 return eb; 1203 1204 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1205 if (!tm) 1206 return eb; 1207 1208 btrfs_set_path_blocking(path); 1209 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1210 1211 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1212 BUG_ON(tm->slot != 0); 1213 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1214 fs_info->tree_root->nodesize); 1215 if (!eb_rewin) { 1216 btrfs_tree_read_unlock_blocking(eb); 1217 free_extent_buffer(eb); 1218 return NULL; 1219 } 1220 btrfs_set_header_bytenr(eb_rewin, eb->start); 1221 btrfs_set_header_backref_rev(eb_rewin, 1222 btrfs_header_backref_rev(eb)); 1223 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1224 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1225 } else { 1226 eb_rewin = btrfs_clone_extent_buffer(eb); 1227 if (!eb_rewin) { 1228 btrfs_tree_read_unlock_blocking(eb); 1229 free_extent_buffer(eb); 1230 return NULL; 1231 } 1232 } 1233 1234 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1235 btrfs_tree_read_unlock_blocking(eb); 1236 free_extent_buffer(eb); 1237 1238 extent_buffer_get(eb_rewin); 1239 btrfs_tree_read_lock(eb_rewin); 1240 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1241 WARN_ON(btrfs_header_nritems(eb_rewin) > 1242 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1243 1244 return eb_rewin; 1245 } 1246 1247 /* 1248 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1249 * value. If there are no changes, the current root->root_node is returned. If 1250 * anything changed in between, there's a fresh buffer allocated on which the 1251 * rewind operations are done. In any case, the returned buffer is read locked. 1252 * Returns NULL on error (with no locks held). 1253 */ 1254 static inline struct extent_buffer * 1255 get_old_root(struct btrfs_root *root, u64 time_seq) 1256 { 1257 struct tree_mod_elem *tm; 1258 struct extent_buffer *eb = NULL; 1259 struct extent_buffer *eb_root; 1260 struct extent_buffer *old; 1261 struct tree_mod_root *old_root = NULL; 1262 u64 old_generation = 0; 1263 u64 logical; 1264 u32 blocksize; 1265 1266 eb_root = btrfs_read_lock_root_node(root); 1267 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1268 if (!tm) 1269 return eb_root; 1270 1271 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1272 old_root = &tm->old_root; 1273 old_generation = tm->generation; 1274 logical = old_root->logical; 1275 } else { 1276 logical = eb_root->start; 1277 } 1278 1279 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1280 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1281 btrfs_tree_read_unlock(eb_root); 1282 free_extent_buffer(eb_root); 1283 blocksize = btrfs_level_size(root, old_root->level); 1284 old = read_tree_block(root, logical, blocksize, 0); 1285 if (!old || !extent_buffer_uptodate(old)) { 1286 free_extent_buffer(old); 1287 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n", 1288 logical); 1289 WARN_ON(1); 1290 } else { 1291 eb = btrfs_clone_extent_buffer(old); 1292 free_extent_buffer(old); 1293 } 1294 } else if (old_root) { 1295 btrfs_tree_read_unlock(eb_root); 1296 free_extent_buffer(eb_root); 1297 eb = alloc_dummy_extent_buffer(logical, root->nodesize); 1298 } else { 1299 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1300 eb = btrfs_clone_extent_buffer(eb_root); 1301 btrfs_tree_read_unlock_blocking(eb_root); 1302 free_extent_buffer(eb_root); 1303 } 1304 1305 if (!eb) 1306 return NULL; 1307 extent_buffer_get(eb); 1308 btrfs_tree_read_lock(eb); 1309 if (old_root) { 1310 btrfs_set_header_bytenr(eb, eb->start); 1311 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1312 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1313 btrfs_set_header_level(eb, old_root->level); 1314 btrfs_set_header_generation(eb, old_generation); 1315 } 1316 if (tm) 1317 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1318 else 1319 WARN_ON(btrfs_header_level(eb) != 0); 1320 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1321 1322 return eb; 1323 } 1324 1325 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1326 { 1327 struct tree_mod_elem *tm; 1328 int level; 1329 struct extent_buffer *eb_root = btrfs_root_node(root); 1330 1331 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1332 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1333 level = tm->old_root.level; 1334 } else { 1335 level = btrfs_header_level(eb_root); 1336 } 1337 free_extent_buffer(eb_root); 1338 1339 return level; 1340 } 1341 1342 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1343 struct btrfs_root *root, 1344 struct extent_buffer *buf) 1345 { 1346 /* ensure we can see the force_cow */ 1347 smp_rmb(); 1348 1349 /* 1350 * We do not need to cow a block if 1351 * 1) this block is not created or changed in this transaction; 1352 * 2) this block does not belong to TREE_RELOC tree; 1353 * 3) the root is not forced COW. 1354 * 1355 * What is forced COW: 1356 * when we create snapshot during commiting the transaction, 1357 * after we've finished coping src root, we must COW the shared 1358 * block to ensure the metadata consistency. 1359 */ 1360 if (btrfs_header_generation(buf) == trans->transid && 1361 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1362 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1363 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1364 !root->force_cow) 1365 return 0; 1366 return 1; 1367 } 1368 1369 /* 1370 * cows a single block, see __btrfs_cow_block for the real work. 1371 * This version of it has extra checks so that a block isn't cow'd more than 1372 * once per transaction, as long as it hasn't been written yet 1373 */ 1374 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1375 struct btrfs_root *root, struct extent_buffer *buf, 1376 struct extent_buffer *parent, int parent_slot, 1377 struct extent_buffer **cow_ret) 1378 { 1379 u64 search_start; 1380 int ret; 1381 1382 if (trans->transaction != root->fs_info->running_transaction) 1383 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1384 trans->transid, 1385 root->fs_info->running_transaction->transid); 1386 1387 if (trans->transid != root->fs_info->generation) 1388 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1389 trans->transid, root->fs_info->generation); 1390 1391 if (!should_cow_block(trans, root, buf)) { 1392 *cow_ret = buf; 1393 return 0; 1394 } 1395 1396 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1397 1398 if (parent) 1399 btrfs_set_lock_blocking(parent); 1400 btrfs_set_lock_blocking(buf); 1401 1402 ret = __btrfs_cow_block(trans, root, buf, parent, 1403 parent_slot, cow_ret, search_start, 0); 1404 1405 trace_btrfs_cow_block(root, buf, *cow_ret); 1406 1407 return ret; 1408 } 1409 1410 /* 1411 * helper function for defrag to decide if two blocks pointed to by a 1412 * node are actually close by 1413 */ 1414 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1415 { 1416 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1417 return 1; 1418 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1419 return 1; 1420 return 0; 1421 } 1422 1423 /* 1424 * compare two keys in a memcmp fashion 1425 */ 1426 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1427 { 1428 struct btrfs_key k1; 1429 1430 btrfs_disk_key_to_cpu(&k1, disk); 1431 1432 return btrfs_comp_cpu_keys(&k1, k2); 1433 } 1434 1435 /* 1436 * same as comp_keys only with two btrfs_key's 1437 */ 1438 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1439 { 1440 if (k1->objectid > k2->objectid) 1441 return 1; 1442 if (k1->objectid < k2->objectid) 1443 return -1; 1444 if (k1->type > k2->type) 1445 return 1; 1446 if (k1->type < k2->type) 1447 return -1; 1448 if (k1->offset > k2->offset) 1449 return 1; 1450 if (k1->offset < k2->offset) 1451 return -1; 1452 return 0; 1453 } 1454 1455 /* 1456 * this is used by the defrag code to go through all the 1457 * leaves pointed to by a node and reallocate them so that 1458 * disk order is close to key order 1459 */ 1460 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1461 struct btrfs_root *root, struct extent_buffer *parent, 1462 int start_slot, u64 *last_ret, 1463 struct btrfs_key *progress) 1464 { 1465 struct extent_buffer *cur; 1466 u64 blocknr; 1467 u64 gen; 1468 u64 search_start = *last_ret; 1469 u64 last_block = 0; 1470 u64 other; 1471 u32 parent_nritems; 1472 int end_slot; 1473 int i; 1474 int err = 0; 1475 int parent_level; 1476 int uptodate; 1477 u32 blocksize; 1478 int progress_passed = 0; 1479 struct btrfs_disk_key disk_key; 1480 1481 parent_level = btrfs_header_level(parent); 1482 1483 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1484 WARN_ON(trans->transid != root->fs_info->generation); 1485 1486 parent_nritems = btrfs_header_nritems(parent); 1487 blocksize = btrfs_level_size(root, parent_level - 1); 1488 end_slot = parent_nritems; 1489 1490 if (parent_nritems == 1) 1491 return 0; 1492 1493 btrfs_set_lock_blocking(parent); 1494 1495 for (i = start_slot; i < end_slot; i++) { 1496 int close = 1; 1497 1498 btrfs_node_key(parent, &disk_key, i); 1499 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1500 continue; 1501 1502 progress_passed = 1; 1503 blocknr = btrfs_node_blockptr(parent, i); 1504 gen = btrfs_node_ptr_generation(parent, i); 1505 if (last_block == 0) 1506 last_block = blocknr; 1507 1508 if (i > 0) { 1509 other = btrfs_node_blockptr(parent, i - 1); 1510 close = close_blocks(blocknr, other, blocksize); 1511 } 1512 if (!close && i < end_slot - 2) { 1513 other = btrfs_node_blockptr(parent, i + 1); 1514 close = close_blocks(blocknr, other, blocksize); 1515 } 1516 if (close) { 1517 last_block = blocknr; 1518 continue; 1519 } 1520 1521 cur = btrfs_find_tree_block(root, blocknr, blocksize); 1522 if (cur) 1523 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1524 else 1525 uptodate = 0; 1526 if (!cur || !uptodate) { 1527 if (!cur) { 1528 cur = read_tree_block(root, blocknr, 1529 blocksize, gen); 1530 if (!cur || !extent_buffer_uptodate(cur)) { 1531 free_extent_buffer(cur); 1532 return -EIO; 1533 } 1534 } else if (!uptodate) { 1535 err = btrfs_read_buffer(cur, gen); 1536 if (err) { 1537 free_extent_buffer(cur); 1538 return err; 1539 } 1540 } 1541 } 1542 if (search_start == 0) 1543 search_start = last_block; 1544 1545 btrfs_tree_lock(cur); 1546 btrfs_set_lock_blocking(cur); 1547 err = __btrfs_cow_block(trans, root, cur, parent, i, 1548 &cur, search_start, 1549 min(16 * blocksize, 1550 (end_slot - i) * blocksize)); 1551 if (err) { 1552 btrfs_tree_unlock(cur); 1553 free_extent_buffer(cur); 1554 break; 1555 } 1556 search_start = cur->start; 1557 last_block = cur->start; 1558 *last_ret = search_start; 1559 btrfs_tree_unlock(cur); 1560 free_extent_buffer(cur); 1561 } 1562 return err; 1563 } 1564 1565 /* 1566 * The leaf data grows from end-to-front in the node. 1567 * this returns the address of the start of the last item, 1568 * which is the stop of the leaf data stack 1569 */ 1570 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1571 struct extent_buffer *leaf) 1572 { 1573 u32 nr = btrfs_header_nritems(leaf); 1574 if (nr == 0) 1575 return BTRFS_LEAF_DATA_SIZE(root); 1576 return btrfs_item_offset_nr(leaf, nr - 1); 1577 } 1578 1579 1580 /* 1581 * search for key in the extent_buffer. The items start at offset p, 1582 * and they are item_size apart. There are 'max' items in p. 1583 * 1584 * the slot in the array is returned via slot, and it points to 1585 * the place where you would insert key if it is not found in 1586 * the array. 1587 * 1588 * slot may point to max if the key is bigger than all of the keys 1589 */ 1590 static noinline int generic_bin_search(struct extent_buffer *eb, 1591 unsigned long p, 1592 int item_size, struct btrfs_key *key, 1593 int max, int *slot) 1594 { 1595 int low = 0; 1596 int high = max; 1597 int mid; 1598 int ret; 1599 struct btrfs_disk_key *tmp = NULL; 1600 struct btrfs_disk_key unaligned; 1601 unsigned long offset; 1602 char *kaddr = NULL; 1603 unsigned long map_start = 0; 1604 unsigned long map_len = 0; 1605 int err; 1606 1607 while (low < high) { 1608 mid = (low + high) / 2; 1609 offset = p + mid * item_size; 1610 1611 if (!kaddr || offset < map_start || 1612 (offset + sizeof(struct btrfs_disk_key)) > 1613 map_start + map_len) { 1614 1615 err = map_private_extent_buffer(eb, offset, 1616 sizeof(struct btrfs_disk_key), 1617 &kaddr, &map_start, &map_len); 1618 1619 if (!err) { 1620 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1621 map_start); 1622 } else { 1623 read_extent_buffer(eb, &unaligned, 1624 offset, sizeof(unaligned)); 1625 tmp = &unaligned; 1626 } 1627 1628 } else { 1629 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1630 map_start); 1631 } 1632 ret = comp_keys(tmp, key); 1633 1634 if (ret < 0) 1635 low = mid + 1; 1636 else if (ret > 0) 1637 high = mid; 1638 else { 1639 *slot = mid; 1640 return 0; 1641 } 1642 } 1643 *slot = low; 1644 return 1; 1645 } 1646 1647 /* 1648 * simple bin_search frontend that does the right thing for 1649 * leaves vs nodes 1650 */ 1651 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1652 int level, int *slot) 1653 { 1654 if (level == 0) 1655 return generic_bin_search(eb, 1656 offsetof(struct btrfs_leaf, items), 1657 sizeof(struct btrfs_item), 1658 key, btrfs_header_nritems(eb), 1659 slot); 1660 else 1661 return generic_bin_search(eb, 1662 offsetof(struct btrfs_node, ptrs), 1663 sizeof(struct btrfs_key_ptr), 1664 key, btrfs_header_nritems(eb), 1665 slot); 1666 } 1667 1668 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1669 int level, int *slot) 1670 { 1671 return bin_search(eb, key, level, slot); 1672 } 1673 1674 static void root_add_used(struct btrfs_root *root, u32 size) 1675 { 1676 spin_lock(&root->accounting_lock); 1677 btrfs_set_root_used(&root->root_item, 1678 btrfs_root_used(&root->root_item) + size); 1679 spin_unlock(&root->accounting_lock); 1680 } 1681 1682 static void root_sub_used(struct btrfs_root *root, u32 size) 1683 { 1684 spin_lock(&root->accounting_lock); 1685 btrfs_set_root_used(&root->root_item, 1686 btrfs_root_used(&root->root_item) - size); 1687 spin_unlock(&root->accounting_lock); 1688 } 1689 1690 /* given a node and slot number, this reads the blocks it points to. The 1691 * extent buffer is returned with a reference taken (but unlocked). 1692 * NULL is returned on error. 1693 */ 1694 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1695 struct extent_buffer *parent, int slot) 1696 { 1697 int level = btrfs_header_level(parent); 1698 struct extent_buffer *eb; 1699 1700 if (slot < 0) 1701 return NULL; 1702 if (slot >= btrfs_header_nritems(parent)) 1703 return NULL; 1704 1705 BUG_ON(level == 0); 1706 1707 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1708 btrfs_level_size(root, level - 1), 1709 btrfs_node_ptr_generation(parent, slot)); 1710 if (eb && !extent_buffer_uptodate(eb)) { 1711 free_extent_buffer(eb); 1712 eb = NULL; 1713 } 1714 1715 return eb; 1716 } 1717 1718 /* 1719 * node level balancing, used to make sure nodes are in proper order for 1720 * item deletion. We balance from the top down, so we have to make sure 1721 * that a deletion won't leave an node completely empty later on. 1722 */ 1723 static noinline int balance_level(struct btrfs_trans_handle *trans, 1724 struct btrfs_root *root, 1725 struct btrfs_path *path, int level) 1726 { 1727 struct extent_buffer *right = NULL; 1728 struct extent_buffer *mid; 1729 struct extent_buffer *left = NULL; 1730 struct extent_buffer *parent = NULL; 1731 int ret = 0; 1732 int wret; 1733 int pslot; 1734 int orig_slot = path->slots[level]; 1735 u64 orig_ptr; 1736 1737 if (level == 0) 1738 return 0; 1739 1740 mid = path->nodes[level]; 1741 1742 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1743 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1744 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1745 1746 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1747 1748 if (level < BTRFS_MAX_LEVEL - 1) { 1749 parent = path->nodes[level + 1]; 1750 pslot = path->slots[level + 1]; 1751 } 1752 1753 /* 1754 * deal with the case where there is only one pointer in the root 1755 * by promoting the node below to a root 1756 */ 1757 if (!parent) { 1758 struct extent_buffer *child; 1759 1760 if (btrfs_header_nritems(mid) != 1) 1761 return 0; 1762 1763 /* promote the child to a root */ 1764 child = read_node_slot(root, mid, 0); 1765 if (!child) { 1766 ret = -EROFS; 1767 btrfs_std_error(root->fs_info, ret); 1768 goto enospc; 1769 } 1770 1771 btrfs_tree_lock(child); 1772 btrfs_set_lock_blocking(child); 1773 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1774 if (ret) { 1775 btrfs_tree_unlock(child); 1776 free_extent_buffer(child); 1777 goto enospc; 1778 } 1779 1780 tree_mod_log_set_root_pointer(root, child, 1); 1781 rcu_assign_pointer(root->node, child); 1782 1783 add_root_to_dirty_list(root); 1784 btrfs_tree_unlock(child); 1785 1786 path->locks[level] = 0; 1787 path->nodes[level] = NULL; 1788 clean_tree_block(trans, root, mid); 1789 btrfs_tree_unlock(mid); 1790 /* once for the path */ 1791 free_extent_buffer(mid); 1792 1793 root_sub_used(root, mid->len); 1794 btrfs_free_tree_block(trans, root, mid, 0, 1); 1795 /* once for the root ptr */ 1796 free_extent_buffer_stale(mid); 1797 return 0; 1798 } 1799 if (btrfs_header_nritems(mid) > 1800 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1801 return 0; 1802 1803 left = read_node_slot(root, parent, pslot - 1); 1804 if (left) { 1805 btrfs_tree_lock(left); 1806 btrfs_set_lock_blocking(left); 1807 wret = btrfs_cow_block(trans, root, left, 1808 parent, pslot - 1, &left); 1809 if (wret) { 1810 ret = wret; 1811 goto enospc; 1812 } 1813 } 1814 right = read_node_slot(root, parent, pslot + 1); 1815 if (right) { 1816 btrfs_tree_lock(right); 1817 btrfs_set_lock_blocking(right); 1818 wret = btrfs_cow_block(trans, root, right, 1819 parent, pslot + 1, &right); 1820 if (wret) { 1821 ret = wret; 1822 goto enospc; 1823 } 1824 } 1825 1826 /* first, try to make some room in the middle buffer */ 1827 if (left) { 1828 orig_slot += btrfs_header_nritems(left); 1829 wret = push_node_left(trans, root, left, mid, 1); 1830 if (wret < 0) 1831 ret = wret; 1832 } 1833 1834 /* 1835 * then try to empty the right most buffer into the middle 1836 */ 1837 if (right) { 1838 wret = push_node_left(trans, root, mid, right, 1); 1839 if (wret < 0 && wret != -ENOSPC) 1840 ret = wret; 1841 if (btrfs_header_nritems(right) == 0) { 1842 clean_tree_block(trans, root, right); 1843 btrfs_tree_unlock(right); 1844 del_ptr(root, path, level + 1, pslot + 1); 1845 root_sub_used(root, right->len); 1846 btrfs_free_tree_block(trans, root, right, 0, 1); 1847 free_extent_buffer_stale(right); 1848 right = NULL; 1849 } else { 1850 struct btrfs_disk_key right_key; 1851 btrfs_node_key(right, &right_key, 0); 1852 tree_mod_log_set_node_key(root->fs_info, parent, 1853 pslot + 1, 0); 1854 btrfs_set_node_key(parent, &right_key, pslot + 1); 1855 btrfs_mark_buffer_dirty(parent); 1856 } 1857 } 1858 if (btrfs_header_nritems(mid) == 1) { 1859 /* 1860 * we're not allowed to leave a node with one item in the 1861 * tree during a delete. A deletion from lower in the tree 1862 * could try to delete the only pointer in this node. 1863 * So, pull some keys from the left. 1864 * There has to be a left pointer at this point because 1865 * otherwise we would have pulled some pointers from the 1866 * right 1867 */ 1868 if (!left) { 1869 ret = -EROFS; 1870 btrfs_std_error(root->fs_info, ret); 1871 goto enospc; 1872 } 1873 wret = balance_node_right(trans, root, mid, left); 1874 if (wret < 0) { 1875 ret = wret; 1876 goto enospc; 1877 } 1878 if (wret == 1) { 1879 wret = push_node_left(trans, root, left, mid, 1); 1880 if (wret < 0) 1881 ret = wret; 1882 } 1883 BUG_ON(wret == 1); 1884 } 1885 if (btrfs_header_nritems(mid) == 0) { 1886 clean_tree_block(trans, root, mid); 1887 btrfs_tree_unlock(mid); 1888 del_ptr(root, path, level + 1, pslot); 1889 root_sub_used(root, mid->len); 1890 btrfs_free_tree_block(trans, root, mid, 0, 1); 1891 free_extent_buffer_stale(mid); 1892 mid = NULL; 1893 } else { 1894 /* update the parent key to reflect our changes */ 1895 struct btrfs_disk_key mid_key; 1896 btrfs_node_key(mid, &mid_key, 0); 1897 tree_mod_log_set_node_key(root->fs_info, parent, 1898 pslot, 0); 1899 btrfs_set_node_key(parent, &mid_key, pslot); 1900 btrfs_mark_buffer_dirty(parent); 1901 } 1902 1903 /* update the path */ 1904 if (left) { 1905 if (btrfs_header_nritems(left) > orig_slot) { 1906 extent_buffer_get(left); 1907 /* left was locked after cow */ 1908 path->nodes[level] = left; 1909 path->slots[level + 1] -= 1; 1910 path->slots[level] = orig_slot; 1911 if (mid) { 1912 btrfs_tree_unlock(mid); 1913 free_extent_buffer(mid); 1914 } 1915 } else { 1916 orig_slot -= btrfs_header_nritems(left); 1917 path->slots[level] = orig_slot; 1918 } 1919 } 1920 /* double check we haven't messed things up */ 1921 if (orig_ptr != 1922 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1923 BUG(); 1924 enospc: 1925 if (right) { 1926 btrfs_tree_unlock(right); 1927 free_extent_buffer(right); 1928 } 1929 if (left) { 1930 if (path->nodes[level] != left) 1931 btrfs_tree_unlock(left); 1932 free_extent_buffer(left); 1933 } 1934 return ret; 1935 } 1936 1937 /* Node balancing for insertion. Here we only split or push nodes around 1938 * when they are completely full. This is also done top down, so we 1939 * have to be pessimistic. 1940 */ 1941 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1942 struct btrfs_root *root, 1943 struct btrfs_path *path, int level) 1944 { 1945 struct extent_buffer *right = NULL; 1946 struct extent_buffer *mid; 1947 struct extent_buffer *left = NULL; 1948 struct extent_buffer *parent = NULL; 1949 int ret = 0; 1950 int wret; 1951 int pslot; 1952 int orig_slot = path->slots[level]; 1953 1954 if (level == 0) 1955 return 1; 1956 1957 mid = path->nodes[level]; 1958 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1959 1960 if (level < BTRFS_MAX_LEVEL - 1) { 1961 parent = path->nodes[level + 1]; 1962 pslot = path->slots[level + 1]; 1963 } 1964 1965 if (!parent) 1966 return 1; 1967 1968 left = read_node_slot(root, parent, pslot - 1); 1969 1970 /* first, try to make some room in the middle buffer */ 1971 if (left) { 1972 u32 left_nr; 1973 1974 btrfs_tree_lock(left); 1975 btrfs_set_lock_blocking(left); 1976 1977 left_nr = btrfs_header_nritems(left); 1978 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1979 wret = 1; 1980 } else { 1981 ret = btrfs_cow_block(trans, root, left, parent, 1982 pslot - 1, &left); 1983 if (ret) 1984 wret = 1; 1985 else { 1986 wret = push_node_left(trans, root, 1987 left, mid, 0); 1988 } 1989 } 1990 if (wret < 0) 1991 ret = wret; 1992 if (wret == 0) { 1993 struct btrfs_disk_key disk_key; 1994 orig_slot += left_nr; 1995 btrfs_node_key(mid, &disk_key, 0); 1996 tree_mod_log_set_node_key(root->fs_info, parent, 1997 pslot, 0); 1998 btrfs_set_node_key(parent, &disk_key, pslot); 1999 btrfs_mark_buffer_dirty(parent); 2000 if (btrfs_header_nritems(left) > orig_slot) { 2001 path->nodes[level] = left; 2002 path->slots[level + 1] -= 1; 2003 path->slots[level] = orig_slot; 2004 btrfs_tree_unlock(mid); 2005 free_extent_buffer(mid); 2006 } else { 2007 orig_slot -= 2008 btrfs_header_nritems(left); 2009 path->slots[level] = orig_slot; 2010 btrfs_tree_unlock(left); 2011 free_extent_buffer(left); 2012 } 2013 return 0; 2014 } 2015 btrfs_tree_unlock(left); 2016 free_extent_buffer(left); 2017 } 2018 right = read_node_slot(root, parent, pslot + 1); 2019 2020 /* 2021 * then try to empty the right most buffer into the middle 2022 */ 2023 if (right) { 2024 u32 right_nr; 2025 2026 btrfs_tree_lock(right); 2027 btrfs_set_lock_blocking(right); 2028 2029 right_nr = btrfs_header_nritems(right); 2030 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2031 wret = 1; 2032 } else { 2033 ret = btrfs_cow_block(trans, root, right, 2034 parent, pslot + 1, 2035 &right); 2036 if (ret) 2037 wret = 1; 2038 else { 2039 wret = balance_node_right(trans, root, 2040 right, mid); 2041 } 2042 } 2043 if (wret < 0) 2044 ret = wret; 2045 if (wret == 0) { 2046 struct btrfs_disk_key disk_key; 2047 2048 btrfs_node_key(right, &disk_key, 0); 2049 tree_mod_log_set_node_key(root->fs_info, parent, 2050 pslot + 1, 0); 2051 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2052 btrfs_mark_buffer_dirty(parent); 2053 2054 if (btrfs_header_nritems(mid) <= orig_slot) { 2055 path->nodes[level] = right; 2056 path->slots[level + 1] += 1; 2057 path->slots[level] = orig_slot - 2058 btrfs_header_nritems(mid); 2059 btrfs_tree_unlock(mid); 2060 free_extent_buffer(mid); 2061 } else { 2062 btrfs_tree_unlock(right); 2063 free_extent_buffer(right); 2064 } 2065 return 0; 2066 } 2067 btrfs_tree_unlock(right); 2068 free_extent_buffer(right); 2069 } 2070 return 1; 2071 } 2072 2073 /* 2074 * readahead one full node of leaves, finding things that are close 2075 * to the block in 'slot', and triggering ra on them. 2076 */ 2077 static void reada_for_search(struct btrfs_root *root, 2078 struct btrfs_path *path, 2079 int level, int slot, u64 objectid) 2080 { 2081 struct extent_buffer *node; 2082 struct btrfs_disk_key disk_key; 2083 u32 nritems; 2084 u64 search; 2085 u64 target; 2086 u64 nread = 0; 2087 u64 gen; 2088 int direction = path->reada; 2089 struct extent_buffer *eb; 2090 u32 nr; 2091 u32 blocksize; 2092 u32 nscan = 0; 2093 2094 if (level != 1) 2095 return; 2096 2097 if (!path->nodes[level]) 2098 return; 2099 2100 node = path->nodes[level]; 2101 2102 search = btrfs_node_blockptr(node, slot); 2103 blocksize = btrfs_level_size(root, level - 1); 2104 eb = btrfs_find_tree_block(root, search, blocksize); 2105 if (eb) { 2106 free_extent_buffer(eb); 2107 return; 2108 } 2109 2110 target = search; 2111 2112 nritems = btrfs_header_nritems(node); 2113 nr = slot; 2114 2115 while (1) { 2116 if (direction < 0) { 2117 if (nr == 0) 2118 break; 2119 nr--; 2120 } else if (direction > 0) { 2121 nr++; 2122 if (nr >= nritems) 2123 break; 2124 } 2125 if (path->reada < 0 && objectid) { 2126 btrfs_node_key(node, &disk_key, nr); 2127 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2128 break; 2129 } 2130 search = btrfs_node_blockptr(node, nr); 2131 if ((search <= target && target - search <= 65536) || 2132 (search > target && search - target <= 65536)) { 2133 gen = btrfs_node_ptr_generation(node, nr); 2134 readahead_tree_block(root, search, blocksize, gen); 2135 nread += blocksize; 2136 } 2137 nscan++; 2138 if ((nread > 65536 || nscan > 32)) 2139 break; 2140 } 2141 } 2142 2143 static noinline void reada_for_balance(struct btrfs_root *root, 2144 struct btrfs_path *path, int level) 2145 { 2146 int slot; 2147 int nritems; 2148 struct extent_buffer *parent; 2149 struct extent_buffer *eb; 2150 u64 gen; 2151 u64 block1 = 0; 2152 u64 block2 = 0; 2153 int blocksize; 2154 2155 parent = path->nodes[level + 1]; 2156 if (!parent) 2157 return; 2158 2159 nritems = btrfs_header_nritems(parent); 2160 slot = path->slots[level + 1]; 2161 blocksize = btrfs_level_size(root, level); 2162 2163 if (slot > 0) { 2164 block1 = btrfs_node_blockptr(parent, slot - 1); 2165 gen = btrfs_node_ptr_generation(parent, slot - 1); 2166 eb = btrfs_find_tree_block(root, block1, blocksize); 2167 /* 2168 * if we get -eagain from btrfs_buffer_uptodate, we 2169 * don't want to return eagain here. That will loop 2170 * forever 2171 */ 2172 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2173 block1 = 0; 2174 free_extent_buffer(eb); 2175 } 2176 if (slot + 1 < nritems) { 2177 block2 = btrfs_node_blockptr(parent, slot + 1); 2178 gen = btrfs_node_ptr_generation(parent, slot + 1); 2179 eb = btrfs_find_tree_block(root, block2, blocksize); 2180 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2181 block2 = 0; 2182 free_extent_buffer(eb); 2183 } 2184 2185 if (block1) 2186 readahead_tree_block(root, block1, blocksize, 0); 2187 if (block2) 2188 readahead_tree_block(root, block2, blocksize, 0); 2189 } 2190 2191 2192 /* 2193 * when we walk down the tree, it is usually safe to unlock the higher layers 2194 * in the tree. The exceptions are when our path goes through slot 0, because 2195 * operations on the tree might require changing key pointers higher up in the 2196 * tree. 2197 * 2198 * callers might also have set path->keep_locks, which tells this code to keep 2199 * the lock if the path points to the last slot in the block. This is part of 2200 * walking through the tree, and selecting the next slot in the higher block. 2201 * 2202 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2203 * if lowest_unlock is 1, level 0 won't be unlocked 2204 */ 2205 static noinline void unlock_up(struct btrfs_path *path, int level, 2206 int lowest_unlock, int min_write_lock_level, 2207 int *write_lock_level) 2208 { 2209 int i; 2210 int skip_level = level; 2211 int no_skips = 0; 2212 struct extent_buffer *t; 2213 2214 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2215 if (!path->nodes[i]) 2216 break; 2217 if (!path->locks[i]) 2218 break; 2219 if (!no_skips && path->slots[i] == 0) { 2220 skip_level = i + 1; 2221 continue; 2222 } 2223 if (!no_skips && path->keep_locks) { 2224 u32 nritems; 2225 t = path->nodes[i]; 2226 nritems = btrfs_header_nritems(t); 2227 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2228 skip_level = i + 1; 2229 continue; 2230 } 2231 } 2232 if (skip_level < i && i >= lowest_unlock) 2233 no_skips = 1; 2234 2235 t = path->nodes[i]; 2236 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2237 btrfs_tree_unlock_rw(t, path->locks[i]); 2238 path->locks[i] = 0; 2239 if (write_lock_level && 2240 i > min_write_lock_level && 2241 i <= *write_lock_level) { 2242 *write_lock_level = i - 1; 2243 } 2244 } 2245 } 2246 } 2247 2248 /* 2249 * This releases any locks held in the path starting at level and 2250 * going all the way up to the root. 2251 * 2252 * btrfs_search_slot will keep the lock held on higher nodes in a few 2253 * corner cases, such as COW of the block at slot zero in the node. This 2254 * ignores those rules, and it should only be called when there are no 2255 * more updates to be done higher up in the tree. 2256 */ 2257 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2258 { 2259 int i; 2260 2261 if (path->keep_locks) 2262 return; 2263 2264 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2265 if (!path->nodes[i]) 2266 continue; 2267 if (!path->locks[i]) 2268 continue; 2269 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2270 path->locks[i] = 0; 2271 } 2272 } 2273 2274 /* 2275 * helper function for btrfs_search_slot. The goal is to find a block 2276 * in cache without setting the path to blocking. If we find the block 2277 * we return zero and the path is unchanged. 2278 * 2279 * If we can't find the block, we set the path blocking and do some 2280 * reada. -EAGAIN is returned and the search must be repeated. 2281 */ 2282 static int 2283 read_block_for_search(struct btrfs_trans_handle *trans, 2284 struct btrfs_root *root, struct btrfs_path *p, 2285 struct extent_buffer **eb_ret, int level, int slot, 2286 struct btrfs_key *key, u64 time_seq) 2287 { 2288 u64 blocknr; 2289 u64 gen; 2290 u32 blocksize; 2291 struct extent_buffer *b = *eb_ret; 2292 struct extent_buffer *tmp; 2293 int ret; 2294 2295 blocknr = btrfs_node_blockptr(b, slot); 2296 gen = btrfs_node_ptr_generation(b, slot); 2297 blocksize = btrfs_level_size(root, level - 1); 2298 2299 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 2300 if (tmp) { 2301 /* first we do an atomic uptodate check */ 2302 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2303 *eb_ret = tmp; 2304 return 0; 2305 } 2306 2307 /* the pages were up to date, but we failed 2308 * the generation number check. Do a full 2309 * read for the generation number that is correct. 2310 * We must do this without dropping locks so 2311 * we can trust our generation number 2312 */ 2313 btrfs_set_path_blocking(p); 2314 2315 /* now we're allowed to do a blocking uptodate check */ 2316 ret = btrfs_read_buffer(tmp, gen); 2317 if (!ret) { 2318 *eb_ret = tmp; 2319 return 0; 2320 } 2321 free_extent_buffer(tmp); 2322 btrfs_release_path(p); 2323 return -EIO; 2324 } 2325 2326 /* 2327 * reduce lock contention at high levels 2328 * of the btree by dropping locks before 2329 * we read. Don't release the lock on the current 2330 * level because we need to walk this node to figure 2331 * out which blocks to read. 2332 */ 2333 btrfs_unlock_up_safe(p, level + 1); 2334 btrfs_set_path_blocking(p); 2335 2336 free_extent_buffer(tmp); 2337 if (p->reada) 2338 reada_for_search(root, p, level, slot, key->objectid); 2339 2340 btrfs_release_path(p); 2341 2342 ret = -EAGAIN; 2343 tmp = read_tree_block(root, blocknr, blocksize, 0); 2344 if (tmp) { 2345 /* 2346 * If the read above didn't mark this buffer up to date, 2347 * it will never end up being up to date. Set ret to EIO now 2348 * and give up so that our caller doesn't loop forever 2349 * on our EAGAINs. 2350 */ 2351 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2352 ret = -EIO; 2353 free_extent_buffer(tmp); 2354 } 2355 return ret; 2356 } 2357 2358 /* 2359 * helper function for btrfs_search_slot. This does all of the checks 2360 * for node-level blocks and does any balancing required based on 2361 * the ins_len. 2362 * 2363 * If no extra work was required, zero is returned. If we had to 2364 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2365 * start over 2366 */ 2367 static int 2368 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2369 struct btrfs_root *root, struct btrfs_path *p, 2370 struct extent_buffer *b, int level, int ins_len, 2371 int *write_lock_level) 2372 { 2373 int ret; 2374 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2375 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2376 int sret; 2377 2378 if (*write_lock_level < level + 1) { 2379 *write_lock_level = level + 1; 2380 btrfs_release_path(p); 2381 goto again; 2382 } 2383 2384 btrfs_set_path_blocking(p); 2385 reada_for_balance(root, p, level); 2386 sret = split_node(trans, root, p, level); 2387 btrfs_clear_path_blocking(p, NULL, 0); 2388 2389 BUG_ON(sret > 0); 2390 if (sret) { 2391 ret = sret; 2392 goto done; 2393 } 2394 b = p->nodes[level]; 2395 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2396 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2397 int sret; 2398 2399 if (*write_lock_level < level + 1) { 2400 *write_lock_level = level + 1; 2401 btrfs_release_path(p); 2402 goto again; 2403 } 2404 2405 btrfs_set_path_blocking(p); 2406 reada_for_balance(root, p, level); 2407 sret = balance_level(trans, root, p, level); 2408 btrfs_clear_path_blocking(p, NULL, 0); 2409 2410 if (sret) { 2411 ret = sret; 2412 goto done; 2413 } 2414 b = p->nodes[level]; 2415 if (!b) { 2416 btrfs_release_path(p); 2417 goto again; 2418 } 2419 BUG_ON(btrfs_header_nritems(b) == 1); 2420 } 2421 return 0; 2422 2423 again: 2424 ret = -EAGAIN; 2425 done: 2426 return ret; 2427 } 2428 2429 static void key_search_validate(struct extent_buffer *b, 2430 struct btrfs_key *key, 2431 int level) 2432 { 2433 #ifdef CONFIG_BTRFS_ASSERT 2434 struct btrfs_disk_key disk_key; 2435 2436 btrfs_cpu_key_to_disk(&disk_key, key); 2437 2438 if (level == 0) 2439 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2440 offsetof(struct btrfs_leaf, items[0].key), 2441 sizeof(disk_key))); 2442 else 2443 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2444 offsetof(struct btrfs_node, ptrs[0].key), 2445 sizeof(disk_key))); 2446 #endif 2447 } 2448 2449 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2450 int level, int *prev_cmp, int *slot) 2451 { 2452 if (*prev_cmp != 0) { 2453 *prev_cmp = bin_search(b, key, level, slot); 2454 return *prev_cmp; 2455 } 2456 2457 key_search_validate(b, key, level); 2458 *slot = 0; 2459 2460 return 0; 2461 } 2462 2463 /* 2464 * look for key in the tree. path is filled in with nodes along the way 2465 * if key is found, we return zero and you can find the item in the leaf 2466 * level of the path (level 0) 2467 * 2468 * If the key isn't found, the path points to the slot where it should 2469 * be inserted, and 1 is returned. If there are other errors during the 2470 * search a negative error number is returned. 2471 * 2472 * if ins_len > 0, nodes and leaves will be split as we walk down the 2473 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2474 * possible) 2475 */ 2476 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2477 *root, struct btrfs_key *key, struct btrfs_path *p, int 2478 ins_len, int cow) 2479 { 2480 struct extent_buffer *b; 2481 int slot; 2482 int ret; 2483 int err; 2484 int level; 2485 int lowest_unlock = 1; 2486 int root_lock; 2487 /* everything at write_lock_level or lower must be write locked */ 2488 int write_lock_level = 0; 2489 u8 lowest_level = 0; 2490 int min_write_lock_level; 2491 int prev_cmp; 2492 2493 lowest_level = p->lowest_level; 2494 WARN_ON(lowest_level && ins_len > 0); 2495 WARN_ON(p->nodes[0] != NULL); 2496 2497 if (ins_len < 0) { 2498 lowest_unlock = 2; 2499 2500 /* when we are removing items, we might have to go up to level 2501 * two as we update tree pointers Make sure we keep write 2502 * for those levels as well 2503 */ 2504 write_lock_level = 2; 2505 } else if (ins_len > 0) { 2506 /* 2507 * for inserting items, make sure we have a write lock on 2508 * level 1 so we can update keys 2509 */ 2510 write_lock_level = 1; 2511 } 2512 2513 if (!cow) 2514 write_lock_level = -1; 2515 2516 if (cow && (p->keep_locks || p->lowest_level)) 2517 write_lock_level = BTRFS_MAX_LEVEL; 2518 2519 min_write_lock_level = write_lock_level; 2520 2521 again: 2522 prev_cmp = -1; 2523 /* 2524 * we try very hard to do read locks on the root 2525 */ 2526 root_lock = BTRFS_READ_LOCK; 2527 level = 0; 2528 if (p->search_commit_root) { 2529 /* 2530 * the commit roots are read only 2531 * so we always do read locks 2532 */ 2533 b = root->commit_root; 2534 extent_buffer_get(b); 2535 level = btrfs_header_level(b); 2536 if (!p->skip_locking) 2537 btrfs_tree_read_lock(b); 2538 } else { 2539 if (p->skip_locking) { 2540 b = btrfs_root_node(root); 2541 level = btrfs_header_level(b); 2542 } else { 2543 /* we don't know the level of the root node 2544 * until we actually have it read locked 2545 */ 2546 b = btrfs_read_lock_root_node(root); 2547 level = btrfs_header_level(b); 2548 if (level <= write_lock_level) { 2549 /* whoops, must trade for write lock */ 2550 btrfs_tree_read_unlock(b); 2551 free_extent_buffer(b); 2552 b = btrfs_lock_root_node(root); 2553 root_lock = BTRFS_WRITE_LOCK; 2554 2555 /* the level might have changed, check again */ 2556 level = btrfs_header_level(b); 2557 } 2558 } 2559 } 2560 p->nodes[level] = b; 2561 if (!p->skip_locking) 2562 p->locks[level] = root_lock; 2563 2564 while (b) { 2565 level = btrfs_header_level(b); 2566 2567 /* 2568 * setup the path here so we can release it under lock 2569 * contention with the cow code 2570 */ 2571 if (cow) { 2572 /* 2573 * if we don't really need to cow this block 2574 * then we don't want to set the path blocking, 2575 * so we test it here 2576 */ 2577 if (!should_cow_block(trans, root, b)) 2578 goto cow_done; 2579 2580 btrfs_set_path_blocking(p); 2581 2582 /* 2583 * must have write locks on this node and the 2584 * parent 2585 */ 2586 if (level > write_lock_level || 2587 (level + 1 > write_lock_level && 2588 level + 1 < BTRFS_MAX_LEVEL && 2589 p->nodes[level + 1])) { 2590 write_lock_level = level + 1; 2591 btrfs_release_path(p); 2592 goto again; 2593 } 2594 2595 err = btrfs_cow_block(trans, root, b, 2596 p->nodes[level + 1], 2597 p->slots[level + 1], &b); 2598 if (err) { 2599 ret = err; 2600 goto done; 2601 } 2602 } 2603 cow_done: 2604 BUG_ON(!cow && ins_len); 2605 2606 p->nodes[level] = b; 2607 btrfs_clear_path_blocking(p, NULL, 0); 2608 2609 /* 2610 * we have a lock on b and as long as we aren't changing 2611 * the tree, there is no way to for the items in b to change. 2612 * It is safe to drop the lock on our parent before we 2613 * go through the expensive btree search on b. 2614 * 2615 * If cow is true, then we might be changing slot zero, 2616 * which may require changing the parent. So, we can't 2617 * drop the lock until after we know which slot we're 2618 * operating on. 2619 */ 2620 if (!cow) 2621 btrfs_unlock_up_safe(p, level + 1); 2622 2623 ret = key_search(b, key, level, &prev_cmp, &slot); 2624 2625 if (level != 0) { 2626 int dec = 0; 2627 if (ret && slot > 0) { 2628 dec = 1; 2629 slot -= 1; 2630 } 2631 p->slots[level] = slot; 2632 err = setup_nodes_for_search(trans, root, p, b, level, 2633 ins_len, &write_lock_level); 2634 if (err == -EAGAIN) 2635 goto again; 2636 if (err) { 2637 ret = err; 2638 goto done; 2639 } 2640 b = p->nodes[level]; 2641 slot = p->slots[level]; 2642 2643 /* 2644 * slot 0 is special, if we change the key 2645 * we have to update the parent pointer 2646 * which means we must have a write lock 2647 * on the parent 2648 */ 2649 if (slot == 0 && cow && 2650 write_lock_level < level + 1) { 2651 write_lock_level = level + 1; 2652 btrfs_release_path(p); 2653 goto again; 2654 } 2655 2656 unlock_up(p, level, lowest_unlock, 2657 min_write_lock_level, &write_lock_level); 2658 2659 if (level == lowest_level) { 2660 if (dec) 2661 p->slots[level]++; 2662 goto done; 2663 } 2664 2665 err = read_block_for_search(trans, root, p, 2666 &b, level, slot, key, 0); 2667 if (err == -EAGAIN) 2668 goto again; 2669 if (err) { 2670 ret = err; 2671 goto done; 2672 } 2673 2674 if (!p->skip_locking) { 2675 level = btrfs_header_level(b); 2676 if (level <= write_lock_level) { 2677 err = btrfs_try_tree_write_lock(b); 2678 if (!err) { 2679 btrfs_set_path_blocking(p); 2680 btrfs_tree_lock(b); 2681 btrfs_clear_path_blocking(p, b, 2682 BTRFS_WRITE_LOCK); 2683 } 2684 p->locks[level] = BTRFS_WRITE_LOCK; 2685 } else { 2686 err = btrfs_try_tree_read_lock(b); 2687 if (!err) { 2688 btrfs_set_path_blocking(p); 2689 btrfs_tree_read_lock(b); 2690 btrfs_clear_path_blocking(p, b, 2691 BTRFS_READ_LOCK); 2692 } 2693 p->locks[level] = BTRFS_READ_LOCK; 2694 } 2695 p->nodes[level] = b; 2696 } 2697 } else { 2698 p->slots[level] = slot; 2699 if (ins_len > 0 && 2700 btrfs_leaf_free_space(root, b) < ins_len) { 2701 if (write_lock_level < 1) { 2702 write_lock_level = 1; 2703 btrfs_release_path(p); 2704 goto again; 2705 } 2706 2707 btrfs_set_path_blocking(p); 2708 err = split_leaf(trans, root, key, 2709 p, ins_len, ret == 0); 2710 btrfs_clear_path_blocking(p, NULL, 0); 2711 2712 BUG_ON(err > 0); 2713 if (err) { 2714 ret = err; 2715 goto done; 2716 } 2717 } 2718 if (!p->search_for_split) 2719 unlock_up(p, level, lowest_unlock, 2720 min_write_lock_level, &write_lock_level); 2721 goto done; 2722 } 2723 } 2724 ret = 1; 2725 done: 2726 /* 2727 * we don't really know what they plan on doing with the path 2728 * from here on, so for now just mark it as blocking 2729 */ 2730 if (!p->leave_spinning) 2731 btrfs_set_path_blocking(p); 2732 if (ret < 0) 2733 btrfs_release_path(p); 2734 return ret; 2735 } 2736 2737 /* 2738 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2739 * current state of the tree together with the operations recorded in the tree 2740 * modification log to search for the key in a previous version of this tree, as 2741 * denoted by the time_seq parameter. 2742 * 2743 * Naturally, there is no support for insert, delete or cow operations. 2744 * 2745 * The resulting path and return value will be set up as if we called 2746 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2747 */ 2748 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2749 struct btrfs_path *p, u64 time_seq) 2750 { 2751 struct extent_buffer *b; 2752 int slot; 2753 int ret; 2754 int err; 2755 int level; 2756 int lowest_unlock = 1; 2757 u8 lowest_level = 0; 2758 int prev_cmp; 2759 2760 lowest_level = p->lowest_level; 2761 WARN_ON(p->nodes[0] != NULL); 2762 2763 if (p->search_commit_root) { 2764 BUG_ON(time_seq); 2765 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2766 } 2767 2768 again: 2769 prev_cmp = -1; 2770 b = get_old_root(root, time_seq); 2771 level = btrfs_header_level(b); 2772 p->locks[level] = BTRFS_READ_LOCK; 2773 2774 while (b) { 2775 level = btrfs_header_level(b); 2776 p->nodes[level] = b; 2777 btrfs_clear_path_blocking(p, NULL, 0); 2778 2779 /* 2780 * we have a lock on b and as long as we aren't changing 2781 * the tree, there is no way to for the items in b to change. 2782 * It is safe to drop the lock on our parent before we 2783 * go through the expensive btree search on b. 2784 */ 2785 btrfs_unlock_up_safe(p, level + 1); 2786 2787 ret = key_search(b, key, level, &prev_cmp, &slot); 2788 2789 if (level != 0) { 2790 int dec = 0; 2791 if (ret && slot > 0) { 2792 dec = 1; 2793 slot -= 1; 2794 } 2795 p->slots[level] = slot; 2796 unlock_up(p, level, lowest_unlock, 0, NULL); 2797 2798 if (level == lowest_level) { 2799 if (dec) 2800 p->slots[level]++; 2801 goto done; 2802 } 2803 2804 err = read_block_for_search(NULL, root, p, &b, level, 2805 slot, key, time_seq); 2806 if (err == -EAGAIN) 2807 goto again; 2808 if (err) { 2809 ret = err; 2810 goto done; 2811 } 2812 2813 level = btrfs_header_level(b); 2814 err = btrfs_try_tree_read_lock(b); 2815 if (!err) { 2816 btrfs_set_path_blocking(p); 2817 btrfs_tree_read_lock(b); 2818 btrfs_clear_path_blocking(p, b, 2819 BTRFS_READ_LOCK); 2820 } 2821 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 2822 if (!b) { 2823 ret = -ENOMEM; 2824 goto done; 2825 } 2826 p->locks[level] = BTRFS_READ_LOCK; 2827 p->nodes[level] = b; 2828 } else { 2829 p->slots[level] = slot; 2830 unlock_up(p, level, lowest_unlock, 0, NULL); 2831 goto done; 2832 } 2833 } 2834 ret = 1; 2835 done: 2836 if (!p->leave_spinning) 2837 btrfs_set_path_blocking(p); 2838 if (ret < 0) 2839 btrfs_release_path(p); 2840 2841 return ret; 2842 } 2843 2844 /* 2845 * helper to use instead of search slot if no exact match is needed but 2846 * instead the next or previous item should be returned. 2847 * When find_higher is true, the next higher item is returned, the next lower 2848 * otherwise. 2849 * When return_any and find_higher are both true, and no higher item is found, 2850 * return the next lower instead. 2851 * When return_any is true and find_higher is false, and no lower item is found, 2852 * return the next higher instead. 2853 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2854 * < 0 on error 2855 */ 2856 int btrfs_search_slot_for_read(struct btrfs_root *root, 2857 struct btrfs_key *key, struct btrfs_path *p, 2858 int find_higher, int return_any) 2859 { 2860 int ret; 2861 struct extent_buffer *leaf; 2862 2863 again: 2864 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2865 if (ret <= 0) 2866 return ret; 2867 /* 2868 * a return value of 1 means the path is at the position where the 2869 * item should be inserted. Normally this is the next bigger item, 2870 * but in case the previous item is the last in a leaf, path points 2871 * to the first free slot in the previous leaf, i.e. at an invalid 2872 * item. 2873 */ 2874 leaf = p->nodes[0]; 2875 2876 if (find_higher) { 2877 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2878 ret = btrfs_next_leaf(root, p); 2879 if (ret <= 0) 2880 return ret; 2881 if (!return_any) 2882 return 1; 2883 /* 2884 * no higher item found, return the next 2885 * lower instead 2886 */ 2887 return_any = 0; 2888 find_higher = 0; 2889 btrfs_release_path(p); 2890 goto again; 2891 } 2892 } else { 2893 if (p->slots[0] == 0) { 2894 ret = btrfs_prev_leaf(root, p); 2895 if (ret < 0) 2896 return ret; 2897 if (!ret) { 2898 p->slots[0] = btrfs_header_nritems(leaf) - 1; 2899 return 0; 2900 } 2901 if (!return_any) 2902 return 1; 2903 /* 2904 * no lower item found, return the next 2905 * higher instead 2906 */ 2907 return_any = 0; 2908 find_higher = 1; 2909 btrfs_release_path(p); 2910 goto again; 2911 } else { 2912 --p->slots[0]; 2913 } 2914 } 2915 return 0; 2916 } 2917 2918 /* 2919 * adjust the pointers going up the tree, starting at level 2920 * making sure the right key of each node is points to 'key'. 2921 * This is used after shifting pointers to the left, so it stops 2922 * fixing up pointers when a given leaf/node is not in slot 0 of the 2923 * higher levels 2924 * 2925 */ 2926 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path, 2927 struct btrfs_disk_key *key, int level) 2928 { 2929 int i; 2930 struct extent_buffer *t; 2931 2932 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2933 int tslot = path->slots[i]; 2934 if (!path->nodes[i]) 2935 break; 2936 t = path->nodes[i]; 2937 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1); 2938 btrfs_set_node_key(t, key, tslot); 2939 btrfs_mark_buffer_dirty(path->nodes[i]); 2940 if (tslot != 0) 2941 break; 2942 } 2943 } 2944 2945 /* 2946 * update item key. 2947 * 2948 * This function isn't completely safe. It's the caller's responsibility 2949 * that the new key won't break the order 2950 */ 2951 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path, 2952 struct btrfs_key *new_key) 2953 { 2954 struct btrfs_disk_key disk_key; 2955 struct extent_buffer *eb; 2956 int slot; 2957 2958 eb = path->nodes[0]; 2959 slot = path->slots[0]; 2960 if (slot > 0) { 2961 btrfs_item_key(eb, &disk_key, slot - 1); 2962 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 2963 } 2964 if (slot < btrfs_header_nritems(eb) - 1) { 2965 btrfs_item_key(eb, &disk_key, slot + 1); 2966 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 2967 } 2968 2969 btrfs_cpu_key_to_disk(&disk_key, new_key); 2970 btrfs_set_item_key(eb, &disk_key, slot); 2971 btrfs_mark_buffer_dirty(eb); 2972 if (slot == 0) 2973 fixup_low_keys(root, path, &disk_key, 1); 2974 } 2975 2976 /* 2977 * try to push data from one node into the next node left in the 2978 * tree. 2979 * 2980 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2981 * error, and > 0 if there was no room in the left hand block. 2982 */ 2983 static int push_node_left(struct btrfs_trans_handle *trans, 2984 struct btrfs_root *root, struct extent_buffer *dst, 2985 struct extent_buffer *src, int empty) 2986 { 2987 int push_items = 0; 2988 int src_nritems; 2989 int dst_nritems; 2990 int ret = 0; 2991 2992 src_nritems = btrfs_header_nritems(src); 2993 dst_nritems = btrfs_header_nritems(dst); 2994 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2995 WARN_ON(btrfs_header_generation(src) != trans->transid); 2996 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2997 2998 if (!empty && src_nritems <= 8) 2999 return 1; 3000 3001 if (push_items <= 0) 3002 return 1; 3003 3004 if (empty) { 3005 push_items = min(src_nritems, push_items); 3006 if (push_items < src_nritems) { 3007 /* leave at least 8 pointers in the node if 3008 * we aren't going to empty it 3009 */ 3010 if (src_nritems - push_items < 8) { 3011 if (push_items <= 8) 3012 return 1; 3013 push_items -= 8; 3014 } 3015 } 3016 } else 3017 push_items = min(src_nritems - 8, push_items); 3018 3019 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3020 push_items); 3021 copy_extent_buffer(dst, src, 3022 btrfs_node_key_ptr_offset(dst_nritems), 3023 btrfs_node_key_ptr_offset(0), 3024 push_items * sizeof(struct btrfs_key_ptr)); 3025 3026 if (push_items < src_nritems) { 3027 /* 3028 * don't call tree_mod_log_eb_move here, key removal was already 3029 * fully logged by tree_mod_log_eb_copy above. 3030 */ 3031 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3032 btrfs_node_key_ptr_offset(push_items), 3033 (src_nritems - push_items) * 3034 sizeof(struct btrfs_key_ptr)); 3035 } 3036 btrfs_set_header_nritems(src, src_nritems - push_items); 3037 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3038 btrfs_mark_buffer_dirty(src); 3039 btrfs_mark_buffer_dirty(dst); 3040 3041 return ret; 3042 } 3043 3044 /* 3045 * try to push data from one node into the next node right in the 3046 * tree. 3047 * 3048 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3049 * error, and > 0 if there was no room in the right hand block. 3050 * 3051 * this will only push up to 1/2 the contents of the left node over 3052 */ 3053 static int balance_node_right(struct btrfs_trans_handle *trans, 3054 struct btrfs_root *root, 3055 struct extent_buffer *dst, 3056 struct extent_buffer *src) 3057 { 3058 int push_items = 0; 3059 int max_push; 3060 int src_nritems; 3061 int dst_nritems; 3062 int ret = 0; 3063 3064 WARN_ON(btrfs_header_generation(src) != trans->transid); 3065 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3066 3067 src_nritems = btrfs_header_nritems(src); 3068 dst_nritems = btrfs_header_nritems(dst); 3069 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3070 if (push_items <= 0) 3071 return 1; 3072 3073 if (src_nritems < 4) 3074 return 1; 3075 3076 max_push = src_nritems / 2 + 1; 3077 /* don't try to empty the node */ 3078 if (max_push >= src_nritems) 3079 return 1; 3080 3081 if (max_push < push_items) 3082 push_items = max_push; 3083 3084 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3085 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3086 btrfs_node_key_ptr_offset(0), 3087 (dst_nritems) * 3088 sizeof(struct btrfs_key_ptr)); 3089 3090 tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3091 src_nritems - push_items, push_items); 3092 copy_extent_buffer(dst, src, 3093 btrfs_node_key_ptr_offset(0), 3094 btrfs_node_key_ptr_offset(src_nritems - push_items), 3095 push_items * sizeof(struct btrfs_key_ptr)); 3096 3097 btrfs_set_header_nritems(src, src_nritems - push_items); 3098 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3099 3100 btrfs_mark_buffer_dirty(src); 3101 btrfs_mark_buffer_dirty(dst); 3102 3103 return ret; 3104 } 3105 3106 /* 3107 * helper function to insert a new root level in the tree. 3108 * A new node is allocated, and a single item is inserted to 3109 * point to the existing root 3110 * 3111 * returns zero on success or < 0 on failure. 3112 */ 3113 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3114 struct btrfs_root *root, 3115 struct btrfs_path *path, int level) 3116 { 3117 u64 lower_gen; 3118 struct extent_buffer *lower; 3119 struct extent_buffer *c; 3120 struct extent_buffer *old; 3121 struct btrfs_disk_key lower_key; 3122 3123 BUG_ON(path->nodes[level]); 3124 BUG_ON(path->nodes[level-1] != root->node); 3125 3126 lower = path->nodes[level-1]; 3127 if (level == 1) 3128 btrfs_item_key(lower, &lower_key, 0); 3129 else 3130 btrfs_node_key(lower, &lower_key, 0); 3131 3132 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3133 root->root_key.objectid, &lower_key, 3134 level, root->node->start, 0); 3135 if (IS_ERR(c)) 3136 return PTR_ERR(c); 3137 3138 root_add_used(root, root->nodesize); 3139 3140 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3141 btrfs_set_header_nritems(c, 1); 3142 btrfs_set_header_level(c, level); 3143 btrfs_set_header_bytenr(c, c->start); 3144 btrfs_set_header_generation(c, trans->transid); 3145 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3146 btrfs_set_header_owner(c, root->root_key.objectid); 3147 3148 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(c), 3149 BTRFS_FSID_SIZE); 3150 3151 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3152 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3153 3154 btrfs_set_node_key(c, &lower_key, 0); 3155 btrfs_set_node_blockptr(c, 0, lower->start); 3156 lower_gen = btrfs_header_generation(lower); 3157 WARN_ON(lower_gen != trans->transid); 3158 3159 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3160 3161 btrfs_mark_buffer_dirty(c); 3162 3163 old = root->node; 3164 tree_mod_log_set_root_pointer(root, c, 0); 3165 rcu_assign_pointer(root->node, c); 3166 3167 /* the super has an extra ref to root->node */ 3168 free_extent_buffer(old); 3169 3170 add_root_to_dirty_list(root); 3171 extent_buffer_get(c); 3172 path->nodes[level] = c; 3173 path->locks[level] = BTRFS_WRITE_LOCK; 3174 path->slots[level] = 0; 3175 return 0; 3176 } 3177 3178 /* 3179 * worker function to insert a single pointer in a node. 3180 * the node should have enough room for the pointer already 3181 * 3182 * slot and level indicate where you want the key to go, and 3183 * blocknr is the block the key points to. 3184 */ 3185 static void insert_ptr(struct btrfs_trans_handle *trans, 3186 struct btrfs_root *root, struct btrfs_path *path, 3187 struct btrfs_disk_key *key, u64 bytenr, 3188 int slot, int level) 3189 { 3190 struct extent_buffer *lower; 3191 int nritems; 3192 int ret; 3193 3194 BUG_ON(!path->nodes[level]); 3195 btrfs_assert_tree_locked(path->nodes[level]); 3196 lower = path->nodes[level]; 3197 nritems = btrfs_header_nritems(lower); 3198 BUG_ON(slot > nritems); 3199 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3200 if (slot != nritems) { 3201 if (level) 3202 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3203 slot, nritems - slot); 3204 memmove_extent_buffer(lower, 3205 btrfs_node_key_ptr_offset(slot + 1), 3206 btrfs_node_key_ptr_offset(slot), 3207 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3208 } 3209 if (level) { 3210 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3211 MOD_LOG_KEY_ADD, GFP_NOFS); 3212 BUG_ON(ret < 0); 3213 } 3214 btrfs_set_node_key(lower, key, slot); 3215 btrfs_set_node_blockptr(lower, slot, bytenr); 3216 WARN_ON(trans->transid == 0); 3217 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3218 btrfs_set_header_nritems(lower, nritems + 1); 3219 btrfs_mark_buffer_dirty(lower); 3220 } 3221 3222 /* 3223 * split the node at the specified level in path in two. 3224 * The path is corrected to point to the appropriate node after the split 3225 * 3226 * Before splitting this tries to make some room in the node by pushing 3227 * left and right, if either one works, it returns right away. 3228 * 3229 * returns 0 on success and < 0 on failure 3230 */ 3231 static noinline int split_node(struct btrfs_trans_handle *trans, 3232 struct btrfs_root *root, 3233 struct btrfs_path *path, int level) 3234 { 3235 struct extent_buffer *c; 3236 struct extent_buffer *split; 3237 struct btrfs_disk_key disk_key; 3238 int mid; 3239 int ret; 3240 u32 c_nritems; 3241 3242 c = path->nodes[level]; 3243 WARN_ON(btrfs_header_generation(c) != trans->transid); 3244 if (c == root->node) { 3245 /* 3246 * trying to split the root, lets make a new one 3247 * 3248 * tree mod log: We don't log_removal old root in 3249 * insert_new_root, because that root buffer will be kept as a 3250 * normal node. We are going to log removal of half of the 3251 * elements below with tree_mod_log_eb_copy. We're holding a 3252 * tree lock on the buffer, which is why we cannot race with 3253 * other tree_mod_log users. 3254 */ 3255 ret = insert_new_root(trans, root, path, level + 1); 3256 if (ret) 3257 return ret; 3258 } else { 3259 ret = push_nodes_for_insert(trans, root, path, level); 3260 c = path->nodes[level]; 3261 if (!ret && btrfs_header_nritems(c) < 3262 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3263 return 0; 3264 if (ret < 0) 3265 return ret; 3266 } 3267 3268 c_nritems = btrfs_header_nritems(c); 3269 mid = (c_nritems + 1) / 2; 3270 btrfs_node_key(c, &disk_key, mid); 3271 3272 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3273 root->root_key.objectid, 3274 &disk_key, level, c->start, 0); 3275 if (IS_ERR(split)) 3276 return PTR_ERR(split); 3277 3278 root_add_used(root, root->nodesize); 3279 3280 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3281 btrfs_set_header_level(split, btrfs_header_level(c)); 3282 btrfs_set_header_bytenr(split, split->start); 3283 btrfs_set_header_generation(split, trans->transid); 3284 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3285 btrfs_set_header_owner(split, root->root_key.objectid); 3286 write_extent_buffer(split, root->fs_info->fsid, 3287 btrfs_header_fsid(split), BTRFS_FSID_SIZE); 3288 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3289 btrfs_header_chunk_tree_uuid(split), 3290 BTRFS_UUID_SIZE); 3291 3292 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid); 3293 copy_extent_buffer(split, c, 3294 btrfs_node_key_ptr_offset(0), 3295 btrfs_node_key_ptr_offset(mid), 3296 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3297 btrfs_set_header_nritems(split, c_nritems - mid); 3298 btrfs_set_header_nritems(c, mid); 3299 ret = 0; 3300 3301 btrfs_mark_buffer_dirty(c); 3302 btrfs_mark_buffer_dirty(split); 3303 3304 insert_ptr(trans, root, path, &disk_key, split->start, 3305 path->slots[level + 1] + 1, level + 1); 3306 3307 if (path->slots[level] >= mid) { 3308 path->slots[level] -= mid; 3309 btrfs_tree_unlock(c); 3310 free_extent_buffer(c); 3311 path->nodes[level] = split; 3312 path->slots[level + 1] += 1; 3313 } else { 3314 btrfs_tree_unlock(split); 3315 free_extent_buffer(split); 3316 } 3317 return ret; 3318 } 3319 3320 /* 3321 * how many bytes are required to store the items in a leaf. start 3322 * and nr indicate which items in the leaf to check. This totals up the 3323 * space used both by the item structs and the item data 3324 */ 3325 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3326 { 3327 struct btrfs_item *start_item; 3328 struct btrfs_item *end_item; 3329 struct btrfs_map_token token; 3330 int data_len; 3331 int nritems = btrfs_header_nritems(l); 3332 int end = min(nritems, start + nr) - 1; 3333 3334 if (!nr) 3335 return 0; 3336 btrfs_init_map_token(&token); 3337 start_item = btrfs_item_nr(l, start); 3338 end_item = btrfs_item_nr(l, end); 3339 data_len = btrfs_token_item_offset(l, start_item, &token) + 3340 btrfs_token_item_size(l, start_item, &token); 3341 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3342 data_len += sizeof(struct btrfs_item) * nr; 3343 WARN_ON(data_len < 0); 3344 return data_len; 3345 } 3346 3347 /* 3348 * The space between the end of the leaf items and 3349 * the start of the leaf data. IOW, how much room 3350 * the leaf has left for both items and data 3351 */ 3352 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3353 struct extent_buffer *leaf) 3354 { 3355 int nritems = btrfs_header_nritems(leaf); 3356 int ret; 3357 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3358 if (ret < 0) { 3359 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 3360 "used %d nritems %d\n", 3361 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3362 leaf_space_used(leaf, 0, nritems), nritems); 3363 } 3364 return ret; 3365 } 3366 3367 /* 3368 * min slot controls the lowest index we're willing to push to the 3369 * right. We'll push up to and including min_slot, but no lower 3370 */ 3371 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3372 struct btrfs_root *root, 3373 struct btrfs_path *path, 3374 int data_size, int empty, 3375 struct extent_buffer *right, 3376 int free_space, u32 left_nritems, 3377 u32 min_slot) 3378 { 3379 struct extent_buffer *left = path->nodes[0]; 3380 struct extent_buffer *upper = path->nodes[1]; 3381 struct btrfs_map_token token; 3382 struct btrfs_disk_key disk_key; 3383 int slot; 3384 u32 i; 3385 int push_space = 0; 3386 int push_items = 0; 3387 struct btrfs_item *item; 3388 u32 nr; 3389 u32 right_nritems; 3390 u32 data_end; 3391 u32 this_item_size; 3392 3393 btrfs_init_map_token(&token); 3394 3395 if (empty) 3396 nr = 0; 3397 else 3398 nr = max_t(u32, 1, min_slot); 3399 3400 if (path->slots[0] >= left_nritems) 3401 push_space += data_size; 3402 3403 slot = path->slots[1]; 3404 i = left_nritems - 1; 3405 while (i >= nr) { 3406 item = btrfs_item_nr(left, i); 3407 3408 if (!empty && push_items > 0) { 3409 if (path->slots[0] > i) 3410 break; 3411 if (path->slots[0] == i) { 3412 int space = btrfs_leaf_free_space(root, left); 3413 if (space + push_space * 2 > free_space) 3414 break; 3415 } 3416 } 3417 3418 if (path->slots[0] == i) 3419 push_space += data_size; 3420 3421 this_item_size = btrfs_item_size(left, item); 3422 if (this_item_size + sizeof(*item) + push_space > free_space) 3423 break; 3424 3425 push_items++; 3426 push_space += this_item_size + sizeof(*item); 3427 if (i == 0) 3428 break; 3429 i--; 3430 } 3431 3432 if (push_items == 0) 3433 goto out_unlock; 3434 3435 WARN_ON(!empty && push_items == left_nritems); 3436 3437 /* push left to right */ 3438 right_nritems = btrfs_header_nritems(right); 3439 3440 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3441 push_space -= leaf_data_end(root, left); 3442 3443 /* make room in the right data area */ 3444 data_end = leaf_data_end(root, right); 3445 memmove_extent_buffer(right, 3446 btrfs_leaf_data(right) + data_end - push_space, 3447 btrfs_leaf_data(right) + data_end, 3448 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3449 3450 /* copy from the left data area */ 3451 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3452 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3453 btrfs_leaf_data(left) + leaf_data_end(root, left), 3454 push_space); 3455 3456 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3457 btrfs_item_nr_offset(0), 3458 right_nritems * sizeof(struct btrfs_item)); 3459 3460 /* copy the items from left to right */ 3461 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3462 btrfs_item_nr_offset(left_nritems - push_items), 3463 push_items * sizeof(struct btrfs_item)); 3464 3465 /* update the item pointers */ 3466 right_nritems += push_items; 3467 btrfs_set_header_nritems(right, right_nritems); 3468 push_space = BTRFS_LEAF_DATA_SIZE(root); 3469 for (i = 0; i < right_nritems; i++) { 3470 item = btrfs_item_nr(right, i); 3471 push_space -= btrfs_token_item_size(right, item, &token); 3472 btrfs_set_token_item_offset(right, item, push_space, &token); 3473 } 3474 3475 left_nritems -= push_items; 3476 btrfs_set_header_nritems(left, left_nritems); 3477 3478 if (left_nritems) 3479 btrfs_mark_buffer_dirty(left); 3480 else 3481 clean_tree_block(trans, root, left); 3482 3483 btrfs_mark_buffer_dirty(right); 3484 3485 btrfs_item_key(right, &disk_key, 0); 3486 btrfs_set_node_key(upper, &disk_key, slot + 1); 3487 btrfs_mark_buffer_dirty(upper); 3488 3489 /* then fixup the leaf pointer in the path */ 3490 if (path->slots[0] >= left_nritems) { 3491 path->slots[0] -= left_nritems; 3492 if (btrfs_header_nritems(path->nodes[0]) == 0) 3493 clean_tree_block(trans, root, path->nodes[0]); 3494 btrfs_tree_unlock(path->nodes[0]); 3495 free_extent_buffer(path->nodes[0]); 3496 path->nodes[0] = right; 3497 path->slots[1] += 1; 3498 } else { 3499 btrfs_tree_unlock(right); 3500 free_extent_buffer(right); 3501 } 3502 return 0; 3503 3504 out_unlock: 3505 btrfs_tree_unlock(right); 3506 free_extent_buffer(right); 3507 return 1; 3508 } 3509 3510 /* 3511 * push some data in the path leaf to the right, trying to free up at 3512 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3513 * 3514 * returns 1 if the push failed because the other node didn't have enough 3515 * room, 0 if everything worked out and < 0 if there were major errors. 3516 * 3517 * this will push starting from min_slot to the end of the leaf. It won't 3518 * push any slot lower than min_slot 3519 */ 3520 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3521 *root, struct btrfs_path *path, 3522 int min_data_size, int data_size, 3523 int empty, u32 min_slot) 3524 { 3525 struct extent_buffer *left = path->nodes[0]; 3526 struct extent_buffer *right; 3527 struct extent_buffer *upper; 3528 int slot; 3529 int free_space; 3530 u32 left_nritems; 3531 int ret; 3532 3533 if (!path->nodes[1]) 3534 return 1; 3535 3536 slot = path->slots[1]; 3537 upper = path->nodes[1]; 3538 if (slot >= btrfs_header_nritems(upper) - 1) 3539 return 1; 3540 3541 btrfs_assert_tree_locked(path->nodes[1]); 3542 3543 right = read_node_slot(root, upper, slot + 1); 3544 if (right == NULL) 3545 return 1; 3546 3547 btrfs_tree_lock(right); 3548 btrfs_set_lock_blocking(right); 3549 3550 free_space = btrfs_leaf_free_space(root, right); 3551 if (free_space < data_size) 3552 goto out_unlock; 3553 3554 /* cow and double check */ 3555 ret = btrfs_cow_block(trans, root, right, upper, 3556 slot + 1, &right); 3557 if (ret) 3558 goto out_unlock; 3559 3560 free_space = btrfs_leaf_free_space(root, right); 3561 if (free_space < data_size) 3562 goto out_unlock; 3563 3564 left_nritems = btrfs_header_nritems(left); 3565 if (left_nritems == 0) 3566 goto out_unlock; 3567 3568 return __push_leaf_right(trans, root, path, min_data_size, empty, 3569 right, free_space, left_nritems, min_slot); 3570 out_unlock: 3571 btrfs_tree_unlock(right); 3572 free_extent_buffer(right); 3573 return 1; 3574 } 3575 3576 /* 3577 * push some data in the path leaf to the left, trying to free up at 3578 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3579 * 3580 * max_slot can put a limit on how far into the leaf we'll push items. The 3581 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3582 * items 3583 */ 3584 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3585 struct btrfs_root *root, 3586 struct btrfs_path *path, int data_size, 3587 int empty, struct extent_buffer *left, 3588 int free_space, u32 right_nritems, 3589 u32 max_slot) 3590 { 3591 struct btrfs_disk_key disk_key; 3592 struct extent_buffer *right = path->nodes[0]; 3593 int i; 3594 int push_space = 0; 3595 int push_items = 0; 3596 struct btrfs_item *item; 3597 u32 old_left_nritems; 3598 u32 nr; 3599 int ret = 0; 3600 u32 this_item_size; 3601 u32 old_left_item_size; 3602 struct btrfs_map_token token; 3603 3604 btrfs_init_map_token(&token); 3605 3606 if (empty) 3607 nr = min(right_nritems, max_slot); 3608 else 3609 nr = min(right_nritems - 1, max_slot); 3610 3611 for (i = 0; i < nr; i++) { 3612 item = btrfs_item_nr(right, i); 3613 3614 if (!empty && push_items > 0) { 3615 if (path->slots[0] < i) 3616 break; 3617 if (path->slots[0] == i) { 3618 int space = btrfs_leaf_free_space(root, right); 3619 if (space + push_space * 2 > free_space) 3620 break; 3621 } 3622 } 3623 3624 if (path->slots[0] == i) 3625 push_space += data_size; 3626 3627 this_item_size = btrfs_item_size(right, item); 3628 if (this_item_size + sizeof(*item) + push_space > free_space) 3629 break; 3630 3631 push_items++; 3632 push_space += this_item_size + sizeof(*item); 3633 } 3634 3635 if (push_items == 0) { 3636 ret = 1; 3637 goto out; 3638 } 3639 if (!empty && push_items == btrfs_header_nritems(right)) 3640 WARN_ON(1); 3641 3642 /* push data from right to left */ 3643 copy_extent_buffer(left, right, 3644 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3645 btrfs_item_nr_offset(0), 3646 push_items * sizeof(struct btrfs_item)); 3647 3648 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3649 btrfs_item_offset_nr(right, push_items - 1); 3650 3651 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3652 leaf_data_end(root, left) - push_space, 3653 btrfs_leaf_data(right) + 3654 btrfs_item_offset_nr(right, push_items - 1), 3655 push_space); 3656 old_left_nritems = btrfs_header_nritems(left); 3657 BUG_ON(old_left_nritems <= 0); 3658 3659 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3660 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3661 u32 ioff; 3662 3663 item = btrfs_item_nr(left, i); 3664 3665 ioff = btrfs_token_item_offset(left, item, &token); 3666 btrfs_set_token_item_offset(left, item, 3667 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3668 &token); 3669 } 3670 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3671 3672 /* fixup right node */ 3673 if (push_items > right_nritems) 3674 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3675 right_nritems); 3676 3677 if (push_items < right_nritems) { 3678 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3679 leaf_data_end(root, right); 3680 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3681 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3682 btrfs_leaf_data(right) + 3683 leaf_data_end(root, right), push_space); 3684 3685 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3686 btrfs_item_nr_offset(push_items), 3687 (btrfs_header_nritems(right) - push_items) * 3688 sizeof(struct btrfs_item)); 3689 } 3690 right_nritems -= push_items; 3691 btrfs_set_header_nritems(right, right_nritems); 3692 push_space = BTRFS_LEAF_DATA_SIZE(root); 3693 for (i = 0; i < right_nritems; i++) { 3694 item = btrfs_item_nr(right, i); 3695 3696 push_space = push_space - btrfs_token_item_size(right, 3697 item, &token); 3698 btrfs_set_token_item_offset(right, item, push_space, &token); 3699 } 3700 3701 btrfs_mark_buffer_dirty(left); 3702 if (right_nritems) 3703 btrfs_mark_buffer_dirty(right); 3704 else 3705 clean_tree_block(trans, root, right); 3706 3707 btrfs_item_key(right, &disk_key, 0); 3708 fixup_low_keys(root, path, &disk_key, 1); 3709 3710 /* then fixup the leaf pointer in the path */ 3711 if (path->slots[0] < push_items) { 3712 path->slots[0] += old_left_nritems; 3713 btrfs_tree_unlock(path->nodes[0]); 3714 free_extent_buffer(path->nodes[0]); 3715 path->nodes[0] = left; 3716 path->slots[1] -= 1; 3717 } else { 3718 btrfs_tree_unlock(left); 3719 free_extent_buffer(left); 3720 path->slots[0] -= push_items; 3721 } 3722 BUG_ON(path->slots[0] < 0); 3723 return ret; 3724 out: 3725 btrfs_tree_unlock(left); 3726 free_extent_buffer(left); 3727 return ret; 3728 } 3729 3730 /* 3731 * push some data in the path leaf to the left, trying to free up at 3732 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3733 * 3734 * max_slot can put a limit on how far into the leaf we'll push items. The 3735 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3736 * items 3737 */ 3738 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3739 *root, struct btrfs_path *path, int min_data_size, 3740 int data_size, int empty, u32 max_slot) 3741 { 3742 struct extent_buffer *right = path->nodes[0]; 3743 struct extent_buffer *left; 3744 int slot; 3745 int free_space; 3746 u32 right_nritems; 3747 int ret = 0; 3748 3749 slot = path->slots[1]; 3750 if (slot == 0) 3751 return 1; 3752 if (!path->nodes[1]) 3753 return 1; 3754 3755 right_nritems = btrfs_header_nritems(right); 3756 if (right_nritems == 0) 3757 return 1; 3758 3759 btrfs_assert_tree_locked(path->nodes[1]); 3760 3761 left = read_node_slot(root, path->nodes[1], slot - 1); 3762 if (left == NULL) 3763 return 1; 3764 3765 btrfs_tree_lock(left); 3766 btrfs_set_lock_blocking(left); 3767 3768 free_space = btrfs_leaf_free_space(root, left); 3769 if (free_space < data_size) { 3770 ret = 1; 3771 goto out; 3772 } 3773 3774 /* cow and double check */ 3775 ret = btrfs_cow_block(trans, root, left, 3776 path->nodes[1], slot - 1, &left); 3777 if (ret) { 3778 /* we hit -ENOSPC, but it isn't fatal here */ 3779 if (ret == -ENOSPC) 3780 ret = 1; 3781 goto out; 3782 } 3783 3784 free_space = btrfs_leaf_free_space(root, left); 3785 if (free_space < data_size) { 3786 ret = 1; 3787 goto out; 3788 } 3789 3790 return __push_leaf_left(trans, root, path, min_data_size, 3791 empty, left, free_space, right_nritems, 3792 max_slot); 3793 out: 3794 btrfs_tree_unlock(left); 3795 free_extent_buffer(left); 3796 return ret; 3797 } 3798 3799 /* 3800 * split the path's leaf in two, making sure there is at least data_size 3801 * available for the resulting leaf level of the path. 3802 */ 3803 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3804 struct btrfs_root *root, 3805 struct btrfs_path *path, 3806 struct extent_buffer *l, 3807 struct extent_buffer *right, 3808 int slot, int mid, int nritems) 3809 { 3810 int data_copy_size; 3811 int rt_data_off; 3812 int i; 3813 struct btrfs_disk_key disk_key; 3814 struct btrfs_map_token token; 3815 3816 btrfs_init_map_token(&token); 3817 3818 nritems = nritems - mid; 3819 btrfs_set_header_nritems(right, nritems); 3820 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 3821 3822 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3823 btrfs_item_nr_offset(mid), 3824 nritems * sizeof(struct btrfs_item)); 3825 3826 copy_extent_buffer(right, l, 3827 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 3828 data_copy_size, btrfs_leaf_data(l) + 3829 leaf_data_end(root, l), data_copy_size); 3830 3831 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 3832 btrfs_item_end_nr(l, mid); 3833 3834 for (i = 0; i < nritems; i++) { 3835 struct btrfs_item *item = btrfs_item_nr(right, i); 3836 u32 ioff; 3837 3838 ioff = btrfs_token_item_offset(right, item, &token); 3839 btrfs_set_token_item_offset(right, item, 3840 ioff + rt_data_off, &token); 3841 } 3842 3843 btrfs_set_header_nritems(l, mid); 3844 btrfs_item_key(right, &disk_key, 0); 3845 insert_ptr(trans, root, path, &disk_key, right->start, 3846 path->slots[1] + 1, 1); 3847 3848 btrfs_mark_buffer_dirty(right); 3849 btrfs_mark_buffer_dirty(l); 3850 BUG_ON(path->slots[0] != slot); 3851 3852 if (mid <= slot) { 3853 btrfs_tree_unlock(path->nodes[0]); 3854 free_extent_buffer(path->nodes[0]); 3855 path->nodes[0] = right; 3856 path->slots[0] -= mid; 3857 path->slots[1] += 1; 3858 } else { 3859 btrfs_tree_unlock(right); 3860 free_extent_buffer(right); 3861 } 3862 3863 BUG_ON(path->slots[0] < 0); 3864 } 3865 3866 /* 3867 * double splits happen when we need to insert a big item in the middle 3868 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3869 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3870 * A B C 3871 * 3872 * We avoid this by trying to push the items on either side of our target 3873 * into the adjacent leaves. If all goes well we can avoid the double split 3874 * completely. 3875 */ 3876 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3877 struct btrfs_root *root, 3878 struct btrfs_path *path, 3879 int data_size) 3880 { 3881 int ret; 3882 int progress = 0; 3883 int slot; 3884 u32 nritems; 3885 3886 slot = path->slots[0]; 3887 3888 /* 3889 * try to push all the items after our slot into the 3890 * right leaf 3891 */ 3892 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 3893 if (ret < 0) 3894 return ret; 3895 3896 if (ret == 0) 3897 progress++; 3898 3899 nritems = btrfs_header_nritems(path->nodes[0]); 3900 /* 3901 * our goal is to get our slot at the start or end of a leaf. If 3902 * we've done so we're done 3903 */ 3904 if (path->slots[0] == 0 || path->slots[0] == nritems) 3905 return 0; 3906 3907 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3908 return 0; 3909 3910 /* try to push all the items before our slot into the next leaf */ 3911 slot = path->slots[0]; 3912 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 3913 if (ret < 0) 3914 return ret; 3915 3916 if (ret == 0) 3917 progress++; 3918 3919 if (progress) 3920 return 0; 3921 return 1; 3922 } 3923 3924 /* 3925 * split the path's leaf in two, making sure there is at least data_size 3926 * available for the resulting leaf level of the path. 3927 * 3928 * returns 0 if all went well and < 0 on failure. 3929 */ 3930 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3931 struct btrfs_root *root, 3932 struct btrfs_key *ins_key, 3933 struct btrfs_path *path, int data_size, 3934 int extend) 3935 { 3936 struct btrfs_disk_key disk_key; 3937 struct extent_buffer *l; 3938 u32 nritems; 3939 int mid; 3940 int slot; 3941 struct extent_buffer *right; 3942 int ret = 0; 3943 int wret; 3944 int split; 3945 int num_doubles = 0; 3946 int tried_avoid_double = 0; 3947 3948 l = path->nodes[0]; 3949 slot = path->slots[0]; 3950 if (extend && data_size + btrfs_item_size_nr(l, slot) + 3951 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 3952 return -EOVERFLOW; 3953 3954 /* first try to make some room by pushing left and right */ 3955 if (data_size && path->nodes[1]) { 3956 wret = push_leaf_right(trans, root, path, data_size, 3957 data_size, 0, 0); 3958 if (wret < 0) 3959 return wret; 3960 if (wret) { 3961 wret = push_leaf_left(trans, root, path, data_size, 3962 data_size, 0, (u32)-1); 3963 if (wret < 0) 3964 return wret; 3965 } 3966 l = path->nodes[0]; 3967 3968 /* did the pushes work? */ 3969 if (btrfs_leaf_free_space(root, l) >= data_size) 3970 return 0; 3971 } 3972 3973 if (!path->nodes[1]) { 3974 ret = insert_new_root(trans, root, path, 1); 3975 if (ret) 3976 return ret; 3977 } 3978 again: 3979 split = 1; 3980 l = path->nodes[0]; 3981 slot = path->slots[0]; 3982 nritems = btrfs_header_nritems(l); 3983 mid = (nritems + 1) / 2; 3984 3985 if (mid <= slot) { 3986 if (nritems == 1 || 3987 leaf_space_used(l, mid, nritems - mid) + data_size > 3988 BTRFS_LEAF_DATA_SIZE(root)) { 3989 if (slot >= nritems) { 3990 split = 0; 3991 } else { 3992 mid = slot; 3993 if (mid != nritems && 3994 leaf_space_used(l, mid, nritems - mid) + 3995 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3996 if (data_size && !tried_avoid_double) 3997 goto push_for_double; 3998 split = 2; 3999 } 4000 } 4001 } 4002 } else { 4003 if (leaf_space_used(l, 0, mid) + data_size > 4004 BTRFS_LEAF_DATA_SIZE(root)) { 4005 if (!extend && data_size && slot == 0) { 4006 split = 0; 4007 } else if ((extend || !data_size) && slot == 0) { 4008 mid = 1; 4009 } else { 4010 mid = slot; 4011 if (mid != nritems && 4012 leaf_space_used(l, mid, nritems - mid) + 4013 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4014 if (data_size && !tried_avoid_double) 4015 goto push_for_double; 4016 split = 2 ; 4017 } 4018 } 4019 } 4020 } 4021 4022 if (split == 0) 4023 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4024 else 4025 btrfs_item_key(l, &disk_key, mid); 4026 4027 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 4028 root->root_key.objectid, 4029 &disk_key, 0, l->start, 0); 4030 if (IS_ERR(right)) 4031 return PTR_ERR(right); 4032 4033 root_add_used(root, root->leafsize); 4034 4035 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4036 btrfs_set_header_bytenr(right, right->start); 4037 btrfs_set_header_generation(right, trans->transid); 4038 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4039 btrfs_set_header_owner(right, root->root_key.objectid); 4040 btrfs_set_header_level(right, 0); 4041 write_extent_buffer(right, root->fs_info->fsid, 4042 btrfs_header_fsid(right), BTRFS_FSID_SIZE); 4043 4044 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 4045 btrfs_header_chunk_tree_uuid(right), 4046 BTRFS_UUID_SIZE); 4047 4048 if (split == 0) { 4049 if (mid <= slot) { 4050 btrfs_set_header_nritems(right, 0); 4051 insert_ptr(trans, root, path, &disk_key, right->start, 4052 path->slots[1] + 1, 1); 4053 btrfs_tree_unlock(path->nodes[0]); 4054 free_extent_buffer(path->nodes[0]); 4055 path->nodes[0] = right; 4056 path->slots[0] = 0; 4057 path->slots[1] += 1; 4058 } else { 4059 btrfs_set_header_nritems(right, 0); 4060 insert_ptr(trans, root, path, &disk_key, right->start, 4061 path->slots[1], 1); 4062 btrfs_tree_unlock(path->nodes[0]); 4063 free_extent_buffer(path->nodes[0]); 4064 path->nodes[0] = right; 4065 path->slots[0] = 0; 4066 if (path->slots[1] == 0) 4067 fixup_low_keys(root, path, &disk_key, 1); 4068 } 4069 btrfs_mark_buffer_dirty(right); 4070 return ret; 4071 } 4072 4073 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4074 4075 if (split == 2) { 4076 BUG_ON(num_doubles != 0); 4077 num_doubles++; 4078 goto again; 4079 } 4080 4081 return 0; 4082 4083 push_for_double: 4084 push_for_double_split(trans, root, path, data_size); 4085 tried_avoid_double = 1; 4086 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4087 return 0; 4088 goto again; 4089 } 4090 4091 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4092 struct btrfs_root *root, 4093 struct btrfs_path *path, int ins_len) 4094 { 4095 struct btrfs_key key; 4096 struct extent_buffer *leaf; 4097 struct btrfs_file_extent_item *fi; 4098 u64 extent_len = 0; 4099 u32 item_size; 4100 int ret; 4101 4102 leaf = path->nodes[0]; 4103 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4104 4105 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4106 key.type != BTRFS_EXTENT_CSUM_KEY); 4107 4108 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4109 return 0; 4110 4111 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4112 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4113 fi = btrfs_item_ptr(leaf, path->slots[0], 4114 struct btrfs_file_extent_item); 4115 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4116 } 4117 btrfs_release_path(path); 4118 4119 path->keep_locks = 1; 4120 path->search_for_split = 1; 4121 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4122 path->search_for_split = 0; 4123 if (ret < 0) 4124 goto err; 4125 4126 ret = -EAGAIN; 4127 leaf = path->nodes[0]; 4128 /* if our item isn't there or got smaller, return now */ 4129 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4130 goto err; 4131 4132 /* the leaf has changed, it now has room. return now */ 4133 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4134 goto err; 4135 4136 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4137 fi = btrfs_item_ptr(leaf, path->slots[0], 4138 struct btrfs_file_extent_item); 4139 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4140 goto err; 4141 } 4142 4143 btrfs_set_path_blocking(path); 4144 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4145 if (ret) 4146 goto err; 4147 4148 path->keep_locks = 0; 4149 btrfs_unlock_up_safe(path, 1); 4150 return 0; 4151 err: 4152 path->keep_locks = 0; 4153 return ret; 4154 } 4155 4156 static noinline int split_item(struct btrfs_trans_handle *trans, 4157 struct btrfs_root *root, 4158 struct btrfs_path *path, 4159 struct btrfs_key *new_key, 4160 unsigned long split_offset) 4161 { 4162 struct extent_buffer *leaf; 4163 struct btrfs_item *item; 4164 struct btrfs_item *new_item; 4165 int slot; 4166 char *buf; 4167 u32 nritems; 4168 u32 item_size; 4169 u32 orig_offset; 4170 struct btrfs_disk_key disk_key; 4171 4172 leaf = path->nodes[0]; 4173 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4174 4175 btrfs_set_path_blocking(path); 4176 4177 item = btrfs_item_nr(leaf, path->slots[0]); 4178 orig_offset = btrfs_item_offset(leaf, item); 4179 item_size = btrfs_item_size(leaf, item); 4180 4181 buf = kmalloc(item_size, GFP_NOFS); 4182 if (!buf) 4183 return -ENOMEM; 4184 4185 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4186 path->slots[0]), item_size); 4187 4188 slot = path->slots[0] + 1; 4189 nritems = btrfs_header_nritems(leaf); 4190 if (slot != nritems) { 4191 /* shift the items */ 4192 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4193 btrfs_item_nr_offset(slot), 4194 (nritems - slot) * sizeof(struct btrfs_item)); 4195 } 4196 4197 btrfs_cpu_key_to_disk(&disk_key, new_key); 4198 btrfs_set_item_key(leaf, &disk_key, slot); 4199 4200 new_item = btrfs_item_nr(leaf, slot); 4201 4202 btrfs_set_item_offset(leaf, new_item, orig_offset); 4203 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4204 4205 btrfs_set_item_offset(leaf, item, 4206 orig_offset + item_size - split_offset); 4207 btrfs_set_item_size(leaf, item, split_offset); 4208 4209 btrfs_set_header_nritems(leaf, nritems + 1); 4210 4211 /* write the data for the start of the original item */ 4212 write_extent_buffer(leaf, buf, 4213 btrfs_item_ptr_offset(leaf, path->slots[0]), 4214 split_offset); 4215 4216 /* write the data for the new item */ 4217 write_extent_buffer(leaf, buf + split_offset, 4218 btrfs_item_ptr_offset(leaf, slot), 4219 item_size - split_offset); 4220 btrfs_mark_buffer_dirty(leaf); 4221 4222 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4223 kfree(buf); 4224 return 0; 4225 } 4226 4227 /* 4228 * This function splits a single item into two items, 4229 * giving 'new_key' to the new item and splitting the 4230 * old one at split_offset (from the start of the item). 4231 * 4232 * The path may be released by this operation. After 4233 * the split, the path is pointing to the old item. The 4234 * new item is going to be in the same node as the old one. 4235 * 4236 * Note, the item being split must be smaller enough to live alone on 4237 * a tree block with room for one extra struct btrfs_item 4238 * 4239 * This allows us to split the item in place, keeping a lock on the 4240 * leaf the entire time. 4241 */ 4242 int btrfs_split_item(struct btrfs_trans_handle *trans, 4243 struct btrfs_root *root, 4244 struct btrfs_path *path, 4245 struct btrfs_key *new_key, 4246 unsigned long split_offset) 4247 { 4248 int ret; 4249 ret = setup_leaf_for_split(trans, root, path, 4250 sizeof(struct btrfs_item)); 4251 if (ret) 4252 return ret; 4253 4254 ret = split_item(trans, root, path, new_key, split_offset); 4255 return ret; 4256 } 4257 4258 /* 4259 * This function duplicate a item, giving 'new_key' to the new item. 4260 * It guarantees both items live in the same tree leaf and the new item 4261 * is contiguous with the original item. 4262 * 4263 * This allows us to split file extent in place, keeping a lock on the 4264 * leaf the entire time. 4265 */ 4266 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4267 struct btrfs_root *root, 4268 struct btrfs_path *path, 4269 struct btrfs_key *new_key) 4270 { 4271 struct extent_buffer *leaf; 4272 int ret; 4273 u32 item_size; 4274 4275 leaf = path->nodes[0]; 4276 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4277 ret = setup_leaf_for_split(trans, root, path, 4278 item_size + sizeof(struct btrfs_item)); 4279 if (ret) 4280 return ret; 4281 4282 path->slots[0]++; 4283 setup_items_for_insert(root, path, new_key, &item_size, 4284 item_size, item_size + 4285 sizeof(struct btrfs_item), 1); 4286 leaf = path->nodes[0]; 4287 memcpy_extent_buffer(leaf, 4288 btrfs_item_ptr_offset(leaf, path->slots[0]), 4289 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4290 item_size); 4291 return 0; 4292 } 4293 4294 /* 4295 * make the item pointed to by the path smaller. new_size indicates 4296 * how small to make it, and from_end tells us if we just chop bytes 4297 * off the end of the item or if we shift the item to chop bytes off 4298 * the front. 4299 */ 4300 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4301 u32 new_size, int from_end) 4302 { 4303 int slot; 4304 struct extent_buffer *leaf; 4305 struct btrfs_item *item; 4306 u32 nritems; 4307 unsigned int data_end; 4308 unsigned int old_data_start; 4309 unsigned int old_size; 4310 unsigned int size_diff; 4311 int i; 4312 struct btrfs_map_token token; 4313 4314 btrfs_init_map_token(&token); 4315 4316 leaf = path->nodes[0]; 4317 slot = path->slots[0]; 4318 4319 old_size = btrfs_item_size_nr(leaf, slot); 4320 if (old_size == new_size) 4321 return; 4322 4323 nritems = btrfs_header_nritems(leaf); 4324 data_end = leaf_data_end(root, leaf); 4325 4326 old_data_start = btrfs_item_offset_nr(leaf, slot); 4327 4328 size_diff = old_size - new_size; 4329 4330 BUG_ON(slot < 0); 4331 BUG_ON(slot >= nritems); 4332 4333 /* 4334 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4335 */ 4336 /* first correct the data pointers */ 4337 for (i = slot; i < nritems; i++) { 4338 u32 ioff; 4339 item = btrfs_item_nr(leaf, i); 4340 4341 ioff = btrfs_token_item_offset(leaf, item, &token); 4342 btrfs_set_token_item_offset(leaf, item, 4343 ioff + size_diff, &token); 4344 } 4345 4346 /* shift the data */ 4347 if (from_end) { 4348 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4349 data_end + size_diff, btrfs_leaf_data(leaf) + 4350 data_end, old_data_start + new_size - data_end); 4351 } else { 4352 struct btrfs_disk_key disk_key; 4353 u64 offset; 4354 4355 btrfs_item_key(leaf, &disk_key, slot); 4356 4357 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4358 unsigned long ptr; 4359 struct btrfs_file_extent_item *fi; 4360 4361 fi = btrfs_item_ptr(leaf, slot, 4362 struct btrfs_file_extent_item); 4363 fi = (struct btrfs_file_extent_item *)( 4364 (unsigned long)fi - size_diff); 4365 4366 if (btrfs_file_extent_type(leaf, fi) == 4367 BTRFS_FILE_EXTENT_INLINE) { 4368 ptr = btrfs_item_ptr_offset(leaf, slot); 4369 memmove_extent_buffer(leaf, ptr, 4370 (unsigned long)fi, 4371 offsetof(struct btrfs_file_extent_item, 4372 disk_bytenr)); 4373 } 4374 } 4375 4376 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4377 data_end + size_diff, btrfs_leaf_data(leaf) + 4378 data_end, old_data_start - data_end); 4379 4380 offset = btrfs_disk_key_offset(&disk_key); 4381 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4382 btrfs_set_item_key(leaf, &disk_key, slot); 4383 if (slot == 0) 4384 fixup_low_keys(root, path, &disk_key, 1); 4385 } 4386 4387 item = btrfs_item_nr(leaf, slot); 4388 btrfs_set_item_size(leaf, item, new_size); 4389 btrfs_mark_buffer_dirty(leaf); 4390 4391 if (btrfs_leaf_free_space(root, leaf) < 0) { 4392 btrfs_print_leaf(root, leaf); 4393 BUG(); 4394 } 4395 } 4396 4397 /* 4398 * make the item pointed to by the path bigger, data_size is the added size. 4399 */ 4400 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4401 u32 data_size) 4402 { 4403 int slot; 4404 struct extent_buffer *leaf; 4405 struct btrfs_item *item; 4406 u32 nritems; 4407 unsigned int data_end; 4408 unsigned int old_data; 4409 unsigned int old_size; 4410 int i; 4411 struct btrfs_map_token token; 4412 4413 btrfs_init_map_token(&token); 4414 4415 leaf = path->nodes[0]; 4416 4417 nritems = btrfs_header_nritems(leaf); 4418 data_end = leaf_data_end(root, leaf); 4419 4420 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4421 btrfs_print_leaf(root, leaf); 4422 BUG(); 4423 } 4424 slot = path->slots[0]; 4425 old_data = btrfs_item_end_nr(leaf, slot); 4426 4427 BUG_ON(slot < 0); 4428 if (slot >= nritems) { 4429 btrfs_print_leaf(root, leaf); 4430 printk(KERN_CRIT "slot %d too large, nritems %d\n", 4431 slot, nritems); 4432 BUG_ON(1); 4433 } 4434 4435 /* 4436 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4437 */ 4438 /* first correct the data pointers */ 4439 for (i = slot; i < nritems; i++) { 4440 u32 ioff; 4441 item = btrfs_item_nr(leaf, i); 4442 4443 ioff = btrfs_token_item_offset(leaf, item, &token); 4444 btrfs_set_token_item_offset(leaf, item, 4445 ioff - data_size, &token); 4446 } 4447 4448 /* shift the data */ 4449 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4450 data_end - data_size, btrfs_leaf_data(leaf) + 4451 data_end, old_data - data_end); 4452 4453 data_end = old_data; 4454 old_size = btrfs_item_size_nr(leaf, slot); 4455 item = btrfs_item_nr(leaf, slot); 4456 btrfs_set_item_size(leaf, item, old_size + data_size); 4457 btrfs_mark_buffer_dirty(leaf); 4458 4459 if (btrfs_leaf_free_space(root, leaf) < 0) { 4460 btrfs_print_leaf(root, leaf); 4461 BUG(); 4462 } 4463 } 4464 4465 /* 4466 * this is a helper for btrfs_insert_empty_items, the main goal here is 4467 * to save stack depth by doing the bulk of the work in a function 4468 * that doesn't call btrfs_search_slot 4469 */ 4470 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4471 struct btrfs_key *cpu_key, u32 *data_size, 4472 u32 total_data, u32 total_size, int nr) 4473 { 4474 struct btrfs_item *item; 4475 int i; 4476 u32 nritems; 4477 unsigned int data_end; 4478 struct btrfs_disk_key disk_key; 4479 struct extent_buffer *leaf; 4480 int slot; 4481 struct btrfs_map_token token; 4482 4483 btrfs_init_map_token(&token); 4484 4485 leaf = path->nodes[0]; 4486 slot = path->slots[0]; 4487 4488 nritems = btrfs_header_nritems(leaf); 4489 data_end = leaf_data_end(root, leaf); 4490 4491 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4492 btrfs_print_leaf(root, leaf); 4493 printk(KERN_CRIT "not enough freespace need %u have %d\n", 4494 total_size, btrfs_leaf_free_space(root, leaf)); 4495 BUG(); 4496 } 4497 4498 if (slot != nritems) { 4499 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4500 4501 if (old_data < data_end) { 4502 btrfs_print_leaf(root, leaf); 4503 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 4504 slot, old_data, data_end); 4505 BUG_ON(1); 4506 } 4507 /* 4508 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4509 */ 4510 /* first correct the data pointers */ 4511 for (i = slot; i < nritems; i++) { 4512 u32 ioff; 4513 4514 item = btrfs_item_nr(leaf, i); 4515 ioff = btrfs_token_item_offset(leaf, item, &token); 4516 btrfs_set_token_item_offset(leaf, item, 4517 ioff - total_data, &token); 4518 } 4519 /* shift the items */ 4520 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4521 btrfs_item_nr_offset(slot), 4522 (nritems - slot) * sizeof(struct btrfs_item)); 4523 4524 /* shift the data */ 4525 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4526 data_end - total_data, btrfs_leaf_data(leaf) + 4527 data_end, old_data - data_end); 4528 data_end = old_data; 4529 } 4530 4531 /* setup the item for the new data */ 4532 for (i = 0; i < nr; i++) { 4533 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4534 btrfs_set_item_key(leaf, &disk_key, slot + i); 4535 item = btrfs_item_nr(leaf, slot + i); 4536 btrfs_set_token_item_offset(leaf, item, 4537 data_end - data_size[i], &token); 4538 data_end -= data_size[i]; 4539 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4540 } 4541 4542 btrfs_set_header_nritems(leaf, nritems + nr); 4543 4544 if (slot == 0) { 4545 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4546 fixup_low_keys(root, path, &disk_key, 1); 4547 } 4548 btrfs_unlock_up_safe(path, 1); 4549 btrfs_mark_buffer_dirty(leaf); 4550 4551 if (btrfs_leaf_free_space(root, leaf) < 0) { 4552 btrfs_print_leaf(root, leaf); 4553 BUG(); 4554 } 4555 } 4556 4557 /* 4558 * Given a key and some data, insert items into the tree. 4559 * This does all the path init required, making room in the tree if needed. 4560 */ 4561 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4562 struct btrfs_root *root, 4563 struct btrfs_path *path, 4564 struct btrfs_key *cpu_key, u32 *data_size, 4565 int nr) 4566 { 4567 int ret = 0; 4568 int slot; 4569 int i; 4570 u32 total_size = 0; 4571 u32 total_data = 0; 4572 4573 for (i = 0; i < nr; i++) 4574 total_data += data_size[i]; 4575 4576 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4577 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4578 if (ret == 0) 4579 return -EEXIST; 4580 if (ret < 0) 4581 return ret; 4582 4583 slot = path->slots[0]; 4584 BUG_ON(slot < 0); 4585 4586 setup_items_for_insert(root, path, cpu_key, data_size, 4587 total_data, total_size, nr); 4588 return 0; 4589 } 4590 4591 /* 4592 * Given a key and some data, insert an item into the tree. 4593 * This does all the path init required, making room in the tree if needed. 4594 */ 4595 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4596 *root, struct btrfs_key *cpu_key, void *data, u32 4597 data_size) 4598 { 4599 int ret = 0; 4600 struct btrfs_path *path; 4601 struct extent_buffer *leaf; 4602 unsigned long ptr; 4603 4604 path = btrfs_alloc_path(); 4605 if (!path) 4606 return -ENOMEM; 4607 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4608 if (!ret) { 4609 leaf = path->nodes[0]; 4610 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4611 write_extent_buffer(leaf, data, ptr, data_size); 4612 btrfs_mark_buffer_dirty(leaf); 4613 } 4614 btrfs_free_path(path); 4615 return ret; 4616 } 4617 4618 /* 4619 * delete the pointer from a given node. 4620 * 4621 * the tree should have been previously balanced so the deletion does not 4622 * empty a node. 4623 */ 4624 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4625 int level, int slot) 4626 { 4627 struct extent_buffer *parent = path->nodes[level]; 4628 u32 nritems; 4629 int ret; 4630 4631 nritems = btrfs_header_nritems(parent); 4632 if (slot != nritems - 1) { 4633 if (level) 4634 tree_mod_log_eb_move(root->fs_info, parent, slot, 4635 slot + 1, nritems - slot - 1); 4636 memmove_extent_buffer(parent, 4637 btrfs_node_key_ptr_offset(slot), 4638 btrfs_node_key_ptr_offset(slot + 1), 4639 sizeof(struct btrfs_key_ptr) * 4640 (nritems - slot - 1)); 4641 } else if (level) { 4642 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4643 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4644 BUG_ON(ret < 0); 4645 } 4646 4647 nritems--; 4648 btrfs_set_header_nritems(parent, nritems); 4649 if (nritems == 0 && parent == root->node) { 4650 BUG_ON(btrfs_header_level(root->node) != 1); 4651 /* just turn the root into a leaf and break */ 4652 btrfs_set_header_level(root->node, 0); 4653 } else if (slot == 0) { 4654 struct btrfs_disk_key disk_key; 4655 4656 btrfs_node_key(parent, &disk_key, 0); 4657 fixup_low_keys(root, path, &disk_key, level + 1); 4658 } 4659 btrfs_mark_buffer_dirty(parent); 4660 } 4661 4662 /* 4663 * a helper function to delete the leaf pointed to by path->slots[1] and 4664 * path->nodes[1]. 4665 * 4666 * This deletes the pointer in path->nodes[1] and frees the leaf 4667 * block extent. zero is returned if it all worked out, < 0 otherwise. 4668 * 4669 * The path must have already been setup for deleting the leaf, including 4670 * all the proper balancing. path->nodes[1] must be locked. 4671 */ 4672 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4673 struct btrfs_root *root, 4674 struct btrfs_path *path, 4675 struct extent_buffer *leaf) 4676 { 4677 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4678 del_ptr(root, path, 1, path->slots[1]); 4679 4680 /* 4681 * btrfs_free_extent is expensive, we want to make sure we 4682 * aren't holding any locks when we call it 4683 */ 4684 btrfs_unlock_up_safe(path, 0); 4685 4686 root_sub_used(root, leaf->len); 4687 4688 extent_buffer_get(leaf); 4689 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4690 free_extent_buffer_stale(leaf); 4691 } 4692 /* 4693 * delete the item at the leaf level in path. If that empties 4694 * the leaf, remove it from the tree 4695 */ 4696 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4697 struct btrfs_path *path, int slot, int nr) 4698 { 4699 struct extent_buffer *leaf; 4700 struct btrfs_item *item; 4701 int last_off; 4702 int dsize = 0; 4703 int ret = 0; 4704 int wret; 4705 int i; 4706 u32 nritems; 4707 struct btrfs_map_token token; 4708 4709 btrfs_init_map_token(&token); 4710 4711 leaf = path->nodes[0]; 4712 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4713 4714 for (i = 0; i < nr; i++) 4715 dsize += btrfs_item_size_nr(leaf, slot + i); 4716 4717 nritems = btrfs_header_nritems(leaf); 4718 4719 if (slot + nr != nritems) { 4720 int data_end = leaf_data_end(root, leaf); 4721 4722 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4723 data_end + dsize, 4724 btrfs_leaf_data(leaf) + data_end, 4725 last_off - data_end); 4726 4727 for (i = slot + nr; i < nritems; i++) { 4728 u32 ioff; 4729 4730 item = btrfs_item_nr(leaf, i); 4731 ioff = btrfs_token_item_offset(leaf, item, &token); 4732 btrfs_set_token_item_offset(leaf, item, 4733 ioff + dsize, &token); 4734 } 4735 4736 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4737 btrfs_item_nr_offset(slot + nr), 4738 sizeof(struct btrfs_item) * 4739 (nritems - slot - nr)); 4740 } 4741 btrfs_set_header_nritems(leaf, nritems - nr); 4742 nritems -= nr; 4743 4744 /* delete the leaf if we've emptied it */ 4745 if (nritems == 0) { 4746 if (leaf == root->node) { 4747 btrfs_set_header_level(leaf, 0); 4748 } else { 4749 btrfs_set_path_blocking(path); 4750 clean_tree_block(trans, root, leaf); 4751 btrfs_del_leaf(trans, root, path, leaf); 4752 } 4753 } else { 4754 int used = leaf_space_used(leaf, 0, nritems); 4755 if (slot == 0) { 4756 struct btrfs_disk_key disk_key; 4757 4758 btrfs_item_key(leaf, &disk_key, 0); 4759 fixup_low_keys(root, path, &disk_key, 1); 4760 } 4761 4762 /* delete the leaf if it is mostly empty */ 4763 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 4764 /* push_leaf_left fixes the path. 4765 * make sure the path still points to our leaf 4766 * for possible call to del_ptr below 4767 */ 4768 slot = path->slots[1]; 4769 extent_buffer_get(leaf); 4770 4771 btrfs_set_path_blocking(path); 4772 wret = push_leaf_left(trans, root, path, 1, 1, 4773 1, (u32)-1); 4774 if (wret < 0 && wret != -ENOSPC) 4775 ret = wret; 4776 4777 if (path->nodes[0] == leaf && 4778 btrfs_header_nritems(leaf)) { 4779 wret = push_leaf_right(trans, root, path, 1, 4780 1, 1, 0); 4781 if (wret < 0 && wret != -ENOSPC) 4782 ret = wret; 4783 } 4784 4785 if (btrfs_header_nritems(leaf) == 0) { 4786 path->slots[1] = slot; 4787 btrfs_del_leaf(trans, root, path, leaf); 4788 free_extent_buffer(leaf); 4789 ret = 0; 4790 } else { 4791 /* if we're still in the path, make sure 4792 * we're dirty. Otherwise, one of the 4793 * push_leaf functions must have already 4794 * dirtied this buffer 4795 */ 4796 if (path->nodes[0] == leaf) 4797 btrfs_mark_buffer_dirty(leaf); 4798 free_extent_buffer(leaf); 4799 } 4800 } else { 4801 btrfs_mark_buffer_dirty(leaf); 4802 } 4803 } 4804 return ret; 4805 } 4806 4807 /* 4808 * search the tree again to find a leaf with lesser keys 4809 * returns 0 if it found something or 1 if there are no lesser leaves. 4810 * returns < 0 on io errors. 4811 * 4812 * This may release the path, and so you may lose any locks held at the 4813 * time you call it. 4814 */ 4815 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4816 { 4817 struct btrfs_key key; 4818 struct btrfs_disk_key found_key; 4819 int ret; 4820 4821 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4822 4823 if (key.offset > 0) 4824 key.offset--; 4825 else if (key.type > 0) 4826 key.type--; 4827 else if (key.objectid > 0) 4828 key.objectid--; 4829 else 4830 return 1; 4831 4832 btrfs_release_path(path); 4833 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4834 if (ret < 0) 4835 return ret; 4836 btrfs_item_key(path->nodes[0], &found_key, 0); 4837 ret = comp_keys(&found_key, &key); 4838 if (ret < 0) 4839 return 0; 4840 return 1; 4841 } 4842 4843 /* 4844 * A helper function to walk down the tree starting at min_key, and looking 4845 * for nodes or leaves that are have a minimum transaction id. 4846 * This is used by the btree defrag code, and tree logging 4847 * 4848 * This does not cow, but it does stuff the starting key it finds back 4849 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4850 * key and get a writable path. 4851 * 4852 * This does lock as it descends, and path->keep_locks should be set 4853 * to 1 by the caller. 4854 * 4855 * This honors path->lowest_level to prevent descent past a given level 4856 * of the tree. 4857 * 4858 * min_trans indicates the oldest transaction that you are interested 4859 * in walking through. Any nodes or leaves older than min_trans are 4860 * skipped over (without reading them). 4861 * 4862 * returns zero if something useful was found, < 0 on error and 1 if there 4863 * was nothing in the tree that matched the search criteria. 4864 */ 4865 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4866 struct btrfs_key *max_key, 4867 struct btrfs_path *path, 4868 u64 min_trans) 4869 { 4870 struct extent_buffer *cur; 4871 struct btrfs_key found_key; 4872 int slot; 4873 int sret; 4874 u32 nritems; 4875 int level; 4876 int ret = 1; 4877 4878 WARN_ON(!path->keep_locks); 4879 again: 4880 cur = btrfs_read_lock_root_node(root); 4881 level = btrfs_header_level(cur); 4882 WARN_ON(path->nodes[level]); 4883 path->nodes[level] = cur; 4884 path->locks[level] = BTRFS_READ_LOCK; 4885 4886 if (btrfs_header_generation(cur) < min_trans) { 4887 ret = 1; 4888 goto out; 4889 } 4890 while (1) { 4891 nritems = btrfs_header_nritems(cur); 4892 level = btrfs_header_level(cur); 4893 sret = bin_search(cur, min_key, level, &slot); 4894 4895 /* at the lowest level, we're done, setup the path and exit */ 4896 if (level == path->lowest_level) { 4897 if (slot >= nritems) 4898 goto find_next_key; 4899 ret = 0; 4900 path->slots[level] = slot; 4901 btrfs_item_key_to_cpu(cur, &found_key, slot); 4902 goto out; 4903 } 4904 if (sret && slot > 0) 4905 slot--; 4906 /* 4907 * check this node pointer against the min_trans parameters. 4908 * If it is too old, old, skip to the next one. 4909 */ 4910 while (slot < nritems) { 4911 u64 blockptr; 4912 u64 gen; 4913 4914 blockptr = btrfs_node_blockptr(cur, slot); 4915 gen = btrfs_node_ptr_generation(cur, slot); 4916 if (gen < min_trans) { 4917 slot++; 4918 continue; 4919 } 4920 break; 4921 } 4922 find_next_key: 4923 /* 4924 * we didn't find a candidate key in this node, walk forward 4925 * and find another one 4926 */ 4927 if (slot >= nritems) { 4928 path->slots[level] = slot; 4929 btrfs_set_path_blocking(path); 4930 sret = btrfs_find_next_key(root, path, min_key, level, 4931 min_trans); 4932 if (sret == 0) { 4933 btrfs_release_path(path); 4934 goto again; 4935 } else { 4936 goto out; 4937 } 4938 } 4939 /* save our key for returning back */ 4940 btrfs_node_key_to_cpu(cur, &found_key, slot); 4941 path->slots[level] = slot; 4942 if (level == path->lowest_level) { 4943 ret = 0; 4944 unlock_up(path, level, 1, 0, NULL); 4945 goto out; 4946 } 4947 btrfs_set_path_blocking(path); 4948 cur = read_node_slot(root, cur, slot); 4949 BUG_ON(!cur); /* -ENOMEM */ 4950 4951 btrfs_tree_read_lock(cur); 4952 4953 path->locks[level - 1] = BTRFS_READ_LOCK; 4954 path->nodes[level - 1] = cur; 4955 unlock_up(path, level, 1, 0, NULL); 4956 btrfs_clear_path_blocking(path, NULL, 0); 4957 } 4958 out: 4959 if (ret == 0) 4960 memcpy(min_key, &found_key, sizeof(found_key)); 4961 btrfs_set_path_blocking(path); 4962 return ret; 4963 } 4964 4965 static void tree_move_down(struct btrfs_root *root, 4966 struct btrfs_path *path, 4967 int *level, int root_level) 4968 { 4969 BUG_ON(*level == 0); 4970 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 4971 path->slots[*level]); 4972 path->slots[*level - 1] = 0; 4973 (*level)--; 4974 } 4975 4976 static int tree_move_next_or_upnext(struct btrfs_root *root, 4977 struct btrfs_path *path, 4978 int *level, int root_level) 4979 { 4980 int ret = 0; 4981 int nritems; 4982 nritems = btrfs_header_nritems(path->nodes[*level]); 4983 4984 path->slots[*level]++; 4985 4986 while (path->slots[*level] >= nritems) { 4987 if (*level == root_level) 4988 return -1; 4989 4990 /* move upnext */ 4991 path->slots[*level] = 0; 4992 free_extent_buffer(path->nodes[*level]); 4993 path->nodes[*level] = NULL; 4994 (*level)++; 4995 path->slots[*level]++; 4996 4997 nritems = btrfs_header_nritems(path->nodes[*level]); 4998 ret = 1; 4999 } 5000 return ret; 5001 } 5002 5003 /* 5004 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5005 * or down. 5006 */ 5007 static int tree_advance(struct btrfs_root *root, 5008 struct btrfs_path *path, 5009 int *level, int root_level, 5010 int allow_down, 5011 struct btrfs_key *key) 5012 { 5013 int ret; 5014 5015 if (*level == 0 || !allow_down) { 5016 ret = tree_move_next_or_upnext(root, path, level, root_level); 5017 } else { 5018 tree_move_down(root, path, level, root_level); 5019 ret = 0; 5020 } 5021 if (ret >= 0) { 5022 if (*level == 0) 5023 btrfs_item_key_to_cpu(path->nodes[*level], key, 5024 path->slots[*level]); 5025 else 5026 btrfs_node_key_to_cpu(path->nodes[*level], key, 5027 path->slots[*level]); 5028 } 5029 return ret; 5030 } 5031 5032 static int tree_compare_item(struct btrfs_root *left_root, 5033 struct btrfs_path *left_path, 5034 struct btrfs_path *right_path, 5035 char *tmp_buf) 5036 { 5037 int cmp; 5038 int len1, len2; 5039 unsigned long off1, off2; 5040 5041 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5042 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5043 if (len1 != len2) 5044 return 1; 5045 5046 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5047 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5048 right_path->slots[0]); 5049 5050 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5051 5052 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5053 if (cmp) 5054 return 1; 5055 return 0; 5056 } 5057 5058 #define ADVANCE 1 5059 #define ADVANCE_ONLY_NEXT -1 5060 5061 /* 5062 * This function compares two trees and calls the provided callback for 5063 * every changed/new/deleted item it finds. 5064 * If shared tree blocks are encountered, whole subtrees are skipped, making 5065 * the compare pretty fast on snapshotted subvolumes. 5066 * 5067 * This currently works on commit roots only. As commit roots are read only, 5068 * we don't do any locking. The commit roots are protected with transactions. 5069 * Transactions are ended and rejoined when a commit is tried in between. 5070 * 5071 * This function checks for modifications done to the trees while comparing. 5072 * If it detects a change, it aborts immediately. 5073 */ 5074 int btrfs_compare_trees(struct btrfs_root *left_root, 5075 struct btrfs_root *right_root, 5076 btrfs_changed_cb_t changed_cb, void *ctx) 5077 { 5078 int ret; 5079 int cmp; 5080 struct btrfs_trans_handle *trans = NULL; 5081 struct btrfs_path *left_path = NULL; 5082 struct btrfs_path *right_path = NULL; 5083 struct btrfs_key left_key; 5084 struct btrfs_key right_key; 5085 char *tmp_buf = NULL; 5086 int left_root_level; 5087 int right_root_level; 5088 int left_level; 5089 int right_level; 5090 int left_end_reached; 5091 int right_end_reached; 5092 int advance_left; 5093 int advance_right; 5094 u64 left_blockptr; 5095 u64 right_blockptr; 5096 u64 left_start_ctransid; 5097 u64 right_start_ctransid; 5098 u64 ctransid; 5099 5100 left_path = btrfs_alloc_path(); 5101 if (!left_path) { 5102 ret = -ENOMEM; 5103 goto out; 5104 } 5105 right_path = btrfs_alloc_path(); 5106 if (!right_path) { 5107 ret = -ENOMEM; 5108 goto out; 5109 } 5110 5111 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS); 5112 if (!tmp_buf) { 5113 ret = -ENOMEM; 5114 goto out; 5115 } 5116 5117 left_path->search_commit_root = 1; 5118 left_path->skip_locking = 1; 5119 right_path->search_commit_root = 1; 5120 right_path->skip_locking = 1; 5121 5122 spin_lock(&left_root->root_item_lock); 5123 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item); 5124 spin_unlock(&left_root->root_item_lock); 5125 5126 spin_lock(&right_root->root_item_lock); 5127 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item); 5128 spin_unlock(&right_root->root_item_lock); 5129 5130 trans = btrfs_join_transaction(left_root); 5131 if (IS_ERR(trans)) { 5132 ret = PTR_ERR(trans); 5133 trans = NULL; 5134 goto out; 5135 } 5136 5137 /* 5138 * Strategy: Go to the first items of both trees. Then do 5139 * 5140 * If both trees are at level 0 5141 * Compare keys of current items 5142 * If left < right treat left item as new, advance left tree 5143 * and repeat 5144 * If left > right treat right item as deleted, advance right tree 5145 * and repeat 5146 * If left == right do deep compare of items, treat as changed if 5147 * needed, advance both trees and repeat 5148 * If both trees are at the same level but not at level 0 5149 * Compare keys of current nodes/leafs 5150 * If left < right advance left tree and repeat 5151 * If left > right advance right tree and repeat 5152 * If left == right compare blockptrs of the next nodes/leafs 5153 * If they match advance both trees but stay at the same level 5154 * and repeat 5155 * If they don't match advance both trees while allowing to go 5156 * deeper and repeat 5157 * If tree levels are different 5158 * Advance the tree that needs it and repeat 5159 * 5160 * Advancing a tree means: 5161 * If we are at level 0, try to go to the next slot. If that's not 5162 * possible, go one level up and repeat. Stop when we found a level 5163 * where we could go to the next slot. We may at this point be on a 5164 * node or a leaf. 5165 * 5166 * If we are not at level 0 and not on shared tree blocks, go one 5167 * level deeper. 5168 * 5169 * If we are not at level 0 and on shared tree blocks, go one slot to 5170 * the right if possible or go up and right. 5171 */ 5172 5173 left_level = btrfs_header_level(left_root->commit_root); 5174 left_root_level = left_level; 5175 left_path->nodes[left_level] = left_root->commit_root; 5176 extent_buffer_get(left_path->nodes[left_level]); 5177 5178 right_level = btrfs_header_level(right_root->commit_root); 5179 right_root_level = right_level; 5180 right_path->nodes[right_level] = right_root->commit_root; 5181 extent_buffer_get(right_path->nodes[right_level]); 5182 5183 if (left_level == 0) 5184 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5185 &left_key, left_path->slots[left_level]); 5186 else 5187 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5188 &left_key, left_path->slots[left_level]); 5189 if (right_level == 0) 5190 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5191 &right_key, right_path->slots[right_level]); 5192 else 5193 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5194 &right_key, right_path->slots[right_level]); 5195 5196 left_end_reached = right_end_reached = 0; 5197 advance_left = advance_right = 0; 5198 5199 while (1) { 5200 /* 5201 * We need to make sure the transaction does not get committed 5202 * while we do anything on commit roots. This means, we need to 5203 * join and leave transactions for every item that we process. 5204 */ 5205 if (trans && btrfs_should_end_transaction(trans, left_root)) { 5206 btrfs_release_path(left_path); 5207 btrfs_release_path(right_path); 5208 5209 ret = btrfs_end_transaction(trans, left_root); 5210 trans = NULL; 5211 if (ret < 0) 5212 goto out; 5213 } 5214 /* now rejoin the transaction */ 5215 if (!trans) { 5216 trans = btrfs_join_transaction(left_root); 5217 if (IS_ERR(trans)) { 5218 ret = PTR_ERR(trans); 5219 trans = NULL; 5220 goto out; 5221 } 5222 5223 spin_lock(&left_root->root_item_lock); 5224 ctransid = btrfs_root_ctransid(&left_root->root_item); 5225 spin_unlock(&left_root->root_item_lock); 5226 if (ctransid != left_start_ctransid) 5227 left_start_ctransid = 0; 5228 5229 spin_lock(&right_root->root_item_lock); 5230 ctransid = btrfs_root_ctransid(&right_root->root_item); 5231 spin_unlock(&right_root->root_item_lock); 5232 if (ctransid != right_start_ctransid) 5233 right_start_ctransid = 0; 5234 5235 if (!left_start_ctransid || !right_start_ctransid) { 5236 WARN(1, KERN_WARNING 5237 "btrfs: btrfs_compare_tree detected " 5238 "a change in one of the trees while " 5239 "iterating. This is probably a " 5240 "bug.\n"); 5241 ret = -EIO; 5242 goto out; 5243 } 5244 5245 /* 5246 * the commit root may have changed, so start again 5247 * where we stopped 5248 */ 5249 left_path->lowest_level = left_level; 5250 right_path->lowest_level = right_level; 5251 ret = btrfs_search_slot(NULL, left_root, 5252 &left_key, left_path, 0, 0); 5253 if (ret < 0) 5254 goto out; 5255 ret = btrfs_search_slot(NULL, right_root, 5256 &right_key, right_path, 0, 0); 5257 if (ret < 0) 5258 goto out; 5259 } 5260 5261 if (advance_left && !left_end_reached) { 5262 ret = tree_advance(left_root, left_path, &left_level, 5263 left_root_level, 5264 advance_left != ADVANCE_ONLY_NEXT, 5265 &left_key); 5266 if (ret < 0) 5267 left_end_reached = ADVANCE; 5268 advance_left = 0; 5269 } 5270 if (advance_right && !right_end_reached) { 5271 ret = tree_advance(right_root, right_path, &right_level, 5272 right_root_level, 5273 advance_right != ADVANCE_ONLY_NEXT, 5274 &right_key); 5275 if (ret < 0) 5276 right_end_reached = ADVANCE; 5277 advance_right = 0; 5278 } 5279 5280 if (left_end_reached && right_end_reached) { 5281 ret = 0; 5282 goto out; 5283 } else if (left_end_reached) { 5284 if (right_level == 0) { 5285 ret = changed_cb(left_root, right_root, 5286 left_path, right_path, 5287 &right_key, 5288 BTRFS_COMPARE_TREE_DELETED, 5289 ctx); 5290 if (ret < 0) 5291 goto out; 5292 } 5293 advance_right = ADVANCE; 5294 continue; 5295 } else if (right_end_reached) { 5296 if (left_level == 0) { 5297 ret = changed_cb(left_root, right_root, 5298 left_path, right_path, 5299 &left_key, 5300 BTRFS_COMPARE_TREE_NEW, 5301 ctx); 5302 if (ret < 0) 5303 goto out; 5304 } 5305 advance_left = ADVANCE; 5306 continue; 5307 } 5308 5309 if (left_level == 0 && right_level == 0) { 5310 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5311 if (cmp < 0) { 5312 ret = changed_cb(left_root, right_root, 5313 left_path, right_path, 5314 &left_key, 5315 BTRFS_COMPARE_TREE_NEW, 5316 ctx); 5317 if (ret < 0) 5318 goto out; 5319 advance_left = ADVANCE; 5320 } else if (cmp > 0) { 5321 ret = changed_cb(left_root, right_root, 5322 left_path, right_path, 5323 &right_key, 5324 BTRFS_COMPARE_TREE_DELETED, 5325 ctx); 5326 if (ret < 0) 5327 goto out; 5328 advance_right = ADVANCE; 5329 } else { 5330 enum btrfs_compare_tree_result cmp; 5331 5332 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5333 ret = tree_compare_item(left_root, left_path, 5334 right_path, tmp_buf); 5335 if (ret) 5336 cmp = BTRFS_COMPARE_TREE_CHANGED; 5337 else 5338 cmp = BTRFS_COMPARE_TREE_SAME; 5339 ret = changed_cb(left_root, right_root, 5340 left_path, right_path, 5341 &left_key, cmp, ctx); 5342 if (ret < 0) 5343 goto out; 5344 advance_left = ADVANCE; 5345 advance_right = ADVANCE; 5346 } 5347 } else if (left_level == right_level) { 5348 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5349 if (cmp < 0) { 5350 advance_left = ADVANCE; 5351 } else if (cmp > 0) { 5352 advance_right = ADVANCE; 5353 } else { 5354 left_blockptr = btrfs_node_blockptr( 5355 left_path->nodes[left_level], 5356 left_path->slots[left_level]); 5357 right_blockptr = btrfs_node_blockptr( 5358 right_path->nodes[right_level], 5359 right_path->slots[right_level]); 5360 if (left_blockptr == right_blockptr) { 5361 /* 5362 * As we're on a shared block, don't 5363 * allow to go deeper. 5364 */ 5365 advance_left = ADVANCE_ONLY_NEXT; 5366 advance_right = ADVANCE_ONLY_NEXT; 5367 } else { 5368 advance_left = ADVANCE; 5369 advance_right = ADVANCE; 5370 } 5371 } 5372 } else if (left_level < right_level) { 5373 advance_right = ADVANCE; 5374 } else { 5375 advance_left = ADVANCE; 5376 } 5377 } 5378 5379 out: 5380 btrfs_free_path(left_path); 5381 btrfs_free_path(right_path); 5382 kfree(tmp_buf); 5383 5384 if (trans) { 5385 if (!ret) 5386 ret = btrfs_end_transaction(trans, left_root); 5387 else 5388 btrfs_end_transaction(trans, left_root); 5389 } 5390 5391 return ret; 5392 } 5393 5394 /* 5395 * this is similar to btrfs_next_leaf, but does not try to preserve 5396 * and fixup the path. It looks for and returns the next key in the 5397 * tree based on the current path and the min_trans parameters. 5398 * 5399 * 0 is returned if another key is found, < 0 if there are any errors 5400 * and 1 is returned if there are no higher keys in the tree 5401 * 5402 * path->keep_locks should be set to 1 on the search made before 5403 * calling this function. 5404 */ 5405 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5406 struct btrfs_key *key, int level, u64 min_trans) 5407 { 5408 int slot; 5409 struct extent_buffer *c; 5410 5411 WARN_ON(!path->keep_locks); 5412 while (level < BTRFS_MAX_LEVEL) { 5413 if (!path->nodes[level]) 5414 return 1; 5415 5416 slot = path->slots[level] + 1; 5417 c = path->nodes[level]; 5418 next: 5419 if (slot >= btrfs_header_nritems(c)) { 5420 int ret; 5421 int orig_lowest; 5422 struct btrfs_key cur_key; 5423 if (level + 1 >= BTRFS_MAX_LEVEL || 5424 !path->nodes[level + 1]) 5425 return 1; 5426 5427 if (path->locks[level + 1]) { 5428 level++; 5429 continue; 5430 } 5431 5432 slot = btrfs_header_nritems(c) - 1; 5433 if (level == 0) 5434 btrfs_item_key_to_cpu(c, &cur_key, slot); 5435 else 5436 btrfs_node_key_to_cpu(c, &cur_key, slot); 5437 5438 orig_lowest = path->lowest_level; 5439 btrfs_release_path(path); 5440 path->lowest_level = level; 5441 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5442 0, 0); 5443 path->lowest_level = orig_lowest; 5444 if (ret < 0) 5445 return ret; 5446 5447 c = path->nodes[level]; 5448 slot = path->slots[level]; 5449 if (ret == 0) 5450 slot++; 5451 goto next; 5452 } 5453 5454 if (level == 0) 5455 btrfs_item_key_to_cpu(c, key, slot); 5456 else { 5457 u64 gen = btrfs_node_ptr_generation(c, slot); 5458 5459 if (gen < min_trans) { 5460 slot++; 5461 goto next; 5462 } 5463 btrfs_node_key_to_cpu(c, key, slot); 5464 } 5465 return 0; 5466 } 5467 return 1; 5468 } 5469 5470 /* 5471 * search the tree again to find a leaf with greater keys 5472 * returns 0 if it found something or 1 if there are no greater leaves. 5473 * returns < 0 on io errors. 5474 */ 5475 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5476 { 5477 return btrfs_next_old_leaf(root, path, 0); 5478 } 5479 5480 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5481 u64 time_seq) 5482 { 5483 int slot; 5484 int level; 5485 struct extent_buffer *c; 5486 struct extent_buffer *next; 5487 struct btrfs_key key; 5488 u32 nritems; 5489 int ret; 5490 int old_spinning = path->leave_spinning; 5491 int next_rw_lock = 0; 5492 5493 nritems = btrfs_header_nritems(path->nodes[0]); 5494 if (nritems == 0) 5495 return 1; 5496 5497 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5498 again: 5499 level = 1; 5500 next = NULL; 5501 next_rw_lock = 0; 5502 btrfs_release_path(path); 5503 5504 path->keep_locks = 1; 5505 path->leave_spinning = 1; 5506 5507 if (time_seq) 5508 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5509 else 5510 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5511 path->keep_locks = 0; 5512 5513 if (ret < 0) 5514 return ret; 5515 5516 nritems = btrfs_header_nritems(path->nodes[0]); 5517 /* 5518 * by releasing the path above we dropped all our locks. A balance 5519 * could have added more items next to the key that used to be 5520 * at the very end of the block. So, check again here and 5521 * advance the path if there are now more items available. 5522 */ 5523 if (nritems > 0 && path->slots[0] < nritems - 1) { 5524 if (ret == 0) 5525 path->slots[0]++; 5526 ret = 0; 5527 goto done; 5528 } 5529 5530 while (level < BTRFS_MAX_LEVEL) { 5531 if (!path->nodes[level]) { 5532 ret = 1; 5533 goto done; 5534 } 5535 5536 slot = path->slots[level] + 1; 5537 c = path->nodes[level]; 5538 if (slot >= btrfs_header_nritems(c)) { 5539 level++; 5540 if (level == BTRFS_MAX_LEVEL) { 5541 ret = 1; 5542 goto done; 5543 } 5544 continue; 5545 } 5546 5547 if (next) { 5548 btrfs_tree_unlock_rw(next, next_rw_lock); 5549 free_extent_buffer(next); 5550 } 5551 5552 next = c; 5553 next_rw_lock = path->locks[level]; 5554 ret = read_block_for_search(NULL, root, path, &next, level, 5555 slot, &key, 0); 5556 if (ret == -EAGAIN) 5557 goto again; 5558 5559 if (ret < 0) { 5560 btrfs_release_path(path); 5561 goto done; 5562 } 5563 5564 if (!path->skip_locking) { 5565 ret = btrfs_try_tree_read_lock(next); 5566 if (!ret && time_seq) { 5567 /* 5568 * If we don't get the lock, we may be racing 5569 * with push_leaf_left, holding that lock while 5570 * itself waiting for the leaf we've currently 5571 * locked. To solve this situation, we give up 5572 * on our lock and cycle. 5573 */ 5574 free_extent_buffer(next); 5575 btrfs_release_path(path); 5576 cond_resched(); 5577 goto again; 5578 } 5579 if (!ret) { 5580 btrfs_set_path_blocking(path); 5581 btrfs_tree_read_lock(next); 5582 btrfs_clear_path_blocking(path, next, 5583 BTRFS_READ_LOCK); 5584 } 5585 next_rw_lock = BTRFS_READ_LOCK; 5586 } 5587 break; 5588 } 5589 path->slots[level] = slot; 5590 while (1) { 5591 level--; 5592 c = path->nodes[level]; 5593 if (path->locks[level]) 5594 btrfs_tree_unlock_rw(c, path->locks[level]); 5595 5596 free_extent_buffer(c); 5597 path->nodes[level] = next; 5598 path->slots[level] = 0; 5599 if (!path->skip_locking) 5600 path->locks[level] = next_rw_lock; 5601 if (!level) 5602 break; 5603 5604 ret = read_block_for_search(NULL, root, path, &next, level, 5605 0, &key, 0); 5606 if (ret == -EAGAIN) 5607 goto again; 5608 5609 if (ret < 0) { 5610 btrfs_release_path(path); 5611 goto done; 5612 } 5613 5614 if (!path->skip_locking) { 5615 ret = btrfs_try_tree_read_lock(next); 5616 if (!ret) { 5617 btrfs_set_path_blocking(path); 5618 btrfs_tree_read_lock(next); 5619 btrfs_clear_path_blocking(path, next, 5620 BTRFS_READ_LOCK); 5621 } 5622 next_rw_lock = BTRFS_READ_LOCK; 5623 } 5624 } 5625 ret = 0; 5626 done: 5627 unlock_up(path, 0, 1, 0, NULL); 5628 path->leave_spinning = old_spinning; 5629 if (!old_spinning) 5630 btrfs_set_path_blocking(path); 5631 5632 return ret; 5633 } 5634 5635 /* 5636 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5637 * searching until it gets past min_objectid or finds an item of 'type' 5638 * 5639 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5640 */ 5641 int btrfs_previous_item(struct btrfs_root *root, 5642 struct btrfs_path *path, u64 min_objectid, 5643 int type) 5644 { 5645 struct btrfs_key found_key; 5646 struct extent_buffer *leaf; 5647 u32 nritems; 5648 int ret; 5649 5650 while (1) { 5651 if (path->slots[0] == 0) { 5652 btrfs_set_path_blocking(path); 5653 ret = btrfs_prev_leaf(root, path); 5654 if (ret != 0) 5655 return ret; 5656 } else { 5657 path->slots[0]--; 5658 } 5659 leaf = path->nodes[0]; 5660 nritems = btrfs_header_nritems(leaf); 5661 if (nritems == 0) 5662 return 1; 5663 if (path->slots[0] == nritems) 5664 path->slots[0]--; 5665 5666 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5667 if (found_key.objectid < min_objectid) 5668 break; 5669 if (found_key.type == type) 5670 return 0; 5671 if (found_key.objectid == min_objectid && 5672 found_key.type < type) 5673 break; 5674 } 5675 return 1; 5676 } 5677