xref: /linux/fs/btrfs/ctree.c (revision a224bd36bf5ccc72d0f12ab11216706762133177)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27 
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 		      *root, struct btrfs_key *ins_key,
32 		      struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 			  struct btrfs_root *root, struct extent_buffer *dst,
35 			  struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 		    int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 				 struct extent_buffer *eb);
44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
45 
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 	struct btrfs_path *path;
49 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 	return path;
51 }
52 
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59 	int i;
60 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 		if (!p->nodes[i] || !p->locks[i])
62 			continue;
63 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 		if (p->locks[i] == BTRFS_READ_LOCK)
65 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 	}
69 }
70 
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 					struct extent_buffer *held, int held_rw)
81 {
82 	int i;
83 
84 #ifdef CONFIG_DEBUG_LOCK_ALLOC
85 	/* lockdep really cares that we take all of these spinlocks
86 	 * in the right order.  If any of the locks in the path are not
87 	 * currently blocking, it is going to complain.  So, make really
88 	 * really sure by forcing the path to blocking before we clear
89 	 * the path blocking.
90 	 */
91 	if (held) {
92 		btrfs_set_lock_blocking_rw(held, held_rw);
93 		if (held_rw == BTRFS_WRITE_LOCK)
94 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95 		else if (held_rw == BTRFS_READ_LOCK)
96 			held_rw = BTRFS_READ_LOCK_BLOCKING;
97 	}
98 	btrfs_set_path_blocking(p);
99 #endif
100 
101 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
102 		if (p->nodes[i] && p->locks[i]) {
103 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105 				p->locks[i] = BTRFS_WRITE_LOCK;
106 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107 				p->locks[i] = BTRFS_READ_LOCK;
108 		}
109 	}
110 
111 #ifdef CONFIG_DEBUG_LOCK_ALLOC
112 	if (held)
113 		btrfs_clear_lock_blocking_rw(held, held_rw);
114 #endif
115 }
116 
117 /* this also releases the path */
118 void btrfs_free_path(struct btrfs_path *p)
119 {
120 	if (!p)
121 		return;
122 	btrfs_release_path(p);
123 	kmem_cache_free(btrfs_path_cachep, p);
124 }
125 
126 /*
127  * path release drops references on the extent buffers in the path
128  * and it drops any locks held by this path
129  *
130  * It is safe to call this on paths that no locks or extent buffers held.
131  */
132 noinline void btrfs_release_path(struct btrfs_path *p)
133 {
134 	int i;
135 
136 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
137 		p->slots[i] = 0;
138 		if (!p->nodes[i])
139 			continue;
140 		if (p->locks[i]) {
141 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
142 			p->locks[i] = 0;
143 		}
144 		free_extent_buffer(p->nodes[i]);
145 		p->nodes[i] = NULL;
146 	}
147 }
148 
149 /*
150  * safely gets a reference on the root node of a tree.  A lock
151  * is not taken, so a concurrent writer may put a different node
152  * at the root of the tree.  See btrfs_lock_root_node for the
153  * looping required.
154  *
155  * The extent buffer returned by this has a reference taken, so
156  * it won't disappear.  It may stop being the root of the tree
157  * at any time because there are no locks held.
158  */
159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
160 {
161 	struct extent_buffer *eb;
162 
163 	while (1) {
164 		rcu_read_lock();
165 		eb = rcu_dereference(root->node);
166 
167 		/*
168 		 * RCU really hurts here, we could free up the root node because
169 		 * it was cow'ed but we may not get the new root node yet so do
170 		 * the inc_not_zero dance and if it doesn't work then
171 		 * synchronize_rcu and try again.
172 		 */
173 		if (atomic_inc_not_zero(&eb->refs)) {
174 			rcu_read_unlock();
175 			break;
176 		}
177 		rcu_read_unlock();
178 		synchronize_rcu();
179 	}
180 	return eb;
181 }
182 
183 /* loop around taking references on and locking the root node of the
184  * tree until you end up with a lock on the root.  A locked buffer
185  * is returned, with a reference held.
186  */
187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
188 {
189 	struct extent_buffer *eb;
190 
191 	while (1) {
192 		eb = btrfs_root_node(root);
193 		btrfs_tree_lock(eb);
194 		if (eb == root->node)
195 			break;
196 		btrfs_tree_unlock(eb);
197 		free_extent_buffer(eb);
198 	}
199 	return eb;
200 }
201 
202 /* loop around taking references on and locking the root node of the
203  * tree until you end up with a lock on the root.  A locked buffer
204  * is returned, with a reference held.
205  */
206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
207 {
208 	struct extent_buffer *eb;
209 
210 	while (1) {
211 		eb = btrfs_root_node(root);
212 		btrfs_tree_read_lock(eb);
213 		if (eb == root->node)
214 			break;
215 		btrfs_tree_read_unlock(eb);
216 		free_extent_buffer(eb);
217 	}
218 	return eb;
219 }
220 
221 /* cowonly root (everything not a reference counted cow subvolume), just get
222  * put onto a simple dirty list.  transaction.c walks this to make sure they
223  * get properly updated on disk.
224  */
225 static void add_root_to_dirty_list(struct btrfs_root *root)
226 {
227 	spin_lock(&root->fs_info->trans_lock);
228 	if (root->track_dirty && list_empty(&root->dirty_list)) {
229 		list_add(&root->dirty_list,
230 			 &root->fs_info->dirty_cowonly_roots);
231 	}
232 	spin_unlock(&root->fs_info->trans_lock);
233 }
234 
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 		      struct btrfs_root *root,
242 		      struct extent_buffer *buf,
243 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245 	struct extent_buffer *cow;
246 	int ret = 0;
247 	int level;
248 	struct btrfs_disk_key disk_key;
249 
250 	WARN_ON(root->ref_cows && trans->transid !=
251 		root->fs_info->running_transaction->transid);
252 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
253 
254 	level = btrfs_header_level(buf);
255 	if (level == 0)
256 		btrfs_item_key(buf, &disk_key, 0);
257 	else
258 		btrfs_node_key(buf, &disk_key, 0);
259 
260 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261 				     new_root_objectid, &disk_key, level,
262 				     buf->start, 0);
263 	if (IS_ERR(cow))
264 		return PTR_ERR(cow);
265 
266 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
267 	btrfs_set_header_bytenr(cow, cow->start);
268 	btrfs_set_header_generation(cow, trans->transid);
269 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271 				     BTRFS_HEADER_FLAG_RELOC);
272 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274 	else
275 		btrfs_set_header_owner(cow, new_root_objectid);
276 
277 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(cow),
278 			    BTRFS_FSID_SIZE);
279 
280 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
281 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282 		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
283 	else
284 		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
285 
286 	if (ret)
287 		return ret;
288 
289 	btrfs_mark_buffer_dirty(cow);
290 	*cow_ret = cow;
291 	return 0;
292 }
293 
294 enum mod_log_op {
295 	MOD_LOG_KEY_REPLACE,
296 	MOD_LOG_KEY_ADD,
297 	MOD_LOG_KEY_REMOVE,
298 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 	MOD_LOG_MOVE_KEYS,
301 	MOD_LOG_ROOT_REPLACE,
302 };
303 
304 struct tree_mod_move {
305 	int dst_slot;
306 	int nr_items;
307 };
308 
309 struct tree_mod_root {
310 	u64 logical;
311 	u8 level;
312 };
313 
314 struct tree_mod_elem {
315 	struct rb_node node;
316 	u64 index;		/* shifted logical */
317 	u64 seq;
318 	enum mod_log_op op;
319 
320 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 	int slot;
322 
323 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 	u64 generation;
325 
326 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 	struct btrfs_disk_key key;
328 	u64 blockptr;
329 
330 	/* this is used for op == MOD_LOG_MOVE_KEYS */
331 	struct tree_mod_move move;
332 
333 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
334 	struct tree_mod_root old_root;
335 };
336 
337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338 {
339 	read_lock(&fs_info->tree_mod_log_lock);
340 }
341 
342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343 {
344 	read_unlock(&fs_info->tree_mod_log_lock);
345 }
346 
347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348 {
349 	write_lock(&fs_info->tree_mod_log_lock);
350 }
351 
352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353 {
354 	write_unlock(&fs_info->tree_mod_log_lock);
355 }
356 
357 /*
358  * Increment the upper half of tree_mod_seq, set lower half zero.
359  *
360  * Must be called with fs_info->tree_mod_seq_lock held.
361  */
362 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
363 {
364 	u64 seq = atomic64_read(&fs_info->tree_mod_seq);
365 	seq &= 0xffffffff00000000ull;
366 	seq += 1ull << 32;
367 	atomic64_set(&fs_info->tree_mod_seq, seq);
368 	return seq;
369 }
370 
371 /*
372  * Increment the lower half of tree_mod_seq.
373  *
374  * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
375  * are generated should not technically require a spin lock here. (Rationale:
376  * incrementing the minor while incrementing the major seq number is between its
377  * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
378  * just returns a unique sequence number as usual.) We have decided to leave
379  * that requirement in here and rethink it once we notice it really imposes a
380  * problem on some workload.
381  */
382 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
383 {
384 	return atomic64_inc_return(&fs_info->tree_mod_seq);
385 }
386 
387 /*
388  * return the last minor in the previous major tree_mod_seq number
389  */
390 u64 btrfs_tree_mod_seq_prev(u64 seq)
391 {
392 	return (seq & 0xffffffff00000000ull) - 1ull;
393 }
394 
395 /*
396  * This adds a new blocker to the tree mod log's blocker list if the @elem
397  * passed does not already have a sequence number set. So when a caller expects
398  * to record tree modifications, it should ensure to set elem->seq to zero
399  * before calling btrfs_get_tree_mod_seq.
400  * Returns a fresh, unused tree log modification sequence number, even if no new
401  * blocker was added.
402  */
403 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
404 			   struct seq_list *elem)
405 {
406 	u64 seq;
407 
408 	tree_mod_log_write_lock(fs_info);
409 	spin_lock(&fs_info->tree_mod_seq_lock);
410 	if (!elem->seq) {
411 		elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
412 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
413 	}
414 	seq = btrfs_inc_tree_mod_seq_minor(fs_info);
415 	spin_unlock(&fs_info->tree_mod_seq_lock);
416 	tree_mod_log_write_unlock(fs_info);
417 
418 	return seq;
419 }
420 
421 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
422 			    struct seq_list *elem)
423 {
424 	struct rb_root *tm_root;
425 	struct rb_node *node;
426 	struct rb_node *next;
427 	struct seq_list *cur_elem;
428 	struct tree_mod_elem *tm;
429 	u64 min_seq = (u64)-1;
430 	u64 seq_putting = elem->seq;
431 
432 	if (!seq_putting)
433 		return;
434 
435 	spin_lock(&fs_info->tree_mod_seq_lock);
436 	list_del(&elem->list);
437 	elem->seq = 0;
438 
439 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
440 		if (cur_elem->seq < min_seq) {
441 			if (seq_putting > cur_elem->seq) {
442 				/*
443 				 * blocker with lower sequence number exists, we
444 				 * cannot remove anything from the log
445 				 */
446 				spin_unlock(&fs_info->tree_mod_seq_lock);
447 				return;
448 			}
449 			min_seq = cur_elem->seq;
450 		}
451 	}
452 	spin_unlock(&fs_info->tree_mod_seq_lock);
453 
454 	/*
455 	 * anything that's lower than the lowest existing (read: blocked)
456 	 * sequence number can be removed from the tree.
457 	 */
458 	tree_mod_log_write_lock(fs_info);
459 	tm_root = &fs_info->tree_mod_log;
460 	for (node = rb_first(tm_root); node; node = next) {
461 		next = rb_next(node);
462 		tm = container_of(node, struct tree_mod_elem, node);
463 		if (tm->seq > min_seq)
464 			continue;
465 		rb_erase(node, tm_root);
466 		kfree(tm);
467 	}
468 	tree_mod_log_write_unlock(fs_info);
469 }
470 
471 /*
472  * key order of the log:
473  *       index -> sequence
474  *
475  * the index is the shifted logical of the *new* root node for root replace
476  * operations, or the shifted logical of the affected block for all other
477  * operations.
478  */
479 static noinline int
480 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
481 {
482 	struct rb_root *tm_root;
483 	struct rb_node **new;
484 	struct rb_node *parent = NULL;
485 	struct tree_mod_elem *cur;
486 	int ret = 0;
487 
488 	BUG_ON(!tm);
489 
490 	tree_mod_log_write_lock(fs_info);
491 	if (list_empty(&fs_info->tree_mod_seq_list)) {
492 		tree_mod_log_write_unlock(fs_info);
493 		/*
494 		 * Ok we no longer care about logging modifications, free up tm
495 		 * and return 0.  Any callers shouldn't be using tm after
496 		 * calling tree_mod_log_insert, but if they do we can just
497 		 * change this to return a special error code to let the callers
498 		 * do their own thing.
499 		 */
500 		kfree(tm);
501 		return 0;
502 	}
503 
504 	spin_lock(&fs_info->tree_mod_seq_lock);
505 	tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
506 	spin_unlock(&fs_info->tree_mod_seq_lock);
507 
508 	tm_root = &fs_info->tree_mod_log;
509 	new = &tm_root->rb_node;
510 	while (*new) {
511 		cur = container_of(*new, struct tree_mod_elem, node);
512 		parent = *new;
513 		if (cur->index < tm->index)
514 			new = &((*new)->rb_left);
515 		else if (cur->index > tm->index)
516 			new = &((*new)->rb_right);
517 		else if (cur->seq < tm->seq)
518 			new = &((*new)->rb_left);
519 		else if (cur->seq > tm->seq)
520 			new = &((*new)->rb_right);
521 		else {
522 			ret = -EEXIST;
523 			kfree(tm);
524 			goto out;
525 		}
526 	}
527 
528 	rb_link_node(&tm->node, parent, new);
529 	rb_insert_color(&tm->node, tm_root);
530 out:
531 	tree_mod_log_write_unlock(fs_info);
532 	return ret;
533 }
534 
535 /*
536  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
537  * returns zero with the tree_mod_log_lock acquired. The caller must hold
538  * this until all tree mod log insertions are recorded in the rb tree and then
539  * call tree_mod_log_write_unlock() to release.
540  */
541 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
542 				    struct extent_buffer *eb) {
543 	smp_mb();
544 	if (list_empty(&(fs_info)->tree_mod_seq_list))
545 		return 1;
546 	if (eb && btrfs_header_level(eb) == 0)
547 		return 1;
548 	return 0;
549 }
550 
551 static inline int
552 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
553 			  struct extent_buffer *eb, int slot,
554 			  enum mod_log_op op, gfp_t flags)
555 {
556 	struct tree_mod_elem *tm;
557 
558 	tm = kzalloc(sizeof(*tm), flags);
559 	if (!tm)
560 		return -ENOMEM;
561 
562 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
563 	if (op != MOD_LOG_KEY_ADD) {
564 		btrfs_node_key(eb, &tm->key, slot);
565 		tm->blockptr = btrfs_node_blockptr(eb, slot);
566 	}
567 	tm->op = op;
568 	tm->slot = slot;
569 	tm->generation = btrfs_node_ptr_generation(eb, slot);
570 
571 	return __tree_mod_log_insert(fs_info, tm);
572 }
573 
574 static noinline int
575 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
576 			struct extent_buffer *eb, int slot,
577 			enum mod_log_op op, gfp_t flags)
578 {
579 	if (tree_mod_dont_log(fs_info, eb))
580 		return 0;
581 
582 	return __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
583 }
584 
585 static noinline int
586 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
587 			 struct extent_buffer *eb, int dst_slot, int src_slot,
588 			 int nr_items, gfp_t flags)
589 {
590 	struct tree_mod_elem *tm;
591 	int ret;
592 	int i;
593 
594 	if (tree_mod_dont_log(fs_info, eb))
595 		return 0;
596 
597 	/*
598 	 * When we override something during the move, we log these removals.
599 	 * This can only happen when we move towards the beginning of the
600 	 * buffer, i.e. dst_slot < src_slot.
601 	 */
602 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
603 		ret = __tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
604 				MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
605 		BUG_ON(ret < 0);
606 	}
607 
608 	tm = kzalloc(sizeof(*tm), flags);
609 	if (!tm)
610 		return -ENOMEM;
611 
612 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
613 	tm->slot = src_slot;
614 	tm->move.dst_slot = dst_slot;
615 	tm->move.nr_items = nr_items;
616 	tm->op = MOD_LOG_MOVE_KEYS;
617 
618 	return __tree_mod_log_insert(fs_info, tm);
619 }
620 
621 static inline void
622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
623 {
624 	int i;
625 	u32 nritems;
626 	int ret;
627 
628 	if (btrfs_header_level(eb) == 0)
629 		return;
630 
631 	nritems = btrfs_header_nritems(eb);
632 	for (i = nritems - 1; i >= 0; i--) {
633 		ret = __tree_mod_log_insert_key(fs_info, eb, i,
634 				MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
635 		BUG_ON(ret < 0);
636 	}
637 }
638 
639 static noinline int
640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
641 			 struct extent_buffer *old_root,
642 			 struct extent_buffer *new_root, gfp_t flags,
643 			 int log_removal)
644 {
645 	struct tree_mod_elem *tm;
646 
647 	if (tree_mod_dont_log(fs_info, NULL))
648 		return 0;
649 
650 	if (log_removal)
651 		__tree_mod_log_free_eb(fs_info, old_root);
652 
653 	tm = kzalloc(sizeof(*tm), flags);
654 	if (!tm)
655 		return -ENOMEM;
656 
657 	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
658 	tm->old_root.logical = old_root->start;
659 	tm->old_root.level = btrfs_header_level(old_root);
660 	tm->generation = btrfs_header_generation(old_root);
661 	tm->op = MOD_LOG_ROOT_REPLACE;
662 
663 	return __tree_mod_log_insert(fs_info, tm);
664 }
665 
666 static struct tree_mod_elem *
667 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
668 		      int smallest)
669 {
670 	struct rb_root *tm_root;
671 	struct rb_node *node;
672 	struct tree_mod_elem *cur = NULL;
673 	struct tree_mod_elem *found = NULL;
674 	u64 index = start >> PAGE_CACHE_SHIFT;
675 
676 	tree_mod_log_read_lock(fs_info);
677 	tm_root = &fs_info->tree_mod_log;
678 	node = tm_root->rb_node;
679 	while (node) {
680 		cur = container_of(node, struct tree_mod_elem, node);
681 		if (cur->index < index) {
682 			node = node->rb_left;
683 		} else if (cur->index > index) {
684 			node = node->rb_right;
685 		} else if (cur->seq < min_seq) {
686 			node = node->rb_left;
687 		} else if (!smallest) {
688 			/* we want the node with the highest seq */
689 			if (found)
690 				BUG_ON(found->seq > cur->seq);
691 			found = cur;
692 			node = node->rb_left;
693 		} else if (cur->seq > min_seq) {
694 			/* we want the node with the smallest seq */
695 			if (found)
696 				BUG_ON(found->seq < cur->seq);
697 			found = cur;
698 			node = node->rb_right;
699 		} else {
700 			found = cur;
701 			break;
702 		}
703 	}
704 	tree_mod_log_read_unlock(fs_info);
705 
706 	return found;
707 }
708 
709 /*
710  * this returns the element from the log with the smallest time sequence
711  * value that's in the log (the oldest log item). any element with a time
712  * sequence lower than min_seq will be ignored.
713  */
714 static struct tree_mod_elem *
715 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
716 			   u64 min_seq)
717 {
718 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
719 }
720 
721 /*
722  * this returns the element from the log with the largest time sequence
723  * value that's in the log (the most recent log item). any element with
724  * a time sequence lower than min_seq will be ignored.
725  */
726 static struct tree_mod_elem *
727 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
728 {
729 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
730 }
731 
732 static noinline void
733 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
734 		     struct extent_buffer *src, unsigned long dst_offset,
735 		     unsigned long src_offset, int nr_items)
736 {
737 	int ret;
738 	int i;
739 
740 	if (tree_mod_dont_log(fs_info, NULL))
741 		return;
742 
743 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
744 		return;
745 
746 	for (i = 0; i < nr_items; i++) {
747 		ret = __tree_mod_log_insert_key(fs_info, src,
748 						i + src_offset,
749 						MOD_LOG_KEY_REMOVE, GFP_NOFS);
750 		BUG_ON(ret < 0);
751 		ret = __tree_mod_log_insert_key(fs_info, dst,
752 						     i + dst_offset,
753 						     MOD_LOG_KEY_ADD,
754 						     GFP_NOFS);
755 		BUG_ON(ret < 0);
756 	}
757 }
758 
759 static inline void
760 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
761 		     int dst_offset, int src_offset, int nr_items)
762 {
763 	int ret;
764 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
765 				       nr_items, GFP_NOFS);
766 	BUG_ON(ret < 0);
767 }
768 
769 static noinline void
770 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
771 			  struct extent_buffer *eb, int slot, int atomic)
772 {
773 	int ret;
774 
775 	ret = __tree_mod_log_insert_key(fs_info, eb, slot,
776 					MOD_LOG_KEY_REPLACE,
777 					atomic ? GFP_ATOMIC : GFP_NOFS);
778 	BUG_ON(ret < 0);
779 }
780 
781 static noinline void
782 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
783 {
784 	if (tree_mod_dont_log(fs_info, eb))
785 		return;
786 	__tree_mod_log_free_eb(fs_info, eb);
787 }
788 
789 static noinline void
790 tree_mod_log_set_root_pointer(struct btrfs_root *root,
791 			      struct extent_buffer *new_root_node,
792 			      int log_removal)
793 {
794 	int ret;
795 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
796 				       new_root_node, GFP_NOFS, log_removal);
797 	BUG_ON(ret < 0);
798 }
799 
800 /*
801  * check if the tree block can be shared by multiple trees
802  */
803 int btrfs_block_can_be_shared(struct btrfs_root *root,
804 			      struct extent_buffer *buf)
805 {
806 	/*
807 	 * Tree blocks not in refernece counted trees and tree roots
808 	 * are never shared. If a block was allocated after the last
809 	 * snapshot and the block was not allocated by tree relocation,
810 	 * we know the block is not shared.
811 	 */
812 	if (root->ref_cows &&
813 	    buf != root->node && buf != root->commit_root &&
814 	    (btrfs_header_generation(buf) <=
815 	     btrfs_root_last_snapshot(&root->root_item) ||
816 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
817 		return 1;
818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
819 	if (root->ref_cows &&
820 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
821 		return 1;
822 #endif
823 	return 0;
824 }
825 
826 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
827 				       struct btrfs_root *root,
828 				       struct extent_buffer *buf,
829 				       struct extent_buffer *cow,
830 				       int *last_ref)
831 {
832 	u64 refs;
833 	u64 owner;
834 	u64 flags;
835 	u64 new_flags = 0;
836 	int ret;
837 
838 	/*
839 	 * Backrefs update rules:
840 	 *
841 	 * Always use full backrefs for extent pointers in tree block
842 	 * allocated by tree relocation.
843 	 *
844 	 * If a shared tree block is no longer referenced by its owner
845 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
846 	 * use full backrefs for extent pointers in tree block.
847 	 *
848 	 * If a tree block is been relocating
849 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
850 	 * use full backrefs for extent pointers in tree block.
851 	 * The reason for this is some operations (such as drop tree)
852 	 * are only allowed for blocks use full backrefs.
853 	 */
854 
855 	if (btrfs_block_can_be_shared(root, buf)) {
856 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
857 					       btrfs_header_level(buf), 1,
858 					       &refs, &flags);
859 		if (ret)
860 			return ret;
861 		if (refs == 0) {
862 			ret = -EROFS;
863 			btrfs_std_error(root->fs_info, ret);
864 			return ret;
865 		}
866 	} else {
867 		refs = 1;
868 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
869 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
870 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
871 		else
872 			flags = 0;
873 	}
874 
875 	owner = btrfs_header_owner(buf);
876 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
877 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
878 
879 	if (refs > 1) {
880 		if ((owner == root->root_key.objectid ||
881 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
882 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
883 			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
884 			BUG_ON(ret); /* -ENOMEM */
885 
886 			if (root->root_key.objectid ==
887 			    BTRFS_TREE_RELOC_OBJECTID) {
888 				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
889 				BUG_ON(ret); /* -ENOMEM */
890 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
891 				BUG_ON(ret); /* -ENOMEM */
892 			}
893 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
894 		} else {
895 
896 			if (root->root_key.objectid ==
897 			    BTRFS_TREE_RELOC_OBJECTID)
898 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
899 			else
900 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
901 			BUG_ON(ret); /* -ENOMEM */
902 		}
903 		if (new_flags != 0) {
904 			int level = btrfs_header_level(buf);
905 
906 			ret = btrfs_set_disk_extent_flags(trans, root,
907 							  buf->start,
908 							  buf->len,
909 							  new_flags, level, 0);
910 			if (ret)
911 				return ret;
912 		}
913 	} else {
914 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
915 			if (root->root_key.objectid ==
916 			    BTRFS_TREE_RELOC_OBJECTID)
917 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
918 			else
919 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
920 			BUG_ON(ret); /* -ENOMEM */
921 			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
922 			BUG_ON(ret); /* -ENOMEM */
923 		}
924 		clean_tree_block(trans, root, buf);
925 		*last_ref = 1;
926 	}
927 	return 0;
928 }
929 
930 /*
931  * does the dirty work in cow of a single block.  The parent block (if
932  * supplied) is updated to point to the new cow copy.  The new buffer is marked
933  * dirty and returned locked.  If you modify the block it needs to be marked
934  * dirty again.
935  *
936  * search_start -- an allocation hint for the new block
937  *
938  * empty_size -- a hint that you plan on doing more cow.  This is the size in
939  * bytes the allocator should try to find free next to the block it returns.
940  * This is just a hint and may be ignored by the allocator.
941  */
942 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
943 			     struct btrfs_root *root,
944 			     struct extent_buffer *buf,
945 			     struct extent_buffer *parent, int parent_slot,
946 			     struct extent_buffer **cow_ret,
947 			     u64 search_start, u64 empty_size)
948 {
949 	struct btrfs_disk_key disk_key;
950 	struct extent_buffer *cow;
951 	int level, ret;
952 	int last_ref = 0;
953 	int unlock_orig = 0;
954 	u64 parent_start;
955 
956 	if (*cow_ret == buf)
957 		unlock_orig = 1;
958 
959 	btrfs_assert_tree_locked(buf);
960 
961 	WARN_ON(root->ref_cows && trans->transid !=
962 		root->fs_info->running_transaction->transid);
963 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
964 
965 	level = btrfs_header_level(buf);
966 
967 	if (level == 0)
968 		btrfs_item_key(buf, &disk_key, 0);
969 	else
970 		btrfs_node_key(buf, &disk_key, 0);
971 
972 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
973 		if (parent)
974 			parent_start = parent->start;
975 		else
976 			parent_start = 0;
977 	} else
978 		parent_start = 0;
979 
980 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
981 				     root->root_key.objectid, &disk_key,
982 				     level, search_start, empty_size);
983 	if (IS_ERR(cow))
984 		return PTR_ERR(cow);
985 
986 	/* cow is set to blocking by btrfs_init_new_buffer */
987 
988 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
989 	btrfs_set_header_bytenr(cow, cow->start);
990 	btrfs_set_header_generation(cow, trans->transid);
991 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
992 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
993 				     BTRFS_HEADER_FLAG_RELOC);
994 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
995 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
996 	else
997 		btrfs_set_header_owner(cow, root->root_key.objectid);
998 
999 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(cow),
1000 			    BTRFS_FSID_SIZE);
1001 
1002 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1003 	if (ret) {
1004 		btrfs_abort_transaction(trans, root, ret);
1005 		return ret;
1006 	}
1007 
1008 	if (root->ref_cows)
1009 		btrfs_reloc_cow_block(trans, root, buf, cow);
1010 
1011 	if (buf == root->node) {
1012 		WARN_ON(parent && parent != buf);
1013 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1014 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1015 			parent_start = buf->start;
1016 		else
1017 			parent_start = 0;
1018 
1019 		extent_buffer_get(cow);
1020 		tree_mod_log_set_root_pointer(root, cow, 1);
1021 		rcu_assign_pointer(root->node, cow);
1022 
1023 		btrfs_free_tree_block(trans, root, buf, parent_start,
1024 				      last_ref);
1025 		free_extent_buffer(buf);
1026 		add_root_to_dirty_list(root);
1027 	} else {
1028 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1029 			parent_start = parent->start;
1030 		else
1031 			parent_start = 0;
1032 
1033 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1034 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1035 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1036 		btrfs_set_node_blockptr(parent, parent_slot,
1037 					cow->start);
1038 		btrfs_set_node_ptr_generation(parent, parent_slot,
1039 					      trans->transid);
1040 		btrfs_mark_buffer_dirty(parent);
1041 		if (last_ref)
1042 			tree_mod_log_free_eb(root->fs_info, buf);
1043 		btrfs_free_tree_block(trans, root, buf, parent_start,
1044 				      last_ref);
1045 	}
1046 	if (unlock_orig)
1047 		btrfs_tree_unlock(buf);
1048 	free_extent_buffer_stale(buf);
1049 	btrfs_mark_buffer_dirty(cow);
1050 	*cow_ret = cow;
1051 	return 0;
1052 }
1053 
1054 /*
1055  * returns the logical address of the oldest predecessor of the given root.
1056  * entries older than time_seq are ignored.
1057  */
1058 static struct tree_mod_elem *
1059 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1060 			   struct extent_buffer *eb_root, u64 time_seq)
1061 {
1062 	struct tree_mod_elem *tm;
1063 	struct tree_mod_elem *found = NULL;
1064 	u64 root_logical = eb_root->start;
1065 	int looped = 0;
1066 
1067 	if (!time_seq)
1068 		return NULL;
1069 
1070 	/*
1071 	 * the very last operation that's logged for a root is the replacement
1072 	 * operation (if it is replaced at all). this has the index of the *new*
1073 	 * root, making it the very first operation that's logged for this root.
1074 	 */
1075 	while (1) {
1076 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1077 						time_seq);
1078 		if (!looped && !tm)
1079 			return NULL;
1080 		/*
1081 		 * if there are no tree operation for the oldest root, we simply
1082 		 * return it. this should only happen if that (old) root is at
1083 		 * level 0.
1084 		 */
1085 		if (!tm)
1086 			break;
1087 
1088 		/*
1089 		 * if there's an operation that's not a root replacement, we
1090 		 * found the oldest version of our root. normally, we'll find a
1091 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1092 		 */
1093 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1094 			break;
1095 
1096 		found = tm;
1097 		root_logical = tm->old_root.logical;
1098 		looped = 1;
1099 	}
1100 
1101 	/* if there's no old root to return, return what we found instead */
1102 	if (!found)
1103 		found = tm;
1104 
1105 	return found;
1106 }
1107 
1108 /*
1109  * tm is a pointer to the first operation to rewind within eb. then, all
1110  * previous operations will be rewinded (until we reach something older than
1111  * time_seq).
1112  */
1113 static void
1114 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1115 		      u64 time_seq, struct tree_mod_elem *first_tm)
1116 {
1117 	u32 n;
1118 	struct rb_node *next;
1119 	struct tree_mod_elem *tm = first_tm;
1120 	unsigned long o_dst;
1121 	unsigned long o_src;
1122 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1123 
1124 	n = btrfs_header_nritems(eb);
1125 	tree_mod_log_read_lock(fs_info);
1126 	while (tm && tm->seq >= time_seq) {
1127 		/*
1128 		 * all the operations are recorded with the operator used for
1129 		 * the modification. as we're going backwards, we do the
1130 		 * opposite of each operation here.
1131 		 */
1132 		switch (tm->op) {
1133 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1134 			BUG_ON(tm->slot < n);
1135 			/* Fallthrough */
1136 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1137 		case MOD_LOG_KEY_REMOVE:
1138 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1139 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1140 			btrfs_set_node_ptr_generation(eb, tm->slot,
1141 						      tm->generation);
1142 			n++;
1143 			break;
1144 		case MOD_LOG_KEY_REPLACE:
1145 			BUG_ON(tm->slot >= n);
1146 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1147 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1148 			btrfs_set_node_ptr_generation(eb, tm->slot,
1149 						      tm->generation);
1150 			break;
1151 		case MOD_LOG_KEY_ADD:
1152 			/* if a move operation is needed it's in the log */
1153 			n--;
1154 			break;
1155 		case MOD_LOG_MOVE_KEYS:
1156 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1157 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1158 			memmove_extent_buffer(eb, o_dst, o_src,
1159 					      tm->move.nr_items * p_size);
1160 			break;
1161 		case MOD_LOG_ROOT_REPLACE:
1162 			/*
1163 			 * this operation is special. for roots, this must be
1164 			 * handled explicitly before rewinding.
1165 			 * for non-roots, this operation may exist if the node
1166 			 * was a root: root A -> child B; then A gets empty and
1167 			 * B is promoted to the new root. in the mod log, we'll
1168 			 * have a root-replace operation for B, a tree block
1169 			 * that is no root. we simply ignore that operation.
1170 			 */
1171 			break;
1172 		}
1173 		next = rb_next(&tm->node);
1174 		if (!next)
1175 			break;
1176 		tm = container_of(next, struct tree_mod_elem, node);
1177 		if (tm->index != first_tm->index)
1178 			break;
1179 	}
1180 	tree_mod_log_read_unlock(fs_info);
1181 	btrfs_set_header_nritems(eb, n);
1182 }
1183 
1184 /*
1185  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1186  * is returned. If rewind operations happen, a fresh buffer is returned. The
1187  * returned buffer is always read-locked. If the returned buffer is not the
1188  * input buffer, the lock on the input buffer is released and the input buffer
1189  * is freed (its refcount is decremented).
1190  */
1191 static struct extent_buffer *
1192 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1193 		    struct extent_buffer *eb, u64 time_seq)
1194 {
1195 	struct extent_buffer *eb_rewin;
1196 	struct tree_mod_elem *tm;
1197 
1198 	if (!time_seq)
1199 		return eb;
1200 
1201 	if (btrfs_header_level(eb) == 0)
1202 		return eb;
1203 
1204 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1205 	if (!tm)
1206 		return eb;
1207 
1208 	btrfs_set_path_blocking(path);
1209 	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1210 
1211 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1212 		BUG_ON(tm->slot != 0);
1213 		eb_rewin = alloc_dummy_extent_buffer(eb->start,
1214 						fs_info->tree_root->nodesize);
1215 		if (!eb_rewin) {
1216 			btrfs_tree_read_unlock_blocking(eb);
1217 			free_extent_buffer(eb);
1218 			return NULL;
1219 		}
1220 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1221 		btrfs_set_header_backref_rev(eb_rewin,
1222 					     btrfs_header_backref_rev(eb));
1223 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1224 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1225 	} else {
1226 		eb_rewin = btrfs_clone_extent_buffer(eb);
1227 		if (!eb_rewin) {
1228 			btrfs_tree_read_unlock_blocking(eb);
1229 			free_extent_buffer(eb);
1230 			return NULL;
1231 		}
1232 	}
1233 
1234 	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1235 	btrfs_tree_read_unlock_blocking(eb);
1236 	free_extent_buffer(eb);
1237 
1238 	extent_buffer_get(eb_rewin);
1239 	btrfs_tree_read_lock(eb_rewin);
1240 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1241 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1242 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1243 
1244 	return eb_rewin;
1245 }
1246 
1247 /*
1248  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1249  * value. If there are no changes, the current root->root_node is returned. If
1250  * anything changed in between, there's a fresh buffer allocated on which the
1251  * rewind operations are done. In any case, the returned buffer is read locked.
1252  * Returns NULL on error (with no locks held).
1253  */
1254 static inline struct extent_buffer *
1255 get_old_root(struct btrfs_root *root, u64 time_seq)
1256 {
1257 	struct tree_mod_elem *tm;
1258 	struct extent_buffer *eb = NULL;
1259 	struct extent_buffer *eb_root;
1260 	struct extent_buffer *old;
1261 	struct tree_mod_root *old_root = NULL;
1262 	u64 old_generation = 0;
1263 	u64 logical;
1264 	u32 blocksize;
1265 
1266 	eb_root = btrfs_read_lock_root_node(root);
1267 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1268 	if (!tm)
1269 		return eb_root;
1270 
1271 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1272 		old_root = &tm->old_root;
1273 		old_generation = tm->generation;
1274 		logical = old_root->logical;
1275 	} else {
1276 		logical = eb_root->start;
1277 	}
1278 
1279 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1280 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1281 		btrfs_tree_read_unlock(eb_root);
1282 		free_extent_buffer(eb_root);
1283 		blocksize = btrfs_level_size(root, old_root->level);
1284 		old = read_tree_block(root, logical, blocksize, 0);
1285 		if (!old || !extent_buffer_uptodate(old)) {
1286 			free_extent_buffer(old);
1287 			pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1288 				logical);
1289 			WARN_ON(1);
1290 		} else {
1291 			eb = btrfs_clone_extent_buffer(old);
1292 			free_extent_buffer(old);
1293 		}
1294 	} else if (old_root) {
1295 		btrfs_tree_read_unlock(eb_root);
1296 		free_extent_buffer(eb_root);
1297 		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1298 	} else {
1299 		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1300 		eb = btrfs_clone_extent_buffer(eb_root);
1301 		btrfs_tree_read_unlock_blocking(eb_root);
1302 		free_extent_buffer(eb_root);
1303 	}
1304 
1305 	if (!eb)
1306 		return NULL;
1307 	extent_buffer_get(eb);
1308 	btrfs_tree_read_lock(eb);
1309 	if (old_root) {
1310 		btrfs_set_header_bytenr(eb, eb->start);
1311 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1312 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1313 		btrfs_set_header_level(eb, old_root->level);
1314 		btrfs_set_header_generation(eb, old_generation);
1315 	}
1316 	if (tm)
1317 		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1318 	else
1319 		WARN_ON(btrfs_header_level(eb) != 0);
1320 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1321 
1322 	return eb;
1323 }
1324 
1325 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1326 {
1327 	struct tree_mod_elem *tm;
1328 	int level;
1329 	struct extent_buffer *eb_root = btrfs_root_node(root);
1330 
1331 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1332 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1333 		level = tm->old_root.level;
1334 	} else {
1335 		level = btrfs_header_level(eb_root);
1336 	}
1337 	free_extent_buffer(eb_root);
1338 
1339 	return level;
1340 }
1341 
1342 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1343 				   struct btrfs_root *root,
1344 				   struct extent_buffer *buf)
1345 {
1346 	/* ensure we can see the force_cow */
1347 	smp_rmb();
1348 
1349 	/*
1350 	 * We do not need to cow a block if
1351 	 * 1) this block is not created or changed in this transaction;
1352 	 * 2) this block does not belong to TREE_RELOC tree;
1353 	 * 3) the root is not forced COW.
1354 	 *
1355 	 * What is forced COW:
1356 	 *    when we create snapshot during commiting the transaction,
1357 	 *    after we've finished coping src root, we must COW the shared
1358 	 *    block to ensure the metadata consistency.
1359 	 */
1360 	if (btrfs_header_generation(buf) == trans->transid &&
1361 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1362 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1363 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1364 	    !root->force_cow)
1365 		return 0;
1366 	return 1;
1367 }
1368 
1369 /*
1370  * cows a single block, see __btrfs_cow_block for the real work.
1371  * This version of it has extra checks so that a block isn't cow'd more than
1372  * once per transaction, as long as it hasn't been written yet
1373  */
1374 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1375 		    struct btrfs_root *root, struct extent_buffer *buf,
1376 		    struct extent_buffer *parent, int parent_slot,
1377 		    struct extent_buffer **cow_ret)
1378 {
1379 	u64 search_start;
1380 	int ret;
1381 
1382 	if (trans->transaction != root->fs_info->running_transaction)
1383 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1384 		       trans->transid,
1385 		       root->fs_info->running_transaction->transid);
1386 
1387 	if (trans->transid != root->fs_info->generation)
1388 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1389 		       trans->transid, root->fs_info->generation);
1390 
1391 	if (!should_cow_block(trans, root, buf)) {
1392 		*cow_ret = buf;
1393 		return 0;
1394 	}
1395 
1396 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1397 
1398 	if (parent)
1399 		btrfs_set_lock_blocking(parent);
1400 	btrfs_set_lock_blocking(buf);
1401 
1402 	ret = __btrfs_cow_block(trans, root, buf, parent,
1403 				 parent_slot, cow_ret, search_start, 0);
1404 
1405 	trace_btrfs_cow_block(root, buf, *cow_ret);
1406 
1407 	return ret;
1408 }
1409 
1410 /*
1411  * helper function for defrag to decide if two blocks pointed to by a
1412  * node are actually close by
1413  */
1414 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1415 {
1416 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1417 		return 1;
1418 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1419 		return 1;
1420 	return 0;
1421 }
1422 
1423 /*
1424  * compare two keys in a memcmp fashion
1425  */
1426 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1427 {
1428 	struct btrfs_key k1;
1429 
1430 	btrfs_disk_key_to_cpu(&k1, disk);
1431 
1432 	return btrfs_comp_cpu_keys(&k1, k2);
1433 }
1434 
1435 /*
1436  * same as comp_keys only with two btrfs_key's
1437  */
1438 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1439 {
1440 	if (k1->objectid > k2->objectid)
1441 		return 1;
1442 	if (k1->objectid < k2->objectid)
1443 		return -1;
1444 	if (k1->type > k2->type)
1445 		return 1;
1446 	if (k1->type < k2->type)
1447 		return -1;
1448 	if (k1->offset > k2->offset)
1449 		return 1;
1450 	if (k1->offset < k2->offset)
1451 		return -1;
1452 	return 0;
1453 }
1454 
1455 /*
1456  * this is used by the defrag code to go through all the
1457  * leaves pointed to by a node and reallocate them so that
1458  * disk order is close to key order
1459  */
1460 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1461 		       struct btrfs_root *root, struct extent_buffer *parent,
1462 		       int start_slot, u64 *last_ret,
1463 		       struct btrfs_key *progress)
1464 {
1465 	struct extent_buffer *cur;
1466 	u64 blocknr;
1467 	u64 gen;
1468 	u64 search_start = *last_ret;
1469 	u64 last_block = 0;
1470 	u64 other;
1471 	u32 parent_nritems;
1472 	int end_slot;
1473 	int i;
1474 	int err = 0;
1475 	int parent_level;
1476 	int uptodate;
1477 	u32 blocksize;
1478 	int progress_passed = 0;
1479 	struct btrfs_disk_key disk_key;
1480 
1481 	parent_level = btrfs_header_level(parent);
1482 
1483 	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1484 	WARN_ON(trans->transid != root->fs_info->generation);
1485 
1486 	parent_nritems = btrfs_header_nritems(parent);
1487 	blocksize = btrfs_level_size(root, parent_level - 1);
1488 	end_slot = parent_nritems;
1489 
1490 	if (parent_nritems == 1)
1491 		return 0;
1492 
1493 	btrfs_set_lock_blocking(parent);
1494 
1495 	for (i = start_slot; i < end_slot; i++) {
1496 		int close = 1;
1497 
1498 		btrfs_node_key(parent, &disk_key, i);
1499 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1500 			continue;
1501 
1502 		progress_passed = 1;
1503 		blocknr = btrfs_node_blockptr(parent, i);
1504 		gen = btrfs_node_ptr_generation(parent, i);
1505 		if (last_block == 0)
1506 			last_block = blocknr;
1507 
1508 		if (i > 0) {
1509 			other = btrfs_node_blockptr(parent, i - 1);
1510 			close = close_blocks(blocknr, other, blocksize);
1511 		}
1512 		if (!close && i < end_slot - 2) {
1513 			other = btrfs_node_blockptr(parent, i + 1);
1514 			close = close_blocks(blocknr, other, blocksize);
1515 		}
1516 		if (close) {
1517 			last_block = blocknr;
1518 			continue;
1519 		}
1520 
1521 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
1522 		if (cur)
1523 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1524 		else
1525 			uptodate = 0;
1526 		if (!cur || !uptodate) {
1527 			if (!cur) {
1528 				cur = read_tree_block(root, blocknr,
1529 							 blocksize, gen);
1530 				if (!cur || !extent_buffer_uptodate(cur)) {
1531 					free_extent_buffer(cur);
1532 					return -EIO;
1533 				}
1534 			} else if (!uptodate) {
1535 				err = btrfs_read_buffer(cur, gen);
1536 				if (err) {
1537 					free_extent_buffer(cur);
1538 					return err;
1539 				}
1540 			}
1541 		}
1542 		if (search_start == 0)
1543 			search_start = last_block;
1544 
1545 		btrfs_tree_lock(cur);
1546 		btrfs_set_lock_blocking(cur);
1547 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1548 					&cur, search_start,
1549 					min(16 * blocksize,
1550 					    (end_slot - i) * blocksize));
1551 		if (err) {
1552 			btrfs_tree_unlock(cur);
1553 			free_extent_buffer(cur);
1554 			break;
1555 		}
1556 		search_start = cur->start;
1557 		last_block = cur->start;
1558 		*last_ret = search_start;
1559 		btrfs_tree_unlock(cur);
1560 		free_extent_buffer(cur);
1561 	}
1562 	return err;
1563 }
1564 
1565 /*
1566  * The leaf data grows from end-to-front in the node.
1567  * this returns the address of the start of the last item,
1568  * which is the stop of the leaf data stack
1569  */
1570 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1571 					 struct extent_buffer *leaf)
1572 {
1573 	u32 nr = btrfs_header_nritems(leaf);
1574 	if (nr == 0)
1575 		return BTRFS_LEAF_DATA_SIZE(root);
1576 	return btrfs_item_offset_nr(leaf, nr - 1);
1577 }
1578 
1579 
1580 /*
1581  * search for key in the extent_buffer.  The items start at offset p,
1582  * and they are item_size apart.  There are 'max' items in p.
1583  *
1584  * the slot in the array is returned via slot, and it points to
1585  * the place where you would insert key if it is not found in
1586  * the array.
1587  *
1588  * slot may point to max if the key is bigger than all of the keys
1589  */
1590 static noinline int generic_bin_search(struct extent_buffer *eb,
1591 				       unsigned long p,
1592 				       int item_size, struct btrfs_key *key,
1593 				       int max, int *slot)
1594 {
1595 	int low = 0;
1596 	int high = max;
1597 	int mid;
1598 	int ret;
1599 	struct btrfs_disk_key *tmp = NULL;
1600 	struct btrfs_disk_key unaligned;
1601 	unsigned long offset;
1602 	char *kaddr = NULL;
1603 	unsigned long map_start = 0;
1604 	unsigned long map_len = 0;
1605 	int err;
1606 
1607 	while (low < high) {
1608 		mid = (low + high) / 2;
1609 		offset = p + mid * item_size;
1610 
1611 		if (!kaddr || offset < map_start ||
1612 		    (offset + sizeof(struct btrfs_disk_key)) >
1613 		    map_start + map_len) {
1614 
1615 			err = map_private_extent_buffer(eb, offset,
1616 						sizeof(struct btrfs_disk_key),
1617 						&kaddr, &map_start, &map_len);
1618 
1619 			if (!err) {
1620 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1621 							map_start);
1622 			} else {
1623 				read_extent_buffer(eb, &unaligned,
1624 						   offset, sizeof(unaligned));
1625 				tmp = &unaligned;
1626 			}
1627 
1628 		} else {
1629 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1630 							map_start);
1631 		}
1632 		ret = comp_keys(tmp, key);
1633 
1634 		if (ret < 0)
1635 			low = mid + 1;
1636 		else if (ret > 0)
1637 			high = mid;
1638 		else {
1639 			*slot = mid;
1640 			return 0;
1641 		}
1642 	}
1643 	*slot = low;
1644 	return 1;
1645 }
1646 
1647 /*
1648  * simple bin_search frontend that does the right thing for
1649  * leaves vs nodes
1650  */
1651 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1652 		      int level, int *slot)
1653 {
1654 	if (level == 0)
1655 		return generic_bin_search(eb,
1656 					  offsetof(struct btrfs_leaf, items),
1657 					  sizeof(struct btrfs_item),
1658 					  key, btrfs_header_nritems(eb),
1659 					  slot);
1660 	else
1661 		return generic_bin_search(eb,
1662 					  offsetof(struct btrfs_node, ptrs),
1663 					  sizeof(struct btrfs_key_ptr),
1664 					  key, btrfs_header_nritems(eb),
1665 					  slot);
1666 }
1667 
1668 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1669 		     int level, int *slot)
1670 {
1671 	return bin_search(eb, key, level, slot);
1672 }
1673 
1674 static void root_add_used(struct btrfs_root *root, u32 size)
1675 {
1676 	spin_lock(&root->accounting_lock);
1677 	btrfs_set_root_used(&root->root_item,
1678 			    btrfs_root_used(&root->root_item) + size);
1679 	spin_unlock(&root->accounting_lock);
1680 }
1681 
1682 static void root_sub_used(struct btrfs_root *root, u32 size)
1683 {
1684 	spin_lock(&root->accounting_lock);
1685 	btrfs_set_root_used(&root->root_item,
1686 			    btrfs_root_used(&root->root_item) - size);
1687 	spin_unlock(&root->accounting_lock);
1688 }
1689 
1690 /* given a node and slot number, this reads the blocks it points to.  The
1691  * extent buffer is returned with a reference taken (but unlocked).
1692  * NULL is returned on error.
1693  */
1694 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1695 				   struct extent_buffer *parent, int slot)
1696 {
1697 	int level = btrfs_header_level(parent);
1698 	struct extent_buffer *eb;
1699 
1700 	if (slot < 0)
1701 		return NULL;
1702 	if (slot >= btrfs_header_nritems(parent))
1703 		return NULL;
1704 
1705 	BUG_ON(level == 0);
1706 
1707 	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1708 			     btrfs_level_size(root, level - 1),
1709 			     btrfs_node_ptr_generation(parent, slot));
1710 	if (eb && !extent_buffer_uptodate(eb)) {
1711 		free_extent_buffer(eb);
1712 		eb = NULL;
1713 	}
1714 
1715 	return eb;
1716 }
1717 
1718 /*
1719  * node level balancing, used to make sure nodes are in proper order for
1720  * item deletion.  We balance from the top down, so we have to make sure
1721  * that a deletion won't leave an node completely empty later on.
1722  */
1723 static noinline int balance_level(struct btrfs_trans_handle *trans,
1724 			 struct btrfs_root *root,
1725 			 struct btrfs_path *path, int level)
1726 {
1727 	struct extent_buffer *right = NULL;
1728 	struct extent_buffer *mid;
1729 	struct extent_buffer *left = NULL;
1730 	struct extent_buffer *parent = NULL;
1731 	int ret = 0;
1732 	int wret;
1733 	int pslot;
1734 	int orig_slot = path->slots[level];
1735 	u64 orig_ptr;
1736 
1737 	if (level == 0)
1738 		return 0;
1739 
1740 	mid = path->nodes[level];
1741 
1742 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1743 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1744 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1745 
1746 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1747 
1748 	if (level < BTRFS_MAX_LEVEL - 1) {
1749 		parent = path->nodes[level + 1];
1750 		pslot = path->slots[level + 1];
1751 	}
1752 
1753 	/*
1754 	 * deal with the case where there is only one pointer in the root
1755 	 * by promoting the node below to a root
1756 	 */
1757 	if (!parent) {
1758 		struct extent_buffer *child;
1759 
1760 		if (btrfs_header_nritems(mid) != 1)
1761 			return 0;
1762 
1763 		/* promote the child to a root */
1764 		child = read_node_slot(root, mid, 0);
1765 		if (!child) {
1766 			ret = -EROFS;
1767 			btrfs_std_error(root->fs_info, ret);
1768 			goto enospc;
1769 		}
1770 
1771 		btrfs_tree_lock(child);
1772 		btrfs_set_lock_blocking(child);
1773 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1774 		if (ret) {
1775 			btrfs_tree_unlock(child);
1776 			free_extent_buffer(child);
1777 			goto enospc;
1778 		}
1779 
1780 		tree_mod_log_set_root_pointer(root, child, 1);
1781 		rcu_assign_pointer(root->node, child);
1782 
1783 		add_root_to_dirty_list(root);
1784 		btrfs_tree_unlock(child);
1785 
1786 		path->locks[level] = 0;
1787 		path->nodes[level] = NULL;
1788 		clean_tree_block(trans, root, mid);
1789 		btrfs_tree_unlock(mid);
1790 		/* once for the path */
1791 		free_extent_buffer(mid);
1792 
1793 		root_sub_used(root, mid->len);
1794 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1795 		/* once for the root ptr */
1796 		free_extent_buffer_stale(mid);
1797 		return 0;
1798 	}
1799 	if (btrfs_header_nritems(mid) >
1800 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1801 		return 0;
1802 
1803 	left = read_node_slot(root, parent, pslot - 1);
1804 	if (left) {
1805 		btrfs_tree_lock(left);
1806 		btrfs_set_lock_blocking(left);
1807 		wret = btrfs_cow_block(trans, root, left,
1808 				       parent, pslot - 1, &left);
1809 		if (wret) {
1810 			ret = wret;
1811 			goto enospc;
1812 		}
1813 	}
1814 	right = read_node_slot(root, parent, pslot + 1);
1815 	if (right) {
1816 		btrfs_tree_lock(right);
1817 		btrfs_set_lock_blocking(right);
1818 		wret = btrfs_cow_block(trans, root, right,
1819 				       parent, pslot + 1, &right);
1820 		if (wret) {
1821 			ret = wret;
1822 			goto enospc;
1823 		}
1824 	}
1825 
1826 	/* first, try to make some room in the middle buffer */
1827 	if (left) {
1828 		orig_slot += btrfs_header_nritems(left);
1829 		wret = push_node_left(trans, root, left, mid, 1);
1830 		if (wret < 0)
1831 			ret = wret;
1832 	}
1833 
1834 	/*
1835 	 * then try to empty the right most buffer into the middle
1836 	 */
1837 	if (right) {
1838 		wret = push_node_left(trans, root, mid, right, 1);
1839 		if (wret < 0 && wret != -ENOSPC)
1840 			ret = wret;
1841 		if (btrfs_header_nritems(right) == 0) {
1842 			clean_tree_block(trans, root, right);
1843 			btrfs_tree_unlock(right);
1844 			del_ptr(root, path, level + 1, pslot + 1);
1845 			root_sub_used(root, right->len);
1846 			btrfs_free_tree_block(trans, root, right, 0, 1);
1847 			free_extent_buffer_stale(right);
1848 			right = NULL;
1849 		} else {
1850 			struct btrfs_disk_key right_key;
1851 			btrfs_node_key(right, &right_key, 0);
1852 			tree_mod_log_set_node_key(root->fs_info, parent,
1853 						  pslot + 1, 0);
1854 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1855 			btrfs_mark_buffer_dirty(parent);
1856 		}
1857 	}
1858 	if (btrfs_header_nritems(mid) == 1) {
1859 		/*
1860 		 * we're not allowed to leave a node with one item in the
1861 		 * tree during a delete.  A deletion from lower in the tree
1862 		 * could try to delete the only pointer in this node.
1863 		 * So, pull some keys from the left.
1864 		 * There has to be a left pointer at this point because
1865 		 * otherwise we would have pulled some pointers from the
1866 		 * right
1867 		 */
1868 		if (!left) {
1869 			ret = -EROFS;
1870 			btrfs_std_error(root->fs_info, ret);
1871 			goto enospc;
1872 		}
1873 		wret = balance_node_right(trans, root, mid, left);
1874 		if (wret < 0) {
1875 			ret = wret;
1876 			goto enospc;
1877 		}
1878 		if (wret == 1) {
1879 			wret = push_node_left(trans, root, left, mid, 1);
1880 			if (wret < 0)
1881 				ret = wret;
1882 		}
1883 		BUG_ON(wret == 1);
1884 	}
1885 	if (btrfs_header_nritems(mid) == 0) {
1886 		clean_tree_block(trans, root, mid);
1887 		btrfs_tree_unlock(mid);
1888 		del_ptr(root, path, level + 1, pslot);
1889 		root_sub_used(root, mid->len);
1890 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1891 		free_extent_buffer_stale(mid);
1892 		mid = NULL;
1893 	} else {
1894 		/* update the parent key to reflect our changes */
1895 		struct btrfs_disk_key mid_key;
1896 		btrfs_node_key(mid, &mid_key, 0);
1897 		tree_mod_log_set_node_key(root->fs_info, parent,
1898 					  pslot, 0);
1899 		btrfs_set_node_key(parent, &mid_key, pslot);
1900 		btrfs_mark_buffer_dirty(parent);
1901 	}
1902 
1903 	/* update the path */
1904 	if (left) {
1905 		if (btrfs_header_nritems(left) > orig_slot) {
1906 			extent_buffer_get(left);
1907 			/* left was locked after cow */
1908 			path->nodes[level] = left;
1909 			path->slots[level + 1] -= 1;
1910 			path->slots[level] = orig_slot;
1911 			if (mid) {
1912 				btrfs_tree_unlock(mid);
1913 				free_extent_buffer(mid);
1914 			}
1915 		} else {
1916 			orig_slot -= btrfs_header_nritems(left);
1917 			path->slots[level] = orig_slot;
1918 		}
1919 	}
1920 	/* double check we haven't messed things up */
1921 	if (orig_ptr !=
1922 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1923 		BUG();
1924 enospc:
1925 	if (right) {
1926 		btrfs_tree_unlock(right);
1927 		free_extent_buffer(right);
1928 	}
1929 	if (left) {
1930 		if (path->nodes[level] != left)
1931 			btrfs_tree_unlock(left);
1932 		free_extent_buffer(left);
1933 	}
1934 	return ret;
1935 }
1936 
1937 /* Node balancing for insertion.  Here we only split or push nodes around
1938  * when they are completely full.  This is also done top down, so we
1939  * have to be pessimistic.
1940  */
1941 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1942 					  struct btrfs_root *root,
1943 					  struct btrfs_path *path, int level)
1944 {
1945 	struct extent_buffer *right = NULL;
1946 	struct extent_buffer *mid;
1947 	struct extent_buffer *left = NULL;
1948 	struct extent_buffer *parent = NULL;
1949 	int ret = 0;
1950 	int wret;
1951 	int pslot;
1952 	int orig_slot = path->slots[level];
1953 
1954 	if (level == 0)
1955 		return 1;
1956 
1957 	mid = path->nodes[level];
1958 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1959 
1960 	if (level < BTRFS_MAX_LEVEL - 1) {
1961 		parent = path->nodes[level + 1];
1962 		pslot = path->slots[level + 1];
1963 	}
1964 
1965 	if (!parent)
1966 		return 1;
1967 
1968 	left = read_node_slot(root, parent, pslot - 1);
1969 
1970 	/* first, try to make some room in the middle buffer */
1971 	if (left) {
1972 		u32 left_nr;
1973 
1974 		btrfs_tree_lock(left);
1975 		btrfs_set_lock_blocking(left);
1976 
1977 		left_nr = btrfs_header_nritems(left);
1978 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1979 			wret = 1;
1980 		} else {
1981 			ret = btrfs_cow_block(trans, root, left, parent,
1982 					      pslot - 1, &left);
1983 			if (ret)
1984 				wret = 1;
1985 			else {
1986 				wret = push_node_left(trans, root,
1987 						      left, mid, 0);
1988 			}
1989 		}
1990 		if (wret < 0)
1991 			ret = wret;
1992 		if (wret == 0) {
1993 			struct btrfs_disk_key disk_key;
1994 			orig_slot += left_nr;
1995 			btrfs_node_key(mid, &disk_key, 0);
1996 			tree_mod_log_set_node_key(root->fs_info, parent,
1997 						  pslot, 0);
1998 			btrfs_set_node_key(parent, &disk_key, pslot);
1999 			btrfs_mark_buffer_dirty(parent);
2000 			if (btrfs_header_nritems(left) > orig_slot) {
2001 				path->nodes[level] = left;
2002 				path->slots[level + 1] -= 1;
2003 				path->slots[level] = orig_slot;
2004 				btrfs_tree_unlock(mid);
2005 				free_extent_buffer(mid);
2006 			} else {
2007 				orig_slot -=
2008 					btrfs_header_nritems(left);
2009 				path->slots[level] = orig_slot;
2010 				btrfs_tree_unlock(left);
2011 				free_extent_buffer(left);
2012 			}
2013 			return 0;
2014 		}
2015 		btrfs_tree_unlock(left);
2016 		free_extent_buffer(left);
2017 	}
2018 	right = read_node_slot(root, parent, pslot + 1);
2019 
2020 	/*
2021 	 * then try to empty the right most buffer into the middle
2022 	 */
2023 	if (right) {
2024 		u32 right_nr;
2025 
2026 		btrfs_tree_lock(right);
2027 		btrfs_set_lock_blocking(right);
2028 
2029 		right_nr = btrfs_header_nritems(right);
2030 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2031 			wret = 1;
2032 		} else {
2033 			ret = btrfs_cow_block(trans, root, right,
2034 					      parent, pslot + 1,
2035 					      &right);
2036 			if (ret)
2037 				wret = 1;
2038 			else {
2039 				wret = balance_node_right(trans, root,
2040 							  right, mid);
2041 			}
2042 		}
2043 		if (wret < 0)
2044 			ret = wret;
2045 		if (wret == 0) {
2046 			struct btrfs_disk_key disk_key;
2047 
2048 			btrfs_node_key(right, &disk_key, 0);
2049 			tree_mod_log_set_node_key(root->fs_info, parent,
2050 						  pslot + 1, 0);
2051 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2052 			btrfs_mark_buffer_dirty(parent);
2053 
2054 			if (btrfs_header_nritems(mid) <= orig_slot) {
2055 				path->nodes[level] = right;
2056 				path->slots[level + 1] += 1;
2057 				path->slots[level] = orig_slot -
2058 					btrfs_header_nritems(mid);
2059 				btrfs_tree_unlock(mid);
2060 				free_extent_buffer(mid);
2061 			} else {
2062 				btrfs_tree_unlock(right);
2063 				free_extent_buffer(right);
2064 			}
2065 			return 0;
2066 		}
2067 		btrfs_tree_unlock(right);
2068 		free_extent_buffer(right);
2069 	}
2070 	return 1;
2071 }
2072 
2073 /*
2074  * readahead one full node of leaves, finding things that are close
2075  * to the block in 'slot', and triggering ra on them.
2076  */
2077 static void reada_for_search(struct btrfs_root *root,
2078 			     struct btrfs_path *path,
2079 			     int level, int slot, u64 objectid)
2080 {
2081 	struct extent_buffer *node;
2082 	struct btrfs_disk_key disk_key;
2083 	u32 nritems;
2084 	u64 search;
2085 	u64 target;
2086 	u64 nread = 0;
2087 	u64 gen;
2088 	int direction = path->reada;
2089 	struct extent_buffer *eb;
2090 	u32 nr;
2091 	u32 blocksize;
2092 	u32 nscan = 0;
2093 
2094 	if (level != 1)
2095 		return;
2096 
2097 	if (!path->nodes[level])
2098 		return;
2099 
2100 	node = path->nodes[level];
2101 
2102 	search = btrfs_node_blockptr(node, slot);
2103 	blocksize = btrfs_level_size(root, level - 1);
2104 	eb = btrfs_find_tree_block(root, search, blocksize);
2105 	if (eb) {
2106 		free_extent_buffer(eb);
2107 		return;
2108 	}
2109 
2110 	target = search;
2111 
2112 	nritems = btrfs_header_nritems(node);
2113 	nr = slot;
2114 
2115 	while (1) {
2116 		if (direction < 0) {
2117 			if (nr == 0)
2118 				break;
2119 			nr--;
2120 		} else if (direction > 0) {
2121 			nr++;
2122 			if (nr >= nritems)
2123 				break;
2124 		}
2125 		if (path->reada < 0 && objectid) {
2126 			btrfs_node_key(node, &disk_key, nr);
2127 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2128 				break;
2129 		}
2130 		search = btrfs_node_blockptr(node, nr);
2131 		if ((search <= target && target - search <= 65536) ||
2132 		    (search > target && search - target <= 65536)) {
2133 			gen = btrfs_node_ptr_generation(node, nr);
2134 			readahead_tree_block(root, search, blocksize, gen);
2135 			nread += blocksize;
2136 		}
2137 		nscan++;
2138 		if ((nread > 65536 || nscan > 32))
2139 			break;
2140 	}
2141 }
2142 
2143 static noinline void reada_for_balance(struct btrfs_root *root,
2144 				       struct btrfs_path *path, int level)
2145 {
2146 	int slot;
2147 	int nritems;
2148 	struct extent_buffer *parent;
2149 	struct extent_buffer *eb;
2150 	u64 gen;
2151 	u64 block1 = 0;
2152 	u64 block2 = 0;
2153 	int blocksize;
2154 
2155 	parent = path->nodes[level + 1];
2156 	if (!parent)
2157 		return;
2158 
2159 	nritems = btrfs_header_nritems(parent);
2160 	slot = path->slots[level + 1];
2161 	blocksize = btrfs_level_size(root, level);
2162 
2163 	if (slot > 0) {
2164 		block1 = btrfs_node_blockptr(parent, slot - 1);
2165 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2166 		eb = btrfs_find_tree_block(root, block1, blocksize);
2167 		/*
2168 		 * if we get -eagain from btrfs_buffer_uptodate, we
2169 		 * don't want to return eagain here.  That will loop
2170 		 * forever
2171 		 */
2172 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2173 			block1 = 0;
2174 		free_extent_buffer(eb);
2175 	}
2176 	if (slot + 1 < nritems) {
2177 		block2 = btrfs_node_blockptr(parent, slot + 1);
2178 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2179 		eb = btrfs_find_tree_block(root, block2, blocksize);
2180 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2181 			block2 = 0;
2182 		free_extent_buffer(eb);
2183 	}
2184 
2185 	if (block1)
2186 		readahead_tree_block(root, block1, blocksize, 0);
2187 	if (block2)
2188 		readahead_tree_block(root, block2, blocksize, 0);
2189 }
2190 
2191 
2192 /*
2193  * when we walk down the tree, it is usually safe to unlock the higher layers
2194  * in the tree.  The exceptions are when our path goes through slot 0, because
2195  * operations on the tree might require changing key pointers higher up in the
2196  * tree.
2197  *
2198  * callers might also have set path->keep_locks, which tells this code to keep
2199  * the lock if the path points to the last slot in the block.  This is part of
2200  * walking through the tree, and selecting the next slot in the higher block.
2201  *
2202  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2203  * if lowest_unlock is 1, level 0 won't be unlocked
2204  */
2205 static noinline void unlock_up(struct btrfs_path *path, int level,
2206 			       int lowest_unlock, int min_write_lock_level,
2207 			       int *write_lock_level)
2208 {
2209 	int i;
2210 	int skip_level = level;
2211 	int no_skips = 0;
2212 	struct extent_buffer *t;
2213 
2214 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2215 		if (!path->nodes[i])
2216 			break;
2217 		if (!path->locks[i])
2218 			break;
2219 		if (!no_skips && path->slots[i] == 0) {
2220 			skip_level = i + 1;
2221 			continue;
2222 		}
2223 		if (!no_skips && path->keep_locks) {
2224 			u32 nritems;
2225 			t = path->nodes[i];
2226 			nritems = btrfs_header_nritems(t);
2227 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2228 				skip_level = i + 1;
2229 				continue;
2230 			}
2231 		}
2232 		if (skip_level < i && i >= lowest_unlock)
2233 			no_skips = 1;
2234 
2235 		t = path->nodes[i];
2236 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2237 			btrfs_tree_unlock_rw(t, path->locks[i]);
2238 			path->locks[i] = 0;
2239 			if (write_lock_level &&
2240 			    i > min_write_lock_level &&
2241 			    i <= *write_lock_level) {
2242 				*write_lock_level = i - 1;
2243 			}
2244 		}
2245 	}
2246 }
2247 
2248 /*
2249  * This releases any locks held in the path starting at level and
2250  * going all the way up to the root.
2251  *
2252  * btrfs_search_slot will keep the lock held on higher nodes in a few
2253  * corner cases, such as COW of the block at slot zero in the node.  This
2254  * ignores those rules, and it should only be called when there are no
2255  * more updates to be done higher up in the tree.
2256  */
2257 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2258 {
2259 	int i;
2260 
2261 	if (path->keep_locks)
2262 		return;
2263 
2264 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2265 		if (!path->nodes[i])
2266 			continue;
2267 		if (!path->locks[i])
2268 			continue;
2269 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2270 		path->locks[i] = 0;
2271 	}
2272 }
2273 
2274 /*
2275  * helper function for btrfs_search_slot.  The goal is to find a block
2276  * in cache without setting the path to blocking.  If we find the block
2277  * we return zero and the path is unchanged.
2278  *
2279  * If we can't find the block, we set the path blocking and do some
2280  * reada.  -EAGAIN is returned and the search must be repeated.
2281  */
2282 static int
2283 read_block_for_search(struct btrfs_trans_handle *trans,
2284 		       struct btrfs_root *root, struct btrfs_path *p,
2285 		       struct extent_buffer **eb_ret, int level, int slot,
2286 		       struct btrfs_key *key, u64 time_seq)
2287 {
2288 	u64 blocknr;
2289 	u64 gen;
2290 	u32 blocksize;
2291 	struct extent_buffer *b = *eb_ret;
2292 	struct extent_buffer *tmp;
2293 	int ret;
2294 
2295 	blocknr = btrfs_node_blockptr(b, slot);
2296 	gen = btrfs_node_ptr_generation(b, slot);
2297 	blocksize = btrfs_level_size(root, level - 1);
2298 
2299 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2300 	if (tmp) {
2301 		/* first we do an atomic uptodate check */
2302 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2303 			*eb_ret = tmp;
2304 			return 0;
2305 		}
2306 
2307 		/* the pages were up to date, but we failed
2308 		 * the generation number check.  Do a full
2309 		 * read for the generation number that is correct.
2310 		 * We must do this without dropping locks so
2311 		 * we can trust our generation number
2312 		 */
2313 		btrfs_set_path_blocking(p);
2314 
2315 		/* now we're allowed to do a blocking uptodate check */
2316 		ret = btrfs_read_buffer(tmp, gen);
2317 		if (!ret) {
2318 			*eb_ret = tmp;
2319 			return 0;
2320 		}
2321 		free_extent_buffer(tmp);
2322 		btrfs_release_path(p);
2323 		return -EIO;
2324 	}
2325 
2326 	/*
2327 	 * reduce lock contention at high levels
2328 	 * of the btree by dropping locks before
2329 	 * we read.  Don't release the lock on the current
2330 	 * level because we need to walk this node to figure
2331 	 * out which blocks to read.
2332 	 */
2333 	btrfs_unlock_up_safe(p, level + 1);
2334 	btrfs_set_path_blocking(p);
2335 
2336 	free_extent_buffer(tmp);
2337 	if (p->reada)
2338 		reada_for_search(root, p, level, slot, key->objectid);
2339 
2340 	btrfs_release_path(p);
2341 
2342 	ret = -EAGAIN;
2343 	tmp = read_tree_block(root, blocknr, blocksize, 0);
2344 	if (tmp) {
2345 		/*
2346 		 * If the read above didn't mark this buffer up to date,
2347 		 * it will never end up being up to date.  Set ret to EIO now
2348 		 * and give up so that our caller doesn't loop forever
2349 		 * on our EAGAINs.
2350 		 */
2351 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2352 			ret = -EIO;
2353 		free_extent_buffer(tmp);
2354 	}
2355 	return ret;
2356 }
2357 
2358 /*
2359  * helper function for btrfs_search_slot.  This does all of the checks
2360  * for node-level blocks and does any balancing required based on
2361  * the ins_len.
2362  *
2363  * If no extra work was required, zero is returned.  If we had to
2364  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2365  * start over
2366  */
2367 static int
2368 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2369 		       struct btrfs_root *root, struct btrfs_path *p,
2370 		       struct extent_buffer *b, int level, int ins_len,
2371 		       int *write_lock_level)
2372 {
2373 	int ret;
2374 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2375 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2376 		int sret;
2377 
2378 		if (*write_lock_level < level + 1) {
2379 			*write_lock_level = level + 1;
2380 			btrfs_release_path(p);
2381 			goto again;
2382 		}
2383 
2384 		btrfs_set_path_blocking(p);
2385 		reada_for_balance(root, p, level);
2386 		sret = split_node(trans, root, p, level);
2387 		btrfs_clear_path_blocking(p, NULL, 0);
2388 
2389 		BUG_ON(sret > 0);
2390 		if (sret) {
2391 			ret = sret;
2392 			goto done;
2393 		}
2394 		b = p->nodes[level];
2395 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2396 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2397 		int sret;
2398 
2399 		if (*write_lock_level < level + 1) {
2400 			*write_lock_level = level + 1;
2401 			btrfs_release_path(p);
2402 			goto again;
2403 		}
2404 
2405 		btrfs_set_path_blocking(p);
2406 		reada_for_balance(root, p, level);
2407 		sret = balance_level(trans, root, p, level);
2408 		btrfs_clear_path_blocking(p, NULL, 0);
2409 
2410 		if (sret) {
2411 			ret = sret;
2412 			goto done;
2413 		}
2414 		b = p->nodes[level];
2415 		if (!b) {
2416 			btrfs_release_path(p);
2417 			goto again;
2418 		}
2419 		BUG_ON(btrfs_header_nritems(b) == 1);
2420 	}
2421 	return 0;
2422 
2423 again:
2424 	ret = -EAGAIN;
2425 done:
2426 	return ret;
2427 }
2428 
2429 static void key_search_validate(struct extent_buffer *b,
2430 				struct btrfs_key *key,
2431 				int level)
2432 {
2433 #ifdef CONFIG_BTRFS_ASSERT
2434 	struct btrfs_disk_key disk_key;
2435 
2436 	btrfs_cpu_key_to_disk(&disk_key, key);
2437 
2438 	if (level == 0)
2439 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2440 		    offsetof(struct btrfs_leaf, items[0].key),
2441 		    sizeof(disk_key)));
2442 	else
2443 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2444 		    offsetof(struct btrfs_node, ptrs[0].key),
2445 		    sizeof(disk_key)));
2446 #endif
2447 }
2448 
2449 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2450 		      int level, int *prev_cmp, int *slot)
2451 {
2452 	if (*prev_cmp != 0) {
2453 		*prev_cmp = bin_search(b, key, level, slot);
2454 		return *prev_cmp;
2455 	}
2456 
2457 	key_search_validate(b, key, level);
2458 	*slot = 0;
2459 
2460 	return 0;
2461 }
2462 
2463 /*
2464  * look for key in the tree.  path is filled in with nodes along the way
2465  * if key is found, we return zero and you can find the item in the leaf
2466  * level of the path (level 0)
2467  *
2468  * If the key isn't found, the path points to the slot where it should
2469  * be inserted, and 1 is returned.  If there are other errors during the
2470  * search a negative error number is returned.
2471  *
2472  * if ins_len > 0, nodes and leaves will be split as we walk down the
2473  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2474  * possible)
2475  */
2476 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2477 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2478 		      ins_len, int cow)
2479 {
2480 	struct extent_buffer *b;
2481 	int slot;
2482 	int ret;
2483 	int err;
2484 	int level;
2485 	int lowest_unlock = 1;
2486 	int root_lock;
2487 	/* everything at write_lock_level or lower must be write locked */
2488 	int write_lock_level = 0;
2489 	u8 lowest_level = 0;
2490 	int min_write_lock_level;
2491 	int prev_cmp;
2492 
2493 	lowest_level = p->lowest_level;
2494 	WARN_ON(lowest_level && ins_len > 0);
2495 	WARN_ON(p->nodes[0] != NULL);
2496 
2497 	if (ins_len < 0) {
2498 		lowest_unlock = 2;
2499 
2500 		/* when we are removing items, we might have to go up to level
2501 		 * two as we update tree pointers  Make sure we keep write
2502 		 * for those levels as well
2503 		 */
2504 		write_lock_level = 2;
2505 	} else if (ins_len > 0) {
2506 		/*
2507 		 * for inserting items, make sure we have a write lock on
2508 		 * level 1 so we can update keys
2509 		 */
2510 		write_lock_level = 1;
2511 	}
2512 
2513 	if (!cow)
2514 		write_lock_level = -1;
2515 
2516 	if (cow && (p->keep_locks || p->lowest_level))
2517 		write_lock_level = BTRFS_MAX_LEVEL;
2518 
2519 	min_write_lock_level = write_lock_level;
2520 
2521 again:
2522 	prev_cmp = -1;
2523 	/*
2524 	 * we try very hard to do read locks on the root
2525 	 */
2526 	root_lock = BTRFS_READ_LOCK;
2527 	level = 0;
2528 	if (p->search_commit_root) {
2529 		/*
2530 		 * the commit roots are read only
2531 		 * so we always do read locks
2532 		 */
2533 		b = root->commit_root;
2534 		extent_buffer_get(b);
2535 		level = btrfs_header_level(b);
2536 		if (!p->skip_locking)
2537 			btrfs_tree_read_lock(b);
2538 	} else {
2539 		if (p->skip_locking) {
2540 			b = btrfs_root_node(root);
2541 			level = btrfs_header_level(b);
2542 		} else {
2543 			/* we don't know the level of the root node
2544 			 * until we actually have it read locked
2545 			 */
2546 			b = btrfs_read_lock_root_node(root);
2547 			level = btrfs_header_level(b);
2548 			if (level <= write_lock_level) {
2549 				/* whoops, must trade for write lock */
2550 				btrfs_tree_read_unlock(b);
2551 				free_extent_buffer(b);
2552 				b = btrfs_lock_root_node(root);
2553 				root_lock = BTRFS_WRITE_LOCK;
2554 
2555 				/* the level might have changed, check again */
2556 				level = btrfs_header_level(b);
2557 			}
2558 		}
2559 	}
2560 	p->nodes[level] = b;
2561 	if (!p->skip_locking)
2562 		p->locks[level] = root_lock;
2563 
2564 	while (b) {
2565 		level = btrfs_header_level(b);
2566 
2567 		/*
2568 		 * setup the path here so we can release it under lock
2569 		 * contention with the cow code
2570 		 */
2571 		if (cow) {
2572 			/*
2573 			 * if we don't really need to cow this block
2574 			 * then we don't want to set the path blocking,
2575 			 * so we test it here
2576 			 */
2577 			if (!should_cow_block(trans, root, b))
2578 				goto cow_done;
2579 
2580 			btrfs_set_path_blocking(p);
2581 
2582 			/*
2583 			 * must have write locks on this node and the
2584 			 * parent
2585 			 */
2586 			if (level > write_lock_level ||
2587 			    (level + 1 > write_lock_level &&
2588 			    level + 1 < BTRFS_MAX_LEVEL &&
2589 			    p->nodes[level + 1])) {
2590 				write_lock_level = level + 1;
2591 				btrfs_release_path(p);
2592 				goto again;
2593 			}
2594 
2595 			err = btrfs_cow_block(trans, root, b,
2596 					      p->nodes[level + 1],
2597 					      p->slots[level + 1], &b);
2598 			if (err) {
2599 				ret = err;
2600 				goto done;
2601 			}
2602 		}
2603 cow_done:
2604 		BUG_ON(!cow && ins_len);
2605 
2606 		p->nodes[level] = b;
2607 		btrfs_clear_path_blocking(p, NULL, 0);
2608 
2609 		/*
2610 		 * we have a lock on b and as long as we aren't changing
2611 		 * the tree, there is no way to for the items in b to change.
2612 		 * It is safe to drop the lock on our parent before we
2613 		 * go through the expensive btree search on b.
2614 		 *
2615 		 * If cow is true, then we might be changing slot zero,
2616 		 * which may require changing the parent.  So, we can't
2617 		 * drop the lock until after we know which slot we're
2618 		 * operating on.
2619 		 */
2620 		if (!cow)
2621 			btrfs_unlock_up_safe(p, level + 1);
2622 
2623 		ret = key_search(b, key, level, &prev_cmp, &slot);
2624 
2625 		if (level != 0) {
2626 			int dec = 0;
2627 			if (ret && slot > 0) {
2628 				dec = 1;
2629 				slot -= 1;
2630 			}
2631 			p->slots[level] = slot;
2632 			err = setup_nodes_for_search(trans, root, p, b, level,
2633 					     ins_len, &write_lock_level);
2634 			if (err == -EAGAIN)
2635 				goto again;
2636 			if (err) {
2637 				ret = err;
2638 				goto done;
2639 			}
2640 			b = p->nodes[level];
2641 			slot = p->slots[level];
2642 
2643 			/*
2644 			 * slot 0 is special, if we change the key
2645 			 * we have to update the parent pointer
2646 			 * which means we must have a write lock
2647 			 * on the parent
2648 			 */
2649 			if (slot == 0 && cow &&
2650 			    write_lock_level < level + 1) {
2651 				write_lock_level = level + 1;
2652 				btrfs_release_path(p);
2653 				goto again;
2654 			}
2655 
2656 			unlock_up(p, level, lowest_unlock,
2657 				  min_write_lock_level, &write_lock_level);
2658 
2659 			if (level == lowest_level) {
2660 				if (dec)
2661 					p->slots[level]++;
2662 				goto done;
2663 			}
2664 
2665 			err = read_block_for_search(trans, root, p,
2666 						    &b, level, slot, key, 0);
2667 			if (err == -EAGAIN)
2668 				goto again;
2669 			if (err) {
2670 				ret = err;
2671 				goto done;
2672 			}
2673 
2674 			if (!p->skip_locking) {
2675 				level = btrfs_header_level(b);
2676 				if (level <= write_lock_level) {
2677 					err = btrfs_try_tree_write_lock(b);
2678 					if (!err) {
2679 						btrfs_set_path_blocking(p);
2680 						btrfs_tree_lock(b);
2681 						btrfs_clear_path_blocking(p, b,
2682 								  BTRFS_WRITE_LOCK);
2683 					}
2684 					p->locks[level] = BTRFS_WRITE_LOCK;
2685 				} else {
2686 					err = btrfs_try_tree_read_lock(b);
2687 					if (!err) {
2688 						btrfs_set_path_blocking(p);
2689 						btrfs_tree_read_lock(b);
2690 						btrfs_clear_path_blocking(p, b,
2691 								  BTRFS_READ_LOCK);
2692 					}
2693 					p->locks[level] = BTRFS_READ_LOCK;
2694 				}
2695 				p->nodes[level] = b;
2696 			}
2697 		} else {
2698 			p->slots[level] = slot;
2699 			if (ins_len > 0 &&
2700 			    btrfs_leaf_free_space(root, b) < ins_len) {
2701 				if (write_lock_level < 1) {
2702 					write_lock_level = 1;
2703 					btrfs_release_path(p);
2704 					goto again;
2705 				}
2706 
2707 				btrfs_set_path_blocking(p);
2708 				err = split_leaf(trans, root, key,
2709 						 p, ins_len, ret == 0);
2710 				btrfs_clear_path_blocking(p, NULL, 0);
2711 
2712 				BUG_ON(err > 0);
2713 				if (err) {
2714 					ret = err;
2715 					goto done;
2716 				}
2717 			}
2718 			if (!p->search_for_split)
2719 				unlock_up(p, level, lowest_unlock,
2720 					  min_write_lock_level, &write_lock_level);
2721 			goto done;
2722 		}
2723 	}
2724 	ret = 1;
2725 done:
2726 	/*
2727 	 * we don't really know what they plan on doing with the path
2728 	 * from here on, so for now just mark it as blocking
2729 	 */
2730 	if (!p->leave_spinning)
2731 		btrfs_set_path_blocking(p);
2732 	if (ret < 0)
2733 		btrfs_release_path(p);
2734 	return ret;
2735 }
2736 
2737 /*
2738  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2739  * current state of the tree together with the operations recorded in the tree
2740  * modification log to search for the key in a previous version of this tree, as
2741  * denoted by the time_seq parameter.
2742  *
2743  * Naturally, there is no support for insert, delete or cow operations.
2744  *
2745  * The resulting path and return value will be set up as if we called
2746  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2747  */
2748 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2749 			  struct btrfs_path *p, u64 time_seq)
2750 {
2751 	struct extent_buffer *b;
2752 	int slot;
2753 	int ret;
2754 	int err;
2755 	int level;
2756 	int lowest_unlock = 1;
2757 	u8 lowest_level = 0;
2758 	int prev_cmp;
2759 
2760 	lowest_level = p->lowest_level;
2761 	WARN_ON(p->nodes[0] != NULL);
2762 
2763 	if (p->search_commit_root) {
2764 		BUG_ON(time_seq);
2765 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2766 	}
2767 
2768 again:
2769 	prev_cmp = -1;
2770 	b = get_old_root(root, time_seq);
2771 	level = btrfs_header_level(b);
2772 	p->locks[level] = BTRFS_READ_LOCK;
2773 
2774 	while (b) {
2775 		level = btrfs_header_level(b);
2776 		p->nodes[level] = b;
2777 		btrfs_clear_path_blocking(p, NULL, 0);
2778 
2779 		/*
2780 		 * we have a lock on b and as long as we aren't changing
2781 		 * the tree, there is no way to for the items in b to change.
2782 		 * It is safe to drop the lock on our parent before we
2783 		 * go through the expensive btree search on b.
2784 		 */
2785 		btrfs_unlock_up_safe(p, level + 1);
2786 
2787 		ret = key_search(b, key, level, &prev_cmp, &slot);
2788 
2789 		if (level != 0) {
2790 			int dec = 0;
2791 			if (ret && slot > 0) {
2792 				dec = 1;
2793 				slot -= 1;
2794 			}
2795 			p->slots[level] = slot;
2796 			unlock_up(p, level, lowest_unlock, 0, NULL);
2797 
2798 			if (level == lowest_level) {
2799 				if (dec)
2800 					p->slots[level]++;
2801 				goto done;
2802 			}
2803 
2804 			err = read_block_for_search(NULL, root, p, &b, level,
2805 						    slot, key, time_seq);
2806 			if (err == -EAGAIN)
2807 				goto again;
2808 			if (err) {
2809 				ret = err;
2810 				goto done;
2811 			}
2812 
2813 			level = btrfs_header_level(b);
2814 			err = btrfs_try_tree_read_lock(b);
2815 			if (!err) {
2816 				btrfs_set_path_blocking(p);
2817 				btrfs_tree_read_lock(b);
2818 				btrfs_clear_path_blocking(p, b,
2819 							  BTRFS_READ_LOCK);
2820 			}
2821 			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
2822 			if (!b) {
2823 				ret = -ENOMEM;
2824 				goto done;
2825 			}
2826 			p->locks[level] = BTRFS_READ_LOCK;
2827 			p->nodes[level] = b;
2828 		} else {
2829 			p->slots[level] = slot;
2830 			unlock_up(p, level, lowest_unlock, 0, NULL);
2831 			goto done;
2832 		}
2833 	}
2834 	ret = 1;
2835 done:
2836 	if (!p->leave_spinning)
2837 		btrfs_set_path_blocking(p);
2838 	if (ret < 0)
2839 		btrfs_release_path(p);
2840 
2841 	return ret;
2842 }
2843 
2844 /*
2845  * helper to use instead of search slot if no exact match is needed but
2846  * instead the next or previous item should be returned.
2847  * When find_higher is true, the next higher item is returned, the next lower
2848  * otherwise.
2849  * When return_any and find_higher are both true, and no higher item is found,
2850  * return the next lower instead.
2851  * When return_any is true and find_higher is false, and no lower item is found,
2852  * return the next higher instead.
2853  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2854  * < 0 on error
2855  */
2856 int btrfs_search_slot_for_read(struct btrfs_root *root,
2857 			       struct btrfs_key *key, struct btrfs_path *p,
2858 			       int find_higher, int return_any)
2859 {
2860 	int ret;
2861 	struct extent_buffer *leaf;
2862 
2863 again:
2864 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2865 	if (ret <= 0)
2866 		return ret;
2867 	/*
2868 	 * a return value of 1 means the path is at the position where the
2869 	 * item should be inserted. Normally this is the next bigger item,
2870 	 * but in case the previous item is the last in a leaf, path points
2871 	 * to the first free slot in the previous leaf, i.e. at an invalid
2872 	 * item.
2873 	 */
2874 	leaf = p->nodes[0];
2875 
2876 	if (find_higher) {
2877 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2878 			ret = btrfs_next_leaf(root, p);
2879 			if (ret <= 0)
2880 				return ret;
2881 			if (!return_any)
2882 				return 1;
2883 			/*
2884 			 * no higher item found, return the next
2885 			 * lower instead
2886 			 */
2887 			return_any = 0;
2888 			find_higher = 0;
2889 			btrfs_release_path(p);
2890 			goto again;
2891 		}
2892 	} else {
2893 		if (p->slots[0] == 0) {
2894 			ret = btrfs_prev_leaf(root, p);
2895 			if (ret < 0)
2896 				return ret;
2897 			if (!ret) {
2898 				p->slots[0] = btrfs_header_nritems(leaf) - 1;
2899 				return 0;
2900 			}
2901 			if (!return_any)
2902 				return 1;
2903 			/*
2904 			 * no lower item found, return the next
2905 			 * higher instead
2906 			 */
2907 			return_any = 0;
2908 			find_higher = 1;
2909 			btrfs_release_path(p);
2910 			goto again;
2911 		} else {
2912 			--p->slots[0];
2913 		}
2914 	}
2915 	return 0;
2916 }
2917 
2918 /*
2919  * adjust the pointers going up the tree, starting at level
2920  * making sure the right key of each node is points to 'key'.
2921  * This is used after shifting pointers to the left, so it stops
2922  * fixing up pointers when a given leaf/node is not in slot 0 of the
2923  * higher levels
2924  *
2925  */
2926 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2927 			   struct btrfs_disk_key *key, int level)
2928 {
2929 	int i;
2930 	struct extent_buffer *t;
2931 
2932 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2933 		int tslot = path->slots[i];
2934 		if (!path->nodes[i])
2935 			break;
2936 		t = path->nodes[i];
2937 		tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2938 		btrfs_set_node_key(t, key, tslot);
2939 		btrfs_mark_buffer_dirty(path->nodes[i]);
2940 		if (tslot != 0)
2941 			break;
2942 	}
2943 }
2944 
2945 /*
2946  * update item key.
2947  *
2948  * This function isn't completely safe. It's the caller's responsibility
2949  * that the new key won't break the order
2950  */
2951 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2952 			     struct btrfs_key *new_key)
2953 {
2954 	struct btrfs_disk_key disk_key;
2955 	struct extent_buffer *eb;
2956 	int slot;
2957 
2958 	eb = path->nodes[0];
2959 	slot = path->slots[0];
2960 	if (slot > 0) {
2961 		btrfs_item_key(eb, &disk_key, slot - 1);
2962 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2963 	}
2964 	if (slot < btrfs_header_nritems(eb) - 1) {
2965 		btrfs_item_key(eb, &disk_key, slot + 1);
2966 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2967 	}
2968 
2969 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2970 	btrfs_set_item_key(eb, &disk_key, slot);
2971 	btrfs_mark_buffer_dirty(eb);
2972 	if (slot == 0)
2973 		fixup_low_keys(root, path, &disk_key, 1);
2974 }
2975 
2976 /*
2977  * try to push data from one node into the next node left in the
2978  * tree.
2979  *
2980  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2981  * error, and > 0 if there was no room in the left hand block.
2982  */
2983 static int push_node_left(struct btrfs_trans_handle *trans,
2984 			  struct btrfs_root *root, struct extent_buffer *dst,
2985 			  struct extent_buffer *src, int empty)
2986 {
2987 	int push_items = 0;
2988 	int src_nritems;
2989 	int dst_nritems;
2990 	int ret = 0;
2991 
2992 	src_nritems = btrfs_header_nritems(src);
2993 	dst_nritems = btrfs_header_nritems(dst);
2994 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2995 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2996 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2997 
2998 	if (!empty && src_nritems <= 8)
2999 		return 1;
3000 
3001 	if (push_items <= 0)
3002 		return 1;
3003 
3004 	if (empty) {
3005 		push_items = min(src_nritems, push_items);
3006 		if (push_items < src_nritems) {
3007 			/* leave at least 8 pointers in the node if
3008 			 * we aren't going to empty it
3009 			 */
3010 			if (src_nritems - push_items < 8) {
3011 				if (push_items <= 8)
3012 					return 1;
3013 				push_items -= 8;
3014 			}
3015 		}
3016 	} else
3017 		push_items = min(src_nritems - 8, push_items);
3018 
3019 	tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3020 			     push_items);
3021 	copy_extent_buffer(dst, src,
3022 			   btrfs_node_key_ptr_offset(dst_nritems),
3023 			   btrfs_node_key_ptr_offset(0),
3024 			   push_items * sizeof(struct btrfs_key_ptr));
3025 
3026 	if (push_items < src_nritems) {
3027 		/*
3028 		 * don't call tree_mod_log_eb_move here, key removal was already
3029 		 * fully logged by tree_mod_log_eb_copy above.
3030 		 */
3031 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3032 				      btrfs_node_key_ptr_offset(push_items),
3033 				      (src_nritems - push_items) *
3034 				      sizeof(struct btrfs_key_ptr));
3035 	}
3036 	btrfs_set_header_nritems(src, src_nritems - push_items);
3037 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3038 	btrfs_mark_buffer_dirty(src);
3039 	btrfs_mark_buffer_dirty(dst);
3040 
3041 	return ret;
3042 }
3043 
3044 /*
3045  * try to push data from one node into the next node right in the
3046  * tree.
3047  *
3048  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3049  * error, and > 0 if there was no room in the right hand block.
3050  *
3051  * this will  only push up to 1/2 the contents of the left node over
3052  */
3053 static int balance_node_right(struct btrfs_trans_handle *trans,
3054 			      struct btrfs_root *root,
3055 			      struct extent_buffer *dst,
3056 			      struct extent_buffer *src)
3057 {
3058 	int push_items = 0;
3059 	int max_push;
3060 	int src_nritems;
3061 	int dst_nritems;
3062 	int ret = 0;
3063 
3064 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3065 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3066 
3067 	src_nritems = btrfs_header_nritems(src);
3068 	dst_nritems = btrfs_header_nritems(dst);
3069 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3070 	if (push_items <= 0)
3071 		return 1;
3072 
3073 	if (src_nritems < 4)
3074 		return 1;
3075 
3076 	max_push = src_nritems / 2 + 1;
3077 	/* don't try to empty the node */
3078 	if (max_push >= src_nritems)
3079 		return 1;
3080 
3081 	if (max_push < push_items)
3082 		push_items = max_push;
3083 
3084 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3085 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3086 				      btrfs_node_key_ptr_offset(0),
3087 				      (dst_nritems) *
3088 				      sizeof(struct btrfs_key_ptr));
3089 
3090 	tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3091 			     src_nritems - push_items, push_items);
3092 	copy_extent_buffer(dst, src,
3093 			   btrfs_node_key_ptr_offset(0),
3094 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3095 			   push_items * sizeof(struct btrfs_key_ptr));
3096 
3097 	btrfs_set_header_nritems(src, src_nritems - push_items);
3098 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3099 
3100 	btrfs_mark_buffer_dirty(src);
3101 	btrfs_mark_buffer_dirty(dst);
3102 
3103 	return ret;
3104 }
3105 
3106 /*
3107  * helper function to insert a new root level in the tree.
3108  * A new node is allocated, and a single item is inserted to
3109  * point to the existing root
3110  *
3111  * returns zero on success or < 0 on failure.
3112  */
3113 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3114 			   struct btrfs_root *root,
3115 			   struct btrfs_path *path, int level)
3116 {
3117 	u64 lower_gen;
3118 	struct extent_buffer *lower;
3119 	struct extent_buffer *c;
3120 	struct extent_buffer *old;
3121 	struct btrfs_disk_key lower_key;
3122 
3123 	BUG_ON(path->nodes[level]);
3124 	BUG_ON(path->nodes[level-1] != root->node);
3125 
3126 	lower = path->nodes[level-1];
3127 	if (level == 1)
3128 		btrfs_item_key(lower, &lower_key, 0);
3129 	else
3130 		btrfs_node_key(lower, &lower_key, 0);
3131 
3132 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3133 				   root->root_key.objectid, &lower_key,
3134 				   level, root->node->start, 0);
3135 	if (IS_ERR(c))
3136 		return PTR_ERR(c);
3137 
3138 	root_add_used(root, root->nodesize);
3139 
3140 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3141 	btrfs_set_header_nritems(c, 1);
3142 	btrfs_set_header_level(c, level);
3143 	btrfs_set_header_bytenr(c, c->start);
3144 	btrfs_set_header_generation(c, trans->transid);
3145 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3146 	btrfs_set_header_owner(c, root->root_key.objectid);
3147 
3148 	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(c),
3149 			    BTRFS_FSID_SIZE);
3150 
3151 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3152 			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3153 
3154 	btrfs_set_node_key(c, &lower_key, 0);
3155 	btrfs_set_node_blockptr(c, 0, lower->start);
3156 	lower_gen = btrfs_header_generation(lower);
3157 	WARN_ON(lower_gen != trans->transid);
3158 
3159 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3160 
3161 	btrfs_mark_buffer_dirty(c);
3162 
3163 	old = root->node;
3164 	tree_mod_log_set_root_pointer(root, c, 0);
3165 	rcu_assign_pointer(root->node, c);
3166 
3167 	/* the super has an extra ref to root->node */
3168 	free_extent_buffer(old);
3169 
3170 	add_root_to_dirty_list(root);
3171 	extent_buffer_get(c);
3172 	path->nodes[level] = c;
3173 	path->locks[level] = BTRFS_WRITE_LOCK;
3174 	path->slots[level] = 0;
3175 	return 0;
3176 }
3177 
3178 /*
3179  * worker function to insert a single pointer in a node.
3180  * the node should have enough room for the pointer already
3181  *
3182  * slot and level indicate where you want the key to go, and
3183  * blocknr is the block the key points to.
3184  */
3185 static void insert_ptr(struct btrfs_trans_handle *trans,
3186 		       struct btrfs_root *root, struct btrfs_path *path,
3187 		       struct btrfs_disk_key *key, u64 bytenr,
3188 		       int slot, int level)
3189 {
3190 	struct extent_buffer *lower;
3191 	int nritems;
3192 	int ret;
3193 
3194 	BUG_ON(!path->nodes[level]);
3195 	btrfs_assert_tree_locked(path->nodes[level]);
3196 	lower = path->nodes[level];
3197 	nritems = btrfs_header_nritems(lower);
3198 	BUG_ON(slot > nritems);
3199 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3200 	if (slot != nritems) {
3201 		if (level)
3202 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3203 					     slot, nritems - slot);
3204 		memmove_extent_buffer(lower,
3205 			      btrfs_node_key_ptr_offset(slot + 1),
3206 			      btrfs_node_key_ptr_offset(slot),
3207 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3208 	}
3209 	if (level) {
3210 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3211 					      MOD_LOG_KEY_ADD, GFP_NOFS);
3212 		BUG_ON(ret < 0);
3213 	}
3214 	btrfs_set_node_key(lower, key, slot);
3215 	btrfs_set_node_blockptr(lower, slot, bytenr);
3216 	WARN_ON(trans->transid == 0);
3217 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3218 	btrfs_set_header_nritems(lower, nritems + 1);
3219 	btrfs_mark_buffer_dirty(lower);
3220 }
3221 
3222 /*
3223  * split the node at the specified level in path in two.
3224  * The path is corrected to point to the appropriate node after the split
3225  *
3226  * Before splitting this tries to make some room in the node by pushing
3227  * left and right, if either one works, it returns right away.
3228  *
3229  * returns 0 on success and < 0 on failure
3230  */
3231 static noinline int split_node(struct btrfs_trans_handle *trans,
3232 			       struct btrfs_root *root,
3233 			       struct btrfs_path *path, int level)
3234 {
3235 	struct extent_buffer *c;
3236 	struct extent_buffer *split;
3237 	struct btrfs_disk_key disk_key;
3238 	int mid;
3239 	int ret;
3240 	u32 c_nritems;
3241 
3242 	c = path->nodes[level];
3243 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3244 	if (c == root->node) {
3245 		/*
3246 		 * trying to split the root, lets make a new one
3247 		 *
3248 		 * tree mod log: We don't log_removal old root in
3249 		 * insert_new_root, because that root buffer will be kept as a
3250 		 * normal node. We are going to log removal of half of the
3251 		 * elements below with tree_mod_log_eb_copy. We're holding a
3252 		 * tree lock on the buffer, which is why we cannot race with
3253 		 * other tree_mod_log users.
3254 		 */
3255 		ret = insert_new_root(trans, root, path, level + 1);
3256 		if (ret)
3257 			return ret;
3258 	} else {
3259 		ret = push_nodes_for_insert(trans, root, path, level);
3260 		c = path->nodes[level];
3261 		if (!ret && btrfs_header_nritems(c) <
3262 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3263 			return 0;
3264 		if (ret < 0)
3265 			return ret;
3266 	}
3267 
3268 	c_nritems = btrfs_header_nritems(c);
3269 	mid = (c_nritems + 1) / 2;
3270 	btrfs_node_key(c, &disk_key, mid);
3271 
3272 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3273 					root->root_key.objectid,
3274 					&disk_key, level, c->start, 0);
3275 	if (IS_ERR(split))
3276 		return PTR_ERR(split);
3277 
3278 	root_add_used(root, root->nodesize);
3279 
3280 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3281 	btrfs_set_header_level(split, btrfs_header_level(c));
3282 	btrfs_set_header_bytenr(split, split->start);
3283 	btrfs_set_header_generation(split, trans->transid);
3284 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3285 	btrfs_set_header_owner(split, root->root_key.objectid);
3286 	write_extent_buffer(split, root->fs_info->fsid,
3287 			    btrfs_header_fsid(split), BTRFS_FSID_SIZE);
3288 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3289 			    btrfs_header_chunk_tree_uuid(split),
3290 			    BTRFS_UUID_SIZE);
3291 
3292 	tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3293 	copy_extent_buffer(split, c,
3294 			   btrfs_node_key_ptr_offset(0),
3295 			   btrfs_node_key_ptr_offset(mid),
3296 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3297 	btrfs_set_header_nritems(split, c_nritems - mid);
3298 	btrfs_set_header_nritems(c, mid);
3299 	ret = 0;
3300 
3301 	btrfs_mark_buffer_dirty(c);
3302 	btrfs_mark_buffer_dirty(split);
3303 
3304 	insert_ptr(trans, root, path, &disk_key, split->start,
3305 		   path->slots[level + 1] + 1, level + 1);
3306 
3307 	if (path->slots[level] >= mid) {
3308 		path->slots[level] -= mid;
3309 		btrfs_tree_unlock(c);
3310 		free_extent_buffer(c);
3311 		path->nodes[level] = split;
3312 		path->slots[level + 1] += 1;
3313 	} else {
3314 		btrfs_tree_unlock(split);
3315 		free_extent_buffer(split);
3316 	}
3317 	return ret;
3318 }
3319 
3320 /*
3321  * how many bytes are required to store the items in a leaf.  start
3322  * and nr indicate which items in the leaf to check.  This totals up the
3323  * space used both by the item structs and the item data
3324  */
3325 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3326 {
3327 	struct btrfs_item *start_item;
3328 	struct btrfs_item *end_item;
3329 	struct btrfs_map_token token;
3330 	int data_len;
3331 	int nritems = btrfs_header_nritems(l);
3332 	int end = min(nritems, start + nr) - 1;
3333 
3334 	if (!nr)
3335 		return 0;
3336 	btrfs_init_map_token(&token);
3337 	start_item = btrfs_item_nr(l, start);
3338 	end_item = btrfs_item_nr(l, end);
3339 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3340 		btrfs_token_item_size(l, start_item, &token);
3341 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3342 	data_len += sizeof(struct btrfs_item) * nr;
3343 	WARN_ON(data_len < 0);
3344 	return data_len;
3345 }
3346 
3347 /*
3348  * The space between the end of the leaf items and
3349  * the start of the leaf data.  IOW, how much room
3350  * the leaf has left for both items and data
3351  */
3352 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3353 				   struct extent_buffer *leaf)
3354 {
3355 	int nritems = btrfs_header_nritems(leaf);
3356 	int ret;
3357 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3358 	if (ret < 0) {
3359 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3360 		       "used %d nritems %d\n",
3361 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3362 		       leaf_space_used(leaf, 0, nritems), nritems);
3363 	}
3364 	return ret;
3365 }
3366 
3367 /*
3368  * min slot controls the lowest index we're willing to push to the
3369  * right.  We'll push up to and including min_slot, but no lower
3370  */
3371 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3372 				      struct btrfs_root *root,
3373 				      struct btrfs_path *path,
3374 				      int data_size, int empty,
3375 				      struct extent_buffer *right,
3376 				      int free_space, u32 left_nritems,
3377 				      u32 min_slot)
3378 {
3379 	struct extent_buffer *left = path->nodes[0];
3380 	struct extent_buffer *upper = path->nodes[1];
3381 	struct btrfs_map_token token;
3382 	struct btrfs_disk_key disk_key;
3383 	int slot;
3384 	u32 i;
3385 	int push_space = 0;
3386 	int push_items = 0;
3387 	struct btrfs_item *item;
3388 	u32 nr;
3389 	u32 right_nritems;
3390 	u32 data_end;
3391 	u32 this_item_size;
3392 
3393 	btrfs_init_map_token(&token);
3394 
3395 	if (empty)
3396 		nr = 0;
3397 	else
3398 		nr = max_t(u32, 1, min_slot);
3399 
3400 	if (path->slots[0] >= left_nritems)
3401 		push_space += data_size;
3402 
3403 	slot = path->slots[1];
3404 	i = left_nritems - 1;
3405 	while (i >= nr) {
3406 		item = btrfs_item_nr(left, i);
3407 
3408 		if (!empty && push_items > 0) {
3409 			if (path->slots[0] > i)
3410 				break;
3411 			if (path->slots[0] == i) {
3412 				int space = btrfs_leaf_free_space(root, left);
3413 				if (space + push_space * 2 > free_space)
3414 					break;
3415 			}
3416 		}
3417 
3418 		if (path->slots[0] == i)
3419 			push_space += data_size;
3420 
3421 		this_item_size = btrfs_item_size(left, item);
3422 		if (this_item_size + sizeof(*item) + push_space > free_space)
3423 			break;
3424 
3425 		push_items++;
3426 		push_space += this_item_size + sizeof(*item);
3427 		if (i == 0)
3428 			break;
3429 		i--;
3430 	}
3431 
3432 	if (push_items == 0)
3433 		goto out_unlock;
3434 
3435 	WARN_ON(!empty && push_items == left_nritems);
3436 
3437 	/* push left to right */
3438 	right_nritems = btrfs_header_nritems(right);
3439 
3440 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3441 	push_space -= leaf_data_end(root, left);
3442 
3443 	/* make room in the right data area */
3444 	data_end = leaf_data_end(root, right);
3445 	memmove_extent_buffer(right,
3446 			      btrfs_leaf_data(right) + data_end - push_space,
3447 			      btrfs_leaf_data(right) + data_end,
3448 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3449 
3450 	/* copy from the left data area */
3451 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3452 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3453 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3454 		     push_space);
3455 
3456 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3457 			      btrfs_item_nr_offset(0),
3458 			      right_nritems * sizeof(struct btrfs_item));
3459 
3460 	/* copy the items from left to right */
3461 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3462 		   btrfs_item_nr_offset(left_nritems - push_items),
3463 		   push_items * sizeof(struct btrfs_item));
3464 
3465 	/* update the item pointers */
3466 	right_nritems += push_items;
3467 	btrfs_set_header_nritems(right, right_nritems);
3468 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3469 	for (i = 0; i < right_nritems; i++) {
3470 		item = btrfs_item_nr(right, i);
3471 		push_space -= btrfs_token_item_size(right, item, &token);
3472 		btrfs_set_token_item_offset(right, item, push_space, &token);
3473 	}
3474 
3475 	left_nritems -= push_items;
3476 	btrfs_set_header_nritems(left, left_nritems);
3477 
3478 	if (left_nritems)
3479 		btrfs_mark_buffer_dirty(left);
3480 	else
3481 		clean_tree_block(trans, root, left);
3482 
3483 	btrfs_mark_buffer_dirty(right);
3484 
3485 	btrfs_item_key(right, &disk_key, 0);
3486 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3487 	btrfs_mark_buffer_dirty(upper);
3488 
3489 	/* then fixup the leaf pointer in the path */
3490 	if (path->slots[0] >= left_nritems) {
3491 		path->slots[0] -= left_nritems;
3492 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3493 			clean_tree_block(trans, root, path->nodes[0]);
3494 		btrfs_tree_unlock(path->nodes[0]);
3495 		free_extent_buffer(path->nodes[0]);
3496 		path->nodes[0] = right;
3497 		path->slots[1] += 1;
3498 	} else {
3499 		btrfs_tree_unlock(right);
3500 		free_extent_buffer(right);
3501 	}
3502 	return 0;
3503 
3504 out_unlock:
3505 	btrfs_tree_unlock(right);
3506 	free_extent_buffer(right);
3507 	return 1;
3508 }
3509 
3510 /*
3511  * push some data in the path leaf to the right, trying to free up at
3512  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3513  *
3514  * returns 1 if the push failed because the other node didn't have enough
3515  * room, 0 if everything worked out and < 0 if there were major errors.
3516  *
3517  * this will push starting from min_slot to the end of the leaf.  It won't
3518  * push any slot lower than min_slot
3519  */
3520 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3521 			   *root, struct btrfs_path *path,
3522 			   int min_data_size, int data_size,
3523 			   int empty, u32 min_slot)
3524 {
3525 	struct extent_buffer *left = path->nodes[0];
3526 	struct extent_buffer *right;
3527 	struct extent_buffer *upper;
3528 	int slot;
3529 	int free_space;
3530 	u32 left_nritems;
3531 	int ret;
3532 
3533 	if (!path->nodes[1])
3534 		return 1;
3535 
3536 	slot = path->slots[1];
3537 	upper = path->nodes[1];
3538 	if (slot >= btrfs_header_nritems(upper) - 1)
3539 		return 1;
3540 
3541 	btrfs_assert_tree_locked(path->nodes[1]);
3542 
3543 	right = read_node_slot(root, upper, slot + 1);
3544 	if (right == NULL)
3545 		return 1;
3546 
3547 	btrfs_tree_lock(right);
3548 	btrfs_set_lock_blocking(right);
3549 
3550 	free_space = btrfs_leaf_free_space(root, right);
3551 	if (free_space < data_size)
3552 		goto out_unlock;
3553 
3554 	/* cow and double check */
3555 	ret = btrfs_cow_block(trans, root, right, upper,
3556 			      slot + 1, &right);
3557 	if (ret)
3558 		goto out_unlock;
3559 
3560 	free_space = btrfs_leaf_free_space(root, right);
3561 	if (free_space < data_size)
3562 		goto out_unlock;
3563 
3564 	left_nritems = btrfs_header_nritems(left);
3565 	if (left_nritems == 0)
3566 		goto out_unlock;
3567 
3568 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3569 				right, free_space, left_nritems, min_slot);
3570 out_unlock:
3571 	btrfs_tree_unlock(right);
3572 	free_extent_buffer(right);
3573 	return 1;
3574 }
3575 
3576 /*
3577  * push some data in the path leaf to the left, trying to free up at
3578  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3579  *
3580  * max_slot can put a limit on how far into the leaf we'll push items.  The
3581  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3582  * items
3583  */
3584 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3585 				     struct btrfs_root *root,
3586 				     struct btrfs_path *path, int data_size,
3587 				     int empty, struct extent_buffer *left,
3588 				     int free_space, u32 right_nritems,
3589 				     u32 max_slot)
3590 {
3591 	struct btrfs_disk_key disk_key;
3592 	struct extent_buffer *right = path->nodes[0];
3593 	int i;
3594 	int push_space = 0;
3595 	int push_items = 0;
3596 	struct btrfs_item *item;
3597 	u32 old_left_nritems;
3598 	u32 nr;
3599 	int ret = 0;
3600 	u32 this_item_size;
3601 	u32 old_left_item_size;
3602 	struct btrfs_map_token token;
3603 
3604 	btrfs_init_map_token(&token);
3605 
3606 	if (empty)
3607 		nr = min(right_nritems, max_slot);
3608 	else
3609 		nr = min(right_nritems - 1, max_slot);
3610 
3611 	for (i = 0; i < nr; i++) {
3612 		item = btrfs_item_nr(right, i);
3613 
3614 		if (!empty && push_items > 0) {
3615 			if (path->slots[0] < i)
3616 				break;
3617 			if (path->slots[0] == i) {
3618 				int space = btrfs_leaf_free_space(root, right);
3619 				if (space + push_space * 2 > free_space)
3620 					break;
3621 			}
3622 		}
3623 
3624 		if (path->slots[0] == i)
3625 			push_space += data_size;
3626 
3627 		this_item_size = btrfs_item_size(right, item);
3628 		if (this_item_size + sizeof(*item) + push_space > free_space)
3629 			break;
3630 
3631 		push_items++;
3632 		push_space += this_item_size + sizeof(*item);
3633 	}
3634 
3635 	if (push_items == 0) {
3636 		ret = 1;
3637 		goto out;
3638 	}
3639 	if (!empty && push_items == btrfs_header_nritems(right))
3640 		WARN_ON(1);
3641 
3642 	/* push data from right to left */
3643 	copy_extent_buffer(left, right,
3644 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3645 			   btrfs_item_nr_offset(0),
3646 			   push_items * sizeof(struct btrfs_item));
3647 
3648 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3649 		     btrfs_item_offset_nr(right, push_items - 1);
3650 
3651 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3652 		     leaf_data_end(root, left) - push_space,
3653 		     btrfs_leaf_data(right) +
3654 		     btrfs_item_offset_nr(right, push_items - 1),
3655 		     push_space);
3656 	old_left_nritems = btrfs_header_nritems(left);
3657 	BUG_ON(old_left_nritems <= 0);
3658 
3659 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3660 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3661 		u32 ioff;
3662 
3663 		item = btrfs_item_nr(left, i);
3664 
3665 		ioff = btrfs_token_item_offset(left, item, &token);
3666 		btrfs_set_token_item_offset(left, item,
3667 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3668 		      &token);
3669 	}
3670 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3671 
3672 	/* fixup right node */
3673 	if (push_items > right_nritems)
3674 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3675 		       right_nritems);
3676 
3677 	if (push_items < right_nritems) {
3678 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3679 						  leaf_data_end(root, right);
3680 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3681 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3682 				      btrfs_leaf_data(right) +
3683 				      leaf_data_end(root, right), push_space);
3684 
3685 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3686 			      btrfs_item_nr_offset(push_items),
3687 			     (btrfs_header_nritems(right) - push_items) *
3688 			     sizeof(struct btrfs_item));
3689 	}
3690 	right_nritems -= push_items;
3691 	btrfs_set_header_nritems(right, right_nritems);
3692 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3693 	for (i = 0; i < right_nritems; i++) {
3694 		item = btrfs_item_nr(right, i);
3695 
3696 		push_space = push_space - btrfs_token_item_size(right,
3697 								item, &token);
3698 		btrfs_set_token_item_offset(right, item, push_space, &token);
3699 	}
3700 
3701 	btrfs_mark_buffer_dirty(left);
3702 	if (right_nritems)
3703 		btrfs_mark_buffer_dirty(right);
3704 	else
3705 		clean_tree_block(trans, root, right);
3706 
3707 	btrfs_item_key(right, &disk_key, 0);
3708 	fixup_low_keys(root, path, &disk_key, 1);
3709 
3710 	/* then fixup the leaf pointer in the path */
3711 	if (path->slots[0] < push_items) {
3712 		path->slots[0] += old_left_nritems;
3713 		btrfs_tree_unlock(path->nodes[0]);
3714 		free_extent_buffer(path->nodes[0]);
3715 		path->nodes[0] = left;
3716 		path->slots[1] -= 1;
3717 	} else {
3718 		btrfs_tree_unlock(left);
3719 		free_extent_buffer(left);
3720 		path->slots[0] -= push_items;
3721 	}
3722 	BUG_ON(path->slots[0] < 0);
3723 	return ret;
3724 out:
3725 	btrfs_tree_unlock(left);
3726 	free_extent_buffer(left);
3727 	return ret;
3728 }
3729 
3730 /*
3731  * push some data in the path leaf to the left, trying to free up at
3732  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3733  *
3734  * max_slot can put a limit on how far into the leaf we'll push items.  The
3735  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3736  * items
3737  */
3738 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3739 			  *root, struct btrfs_path *path, int min_data_size,
3740 			  int data_size, int empty, u32 max_slot)
3741 {
3742 	struct extent_buffer *right = path->nodes[0];
3743 	struct extent_buffer *left;
3744 	int slot;
3745 	int free_space;
3746 	u32 right_nritems;
3747 	int ret = 0;
3748 
3749 	slot = path->slots[1];
3750 	if (slot == 0)
3751 		return 1;
3752 	if (!path->nodes[1])
3753 		return 1;
3754 
3755 	right_nritems = btrfs_header_nritems(right);
3756 	if (right_nritems == 0)
3757 		return 1;
3758 
3759 	btrfs_assert_tree_locked(path->nodes[1]);
3760 
3761 	left = read_node_slot(root, path->nodes[1], slot - 1);
3762 	if (left == NULL)
3763 		return 1;
3764 
3765 	btrfs_tree_lock(left);
3766 	btrfs_set_lock_blocking(left);
3767 
3768 	free_space = btrfs_leaf_free_space(root, left);
3769 	if (free_space < data_size) {
3770 		ret = 1;
3771 		goto out;
3772 	}
3773 
3774 	/* cow and double check */
3775 	ret = btrfs_cow_block(trans, root, left,
3776 			      path->nodes[1], slot - 1, &left);
3777 	if (ret) {
3778 		/* we hit -ENOSPC, but it isn't fatal here */
3779 		if (ret == -ENOSPC)
3780 			ret = 1;
3781 		goto out;
3782 	}
3783 
3784 	free_space = btrfs_leaf_free_space(root, left);
3785 	if (free_space < data_size) {
3786 		ret = 1;
3787 		goto out;
3788 	}
3789 
3790 	return __push_leaf_left(trans, root, path, min_data_size,
3791 			       empty, left, free_space, right_nritems,
3792 			       max_slot);
3793 out:
3794 	btrfs_tree_unlock(left);
3795 	free_extent_buffer(left);
3796 	return ret;
3797 }
3798 
3799 /*
3800  * split the path's leaf in two, making sure there is at least data_size
3801  * available for the resulting leaf level of the path.
3802  */
3803 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3804 				    struct btrfs_root *root,
3805 				    struct btrfs_path *path,
3806 				    struct extent_buffer *l,
3807 				    struct extent_buffer *right,
3808 				    int slot, int mid, int nritems)
3809 {
3810 	int data_copy_size;
3811 	int rt_data_off;
3812 	int i;
3813 	struct btrfs_disk_key disk_key;
3814 	struct btrfs_map_token token;
3815 
3816 	btrfs_init_map_token(&token);
3817 
3818 	nritems = nritems - mid;
3819 	btrfs_set_header_nritems(right, nritems);
3820 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3821 
3822 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3823 			   btrfs_item_nr_offset(mid),
3824 			   nritems * sizeof(struct btrfs_item));
3825 
3826 	copy_extent_buffer(right, l,
3827 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3828 		     data_copy_size, btrfs_leaf_data(l) +
3829 		     leaf_data_end(root, l), data_copy_size);
3830 
3831 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3832 		      btrfs_item_end_nr(l, mid);
3833 
3834 	for (i = 0; i < nritems; i++) {
3835 		struct btrfs_item *item = btrfs_item_nr(right, i);
3836 		u32 ioff;
3837 
3838 		ioff = btrfs_token_item_offset(right, item, &token);
3839 		btrfs_set_token_item_offset(right, item,
3840 					    ioff + rt_data_off, &token);
3841 	}
3842 
3843 	btrfs_set_header_nritems(l, mid);
3844 	btrfs_item_key(right, &disk_key, 0);
3845 	insert_ptr(trans, root, path, &disk_key, right->start,
3846 		   path->slots[1] + 1, 1);
3847 
3848 	btrfs_mark_buffer_dirty(right);
3849 	btrfs_mark_buffer_dirty(l);
3850 	BUG_ON(path->slots[0] != slot);
3851 
3852 	if (mid <= slot) {
3853 		btrfs_tree_unlock(path->nodes[0]);
3854 		free_extent_buffer(path->nodes[0]);
3855 		path->nodes[0] = right;
3856 		path->slots[0] -= mid;
3857 		path->slots[1] += 1;
3858 	} else {
3859 		btrfs_tree_unlock(right);
3860 		free_extent_buffer(right);
3861 	}
3862 
3863 	BUG_ON(path->slots[0] < 0);
3864 }
3865 
3866 /*
3867  * double splits happen when we need to insert a big item in the middle
3868  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3869  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3870  *          A                 B                 C
3871  *
3872  * We avoid this by trying to push the items on either side of our target
3873  * into the adjacent leaves.  If all goes well we can avoid the double split
3874  * completely.
3875  */
3876 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3877 					  struct btrfs_root *root,
3878 					  struct btrfs_path *path,
3879 					  int data_size)
3880 {
3881 	int ret;
3882 	int progress = 0;
3883 	int slot;
3884 	u32 nritems;
3885 
3886 	slot = path->slots[0];
3887 
3888 	/*
3889 	 * try to push all the items after our slot into the
3890 	 * right leaf
3891 	 */
3892 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3893 	if (ret < 0)
3894 		return ret;
3895 
3896 	if (ret == 0)
3897 		progress++;
3898 
3899 	nritems = btrfs_header_nritems(path->nodes[0]);
3900 	/*
3901 	 * our goal is to get our slot at the start or end of a leaf.  If
3902 	 * we've done so we're done
3903 	 */
3904 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3905 		return 0;
3906 
3907 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3908 		return 0;
3909 
3910 	/* try to push all the items before our slot into the next leaf */
3911 	slot = path->slots[0];
3912 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3913 	if (ret < 0)
3914 		return ret;
3915 
3916 	if (ret == 0)
3917 		progress++;
3918 
3919 	if (progress)
3920 		return 0;
3921 	return 1;
3922 }
3923 
3924 /*
3925  * split the path's leaf in two, making sure there is at least data_size
3926  * available for the resulting leaf level of the path.
3927  *
3928  * returns 0 if all went well and < 0 on failure.
3929  */
3930 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3931 			       struct btrfs_root *root,
3932 			       struct btrfs_key *ins_key,
3933 			       struct btrfs_path *path, int data_size,
3934 			       int extend)
3935 {
3936 	struct btrfs_disk_key disk_key;
3937 	struct extent_buffer *l;
3938 	u32 nritems;
3939 	int mid;
3940 	int slot;
3941 	struct extent_buffer *right;
3942 	int ret = 0;
3943 	int wret;
3944 	int split;
3945 	int num_doubles = 0;
3946 	int tried_avoid_double = 0;
3947 
3948 	l = path->nodes[0];
3949 	slot = path->slots[0];
3950 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3951 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3952 		return -EOVERFLOW;
3953 
3954 	/* first try to make some room by pushing left and right */
3955 	if (data_size && path->nodes[1]) {
3956 		wret = push_leaf_right(trans, root, path, data_size,
3957 				       data_size, 0, 0);
3958 		if (wret < 0)
3959 			return wret;
3960 		if (wret) {
3961 			wret = push_leaf_left(trans, root, path, data_size,
3962 					      data_size, 0, (u32)-1);
3963 			if (wret < 0)
3964 				return wret;
3965 		}
3966 		l = path->nodes[0];
3967 
3968 		/* did the pushes work? */
3969 		if (btrfs_leaf_free_space(root, l) >= data_size)
3970 			return 0;
3971 	}
3972 
3973 	if (!path->nodes[1]) {
3974 		ret = insert_new_root(trans, root, path, 1);
3975 		if (ret)
3976 			return ret;
3977 	}
3978 again:
3979 	split = 1;
3980 	l = path->nodes[0];
3981 	slot = path->slots[0];
3982 	nritems = btrfs_header_nritems(l);
3983 	mid = (nritems + 1) / 2;
3984 
3985 	if (mid <= slot) {
3986 		if (nritems == 1 ||
3987 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3988 			BTRFS_LEAF_DATA_SIZE(root)) {
3989 			if (slot >= nritems) {
3990 				split = 0;
3991 			} else {
3992 				mid = slot;
3993 				if (mid != nritems &&
3994 				    leaf_space_used(l, mid, nritems - mid) +
3995 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3996 					if (data_size && !tried_avoid_double)
3997 						goto push_for_double;
3998 					split = 2;
3999 				}
4000 			}
4001 		}
4002 	} else {
4003 		if (leaf_space_used(l, 0, mid) + data_size >
4004 			BTRFS_LEAF_DATA_SIZE(root)) {
4005 			if (!extend && data_size && slot == 0) {
4006 				split = 0;
4007 			} else if ((extend || !data_size) && slot == 0) {
4008 				mid = 1;
4009 			} else {
4010 				mid = slot;
4011 				if (mid != nritems &&
4012 				    leaf_space_used(l, mid, nritems - mid) +
4013 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4014 					if (data_size && !tried_avoid_double)
4015 						goto push_for_double;
4016 					split = 2 ;
4017 				}
4018 			}
4019 		}
4020 	}
4021 
4022 	if (split == 0)
4023 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4024 	else
4025 		btrfs_item_key(l, &disk_key, mid);
4026 
4027 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4028 					root->root_key.objectid,
4029 					&disk_key, 0, l->start, 0);
4030 	if (IS_ERR(right))
4031 		return PTR_ERR(right);
4032 
4033 	root_add_used(root, root->leafsize);
4034 
4035 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4036 	btrfs_set_header_bytenr(right, right->start);
4037 	btrfs_set_header_generation(right, trans->transid);
4038 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4039 	btrfs_set_header_owner(right, root->root_key.objectid);
4040 	btrfs_set_header_level(right, 0);
4041 	write_extent_buffer(right, root->fs_info->fsid,
4042 			    btrfs_header_fsid(right), BTRFS_FSID_SIZE);
4043 
4044 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4045 			    btrfs_header_chunk_tree_uuid(right),
4046 			    BTRFS_UUID_SIZE);
4047 
4048 	if (split == 0) {
4049 		if (mid <= slot) {
4050 			btrfs_set_header_nritems(right, 0);
4051 			insert_ptr(trans, root, path, &disk_key, right->start,
4052 				   path->slots[1] + 1, 1);
4053 			btrfs_tree_unlock(path->nodes[0]);
4054 			free_extent_buffer(path->nodes[0]);
4055 			path->nodes[0] = right;
4056 			path->slots[0] = 0;
4057 			path->slots[1] += 1;
4058 		} else {
4059 			btrfs_set_header_nritems(right, 0);
4060 			insert_ptr(trans, root, path, &disk_key, right->start,
4061 					  path->slots[1], 1);
4062 			btrfs_tree_unlock(path->nodes[0]);
4063 			free_extent_buffer(path->nodes[0]);
4064 			path->nodes[0] = right;
4065 			path->slots[0] = 0;
4066 			if (path->slots[1] == 0)
4067 				fixup_low_keys(root, path, &disk_key, 1);
4068 		}
4069 		btrfs_mark_buffer_dirty(right);
4070 		return ret;
4071 	}
4072 
4073 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4074 
4075 	if (split == 2) {
4076 		BUG_ON(num_doubles != 0);
4077 		num_doubles++;
4078 		goto again;
4079 	}
4080 
4081 	return 0;
4082 
4083 push_for_double:
4084 	push_for_double_split(trans, root, path, data_size);
4085 	tried_avoid_double = 1;
4086 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4087 		return 0;
4088 	goto again;
4089 }
4090 
4091 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4092 					 struct btrfs_root *root,
4093 					 struct btrfs_path *path, int ins_len)
4094 {
4095 	struct btrfs_key key;
4096 	struct extent_buffer *leaf;
4097 	struct btrfs_file_extent_item *fi;
4098 	u64 extent_len = 0;
4099 	u32 item_size;
4100 	int ret;
4101 
4102 	leaf = path->nodes[0];
4103 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4104 
4105 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4106 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4107 
4108 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4109 		return 0;
4110 
4111 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4112 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4113 		fi = btrfs_item_ptr(leaf, path->slots[0],
4114 				    struct btrfs_file_extent_item);
4115 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4116 	}
4117 	btrfs_release_path(path);
4118 
4119 	path->keep_locks = 1;
4120 	path->search_for_split = 1;
4121 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4122 	path->search_for_split = 0;
4123 	if (ret < 0)
4124 		goto err;
4125 
4126 	ret = -EAGAIN;
4127 	leaf = path->nodes[0];
4128 	/* if our item isn't there or got smaller, return now */
4129 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4130 		goto err;
4131 
4132 	/* the leaf has  changed, it now has room.  return now */
4133 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4134 		goto err;
4135 
4136 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4137 		fi = btrfs_item_ptr(leaf, path->slots[0],
4138 				    struct btrfs_file_extent_item);
4139 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4140 			goto err;
4141 	}
4142 
4143 	btrfs_set_path_blocking(path);
4144 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4145 	if (ret)
4146 		goto err;
4147 
4148 	path->keep_locks = 0;
4149 	btrfs_unlock_up_safe(path, 1);
4150 	return 0;
4151 err:
4152 	path->keep_locks = 0;
4153 	return ret;
4154 }
4155 
4156 static noinline int split_item(struct btrfs_trans_handle *trans,
4157 			       struct btrfs_root *root,
4158 			       struct btrfs_path *path,
4159 			       struct btrfs_key *new_key,
4160 			       unsigned long split_offset)
4161 {
4162 	struct extent_buffer *leaf;
4163 	struct btrfs_item *item;
4164 	struct btrfs_item *new_item;
4165 	int slot;
4166 	char *buf;
4167 	u32 nritems;
4168 	u32 item_size;
4169 	u32 orig_offset;
4170 	struct btrfs_disk_key disk_key;
4171 
4172 	leaf = path->nodes[0];
4173 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4174 
4175 	btrfs_set_path_blocking(path);
4176 
4177 	item = btrfs_item_nr(leaf, path->slots[0]);
4178 	orig_offset = btrfs_item_offset(leaf, item);
4179 	item_size = btrfs_item_size(leaf, item);
4180 
4181 	buf = kmalloc(item_size, GFP_NOFS);
4182 	if (!buf)
4183 		return -ENOMEM;
4184 
4185 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4186 			    path->slots[0]), item_size);
4187 
4188 	slot = path->slots[0] + 1;
4189 	nritems = btrfs_header_nritems(leaf);
4190 	if (slot != nritems) {
4191 		/* shift the items */
4192 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4193 				btrfs_item_nr_offset(slot),
4194 				(nritems - slot) * sizeof(struct btrfs_item));
4195 	}
4196 
4197 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4198 	btrfs_set_item_key(leaf, &disk_key, slot);
4199 
4200 	new_item = btrfs_item_nr(leaf, slot);
4201 
4202 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4203 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4204 
4205 	btrfs_set_item_offset(leaf, item,
4206 			      orig_offset + item_size - split_offset);
4207 	btrfs_set_item_size(leaf, item, split_offset);
4208 
4209 	btrfs_set_header_nritems(leaf, nritems + 1);
4210 
4211 	/* write the data for the start of the original item */
4212 	write_extent_buffer(leaf, buf,
4213 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4214 			    split_offset);
4215 
4216 	/* write the data for the new item */
4217 	write_extent_buffer(leaf, buf + split_offset,
4218 			    btrfs_item_ptr_offset(leaf, slot),
4219 			    item_size - split_offset);
4220 	btrfs_mark_buffer_dirty(leaf);
4221 
4222 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4223 	kfree(buf);
4224 	return 0;
4225 }
4226 
4227 /*
4228  * This function splits a single item into two items,
4229  * giving 'new_key' to the new item and splitting the
4230  * old one at split_offset (from the start of the item).
4231  *
4232  * The path may be released by this operation.  After
4233  * the split, the path is pointing to the old item.  The
4234  * new item is going to be in the same node as the old one.
4235  *
4236  * Note, the item being split must be smaller enough to live alone on
4237  * a tree block with room for one extra struct btrfs_item
4238  *
4239  * This allows us to split the item in place, keeping a lock on the
4240  * leaf the entire time.
4241  */
4242 int btrfs_split_item(struct btrfs_trans_handle *trans,
4243 		     struct btrfs_root *root,
4244 		     struct btrfs_path *path,
4245 		     struct btrfs_key *new_key,
4246 		     unsigned long split_offset)
4247 {
4248 	int ret;
4249 	ret = setup_leaf_for_split(trans, root, path,
4250 				   sizeof(struct btrfs_item));
4251 	if (ret)
4252 		return ret;
4253 
4254 	ret = split_item(trans, root, path, new_key, split_offset);
4255 	return ret;
4256 }
4257 
4258 /*
4259  * This function duplicate a item, giving 'new_key' to the new item.
4260  * It guarantees both items live in the same tree leaf and the new item
4261  * is contiguous with the original item.
4262  *
4263  * This allows us to split file extent in place, keeping a lock on the
4264  * leaf the entire time.
4265  */
4266 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4267 			 struct btrfs_root *root,
4268 			 struct btrfs_path *path,
4269 			 struct btrfs_key *new_key)
4270 {
4271 	struct extent_buffer *leaf;
4272 	int ret;
4273 	u32 item_size;
4274 
4275 	leaf = path->nodes[0];
4276 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4277 	ret = setup_leaf_for_split(trans, root, path,
4278 				   item_size + sizeof(struct btrfs_item));
4279 	if (ret)
4280 		return ret;
4281 
4282 	path->slots[0]++;
4283 	setup_items_for_insert(root, path, new_key, &item_size,
4284 			       item_size, item_size +
4285 			       sizeof(struct btrfs_item), 1);
4286 	leaf = path->nodes[0];
4287 	memcpy_extent_buffer(leaf,
4288 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4289 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4290 			     item_size);
4291 	return 0;
4292 }
4293 
4294 /*
4295  * make the item pointed to by the path smaller.  new_size indicates
4296  * how small to make it, and from_end tells us if we just chop bytes
4297  * off the end of the item or if we shift the item to chop bytes off
4298  * the front.
4299  */
4300 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4301 			 u32 new_size, int from_end)
4302 {
4303 	int slot;
4304 	struct extent_buffer *leaf;
4305 	struct btrfs_item *item;
4306 	u32 nritems;
4307 	unsigned int data_end;
4308 	unsigned int old_data_start;
4309 	unsigned int old_size;
4310 	unsigned int size_diff;
4311 	int i;
4312 	struct btrfs_map_token token;
4313 
4314 	btrfs_init_map_token(&token);
4315 
4316 	leaf = path->nodes[0];
4317 	slot = path->slots[0];
4318 
4319 	old_size = btrfs_item_size_nr(leaf, slot);
4320 	if (old_size == new_size)
4321 		return;
4322 
4323 	nritems = btrfs_header_nritems(leaf);
4324 	data_end = leaf_data_end(root, leaf);
4325 
4326 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4327 
4328 	size_diff = old_size - new_size;
4329 
4330 	BUG_ON(slot < 0);
4331 	BUG_ON(slot >= nritems);
4332 
4333 	/*
4334 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4335 	 */
4336 	/* first correct the data pointers */
4337 	for (i = slot; i < nritems; i++) {
4338 		u32 ioff;
4339 		item = btrfs_item_nr(leaf, i);
4340 
4341 		ioff = btrfs_token_item_offset(leaf, item, &token);
4342 		btrfs_set_token_item_offset(leaf, item,
4343 					    ioff + size_diff, &token);
4344 	}
4345 
4346 	/* shift the data */
4347 	if (from_end) {
4348 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4349 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4350 			      data_end, old_data_start + new_size - data_end);
4351 	} else {
4352 		struct btrfs_disk_key disk_key;
4353 		u64 offset;
4354 
4355 		btrfs_item_key(leaf, &disk_key, slot);
4356 
4357 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4358 			unsigned long ptr;
4359 			struct btrfs_file_extent_item *fi;
4360 
4361 			fi = btrfs_item_ptr(leaf, slot,
4362 					    struct btrfs_file_extent_item);
4363 			fi = (struct btrfs_file_extent_item *)(
4364 			     (unsigned long)fi - size_diff);
4365 
4366 			if (btrfs_file_extent_type(leaf, fi) ==
4367 			    BTRFS_FILE_EXTENT_INLINE) {
4368 				ptr = btrfs_item_ptr_offset(leaf, slot);
4369 				memmove_extent_buffer(leaf, ptr,
4370 				      (unsigned long)fi,
4371 				      offsetof(struct btrfs_file_extent_item,
4372 						 disk_bytenr));
4373 			}
4374 		}
4375 
4376 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4377 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4378 			      data_end, old_data_start - data_end);
4379 
4380 		offset = btrfs_disk_key_offset(&disk_key);
4381 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4382 		btrfs_set_item_key(leaf, &disk_key, slot);
4383 		if (slot == 0)
4384 			fixup_low_keys(root, path, &disk_key, 1);
4385 	}
4386 
4387 	item = btrfs_item_nr(leaf, slot);
4388 	btrfs_set_item_size(leaf, item, new_size);
4389 	btrfs_mark_buffer_dirty(leaf);
4390 
4391 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4392 		btrfs_print_leaf(root, leaf);
4393 		BUG();
4394 	}
4395 }
4396 
4397 /*
4398  * make the item pointed to by the path bigger, data_size is the added size.
4399  */
4400 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4401 		       u32 data_size)
4402 {
4403 	int slot;
4404 	struct extent_buffer *leaf;
4405 	struct btrfs_item *item;
4406 	u32 nritems;
4407 	unsigned int data_end;
4408 	unsigned int old_data;
4409 	unsigned int old_size;
4410 	int i;
4411 	struct btrfs_map_token token;
4412 
4413 	btrfs_init_map_token(&token);
4414 
4415 	leaf = path->nodes[0];
4416 
4417 	nritems = btrfs_header_nritems(leaf);
4418 	data_end = leaf_data_end(root, leaf);
4419 
4420 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4421 		btrfs_print_leaf(root, leaf);
4422 		BUG();
4423 	}
4424 	slot = path->slots[0];
4425 	old_data = btrfs_item_end_nr(leaf, slot);
4426 
4427 	BUG_ON(slot < 0);
4428 	if (slot >= nritems) {
4429 		btrfs_print_leaf(root, leaf);
4430 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
4431 		       slot, nritems);
4432 		BUG_ON(1);
4433 	}
4434 
4435 	/*
4436 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4437 	 */
4438 	/* first correct the data pointers */
4439 	for (i = slot; i < nritems; i++) {
4440 		u32 ioff;
4441 		item = btrfs_item_nr(leaf, i);
4442 
4443 		ioff = btrfs_token_item_offset(leaf, item, &token);
4444 		btrfs_set_token_item_offset(leaf, item,
4445 					    ioff - data_size, &token);
4446 	}
4447 
4448 	/* shift the data */
4449 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4450 		      data_end - data_size, btrfs_leaf_data(leaf) +
4451 		      data_end, old_data - data_end);
4452 
4453 	data_end = old_data;
4454 	old_size = btrfs_item_size_nr(leaf, slot);
4455 	item = btrfs_item_nr(leaf, slot);
4456 	btrfs_set_item_size(leaf, item, old_size + data_size);
4457 	btrfs_mark_buffer_dirty(leaf);
4458 
4459 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4460 		btrfs_print_leaf(root, leaf);
4461 		BUG();
4462 	}
4463 }
4464 
4465 /*
4466  * this is a helper for btrfs_insert_empty_items, the main goal here is
4467  * to save stack depth by doing the bulk of the work in a function
4468  * that doesn't call btrfs_search_slot
4469  */
4470 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4471 			    struct btrfs_key *cpu_key, u32 *data_size,
4472 			    u32 total_data, u32 total_size, int nr)
4473 {
4474 	struct btrfs_item *item;
4475 	int i;
4476 	u32 nritems;
4477 	unsigned int data_end;
4478 	struct btrfs_disk_key disk_key;
4479 	struct extent_buffer *leaf;
4480 	int slot;
4481 	struct btrfs_map_token token;
4482 
4483 	btrfs_init_map_token(&token);
4484 
4485 	leaf = path->nodes[0];
4486 	slot = path->slots[0];
4487 
4488 	nritems = btrfs_header_nritems(leaf);
4489 	data_end = leaf_data_end(root, leaf);
4490 
4491 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4492 		btrfs_print_leaf(root, leaf);
4493 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
4494 		       total_size, btrfs_leaf_free_space(root, leaf));
4495 		BUG();
4496 	}
4497 
4498 	if (slot != nritems) {
4499 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4500 
4501 		if (old_data < data_end) {
4502 			btrfs_print_leaf(root, leaf);
4503 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4504 			       slot, old_data, data_end);
4505 			BUG_ON(1);
4506 		}
4507 		/*
4508 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4509 		 */
4510 		/* first correct the data pointers */
4511 		for (i = slot; i < nritems; i++) {
4512 			u32 ioff;
4513 
4514 			item = btrfs_item_nr(leaf, i);
4515 			ioff = btrfs_token_item_offset(leaf, item, &token);
4516 			btrfs_set_token_item_offset(leaf, item,
4517 						    ioff - total_data, &token);
4518 		}
4519 		/* shift the items */
4520 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4521 			      btrfs_item_nr_offset(slot),
4522 			      (nritems - slot) * sizeof(struct btrfs_item));
4523 
4524 		/* shift the data */
4525 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4526 			      data_end - total_data, btrfs_leaf_data(leaf) +
4527 			      data_end, old_data - data_end);
4528 		data_end = old_data;
4529 	}
4530 
4531 	/* setup the item for the new data */
4532 	for (i = 0; i < nr; i++) {
4533 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4534 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4535 		item = btrfs_item_nr(leaf, slot + i);
4536 		btrfs_set_token_item_offset(leaf, item,
4537 					    data_end - data_size[i], &token);
4538 		data_end -= data_size[i];
4539 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4540 	}
4541 
4542 	btrfs_set_header_nritems(leaf, nritems + nr);
4543 
4544 	if (slot == 0) {
4545 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4546 		fixup_low_keys(root, path, &disk_key, 1);
4547 	}
4548 	btrfs_unlock_up_safe(path, 1);
4549 	btrfs_mark_buffer_dirty(leaf);
4550 
4551 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4552 		btrfs_print_leaf(root, leaf);
4553 		BUG();
4554 	}
4555 }
4556 
4557 /*
4558  * Given a key and some data, insert items into the tree.
4559  * This does all the path init required, making room in the tree if needed.
4560  */
4561 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4562 			    struct btrfs_root *root,
4563 			    struct btrfs_path *path,
4564 			    struct btrfs_key *cpu_key, u32 *data_size,
4565 			    int nr)
4566 {
4567 	int ret = 0;
4568 	int slot;
4569 	int i;
4570 	u32 total_size = 0;
4571 	u32 total_data = 0;
4572 
4573 	for (i = 0; i < nr; i++)
4574 		total_data += data_size[i];
4575 
4576 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4577 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4578 	if (ret == 0)
4579 		return -EEXIST;
4580 	if (ret < 0)
4581 		return ret;
4582 
4583 	slot = path->slots[0];
4584 	BUG_ON(slot < 0);
4585 
4586 	setup_items_for_insert(root, path, cpu_key, data_size,
4587 			       total_data, total_size, nr);
4588 	return 0;
4589 }
4590 
4591 /*
4592  * Given a key and some data, insert an item into the tree.
4593  * This does all the path init required, making room in the tree if needed.
4594  */
4595 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4596 		      *root, struct btrfs_key *cpu_key, void *data, u32
4597 		      data_size)
4598 {
4599 	int ret = 0;
4600 	struct btrfs_path *path;
4601 	struct extent_buffer *leaf;
4602 	unsigned long ptr;
4603 
4604 	path = btrfs_alloc_path();
4605 	if (!path)
4606 		return -ENOMEM;
4607 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4608 	if (!ret) {
4609 		leaf = path->nodes[0];
4610 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4611 		write_extent_buffer(leaf, data, ptr, data_size);
4612 		btrfs_mark_buffer_dirty(leaf);
4613 	}
4614 	btrfs_free_path(path);
4615 	return ret;
4616 }
4617 
4618 /*
4619  * delete the pointer from a given node.
4620  *
4621  * the tree should have been previously balanced so the deletion does not
4622  * empty a node.
4623  */
4624 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4625 		    int level, int slot)
4626 {
4627 	struct extent_buffer *parent = path->nodes[level];
4628 	u32 nritems;
4629 	int ret;
4630 
4631 	nritems = btrfs_header_nritems(parent);
4632 	if (slot != nritems - 1) {
4633 		if (level)
4634 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4635 					     slot + 1, nritems - slot - 1);
4636 		memmove_extent_buffer(parent,
4637 			      btrfs_node_key_ptr_offset(slot),
4638 			      btrfs_node_key_ptr_offset(slot + 1),
4639 			      sizeof(struct btrfs_key_ptr) *
4640 			      (nritems - slot - 1));
4641 	} else if (level) {
4642 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4643 					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4644 		BUG_ON(ret < 0);
4645 	}
4646 
4647 	nritems--;
4648 	btrfs_set_header_nritems(parent, nritems);
4649 	if (nritems == 0 && parent == root->node) {
4650 		BUG_ON(btrfs_header_level(root->node) != 1);
4651 		/* just turn the root into a leaf and break */
4652 		btrfs_set_header_level(root->node, 0);
4653 	} else if (slot == 0) {
4654 		struct btrfs_disk_key disk_key;
4655 
4656 		btrfs_node_key(parent, &disk_key, 0);
4657 		fixup_low_keys(root, path, &disk_key, level + 1);
4658 	}
4659 	btrfs_mark_buffer_dirty(parent);
4660 }
4661 
4662 /*
4663  * a helper function to delete the leaf pointed to by path->slots[1] and
4664  * path->nodes[1].
4665  *
4666  * This deletes the pointer in path->nodes[1] and frees the leaf
4667  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4668  *
4669  * The path must have already been setup for deleting the leaf, including
4670  * all the proper balancing.  path->nodes[1] must be locked.
4671  */
4672 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4673 				    struct btrfs_root *root,
4674 				    struct btrfs_path *path,
4675 				    struct extent_buffer *leaf)
4676 {
4677 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4678 	del_ptr(root, path, 1, path->slots[1]);
4679 
4680 	/*
4681 	 * btrfs_free_extent is expensive, we want to make sure we
4682 	 * aren't holding any locks when we call it
4683 	 */
4684 	btrfs_unlock_up_safe(path, 0);
4685 
4686 	root_sub_used(root, leaf->len);
4687 
4688 	extent_buffer_get(leaf);
4689 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4690 	free_extent_buffer_stale(leaf);
4691 }
4692 /*
4693  * delete the item at the leaf level in path.  If that empties
4694  * the leaf, remove it from the tree
4695  */
4696 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4697 		    struct btrfs_path *path, int slot, int nr)
4698 {
4699 	struct extent_buffer *leaf;
4700 	struct btrfs_item *item;
4701 	int last_off;
4702 	int dsize = 0;
4703 	int ret = 0;
4704 	int wret;
4705 	int i;
4706 	u32 nritems;
4707 	struct btrfs_map_token token;
4708 
4709 	btrfs_init_map_token(&token);
4710 
4711 	leaf = path->nodes[0];
4712 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4713 
4714 	for (i = 0; i < nr; i++)
4715 		dsize += btrfs_item_size_nr(leaf, slot + i);
4716 
4717 	nritems = btrfs_header_nritems(leaf);
4718 
4719 	if (slot + nr != nritems) {
4720 		int data_end = leaf_data_end(root, leaf);
4721 
4722 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4723 			      data_end + dsize,
4724 			      btrfs_leaf_data(leaf) + data_end,
4725 			      last_off - data_end);
4726 
4727 		for (i = slot + nr; i < nritems; i++) {
4728 			u32 ioff;
4729 
4730 			item = btrfs_item_nr(leaf, i);
4731 			ioff = btrfs_token_item_offset(leaf, item, &token);
4732 			btrfs_set_token_item_offset(leaf, item,
4733 						    ioff + dsize, &token);
4734 		}
4735 
4736 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4737 			      btrfs_item_nr_offset(slot + nr),
4738 			      sizeof(struct btrfs_item) *
4739 			      (nritems - slot - nr));
4740 	}
4741 	btrfs_set_header_nritems(leaf, nritems - nr);
4742 	nritems -= nr;
4743 
4744 	/* delete the leaf if we've emptied it */
4745 	if (nritems == 0) {
4746 		if (leaf == root->node) {
4747 			btrfs_set_header_level(leaf, 0);
4748 		} else {
4749 			btrfs_set_path_blocking(path);
4750 			clean_tree_block(trans, root, leaf);
4751 			btrfs_del_leaf(trans, root, path, leaf);
4752 		}
4753 	} else {
4754 		int used = leaf_space_used(leaf, 0, nritems);
4755 		if (slot == 0) {
4756 			struct btrfs_disk_key disk_key;
4757 
4758 			btrfs_item_key(leaf, &disk_key, 0);
4759 			fixup_low_keys(root, path, &disk_key, 1);
4760 		}
4761 
4762 		/* delete the leaf if it is mostly empty */
4763 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4764 			/* push_leaf_left fixes the path.
4765 			 * make sure the path still points to our leaf
4766 			 * for possible call to del_ptr below
4767 			 */
4768 			slot = path->slots[1];
4769 			extent_buffer_get(leaf);
4770 
4771 			btrfs_set_path_blocking(path);
4772 			wret = push_leaf_left(trans, root, path, 1, 1,
4773 					      1, (u32)-1);
4774 			if (wret < 0 && wret != -ENOSPC)
4775 				ret = wret;
4776 
4777 			if (path->nodes[0] == leaf &&
4778 			    btrfs_header_nritems(leaf)) {
4779 				wret = push_leaf_right(trans, root, path, 1,
4780 						       1, 1, 0);
4781 				if (wret < 0 && wret != -ENOSPC)
4782 					ret = wret;
4783 			}
4784 
4785 			if (btrfs_header_nritems(leaf) == 0) {
4786 				path->slots[1] = slot;
4787 				btrfs_del_leaf(trans, root, path, leaf);
4788 				free_extent_buffer(leaf);
4789 				ret = 0;
4790 			} else {
4791 				/* if we're still in the path, make sure
4792 				 * we're dirty.  Otherwise, one of the
4793 				 * push_leaf functions must have already
4794 				 * dirtied this buffer
4795 				 */
4796 				if (path->nodes[0] == leaf)
4797 					btrfs_mark_buffer_dirty(leaf);
4798 				free_extent_buffer(leaf);
4799 			}
4800 		} else {
4801 			btrfs_mark_buffer_dirty(leaf);
4802 		}
4803 	}
4804 	return ret;
4805 }
4806 
4807 /*
4808  * search the tree again to find a leaf with lesser keys
4809  * returns 0 if it found something or 1 if there are no lesser leaves.
4810  * returns < 0 on io errors.
4811  *
4812  * This may release the path, and so you may lose any locks held at the
4813  * time you call it.
4814  */
4815 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4816 {
4817 	struct btrfs_key key;
4818 	struct btrfs_disk_key found_key;
4819 	int ret;
4820 
4821 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4822 
4823 	if (key.offset > 0)
4824 		key.offset--;
4825 	else if (key.type > 0)
4826 		key.type--;
4827 	else if (key.objectid > 0)
4828 		key.objectid--;
4829 	else
4830 		return 1;
4831 
4832 	btrfs_release_path(path);
4833 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4834 	if (ret < 0)
4835 		return ret;
4836 	btrfs_item_key(path->nodes[0], &found_key, 0);
4837 	ret = comp_keys(&found_key, &key);
4838 	if (ret < 0)
4839 		return 0;
4840 	return 1;
4841 }
4842 
4843 /*
4844  * A helper function to walk down the tree starting at min_key, and looking
4845  * for nodes or leaves that are have a minimum transaction id.
4846  * This is used by the btree defrag code, and tree logging
4847  *
4848  * This does not cow, but it does stuff the starting key it finds back
4849  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4850  * key and get a writable path.
4851  *
4852  * This does lock as it descends, and path->keep_locks should be set
4853  * to 1 by the caller.
4854  *
4855  * This honors path->lowest_level to prevent descent past a given level
4856  * of the tree.
4857  *
4858  * min_trans indicates the oldest transaction that you are interested
4859  * in walking through.  Any nodes or leaves older than min_trans are
4860  * skipped over (without reading them).
4861  *
4862  * returns zero if something useful was found, < 0 on error and 1 if there
4863  * was nothing in the tree that matched the search criteria.
4864  */
4865 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4866 			 struct btrfs_key *max_key,
4867 			 struct btrfs_path *path,
4868 			 u64 min_trans)
4869 {
4870 	struct extent_buffer *cur;
4871 	struct btrfs_key found_key;
4872 	int slot;
4873 	int sret;
4874 	u32 nritems;
4875 	int level;
4876 	int ret = 1;
4877 
4878 	WARN_ON(!path->keep_locks);
4879 again:
4880 	cur = btrfs_read_lock_root_node(root);
4881 	level = btrfs_header_level(cur);
4882 	WARN_ON(path->nodes[level]);
4883 	path->nodes[level] = cur;
4884 	path->locks[level] = BTRFS_READ_LOCK;
4885 
4886 	if (btrfs_header_generation(cur) < min_trans) {
4887 		ret = 1;
4888 		goto out;
4889 	}
4890 	while (1) {
4891 		nritems = btrfs_header_nritems(cur);
4892 		level = btrfs_header_level(cur);
4893 		sret = bin_search(cur, min_key, level, &slot);
4894 
4895 		/* at the lowest level, we're done, setup the path and exit */
4896 		if (level == path->lowest_level) {
4897 			if (slot >= nritems)
4898 				goto find_next_key;
4899 			ret = 0;
4900 			path->slots[level] = slot;
4901 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4902 			goto out;
4903 		}
4904 		if (sret && slot > 0)
4905 			slot--;
4906 		/*
4907 		 * check this node pointer against the min_trans parameters.
4908 		 * If it is too old, old, skip to the next one.
4909 		 */
4910 		while (slot < nritems) {
4911 			u64 blockptr;
4912 			u64 gen;
4913 
4914 			blockptr = btrfs_node_blockptr(cur, slot);
4915 			gen = btrfs_node_ptr_generation(cur, slot);
4916 			if (gen < min_trans) {
4917 				slot++;
4918 				continue;
4919 			}
4920 			break;
4921 		}
4922 find_next_key:
4923 		/*
4924 		 * we didn't find a candidate key in this node, walk forward
4925 		 * and find another one
4926 		 */
4927 		if (slot >= nritems) {
4928 			path->slots[level] = slot;
4929 			btrfs_set_path_blocking(path);
4930 			sret = btrfs_find_next_key(root, path, min_key, level,
4931 						  min_trans);
4932 			if (sret == 0) {
4933 				btrfs_release_path(path);
4934 				goto again;
4935 			} else {
4936 				goto out;
4937 			}
4938 		}
4939 		/* save our key for returning back */
4940 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4941 		path->slots[level] = slot;
4942 		if (level == path->lowest_level) {
4943 			ret = 0;
4944 			unlock_up(path, level, 1, 0, NULL);
4945 			goto out;
4946 		}
4947 		btrfs_set_path_blocking(path);
4948 		cur = read_node_slot(root, cur, slot);
4949 		BUG_ON(!cur); /* -ENOMEM */
4950 
4951 		btrfs_tree_read_lock(cur);
4952 
4953 		path->locks[level - 1] = BTRFS_READ_LOCK;
4954 		path->nodes[level - 1] = cur;
4955 		unlock_up(path, level, 1, 0, NULL);
4956 		btrfs_clear_path_blocking(path, NULL, 0);
4957 	}
4958 out:
4959 	if (ret == 0)
4960 		memcpy(min_key, &found_key, sizeof(found_key));
4961 	btrfs_set_path_blocking(path);
4962 	return ret;
4963 }
4964 
4965 static void tree_move_down(struct btrfs_root *root,
4966 			   struct btrfs_path *path,
4967 			   int *level, int root_level)
4968 {
4969 	BUG_ON(*level == 0);
4970 	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4971 					path->slots[*level]);
4972 	path->slots[*level - 1] = 0;
4973 	(*level)--;
4974 }
4975 
4976 static int tree_move_next_or_upnext(struct btrfs_root *root,
4977 				    struct btrfs_path *path,
4978 				    int *level, int root_level)
4979 {
4980 	int ret = 0;
4981 	int nritems;
4982 	nritems = btrfs_header_nritems(path->nodes[*level]);
4983 
4984 	path->slots[*level]++;
4985 
4986 	while (path->slots[*level] >= nritems) {
4987 		if (*level == root_level)
4988 			return -1;
4989 
4990 		/* move upnext */
4991 		path->slots[*level] = 0;
4992 		free_extent_buffer(path->nodes[*level]);
4993 		path->nodes[*level] = NULL;
4994 		(*level)++;
4995 		path->slots[*level]++;
4996 
4997 		nritems = btrfs_header_nritems(path->nodes[*level]);
4998 		ret = 1;
4999 	}
5000 	return ret;
5001 }
5002 
5003 /*
5004  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5005  * or down.
5006  */
5007 static int tree_advance(struct btrfs_root *root,
5008 			struct btrfs_path *path,
5009 			int *level, int root_level,
5010 			int allow_down,
5011 			struct btrfs_key *key)
5012 {
5013 	int ret;
5014 
5015 	if (*level == 0 || !allow_down) {
5016 		ret = tree_move_next_or_upnext(root, path, level, root_level);
5017 	} else {
5018 		tree_move_down(root, path, level, root_level);
5019 		ret = 0;
5020 	}
5021 	if (ret >= 0) {
5022 		if (*level == 0)
5023 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5024 					path->slots[*level]);
5025 		else
5026 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5027 					path->slots[*level]);
5028 	}
5029 	return ret;
5030 }
5031 
5032 static int tree_compare_item(struct btrfs_root *left_root,
5033 			     struct btrfs_path *left_path,
5034 			     struct btrfs_path *right_path,
5035 			     char *tmp_buf)
5036 {
5037 	int cmp;
5038 	int len1, len2;
5039 	unsigned long off1, off2;
5040 
5041 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5042 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5043 	if (len1 != len2)
5044 		return 1;
5045 
5046 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5047 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5048 				right_path->slots[0]);
5049 
5050 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5051 
5052 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5053 	if (cmp)
5054 		return 1;
5055 	return 0;
5056 }
5057 
5058 #define ADVANCE 1
5059 #define ADVANCE_ONLY_NEXT -1
5060 
5061 /*
5062  * This function compares two trees and calls the provided callback for
5063  * every changed/new/deleted item it finds.
5064  * If shared tree blocks are encountered, whole subtrees are skipped, making
5065  * the compare pretty fast on snapshotted subvolumes.
5066  *
5067  * This currently works on commit roots only. As commit roots are read only,
5068  * we don't do any locking. The commit roots are protected with transactions.
5069  * Transactions are ended and rejoined when a commit is tried in between.
5070  *
5071  * This function checks for modifications done to the trees while comparing.
5072  * If it detects a change, it aborts immediately.
5073  */
5074 int btrfs_compare_trees(struct btrfs_root *left_root,
5075 			struct btrfs_root *right_root,
5076 			btrfs_changed_cb_t changed_cb, void *ctx)
5077 {
5078 	int ret;
5079 	int cmp;
5080 	struct btrfs_trans_handle *trans = NULL;
5081 	struct btrfs_path *left_path = NULL;
5082 	struct btrfs_path *right_path = NULL;
5083 	struct btrfs_key left_key;
5084 	struct btrfs_key right_key;
5085 	char *tmp_buf = NULL;
5086 	int left_root_level;
5087 	int right_root_level;
5088 	int left_level;
5089 	int right_level;
5090 	int left_end_reached;
5091 	int right_end_reached;
5092 	int advance_left;
5093 	int advance_right;
5094 	u64 left_blockptr;
5095 	u64 right_blockptr;
5096 	u64 left_start_ctransid;
5097 	u64 right_start_ctransid;
5098 	u64 ctransid;
5099 
5100 	left_path = btrfs_alloc_path();
5101 	if (!left_path) {
5102 		ret = -ENOMEM;
5103 		goto out;
5104 	}
5105 	right_path = btrfs_alloc_path();
5106 	if (!right_path) {
5107 		ret = -ENOMEM;
5108 		goto out;
5109 	}
5110 
5111 	tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5112 	if (!tmp_buf) {
5113 		ret = -ENOMEM;
5114 		goto out;
5115 	}
5116 
5117 	left_path->search_commit_root = 1;
5118 	left_path->skip_locking = 1;
5119 	right_path->search_commit_root = 1;
5120 	right_path->skip_locking = 1;
5121 
5122 	spin_lock(&left_root->root_item_lock);
5123 	left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5124 	spin_unlock(&left_root->root_item_lock);
5125 
5126 	spin_lock(&right_root->root_item_lock);
5127 	right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5128 	spin_unlock(&right_root->root_item_lock);
5129 
5130 	trans = btrfs_join_transaction(left_root);
5131 	if (IS_ERR(trans)) {
5132 		ret = PTR_ERR(trans);
5133 		trans = NULL;
5134 		goto out;
5135 	}
5136 
5137 	/*
5138 	 * Strategy: Go to the first items of both trees. Then do
5139 	 *
5140 	 * If both trees are at level 0
5141 	 *   Compare keys of current items
5142 	 *     If left < right treat left item as new, advance left tree
5143 	 *       and repeat
5144 	 *     If left > right treat right item as deleted, advance right tree
5145 	 *       and repeat
5146 	 *     If left == right do deep compare of items, treat as changed if
5147 	 *       needed, advance both trees and repeat
5148 	 * If both trees are at the same level but not at level 0
5149 	 *   Compare keys of current nodes/leafs
5150 	 *     If left < right advance left tree and repeat
5151 	 *     If left > right advance right tree and repeat
5152 	 *     If left == right compare blockptrs of the next nodes/leafs
5153 	 *       If they match advance both trees but stay at the same level
5154 	 *         and repeat
5155 	 *       If they don't match advance both trees while allowing to go
5156 	 *         deeper and repeat
5157 	 * If tree levels are different
5158 	 *   Advance the tree that needs it and repeat
5159 	 *
5160 	 * Advancing a tree means:
5161 	 *   If we are at level 0, try to go to the next slot. If that's not
5162 	 *   possible, go one level up and repeat. Stop when we found a level
5163 	 *   where we could go to the next slot. We may at this point be on a
5164 	 *   node or a leaf.
5165 	 *
5166 	 *   If we are not at level 0 and not on shared tree blocks, go one
5167 	 *   level deeper.
5168 	 *
5169 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5170 	 *   the right if possible or go up and right.
5171 	 */
5172 
5173 	left_level = btrfs_header_level(left_root->commit_root);
5174 	left_root_level = left_level;
5175 	left_path->nodes[left_level] = left_root->commit_root;
5176 	extent_buffer_get(left_path->nodes[left_level]);
5177 
5178 	right_level = btrfs_header_level(right_root->commit_root);
5179 	right_root_level = right_level;
5180 	right_path->nodes[right_level] = right_root->commit_root;
5181 	extent_buffer_get(right_path->nodes[right_level]);
5182 
5183 	if (left_level == 0)
5184 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5185 				&left_key, left_path->slots[left_level]);
5186 	else
5187 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5188 				&left_key, left_path->slots[left_level]);
5189 	if (right_level == 0)
5190 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5191 				&right_key, right_path->slots[right_level]);
5192 	else
5193 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5194 				&right_key, right_path->slots[right_level]);
5195 
5196 	left_end_reached = right_end_reached = 0;
5197 	advance_left = advance_right = 0;
5198 
5199 	while (1) {
5200 		/*
5201 		 * We need to make sure the transaction does not get committed
5202 		 * while we do anything on commit roots. This means, we need to
5203 		 * join and leave transactions for every item that we process.
5204 		 */
5205 		if (trans && btrfs_should_end_transaction(trans, left_root)) {
5206 			btrfs_release_path(left_path);
5207 			btrfs_release_path(right_path);
5208 
5209 			ret = btrfs_end_transaction(trans, left_root);
5210 			trans = NULL;
5211 			if (ret < 0)
5212 				goto out;
5213 		}
5214 		/* now rejoin the transaction */
5215 		if (!trans) {
5216 			trans = btrfs_join_transaction(left_root);
5217 			if (IS_ERR(trans)) {
5218 				ret = PTR_ERR(trans);
5219 				trans = NULL;
5220 				goto out;
5221 			}
5222 
5223 			spin_lock(&left_root->root_item_lock);
5224 			ctransid = btrfs_root_ctransid(&left_root->root_item);
5225 			spin_unlock(&left_root->root_item_lock);
5226 			if (ctransid != left_start_ctransid)
5227 				left_start_ctransid = 0;
5228 
5229 			spin_lock(&right_root->root_item_lock);
5230 			ctransid = btrfs_root_ctransid(&right_root->root_item);
5231 			spin_unlock(&right_root->root_item_lock);
5232 			if (ctransid != right_start_ctransid)
5233 				right_start_ctransid = 0;
5234 
5235 			if (!left_start_ctransid || !right_start_ctransid) {
5236 				WARN(1, KERN_WARNING
5237 					"btrfs: btrfs_compare_tree detected "
5238 					"a change in one of the trees while "
5239 					"iterating. This is probably a "
5240 					"bug.\n");
5241 				ret = -EIO;
5242 				goto out;
5243 			}
5244 
5245 			/*
5246 			 * the commit root may have changed, so start again
5247 			 * where we stopped
5248 			 */
5249 			left_path->lowest_level = left_level;
5250 			right_path->lowest_level = right_level;
5251 			ret = btrfs_search_slot(NULL, left_root,
5252 					&left_key, left_path, 0, 0);
5253 			if (ret < 0)
5254 				goto out;
5255 			ret = btrfs_search_slot(NULL, right_root,
5256 					&right_key, right_path, 0, 0);
5257 			if (ret < 0)
5258 				goto out;
5259 		}
5260 
5261 		if (advance_left && !left_end_reached) {
5262 			ret = tree_advance(left_root, left_path, &left_level,
5263 					left_root_level,
5264 					advance_left != ADVANCE_ONLY_NEXT,
5265 					&left_key);
5266 			if (ret < 0)
5267 				left_end_reached = ADVANCE;
5268 			advance_left = 0;
5269 		}
5270 		if (advance_right && !right_end_reached) {
5271 			ret = tree_advance(right_root, right_path, &right_level,
5272 					right_root_level,
5273 					advance_right != ADVANCE_ONLY_NEXT,
5274 					&right_key);
5275 			if (ret < 0)
5276 				right_end_reached = ADVANCE;
5277 			advance_right = 0;
5278 		}
5279 
5280 		if (left_end_reached && right_end_reached) {
5281 			ret = 0;
5282 			goto out;
5283 		} else if (left_end_reached) {
5284 			if (right_level == 0) {
5285 				ret = changed_cb(left_root, right_root,
5286 						left_path, right_path,
5287 						&right_key,
5288 						BTRFS_COMPARE_TREE_DELETED,
5289 						ctx);
5290 				if (ret < 0)
5291 					goto out;
5292 			}
5293 			advance_right = ADVANCE;
5294 			continue;
5295 		} else if (right_end_reached) {
5296 			if (left_level == 0) {
5297 				ret = changed_cb(left_root, right_root,
5298 						left_path, right_path,
5299 						&left_key,
5300 						BTRFS_COMPARE_TREE_NEW,
5301 						ctx);
5302 				if (ret < 0)
5303 					goto out;
5304 			}
5305 			advance_left = ADVANCE;
5306 			continue;
5307 		}
5308 
5309 		if (left_level == 0 && right_level == 0) {
5310 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5311 			if (cmp < 0) {
5312 				ret = changed_cb(left_root, right_root,
5313 						left_path, right_path,
5314 						&left_key,
5315 						BTRFS_COMPARE_TREE_NEW,
5316 						ctx);
5317 				if (ret < 0)
5318 					goto out;
5319 				advance_left = ADVANCE;
5320 			} else if (cmp > 0) {
5321 				ret = changed_cb(left_root, right_root,
5322 						left_path, right_path,
5323 						&right_key,
5324 						BTRFS_COMPARE_TREE_DELETED,
5325 						ctx);
5326 				if (ret < 0)
5327 					goto out;
5328 				advance_right = ADVANCE;
5329 			} else {
5330 				enum btrfs_compare_tree_result cmp;
5331 
5332 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5333 				ret = tree_compare_item(left_root, left_path,
5334 						right_path, tmp_buf);
5335 				if (ret)
5336 					cmp = BTRFS_COMPARE_TREE_CHANGED;
5337 				else
5338 					cmp = BTRFS_COMPARE_TREE_SAME;
5339 				ret = changed_cb(left_root, right_root,
5340 						 left_path, right_path,
5341 						 &left_key, cmp, ctx);
5342 				if (ret < 0)
5343 					goto out;
5344 				advance_left = ADVANCE;
5345 				advance_right = ADVANCE;
5346 			}
5347 		} else if (left_level == right_level) {
5348 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5349 			if (cmp < 0) {
5350 				advance_left = ADVANCE;
5351 			} else if (cmp > 0) {
5352 				advance_right = ADVANCE;
5353 			} else {
5354 				left_blockptr = btrfs_node_blockptr(
5355 						left_path->nodes[left_level],
5356 						left_path->slots[left_level]);
5357 				right_blockptr = btrfs_node_blockptr(
5358 						right_path->nodes[right_level],
5359 						right_path->slots[right_level]);
5360 				if (left_blockptr == right_blockptr) {
5361 					/*
5362 					 * As we're on a shared block, don't
5363 					 * allow to go deeper.
5364 					 */
5365 					advance_left = ADVANCE_ONLY_NEXT;
5366 					advance_right = ADVANCE_ONLY_NEXT;
5367 				} else {
5368 					advance_left = ADVANCE;
5369 					advance_right = ADVANCE;
5370 				}
5371 			}
5372 		} else if (left_level < right_level) {
5373 			advance_right = ADVANCE;
5374 		} else {
5375 			advance_left = ADVANCE;
5376 		}
5377 	}
5378 
5379 out:
5380 	btrfs_free_path(left_path);
5381 	btrfs_free_path(right_path);
5382 	kfree(tmp_buf);
5383 
5384 	if (trans) {
5385 		if (!ret)
5386 			ret = btrfs_end_transaction(trans, left_root);
5387 		else
5388 			btrfs_end_transaction(trans, left_root);
5389 	}
5390 
5391 	return ret;
5392 }
5393 
5394 /*
5395  * this is similar to btrfs_next_leaf, but does not try to preserve
5396  * and fixup the path.  It looks for and returns the next key in the
5397  * tree based on the current path and the min_trans parameters.
5398  *
5399  * 0 is returned if another key is found, < 0 if there are any errors
5400  * and 1 is returned if there are no higher keys in the tree
5401  *
5402  * path->keep_locks should be set to 1 on the search made before
5403  * calling this function.
5404  */
5405 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5406 			struct btrfs_key *key, int level, u64 min_trans)
5407 {
5408 	int slot;
5409 	struct extent_buffer *c;
5410 
5411 	WARN_ON(!path->keep_locks);
5412 	while (level < BTRFS_MAX_LEVEL) {
5413 		if (!path->nodes[level])
5414 			return 1;
5415 
5416 		slot = path->slots[level] + 1;
5417 		c = path->nodes[level];
5418 next:
5419 		if (slot >= btrfs_header_nritems(c)) {
5420 			int ret;
5421 			int orig_lowest;
5422 			struct btrfs_key cur_key;
5423 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5424 			    !path->nodes[level + 1])
5425 				return 1;
5426 
5427 			if (path->locks[level + 1]) {
5428 				level++;
5429 				continue;
5430 			}
5431 
5432 			slot = btrfs_header_nritems(c) - 1;
5433 			if (level == 0)
5434 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5435 			else
5436 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5437 
5438 			orig_lowest = path->lowest_level;
5439 			btrfs_release_path(path);
5440 			path->lowest_level = level;
5441 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5442 						0, 0);
5443 			path->lowest_level = orig_lowest;
5444 			if (ret < 0)
5445 				return ret;
5446 
5447 			c = path->nodes[level];
5448 			slot = path->slots[level];
5449 			if (ret == 0)
5450 				slot++;
5451 			goto next;
5452 		}
5453 
5454 		if (level == 0)
5455 			btrfs_item_key_to_cpu(c, key, slot);
5456 		else {
5457 			u64 gen = btrfs_node_ptr_generation(c, slot);
5458 
5459 			if (gen < min_trans) {
5460 				slot++;
5461 				goto next;
5462 			}
5463 			btrfs_node_key_to_cpu(c, key, slot);
5464 		}
5465 		return 0;
5466 	}
5467 	return 1;
5468 }
5469 
5470 /*
5471  * search the tree again to find a leaf with greater keys
5472  * returns 0 if it found something or 1 if there are no greater leaves.
5473  * returns < 0 on io errors.
5474  */
5475 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5476 {
5477 	return btrfs_next_old_leaf(root, path, 0);
5478 }
5479 
5480 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5481 			u64 time_seq)
5482 {
5483 	int slot;
5484 	int level;
5485 	struct extent_buffer *c;
5486 	struct extent_buffer *next;
5487 	struct btrfs_key key;
5488 	u32 nritems;
5489 	int ret;
5490 	int old_spinning = path->leave_spinning;
5491 	int next_rw_lock = 0;
5492 
5493 	nritems = btrfs_header_nritems(path->nodes[0]);
5494 	if (nritems == 0)
5495 		return 1;
5496 
5497 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5498 again:
5499 	level = 1;
5500 	next = NULL;
5501 	next_rw_lock = 0;
5502 	btrfs_release_path(path);
5503 
5504 	path->keep_locks = 1;
5505 	path->leave_spinning = 1;
5506 
5507 	if (time_seq)
5508 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5509 	else
5510 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5511 	path->keep_locks = 0;
5512 
5513 	if (ret < 0)
5514 		return ret;
5515 
5516 	nritems = btrfs_header_nritems(path->nodes[0]);
5517 	/*
5518 	 * by releasing the path above we dropped all our locks.  A balance
5519 	 * could have added more items next to the key that used to be
5520 	 * at the very end of the block.  So, check again here and
5521 	 * advance the path if there are now more items available.
5522 	 */
5523 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5524 		if (ret == 0)
5525 			path->slots[0]++;
5526 		ret = 0;
5527 		goto done;
5528 	}
5529 
5530 	while (level < BTRFS_MAX_LEVEL) {
5531 		if (!path->nodes[level]) {
5532 			ret = 1;
5533 			goto done;
5534 		}
5535 
5536 		slot = path->slots[level] + 1;
5537 		c = path->nodes[level];
5538 		if (slot >= btrfs_header_nritems(c)) {
5539 			level++;
5540 			if (level == BTRFS_MAX_LEVEL) {
5541 				ret = 1;
5542 				goto done;
5543 			}
5544 			continue;
5545 		}
5546 
5547 		if (next) {
5548 			btrfs_tree_unlock_rw(next, next_rw_lock);
5549 			free_extent_buffer(next);
5550 		}
5551 
5552 		next = c;
5553 		next_rw_lock = path->locks[level];
5554 		ret = read_block_for_search(NULL, root, path, &next, level,
5555 					    slot, &key, 0);
5556 		if (ret == -EAGAIN)
5557 			goto again;
5558 
5559 		if (ret < 0) {
5560 			btrfs_release_path(path);
5561 			goto done;
5562 		}
5563 
5564 		if (!path->skip_locking) {
5565 			ret = btrfs_try_tree_read_lock(next);
5566 			if (!ret && time_seq) {
5567 				/*
5568 				 * If we don't get the lock, we may be racing
5569 				 * with push_leaf_left, holding that lock while
5570 				 * itself waiting for the leaf we've currently
5571 				 * locked. To solve this situation, we give up
5572 				 * on our lock and cycle.
5573 				 */
5574 				free_extent_buffer(next);
5575 				btrfs_release_path(path);
5576 				cond_resched();
5577 				goto again;
5578 			}
5579 			if (!ret) {
5580 				btrfs_set_path_blocking(path);
5581 				btrfs_tree_read_lock(next);
5582 				btrfs_clear_path_blocking(path, next,
5583 							  BTRFS_READ_LOCK);
5584 			}
5585 			next_rw_lock = BTRFS_READ_LOCK;
5586 		}
5587 		break;
5588 	}
5589 	path->slots[level] = slot;
5590 	while (1) {
5591 		level--;
5592 		c = path->nodes[level];
5593 		if (path->locks[level])
5594 			btrfs_tree_unlock_rw(c, path->locks[level]);
5595 
5596 		free_extent_buffer(c);
5597 		path->nodes[level] = next;
5598 		path->slots[level] = 0;
5599 		if (!path->skip_locking)
5600 			path->locks[level] = next_rw_lock;
5601 		if (!level)
5602 			break;
5603 
5604 		ret = read_block_for_search(NULL, root, path, &next, level,
5605 					    0, &key, 0);
5606 		if (ret == -EAGAIN)
5607 			goto again;
5608 
5609 		if (ret < 0) {
5610 			btrfs_release_path(path);
5611 			goto done;
5612 		}
5613 
5614 		if (!path->skip_locking) {
5615 			ret = btrfs_try_tree_read_lock(next);
5616 			if (!ret) {
5617 				btrfs_set_path_blocking(path);
5618 				btrfs_tree_read_lock(next);
5619 				btrfs_clear_path_blocking(path, next,
5620 							  BTRFS_READ_LOCK);
5621 			}
5622 			next_rw_lock = BTRFS_READ_LOCK;
5623 		}
5624 	}
5625 	ret = 0;
5626 done:
5627 	unlock_up(path, 0, 1, 0, NULL);
5628 	path->leave_spinning = old_spinning;
5629 	if (!old_spinning)
5630 		btrfs_set_path_blocking(path);
5631 
5632 	return ret;
5633 }
5634 
5635 /*
5636  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5637  * searching until it gets past min_objectid or finds an item of 'type'
5638  *
5639  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5640  */
5641 int btrfs_previous_item(struct btrfs_root *root,
5642 			struct btrfs_path *path, u64 min_objectid,
5643 			int type)
5644 {
5645 	struct btrfs_key found_key;
5646 	struct extent_buffer *leaf;
5647 	u32 nritems;
5648 	int ret;
5649 
5650 	while (1) {
5651 		if (path->slots[0] == 0) {
5652 			btrfs_set_path_blocking(path);
5653 			ret = btrfs_prev_leaf(root, path);
5654 			if (ret != 0)
5655 				return ret;
5656 		} else {
5657 			path->slots[0]--;
5658 		}
5659 		leaf = path->nodes[0];
5660 		nritems = btrfs_header_nritems(leaf);
5661 		if (nritems == 0)
5662 			return 1;
5663 		if (path->slots[0] == nritems)
5664 			path->slots[0]--;
5665 
5666 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5667 		if (found_key.objectid < min_objectid)
5668 			break;
5669 		if (found_key.type == type)
5670 			return 0;
5671 		if (found_key.objectid == min_objectid &&
5672 		    found_key.type < type)
5673 			break;
5674 	}
5675 	return 1;
5676 }
5677