1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 #include "qgroup.h" 17 #include "tree-mod-log.h" 18 19 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 20 *root, struct btrfs_path *path, int level); 21 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 22 const struct btrfs_key *ins_key, struct btrfs_path *path, 23 int data_size, int extend); 24 static int push_node_left(struct btrfs_trans_handle *trans, 25 struct extent_buffer *dst, 26 struct extent_buffer *src, int empty); 27 static int balance_node_right(struct btrfs_trans_handle *trans, 28 struct extent_buffer *dst_buf, 29 struct extent_buffer *src_buf); 30 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 31 int level, int slot); 32 33 static const struct btrfs_csums { 34 u16 size; 35 const char name[10]; 36 const char driver[12]; 37 } btrfs_csums[] = { 38 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 39 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 40 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 41 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 42 .driver = "blake2b-256" }, 43 }; 44 45 int btrfs_super_csum_size(const struct btrfs_super_block *s) 46 { 47 u16 t = btrfs_super_csum_type(s); 48 /* 49 * csum type is validated at mount time 50 */ 51 return btrfs_csums[t].size; 52 } 53 54 const char *btrfs_super_csum_name(u16 csum_type) 55 { 56 /* csum type is validated at mount time */ 57 return btrfs_csums[csum_type].name; 58 } 59 60 /* 61 * Return driver name if defined, otherwise the name that's also a valid driver 62 * name 63 */ 64 const char *btrfs_super_csum_driver(u16 csum_type) 65 { 66 /* csum type is validated at mount time */ 67 return btrfs_csums[csum_type].driver[0] ? 68 btrfs_csums[csum_type].driver : 69 btrfs_csums[csum_type].name; 70 } 71 72 size_t __attribute_const__ btrfs_get_num_csums(void) 73 { 74 return ARRAY_SIZE(btrfs_csums); 75 } 76 77 struct btrfs_path *btrfs_alloc_path(void) 78 { 79 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 80 } 81 82 /* this also releases the path */ 83 void btrfs_free_path(struct btrfs_path *p) 84 { 85 if (!p) 86 return; 87 btrfs_release_path(p); 88 kmem_cache_free(btrfs_path_cachep, p); 89 } 90 91 /* 92 * path release drops references on the extent buffers in the path 93 * and it drops any locks held by this path 94 * 95 * It is safe to call this on paths that no locks or extent buffers held. 96 */ 97 noinline void btrfs_release_path(struct btrfs_path *p) 98 { 99 int i; 100 101 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 102 p->slots[i] = 0; 103 if (!p->nodes[i]) 104 continue; 105 if (p->locks[i]) { 106 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 107 p->locks[i] = 0; 108 } 109 free_extent_buffer(p->nodes[i]); 110 p->nodes[i] = NULL; 111 } 112 } 113 114 /* 115 * safely gets a reference on the root node of a tree. A lock 116 * is not taken, so a concurrent writer may put a different node 117 * at the root of the tree. See btrfs_lock_root_node for the 118 * looping required. 119 * 120 * The extent buffer returned by this has a reference taken, so 121 * it won't disappear. It may stop being the root of the tree 122 * at any time because there are no locks held. 123 */ 124 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 125 { 126 struct extent_buffer *eb; 127 128 while (1) { 129 rcu_read_lock(); 130 eb = rcu_dereference(root->node); 131 132 /* 133 * RCU really hurts here, we could free up the root node because 134 * it was COWed but we may not get the new root node yet so do 135 * the inc_not_zero dance and if it doesn't work then 136 * synchronize_rcu and try again. 137 */ 138 if (atomic_inc_not_zero(&eb->refs)) { 139 rcu_read_unlock(); 140 break; 141 } 142 rcu_read_unlock(); 143 synchronize_rcu(); 144 } 145 return eb; 146 } 147 148 /* 149 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 150 * just get put onto a simple dirty list. Transaction walks this list to make 151 * sure they get properly updated on disk. 152 */ 153 static void add_root_to_dirty_list(struct btrfs_root *root) 154 { 155 struct btrfs_fs_info *fs_info = root->fs_info; 156 157 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 158 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 159 return; 160 161 spin_lock(&fs_info->trans_lock); 162 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 163 /* Want the extent tree to be the last on the list */ 164 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 165 list_move_tail(&root->dirty_list, 166 &fs_info->dirty_cowonly_roots); 167 else 168 list_move(&root->dirty_list, 169 &fs_info->dirty_cowonly_roots); 170 } 171 spin_unlock(&fs_info->trans_lock); 172 } 173 174 /* 175 * used by snapshot creation to make a copy of a root for a tree with 176 * a given objectid. The buffer with the new root node is returned in 177 * cow_ret, and this func returns zero on success or a negative error code. 178 */ 179 int btrfs_copy_root(struct btrfs_trans_handle *trans, 180 struct btrfs_root *root, 181 struct extent_buffer *buf, 182 struct extent_buffer **cow_ret, u64 new_root_objectid) 183 { 184 struct btrfs_fs_info *fs_info = root->fs_info; 185 struct extent_buffer *cow; 186 int ret = 0; 187 int level; 188 struct btrfs_disk_key disk_key; 189 190 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 191 trans->transid != fs_info->running_transaction->transid); 192 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 193 trans->transid != root->last_trans); 194 195 level = btrfs_header_level(buf); 196 if (level == 0) 197 btrfs_item_key(buf, &disk_key, 0); 198 else 199 btrfs_node_key(buf, &disk_key, 0); 200 201 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 202 &disk_key, level, buf->start, 0, 203 BTRFS_NESTING_NEW_ROOT); 204 if (IS_ERR(cow)) 205 return PTR_ERR(cow); 206 207 copy_extent_buffer_full(cow, buf); 208 btrfs_set_header_bytenr(cow, cow->start); 209 btrfs_set_header_generation(cow, trans->transid); 210 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 211 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 212 BTRFS_HEADER_FLAG_RELOC); 213 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 214 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 215 else 216 btrfs_set_header_owner(cow, new_root_objectid); 217 218 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 219 220 WARN_ON(btrfs_header_generation(buf) > trans->transid); 221 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 222 ret = btrfs_inc_ref(trans, root, cow, 1); 223 else 224 ret = btrfs_inc_ref(trans, root, cow, 0); 225 if (ret) { 226 btrfs_tree_unlock(cow); 227 free_extent_buffer(cow); 228 btrfs_abort_transaction(trans, ret); 229 return ret; 230 } 231 232 btrfs_mark_buffer_dirty(cow); 233 *cow_ret = cow; 234 return 0; 235 } 236 237 /* 238 * check if the tree block can be shared by multiple trees 239 */ 240 int btrfs_block_can_be_shared(struct btrfs_root *root, 241 struct extent_buffer *buf) 242 { 243 /* 244 * Tree blocks not in shareable trees and tree roots are never shared. 245 * If a block was allocated after the last snapshot and the block was 246 * not allocated by tree relocation, we know the block is not shared. 247 */ 248 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 249 buf != root->node && buf != root->commit_root && 250 (btrfs_header_generation(buf) <= 251 btrfs_root_last_snapshot(&root->root_item) || 252 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 253 return 1; 254 255 return 0; 256 } 257 258 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 259 struct btrfs_root *root, 260 struct extent_buffer *buf, 261 struct extent_buffer *cow, 262 int *last_ref) 263 { 264 struct btrfs_fs_info *fs_info = root->fs_info; 265 u64 refs; 266 u64 owner; 267 u64 flags; 268 u64 new_flags = 0; 269 int ret; 270 271 /* 272 * Backrefs update rules: 273 * 274 * Always use full backrefs for extent pointers in tree block 275 * allocated by tree relocation. 276 * 277 * If a shared tree block is no longer referenced by its owner 278 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 279 * use full backrefs for extent pointers in tree block. 280 * 281 * If a tree block is been relocating 282 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 283 * use full backrefs for extent pointers in tree block. 284 * The reason for this is some operations (such as drop tree) 285 * are only allowed for blocks use full backrefs. 286 */ 287 288 if (btrfs_block_can_be_shared(root, buf)) { 289 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 290 btrfs_header_level(buf), 1, 291 &refs, &flags); 292 if (ret) 293 return ret; 294 if (refs == 0) { 295 ret = -EROFS; 296 btrfs_handle_fs_error(fs_info, ret, NULL); 297 return ret; 298 } 299 } else { 300 refs = 1; 301 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 302 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 303 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 304 else 305 flags = 0; 306 } 307 308 owner = btrfs_header_owner(buf); 309 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 310 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 311 312 if (refs > 1) { 313 if ((owner == root->root_key.objectid || 314 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 315 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 316 ret = btrfs_inc_ref(trans, root, buf, 1); 317 if (ret) 318 return ret; 319 320 if (root->root_key.objectid == 321 BTRFS_TREE_RELOC_OBJECTID) { 322 ret = btrfs_dec_ref(trans, root, buf, 0); 323 if (ret) 324 return ret; 325 ret = btrfs_inc_ref(trans, root, cow, 1); 326 if (ret) 327 return ret; 328 } 329 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 330 } else { 331 332 if (root->root_key.objectid == 333 BTRFS_TREE_RELOC_OBJECTID) 334 ret = btrfs_inc_ref(trans, root, cow, 1); 335 else 336 ret = btrfs_inc_ref(trans, root, cow, 0); 337 if (ret) 338 return ret; 339 } 340 if (new_flags != 0) { 341 int level = btrfs_header_level(buf); 342 343 ret = btrfs_set_disk_extent_flags(trans, buf, 344 new_flags, level, 0); 345 if (ret) 346 return ret; 347 } 348 } else { 349 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 350 if (root->root_key.objectid == 351 BTRFS_TREE_RELOC_OBJECTID) 352 ret = btrfs_inc_ref(trans, root, cow, 1); 353 else 354 ret = btrfs_inc_ref(trans, root, cow, 0); 355 if (ret) 356 return ret; 357 ret = btrfs_dec_ref(trans, root, buf, 1); 358 if (ret) 359 return ret; 360 } 361 btrfs_clean_tree_block(buf); 362 *last_ref = 1; 363 } 364 return 0; 365 } 366 367 /* 368 * does the dirty work in cow of a single block. The parent block (if 369 * supplied) is updated to point to the new cow copy. The new buffer is marked 370 * dirty and returned locked. If you modify the block it needs to be marked 371 * dirty again. 372 * 373 * search_start -- an allocation hint for the new block 374 * 375 * empty_size -- a hint that you plan on doing more cow. This is the size in 376 * bytes the allocator should try to find free next to the block it returns. 377 * This is just a hint and may be ignored by the allocator. 378 */ 379 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 380 struct btrfs_root *root, 381 struct extent_buffer *buf, 382 struct extent_buffer *parent, int parent_slot, 383 struct extent_buffer **cow_ret, 384 u64 search_start, u64 empty_size, 385 enum btrfs_lock_nesting nest) 386 { 387 struct btrfs_fs_info *fs_info = root->fs_info; 388 struct btrfs_disk_key disk_key; 389 struct extent_buffer *cow; 390 int level, ret; 391 int last_ref = 0; 392 int unlock_orig = 0; 393 u64 parent_start = 0; 394 395 if (*cow_ret == buf) 396 unlock_orig = 1; 397 398 btrfs_assert_tree_locked(buf); 399 400 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 401 trans->transid != fs_info->running_transaction->transid); 402 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 403 trans->transid != root->last_trans); 404 405 level = btrfs_header_level(buf); 406 407 if (level == 0) 408 btrfs_item_key(buf, &disk_key, 0); 409 else 410 btrfs_node_key(buf, &disk_key, 0); 411 412 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 413 parent_start = parent->start; 414 415 cow = btrfs_alloc_tree_block(trans, root, parent_start, 416 root->root_key.objectid, &disk_key, level, 417 search_start, empty_size, nest); 418 if (IS_ERR(cow)) 419 return PTR_ERR(cow); 420 421 /* cow is set to blocking by btrfs_init_new_buffer */ 422 423 copy_extent_buffer_full(cow, buf); 424 btrfs_set_header_bytenr(cow, cow->start); 425 btrfs_set_header_generation(cow, trans->transid); 426 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 427 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 428 BTRFS_HEADER_FLAG_RELOC); 429 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 430 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 431 else 432 btrfs_set_header_owner(cow, root->root_key.objectid); 433 434 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 435 436 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 437 if (ret) { 438 btrfs_tree_unlock(cow); 439 free_extent_buffer(cow); 440 btrfs_abort_transaction(trans, ret); 441 return ret; 442 } 443 444 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 445 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 446 if (ret) { 447 btrfs_tree_unlock(cow); 448 free_extent_buffer(cow); 449 btrfs_abort_transaction(trans, ret); 450 return ret; 451 } 452 } 453 454 if (buf == root->node) { 455 WARN_ON(parent && parent != buf); 456 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 457 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 458 parent_start = buf->start; 459 460 atomic_inc(&cow->refs); 461 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true); 462 BUG_ON(ret < 0); 463 rcu_assign_pointer(root->node, cow); 464 465 btrfs_free_tree_block(trans, root, buf, parent_start, 466 last_ref); 467 free_extent_buffer(buf); 468 add_root_to_dirty_list(root); 469 } else { 470 WARN_ON(trans->transid != btrfs_header_generation(parent)); 471 btrfs_tree_mod_log_insert_key(parent, parent_slot, 472 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 473 btrfs_set_node_blockptr(parent, parent_slot, 474 cow->start); 475 btrfs_set_node_ptr_generation(parent, parent_slot, 476 trans->transid); 477 btrfs_mark_buffer_dirty(parent); 478 if (last_ref) { 479 ret = btrfs_tree_mod_log_free_eb(buf); 480 if (ret) { 481 btrfs_tree_unlock(cow); 482 free_extent_buffer(cow); 483 btrfs_abort_transaction(trans, ret); 484 return ret; 485 } 486 } 487 btrfs_free_tree_block(trans, root, buf, parent_start, 488 last_ref); 489 } 490 if (unlock_orig) 491 btrfs_tree_unlock(buf); 492 free_extent_buffer_stale(buf); 493 btrfs_mark_buffer_dirty(cow); 494 *cow_ret = cow; 495 return 0; 496 } 497 498 static inline int should_cow_block(struct btrfs_trans_handle *trans, 499 struct btrfs_root *root, 500 struct extent_buffer *buf) 501 { 502 if (btrfs_is_testing(root->fs_info)) 503 return 0; 504 505 /* Ensure we can see the FORCE_COW bit */ 506 smp_mb__before_atomic(); 507 508 /* 509 * We do not need to cow a block if 510 * 1) this block is not created or changed in this transaction; 511 * 2) this block does not belong to TREE_RELOC tree; 512 * 3) the root is not forced COW. 513 * 514 * What is forced COW: 515 * when we create snapshot during committing the transaction, 516 * after we've finished copying src root, we must COW the shared 517 * block to ensure the metadata consistency. 518 */ 519 if (btrfs_header_generation(buf) == trans->transid && 520 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 521 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 522 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 523 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 524 return 0; 525 return 1; 526 } 527 528 /* 529 * cows a single block, see __btrfs_cow_block for the real work. 530 * This version of it has extra checks so that a block isn't COWed more than 531 * once per transaction, as long as it hasn't been written yet 532 */ 533 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 534 struct btrfs_root *root, struct extent_buffer *buf, 535 struct extent_buffer *parent, int parent_slot, 536 struct extent_buffer **cow_ret, 537 enum btrfs_lock_nesting nest) 538 { 539 struct btrfs_fs_info *fs_info = root->fs_info; 540 u64 search_start; 541 int ret; 542 543 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 544 btrfs_err(fs_info, 545 "COW'ing blocks on a fs root that's being dropped"); 546 547 if (trans->transaction != fs_info->running_transaction) 548 WARN(1, KERN_CRIT "trans %llu running %llu\n", 549 trans->transid, 550 fs_info->running_transaction->transid); 551 552 if (trans->transid != fs_info->generation) 553 WARN(1, KERN_CRIT "trans %llu running %llu\n", 554 trans->transid, fs_info->generation); 555 556 if (!should_cow_block(trans, root, buf)) { 557 *cow_ret = buf; 558 return 0; 559 } 560 561 search_start = buf->start & ~((u64)SZ_1G - 1); 562 563 /* 564 * Before CoWing this block for later modification, check if it's 565 * the subtree root and do the delayed subtree trace if needed. 566 * 567 * Also We don't care about the error, as it's handled internally. 568 */ 569 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 570 ret = __btrfs_cow_block(trans, root, buf, parent, 571 parent_slot, cow_ret, search_start, 0, nest); 572 573 trace_btrfs_cow_block(root, buf, *cow_ret); 574 575 return ret; 576 } 577 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO); 578 579 /* 580 * helper function for defrag to decide if two blocks pointed to by a 581 * node are actually close by 582 */ 583 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 584 { 585 if (blocknr < other && other - (blocknr + blocksize) < 32768) 586 return 1; 587 if (blocknr > other && blocknr - (other + blocksize) < 32768) 588 return 1; 589 return 0; 590 } 591 592 #ifdef __LITTLE_ENDIAN 593 594 /* 595 * Compare two keys, on little-endian the disk order is same as CPU order and 596 * we can avoid the conversion. 597 */ 598 static int comp_keys(const struct btrfs_disk_key *disk_key, 599 const struct btrfs_key *k2) 600 { 601 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 602 603 return btrfs_comp_cpu_keys(k1, k2); 604 } 605 606 #else 607 608 /* 609 * compare two keys in a memcmp fashion 610 */ 611 static int comp_keys(const struct btrfs_disk_key *disk, 612 const struct btrfs_key *k2) 613 { 614 struct btrfs_key k1; 615 616 btrfs_disk_key_to_cpu(&k1, disk); 617 618 return btrfs_comp_cpu_keys(&k1, k2); 619 } 620 #endif 621 622 /* 623 * same as comp_keys only with two btrfs_key's 624 */ 625 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 626 { 627 if (k1->objectid > k2->objectid) 628 return 1; 629 if (k1->objectid < k2->objectid) 630 return -1; 631 if (k1->type > k2->type) 632 return 1; 633 if (k1->type < k2->type) 634 return -1; 635 if (k1->offset > k2->offset) 636 return 1; 637 if (k1->offset < k2->offset) 638 return -1; 639 return 0; 640 } 641 642 /* 643 * this is used by the defrag code to go through all the 644 * leaves pointed to by a node and reallocate them so that 645 * disk order is close to key order 646 */ 647 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 648 struct btrfs_root *root, struct extent_buffer *parent, 649 int start_slot, u64 *last_ret, 650 struct btrfs_key *progress) 651 { 652 struct btrfs_fs_info *fs_info = root->fs_info; 653 struct extent_buffer *cur; 654 u64 blocknr; 655 u64 search_start = *last_ret; 656 u64 last_block = 0; 657 u64 other; 658 u32 parent_nritems; 659 int end_slot; 660 int i; 661 int err = 0; 662 u32 blocksize; 663 int progress_passed = 0; 664 struct btrfs_disk_key disk_key; 665 666 WARN_ON(trans->transaction != fs_info->running_transaction); 667 WARN_ON(trans->transid != fs_info->generation); 668 669 parent_nritems = btrfs_header_nritems(parent); 670 blocksize = fs_info->nodesize; 671 end_slot = parent_nritems - 1; 672 673 if (parent_nritems <= 1) 674 return 0; 675 676 for (i = start_slot; i <= end_slot; i++) { 677 int close = 1; 678 679 btrfs_node_key(parent, &disk_key, i); 680 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 681 continue; 682 683 progress_passed = 1; 684 blocknr = btrfs_node_blockptr(parent, i); 685 if (last_block == 0) 686 last_block = blocknr; 687 688 if (i > 0) { 689 other = btrfs_node_blockptr(parent, i - 1); 690 close = close_blocks(blocknr, other, blocksize); 691 } 692 if (!close && i < end_slot) { 693 other = btrfs_node_blockptr(parent, i + 1); 694 close = close_blocks(blocknr, other, blocksize); 695 } 696 if (close) { 697 last_block = blocknr; 698 continue; 699 } 700 701 cur = btrfs_read_node_slot(parent, i); 702 if (IS_ERR(cur)) 703 return PTR_ERR(cur); 704 if (search_start == 0) 705 search_start = last_block; 706 707 btrfs_tree_lock(cur); 708 err = __btrfs_cow_block(trans, root, cur, parent, i, 709 &cur, search_start, 710 min(16 * blocksize, 711 (end_slot - i) * blocksize), 712 BTRFS_NESTING_COW); 713 if (err) { 714 btrfs_tree_unlock(cur); 715 free_extent_buffer(cur); 716 break; 717 } 718 search_start = cur->start; 719 last_block = cur->start; 720 *last_ret = search_start; 721 btrfs_tree_unlock(cur); 722 free_extent_buffer(cur); 723 } 724 return err; 725 } 726 727 /* 728 * search for key in the extent_buffer. The items start at offset p, 729 * and they are item_size apart. 730 * 731 * the slot in the array is returned via slot, and it points to 732 * the place where you would insert key if it is not found in 733 * the array. 734 * 735 * Slot may point to total number of items if the key is bigger than 736 * all of the keys 737 */ 738 static noinline int generic_bin_search(struct extent_buffer *eb, 739 unsigned long p, int item_size, 740 const struct btrfs_key *key, int *slot) 741 { 742 int low = 0; 743 int high = btrfs_header_nritems(eb); 744 int ret; 745 const int key_size = sizeof(struct btrfs_disk_key); 746 747 if (low > high) { 748 btrfs_err(eb->fs_info, 749 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 750 __func__, low, high, eb->start, 751 btrfs_header_owner(eb), btrfs_header_level(eb)); 752 return -EINVAL; 753 } 754 755 while (low < high) { 756 unsigned long oip; 757 unsigned long offset; 758 struct btrfs_disk_key *tmp; 759 struct btrfs_disk_key unaligned; 760 int mid; 761 762 mid = (low + high) / 2; 763 offset = p + mid * item_size; 764 oip = offset_in_page(offset); 765 766 if (oip + key_size <= PAGE_SIZE) { 767 const unsigned long idx = get_eb_page_index(offset); 768 char *kaddr = page_address(eb->pages[idx]); 769 770 oip = get_eb_offset_in_page(eb, offset); 771 tmp = (struct btrfs_disk_key *)(kaddr + oip); 772 } else { 773 read_extent_buffer(eb, &unaligned, offset, key_size); 774 tmp = &unaligned; 775 } 776 777 ret = comp_keys(tmp, key); 778 779 if (ret < 0) 780 low = mid + 1; 781 else if (ret > 0) 782 high = mid; 783 else { 784 *slot = mid; 785 return 0; 786 } 787 } 788 *slot = low; 789 return 1; 790 } 791 792 /* 793 * simple bin_search frontend that does the right thing for 794 * leaves vs nodes 795 */ 796 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 797 int *slot) 798 { 799 if (btrfs_header_level(eb) == 0) 800 return generic_bin_search(eb, 801 offsetof(struct btrfs_leaf, items), 802 sizeof(struct btrfs_item), key, slot); 803 else 804 return generic_bin_search(eb, 805 offsetof(struct btrfs_node, ptrs), 806 sizeof(struct btrfs_key_ptr), key, slot); 807 } 808 809 static void root_add_used(struct btrfs_root *root, u32 size) 810 { 811 spin_lock(&root->accounting_lock); 812 btrfs_set_root_used(&root->root_item, 813 btrfs_root_used(&root->root_item) + size); 814 spin_unlock(&root->accounting_lock); 815 } 816 817 static void root_sub_used(struct btrfs_root *root, u32 size) 818 { 819 spin_lock(&root->accounting_lock); 820 btrfs_set_root_used(&root->root_item, 821 btrfs_root_used(&root->root_item) - size); 822 spin_unlock(&root->accounting_lock); 823 } 824 825 /* given a node and slot number, this reads the blocks it points to. The 826 * extent buffer is returned with a reference taken (but unlocked). 827 */ 828 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 829 int slot) 830 { 831 int level = btrfs_header_level(parent); 832 struct extent_buffer *eb; 833 struct btrfs_key first_key; 834 835 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 836 return ERR_PTR(-ENOENT); 837 838 BUG_ON(level == 0); 839 840 btrfs_node_key_to_cpu(parent, &first_key, slot); 841 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 842 btrfs_header_owner(parent), 843 btrfs_node_ptr_generation(parent, slot), 844 level - 1, &first_key); 845 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 846 free_extent_buffer(eb); 847 eb = ERR_PTR(-EIO); 848 } 849 850 return eb; 851 } 852 853 /* 854 * node level balancing, used to make sure nodes are in proper order for 855 * item deletion. We balance from the top down, so we have to make sure 856 * that a deletion won't leave an node completely empty later on. 857 */ 858 static noinline int balance_level(struct btrfs_trans_handle *trans, 859 struct btrfs_root *root, 860 struct btrfs_path *path, int level) 861 { 862 struct btrfs_fs_info *fs_info = root->fs_info; 863 struct extent_buffer *right = NULL; 864 struct extent_buffer *mid; 865 struct extent_buffer *left = NULL; 866 struct extent_buffer *parent = NULL; 867 int ret = 0; 868 int wret; 869 int pslot; 870 int orig_slot = path->slots[level]; 871 u64 orig_ptr; 872 873 ASSERT(level > 0); 874 875 mid = path->nodes[level]; 876 877 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK); 878 WARN_ON(btrfs_header_generation(mid) != trans->transid); 879 880 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 881 882 if (level < BTRFS_MAX_LEVEL - 1) { 883 parent = path->nodes[level + 1]; 884 pslot = path->slots[level + 1]; 885 } 886 887 /* 888 * deal with the case where there is only one pointer in the root 889 * by promoting the node below to a root 890 */ 891 if (!parent) { 892 struct extent_buffer *child; 893 894 if (btrfs_header_nritems(mid) != 1) 895 return 0; 896 897 /* promote the child to a root */ 898 child = btrfs_read_node_slot(mid, 0); 899 if (IS_ERR(child)) { 900 ret = PTR_ERR(child); 901 btrfs_handle_fs_error(fs_info, ret, NULL); 902 goto enospc; 903 } 904 905 btrfs_tree_lock(child); 906 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 907 BTRFS_NESTING_COW); 908 if (ret) { 909 btrfs_tree_unlock(child); 910 free_extent_buffer(child); 911 goto enospc; 912 } 913 914 ret = btrfs_tree_mod_log_insert_root(root->node, child, true); 915 BUG_ON(ret < 0); 916 rcu_assign_pointer(root->node, child); 917 918 add_root_to_dirty_list(root); 919 btrfs_tree_unlock(child); 920 921 path->locks[level] = 0; 922 path->nodes[level] = NULL; 923 btrfs_clean_tree_block(mid); 924 btrfs_tree_unlock(mid); 925 /* once for the path */ 926 free_extent_buffer(mid); 927 928 root_sub_used(root, mid->len); 929 btrfs_free_tree_block(trans, root, mid, 0, 1); 930 /* once for the root ptr */ 931 free_extent_buffer_stale(mid); 932 return 0; 933 } 934 if (btrfs_header_nritems(mid) > 935 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 936 return 0; 937 938 left = btrfs_read_node_slot(parent, pslot - 1); 939 if (IS_ERR(left)) 940 left = NULL; 941 942 if (left) { 943 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 944 wret = btrfs_cow_block(trans, root, left, 945 parent, pslot - 1, &left, 946 BTRFS_NESTING_LEFT_COW); 947 if (wret) { 948 ret = wret; 949 goto enospc; 950 } 951 } 952 953 right = btrfs_read_node_slot(parent, pslot + 1); 954 if (IS_ERR(right)) 955 right = NULL; 956 957 if (right) { 958 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 959 wret = btrfs_cow_block(trans, root, right, 960 parent, pslot + 1, &right, 961 BTRFS_NESTING_RIGHT_COW); 962 if (wret) { 963 ret = wret; 964 goto enospc; 965 } 966 } 967 968 /* first, try to make some room in the middle buffer */ 969 if (left) { 970 orig_slot += btrfs_header_nritems(left); 971 wret = push_node_left(trans, left, mid, 1); 972 if (wret < 0) 973 ret = wret; 974 } 975 976 /* 977 * then try to empty the right most buffer into the middle 978 */ 979 if (right) { 980 wret = push_node_left(trans, mid, right, 1); 981 if (wret < 0 && wret != -ENOSPC) 982 ret = wret; 983 if (btrfs_header_nritems(right) == 0) { 984 btrfs_clean_tree_block(right); 985 btrfs_tree_unlock(right); 986 del_ptr(root, path, level + 1, pslot + 1); 987 root_sub_used(root, right->len); 988 btrfs_free_tree_block(trans, root, right, 0, 1); 989 free_extent_buffer_stale(right); 990 right = NULL; 991 } else { 992 struct btrfs_disk_key right_key; 993 btrfs_node_key(right, &right_key, 0); 994 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 995 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 996 BUG_ON(ret < 0); 997 btrfs_set_node_key(parent, &right_key, pslot + 1); 998 btrfs_mark_buffer_dirty(parent); 999 } 1000 } 1001 if (btrfs_header_nritems(mid) == 1) { 1002 /* 1003 * we're not allowed to leave a node with one item in the 1004 * tree during a delete. A deletion from lower in the tree 1005 * could try to delete the only pointer in this node. 1006 * So, pull some keys from the left. 1007 * There has to be a left pointer at this point because 1008 * otherwise we would have pulled some pointers from the 1009 * right 1010 */ 1011 if (!left) { 1012 ret = -EROFS; 1013 btrfs_handle_fs_error(fs_info, ret, NULL); 1014 goto enospc; 1015 } 1016 wret = balance_node_right(trans, mid, left); 1017 if (wret < 0) { 1018 ret = wret; 1019 goto enospc; 1020 } 1021 if (wret == 1) { 1022 wret = push_node_left(trans, left, mid, 1); 1023 if (wret < 0) 1024 ret = wret; 1025 } 1026 BUG_ON(wret == 1); 1027 } 1028 if (btrfs_header_nritems(mid) == 0) { 1029 btrfs_clean_tree_block(mid); 1030 btrfs_tree_unlock(mid); 1031 del_ptr(root, path, level + 1, pslot); 1032 root_sub_used(root, mid->len); 1033 btrfs_free_tree_block(trans, root, mid, 0, 1); 1034 free_extent_buffer_stale(mid); 1035 mid = NULL; 1036 } else { 1037 /* update the parent key to reflect our changes */ 1038 struct btrfs_disk_key mid_key; 1039 btrfs_node_key(mid, &mid_key, 0); 1040 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1041 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1042 BUG_ON(ret < 0); 1043 btrfs_set_node_key(parent, &mid_key, pslot); 1044 btrfs_mark_buffer_dirty(parent); 1045 } 1046 1047 /* update the path */ 1048 if (left) { 1049 if (btrfs_header_nritems(left) > orig_slot) { 1050 atomic_inc(&left->refs); 1051 /* left was locked after cow */ 1052 path->nodes[level] = left; 1053 path->slots[level + 1] -= 1; 1054 path->slots[level] = orig_slot; 1055 if (mid) { 1056 btrfs_tree_unlock(mid); 1057 free_extent_buffer(mid); 1058 } 1059 } else { 1060 orig_slot -= btrfs_header_nritems(left); 1061 path->slots[level] = orig_slot; 1062 } 1063 } 1064 /* double check we haven't messed things up */ 1065 if (orig_ptr != 1066 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1067 BUG(); 1068 enospc: 1069 if (right) { 1070 btrfs_tree_unlock(right); 1071 free_extent_buffer(right); 1072 } 1073 if (left) { 1074 if (path->nodes[level] != left) 1075 btrfs_tree_unlock(left); 1076 free_extent_buffer(left); 1077 } 1078 return ret; 1079 } 1080 1081 /* Node balancing for insertion. Here we only split or push nodes around 1082 * when they are completely full. This is also done top down, so we 1083 * have to be pessimistic. 1084 */ 1085 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1086 struct btrfs_root *root, 1087 struct btrfs_path *path, int level) 1088 { 1089 struct btrfs_fs_info *fs_info = root->fs_info; 1090 struct extent_buffer *right = NULL; 1091 struct extent_buffer *mid; 1092 struct extent_buffer *left = NULL; 1093 struct extent_buffer *parent = NULL; 1094 int ret = 0; 1095 int wret; 1096 int pslot; 1097 int orig_slot = path->slots[level]; 1098 1099 if (level == 0) 1100 return 1; 1101 1102 mid = path->nodes[level]; 1103 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1104 1105 if (level < BTRFS_MAX_LEVEL - 1) { 1106 parent = path->nodes[level + 1]; 1107 pslot = path->slots[level + 1]; 1108 } 1109 1110 if (!parent) 1111 return 1; 1112 1113 left = btrfs_read_node_slot(parent, pslot - 1); 1114 if (IS_ERR(left)) 1115 left = NULL; 1116 1117 /* first, try to make some room in the middle buffer */ 1118 if (left) { 1119 u32 left_nr; 1120 1121 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 1122 1123 left_nr = btrfs_header_nritems(left); 1124 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1125 wret = 1; 1126 } else { 1127 ret = btrfs_cow_block(trans, root, left, parent, 1128 pslot - 1, &left, 1129 BTRFS_NESTING_LEFT_COW); 1130 if (ret) 1131 wret = 1; 1132 else { 1133 wret = push_node_left(trans, left, mid, 0); 1134 } 1135 } 1136 if (wret < 0) 1137 ret = wret; 1138 if (wret == 0) { 1139 struct btrfs_disk_key disk_key; 1140 orig_slot += left_nr; 1141 btrfs_node_key(mid, &disk_key, 0); 1142 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1143 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1144 BUG_ON(ret < 0); 1145 btrfs_set_node_key(parent, &disk_key, pslot); 1146 btrfs_mark_buffer_dirty(parent); 1147 if (btrfs_header_nritems(left) > orig_slot) { 1148 path->nodes[level] = left; 1149 path->slots[level + 1] -= 1; 1150 path->slots[level] = orig_slot; 1151 btrfs_tree_unlock(mid); 1152 free_extent_buffer(mid); 1153 } else { 1154 orig_slot -= 1155 btrfs_header_nritems(left); 1156 path->slots[level] = orig_slot; 1157 btrfs_tree_unlock(left); 1158 free_extent_buffer(left); 1159 } 1160 return 0; 1161 } 1162 btrfs_tree_unlock(left); 1163 free_extent_buffer(left); 1164 } 1165 right = btrfs_read_node_slot(parent, pslot + 1); 1166 if (IS_ERR(right)) 1167 right = NULL; 1168 1169 /* 1170 * then try to empty the right most buffer into the middle 1171 */ 1172 if (right) { 1173 u32 right_nr; 1174 1175 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 1176 1177 right_nr = btrfs_header_nritems(right); 1178 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1179 wret = 1; 1180 } else { 1181 ret = btrfs_cow_block(trans, root, right, 1182 parent, pslot + 1, 1183 &right, BTRFS_NESTING_RIGHT_COW); 1184 if (ret) 1185 wret = 1; 1186 else { 1187 wret = balance_node_right(trans, right, mid); 1188 } 1189 } 1190 if (wret < 0) 1191 ret = wret; 1192 if (wret == 0) { 1193 struct btrfs_disk_key disk_key; 1194 1195 btrfs_node_key(right, &disk_key, 0); 1196 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1197 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1198 BUG_ON(ret < 0); 1199 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1200 btrfs_mark_buffer_dirty(parent); 1201 1202 if (btrfs_header_nritems(mid) <= orig_slot) { 1203 path->nodes[level] = right; 1204 path->slots[level + 1] += 1; 1205 path->slots[level] = orig_slot - 1206 btrfs_header_nritems(mid); 1207 btrfs_tree_unlock(mid); 1208 free_extent_buffer(mid); 1209 } else { 1210 btrfs_tree_unlock(right); 1211 free_extent_buffer(right); 1212 } 1213 return 0; 1214 } 1215 btrfs_tree_unlock(right); 1216 free_extent_buffer(right); 1217 } 1218 return 1; 1219 } 1220 1221 /* 1222 * readahead one full node of leaves, finding things that are close 1223 * to the block in 'slot', and triggering ra on them. 1224 */ 1225 static void reada_for_search(struct btrfs_fs_info *fs_info, 1226 struct btrfs_path *path, 1227 int level, int slot, u64 objectid) 1228 { 1229 struct extent_buffer *node; 1230 struct btrfs_disk_key disk_key; 1231 u32 nritems; 1232 u64 search; 1233 u64 target; 1234 u64 nread = 0; 1235 u64 nread_max; 1236 u32 nr; 1237 u32 blocksize; 1238 u32 nscan = 0; 1239 1240 if (level != 1 && path->reada != READA_FORWARD_ALWAYS) 1241 return; 1242 1243 if (!path->nodes[level]) 1244 return; 1245 1246 node = path->nodes[level]; 1247 1248 /* 1249 * Since the time between visiting leaves is much shorter than the time 1250 * between visiting nodes, limit read ahead of nodes to 1, to avoid too 1251 * much IO at once (possibly random). 1252 */ 1253 if (path->reada == READA_FORWARD_ALWAYS) { 1254 if (level > 1) 1255 nread_max = node->fs_info->nodesize; 1256 else 1257 nread_max = SZ_128K; 1258 } else { 1259 nread_max = SZ_64K; 1260 } 1261 1262 search = btrfs_node_blockptr(node, slot); 1263 blocksize = fs_info->nodesize; 1264 if (path->reada != READA_FORWARD_ALWAYS) { 1265 struct extent_buffer *eb; 1266 1267 eb = find_extent_buffer(fs_info, search); 1268 if (eb) { 1269 free_extent_buffer(eb); 1270 return; 1271 } 1272 } 1273 1274 target = search; 1275 1276 nritems = btrfs_header_nritems(node); 1277 nr = slot; 1278 1279 while (1) { 1280 if (path->reada == READA_BACK) { 1281 if (nr == 0) 1282 break; 1283 nr--; 1284 } else if (path->reada == READA_FORWARD || 1285 path->reada == READA_FORWARD_ALWAYS) { 1286 nr++; 1287 if (nr >= nritems) 1288 break; 1289 } 1290 if (path->reada == READA_BACK && objectid) { 1291 btrfs_node_key(node, &disk_key, nr); 1292 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1293 break; 1294 } 1295 search = btrfs_node_blockptr(node, nr); 1296 if (path->reada == READA_FORWARD_ALWAYS || 1297 (search <= target && target - search <= 65536) || 1298 (search > target && search - target <= 65536)) { 1299 btrfs_readahead_node_child(node, nr); 1300 nread += blocksize; 1301 } 1302 nscan++; 1303 if (nread > nread_max || nscan > 32) 1304 break; 1305 } 1306 } 1307 1308 static noinline void reada_for_balance(struct btrfs_path *path, int level) 1309 { 1310 struct extent_buffer *parent; 1311 int slot; 1312 int nritems; 1313 1314 parent = path->nodes[level + 1]; 1315 if (!parent) 1316 return; 1317 1318 nritems = btrfs_header_nritems(parent); 1319 slot = path->slots[level + 1]; 1320 1321 if (slot > 0) 1322 btrfs_readahead_node_child(parent, slot - 1); 1323 if (slot + 1 < nritems) 1324 btrfs_readahead_node_child(parent, slot + 1); 1325 } 1326 1327 1328 /* 1329 * when we walk down the tree, it is usually safe to unlock the higher layers 1330 * in the tree. The exceptions are when our path goes through slot 0, because 1331 * operations on the tree might require changing key pointers higher up in the 1332 * tree. 1333 * 1334 * callers might also have set path->keep_locks, which tells this code to keep 1335 * the lock if the path points to the last slot in the block. This is part of 1336 * walking through the tree, and selecting the next slot in the higher block. 1337 * 1338 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1339 * if lowest_unlock is 1, level 0 won't be unlocked 1340 */ 1341 static noinline void unlock_up(struct btrfs_path *path, int level, 1342 int lowest_unlock, int min_write_lock_level, 1343 int *write_lock_level) 1344 { 1345 int i; 1346 int skip_level = level; 1347 int no_skips = 0; 1348 struct extent_buffer *t; 1349 1350 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1351 if (!path->nodes[i]) 1352 break; 1353 if (!path->locks[i]) 1354 break; 1355 if (!no_skips && path->slots[i] == 0) { 1356 skip_level = i + 1; 1357 continue; 1358 } 1359 if (!no_skips && path->keep_locks) { 1360 u32 nritems; 1361 t = path->nodes[i]; 1362 nritems = btrfs_header_nritems(t); 1363 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1364 skip_level = i + 1; 1365 continue; 1366 } 1367 } 1368 if (skip_level < i && i >= lowest_unlock) 1369 no_skips = 1; 1370 1371 t = path->nodes[i]; 1372 if (i >= lowest_unlock && i > skip_level) { 1373 btrfs_tree_unlock_rw(t, path->locks[i]); 1374 path->locks[i] = 0; 1375 if (write_lock_level && 1376 i > min_write_lock_level && 1377 i <= *write_lock_level) { 1378 *write_lock_level = i - 1; 1379 } 1380 } 1381 } 1382 } 1383 1384 /* 1385 * helper function for btrfs_search_slot. The goal is to find a block 1386 * in cache without setting the path to blocking. If we find the block 1387 * we return zero and the path is unchanged. 1388 * 1389 * If we can't find the block, we set the path blocking and do some 1390 * reada. -EAGAIN is returned and the search must be repeated. 1391 */ 1392 static int 1393 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 1394 struct extent_buffer **eb_ret, int level, int slot, 1395 const struct btrfs_key *key) 1396 { 1397 struct btrfs_fs_info *fs_info = root->fs_info; 1398 u64 blocknr; 1399 u64 gen; 1400 struct extent_buffer *tmp; 1401 struct btrfs_key first_key; 1402 int ret; 1403 int parent_level; 1404 1405 blocknr = btrfs_node_blockptr(*eb_ret, slot); 1406 gen = btrfs_node_ptr_generation(*eb_ret, slot); 1407 parent_level = btrfs_header_level(*eb_ret); 1408 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot); 1409 1410 tmp = find_extent_buffer(fs_info, blocknr); 1411 if (tmp) { 1412 if (p->reada == READA_FORWARD_ALWAYS) 1413 reada_for_search(fs_info, p, level, slot, key->objectid); 1414 1415 /* first we do an atomic uptodate check */ 1416 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 1417 /* 1418 * Do extra check for first_key, eb can be stale due to 1419 * being cached, read from scrub, or have multiple 1420 * parents (shared tree blocks). 1421 */ 1422 if (btrfs_verify_level_key(tmp, 1423 parent_level - 1, &first_key, gen)) { 1424 free_extent_buffer(tmp); 1425 return -EUCLEAN; 1426 } 1427 *eb_ret = tmp; 1428 return 0; 1429 } 1430 1431 /* now we're allowed to do a blocking uptodate check */ 1432 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 1433 if (!ret) { 1434 *eb_ret = tmp; 1435 return 0; 1436 } 1437 free_extent_buffer(tmp); 1438 btrfs_release_path(p); 1439 return -EIO; 1440 } 1441 1442 /* 1443 * reduce lock contention at high levels 1444 * of the btree by dropping locks before 1445 * we read. Don't release the lock on the current 1446 * level because we need to walk this node to figure 1447 * out which blocks to read. 1448 */ 1449 btrfs_unlock_up_safe(p, level + 1); 1450 1451 if (p->reada != READA_NONE) 1452 reada_for_search(fs_info, p, level, slot, key->objectid); 1453 1454 ret = -EAGAIN; 1455 tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid, 1456 gen, parent_level - 1, &first_key); 1457 if (!IS_ERR(tmp)) { 1458 /* 1459 * If the read above didn't mark this buffer up to date, 1460 * it will never end up being up to date. Set ret to EIO now 1461 * and give up so that our caller doesn't loop forever 1462 * on our EAGAINs. 1463 */ 1464 if (!extent_buffer_uptodate(tmp)) 1465 ret = -EIO; 1466 free_extent_buffer(tmp); 1467 } else { 1468 ret = PTR_ERR(tmp); 1469 } 1470 1471 btrfs_release_path(p); 1472 return ret; 1473 } 1474 1475 /* 1476 * helper function for btrfs_search_slot. This does all of the checks 1477 * for node-level blocks and does any balancing required based on 1478 * the ins_len. 1479 * 1480 * If no extra work was required, zero is returned. If we had to 1481 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1482 * start over 1483 */ 1484 static int 1485 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1486 struct btrfs_root *root, struct btrfs_path *p, 1487 struct extent_buffer *b, int level, int ins_len, 1488 int *write_lock_level) 1489 { 1490 struct btrfs_fs_info *fs_info = root->fs_info; 1491 int ret = 0; 1492 1493 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1494 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 1495 1496 if (*write_lock_level < level + 1) { 1497 *write_lock_level = level + 1; 1498 btrfs_release_path(p); 1499 return -EAGAIN; 1500 } 1501 1502 reada_for_balance(p, level); 1503 ret = split_node(trans, root, p, level); 1504 1505 b = p->nodes[level]; 1506 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1507 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 1508 1509 if (*write_lock_level < level + 1) { 1510 *write_lock_level = level + 1; 1511 btrfs_release_path(p); 1512 return -EAGAIN; 1513 } 1514 1515 reada_for_balance(p, level); 1516 ret = balance_level(trans, root, p, level); 1517 if (ret) 1518 return ret; 1519 1520 b = p->nodes[level]; 1521 if (!b) { 1522 btrfs_release_path(p); 1523 return -EAGAIN; 1524 } 1525 BUG_ON(btrfs_header_nritems(b) == 1); 1526 } 1527 return ret; 1528 } 1529 1530 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 1531 u64 iobjectid, u64 ioff, u8 key_type, 1532 struct btrfs_key *found_key) 1533 { 1534 int ret; 1535 struct btrfs_key key; 1536 struct extent_buffer *eb; 1537 1538 ASSERT(path); 1539 ASSERT(found_key); 1540 1541 key.type = key_type; 1542 key.objectid = iobjectid; 1543 key.offset = ioff; 1544 1545 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1546 if (ret < 0) 1547 return ret; 1548 1549 eb = path->nodes[0]; 1550 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1551 ret = btrfs_next_leaf(fs_root, path); 1552 if (ret) 1553 return ret; 1554 eb = path->nodes[0]; 1555 } 1556 1557 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1558 if (found_key->type != key.type || 1559 found_key->objectid != key.objectid) 1560 return 1; 1561 1562 return 0; 1563 } 1564 1565 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 1566 struct btrfs_path *p, 1567 int write_lock_level) 1568 { 1569 struct btrfs_fs_info *fs_info = root->fs_info; 1570 struct extent_buffer *b; 1571 int root_lock; 1572 int level = 0; 1573 1574 /* We try very hard to do read locks on the root */ 1575 root_lock = BTRFS_READ_LOCK; 1576 1577 if (p->search_commit_root) { 1578 /* 1579 * The commit roots are read only so we always do read locks, 1580 * and we always must hold the commit_root_sem when doing 1581 * searches on them, the only exception is send where we don't 1582 * want to block transaction commits for a long time, so 1583 * we need to clone the commit root in order to avoid races 1584 * with transaction commits that create a snapshot of one of 1585 * the roots used by a send operation. 1586 */ 1587 if (p->need_commit_sem) { 1588 down_read(&fs_info->commit_root_sem); 1589 b = btrfs_clone_extent_buffer(root->commit_root); 1590 up_read(&fs_info->commit_root_sem); 1591 if (!b) 1592 return ERR_PTR(-ENOMEM); 1593 1594 } else { 1595 b = root->commit_root; 1596 atomic_inc(&b->refs); 1597 } 1598 level = btrfs_header_level(b); 1599 /* 1600 * Ensure that all callers have set skip_locking when 1601 * p->search_commit_root = 1. 1602 */ 1603 ASSERT(p->skip_locking == 1); 1604 1605 goto out; 1606 } 1607 1608 if (p->skip_locking) { 1609 b = btrfs_root_node(root); 1610 level = btrfs_header_level(b); 1611 goto out; 1612 } 1613 1614 /* 1615 * If the level is set to maximum, we can skip trying to get the read 1616 * lock. 1617 */ 1618 if (write_lock_level < BTRFS_MAX_LEVEL) { 1619 /* 1620 * We don't know the level of the root node until we actually 1621 * have it read locked 1622 */ 1623 b = btrfs_read_lock_root_node(root); 1624 level = btrfs_header_level(b); 1625 if (level > write_lock_level) 1626 goto out; 1627 1628 /* Whoops, must trade for write lock */ 1629 btrfs_tree_read_unlock(b); 1630 free_extent_buffer(b); 1631 } 1632 1633 b = btrfs_lock_root_node(root); 1634 root_lock = BTRFS_WRITE_LOCK; 1635 1636 /* The level might have changed, check again */ 1637 level = btrfs_header_level(b); 1638 1639 out: 1640 p->nodes[level] = b; 1641 if (!p->skip_locking) 1642 p->locks[level] = root_lock; 1643 /* 1644 * Callers are responsible for dropping b's references. 1645 */ 1646 return b; 1647 } 1648 1649 1650 /* 1651 * btrfs_search_slot - look for a key in a tree and perform necessary 1652 * modifications to preserve tree invariants. 1653 * 1654 * @trans: Handle of transaction, used when modifying the tree 1655 * @p: Holds all btree nodes along the search path 1656 * @root: The root node of the tree 1657 * @key: The key we are looking for 1658 * @ins_len: Indicates purpose of search: 1659 * >0 for inserts it's size of item inserted (*) 1660 * <0 for deletions 1661 * 0 for plain searches, not modifying the tree 1662 * 1663 * (*) If size of item inserted doesn't include 1664 * sizeof(struct btrfs_item), then p->search_for_extension must 1665 * be set. 1666 * @cow: boolean should CoW operations be performed. Must always be 1 1667 * when modifying the tree. 1668 * 1669 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 1670 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 1671 * 1672 * If @key is found, 0 is returned and you can find the item in the leaf level 1673 * of the path (level 0) 1674 * 1675 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 1676 * points to the slot where it should be inserted 1677 * 1678 * If an error is encountered while searching the tree a negative error number 1679 * is returned 1680 */ 1681 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1682 const struct btrfs_key *key, struct btrfs_path *p, 1683 int ins_len, int cow) 1684 { 1685 struct extent_buffer *b; 1686 int slot; 1687 int ret; 1688 int err; 1689 int level; 1690 int lowest_unlock = 1; 1691 /* everything at write_lock_level or lower must be write locked */ 1692 int write_lock_level = 0; 1693 u8 lowest_level = 0; 1694 int min_write_lock_level; 1695 int prev_cmp; 1696 1697 lowest_level = p->lowest_level; 1698 WARN_ON(lowest_level && ins_len > 0); 1699 WARN_ON(p->nodes[0] != NULL); 1700 BUG_ON(!cow && ins_len); 1701 1702 if (ins_len < 0) { 1703 lowest_unlock = 2; 1704 1705 /* when we are removing items, we might have to go up to level 1706 * two as we update tree pointers Make sure we keep write 1707 * for those levels as well 1708 */ 1709 write_lock_level = 2; 1710 } else if (ins_len > 0) { 1711 /* 1712 * for inserting items, make sure we have a write lock on 1713 * level 1 so we can update keys 1714 */ 1715 write_lock_level = 1; 1716 } 1717 1718 if (!cow) 1719 write_lock_level = -1; 1720 1721 if (cow && (p->keep_locks || p->lowest_level)) 1722 write_lock_level = BTRFS_MAX_LEVEL; 1723 1724 min_write_lock_level = write_lock_level; 1725 1726 again: 1727 prev_cmp = -1; 1728 b = btrfs_search_slot_get_root(root, p, write_lock_level); 1729 if (IS_ERR(b)) { 1730 ret = PTR_ERR(b); 1731 goto done; 1732 } 1733 1734 while (b) { 1735 int dec = 0; 1736 1737 level = btrfs_header_level(b); 1738 1739 if (cow) { 1740 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 1741 1742 /* 1743 * if we don't really need to cow this block 1744 * then we don't want to set the path blocking, 1745 * so we test it here 1746 */ 1747 if (!should_cow_block(trans, root, b)) 1748 goto cow_done; 1749 1750 /* 1751 * must have write locks on this node and the 1752 * parent 1753 */ 1754 if (level > write_lock_level || 1755 (level + 1 > write_lock_level && 1756 level + 1 < BTRFS_MAX_LEVEL && 1757 p->nodes[level + 1])) { 1758 write_lock_level = level + 1; 1759 btrfs_release_path(p); 1760 goto again; 1761 } 1762 1763 if (last_level) 1764 err = btrfs_cow_block(trans, root, b, NULL, 0, 1765 &b, 1766 BTRFS_NESTING_COW); 1767 else 1768 err = btrfs_cow_block(trans, root, b, 1769 p->nodes[level + 1], 1770 p->slots[level + 1], &b, 1771 BTRFS_NESTING_COW); 1772 if (err) { 1773 ret = err; 1774 goto done; 1775 } 1776 } 1777 cow_done: 1778 p->nodes[level] = b; 1779 /* 1780 * Leave path with blocking locks to avoid massive 1781 * lock context switch, this is made on purpose. 1782 */ 1783 1784 /* 1785 * we have a lock on b and as long as we aren't changing 1786 * the tree, there is no way to for the items in b to change. 1787 * It is safe to drop the lock on our parent before we 1788 * go through the expensive btree search on b. 1789 * 1790 * If we're inserting or deleting (ins_len != 0), then we might 1791 * be changing slot zero, which may require changing the parent. 1792 * So, we can't drop the lock until after we know which slot 1793 * we're operating on. 1794 */ 1795 if (!ins_len && !p->keep_locks) { 1796 int u = level + 1; 1797 1798 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 1799 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 1800 p->locks[u] = 0; 1801 } 1802 } 1803 1804 /* 1805 * If btrfs_bin_search returns an exact match (prev_cmp == 0) 1806 * we can safely assume the target key will always be in slot 0 1807 * on lower levels due to the invariants BTRFS' btree provides, 1808 * namely that a btrfs_key_ptr entry always points to the 1809 * lowest key in the child node, thus we can skip searching 1810 * lower levels 1811 */ 1812 if (prev_cmp == 0) { 1813 slot = 0; 1814 ret = 0; 1815 } else { 1816 ret = btrfs_bin_search(b, key, &slot); 1817 prev_cmp = ret; 1818 if (ret < 0) 1819 goto done; 1820 } 1821 1822 if (level == 0) { 1823 p->slots[level] = slot; 1824 /* 1825 * Item key already exists. In this case, if we are 1826 * allowed to insert the item (for example, in dir_item 1827 * case, item key collision is allowed), it will be 1828 * merged with the original item. Only the item size 1829 * grows, no new btrfs item will be added. If 1830 * search_for_extension is not set, ins_len already 1831 * accounts the size btrfs_item, deduct it here so leaf 1832 * space check will be correct. 1833 */ 1834 if (ret == 0 && ins_len > 0 && !p->search_for_extension) { 1835 ASSERT(ins_len >= sizeof(struct btrfs_item)); 1836 ins_len -= sizeof(struct btrfs_item); 1837 } 1838 if (ins_len > 0 && 1839 btrfs_leaf_free_space(b) < ins_len) { 1840 if (write_lock_level < 1) { 1841 write_lock_level = 1; 1842 btrfs_release_path(p); 1843 goto again; 1844 } 1845 1846 err = split_leaf(trans, root, key, 1847 p, ins_len, ret == 0); 1848 1849 BUG_ON(err > 0); 1850 if (err) { 1851 ret = err; 1852 goto done; 1853 } 1854 } 1855 if (!p->search_for_split) 1856 unlock_up(p, level, lowest_unlock, 1857 min_write_lock_level, NULL); 1858 goto done; 1859 } 1860 if (ret && slot > 0) { 1861 dec = 1; 1862 slot--; 1863 } 1864 p->slots[level] = slot; 1865 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 1866 &write_lock_level); 1867 if (err == -EAGAIN) 1868 goto again; 1869 if (err) { 1870 ret = err; 1871 goto done; 1872 } 1873 b = p->nodes[level]; 1874 slot = p->slots[level]; 1875 1876 /* 1877 * Slot 0 is special, if we change the key we have to update 1878 * the parent pointer which means we must have a write lock on 1879 * the parent 1880 */ 1881 if (slot == 0 && ins_len && write_lock_level < level + 1) { 1882 write_lock_level = level + 1; 1883 btrfs_release_path(p); 1884 goto again; 1885 } 1886 1887 unlock_up(p, level, lowest_unlock, min_write_lock_level, 1888 &write_lock_level); 1889 1890 if (level == lowest_level) { 1891 if (dec) 1892 p->slots[level]++; 1893 goto done; 1894 } 1895 1896 err = read_block_for_search(root, p, &b, level, slot, key); 1897 if (err == -EAGAIN) 1898 goto again; 1899 if (err) { 1900 ret = err; 1901 goto done; 1902 } 1903 1904 if (!p->skip_locking) { 1905 level = btrfs_header_level(b); 1906 if (level <= write_lock_level) { 1907 btrfs_tree_lock(b); 1908 p->locks[level] = BTRFS_WRITE_LOCK; 1909 } else { 1910 btrfs_tree_read_lock(b); 1911 p->locks[level] = BTRFS_READ_LOCK; 1912 } 1913 p->nodes[level] = b; 1914 } 1915 } 1916 ret = 1; 1917 done: 1918 if (ret < 0 && !p->skip_release_on_error) 1919 btrfs_release_path(p); 1920 return ret; 1921 } 1922 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO); 1923 1924 /* 1925 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 1926 * current state of the tree together with the operations recorded in the tree 1927 * modification log to search for the key in a previous version of this tree, as 1928 * denoted by the time_seq parameter. 1929 * 1930 * Naturally, there is no support for insert, delete or cow operations. 1931 * 1932 * The resulting path and return value will be set up as if we called 1933 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 1934 */ 1935 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 1936 struct btrfs_path *p, u64 time_seq) 1937 { 1938 struct btrfs_fs_info *fs_info = root->fs_info; 1939 struct extent_buffer *b; 1940 int slot; 1941 int ret; 1942 int err; 1943 int level; 1944 int lowest_unlock = 1; 1945 u8 lowest_level = 0; 1946 1947 lowest_level = p->lowest_level; 1948 WARN_ON(p->nodes[0] != NULL); 1949 1950 if (p->search_commit_root) { 1951 BUG_ON(time_seq); 1952 return btrfs_search_slot(NULL, root, key, p, 0, 0); 1953 } 1954 1955 again: 1956 b = btrfs_get_old_root(root, time_seq); 1957 if (!b) { 1958 ret = -EIO; 1959 goto done; 1960 } 1961 level = btrfs_header_level(b); 1962 p->locks[level] = BTRFS_READ_LOCK; 1963 1964 while (b) { 1965 int dec = 0; 1966 1967 level = btrfs_header_level(b); 1968 p->nodes[level] = b; 1969 1970 /* 1971 * we have a lock on b and as long as we aren't changing 1972 * the tree, there is no way to for the items in b to change. 1973 * It is safe to drop the lock on our parent before we 1974 * go through the expensive btree search on b. 1975 */ 1976 btrfs_unlock_up_safe(p, level + 1); 1977 1978 ret = btrfs_bin_search(b, key, &slot); 1979 if (ret < 0) 1980 goto done; 1981 1982 if (level == 0) { 1983 p->slots[level] = slot; 1984 unlock_up(p, level, lowest_unlock, 0, NULL); 1985 goto done; 1986 } 1987 1988 if (ret && slot > 0) { 1989 dec = 1; 1990 slot--; 1991 } 1992 p->slots[level] = slot; 1993 unlock_up(p, level, lowest_unlock, 0, NULL); 1994 1995 if (level == lowest_level) { 1996 if (dec) 1997 p->slots[level]++; 1998 goto done; 1999 } 2000 2001 err = read_block_for_search(root, p, &b, level, slot, key); 2002 if (err == -EAGAIN) 2003 goto again; 2004 if (err) { 2005 ret = err; 2006 goto done; 2007 } 2008 2009 level = btrfs_header_level(b); 2010 btrfs_tree_read_lock(b); 2011 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq); 2012 if (!b) { 2013 ret = -ENOMEM; 2014 goto done; 2015 } 2016 p->locks[level] = BTRFS_READ_LOCK; 2017 p->nodes[level] = b; 2018 } 2019 ret = 1; 2020 done: 2021 if (ret < 0) 2022 btrfs_release_path(p); 2023 2024 return ret; 2025 } 2026 2027 /* 2028 * helper to use instead of search slot if no exact match is needed but 2029 * instead the next or previous item should be returned. 2030 * When find_higher is true, the next higher item is returned, the next lower 2031 * otherwise. 2032 * When return_any and find_higher are both true, and no higher item is found, 2033 * return the next lower instead. 2034 * When return_any is true and find_higher is false, and no lower item is found, 2035 * return the next higher instead. 2036 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2037 * < 0 on error 2038 */ 2039 int btrfs_search_slot_for_read(struct btrfs_root *root, 2040 const struct btrfs_key *key, 2041 struct btrfs_path *p, int find_higher, 2042 int return_any) 2043 { 2044 int ret; 2045 struct extent_buffer *leaf; 2046 2047 again: 2048 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2049 if (ret <= 0) 2050 return ret; 2051 /* 2052 * a return value of 1 means the path is at the position where the 2053 * item should be inserted. Normally this is the next bigger item, 2054 * but in case the previous item is the last in a leaf, path points 2055 * to the first free slot in the previous leaf, i.e. at an invalid 2056 * item. 2057 */ 2058 leaf = p->nodes[0]; 2059 2060 if (find_higher) { 2061 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2062 ret = btrfs_next_leaf(root, p); 2063 if (ret <= 0) 2064 return ret; 2065 if (!return_any) 2066 return 1; 2067 /* 2068 * no higher item found, return the next 2069 * lower instead 2070 */ 2071 return_any = 0; 2072 find_higher = 0; 2073 btrfs_release_path(p); 2074 goto again; 2075 } 2076 } else { 2077 if (p->slots[0] == 0) { 2078 ret = btrfs_prev_leaf(root, p); 2079 if (ret < 0) 2080 return ret; 2081 if (!ret) { 2082 leaf = p->nodes[0]; 2083 if (p->slots[0] == btrfs_header_nritems(leaf)) 2084 p->slots[0]--; 2085 return 0; 2086 } 2087 if (!return_any) 2088 return 1; 2089 /* 2090 * no lower item found, return the next 2091 * higher instead 2092 */ 2093 return_any = 0; 2094 find_higher = 1; 2095 btrfs_release_path(p); 2096 goto again; 2097 } else { 2098 --p->slots[0]; 2099 } 2100 } 2101 return 0; 2102 } 2103 2104 /* 2105 * Execute search and call btrfs_previous_item to traverse backwards if the item 2106 * was not found. 2107 * 2108 * Return 0 if found, 1 if not found and < 0 if error. 2109 */ 2110 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 2111 struct btrfs_path *path) 2112 { 2113 int ret; 2114 2115 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 2116 if (ret > 0) 2117 ret = btrfs_previous_item(root, path, key->objectid, key->type); 2118 2119 if (ret == 0) 2120 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); 2121 2122 return ret; 2123 } 2124 2125 /* 2126 * adjust the pointers going up the tree, starting at level 2127 * making sure the right key of each node is points to 'key'. 2128 * This is used after shifting pointers to the left, so it stops 2129 * fixing up pointers when a given leaf/node is not in slot 0 of the 2130 * higher levels 2131 * 2132 */ 2133 static void fixup_low_keys(struct btrfs_path *path, 2134 struct btrfs_disk_key *key, int level) 2135 { 2136 int i; 2137 struct extent_buffer *t; 2138 int ret; 2139 2140 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2141 int tslot = path->slots[i]; 2142 2143 if (!path->nodes[i]) 2144 break; 2145 t = path->nodes[i]; 2146 ret = btrfs_tree_mod_log_insert_key(t, tslot, 2147 BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC); 2148 BUG_ON(ret < 0); 2149 btrfs_set_node_key(t, key, tslot); 2150 btrfs_mark_buffer_dirty(path->nodes[i]); 2151 if (tslot != 0) 2152 break; 2153 } 2154 } 2155 2156 /* 2157 * update item key. 2158 * 2159 * This function isn't completely safe. It's the caller's responsibility 2160 * that the new key won't break the order 2161 */ 2162 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2163 struct btrfs_path *path, 2164 const struct btrfs_key *new_key) 2165 { 2166 struct btrfs_disk_key disk_key; 2167 struct extent_buffer *eb; 2168 int slot; 2169 2170 eb = path->nodes[0]; 2171 slot = path->slots[0]; 2172 if (slot > 0) { 2173 btrfs_item_key(eb, &disk_key, slot - 1); 2174 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 2175 btrfs_crit(fs_info, 2176 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2177 slot, btrfs_disk_key_objectid(&disk_key), 2178 btrfs_disk_key_type(&disk_key), 2179 btrfs_disk_key_offset(&disk_key), 2180 new_key->objectid, new_key->type, 2181 new_key->offset); 2182 btrfs_print_leaf(eb); 2183 BUG(); 2184 } 2185 } 2186 if (slot < btrfs_header_nritems(eb) - 1) { 2187 btrfs_item_key(eb, &disk_key, slot + 1); 2188 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 2189 btrfs_crit(fs_info, 2190 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2191 slot, btrfs_disk_key_objectid(&disk_key), 2192 btrfs_disk_key_type(&disk_key), 2193 btrfs_disk_key_offset(&disk_key), 2194 new_key->objectid, new_key->type, 2195 new_key->offset); 2196 btrfs_print_leaf(eb); 2197 BUG(); 2198 } 2199 } 2200 2201 btrfs_cpu_key_to_disk(&disk_key, new_key); 2202 btrfs_set_item_key(eb, &disk_key, slot); 2203 btrfs_mark_buffer_dirty(eb); 2204 if (slot == 0) 2205 fixup_low_keys(path, &disk_key, 1); 2206 } 2207 2208 /* 2209 * Check key order of two sibling extent buffers. 2210 * 2211 * Return true if something is wrong. 2212 * Return false if everything is fine. 2213 * 2214 * Tree-checker only works inside one tree block, thus the following 2215 * corruption can not be detected by tree-checker: 2216 * 2217 * Leaf @left | Leaf @right 2218 * -------------------------------------------------------------- 2219 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | 2220 * 2221 * Key f6 in leaf @left itself is valid, but not valid when the next 2222 * key in leaf @right is 7. 2223 * This can only be checked at tree block merge time. 2224 * And since tree checker has ensured all key order in each tree block 2225 * is correct, we only need to bother the last key of @left and the first 2226 * key of @right. 2227 */ 2228 static bool check_sibling_keys(struct extent_buffer *left, 2229 struct extent_buffer *right) 2230 { 2231 struct btrfs_key left_last; 2232 struct btrfs_key right_first; 2233 int level = btrfs_header_level(left); 2234 int nr_left = btrfs_header_nritems(left); 2235 int nr_right = btrfs_header_nritems(right); 2236 2237 /* No key to check in one of the tree blocks */ 2238 if (!nr_left || !nr_right) 2239 return false; 2240 2241 if (level) { 2242 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); 2243 btrfs_node_key_to_cpu(right, &right_first, 0); 2244 } else { 2245 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); 2246 btrfs_item_key_to_cpu(right, &right_first, 0); 2247 } 2248 2249 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) { 2250 btrfs_crit(left->fs_info, 2251 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", 2252 left_last.objectid, left_last.type, 2253 left_last.offset, right_first.objectid, 2254 right_first.type, right_first.offset); 2255 return true; 2256 } 2257 return false; 2258 } 2259 2260 /* 2261 * try to push data from one node into the next node left in the 2262 * tree. 2263 * 2264 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2265 * error, and > 0 if there was no room in the left hand block. 2266 */ 2267 static int push_node_left(struct btrfs_trans_handle *trans, 2268 struct extent_buffer *dst, 2269 struct extent_buffer *src, int empty) 2270 { 2271 struct btrfs_fs_info *fs_info = trans->fs_info; 2272 int push_items = 0; 2273 int src_nritems; 2274 int dst_nritems; 2275 int ret = 0; 2276 2277 src_nritems = btrfs_header_nritems(src); 2278 dst_nritems = btrfs_header_nritems(dst); 2279 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2280 WARN_ON(btrfs_header_generation(src) != trans->transid); 2281 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2282 2283 if (!empty && src_nritems <= 8) 2284 return 1; 2285 2286 if (push_items <= 0) 2287 return 1; 2288 2289 if (empty) { 2290 push_items = min(src_nritems, push_items); 2291 if (push_items < src_nritems) { 2292 /* leave at least 8 pointers in the node if 2293 * we aren't going to empty it 2294 */ 2295 if (src_nritems - push_items < 8) { 2296 if (push_items <= 8) 2297 return 1; 2298 push_items -= 8; 2299 } 2300 } 2301 } else 2302 push_items = min(src_nritems - 8, push_items); 2303 2304 /* dst is the left eb, src is the middle eb */ 2305 if (check_sibling_keys(dst, src)) { 2306 ret = -EUCLEAN; 2307 btrfs_abort_transaction(trans, ret); 2308 return ret; 2309 } 2310 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 2311 if (ret) { 2312 btrfs_abort_transaction(trans, ret); 2313 return ret; 2314 } 2315 copy_extent_buffer(dst, src, 2316 btrfs_node_key_ptr_offset(dst_nritems), 2317 btrfs_node_key_ptr_offset(0), 2318 push_items * sizeof(struct btrfs_key_ptr)); 2319 2320 if (push_items < src_nritems) { 2321 /* 2322 * Don't call btrfs_tree_mod_log_insert_move() here, key removal 2323 * was already fully logged by btrfs_tree_mod_log_eb_copy() above. 2324 */ 2325 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2326 btrfs_node_key_ptr_offset(push_items), 2327 (src_nritems - push_items) * 2328 sizeof(struct btrfs_key_ptr)); 2329 } 2330 btrfs_set_header_nritems(src, src_nritems - push_items); 2331 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2332 btrfs_mark_buffer_dirty(src); 2333 btrfs_mark_buffer_dirty(dst); 2334 2335 return ret; 2336 } 2337 2338 /* 2339 * try to push data from one node into the next node right in the 2340 * tree. 2341 * 2342 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2343 * error, and > 0 if there was no room in the right hand block. 2344 * 2345 * this will only push up to 1/2 the contents of the left node over 2346 */ 2347 static int balance_node_right(struct btrfs_trans_handle *trans, 2348 struct extent_buffer *dst, 2349 struct extent_buffer *src) 2350 { 2351 struct btrfs_fs_info *fs_info = trans->fs_info; 2352 int push_items = 0; 2353 int max_push; 2354 int src_nritems; 2355 int dst_nritems; 2356 int ret = 0; 2357 2358 WARN_ON(btrfs_header_generation(src) != trans->transid); 2359 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2360 2361 src_nritems = btrfs_header_nritems(src); 2362 dst_nritems = btrfs_header_nritems(dst); 2363 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2364 if (push_items <= 0) 2365 return 1; 2366 2367 if (src_nritems < 4) 2368 return 1; 2369 2370 max_push = src_nritems / 2 + 1; 2371 /* don't try to empty the node */ 2372 if (max_push >= src_nritems) 2373 return 1; 2374 2375 if (max_push < push_items) 2376 push_items = max_push; 2377 2378 /* dst is the right eb, src is the middle eb */ 2379 if (check_sibling_keys(src, dst)) { 2380 ret = -EUCLEAN; 2381 btrfs_abort_transaction(trans, ret); 2382 return ret; 2383 } 2384 ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 2385 BUG_ON(ret < 0); 2386 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2387 btrfs_node_key_ptr_offset(0), 2388 (dst_nritems) * 2389 sizeof(struct btrfs_key_ptr)); 2390 2391 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 2392 push_items); 2393 if (ret) { 2394 btrfs_abort_transaction(trans, ret); 2395 return ret; 2396 } 2397 copy_extent_buffer(dst, src, 2398 btrfs_node_key_ptr_offset(0), 2399 btrfs_node_key_ptr_offset(src_nritems - push_items), 2400 push_items * sizeof(struct btrfs_key_ptr)); 2401 2402 btrfs_set_header_nritems(src, src_nritems - push_items); 2403 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2404 2405 btrfs_mark_buffer_dirty(src); 2406 btrfs_mark_buffer_dirty(dst); 2407 2408 return ret; 2409 } 2410 2411 /* 2412 * helper function to insert a new root level in the tree. 2413 * A new node is allocated, and a single item is inserted to 2414 * point to the existing root 2415 * 2416 * returns zero on success or < 0 on failure. 2417 */ 2418 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2419 struct btrfs_root *root, 2420 struct btrfs_path *path, int level) 2421 { 2422 struct btrfs_fs_info *fs_info = root->fs_info; 2423 u64 lower_gen; 2424 struct extent_buffer *lower; 2425 struct extent_buffer *c; 2426 struct extent_buffer *old; 2427 struct btrfs_disk_key lower_key; 2428 int ret; 2429 2430 BUG_ON(path->nodes[level]); 2431 BUG_ON(path->nodes[level-1] != root->node); 2432 2433 lower = path->nodes[level-1]; 2434 if (level == 1) 2435 btrfs_item_key(lower, &lower_key, 0); 2436 else 2437 btrfs_node_key(lower, &lower_key, 0); 2438 2439 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 2440 &lower_key, level, root->node->start, 0, 2441 BTRFS_NESTING_NEW_ROOT); 2442 if (IS_ERR(c)) 2443 return PTR_ERR(c); 2444 2445 root_add_used(root, fs_info->nodesize); 2446 2447 btrfs_set_header_nritems(c, 1); 2448 btrfs_set_node_key(c, &lower_key, 0); 2449 btrfs_set_node_blockptr(c, 0, lower->start); 2450 lower_gen = btrfs_header_generation(lower); 2451 WARN_ON(lower_gen != trans->transid); 2452 2453 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2454 2455 btrfs_mark_buffer_dirty(c); 2456 2457 old = root->node; 2458 ret = btrfs_tree_mod_log_insert_root(root->node, c, false); 2459 BUG_ON(ret < 0); 2460 rcu_assign_pointer(root->node, c); 2461 2462 /* the super has an extra ref to root->node */ 2463 free_extent_buffer(old); 2464 2465 add_root_to_dirty_list(root); 2466 atomic_inc(&c->refs); 2467 path->nodes[level] = c; 2468 path->locks[level] = BTRFS_WRITE_LOCK; 2469 path->slots[level] = 0; 2470 return 0; 2471 } 2472 2473 /* 2474 * worker function to insert a single pointer in a node. 2475 * the node should have enough room for the pointer already 2476 * 2477 * slot and level indicate where you want the key to go, and 2478 * blocknr is the block the key points to. 2479 */ 2480 static void insert_ptr(struct btrfs_trans_handle *trans, 2481 struct btrfs_path *path, 2482 struct btrfs_disk_key *key, u64 bytenr, 2483 int slot, int level) 2484 { 2485 struct extent_buffer *lower; 2486 int nritems; 2487 int ret; 2488 2489 BUG_ON(!path->nodes[level]); 2490 btrfs_assert_tree_locked(path->nodes[level]); 2491 lower = path->nodes[level]; 2492 nritems = btrfs_header_nritems(lower); 2493 BUG_ON(slot > nritems); 2494 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 2495 if (slot != nritems) { 2496 if (level) { 2497 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1, 2498 slot, nritems - slot); 2499 BUG_ON(ret < 0); 2500 } 2501 memmove_extent_buffer(lower, 2502 btrfs_node_key_ptr_offset(slot + 1), 2503 btrfs_node_key_ptr_offset(slot), 2504 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2505 } 2506 if (level) { 2507 ret = btrfs_tree_mod_log_insert_key(lower, slot, 2508 BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS); 2509 BUG_ON(ret < 0); 2510 } 2511 btrfs_set_node_key(lower, key, slot); 2512 btrfs_set_node_blockptr(lower, slot, bytenr); 2513 WARN_ON(trans->transid == 0); 2514 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2515 btrfs_set_header_nritems(lower, nritems + 1); 2516 btrfs_mark_buffer_dirty(lower); 2517 } 2518 2519 /* 2520 * split the node at the specified level in path in two. 2521 * The path is corrected to point to the appropriate node after the split 2522 * 2523 * Before splitting this tries to make some room in the node by pushing 2524 * left and right, if either one works, it returns right away. 2525 * 2526 * returns 0 on success and < 0 on failure 2527 */ 2528 static noinline int split_node(struct btrfs_trans_handle *trans, 2529 struct btrfs_root *root, 2530 struct btrfs_path *path, int level) 2531 { 2532 struct btrfs_fs_info *fs_info = root->fs_info; 2533 struct extent_buffer *c; 2534 struct extent_buffer *split; 2535 struct btrfs_disk_key disk_key; 2536 int mid; 2537 int ret; 2538 u32 c_nritems; 2539 2540 c = path->nodes[level]; 2541 WARN_ON(btrfs_header_generation(c) != trans->transid); 2542 if (c == root->node) { 2543 /* 2544 * trying to split the root, lets make a new one 2545 * 2546 * tree mod log: We don't log_removal old root in 2547 * insert_new_root, because that root buffer will be kept as a 2548 * normal node. We are going to log removal of half of the 2549 * elements below with btrfs_tree_mod_log_eb_copy(). We're 2550 * holding a tree lock on the buffer, which is why we cannot 2551 * race with other tree_mod_log users. 2552 */ 2553 ret = insert_new_root(trans, root, path, level + 1); 2554 if (ret) 2555 return ret; 2556 } else { 2557 ret = push_nodes_for_insert(trans, root, path, level); 2558 c = path->nodes[level]; 2559 if (!ret && btrfs_header_nritems(c) < 2560 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 2561 return 0; 2562 if (ret < 0) 2563 return ret; 2564 } 2565 2566 c_nritems = btrfs_header_nritems(c); 2567 mid = (c_nritems + 1) / 2; 2568 btrfs_node_key(c, &disk_key, mid); 2569 2570 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 2571 &disk_key, level, c->start, 0, 2572 BTRFS_NESTING_SPLIT); 2573 if (IS_ERR(split)) 2574 return PTR_ERR(split); 2575 2576 root_add_used(root, fs_info->nodesize); 2577 ASSERT(btrfs_header_level(c) == level); 2578 2579 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 2580 if (ret) { 2581 btrfs_abort_transaction(trans, ret); 2582 return ret; 2583 } 2584 copy_extent_buffer(split, c, 2585 btrfs_node_key_ptr_offset(0), 2586 btrfs_node_key_ptr_offset(mid), 2587 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2588 btrfs_set_header_nritems(split, c_nritems - mid); 2589 btrfs_set_header_nritems(c, mid); 2590 2591 btrfs_mark_buffer_dirty(c); 2592 btrfs_mark_buffer_dirty(split); 2593 2594 insert_ptr(trans, path, &disk_key, split->start, 2595 path->slots[level + 1] + 1, level + 1); 2596 2597 if (path->slots[level] >= mid) { 2598 path->slots[level] -= mid; 2599 btrfs_tree_unlock(c); 2600 free_extent_buffer(c); 2601 path->nodes[level] = split; 2602 path->slots[level + 1] += 1; 2603 } else { 2604 btrfs_tree_unlock(split); 2605 free_extent_buffer(split); 2606 } 2607 return 0; 2608 } 2609 2610 /* 2611 * how many bytes are required to store the items in a leaf. start 2612 * and nr indicate which items in the leaf to check. This totals up the 2613 * space used both by the item structs and the item data 2614 */ 2615 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2616 { 2617 struct btrfs_item *start_item; 2618 struct btrfs_item *end_item; 2619 int data_len; 2620 int nritems = btrfs_header_nritems(l); 2621 int end = min(nritems, start + nr) - 1; 2622 2623 if (!nr) 2624 return 0; 2625 start_item = btrfs_item_nr(start); 2626 end_item = btrfs_item_nr(end); 2627 data_len = btrfs_item_offset(l, start_item) + 2628 btrfs_item_size(l, start_item); 2629 data_len = data_len - btrfs_item_offset(l, end_item); 2630 data_len += sizeof(struct btrfs_item) * nr; 2631 WARN_ON(data_len < 0); 2632 return data_len; 2633 } 2634 2635 /* 2636 * The space between the end of the leaf items and 2637 * the start of the leaf data. IOW, how much room 2638 * the leaf has left for both items and data 2639 */ 2640 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 2641 { 2642 struct btrfs_fs_info *fs_info = leaf->fs_info; 2643 int nritems = btrfs_header_nritems(leaf); 2644 int ret; 2645 2646 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 2647 if (ret < 0) { 2648 btrfs_crit(fs_info, 2649 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 2650 ret, 2651 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 2652 leaf_space_used(leaf, 0, nritems), nritems); 2653 } 2654 return ret; 2655 } 2656 2657 /* 2658 * min slot controls the lowest index we're willing to push to the 2659 * right. We'll push up to and including min_slot, but no lower 2660 */ 2661 static noinline int __push_leaf_right(struct btrfs_path *path, 2662 int data_size, int empty, 2663 struct extent_buffer *right, 2664 int free_space, u32 left_nritems, 2665 u32 min_slot) 2666 { 2667 struct btrfs_fs_info *fs_info = right->fs_info; 2668 struct extent_buffer *left = path->nodes[0]; 2669 struct extent_buffer *upper = path->nodes[1]; 2670 struct btrfs_map_token token; 2671 struct btrfs_disk_key disk_key; 2672 int slot; 2673 u32 i; 2674 int push_space = 0; 2675 int push_items = 0; 2676 struct btrfs_item *item; 2677 u32 nr; 2678 u32 right_nritems; 2679 u32 data_end; 2680 u32 this_item_size; 2681 2682 if (empty) 2683 nr = 0; 2684 else 2685 nr = max_t(u32, 1, min_slot); 2686 2687 if (path->slots[0] >= left_nritems) 2688 push_space += data_size; 2689 2690 slot = path->slots[1]; 2691 i = left_nritems - 1; 2692 while (i >= nr) { 2693 item = btrfs_item_nr(i); 2694 2695 if (!empty && push_items > 0) { 2696 if (path->slots[0] > i) 2697 break; 2698 if (path->slots[0] == i) { 2699 int space = btrfs_leaf_free_space(left); 2700 2701 if (space + push_space * 2 > free_space) 2702 break; 2703 } 2704 } 2705 2706 if (path->slots[0] == i) 2707 push_space += data_size; 2708 2709 this_item_size = btrfs_item_size(left, item); 2710 if (this_item_size + sizeof(*item) + push_space > free_space) 2711 break; 2712 2713 push_items++; 2714 push_space += this_item_size + sizeof(*item); 2715 if (i == 0) 2716 break; 2717 i--; 2718 } 2719 2720 if (push_items == 0) 2721 goto out_unlock; 2722 2723 WARN_ON(!empty && push_items == left_nritems); 2724 2725 /* push left to right */ 2726 right_nritems = btrfs_header_nritems(right); 2727 2728 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2729 push_space -= leaf_data_end(left); 2730 2731 /* make room in the right data area */ 2732 data_end = leaf_data_end(right); 2733 memmove_extent_buffer(right, 2734 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 2735 BTRFS_LEAF_DATA_OFFSET + data_end, 2736 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 2737 2738 /* copy from the left data area */ 2739 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 2740 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 2741 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 2742 push_space); 2743 2744 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2745 btrfs_item_nr_offset(0), 2746 right_nritems * sizeof(struct btrfs_item)); 2747 2748 /* copy the items from left to right */ 2749 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2750 btrfs_item_nr_offset(left_nritems - push_items), 2751 push_items * sizeof(struct btrfs_item)); 2752 2753 /* update the item pointers */ 2754 btrfs_init_map_token(&token, right); 2755 right_nritems += push_items; 2756 btrfs_set_header_nritems(right, right_nritems); 2757 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 2758 for (i = 0; i < right_nritems; i++) { 2759 item = btrfs_item_nr(i); 2760 push_space -= btrfs_token_item_size(&token, item); 2761 btrfs_set_token_item_offset(&token, item, push_space); 2762 } 2763 2764 left_nritems -= push_items; 2765 btrfs_set_header_nritems(left, left_nritems); 2766 2767 if (left_nritems) 2768 btrfs_mark_buffer_dirty(left); 2769 else 2770 btrfs_clean_tree_block(left); 2771 2772 btrfs_mark_buffer_dirty(right); 2773 2774 btrfs_item_key(right, &disk_key, 0); 2775 btrfs_set_node_key(upper, &disk_key, slot + 1); 2776 btrfs_mark_buffer_dirty(upper); 2777 2778 /* then fixup the leaf pointer in the path */ 2779 if (path->slots[0] >= left_nritems) { 2780 path->slots[0] -= left_nritems; 2781 if (btrfs_header_nritems(path->nodes[0]) == 0) 2782 btrfs_clean_tree_block(path->nodes[0]); 2783 btrfs_tree_unlock(path->nodes[0]); 2784 free_extent_buffer(path->nodes[0]); 2785 path->nodes[0] = right; 2786 path->slots[1] += 1; 2787 } else { 2788 btrfs_tree_unlock(right); 2789 free_extent_buffer(right); 2790 } 2791 return 0; 2792 2793 out_unlock: 2794 btrfs_tree_unlock(right); 2795 free_extent_buffer(right); 2796 return 1; 2797 } 2798 2799 /* 2800 * push some data in the path leaf to the right, trying to free up at 2801 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2802 * 2803 * returns 1 if the push failed because the other node didn't have enough 2804 * room, 0 if everything worked out and < 0 if there were major errors. 2805 * 2806 * this will push starting from min_slot to the end of the leaf. It won't 2807 * push any slot lower than min_slot 2808 */ 2809 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2810 *root, struct btrfs_path *path, 2811 int min_data_size, int data_size, 2812 int empty, u32 min_slot) 2813 { 2814 struct extent_buffer *left = path->nodes[0]; 2815 struct extent_buffer *right; 2816 struct extent_buffer *upper; 2817 int slot; 2818 int free_space; 2819 u32 left_nritems; 2820 int ret; 2821 2822 if (!path->nodes[1]) 2823 return 1; 2824 2825 slot = path->slots[1]; 2826 upper = path->nodes[1]; 2827 if (slot >= btrfs_header_nritems(upper) - 1) 2828 return 1; 2829 2830 btrfs_assert_tree_locked(path->nodes[1]); 2831 2832 right = btrfs_read_node_slot(upper, slot + 1); 2833 /* 2834 * slot + 1 is not valid or we fail to read the right node, 2835 * no big deal, just return. 2836 */ 2837 if (IS_ERR(right)) 2838 return 1; 2839 2840 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 2841 2842 free_space = btrfs_leaf_free_space(right); 2843 if (free_space < data_size) 2844 goto out_unlock; 2845 2846 /* cow and double check */ 2847 ret = btrfs_cow_block(trans, root, right, upper, 2848 slot + 1, &right, BTRFS_NESTING_RIGHT_COW); 2849 if (ret) 2850 goto out_unlock; 2851 2852 free_space = btrfs_leaf_free_space(right); 2853 if (free_space < data_size) 2854 goto out_unlock; 2855 2856 left_nritems = btrfs_header_nritems(left); 2857 if (left_nritems == 0) 2858 goto out_unlock; 2859 2860 if (check_sibling_keys(left, right)) { 2861 ret = -EUCLEAN; 2862 btrfs_tree_unlock(right); 2863 free_extent_buffer(right); 2864 return ret; 2865 } 2866 if (path->slots[0] == left_nritems && !empty) { 2867 /* Key greater than all keys in the leaf, right neighbor has 2868 * enough room for it and we're not emptying our leaf to delete 2869 * it, therefore use right neighbor to insert the new item and 2870 * no need to touch/dirty our left leaf. */ 2871 btrfs_tree_unlock(left); 2872 free_extent_buffer(left); 2873 path->nodes[0] = right; 2874 path->slots[0] = 0; 2875 path->slots[1]++; 2876 return 0; 2877 } 2878 2879 return __push_leaf_right(path, min_data_size, empty, 2880 right, free_space, left_nritems, min_slot); 2881 out_unlock: 2882 btrfs_tree_unlock(right); 2883 free_extent_buffer(right); 2884 return 1; 2885 } 2886 2887 /* 2888 * push some data in the path leaf to the left, trying to free up at 2889 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2890 * 2891 * max_slot can put a limit on how far into the leaf we'll push items. The 2892 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 2893 * items 2894 */ 2895 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 2896 int empty, struct extent_buffer *left, 2897 int free_space, u32 right_nritems, 2898 u32 max_slot) 2899 { 2900 struct btrfs_fs_info *fs_info = left->fs_info; 2901 struct btrfs_disk_key disk_key; 2902 struct extent_buffer *right = path->nodes[0]; 2903 int i; 2904 int push_space = 0; 2905 int push_items = 0; 2906 struct btrfs_item *item; 2907 u32 old_left_nritems; 2908 u32 nr; 2909 int ret = 0; 2910 u32 this_item_size; 2911 u32 old_left_item_size; 2912 struct btrfs_map_token token; 2913 2914 if (empty) 2915 nr = min(right_nritems, max_slot); 2916 else 2917 nr = min(right_nritems - 1, max_slot); 2918 2919 for (i = 0; i < nr; i++) { 2920 item = btrfs_item_nr(i); 2921 2922 if (!empty && push_items > 0) { 2923 if (path->slots[0] < i) 2924 break; 2925 if (path->slots[0] == i) { 2926 int space = btrfs_leaf_free_space(right); 2927 2928 if (space + push_space * 2 > free_space) 2929 break; 2930 } 2931 } 2932 2933 if (path->slots[0] == i) 2934 push_space += data_size; 2935 2936 this_item_size = btrfs_item_size(right, item); 2937 if (this_item_size + sizeof(*item) + push_space > free_space) 2938 break; 2939 2940 push_items++; 2941 push_space += this_item_size + sizeof(*item); 2942 } 2943 2944 if (push_items == 0) { 2945 ret = 1; 2946 goto out; 2947 } 2948 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 2949 2950 /* push data from right to left */ 2951 copy_extent_buffer(left, right, 2952 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2953 btrfs_item_nr_offset(0), 2954 push_items * sizeof(struct btrfs_item)); 2955 2956 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 2957 btrfs_item_offset_nr(right, push_items - 1); 2958 2959 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 2960 leaf_data_end(left) - push_space, 2961 BTRFS_LEAF_DATA_OFFSET + 2962 btrfs_item_offset_nr(right, push_items - 1), 2963 push_space); 2964 old_left_nritems = btrfs_header_nritems(left); 2965 BUG_ON(old_left_nritems <= 0); 2966 2967 btrfs_init_map_token(&token, left); 2968 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2969 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2970 u32 ioff; 2971 2972 item = btrfs_item_nr(i); 2973 2974 ioff = btrfs_token_item_offset(&token, item); 2975 btrfs_set_token_item_offset(&token, item, 2976 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 2977 } 2978 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2979 2980 /* fixup right node */ 2981 if (push_items > right_nritems) 2982 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 2983 right_nritems); 2984 2985 if (push_items < right_nritems) { 2986 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2987 leaf_data_end(right); 2988 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 2989 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 2990 BTRFS_LEAF_DATA_OFFSET + 2991 leaf_data_end(right), push_space); 2992 2993 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2994 btrfs_item_nr_offset(push_items), 2995 (btrfs_header_nritems(right) - push_items) * 2996 sizeof(struct btrfs_item)); 2997 } 2998 2999 btrfs_init_map_token(&token, right); 3000 right_nritems -= push_items; 3001 btrfs_set_header_nritems(right, right_nritems); 3002 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3003 for (i = 0; i < right_nritems; i++) { 3004 item = btrfs_item_nr(i); 3005 3006 push_space = push_space - btrfs_token_item_size(&token, item); 3007 btrfs_set_token_item_offset(&token, item, push_space); 3008 } 3009 3010 btrfs_mark_buffer_dirty(left); 3011 if (right_nritems) 3012 btrfs_mark_buffer_dirty(right); 3013 else 3014 btrfs_clean_tree_block(right); 3015 3016 btrfs_item_key(right, &disk_key, 0); 3017 fixup_low_keys(path, &disk_key, 1); 3018 3019 /* then fixup the leaf pointer in the path */ 3020 if (path->slots[0] < push_items) { 3021 path->slots[0] += old_left_nritems; 3022 btrfs_tree_unlock(path->nodes[0]); 3023 free_extent_buffer(path->nodes[0]); 3024 path->nodes[0] = left; 3025 path->slots[1] -= 1; 3026 } else { 3027 btrfs_tree_unlock(left); 3028 free_extent_buffer(left); 3029 path->slots[0] -= push_items; 3030 } 3031 BUG_ON(path->slots[0] < 0); 3032 return ret; 3033 out: 3034 btrfs_tree_unlock(left); 3035 free_extent_buffer(left); 3036 return ret; 3037 } 3038 3039 /* 3040 * push some data in the path leaf to the left, trying to free up at 3041 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3042 * 3043 * max_slot can put a limit on how far into the leaf we'll push items. The 3044 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3045 * items 3046 */ 3047 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3048 *root, struct btrfs_path *path, int min_data_size, 3049 int data_size, int empty, u32 max_slot) 3050 { 3051 struct extent_buffer *right = path->nodes[0]; 3052 struct extent_buffer *left; 3053 int slot; 3054 int free_space; 3055 u32 right_nritems; 3056 int ret = 0; 3057 3058 slot = path->slots[1]; 3059 if (slot == 0) 3060 return 1; 3061 if (!path->nodes[1]) 3062 return 1; 3063 3064 right_nritems = btrfs_header_nritems(right); 3065 if (right_nritems == 0) 3066 return 1; 3067 3068 btrfs_assert_tree_locked(path->nodes[1]); 3069 3070 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3071 /* 3072 * slot - 1 is not valid or we fail to read the left node, 3073 * no big deal, just return. 3074 */ 3075 if (IS_ERR(left)) 3076 return 1; 3077 3078 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 3079 3080 free_space = btrfs_leaf_free_space(left); 3081 if (free_space < data_size) { 3082 ret = 1; 3083 goto out; 3084 } 3085 3086 /* cow and double check */ 3087 ret = btrfs_cow_block(trans, root, left, 3088 path->nodes[1], slot - 1, &left, 3089 BTRFS_NESTING_LEFT_COW); 3090 if (ret) { 3091 /* we hit -ENOSPC, but it isn't fatal here */ 3092 if (ret == -ENOSPC) 3093 ret = 1; 3094 goto out; 3095 } 3096 3097 free_space = btrfs_leaf_free_space(left); 3098 if (free_space < data_size) { 3099 ret = 1; 3100 goto out; 3101 } 3102 3103 if (check_sibling_keys(left, right)) { 3104 ret = -EUCLEAN; 3105 goto out; 3106 } 3107 return __push_leaf_left(path, min_data_size, 3108 empty, left, free_space, right_nritems, 3109 max_slot); 3110 out: 3111 btrfs_tree_unlock(left); 3112 free_extent_buffer(left); 3113 return ret; 3114 } 3115 3116 /* 3117 * split the path's leaf in two, making sure there is at least data_size 3118 * available for the resulting leaf level of the path. 3119 */ 3120 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3121 struct btrfs_path *path, 3122 struct extent_buffer *l, 3123 struct extent_buffer *right, 3124 int slot, int mid, int nritems) 3125 { 3126 struct btrfs_fs_info *fs_info = trans->fs_info; 3127 int data_copy_size; 3128 int rt_data_off; 3129 int i; 3130 struct btrfs_disk_key disk_key; 3131 struct btrfs_map_token token; 3132 3133 nritems = nritems - mid; 3134 btrfs_set_header_nritems(right, nritems); 3135 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l); 3136 3137 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3138 btrfs_item_nr_offset(mid), 3139 nritems * sizeof(struct btrfs_item)); 3140 3141 copy_extent_buffer(right, l, 3142 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 3143 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 3144 leaf_data_end(l), data_copy_size); 3145 3146 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 3147 3148 btrfs_init_map_token(&token, right); 3149 for (i = 0; i < nritems; i++) { 3150 struct btrfs_item *item = btrfs_item_nr(i); 3151 u32 ioff; 3152 3153 ioff = btrfs_token_item_offset(&token, item); 3154 btrfs_set_token_item_offset(&token, item, ioff + rt_data_off); 3155 } 3156 3157 btrfs_set_header_nritems(l, mid); 3158 btrfs_item_key(right, &disk_key, 0); 3159 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 3160 3161 btrfs_mark_buffer_dirty(right); 3162 btrfs_mark_buffer_dirty(l); 3163 BUG_ON(path->slots[0] != slot); 3164 3165 if (mid <= slot) { 3166 btrfs_tree_unlock(path->nodes[0]); 3167 free_extent_buffer(path->nodes[0]); 3168 path->nodes[0] = right; 3169 path->slots[0] -= mid; 3170 path->slots[1] += 1; 3171 } else { 3172 btrfs_tree_unlock(right); 3173 free_extent_buffer(right); 3174 } 3175 3176 BUG_ON(path->slots[0] < 0); 3177 } 3178 3179 /* 3180 * double splits happen when we need to insert a big item in the middle 3181 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3182 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3183 * A B C 3184 * 3185 * We avoid this by trying to push the items on either side of our target 3186 * into the adjacent leaves. If all goes well we can avoid the double split 3187 * completely. 3188 */ 3189 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3190 struct btrfs_root *root, 3191 struct btrfs_path *path, 3192 int data_size) 3193 { 3194 int ret; 3195 int progress = 0; 3196 int slot; 3197 u32 nritems; 3198 int space_needed = data_size; 3199 3200 slot = path->slots[0]; 3201 if (slot < btrfs_header_nritems(path->nodes[0])) 3202 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3203 3204 /* 3205 * try to push all the items after our slot into the 3206 * right leaf 3207 */ 3208 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 3209 if (ret < 0) 3210 return ret; 3211 3212 if (ret == 0) 3213 progress++; 3214 3215 nritems = btrfs_header_nritems(path->nodes[0]); 3216 /* 3217 * our goal is to get our slot at the start or end of a leaf. If 3218 * we've done so we're done 3219 */ 3220 if (path->slots[0] == 0 || path->slots[0] == nritems) 3221 return 0; 3222 3223 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3224 return 0; 3225 3226 /* try to push all the items before our slot into the next leaf */ 3227 slot = path->slots[0]; 3228 space_needed = data_size; 3229 if (slot > 0) 3230 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3231 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 3232 if (ret < 0) 3233 return ret; 3234 3235 if (ret == 0) 3236 progress++; 3237 3238 if (progress) 3239 return 0; 3240 return 1; 3241 } 3242 3243 /* 3244 * split the path's leaf in two, making sure there is at least data_size 3245 * available for the resulting leaf level of the path. 3246 * 3247 * returns 0 if all went well and < 0 on failure. 3248 */ 3249 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3250 struct btrfs_root *root, 3251 const struct btrfs_key *ins_key, 3252 struct btrfs_path *path, int data_size, 3253 int extend) 3254 { 3255 struct btrfs_disk_key disk_key; 3256 struct extent_buffer *l; 3257 u32 nritems; 3258 int mid; 3259 int slot; 3260 struct extent_buffer *right; 3261 struct btrfs_fs_info *fs_info = root->fs_info; 3262 int ret = 0; 3263 int wret; 3264 int split; 3265 int num_doubles = 0; 3266 int tried_avoid_double = 0; 3267 3268 l = path->nodes[0]; 3269 slot = path->slots[0]; 3270 if (extend && data_size + btrfs_item_size_nr(l, slot) + 3271 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 3272 return -EOVERFLOW; 3273 3274 /* first try to make some room by pushing left and right */ 3275 if (data_size && path->nodes[1]) { 3276 int space_needed = data_size; 3277 3278 if (slot < btrfs_header_nritems(l)) 3279 space_needed -= btrfs_leaf_free_space(l); 3280 3281 wret = push_leaf_right(trans, root, path, space_needed, 3282 space_needed, 0, 0); 3283 if (wret < 0) 3284 return wret; 3285 if (wret) { 3286 space_needed = data_size; 3287 if (slot > 0) 3288 space_needed -= btrfs_leaf_free_space(l); 3289 wret = push_leaf_left(trans, root, path, space_needed, 3290 space_needed, 0, (u32)-1); 3291 if (wret < 0) 3292 return wret; 3293 } 3294 l = path->nodes[0]; 3295 3296 /* did the pushes work? */ 3297 if (btrfs_leaf_free_space(l) >= data_size) 3298 return 0; 3299 } 3300 3301 if (!path->nodes[1]) { 3302 ret = insert_new_root(trans, root, path, 1); 3303 if (ret) 3304 return ret; 3305 } 3306 again: 3307 split = 1; 3308 l = path->nodes[0]; 3309 slot = path->slots[0]; 3310 nritems = btrfs_header_nritems(l); 3311 mid = (nritems + 1) / 2; 3312 3313 if (mid <= slot) { 3314 if (nritems == 1 || 3315 leaf_space_used(l, mid, nritems - mid) + data_size > 3316 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3317 if (slot >= nritems) { 3318 split = 0; 3319 } else { 3320 mid = slot; 3321 if (mid != nritems && 3322 leaf_space_used(l, mid, nritems - mid) + 3323 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3324 if (data_size && !tried_avoid_double) 3325 goto push_for_double; 3326 split = 2; 3327 } 3328 } 3329 } 3330 } else { 3331 if (leaf_space_used(l, 0, mid) + data_size > 3332 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3333 if (!extend && data_size && slot == 0) { 3334 split = 0; 3335 } else if ((extend || !data_size) && slot == 0) { 3336 mid = 1; 3337 } else { 3338 mid = slot; 3339 if (mid != nritems && 3340 leaf_space_used(l, mid, nritems - mid) + 3341 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3342 if (data_size && !tried_avoid_double) 3343 goto push_for_double; 3344 split = 2; 3345 } 3346 } 3347 } 3348 } 3349 3350 if (split == 0) 3351 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3352 else 3353 btrfs_item_key(l, &disk_key, mid); 3354 3355 /* 3356 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double 3357 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES 3358 * subclasses, which is 8 at the time of this patch, and we've maxed it 3359 * out. In the future we could add a 3360 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just 3361 * use BTRFS_NESTING_NEW_ROOT. 3362 */ 3363 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3364 &disk_key, 0, l->start, 0, 3365 num_doubles ? BTRFS_NESTING_NEW_ROOT : 3366 BTRFS_NESTING_SPLIT); 3367 if (IS_ERR(right)) 3368 return PTR_ERR(right); 3369 3370 root_add_used(root, fs_info->nodesize); 3371 3372 if (split == 0) { 3373 if (mid <= slot) { 3374 btrfs_set_header_nritems(right, 0); 3375 insert_ptr(trans, path, &disk_key, 3376 right->start, path->slots[1] + 1, 1); 3377 btrfs_tree_unlock(path->nodes[0]); 3378 free_extent_buffer(path->nodes[0]); 3379 path->nodes[0] = right; 3380 path->slots[0] = 0; 3381 path->slots[1] += 1; 3382 } else { 3383 btrfs_set_header_nritems(right, 0); 3384 insert_ptr(trans, path, &disk_key, 3385 right->start, path->slots[1], 1); 3386 btrfs_tree_unlock(path->nodes[0]); 3387 free_extent_buffer(path->nodes[0]); 3388 path->nodes[0] = right; 3389 path->slots[0] = 0; 3390 if (path->slots[1] == 0) 3391 fixup_low_keys(path, &disk_key, 1); 3392 } 3393 /* 3394 * We create a new leaf 'right' for the required ins_len and 3395 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 3396 * the content of ins_len to 'right'. 3397 */ 3398 return ret; 3399 } 3400 3401 copy_for_split(trans, path, l, right, slot, mid, nritems); 3402 3403 if (split == 2) { 3404 BUG_ON(num_doubles != 0); 3405 num_doubles++; 3406 goto again; 3407 } 3408 3409 return 0; 3410 3411 push_for_double: 3412 push_for_double_split(trans, root, path, data_size); 3413 tried_avoid_double = 1; 3414 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3415 return 0; 3416 goto again; 3417 } 3418 3419 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3420 struct btrfs_root *root, 3421 struct btrfs_path *path, int ins_len) 3422 { 3423 struct btrfs_key key; 3424 struct extent_buffer *leaf; 3425 struct btrfs_file_extent_item *fi; 3426 u64 extent_len = 0; 3427 u32 item_size; 3428 int ret; 3429 3430 leaf = path->nodes[0]; 3431 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3432 3433 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3434 key.type != BTRFS_EXTENT_CSUM_KEY); 3435 3436 if (btrfs_leaf_free_space(leaf) >= ins_len) 3437 return 0; 3438 3439 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3440 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3441 fi = btrfs_item_ptr(leaf, path->slots[0], 3442 struct btrfs_file_extent_item); 3443 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3444 } 3445 btrfs_release_path(path); 3446 3447 path->keep_locks = 1; 3448 path->search_for_split = 1; 3449 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3450 path->search_for_split = 0; 3451 if (ret > 0) 3452 ret = -EAGAIN; 3453 if (ret < 0) 3454 goto err; 3455 3456 ret = -EAGAIN; 3457 leaf = path->nodes[0]; 3458 /* if our item isn't there, return now */ 3459 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 3460 goto err; 3461 3462 /* the leaf has changed, it now has room. return now */ 3463 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 3464 goto err; 3465 3466 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3467 fi = btrfs_item_ptr(leaf, path->slots[0], 3468 struct btrfs_file_extent_item); 3469 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3470 goto err; 3471 } 3472 3473 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3474 if (ret) 3475 goto err; 3476 3477 path->keep_locks = 0; 3478 btrfs_unlock_up_safe(path, 1); 3479 return 0; 3480 err: 3481 path->keep_locks = 0; 3482 return ret; 3483 } 3484 3485 static noinline int split_item(struct btrfs_path *path, 3486 const struct btrfs_key *new_key, 3487 unsigned long split_offset) 3488 { 3489 struct extent_buffer *leaf; 3490 struct btrfs_item *item; 3491 struct btrfs_item *new_item; 3492 int slot; 3493 char *buf; 3494 u32 nritems; 3495 u32 item_size; 3496 u32 orig_offset; 3497 struct btrfs_disk_key disk_key; 3498 3499 leaf = path->nodes[0]; 3500 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 3501 3502 item = btrfs_item_nr(path->slots[0]); 3503 orig_offset = btrfs_item_offset(leaf, item); 3504 item_size = btrfs_item_size(leaf, item); 3505 3506 buf = kmalloc(item_size, GFP_NOFS); 3507 if (!buf) 3508 return -ENOMEM; 3509 3510 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3511 path->slots[0]), item_size); 3512 3513 slot = path->slots[0] + 1; 3514 nritems = btrfs_header_nritems(leaf); 3515 if (slot != nritems) { 3516 /* shift the items */ 3517 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3518 btrfs_item_nr_offset(slot), 3519 (nritems - slot) * sizeof(struct btrfs_item)); 3520 } 3521 3522 btrfs_cpu_key_to_disk(&disk_key, new_key); 3523 btrfs_set_item_key(leaf, &disk_key, slot); 3524 3525 new_item = btrfs_item_nr(slot); 3526 3527 btrfs_set_item_offset(leaf, new_item, orig_offset); 3528 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3529 3530 btrfs_set_item_offset(leaf, item, 3531 orig_offset + item_size - split_offset); 3532 btrfs_set_item_size(leaf, item, split_offset); 3533 3534 btrfs_set_header_nritems(leaf, nritems + 1); 3535 3536 /* write the data for the start of the original item */ 3537 write_extent_buffer(leaf, buf, 3538 btrfs_item_ptr_offset(leaf, path->slots[0]), 3539 split_offset); 3540 3541 /* write the data for the new item */ 3542 write_extent_buffer(leaf, buf + split_offset, 3543 btrfs_item_ptr_offset(leaf, slot), 3544 item_size - split_offset); 3545 btrfs_mark_buffer_dirty(leaf); 3546 3547 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 3548 kfree(buf); 3549 return 0; 3550 } 3551 3552 /* 3553 * This function splits a single item into two items, 3554 * giving 'new_key' to the new item and splitting the 3555 * old one at split_offset (from the start of the item). 3556 * 3557 * The path may be released by this operation. After 3558 * the split, the path is pointing to the old item. The 3559 * new item is going to be in the same node as the old one. 3560 * 3561 * Note, the item being split must be smaller enough to live alone on 3562 * a tree block with room for one extra struct btrfs_item 3563 * 3564 * This allows us to split the item in place, keeping a lock on the 3565 * leaf the entire time. 3566 */ 3567 int btrfs_split_item(struct btrfs_trans_handle *trans, 3568 struct btrfs_root *root, 3569 struct btrfs_path *path, 3570 const struct btrfs_key *new_key, 3571 unsigned long split_offset) 3572 { 3573 int ret; 3574 ret = setup_leaf_for_split(trans, root, path, 3575 sizeof(struct btrfs_item)); 3576 if (ret) 3577 return ret; 3578 3579 ret = split_item(path, new_key, split_offset); 3580 return ret; 3581 } 3582 3583 /* 3584 * This function duplicate a item, giving 'new_key' to the new item. 3585 * It guarantees both items live in the same tree leaf and the new item 3586 * is contiguous with the original item. 3587 * 3588 * This allows us to split file extent in place, keeping a lock on the 3589 * leaf the entire time. 3590 */ 3591 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 3592 struct btrfs_root *root, 3593 struct btrfs_path *path, 3594 const struct btrfs_key *new_key) 3595 { 3596 struct extent_buffer *leaf; 3597 int ret; 3598 u32 item_size; 3599 3600 leaf = path->nodes[0]; 3601 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3602 ret = setup_leaf_for_split(trans, root, path, 3603 item_size + sizeof(struct btrfs_item)); 3604 if (ret) 3605 return ret; 3606 3607 path->slots[0]++; 3608 setup_items_for_insert(root, path, new_key, &item_size, 1); 3609 leaf = path->nodes[0]; 3610 memcpy_extent_buffer(leaf, 3611 btrfs_item_ptr_offset(leaf, path->slots[0]), 3612 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 3613 item_size); 3614 return 0; 3615 } 3616 3617 /* 3618 * make the item pointed to by the path smaller. new_size indicates 3619 * how small to make it, and from_end tells us if we just chop bytes 3620 * off the end of the item or if we shift the item to chop bytes off 3621 * the front. 3622 */ 3623 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 3624 { 3625 int slot; 3626 struct extent_buffer *leaf; 3627 struct btrfs_item *item; 3628 u32 nritems; 3629 unsigned int data_end; 3630 unsigned int old_data_start; 3631 unsigned int old_size; 3632 unsigned int size_diff; 3633 int i; 3634 struct btrfs_map_token token; 3635 3636 leaf = path->nodes[0]; 3637 slot = path->slots[0]; 3638 3639 old_size = btrfs_item_size_nr(leaf, slot); 3640 if (old_size == new_size) 3641 return; 3642 3643 nritems = btrfs_header_nritems(leaf); 3644 data_end = leaf_data_end(leaf); 3645 3646 old_data_start = btrfs_item_offset_nr(leaf, slot); 3647 3648 size_diff = old_size - new_size; 3649 3650 BUG_ON(slot < 0); 3651 BUG_ON(slot >= nritems); 3652 3653 /* 3654 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3655 */ 3656 /* first correct the data pointers */ 3657 btrfs_init_map_token(&token, leaf); 3658 for (i = slot; i < nritems; i++) { 3659 u32 ioff; 3660 item = btrfs_item_nr(i); 3661 3662 ioff = btrfs_token_item_offset(&token, item); 3663 btrfs_set_token_item_offset(&token, item, ioff + size_diff); 3664 } 3665 3666 /* shift the data */ 3667 if (from_end) { 3668 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3669 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 3670 data_end, old_data_start + new_size - data_end); 3671 } else { 3672 struct btrfs_disk_key disk_key; 3673 u64 offset; 3674 3675 btrfs_item_key(leaf, &disk_key, slot); 3676 3677 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3678 unsigned long ptr; 3679 struct btrfs_file_extent_item *fi; 3680 3681 fi = btrfs_item_ptr(leaf, slot, 3682 struct btrfs_file_extent_item); 3683 fi = (struct btrfs_file_extent_item *)( 3684 (unsigned long)fi - size_diff); 3685 3686 if (btrfs_file_extent_type(leaf, fi) == 3687 BTRFS_FILE_EXTENT_INLINE) { 3688 ptr = btrfs_item_ptr_offset(leaf, slot); 3689 memmove_extent_buffer(leaf, ptr, 3690 (unsigned long)fi, 3691 BTRFS_FILE_EXTENT_INLINE_DATA_START); 3692 } 3693 } 3694 3695 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3696 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 3697 data_end, old_data_start - data_end); 3698 3699 offset = btrfs_disk_key_offset(&disk_key); 3700 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3701 btrfs_set_item_key(leaf, &disk_key, slot); 3702 if (slot == 0) 3703 fixup_low_keys(path, &disk_key, 1); 3704 } 3705 3706 item = btrfs_item_nr(slot); 3707 btrfs_set_item_size(leaf, item, new_size); 3708 btrfs_mark_buffer_dirty(leaf); 3709 3710 if (btrfs_leaf_free_space(leaf) < 0) { 3711 btrfs_print_leaf(leaf); 3712 BUG(); 3713 } 3714 } 3715 3716 /* 3717 * make the item pointed to by the path bigger, data_size is the added size. 3718 */ 3719 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 3720 { 3721 int slot; 3722 struct extent_buffer *leaf; 3723 struct btrfs_item *item; 3724 u32 nritems; 3725 unsigned int data_end; 3726 unsigned int old_data; 3727 unsigned int old_size; 3728 int i; 3729 struct btrfs_map_token token; 3730 3731 leaf = path->nodes[0]; 3732 3733 nritems = btrfs_header_nritems(leaf); 3734 data_end = leaf_data_end(leaf); 3735 3736 if (btrfs_leaf_free_space(leaf) < data_size) { 3737 btrfs_print_leaf(leaf); 3738 BUG(); 3739 } 3740 slot = path->slots[0]; 3741 old_data = btrfs_item_end_nr(leaf, slot); 3742 3743 BUG_ON(slot < 0); 3744 if (slot >= nritems) { 3745 btrfs_print_leaf(leaf); 3746 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 3747 slot, nritems); 3748 BUG(); 3749 } 3750 3751 /* 3752 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3753 */ 3754 /* first correct the data pointers */ 3755 btrfs_init_map_token(&token, leaf); 3756 for (i = slot; i < nritems; i++) { 3757 u32 ioff; 3758 item = btrfs_item_nr(i); 3759 3760 ioff = btrfs_token_item_offset(&token, item); 3761 btrfs_set_token_item_offset(&token, item, ioff - data_size); 3762 } 3763 3764 /* shift the data */ 3765 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3766 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 3767 data_end, old_data - data_end); 3768 3769 data_end = old_data; 3770 old_size = btrfs_item_size_nr(leaf, slot); 3771 item = btrfs_item_nr(slot); 3772 btrfs_set_item_size(leaf, item, old_size + data_size); 3773 btrfs_mark_buffer_dirty(leaf); 3774 3775 if (btrfs_leaf_free_space(leaf) < 0) { 3776 btrfs_print_leaf(leaf); 3777 BUG(); 3778 } 3779 } 3780 3781 /** 3782 * setup_items_for_insert - Helper called before inserting one or more items 3783 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work 3784 * in a function that doesn't call btrfs_search_slot 3785 * 3786 * @root: root we are inserting items to 3787 * @path: points to the leaf/slot where we are going to insert new items 3788 * @cpu_key: array of keys for items to be inserted 3789 * @data_size: size of the body of each item we are going to insert 3790 * @nr: size of @cpu_key/@data_size arrays 3791 */ 3792 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 3793 const struct btrfs_key *cpu_key, u32 *data_size, 3794 int nr) 3795 { 3796 struct btrfs_fs_info *fs_info = root->fs_info; 3797 struct btrfs_item *item; 3798 int i; 3799 u32 nritems; 3800 unsigned int data_end; 3801 struct btrfs_disk_key disk_key; 3802 struct extent_buffer *leaf; 3803 int slot; 3804 struct btrfs_map_token token; 3805 u32 total_size; 3806 u32 total_data = 0; 3807 3808 for (i = 0; i < nr; i++) 3809 total_data += data_size[i]; 3810 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3811 3812 if (path->slots[0] == 0) { 3813 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3814 fixup_low_keys(path, &disk_key, 1); 3815 } 3816 btrfs_unlock_up_safe(path, 1); 3817 3818 leaf = path->nodes[0]; 3819 slot = path->slots[0]; 3820 3821 nritems = btrfs_header_nritems(leaf); 3822 data_end = leaf_data_end(leaf); 3823 3824 if (btrfs_leaf_free_space(leaf) < total_size) { 3825 btrfs_print_leaf(leaf); 3826 btrfs_crit(fs_info, "not enough freespace need %u have %d", 3827 total_size, btrfs_leaf_free_space(leaf)); 3828 BUG(); 3829 } 3830 3831 btrfs_init_map_token(&token, leaf); 3832 if (slot != nritems) { 3833 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3834 3835 if (old_data < data_end) { 3836 btrfs_print_leaf(leaf); 3837 btrfs_crit(fs_info, 3838 "item at slot %d with data offset %u beyond data end of leaf %u", 3839 slot, old_data, data_end); 3840 BUG(); 3841 } 3842 /* 3843 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3844 */ 3845 /* first correct the data pointers */ 3846 for (i = slot; i < nritems; i++) { 3847 u32 ioff; 3848 3849 item = btrfs_item_nr(i); 3850 ioff = btrfs_token_item_offset(&token, item); 3851 btrfs_set_token_item_offset(&token, item, 3852 ioff - total_data); 3853 } 3854 /* shift the items */ 3855 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3856 btrfs_item_nr_offset(slot), 3857 (nritems - slot) * sizeof(struct btrfs_item)); 3858 3859 /* shift the data */ 3860 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3861 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 3862 data_end, old_data - data_end); 3863 data_end = old_data; 3864 } 3865 3866 /* setup the item for the new data */ 3867 for (i = 0; i < nr; i++) { 3868 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3869 btrfs_set_item_key(leaf, &disk_key, slot + i); 3870 item = btrfs_item_nr(slot + i); 3871 data_end -= data_size[i]; 3872 btrfs_set_token_item_offset(&token, item, data_end); 3873 btrfs_set_token_item_size(&token, item, data_size[i]); 3874 } 3875 3876 btrfs_set_header_nritems(leaf, nritems + nr); 3877 btrfs_mark_buffer_dirty(leaf); 3878 3879 if (btrfs_leaf_free_space(leaf) < 0) { 3880 btrfs_print_leaf(leaf); 3881 BUG(); 3882 } 3883 } 3884 3885 /* 3886 * Given a key and some data, insert items into the tree. 3887 * This does all the path init required, making room in the tree if needed. 3888 */ 3889 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3890 struct btrfs_root *root, 3891 struct btrfs_path *path, 3892 const struct btrfs_key *cpu_key, u32 *data_size, 3893 int nr) 3894 { 3895 int ret = 0; 3896 int slot; 3897 int i; 3898 u32 total_size = 0; 3899 u32 total_data = 0; 3900 3901 for (i = 0; i < nr; i++) 3902 total_data += data_size[i]; 3903 3904 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3905 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3906 if (ret == 0) 3907 return -EEXIST; 3908 if (ret < 0) 3909 return ret; 3910 3911 slot = path->slots[0]; 3912 BUG_ON(slot < 0); 3913 3914 setup_items_for_insert(root, path, cpu_key, data_size, nr); 3915 return 0; 3916 } 3917 3918 /* 3919 * Given a key and some data, insert an item into the tree. 3920 * This does all the path init required, making room in the tree if needed. 3921 */ 3922 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3923 const struct btrfs_key *cpu_key, void *data, 3924 u32 data_size) 3925 { 3926 int ret = 0; 3927 struct btrfs_path *path; 3928 struct extent_buffer *leaf; 3929 unsigned long ptr; 3930 3931 path = btrfs_alloc_path(); 3932 if (!path) 3933 return -ENOMEM; 3934 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3935 if (!ret) { 3936 leaf = path->nodes[0]; 3937 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3938 write_extent_buffer(leaf, data, ptr, data_size); 3939 btrfs_mark_buffer_dirty(leaf); 3940 } 3941 btrfs_free_path(path); 3942 return ret; 3943 } 3944 3945 /* 3946 * delete the pointer from a given node. 3947 * 3948 * the tree should have been previously balanced so the deletion does not 3949 * empty a node. 3950 */ 3951 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 3952 int level, int slot) 3953 { 3954 struct extent_buffer *parent = path->nodes[level]; 3955 u32 nritems; 3956 int ret; 3957 3958 nritems = btrfs_header_nritems(parent); 3959 if (slot != nritems - 1) { 3960 if (level) { 3961 ret = btrfs_tree_mod_log_insert_move(parent, slot, 3962 slot + 1, nritems - slot - 1); 3963 BUG_ON(ret < 0); 3964 } 3965 memmove_extent_buffer(parent, 3966 btrfs_node_key_ptr_offset(slot), 3967 btrfs_node_key_ptr_offset(slot + 1), 3968 sizeof(struct btrfs_key_ptr) * 3969 (nritems - slot - 1)); 3970 } else if (level) { 3971 ret = btrfs_tree_mod_log_insert_key(parent, slot, 3972 BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS); 3973 BUG_ON(ret < 0); 3974 } 3975 3976 nritems--; 3977 btrfs_set_header_nritems(parent, nritems); 3978 if (nritems == 0 && parent == root->node) { 3979 BUG_ON(btrfs_header_level(root->node) != 1); 3980 /* just turn the root into a leaf and break */ 3981 btrfs_set_header_level(root->node, 0); 3982 } else if (slot == 0) { 3983 struct btrfs_disk_key disk_key; 3984 3985 btrfs_node_key(parent, &disk_key, 0); 3986 fixup_low_keys(path, &disk_key, level + 1); 3987 } 3988 btrfs_mark_buffer_dirty(parent); 3989 } 3990 3991 /* 3992 * a helper function to delete the leaf pointed to by path->slots[1] and 3993 * path->nodes[1]. 3994 * 3995 * This deletes the pointer in path->nodes[1] and frees the leaf 3996 * block extent. zero is returned if it all worked out, < 0 otherwise. 3997 * 3998 * The path must have already been setup for deleting the leaf, including 3999 * all the proper balancing. path->nodes[1] must be locked. 4000 */ 4001 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4002 struct btrfs_root *root, 4003 struct btrfs_path *path, 4004 struct extent_buffer *leaf) 4005 { 4006 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4007 del_ptr(root, path, 1, path->slots[1]); 4008 4009 /* 4010 * btrfs_free_extent is expensive, we want to make sure we 4011 * aren't holding any locks when we call it 4012 */ 4013 btrfs_unlock_up_safe(path, 0); 4014 4015 root_sub_used(root, leaf->len); 4016 4017 atomic_inc(&leaf->refs); 4018 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4019 free_extent_buffer_stale(leaf); 4020 } 4021 /* 4022 * delete the item at the leaf level in path. If that empties 4023 * the leaf, remove it from the tree 4024 */ 4025 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4026 struct btrfs_path *path, int slot, int nr) 4027 { 4028 struct btrfs_fs_info *fs_info = root->fs_info; 4029 struct extent_buffer *leaf; 4030 struct btrfs_item *item; 4031 u32 last_off; 4032 u32 dsize = 0; 4033 int ret = 0; 4034 int wret; 4035 int i; 4036 u32 nritems; 4037 4038 leaf = path->nodes[0]; 4039 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4040 4041 for (i = 0; i < nr; i++) 4042 dsize += btrfs_item_size_nr(leaf, slot + i); 4043 4044 nritems = btrfs_header_nritems(leaf); 4045 4046 if (slot + nr != nritems) { 4047 int data_end = leaf_data_end(leaf); 4048 struct btrfs_map_token token; 4049 4050 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4051 data_end + dsize, 4052 BTRFS_LEAF_DATA_OFFSET + data_end, 4053 last_off - data_end); 4054 4055 btrfs_init_map_token(&token, leaf); 4056 for (i = slot + nr; i < nritems; i++) { 4057 u32 ioff; 4058 4059 item = btrfs_item_nr(i); 4060 ioff = btrfs_token_item_offset(&token, item); 4061 btrfs_set_token_item_offset(&token, item, ioff + dsize); 4062 } 4063 4064 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4065 btrfs_item_nr_offset(slot + nr), 4066 sizeof(struct btrfs_item) * 4067 (nritems - slot - nr)); 4068 } 4069 btrfs_set_header_nritems(leaf, nritems - nr); 4070 nritems -= nr; 4071 4072 /* delete the leaf if we've emptied it */ 4073 if (nritems == 0) { 4074 if (leaf == root->node) { 4075 btrfs_set_header_level(leaf, 0); 4076 } else { 4077 btrfs_clean_tree_block(leaf); 4078 btrfs_del_leaf(trans, root, path, leaf); 4079 } 4080 } else { 4081 int used = leaf_space_used(leaf, 0, nritems); 4082 if (slot == 0) { 4083 struct btrfs_disk_key disk_key; 4084 4085 btrfs_item_key(leaf, &disk_key, 0); 4086 fixup_low_keys(path, &disk_key, 1); 4087 } 4088 4089 /* delete the leaf if it is mostly empty */ 4090 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4091 /* push_leaf_left fixes the path. 4092 * make sure the path still points to our leaf 4093 * for possible call to del_ptr below 4094 */ 4095 slot = path->slots[1]; 4096 atomic_inc(&leaf->refs); 4097 4098 wret = push_leaf_left(trans, root, path, 1, 1, 4099 1, (u32)-1); 4100 if (wret < 0 && wret != -ENOSPC) 4101 ret = wret; 4102 4103 if (path->nodes[0] == leaf && 4104 btrfs_header_nritems(leaf)) { 4105 wret = push_leaf_right(trans, root, path, 1, 4106 1, 1, 0); 4107 if (wret < 0 && wret != -ENOSPC) 4108 ret = wret; 4109 } 4110 4111 if (btrfs_header_nritems(leaf) == 0) { 4112 path->slots[1] = slot; 4113 btrfs_del_leaf(trans, root, path, leaf); 4114 free_extent_buffer(leaf); 4115 ret = 0; 4116 } else { 4117 /* if we're still in the path, make sure 4118 * we're dirty. Otherwise, one of the 4119 * push_leaf functions must have already 4120 * dirtied this buffer 4121 */ 4122 if (path->nodes[0] == leaf) 4123 btrfs_mark_buffer_dirty(leaf); 4124 free_extent_buffer(leaf); 4125 } 4126 } else { 4127 btrfs_mark_buffer_dirty(leaf); 4128 } 4129 } 4130 return ret; 4131 } 4132 4133 /* 4134 * search the tree again to find a leaf with lesser keys 4135 * returns 0 if it found something or 1 if there are no lesser leaves. 4136 * returns < 0 on io errors. 4137 * 4138 * This may release the path, and so you may lose any locks held at the 4139 * time you call it. 4140 */ 4141 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4142 { 4143 struct btrfs_key key; 4144 struct btrfs_disk_key found_key; 4145 int ret; 4146 4147 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4148 4149 if (key.offset > 0) { 4150 key.offset--; 4151 } else if (key.type > 0) { 4152 key.type--; 4153 key.offset = (u64)-1; 4154 } else if (key.objectid > 0) { 4155 key.objectid--; 4156 key.type = (u8)-1; 4157 key.offset = (u64)-1; 4158 } else { 4159 return 1; 4160 } 4161 4162 btrfs_release_path(path); 4163 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4164 if (ret < 0) 4165 return ret; 4166 btrfs_item_key(path->nodes[0], &found_key, 0); 4167 ret = comp_keys(&found_key, &key); 4168 /* 4169 * We might have had an item with the previous key in the tree right 4170 * before we released our path. And after we released our path, that 4171 * item might have been pushed to the first slot (0) of the leaf we 4172 * were holding due to a tree balance. Alternatively, an item with the 4173 * previous key can exist as the only element of a leaf (big fat item). 4174 * Therefore account for these 2 cases, so that our callers (like 4175 * btrfs_previous_item) don't miss an existing item with a key matching 4176 * the previous key we computed above. 4177 */ 4178 if (ret <= 0) 4179 return 0; 4180 return 1; 4181 } 4182 4183 /* 4184 * A helper function to walk down the tree starting at min_key, and looking 4185 * for nodes or leaves that are have a minimum transaction id. 4186 * This is used by the btree defrag code, and tree logging 4187 * 4188 * This does not cow, but it does stuff the starting key it finds back 4189 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4190 * key and get a writable path. 4191 * 4192 * This honors path->lowest_level to prevent descent past a given level 4193 * of the tree. 4194 * 4195 * min_trans indicates the oldest transaction that you are interested 4196 * in walking through. Any nodes or leaves older than min_trans are 4197 * skipped over (without reading them). 4198 * 4199 * returns zero if something useful was found, < 0 on error and 1 if there 4200 * was nothing in the tree that matched the search criteria. 4201 */ 4202 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4203 struct btrfs_path *path, 4204 u64 min_trans) 4205 { 4206 struct extent_buffer *cur; 4207 struct btrfs_key found_key; 4208 int slot; 4209 int sret; 4210 u32 nritems; 4211 int level; 4212 int ret = 1; 4213 int keep_locks = path->keep_locks; 4214 4215 path->keep_locks = 1; 4216 again: 4217 cur = btrfs_read_lock_root_node(root); 4218 level = btrfs_header_level(cur); 4219 WARN_ON(path->nodes[level]); 4220 path->nodes[level] = cur; 4221 path->locks[level] = BTRFS_READ_LOCK; 4222 4223 if (btrfs_header_generation(cur) < min_trans) { 4224 ret = 1; 4225 goto out; 4226 } 4227 while (1) { 4228 nritems = btrfs_header_nritems(cur); 4229 level = btrfs_header_level(cur); 4230 sret = btrfs_bin_search(cur, min_key, &slot); 4231 if (sret < 0) { 4232 ret = sret; 4233 goto out; 4234 } 4235 4236 /* at the lowest level, we're done, setup the path and exit */ 4237 if (level == path->lowest_level) { 4238 if (slot >= nritems) 4239 goto find_next_key; 4240 ret = 0; 4241 path->slots[level] = slot; 4242 btrfs_item_key_to_cpu(cur, &found_key, slot); 4243 goto out; 4244 } 4245 if (sret && slot > 0) 4246 slot--; 4247 /* 4248 * check this node pointer against the min_trans parameters. 4249 * If it is too old, skip to the next one. 4250 */ 4251 while (slot < nritems) { 4252 u64 gen; 4253 4254 gen = btrfs_node_ptr_generation(cur, slot); 4255 if (gen < min_trans) { 4256 slot++; 4257 continue; 4258 } 4259 break; 4260 } 4261 find_next_key: 4262 /* 4263 * we didn't find a candidate key in this node, walk forward 4264 * and find another one 4265 */ 4266 if (slot >= nritems) { 4267 path->slots[level] = slot; 4268 sret = btrfs_find_next_key(root, path, min_key, level, 4269 min_trans); 4270 if (sret == 0) { 4271 btrfs_release_path(path); 4272 goto again; 4273 } else { 4274 goto out; 4275 } 4276 } 4277 /* save our key for returning back */ 4278 btrfs_node_key_to_cpu(cur, &found_key, slot); 4279 path->slots[level] = slot; 4280 if (level == path->lowest_level) { 4281 ret = 0; 4282 goto out; 4283 } 4284 cur = btrfs_read_node_slot(cur, slot); 4285 if (IS_ERR(cur)) { 4286 ret = PTR_ERR(cur); 4287 goto out; 4288 } 4289 4290 btrfs_tree_read_lock(cur); 4291 4292 path->locks[level - 1] = BTRFS_READ_LOCK; 4293 path->nodes[level - 1] = cur; 4294 unlock_up(path, level, 1, 0, NULL); 4295 } 4296 out: 4297 path->keep_locks = keep_locks; 4298 if (ret == 0) { 4299 btrfs_unlock_up_safe(path, path->lowest_level + 1); 4300 memcpy(min_key, &found_key, sizeof(found_key)); 4301 } 4302 return ret; 4303 } 4304 4305 /* 4306 * this is similar to btrfs_next_leaf, but does not try to preserve 4307 * and fixup the path. It looks for and returns the next key in the 4308 * tree based on the current path and the min_trans parameters. 4309 * 4310 * 0 is returned if another key is found, < 0 if there are any errors 4311 * and 1 is returned if there are no higher keys in the tree 4312 * 4313 * path->keep_locks should be set to 1 on the search made before 4314 * calling this function. 4315 */ 4316 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4317 struct btrfs_key *key, int level, u64 min_trans) 4318 { 4319 int slot; 4320 struct extent_buffer *c; 4321 4322 WARN_ON(!path->keep_locks && !path->skip_locking); 4323 while (level < BTRFS_MAX_LEVEL) { 4324 if (!path->nodes[level]) 4325 return 1; 4326 4327 slot = path->slots[level] + 1; 4328 c = path->nodes[level]; 4329 next: 4330 if (slot >= btrfs_header_nritems(c)) { 4331 int ret; 4332 int orig_lowest; 4333 struct btrfs_key cur_key; 4334 if (level + 1 >= BTRFS_MAX_LEVEL || 4335 !path->nodes[level + 1]) 4336 return 1; 4337 4338 if (path->locks[level + 1] || path->skip_locking) { 4339 level++; 4340 continue; 4341 } 4342 4343 slot = btrfs_header_nritems(c) - 1; 4344 if (level == 0) 4345 btrfs_item_key_to_cpu(c, &cur_key, slot); 4346 else 4347 btrfs_node_key_to_cpu(c, &cur_key, slot); 4348 4349 orig_lowest = path->lowest_level; 4350 btrfs_release_path(path); 4351 path->lowest_level = level; 4352 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4353 0, 0); 4354 path->lowest_level = orig_lowest; 4355 if (ret < 0) 4356 return ret; 4357 4358 c = path->nodes[level]; 4359 slot = path->slots[level]; 4360 if (ret == 0) 4361 slot++; 4362 goto next; 4363 } 4364 4365 if (level == 0) 4366 btrfs_item_key_to_cpu(c, key, slot); 4367 else { 4368 u64 gen = btrfs_node_ptr_generation(c, slot); 4369 4370 if (gen < min_trans) { 4371 slot++; 4372 goto next; 4373 } 4374 btrfs_node_key_to_cpu(c, key, slot); 4375 } 4376 return 0; 4377 } 4378 return 1; 4379 } 4380 4381 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 4382 u64 time_seq) 4383 { 4384 int slot; 4385 int level; 4386 struct extent_buffer *c; 4387 struct extent_buffer *next; 4388 struct btrfs_key key; 4389 u32 nritems; 4390 int ret; 4391 int i; 4392 4393 nritems = btrfs_header_nritems(path->nodes[0]); 4394 if (nritems == 0) 4395 return 1; 4396 4397 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4398 again: 4399 level = 1; 4400 next = NULL; 4401 btrfs_release_path(path); 4402 4403 path->keep_locks = 1; 4404 4405 if (time_seq) 4406 ret = btrfs_search_old_slot(root, &key, path, time_seq); 4407 else 4408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4409 path->keep_locks = 0; 4410 4411 if (ret < 0) 4412 return ret; 4413 4414 nritems = btrfs_header_nritems(path->nodes[0]); 4415 /* 4416 * by releasing the path above we dropped all our locks. A balance 4417 * could have added more items next to the key that used to be 4418 * at the very end of the block. So, check again here and 4419 * advance the path if there are now more items available. 4420 */ 4421 if (nritems > 0 && path->slots[0] < nritems - 1) { 4422 if (ret == 0) 4423 path->slots[0]++; 4424 ret = 0; 4425 goto done; 4426 } 4427 /* 4428 * So the above check misses one case: 4429 * - after releasing the path above, someone has removed the item that 4430 * used to be at the very end of the block, and balance between leafs 4431 * gets another one with bigger key.offset to replace it. 4432 * 4433 * This one should be returned as well, or we can get leaf corruption 4434 * later(esp. in __btrfs_drop_extents()). 4435 * 4436 * And a bit more explanation about this check, 4437 * with ret > 0, the key isn't found, the path points to the slot 4438 * where it should be inserted, so the path->slots[0] item must be the 4439 * bigger one. 4440 */ 4441 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 4442 ret = 0; 4443 goto done; 4444 } 4445 4446 while (level < BTRFS_MAX_LEVEL) { 4447 if (!path->nodes[level]) { 4448 ret = 1; 4449 goto done; 4450 } 4451 4452 slot = path->slots[level] + 1; 4453 c = path->nodes[level]; 4454 if (slot >= btrfs_header_nritems(c)) { 4455 level++; 4456 if (level == BTRFS_MAX_LEVEL) { 4457 ret = 1; 4458 goto done; 4459 } 4460 continue; 4461 } 4462 4463 4464 /* 4465 * Our current level is where we're going to start from, and to 4466 * make sure lockdep doesn't complain we need to drop our locks 4467 * and nodes from 0 to our current level. 4468 */ 4469 for (i = 0; i < level; i++) { 4470 if (path->locks[level]) { 4471 btrfs_tree_read_unlock(path->nodes[i]); 4472 path->locks[i] = 0; 4473 } 4474 free_extent_buffer(path->nodes[i]); 4475 path->nodes[i] = NULL; 4476 } 4477 4478 next = c; 4479 ret = read_block_for_search(root, path, &next, level, 4480 slot, &key); 4481 if (ret == -EAGAIN) 4482 goto again; 4483 4484 if (ret < 0) { 4485 btrfs_release_path(path); 4486 goto done; 4487 } 4488 4489 if (!path->skip_locking) { 4490 ret = btrfs_try_tree_read_lock(next); 4491 if (!ret && time_seq) { 4492 /* 4493 * If we don't get the lock, we may be racing 4494 * with push_leaf_left, holding that lock while 4495 * itself waiting for the leaf we've currently 4496 * locked. To solve this situation, we give up 4497 * on our lock and cycle. 4498 */ 4499 free_extent_buffer(next); 4500 btrfs_release_path(path); 4501 cond_resched(); 4502 goto again; 4503 } 4504 if (!ret) 4505 btrfs_tree_read_lock(next); 4506 } 4507 break; 4508 } 4509 path->slots[level] = slot; 4510 while (1) { 4511 level--; 4512 path->nodes[level] = next; 4513 path->slots[level] = 0; 4514 if (!path->skip_locking) 4515 path->locks[level] = BTRFS_READ_LOCK; 4516 if (!level) 4517 break; 4518 4519 ret = read_block_for_search(root, path, &next, level, 4520 0, &key); 4521 if (ret == -EAGAIN) 4522 goto again; 4523 4524 if (ret < 0) { 4525 btrfs_release_path(path); 4526 goto done; 4527 } 4528 4529 if (!path->skip_locking) 4530 btrfs_tree_read_lock(next); 4531 } 4532 ret = 0; 4533 done: 4534 unlock_up(path, 0, 1, 0, NULL); 4535 4536 return ret; 4537 } 4538 4539 /* 4540 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4541 * searching until it gets past min_objectid or finds an item of 'type' 4542 * 4543 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4544 */ 4545 int btrfs_previous_item(struct btrfs_root *root, 4546 struct btrfs_path *path, u64 min_objectid, 4547 int type) 4548 { 4549 struct btrfs_key found_key; 4550 struct extent_buffer *leaf; 4551 u32 nritems; 4552 int ret; 4553 4554 while (1) { 4555 if (path->slots[0] == 0) { 4556 ret = btrfs_prev_leaf(root, path); 4557 if (ret != 0) 4558 return ret; 4559 } else { 4560 path->slots[0]--; 4561 } 4562 leaf = path->nodes[0]; 4563 nritems = btrfs_header_nritems(leaf); 4564 if (nritems == 0) 4565 return 1; 4566 if (path->slots[0] == nritems) 4567 path->slots[0]--; 4568 4569 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4570 if (found_key.objectid < min_objectid) 4571 break; 4572 if (found_key.type == type) 4573 return 0; 4574 if (found_key.objectid == min_objectid && 4575 found_key.type < type) 4576 break; 4577 } 4578 return 1; 4579 } 4580 4581 /* 4582 * search in extent tree to find a previous Metadata/Data extent item with 4583 * min objecitd. 4584 * 4585 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4586 */ 4587 int btrfs_previous_extent_item(struct btrfs_root *root, 4588 struct btrfs_path *path, u64 min_objectid) 4589 { 4590 struct btrfs_key found_key; 4591 struct extent_buffer *leaf; 4592 u32 nritems; 4593 int ret; 4594 4595 while (1) { 4596 if (path->slots[0] == 0) { 4597 ret = btrfs_prev_leaf(root, path); 4598 if (ret != 0) 4599 return ret; 4600 } else { 4601 path->slots[0]--; 4602 } 4603 leaf = path->nodes[0]; 4604 nritems = btrfs_header_nritems(leaf); 4605 if (nritems == 0) 4606 return 1; 4607 if (path->slots[0] == nritems) 4608 path->slots[0]--; 4609 4610 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4611 if (found_key.objectid < min_objectid) 4612 break; 4613 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 4614 found_key.type == BTRFS_METADATA_ITEM_KEY) 4615 return 0; 4616 if (found_key.objectid == min_objectid && 4617 found_key.type < BTRFS_EXTENT_ITEM_KEY) 4618 break; 4619 } 4620 return 1; 4621 } 4622