xref: /linux/fs/btrfs/ctree.c (revision 7a5f93ea5862da91488975acaa0c7abd508f192b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26 
27 static struct kmem_cache *btrfs_path_cachep;
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
33 		      int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct extent_buffer *dst,
36 			  struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 
41 static const struct btrfs_csums {
42 	u16		size;
43 	const char	name[10];
44 	const char	driver[12];
45 } btrfs_csums[] = {
46 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50 				     .driver = "blake2b-256" },
51 };
52 
53 /*
54  * The leaf data grows from end-to-front in the node.  this returns the address
55  * of the start of the last item, which is the stop of the leaf data stack.
56  */
57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59 	u32 nr = btrfs_header_nritems(leaf);
60 
61 	if (nr == 0)
62 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63 	return btrfs_item_offset(leaf, nr - 1);
64 }
65 
66 /*
67  * Move data in a @leaf (using memmove, safe for overlapping ranges).
68  *
69  * @leaf:	leaf that we're doing a memmove on
70  * @dst_offset:	item data offset we're moving to
71  * @src_offset:	item data offset were' moving from
72  * @len:	length of the data we're moving
73  *
74  * Wrapper around memmove_extent_buffer() that takes into account the header on
75  * the leaf.  The btrfs_item offset's start directly after the header, so we
76  * have to adjust any offsets to account for the header in the leaf.  This
77  * handles that math to simplify the callers.
78  */
79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80 				     unsigned long dst_offset,
81 				     unsigned long src_offset,
82 				     unsigned long len)
83 {
84 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85 			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87 
88 /*
89  * Copy item data from @src into @dst at the given @offset.
90  *
91  * @dst:	destination leaf that we're copying into
92  * @src:	source leaf that we're copying from
93  * @dst_offset:	item data offset we're copying to
94  * @src_offset:	item data offset were' copying from
95  * @len:	length of the data we're copying
96  *
97  * Wrapper around copy_extent_buffer() that takes into account the header on
98  * the leaf.  The btrfs_item offset's start directly after the header, so we
99  * have to adjust any offsets to account for the header in the leaf.  This
100  * handles that math to simplify the callers.
101  */
102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103 				  const struct extent_buffer *src,
104 				  unsigned long dst_offset,
105 				  unsigned long src_offset, unsigned long len)
106 {
107 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108 			   btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110 
111 /*
112  * Move items in a @leaf (using memmove).
113  *
114  * @dst:	destination leaf for the items
115  * @dst_item:	the item nr we're copying into
116  * @src_item:	the item nr we're copying from
117  * @nr_items:	the number of items to copy
118  *
119  * Wrapper around memmove_extent_buffer() that does the math to get the
120  * appropriate offsets into the leaf from the item numbers.
121  */
122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123 				      int dst_item, int src_item, int nr_items)
124 {
125 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126 			      btrfs_item_nr_offset(leaf, src_item),
127 			      nr_items * sizeof(struct btrfs_item));
128 }
129 
130 /*
131  * Copy items from @src into @dst at the given @offset.
132  *
133  * @dst:	destination leaf for the items
134  * @src:	source leaf for the items
135  * @dst_item:	the item nr we're copying into
136  * @src_item:	the item nr we're copying from
137  * @nr_items:	the number of items to copy
138  *
139  * Wrapper around copy_extent_buffer() that does the math to get the
140  * appropriate offsets into the leaf from the item numbers.
141  */
142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143 				   const struct extent_buffer *src,
144 				   int dst_item, int src_item, int nr_items)
145 {
146 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147 			      btrfs_item_nr_offset(src, src_item),
148 			      nr_items * sizeof(struct btrfs_item));
149 }
150 
151 /* This exists for btrfs-progs usages. */
152 u16 btrfs_csum_type_size(u16 type)
153 {
154 	return btrfs_csums[type].size;
155 }
156 
157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159 	u16 t = btrfs_super_csum_type(s);
160 	/*
161 	 * csum type is validated at mount time
162 	 */
163 	return btrfs_csum_type_size(t);
164 }
165 
166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168 	/* csum type is validated at mount time */
169 	return btrfs_csums[csum_type].name;
170 }
171 
172 /*
173  * Return driver name if defined, otherwise the name that's also a valid driver
174  * name
175  */
176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178 	/* csum type is validated at mount time */
179 	return btrfs_csums[csum_type].driver[0] ?
180 		btrfs_csums[csum_type].driver :
181 		btrfs_csums[csum_type].name;
182 }
183 
184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186 	return ARRAY_SIZE(btrfs_csums);
187 }
188 
189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191 	might_sleep();
192 
193 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195 
196 /* this also releases the path */
197 void btrfs_free_path(struct btrfs_path *p)
198 {
199 	if (!p)
200 		return;
201 	btrfs_release_path(p);
202 	kmem_cache_free(btrfs_path_cachep, p);
203 }
204 
205 /*
206  * path release drops references on the extent buffers in the path
207  * and it drops any locks held by this path
208  *
209  * It is safe to call this on paths that no locks or extent buffers held.
210  */
211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213 	int i;
214 
215 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216 		p->slots[i] = 0;
217 		if (!p->nodes[i])
218 			continue;
219 		if (p->locks[i]) {
220 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221 			p->locks[i] = 0;
222 		}
223 		free_extent_buffer(p->nodes[i]);
224 		p->nodes[i] = NULL;
225 	}
226 }
227 
228 /*
229  * We want the transaction abort to print stack trace only for errors where the
230  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231  * caused by external factors.
232  */
233 bool __cold abort_should_print_stack(int error)
234 {
235 	switch (error) {
236 	case -EIO:
237 	case -EROFS:
238 	case -ENOMEM:
239 		return false;
240 	}
241 	return true;
242 }
243 
244 /*
245  * safely gets a reference on the root node of a tree.  A lock
246  * is not taken, so a concurrent writer may put a different node
247  * at the root of the tree.  See btrfs_lock_root_node for the
248  * looping required.
249  *
250  * The extent buffer returned by this has a reference taken, so
251  * it won't disappear.  It may stop being the root of the tree
252  * at any time because there are no locks held.
253  */
254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256 	struct extent_buffer *eb;
257 
258 	while (1) {
259 		rcu_read_lock();
260 		eb = rcu_dereference(root->node);
261 
262 		/*
263 		 * RCU really hurts here, we could free up the root node because
264 		 * it was COWed but we may not get the new root node yet so do
265 		 * the inc_not_zero dance and if it doesn't work then
266 		 * synchronize_rcu and try again.
267 		 */
268 		if (atomic_inc_not_zero(&eb->refs)) {
269 			rcu_read_unlock();
270 			break;
271 		}
272 		rcu_read_unlock();
273 		synchronize_rcu();
274 	}
275 	return eb;
276 }
277 
278 /*
279  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280  * just get put onto a simple dirty list.  Transaction walks this list to make
281  * sure they get properly updated on disk.
282  */
283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285 	struct btrfs_fs_info *fs_info = root->fs_info;
286 
287 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289 		return;
290 
291 	spin_lock(&fs_info->trans_lock);
292 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293 		/* Want the extent tree to be the last on the list */
294 		if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID)
295 			list_move_tail(&root->dirty_list,
296 				       &fs_info->dirty_cowonly_roots);
297 		else
298 			list_move(&root->dirty_list,
299 				  &fs_info->dirty_cowonly_roots);
300 	}
301 	spin_unlock(&fs_info->trans_lock);
302 }
303 
304 /*
305  * used by snapshot creation to make a copy of a root for a tree with
306  * a given objectid.  The buffer with the new root node is returned in
307  * cow_ret, and this func returns zero on success or a negative error code.
308  */
309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310 		      struct btrfs_root *root,
311 		      struct extent_buffer *buf,
312 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314 	struct btrfs_fs_info *fs_info = root->fs_info;
315 	struct extent_buffer *cow;
316 	int ret = 0;
317 	int level;
318 	struct btrfs_disk_key disk_key;
319 	u64 reloc_src_root = 0;
320 
321 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
322 		trans->transid != fs_info->running_transaction->transid);
323 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
324 		trans->transid != btrfs_get_root_last_trans(root));
325 
326 	level = btrfs_header_level(buf);
327 	if (level == 0)
328 		btrfs_item_key(buf, &disk_key, 0);
329 	else
330 		btrfs_node_key(buf, &disk_key, 0);
331 
332 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
333 		reloc_src_root = btrfs_header_owner(buf);
334 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
335 				     &disk_key, level, buf->start, 0,
336 				     reloc_src_root, BTRFS_NESTING_NEW_ROOT);
337 	if (IS_ERR(cow))
338 		return PTR_ERR(cow);
339 
340 	copy_extent_buffer_full(cow, buf);
341 	btrfs_set_header_bytenr(cow, cow->start);
342 	btrfs_set_header_generation(cow, trans->transid);
343 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
344 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
345 				     BTRFS_HEADER_FLAG_RELOC);
346 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
347 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
348 	else
349 		btrfs_set_header_owner(cow, new_root_objectid);
350 
351 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
352 
353 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
354 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
355 		ret = btrfs_inc_ref(trans, root, cow, 1);
356 	else
357 		ret = btrfs_inc_ref(trans, root, cow, 0);
358 	if (ret) {
359 		btrfs_tree_unlock(cow);
360 		free_extent_buffer(cow);
361 		btrfs_abort_transaction(trans, ret);
362 		return ret;
363 	}
364 
365 	btrfs_mark_buffer_dirty(trans, cow);
366 	*cow_ret = cow;
367 	return 0;
368 }
369 
370 /*
371  * check if the tree block can be shared by multiple trees
372  */
373 bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
374 			       struct btrfs_root *root,
375 			       struct extent_buffer *buf)
376 {
377 	const u64 buf_gen = btrfs_header_generation(buf);
378 
379 	/*
380 	 * Tree blocks not in shareable trees and tree roots are never shared.
381 	 * If a block was allocated after the last snapshot and the block was
382 	 * not allocated by tree relocation, we know the block is not shared.
383 	 */
384 
385 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
386 		return false;
387 
388 	if (buf == root->node)
389 		return false;
390 
391 	if (buf_gen > btrfs_root_last_snapshot(&root->root_item) &&
392 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))
393 		return false;
394 
395 	if (buf != root->commit_root)
396 		return true;
397 
398 	/*
399 	 * An extent buffer that used to be the commit root may still be shared
400 	 * because the tree height may have increased and it became a child of a
401 	 * higher level root. This can happen when snapshotting a subvolume
402 	 * created in the current transaction.
403 	 */
404 	if (buf_gen == trans->transid)
405 		return true;
406 
407 	return false;
408 }
409 
410 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
411 				       struct btrfs_root *root,
412 				       struct extent_buffer *buf,
413 				       struct extent_buffer *cow,
414 				       int *last_ref)
415 {
416 	struct btrfs_fs_info *fs_info = root->fs_info;
417 	u64 refs;
418 	u64 owner;
419 	u64 flags;
420 	int ret;
421 
422 	/*
423 	 * Backrefs update rules:
424 	 *
425 	 * Always use full backrefs for extent pointers in tree block
426 	 * allocated by tree relocation.
427 	 *
428 	 * If a shared tree block is no longer referenced by its owner
429 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
430 	 * use full backrefs for extent pointers in tree block.
431 	 *
432 	 * If a tree block is been relocating
433 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
434 	 * use full backrefs for extent pointers in tree block.
435 	 * The reason for this is some operations (such as drop tree)
436 	 * are only allowed for blocks use full backrefs.
437 	 */
438 
439 	if (btrfs_block_can_be_shared(trans, root, buf)) {
440 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
441 					       btrfs_header_level(buf), 1,
442 					       &refs, &flags, NULL);
443 		if (ret)
444 			return ret;
445 		if (unlikely(refs == 0)) {
446 			btrfs_crit(fs_info,
447 		"found 0 references for tree block at bytenr %llu level %d root %llu",
448 				   buf->start, btrfs_header_level(buf),
449 				   btrfs_root_id(root));
450 			ret = -EUCLEAN;
451 			btrfs_abort_transaction(trans, ret);
452 			return ret;
453 		}
454 	} else {
455 		refs = 1;
456 		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
457 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
458 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
459 		else
460 			flags = 0;
461 	}
462 
463 	owner = btrfs_header_owner(buf);
464 	if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID &&
465 		     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) {
466 		btrfs_crit(fs_info,
467 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
468 			   buf->start, btrfs_header_level(buf),
469 			   btrfs_root_id(root), refs, flags);
470 		ret = -EUCLEAN;
471 		btrfs_abort_transaction(trans, ret);
472 		return ret;
473 	}
474 
475 	if (refs > 1) {
476 		if ((owner == btrfs_root_id(root) ||
477 		     btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) &&
478 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
479 			ret = btrfs_inc_ref(trans, root, buf, 1);
480 			if (ret)
481 				return ret;
482 
483 			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
484 				ret = btrfs_dec_ref(trans, root, buf, 0);
485 				if (ret)
486 					return ret;
487 				ret = btrfs_inc_ref(trans, root, cow, 1);
488 				if (ret)
489 					return ret;
490 			}
491 			ret = btrfs_set_disk_extent_flags(trans, buf,
492 						  BTRFS_BLOCK_FLAG_FULL_BACKREF);
493 			if (ret)
494 				return ret;
495 		} else {
496 
497 			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
498 				ret = btrfs_inc_ref(trans, root, cow, 1);
499 			else
500 				ret = btrfs_inc_ref(trans, root, cow, 0);
501 			if (ret)
502 				return ret;
503 		}
504 	} else {
505 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
506 			if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
507 				ret = btrfs_inc_ref(trans, root, cow, 1);
508 			else
509 				ret = btrfs_inc_ref(trans, root, cow, 0);
510 			if (ret)
511 				return ret;
512 			ret = btrfs_dec_ref(trans, root, buf, 1);
513 			if (ret)
514 				return ret;
515 		}
516 		btrfs_clear_buffer_dirty(trans, buf);
517 		*last_ref = 1;
518 	}
519 	return 0;
520 }
521 
522 /*
523  * does the dirty work in cow of a single block.  The parent block (if
524  * supplied) is updated to point to the new cow copy.  The new buffer is marked
525  * dirty and returned locked.  If you modify the block it needs to be marked
526  * dirty again.
527  *
528  * search_start -- an allocation hint for the new block
529  *
530  * empty_size -- a hint that you plan on doing more cow.  This is the size in
531  * bytes the allocator should try to find free next to the block it returns.
532  * This is just a hint and may be ignored by the allocator.
533  */
534 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
535 			  struct btrfs_root *root,
536 			  struct extent_buffer *buf,
537 			  struct extent_buffer *parent, int parent_slot,
538 			  struct extent_buffer **cow_ret,
539 			  u64 search_start, u64 empty_size,
540 			  enum btrfs_lock_nesting nest)
541 {
542 	struct btrfs_fs_info *fs_info = root->fs_info;
543 	struct btrfs_disk_key disk_key;
544 	struct extent_buffer *cow;
545 	int level, ret;
546 	int last_ref = 0;
547 	int unlock_orig = 0;
548 	u64 parent_start = 0;
549 	u64 reloc_src_root = 0;
550 
551 	if (*cow_ret == buf)
552 		unlock_orig = 1;
553 
554 	btrfs_assert_tree_write_locked(buf);
555 
556 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
557 		trans->transid != fs_info->running_transaction->transid);
558 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
559 		trans->transid != btrfs_get_root_last_trans(root));
560 
561 	level = btrfs_header_level(buf);
562 
563 	if (level == 0)
564 		btrfs_item_key(buf, &disk_key, 0);
565 	else
566 		btrfs_node_key(buf, &disk_key, 0);
567 
568 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
569 		if (parent)
570 			parent_start = parent->start;
571 		reloc_src_root = btrfs_header_owner(buf);
572 	}
573 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
574 				     btrfs_root_id(root), &disk_key, level,
575 				     search_start, empty_size, reloc_src_root, nest);
576 	if (IS_ERR(cow))
577 		return PTR_ERR(cow);
578 
579 	/* cow is set to blocking by btrfs_init_new_buffer */
580 
581 	copy_extent_buffer_full(cow, buf);
582 	btrfs_set_header_bytenr(cow, cow->start);
583 	btrfs_set_header_generation(cow, trans->transid);
584 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
585 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
586 				     BTRFS_HEADER_FLAG_RELOC);
587 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
588 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
589 	else
590 		btrfs_set_header_owner(cow, btrfs_root_id(root));
591 
592 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
593 
594 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
595 	if (ret) {
596 		btrfs_abort_transaction(trans, ret);
597 		goto error_unlock_cow;
598 	}
599 
600 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
601 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
602 		if (ret) {
603 			btrfs_abort_transaction(trans, ret);
604 			goto error_unlock_cow;
605 		}
606 	}
607 
608 	if (buf == root->node) {
609 		WARN_ON(parent && parent != buf);
610 		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
611 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
612 			parent_start = buf->start;
613 
614 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
615 		if (ret < 0) {
616 			btrfs_abort_transaction(trans, ret);
617 			goto error_unlock_cow;
618 		}
619 		atomic_inc(&cow->refs);
620 		rcu_assign_pointer(root->node, cow);
621 
622 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
623 					    parent_start, last_ref);
624 		free_extent_buffer(buf);
625 		add_root_to_dirty_list(root);
626 		if (ret < 0) {
627 			btrfs_abort_transaction(trans, ret);
628 			goto error_unlock_cow;
629 		}
630 	} else {
631 		WARN_ON(trans->transid != btrfs_header_generation(parent));
632 		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
633 						    BTRFS_MOD_LOG_KEY_REPLACE);
634 		if (ret) {
635 			btrfs_abort_transaction(trans, ret);
636 			goto error_unlock_cow;
637 		}
638 		btrfs_set_node_blockptr(parent, parent_slot,
639 					cow->start);
640 		btrfs_set_node_ptr_generation(parent, parent_slot,
641 					      trans->transid);
642 		btrfs_mark_buffer_dirty(trans, parent);
643 		if (last_ref) {
644 			ret = btrfs_tree_mod_log_free_eb(buf);
645 			if (ret) {
646 				btrfs_abort_transaction(trans, ret);
647 				goto error_unlock_cow;
648 			}
649 		}
650 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
651 					    parent_start, last_ref);
652 		if (ret < 0) {
653 			btrfs_abort_transaction(trans, ret);
654 			goto error_unlock_cow;
655 		}
656 	}
657 	if (unlock_orig)
658 		btrfs_tree_unlock(buf);
659 	free_extent_buffer_stale(buf);
660 	btrfs_mark_buffer_dirty(trans, cow);
661 	*cow_ret = cow;
662 	return 0;
663 
664 error_unlock_cow:
665 	btrfs_tree_unlock(cow);
666 	free_extent_buffer(cow);
667 	return ret;
668 }
669 
670 static inline int should_cow_block(struct btrfs_trans_handle *trans,
671 				   struct btrfs_root *root,
672 				   struct extent_buffer *buf)
673 {
674 	if (btrfs_is_testing(root->fs_info))
675 		return 0;
676 
677 	/* Ensure we can see the FORCE_COW bit */
678 	smp_mb__before_atomic();
679 
680 	/*
681 	 * We do not need to cow a block if
682 	 * 1) this block is not created or changed in this transaction;
683 	 * 2) this block does not belong to TREE_RELOC tree;
684 	 * 3) the root is not forced COW.
685 	 *
686 	 * What is forced COW:
687 	 *    when we create snapshot during committing the transaction,
688 	 *    after we've finished copying src root, we must COW the shared
689 	 *    block to ensure the metadata consistency.
690 	 */
691 	if (btrfs_header_generation(buf) == trans->transid &&
692 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
693 	    !(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
694 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
695 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
696 		return 0;
697 	return 1;
698 }
699 
700 /*
701  * COWs a single block, see btrfs_force_cow_block() for the real work.
702  * This version of it has extra checks so that a block isn't COWed more than
703  * once per transaction, as long as it hasn't been written yet
704  */
705 int btrfs_cow_block(struct btrfs_trans_handle *trans,
706 		    struct btrfs_root *root, struct extent_buffer *buf,
707 		    struct extent_buffer *parent, int parent_slot,
708 		    struct extent_buffer **cow_ret,
709 		    enum btrfs_lock_nesting nest)
710 {
711 	struct btrfs_fs_info *fs_info = root->fs_info;
712 	u64 search_start;
713 	int ret;
714 
715 	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
716 		btrfs_abort_transaction(trans, -EUCLEAN);
717 		btrfs_crit(fs_info,
718 		   "attempt to COW block %llu on root %llu that is being deleted",
719 			   buf->start, btrfs_root_id(root));
720 		return -EUCLEAN;
721 	}
722 
723 	/*
724 	 * COWing must happen through a running transaction, which always
725 	 * matches the current fs generation (it's a transaction with a state
726 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
727 	 * into error state to prevent the commit of any transaction.
728 	 */
729 	if (unlikely(trans->transaction != fs_info->running_transaction ||
730 		     trans->transid != fs_info->generation)) {
731 		btrfs_abort_transaction(trans, -EUCLEAN);
732 		btrfs_crit(fs_info,
733 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
734 			   buf->start, btrfs_root_id(root), trans->transid,
735 			   fs_info->running_transaction->transid,
736 			   fs_info->generation);
737 		return -EUCLEAN;
738 	}
739 
740 	if (!should_cow_block(trans, root, buf)) {
741 		*cow_ret = buf;
742 		return 0;
743 	}
744 
745 	search_start = round_down(buf->start, SZ_1G);
746 
747 	/*
748 	 * Before CoWing this block for later modification, check if it's
749 	 * the subtree root and do the delayed subtree trace if needed.
750 	 *
751 	 * Also We don't care about the error, as it's handled internally.
752 	 */
753 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
754 	ret = btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
755 				    cow_ret, search_start, 0, nest);
756 
757 	trace_btrfs_cow_block(root, buf, *cow_ret);
758 
759 	return ret;
760 }
761 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
762 
763 /*
764  * same as comp_keys only with two btrfs_key's
765  */
766 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
767 {
768 	if (k1->objectid > k2->objectid)
769 		return 1;
770 	if (k1->objectid < k2->objectid)
771 		return -1;
772 	if (k1->type > k2->type)
773 		return 1;
774 	if (k1->type < k2->type)
775 		return -1;
776 	if (k1->offset > k2->offset)
777 		return 1;
778 	if (k1->offset < k2->offset)
779 		return -1;
780 	return 0;
781 }
782 
783 /*
784  * Search for a key in the given extent_buffer.
785  *
786  * The lower boundary for the search is specified by the slot number @first_slot.
787  * Use a value of 0 to search over the whole extent buffer. Works for both
788  * leaves and nodes.
789  *
790  * The slot in the extent buffer is returned via @slot. If the key exists in the
791  * extent buffer, then @slot will point to the slot where the key is, otherwise
792  * it points to the slot where you would insert the key.
793  *
794  * Slot may point to the total number of items (i.e. one position beyond the last
795  * key) if the key is bigger than the last key in the extent buffer.
796  */
797 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
798 		     const struct btrfs_key *key, int *slot)
799 {
800 	unsigned long p;
801 	int item_size;
802 	/*
803 	 * Use unsigned types for the low and high slots, so that we get a more
804 	 * efficient division in the search loop below.
805 	 */
806 	u32 low = first_slot;
807 	u32 high = btrfs_header_nritems(eb);
808 	int ret;
809 	const int key_size = sizeof(struct btrfs_disk_key);
810 
811 	if (unlikely(low > high)) {
812 		btrfs_err(eb->fs_info,
813 		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
814 			  __func__, low, high, eb->start,
815 			  btrfs_header_owner(eb), btrfs_header_level(eb));
816 		return -EINVAL;
817 	}
818 
819 	if (btrfs_header_level(eb) == 0) {
820 		p = offsetof(struct btrfs_leaf, items);
821 		item_size = sizeof(struct btrfs_item);
822 	} else {
823 		p = offsetof(struct btrfs_node, ptrs);
824 		item_size = sizeof(struct btrfs_key_ptr);
825 	}
826 
827 	while (low < high) {
828 		const int unit_size = eb->folio_size;
829 		unsigned long oil;
830 		unsigned long offset;
831 		struct btrfs_disk_key *tmp;
832 		struct btrfs_disk_key unaligned;
833 		int mid;
834 
835 		mid = (low + high) / 2;
836 		offset = p + mid * item_size;
837 		oil = get_eb_offset_in_folio(eb, offset);
838 
839 		if (oil + key_size <= unit_size) {
840 			const unsigned long idx = get_eb_folio_index(eb, offset);
841 			char *kaddr = folio_address(eb->folios[idx]);
842 
843 			oil = get_eb_offset_in_folio(eb, offset);
844 			tmp = (struct btrfs_disk_key *)(kaddr + oil);
845 		} else {
846 			read_extent_buffer(eb, &unaligned, offset, key_size);
847 			tmp = &unaligned;
848 		}
849 
850 		ret = btrfs_comp_keys(tmp, key);
851 
852 		if (ret < 0)
853 			low = mid + 1;
854 		else if (ret > 0)
855 			high = mid;
856 		else {
857 			*slot = mid;
858 			return 0;
859 		}
860 	}
861 	*slot = low;
862 	return 1;
863 }
864 
865 static void root_add_used_bytes(struct btrfs_root *root)
866 {
867 	spin_lock(&root->accounting_lock);
868 	btrfs_set_root_used(&root->root_item,
869 		btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
870 	spin_unlock(&root->accounting_lock);
871 }
872 
873 static void root_sub_used_bytes(struct btrfs_root *root)
874 {
875 	spin_lock(&root->accounting_lock);
876 	btrfs_set_root_used(&root->root_item,
877 		btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
878 	spin_unlock(&root->accounting_lock);
879 }
880 
881 /* given a node and slot number, this reads the blocks it points to.  The
882  * extent buffer is returned with a reference taken (but unlocked).
883  */
884 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
885 					   int slot)
886 {
887 	int level = btrfs_header_level(parent);
888 	struct btrfs_tree_parent_check check = { 0 };
889 	struct extent_buffer *eb;
890 
891 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
892 		return ERR_PTR(-ENOENT);
893 
894 	ASSERT(level);
895 
896 	check.level = level - 1;
897 	check.transid = btrfs_node_ptr_generation(parent, slot);
898 	check.owner_root = btrfs_header_owner(parent);
899 	check.has_first_key = true;
900 	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
901 
902 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
903 			     &check);
904 	if (IS_ERR(eb))
905 		return eb;
906 	if (!extent_buffer_uptodate(eb)) {
907 		free_extent_buffer(eb);
908 		return ERR_PTR(-EIO);
909 	}
910 
911 	return eb;
912 }
913 
914 /*
915  * node level balancing, used to make sure nodes are in proper order for
916  * item deletion.  We balance from the top down, so we have to make sure
917  * that a deletion won't leave an node completely empty later on.
918  */
919 static noinline int balance_level(struct btrfs_trans_handle *trans,
920 			 struct btrfs_root *root,
921 			 struct btrfs_path *path, int level)
922 {
923 	struct btrfs_fs_info *fs_info = root->fs_info;
924 	struct extent_buffer *right = NULL;
925 	struct extent_buffer *mid;
926 	struct extent_buffer *left = NULL;
927 	struct extent_buffer *parent = NULL;
928 	int ret = 0;
929 	int wret;
930 	int pslot;
931 	int orig_slot = path->slots[level];
932 	u64 orig_ptr;
933 
934 	ASSERT(level > 0);
935 
936 	mid = path->nodes[level];
937 
938 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
939 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
940 
941 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
942 
943 	if (level < BTRFS_MAX_LEVEL - 1) {
944 		parent = path->nodes[level + 1];
945 		pslot = path->slots[level + 1];
946 	}
947 
948 	/*
949 	 * deal with the case where there is only one pointer in the root
950 	 * by promoting the node below to a root
951 	 */
952 	if (!parent) {
953 		struct extent_buffer *child;
954 
955 		if (btrfs_header_nritems(mid) != 1)
956 			return 0;
957 
958 		/* promote the child to a root */
959 		child = btrfs_read_node_slot(mid, 0);
960 		if (IS_ERR(child)) {
961 			ret = PTR_ERR(child);
962 			goto out;
963 		}
964 
965 		btrfs_tree_lock(child);
966 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
967 				      BTRFS_NESTING_COW);
968 		if (ret) {
969 			btrfs_tree_unlock(child);
970 			free_extent_buffer(child);
971 			goto out;
972 		}
973 
974 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
975 		if (ret < 0) {
976 			btrfs_tree_unlock(child);
977 			free_extent_buffer(child);
978 			btrfs_abort_transaction(trans, ret);
979 			goto out;
980 		}
981 		rcu_assign_pointer(root->node, child);
982 
983 		add_root_to_dirty_list(root);
984 		btrfs_tree_unlock(child);
985 
986 		path->locks[level] = 0;
987 		path->nodes[level] = NULL;
988 		btrfs_clear_buffer_dirty(trans, mid);
989 		btrfs_tree_unlock(mid);
990 		/* once for the path */
991 		free_extent_buffer(mid);
992 
993 		root_sub_used_bytes(root);
994 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
995 		/* once for the root ptr */
996 		free_extent_buffer_stale(mid);
997 		if (ret < 0) {
998 			btrfs_abort_transaction(trans, ret);
999 			goto out;
1000 		}
1001 		return 0;
1002 	}
1003 	if (btrfs_header_nritems(mid) >
1004 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1005 		return 0;
1006 
1007 	if (pslot) {
1008 		left = btrfs_read_node_slot(parent, pslot - 1);
1009 		if (IS_ERR(left)) {
1010 			ret = PTR_ERR(left);
1011 			left = NULL;
1012 			goto out;
1013 		}
1014 
1015 		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1016 		wret = btrfs_cow_block(trans, root, left,
1017 				       parent, pslot - 1, &left,
1018 				       BTRFS_NESTING_LEFT_COW);
1019 		if (wret) {
1020 			ret = wret;
1021 			goto out;
1022 		}
1023 	}
1024 
1025 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1026 		right = btrfs_read_node_slot(parent, pslot + 1);
1027 		if (IS_ERR(right)) {
1028 			ret = PTR_ERR(right);
1029 			right = NULL;
1030 			goto out;
1031 		}
1032 
1033 		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1034 		wret = btrfs_cow_block(trans, root, right,
1035 				       parent, pslot + 1, &right,
1036 				       BTRFS_NESTING_RIGHT_COW);
1037 		if (wret) {
1038 			ret = wret;
1039 			goto out;
1040 		}
1041 	}
1042 
1043 	/* first, try to make some room in the middle buffer */
1044 	if (left) {
1045 		orig_slot += btrfs_header_nritems(left);
1046 		wret = push_node_left(trans, left, mid, 1);
1047 		if (wret < 0)
1048 			ret = wret;
1049 	}
1050 
1051 	/*
1052 	 * then try to empty the right most buffer into the middle
1053 	 */
1054 	if (right) {
1055 		wret = push_node_left(trans, mid, right, 1);
1056 		if (wret < 0 && wret != -ENOSPC)
1057 			ret = wret;
1058 		if (btrfs_header_nritems(right) == 0) {
1059 			btrfs_clear_buffer_dirty(trans, right);
1060 			btrfs_tree_unlock(right);
1061 			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1062 			if (ret < 0) {
1063 				free_extent_buffer_stale(right);
1064 				right = NULL;
1065 				goto out;
1066 			}
1067 			root_sub_used_bytes(root);
1068 			ret = btrfs_free_tree_block(trans, btrfs_root_id(root),
1069 						    right, 0, 1);
1070 			free_extent_buffer_stale(right);
1071 			right = NULL;
1072 			if (ret < 0) {
1073 				btrfs_abort_transaction(trans, ret);
1074 				goto out;
1075 			}
1076 		} else {
1077 			struct btrfs_disk_key right_key;
1078 			btrfs_node_key(right, &right_key, 0);
1079 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1080 					BTRFS_MOD_LOG_KEY_REPLACE);
1081 			if (ret < 0) {
1082 				btrfs_abort_transaction(trans, ret);
1083 				goto out;
1084 			}
1085 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1086 			btrfs_mark_buffer_dirty(trans, parent);
1087 		}
1088 	}
1089 	if (btrfs_header_nritems(mid) == 1) {
1090 		/*
1091 		 * we're not allowed to leave a node with one item in the
1092 		 * tree during a delete.  A deletion from lower in the tree
1093 		 * could try to delete the only pointer in this node.
1094 		 * So, pull some keys from the left.
1095 		 * There has to be a left pointer at this point because
1096 		 * otherwise we would have pulled some pointers from the
1097 		 * right
1098 		 */
1099 		if (unlikely(!left)) {
1100 			btrfs_crit(fs_info,
1101 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1102 				   parent->start, btrfs_header_level(parent),
1103 				   mid->start, btrfs_root_id(root));
1104 			ret = -EUCLEAN;
1105 			btrfs_abort_transaction(trans, ret);
1106 			goto out;
1107 		}
1108 		wret = balance_node_right(trans, mid, left);
1109 		if (wret < 0) {
1110 			ret = wret;
1111 			goto out;
1112 		}
1113 		if (wret == 1) {
1114 			wret = push_node_left(trans, left, mid, 1);
1115 			if (wret < 0)
1116 				ret = wret;
1117 		}
1118 		BUG_ON(wret == 1);
1119 	}
1120 	if (btrfs_header_nritems(mid) == 0) {
1121 		btrfs_clear_buffer_dirty(trans, mid);
1122 		btrfs_tree_unlock(mid);
1123 		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1124 		if (ret < 0) {
1125 			free_extent_buffer_stale(mid);
1126 			mid = NULL;
1127 			goto out;
1128 		}
1129 		root_sub_used_bytes(root);
1130 		ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1131 		free_extent_buffer_stale(mid);
1132 		mid = NULL;
1133 		if (ret < 0) {
1134 			btrfs_abort_transaction(trans, ret);
1135 			goto out;
1136 		}
1137 	} else {
1138 		/* update the parent key to reflect our changes */
1139 		struct btrfs_disk_key mid_key;
1140 		btrfs_node_key(mid, &mid_key, 0);
1141 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1142 						    BTRFS_MOD_LOG_KEY_REPLACE);
1143 		if (ret < 0) {
1144 			btrfs_abort_transaction(trans, ret);
1145 			goto out;
1146 		}
1147 		btrfs_set_node_key(parent, &mid_key, pslot);
1148 		btrfs_mark_buffer_dirty(trans, parent);
1149 	}
1150 
1151 	/* update the path */
1152 	if (left) {
1153 		if (btrfs_header_nritems(left) > orig_slot) {
1154 			atomic_inc(&left->refs);
1155 			/* left was locked after cow */
1156 			path->nodes[level] = left;
1157 			path->slots[level + 1] -= 1;
1158 			path->slots[level] = orig_slot;
1159 			if (mid) {
1160 				btrfs_tree_unlock(mid);
1161 				free_extent_buffer(mid);
1162 			}
1163 		} else {
1164 			orig_slot -= btrfs_header_nritems(left);
1165 			path->slots[level] = orig_slot;
1166 		}
1167 	}
1168 	/* double check we haven't messed things up */
1169 	if (orig_ptr !=
1170 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1171 		BUG();
1172 out:
1173 	if (right) {
1174 		btrfs_tree_unlock(right);
1175 		free_extent_buffer(right);
1176 	}
1177 	if (left) {
1178 		if (path->nodes[level] != left)
1179 			btrfs_tree_unlock(left);
1180 		free_extent_buffer(left);
1181 	}
1182 	return ret;
1183 }
1184 
1185 /* Node balancing for insertion.  Here we only split or push nodes around
1186  * when they are completely full.  This is also done top down, so we
1187  * have to be pessimistic.
1188  */
1189 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1190 					  struct btrfs_root *root,
1191 					  struct btrfs_path *path, int level)
1192 {
1193 	struct btrfs_fs_info *fs_info = root->fs_info;
1194 	struct extent_buffer *right = NULL;
1195 	struct extent_buffer *mid;
1196 	struct extent_buffer *left = NULL;
1197 	struct extent_buffer *parent = NULL;
1198 	int ret = 0;
1199 	int wret;
1200 	int pslot;
1201 	int orig_slot = path->slots[level];
1202 
1203 	if (level == 0)
1204 		return 1;
1205 
1206 	mid = path->nodes[level];
1207 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1208 
1209 	if (level < BTRFS_MAX_LEVEL - 1) {
1210 		parent = path->nodes[level + 1];
1211 		pslot = path->slots[level + 1];
1212 	}
1213 
1214 	if (!parent)
1215 		return 1;
1216 
1217 	/* first, try to make some room in the middle buffer */
1218 	if (pslot) {
1219 		u32 left_nr;
1220 
1221 		left = btrfs_read_node_slot(parent, pslot - 1);
1222 		if (IS_ERR(left))
1223 			return PTR_ERR(left);
1224 
1225 		btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
1226 
1227 		left_nr = btrfs_header_nritems(left);
1228 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1229 			wret = 1;
1230 		} else {
1231 			ret = btrfs_cow_block(trans, root, left, parent,
1232 					      pslot - 1, &left,
1233 					      BTRFS_NESTING_LEFT_COW);
1234 			if (ret)
1235 				wret = 1;
1236 			else {
1237 				wret = push_node_left(trans, left, mid, 0);
1238 			}
1239 		}
1240 		if (wret < 0)
1241 			ret = wret;
1242 		if (wret == 0) {
1243 			struct btrfs_disk_key disk_key;
1244 			orig_slot += left_nr;
1245 			btrfs_node_key(mid, &disk_key, 0);
1246 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1247 					BTRFS_MOD_LOG_KEY_REPLACE);
1248 			if (ret < 0) {
1249 				btrfs_tree_unlock(left);
1250 				free_extent_buffer(left);
1251 				btrfs_abort_transaction(trans, ret);
1252 				return ret;
1253 			}
1254 			btrfs_set_node_key(parent, &disk_key, pslot);
1255 			btrfs_mark_buffer_dirty(trans, parent);
1256 			if (btrfs_header_nritems(left) > orig_slot) {
1257 				path->nodes[level] = left;
1258 				path->slots[level + 1] -= 1;
1259 				path->slots[level] = orig_slot;
1260 				btrfs_tree_unlock(mid);
1261 				free_extent_buffer(mid);
1262 			} else {
1263 				orig_slot -=
1264 					btrfs_header_nritems(left);
1265 				path->slots[level] = orig_slot;
1266 				btrfs_tree_unlock(left);
1267 				free_extent_buffer(left);
1268 			}
1269 			return 0;
1270 		}
1271 		btrfs_tree_unlock(left);
1272 		free_extent_buffer(left);
1273 	}
1274 
1275 	/*
1276 	 * then try to empty the right most buffer into the middle
1277 	 */
1278 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1279 		u32 right_nr;
1280 
1281 		right = btrfs_read_node_slot(parent, pslot + 1);
1282 		if (IS_ERR(right))
1283 			return PTR_ERR(right);
1284 
1285 		btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
1286 
1287 		right_nr = btrfs_header_nritems(right);
1288 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1289 			wret = 1;
1290 		} else {
1291 			ret = btrfs_cow_block(trans, root, right,
1292 					      parent, pslot + 1,
1293 					      &right, BTRFS_NESTING_RIGHT_COW);
1294 			if (ret)
1295 				wret = 1;
1296 			else {
1297 				wret = balance_node_right(trans, right, mid);
1298 			}
1299 		}
1300 		if (wret < 0)
1301 			ret = wret;
1302 		if (wret == 0) {
1303 			struct btrfs_disk_key disk_key;
1304 
1305 			btrfs_node_key(right, &disk_key, 0);
1306 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1307 					BTRFS_MOD_LOG_KEY_REPLACE);
1308 			if (ret < 0) {
1309 				btrfs_tree_unlock(right);
1310 				free_extent_buffer(right);
1311 				btrfs_abort_transaction(trans, ret);
1312 				return ret;
1313 			}
1314 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1315 			btrfs_mark_buffer_dirty(trans, parent);
1316 
1317 			if (btrfs_header_nritems(mid) <= orig_slot) {
1318 				path->nodes[level] = right;
1319 				path->slots[level + 1] += 1;
1320 				path->slots[level] = orig_slot -
1321 					btrfs_header_nritems(mid);
1322 				btrfs_tree_unlock(mid);
1323 				free_extent_buffer(mid);
1324 			} else {
1325 				btrfs_tree_unlock(right);
1326 				free_extent_buffer(right);
1327 			}
1328 			return 0;
1329 		}
1330 		btrfs_tree_unlock(right);
1331 		free_extent_buffer(right);
1332 	}
1333 	return 1;
1334 }
1335 
1336 /*
1337  * readahead one full node of leaves, finding things that are close
1338  * to the block in 'slot', and triggering ra on them.
1339  */
1340 static void reada_for_search(struct btrfs_fs_info *fs_info,
1341 			     struct btrfs_path *path,
1342 			     int level, int slot, u64 objectid)
1343 {
1344 	struct extent_buffer *node;
1345 	struct btrfs_disk_key disk_key;
1346 	u32 nritems;
1347 	u64 search;
1348 	u64 target;
1349 	u64 nread = 0;
1350 	u64 nread_max;
1351 	u32 nr;
1352 	u32 blocksize;
1353 	u32 nscan = 0;
1354 
1355 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1356 		return;
1357 
1358 	if (!path->nodes[level])
1359 		return;
1360 
1361 	node = path->nodes[level];
1362 
1363 	/*
1364 	 * Since the time between visiting leaves is much shorter than the time
1365 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1366 	 * much IO at once (possibly random).
1367 	 */
1368 	if (path->reada == READA_FORWARD_ALWAYS) {
1369 		if (level > 1)
1370 			nread_max = node->fs_info->nodesize;
1371 		else
1372 			nread_max = SZ_128K;
1373 	} else {
1374 		nread_max = SZ_64K;
1375 	}
1376 
1377 	search = btrfs_node_blockptr(node, slot);
1378 	blocksize = fs_info->nodesize;
1379 	if (path->reada != READA_FORWARD_ALWAYS) {
1380 		struct extent_buffer *eb;
1381 
1382 		eb = find_extent_buffer(fs_info, search);
1383 		if (eb) {
1384 			free_extent_buffer(eb);
1385 			return;
1386 		}
1387 	}
1388 
1389 	target = search;
1390 
1391 	nritems = btrfs_header_nritems(node);
1392 	nr = slot;
1393 
1394 	while (1) {
1395 		if (path->reada == READA_BACK) {
1396 			if (nr == 0)
1397 				break;
1398 			nr--;
1399 		} else if (path->reada == READA_FORWARD ||
1400 			   path->reada == READA_FORWARD_ALWAYS) {
1401 			nr++;
1402 			if (nr >= nritems)
1403 				break;
1404 		}
1405 		if (path->reada == READA_BACK && objectid) {
1406 			btrfs_node_key(node, &disk_key, nr);
1407 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1408 				break;
1409 		}
1410 		search = btrfs_node_blockptr(node, nr);
1411 		if (path->reada == READA_FORWARD_ALWAYS ||
1412 		    (search <= target && target - search <= 65536) ||
1413 		    (search > target && search - target <= 65536)) {
1414 			btrfs_readahead_node_child(node, nr);
1415 			nread += blocksize;
1416 		}
1417 		nscan++;
1418 		if (nread > nread_max || nscan > 32)
1419 			break;
1420 	}
1421 }
1422 
1423 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1424 {
1425 	struct extent_buffer *parent;
1426 	int slot;
1427 	int nritems;
1428 
1429 	parent = path->nodes[level + 1];
1430 	if (!parent)
1431 		return;
1432 
1433 	nritems = btrfs_header_nritems(parent);
1434 	slot = path->slots[level + 1];
1435 
1436 	if (slot > 0)
1437 		btrfs_readahead_node_child(parent, slot - 1);
1438 	if (slot + 1 < nritems)
1439 		btrfs_readahead_node_child(parent, slot + 1);
1440 }
1441 
1442 
1443 /*
1444  * when we walk down the tree, it is usually safe to unlock the higher layers
1445  * in the tree.  The exceptions are when our path goes through slot 0, because
1446  * operations on the tree might require changing key pointers higher up in the
1447  * tree.
1448  *
1449  * callers might also have set path->keep_locks, which tells this code to keep
1450  * the lock if the path points to the last slot in the block.  This is part of
1451  * walking through the tree, and selecting the next slot in the higher block.
1452  *
1453  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1454  * if lowest_unlock is 1, level 0 won't be unlocked
1455  */
1456 static noinline void unlock_up(struct btrfs_path *path, int level,
1457 			       int lowest_unlock, int min_write_lock_level,
1458 			       int *write_lock_level)
1459 {
1460 	int i;
1461 	int skip_level = level;
1462 	bool check_skip = true;
1463 
1464 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1465 		if (!path->nodes[i])
1466 			break;
1467 		if (!path->locks[i])
1468 			break;
1469 
1470 		if (check_skip) {
1471 			if (path->slots[i] == 0) {
1472 				skip_level = i + 1;
1473 				continue;
1474 			}
1475 
1476 			if (path->keep_locks) {
1477 				u32 nritems;
1478 
1479 				nritems = btrfs_header_nritems(path->nodes[i]);
1480 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1481 					skip_level = i + 1;
1482 					continue;
1483 				}
1484 			}
1485 		}
1486 
1487 		if (i >= lowest_unlock && i > skip_level) {
1488 			check_skip = false;
1489 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1490 			path->locks[i] = 0;
1491 			if (write_lock_level &&
1492 			    i > min_write_lock_level &&
1493 			    i <= *write_lock_level) {
1494 				*write_lock_level = i - 1;
1495 			}
1496 		}
1497 	}
1498 }
1499 
1500 /*
1501  * Helper function for btrfs_search_slot() and other functions that do a search
1502  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1503  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1504  * its pages from disk.
1505  *
1506  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1507  * whole btree search, starting again from the current root node.
1508  */
1509 static int
1510 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1511 		      struct extent_buffer **eb_ret, int slot,
1512 		      const struct btrfs_key *key)
1513 {
1514 	struct btrfs_fs_info *fs_info = root->fs_info;
1515 	struct btrfs_tree_parent_check check = { 0 };
1516 	u64 blocknr;
1517 	struct extent_buffer *tmp = NULL;
1518 	int ret = 0;
1519 	int parent_level;
1520 	int err;
1521 	bool read_tmp = false;
1522 	bool tmp_locked = false;
1523 	bool path_released = false;
1524 
1525 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1526 	parent_level = btrfs_header_level(*eb_ret);
1527 	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1528 	check.has_first_key = true;
1529 	check.level = parent_level - 1;
1530 	check.transid = btrfs_node_ptr_generation(*eb_ret, slot);
1531 	check.owner_root = btrfs_root_id(root);
1532 
1533 	/*
1534 	 * If we need to read an extent buffer from disk and we are holding locks
1535 	 * on upper level nodes, we unlock all the upper nodes before reading the
1536 	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1537 	 * restart the search. We don't release the lock on the current level
1538 	 * because we need to walk this node to figure out which blocks to read.
1539 	 */
1540 	tmp = find_extent_buffer(fs_info, blocknr);
1541 	if (tmp) {
1542 		if (p->reada == READA_FORWARD_ALWAYS)
1543 			reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1544 
1545 		/* first we do an atomic uptodate check */
1546 		if (btrfs_buffer_uptodate(tmp, check.transid, 1) > 0) {
1547 			/*
1548 			 * Do extra check for first_key, eb can be stale due to
1549 			 * being cached, read from scrub, or have multiple
1550 			 * parents (shared tree blocks).
1551 			 */
1552 			if (btrfs_verify_level_key(tmp, &check)) {
1553 				ret = -EUCLEAN;
1554 				goto out;
1555 			}
1556 			*eb_ret = tmp;
1557 			tmp = NULL;
1558 			ret = 0;
1559 			goto out;
1560 		}
1561 
1562 		if (p->nowait) {
1563 			ret = -EAGAIN;
1564 			goto out;
1565 		}
1566 
1567 		if (!p->skip_locking) {
1568 			btrfs_unlock_up_safe(p, parent_level + 1);
1569 			tmp_locked = true;
1570 			btrfs_tree_read_lock(tmp);
1571 			btrfs_release_path(p);
1572 			ret = -EAGAIN;
1573 			path_released = true;
1574 		}
1575 
1576 		/* Now we're allowed to do a blocking uptodate check. */
1577 		err = btrfs_read_extent_buffer(tmp, &check);
1578 		if (err) {
1579 			ret = err;
1580 			goto out;
1581 		}
1582 
1583 		if (ret == 0) {
1584 			ASSERT(!tmp_locked);
1585 			*eb_ret = tmp;
1586 			tmp = NULL;
1587 		}
1588 		goto out;
1589 	} else if (p->nowait) {
1590 		ret = -EAGAIN;
1591 		goto out;
1592 	}
1593 
1594 	if (!p->skip_locking) {
1595 		btrfs_unlock_up_safe(p, parent_level + 1);
1596 		ret = -EAGAIN;
1597 	}
1598 
1599 	if (p->reada != READA_NONE)
1600 		reada_for_search(fs_info, p, parent_level, slot, key->objectid);
1601 
1602 	tmp = btrfs_find_create_tree_block(fs_info, blocknr, check.owner_root, check.level);
1603 	if (IS_ERR(tmp)) {
1604 		ret = PTR_ERR(tmp);
1605 		tmp = NULL;
1606 		goto out;
1607 	}
1608 	read_tmp = true;
1609 
1610 	if (!p->skip_locking) {
1611 		ASSERT(ret == -EAGAIN);
1612 		tmp_locked = true;
1613 		btrfs_tree_read_lock(tmp);
1614 		btrfs_release_path(p);
1615 		path_released = true;
1616 	}
1617 
1618 	/* Now we're allowed to do a blocking uptodate check. */
1619 	err = btrfs_read_extent_buffer(tmp, &check);
1620 	if (err) {
1621 		ret = err;
1622 		goto out;
1623 	}
1624 
1625 	/*
1626 	 * If the read above didn't mark this buffer up to date,
1627 	 * it will never end up being up to date.  Set ret to EIO now
1628 	 * and give up so that our caller doesn't loop forever
1629 	 * on our EAGAINs.
1630 	 */
1631 	if (!extent_buffer_uptodate(tmp)) {
1632 		ret = -EIO;
1633 		goto out;
1634 	}
1635 
1636 	if (ret == 0) {
1637 		ASSERT(!tmp_locked);
1638 		*eb_ret = tmp;
1639 		tmp = NULL;
1640 	}
1641 out:
1642 	if (tmp) {
1643 		if (tmp_locked)
1644 			btrfs_tree_read_unlock(tmp);
1645 		if (read_tmp && ret && ret != -EAGAIN)
1646 			free_extent_buffer_stale(tmp);
1647 		else
1648 			free_extent_buffer(tmp);
1649 	}
1650 	if (ret && !path_released)
1651 		btrfs_release_path(p);
1652 
1653 	return ret;
1654 }
1655 
1656 /*
1657  * helper function for btrfs_search_slot.  This does all of the checks
1658  * for node-level blocks and does any balancing required based on
1659  * the ins_len.
1660  *
1661  * If no extra work was required, zero is returned.  If we had to
1662  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1663  * start over
1664  */
1665 static int
1666 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1667 		       struct btrfs_root *root, struct btrfs_path *p,
1668 		       struct extent_buffer *b, int level, int ins_len,
1669 		       int *write_lock_level)
1670 {
1671 	struct btrfs_fs_info *fs_info = root->fs_info;
1672 	int ret = 0;
1673 
1674 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1675 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1676 
1677 		if (*write_lock_level < level + 1) {
1678 			*write_lock_level = level + 1;
1679 			btrfs_release_path(p);
1680 			return -EAGAIN;
1681 		}
1682 
1683 		reada_for_balance(p, level);
1684 		ret = split_node(trans, root, p, level);
1685 
1686 		b = p->nodes[level];
1687 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1688 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1689 
1690 		if (*write_lock_level < level + 1) {
1691 			*write_lock_level = level + 1;
1692 			btrfs_release_path(p);
1693 			return -EAGAIN;
1694 		}
1695 
1696 		reada_for_balance(p, level);
1697 		ret = balance_level(trans, root, p, level);
1698 		if (ret)
1699 			return ret;
1700 
1701 		b = p->nodes[level];
1702 		if (!b) {
1703 			btrfs_release_path(p);
1704 			return -EAGAIN;
1705 		}
1706 		BUG_ON(btrfs_header_nritems(b) == 1);
1707 	}
1708 	return ret;
1709 }
1710 
1711 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1712 		u64 iobjectid, u64 ioff, u8 key_type,
1713 		struct btrfs_key *found_key)
1714 {
1715 	int ret;
1716 	struct btrfs_key key;
1717 	struct extent_buffer *eb;
1718 
1719 	ASSERT(path);
1720 	ASSERT(found_key);
1721 
1722 	key.type = key_type;
1723 	key.objectid = iobjectid;
1724 	key.offset = ioff;
1725 
1726 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1727 	if (ret < 0)
1728 		return ret;
1729 
1730 	eb = path->nodes[0];
1731 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1732 		ret = btrfs_next_leaf(fs_root, path);
1733 		if (ret)
1734 			return ret;
1735 		eb = path->nodes[0];
1736 	}
1737 
1738 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1739 	if (found_key->type != key.type ||
1740 			found_key->objectid != key.objectid)
1741 		return 1;
1742 
1743 	return 0;
1744 }
1745 
1746 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1747 							struct btrfs_path *p,
1748 							int write_lock_level)
1749 {
1750 	struct extent_buffer *b;
1751 	int root_lock = 0;
1752 	int level = 0;
1753 
1754 	if (p->search_commit_root) {
1755 		b = root->commit_root;
1756 		atomic_inc(&b->refs);
1757 		level = btrfs_header_level(b);
1758 		/*
1759 		 * Ensure that all callers have set skip_locking when
1760 		 * p->search_commit_root = 1.
1761 		 */
1762 		ASSERT(p->skip_locking == 1);
1763 
1764 		goto out;
1765 	}
1766 
1767 	if (p->skip_locking) {
1768 		b = btrfs_root_node(root);
1769 		level = btrfs_header_level(b);
1770 		goto out;
1771 	}
1772 
1773 	/* We try very hard to do read locks on the root */
1774 	root_lock = BTRFS_READ_LOCK;
1775 
1776 	/*
1777 	 * If the level is set to maximum, we can skip trying to get the read
1778 	 * lock.
1779 	 */
1780 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1781 		/*
1782 		 * We don't know the level of the root node until we actually
1783 		 * have it read locked
1784 		 */
1785 		if (p->nowait) {
1786 			b = btrfs_try_read_lock_root_node(root);
1787 			if (IS_ERR(b))
1788 				return b;
1789 		} else {
1790 			b = btrfs_read_lock_root_node(root);
1791 		}
1792 		level = btrfs_header_level(b);
1793 		if (level > write_lock_level)
1794 			goto out;
1795 
1796 		/* Whoops, must trade for write lock */
1797 		btrfs_tree_read_unlock(b);
1798 		free_extent_buffer(b);
1799 	}
1800 
1801 	b = btrfs_lock_root_node(root);
1802 	root_lock = BTRFS_WRITE_LOCK;
1803 
1804 	/* The level might have changed, check again */
1805 	level = btrfs_header_level(b);
1806 
1807 out:
1808 	/*
1809 	 * The root may have failed to write out at some point, and thus is no
1810 	 * longer valid, return an error in this case.
1811 	 */
1812 	if (!extent_buffer_uptodate(b)) {
1813 		if (root_lock)
1814 			btrfs_tree_unlock_rw(b, root_lock);
1815 		free_extent_buffer(b);
1816 		return ERR_PTR(-EIO);
1817 	}
1818 
1819 	p->nodes[level] = b;
1820 	if (!p->skip_locking)
1821 		p->locks[level] = root_lock;
1822 	/*
1823 	 * Callers are responsible for dropping b's references.
1824 	 */
1825 	return b;
1826 }
1827 
1828 /*
1829  * Replace the extent buffer at the lowest level of the path with a cloned
1830  * version. The purpose is to be able to use it safely, after releasing the
1831  * commit root semaphore, even if relocation is happening in parallel, the
1832  * transaction used for relocation is committed and the extent buffer is
1833  * reallocated in the next transaction.
1834  *
1835  * This is used in a context where the caller does not prevent transaction
1836  * commits from happening, either by holding a transaction handle or holding
1837  * some lock, while it's doing searches through a commit root.
1838  * At the moment it's only used for send operations.
1839  */
1840 static int finish_need_commit_sem_search(struct btrfs_path *path)
1841 {
1842 	const int i = path->lowest_level;
1843 	const int slot = path->slots[i];
1844 	struct extent_buffer *lowest = path->nodes[i];
1845 	struct extent_buffer *clone;
1846 
1847 	ASSERT(path->need_commit_sem);
1848 
1849 	if (!lowest)
1850 		return 0;
1851 
1852 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1853 
1854 	clone = btrfs_clone_extent_buffer(lowest);
1855 	if (!clone)
1856 		return -ENOMEM;
1857 
1858 	btrfs_release_path(path);
1859 	path->nodes[i] = clone;
1860 	path->slots[i] = slot;
1861 
1862 	return 0;
1863 }
1864 
1865 static inline int search_for_key_slot(struct extent_buffer *eb,
1866 				      int search_low_slot,
1867 				      const struct btrfs_key *key,
1868 				      int prev_cmp,
1869 				      int *slot)
1870 {
1871 	/*
1872 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1873 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1874 	 * always be at slot 0 on lower levels, since each key pointer
1875 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1876 	 * subtree it points to. Thus we can skip searching lower levels.
1877 	 */
1878 	if (prev_cmp == 0) {
1879 		*slot = 0;
1880 		return 0;
1881 	}
1882 
1883 	return btrfs_bin_search(eb, search_low_slot, key, slot);
1884 }
1885 
1886 static int search_leaf(struct btrfs_trans_handle *trans,
1887 		       struct btrfs_root *root,
1888 		       const struct btrfs_key *key,
1889 		       struct btrfs_path *path,
1890 		       int ins_len,
1891 		       int prev_cmp)
1892 {
1893 	struct extent_buffer *leaf = path->nodes[0];
1894 	int leaf_free_space = -1;
1895 	int search_low_slot = 0;
1896 	int ret;
1897 	bool do_bin_search = true;
1898 
1899 	/*
1900 	 * If we are doing an insertion, the leaf has enough free space and the
1901 	 * destination slot for the key is not slot 0, then we can unlock our
1902 	 * write lock on the parent, and any other upper nodes, before doing the
1903 	 * binary search on the leaf (with search_for_key_slot()), allowing other
1904 	 * tasks to lock the parent and any other upper nodes.
1905 	 */
1906 	if (ins_len > 0) {
1907 		/*
1908 		 * Cache the leaf free space, since we will need it later and it
1909 		 * will not change until then.
1910 		 */
1911 		leaf_free_space = btrfs_leaf_free_space(leaf);
1912 
1913 		/*
1914 		 * !path->locks[1] means we have a single node tree, the leaf is
1915 		 * the root of the tree.
1916 		 */
1917 		if (path->locks[1] && leaf_free_space >= ins_len) {
1918 			struct btrfs_disk_key first_key;
1919 
1920 			ASSERT(btrfs_header_nritems(leaf) > 0);
1921 			btrfs_item_key(leaf, &first_key, 0);
1922 
1923 			/*
1924 			 * Doing the extra comparison with the first key is cheap,
1925 			 * taking into account that the first key is very likely
1926 			 * already in a cache line because it immediately follows
1927 			 * the extent buffer's header and we have recently accessed
1928 			 * the header's level field.
1929 			 */
1930 			ret = btrfs_comp_keys(&first_key, key);
1931 			if (ret < 0) {
1932 				/*
1933 				 * The first key is smaller than the key we want
1934 				 * to insert, so we are safe to unlock all upper
1935 				 * nodes and we have to do the binary search.
1936 				 *
1937 				 * We do use btrfs_unlock_up_safe() and not
1938 				 * unlock_up() because the later does not unlock
1939 				 * nodes with a slot of 0 - we can safely unlock
1940 				 * any node even if its slot is 0 since in this
1941 				 * case the key does not end up at slot 0 of the
1942 				 * leaf and there's no need to split the leaf.
1943 				 */
1944 				btrfs_unlock_up_safe(path, 1);
1945 				search_low_slot = 1;
1946 			} else {
1947 				/*
1948 				 * The first key is >= then the key we want to
1949 				 * insert, so we can skip the binary search as
1950 				 * the target key will be at slot 0.
1951 				 *
1952 				 * We can not unlock upper nodes when the key is
1953 				 * less than the first key, because we will need
1954 				 * to update the key at slot 0 of the parent node
1955 				 * and possibly of other upper nodes too.
1956 				 * If the key matches the first key, then we can
1957 				 * unlock all the upper nodes, using
1958 				 * btrfs_unlock_up_safe() instead of unlock_up()
1959 				 * as stated above.
1960 				 */
1961 				if (ret == 0)
1962 					btrfs_unlock_up_safe(path, 1);
1963 				/*
1964 				 * ret is already 0 or 1, matching the result of
1965 				 * a btrfs_bin_search() call, so there is no need
1966 				 * to adjust it.
1967 				 */
1968 				do_bin_search = false;
1969 				path->slots[0] = 0;
1970 			}
1971 		}
1972 	}
1973 
1974 	if (do_bin_search) {
1975 		ret = search_for_key_slot(leaf, search_low_slot, key,
1976 					  prev_cmp, &path->slots[0]);
1977 		if (ret < 0)
1978 			return ret;
1979 	}
1980 
1981 	if (ins_len > 0) {
1982 		/*
1983 		 * Item key already exists. In this case, if we are allowed to
1984 		 * insert the item (for example, in dir_item case, item key
1985 		 * collision is allowed), it will be merged with the original
1986 		 * item. Only the item size grows, no new btrfs item will be
1987 		 * added. If search_for_extension is not set, ins_len already
1988 		 * accounts the size btrfs_item, deduct it here so leaf space
1989 		 * check will be correct.
1990 		 */
1991 		if (ret == 0 && !path->search_for_extension) {
1992 			ASSERT(ins_len >= sizeof(struct btrfs_item));
1993 			ins_len -= sizeof(struct btrfs_item);
1994 		}
1995 
1996 		ASSERT(leaf_free_space >= 0);
1997 
1998 		if (leaf_free_space < ins_len) {
1999 			int err;
2000 
2001 			err = split_leaf(trans, root, key, path, ins_len,
2002 					 (ret == 0));
2003 			ASSERT(err <= 0);
2004 			if (WARN_ON(err > 0))
2005 				err = -EUCLEAN;
2006 			if (err)
2007 				ret = err;
2008 		}
2009 	}
2010 
2011 	return ret;
2012 }
2013 
2014 /*
2015  * Look for a key in a tree and perform necessary modifications to preserve
2016  * tree invariants.
2017  *
2018  * @trans:	Handle of transaction, used when modifying the tree
2019  * @p:		Holds all btree nodes along the search path
2020  * @root:	The root node of the tree
2021  * @key:	The key we are looking for
2022  * @ins_len:	Indicates purpose of search:
2023  *              >0  for inserts it's size of item inserted (*)
2024  *              <0  for deletions
2025  *               0  for plain searches, not modifying the tree
2026  *
2027  *              (*) If size of item inserted doesn't include
2028  *              sizeof(struct btrfs_item), then p->search_for_extension must
2029  *              be set.
2030  * @cow:	boolean should CoW operations be performed. Must always be 1
2031  *		when modifying the tree.
2032  *
2033  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2034  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2035  *
2036  * If @key is found, 0 is returned and you can find the item in the leaf level
2037  * of the path (level 0)
2038  *
2039  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2040  * points to the slot where it should be inserted
2041  *
2042  * If an error is encountered while searching the tree a negative error number
2043  * is returned
2044  */
2045 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2046 		      const struct btrfs_key *key, struct btrfs_path *p,
2047 		      int ins_len, int cow)
2048 {
2049 	struct btrfs_fs_info *fs_info;
2050 	struct extent_buffer *b;
2051 	int slot;
2052 	int ret;
2053 	int err;
2054 	int level;
2055 	int lowest_unlock = 1;
2056 	/* everything at write_lock_level or lower must be write locked */
2057 	int write_lock_level = 0;
2058 	u8 lowest_level = 0;
2059 	int min_write_lock_level;
2060 	int prev_cmp;
2061 
2062 	if (!root)
2063 		return -EINVAL;
2064 
2065 	fs_info = root->fs_info;
2066 	might_sleep();
2067 
2068 	lowest_level = p->lowest_level;
2069 	WARN_ON(lowest_level && ins_len > 0);
2070 	WARN_ON(p->nodes[0] != NULL);
2071 	BUG_ON(!cow && ins_len);
2072 
2073 	/*
2074 	 * For now only allow nowait for read only operations.  There's no
2075 	 * strict reason why we can't, we just only need it for reads so it's
2076 	 * only implemented for reads.
2077 	 */
2078 	ASSERT(!p->nowait || !cow);
2079 
2080 	if (ins_len < 0) {
2081 		lowest_unlock = 2;
2082 
2083 		/* when we are removing items, we might have to go up to level
2084 		 * two as we update tree pointers  Make sure we keep write
2085 		 * for those levels as well
2086 		 */
2087 		write_lock_level = 2;
2088 	} else if (ins_len > 0) {
2089 		/*
2090 		 * for inserting items, make sure we have a write lock on
2091 		 * level 1 so we can update keys
2092 		 */
2093 		write_lock_level = 1;
2094 	}
2095 
2096 	if (!cow)
2097 		write_lock_level = -1;
2098 
2099 	if (cow && (p->keep_locks || p->lowest_level))
2100 		write_lock_level = BTRFS_MAX_LEVEL;
2101 
2102 	min_write_lock_level = write_lock_level;
2103 
2104 	if (p->need_commit_sem) {
2105 		ASSERT(p->search_commit_root);
2106 		if (p->nowait) {
2107 			if (!down_read_trylock(&fs_info->commit_root_sem))
2108 				return -EAGAIN;
2109 		} else {
2110 			down_read(&fs_info->commit_root_sem);
2111 		}
2112 	}
2113 
2114 again:
2115 	prev_cmp = -1;
2116 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2117 	if (IS_ERR(b)) {
2118 		ret = PTR_ERR(b);
2119 		goto done;
2120 	}
2121 
2122 	while (b) {
2123 		int dec = 0;
2124 
2125 		level = btrfs_header_level(b);
2126 
2127 		if (cow) {
2128 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2129 
2130 			/*
2131 			 * if we don't really need to cow this block
2132 			 * then we don't want to set the path blocking,
2133 			 * so we test it here
2134 			 */
2135 			if (!should_cow_block(trans, root, b))
2136 				goto cow_done;
2137 
2138 			/*
2139 			 * must have write locks on this node and the
2140 			 * parent
2141 			 */
2142 			if (level > write_lock_level ||
2143 			    (level + 1 > write_lock_level &&
2144 			    level + 1 < BTRFS_MAX_LEVEL &&
2145 			    p->nodes[level + 1])) {
2146 				write_lock_level = level + 1;
2147 				btrfs_release_path(p);
2148 				goto again;
2149 			}
2150 
2151 			if (last_level)
2152 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2153 						      &b,
2154 						      BTRFS_NESTING_COW);
2155 			else
2156 				err = btrfs_cow_block(trans, root, b,
2157 						      p->nodes[level + 1],
2158 						      p->slots[level + 1], &b,
2159 						      BTRFS_NESTING_COW);
2160 			if (err) {
2161 				ret = err;
2162 				goto done;
2163 			}
2164 		}
2165 cow_done:
2166 		p->nodes[level] = b;
2167 
2168 		/*
2169 		 * we have a lock on b and as long as we aren't changing
2170 		 * the tree, there is no way to for the items in b to change.
2171 		 * It is safe to drop the lock on our parent before we
2172 		 * go through the expensive btree search on b.
2173 		 *
2174 		 * If we're inserting or deleting (ins_len != 0), then we might
2175 		 * be changing slot zero, which may require changing the parent.
2176 		 * So, we can't drop the lock until after we know which slot
2177 		 * we're operating on.
2178 		 */
2179 		if (!ins_len && !p->keep_locks) {
2180 			int u = level + 1;
2181 
2182 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2183 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2184 				p->locks[u] = 0;
2185 			}
2186 		}
2187 
2188 		if (level == 0) {
2189 			if (ins_len > 0)
2190 				ASSERT(write_lock_level >= 1);
2191 
2192 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2193 			if (!p->search_for_split)
2194 				unlock_up(p, level, lowest_unlock,
2195 					  min_write_lock_level, NULL);
2196 			goto done;
2197 		}
2198 
2199 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2200 		if (ret < 0)
2201 			goto done;
2202 		prev_cmp = ret;
2203 
2204 		if (ret && slot > 0) {
2205 			dec = 1;
2206 			slot--;
2207 		}
2208 		p->slots[level] = slot;
2209 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2210 					     &write_lock_level);
2211 		if (err == -EAGAIN)
2212 			goto again;
2213 		if (err) {
2214 			ret = err;
2215 			goto done;
2216 		}
2217 		b = p->nodes[level];
2218 		slot = p->slots[level];
2219 
2220 		/*
2221 		 * Slot 0 is special, if we change the key we have to update
2222 		 * the parent pointer which means we must have a write lock on
2223 		 * the parent
2224 		 */
2225 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2226 			write_lock_level = level + 1;
2227 			btrfs_release_path(p);
2228 			goto again;
2229 		}
2230 
2231 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2232 			  &write_lock_level);
2233 
2234 		if (level == lowest_level) {
2235 			if (dec)
2236 				p->slots[level]++;
2237 			goto done;
2238 		}
2239 
2240 		err = read_block_for_search(root, p, &b, slot, key);
2241 		if (err == -EAGAIN && !p->nowait)
2242 			goto again;
2243 		if (err) {
2244 			ret = err;
2245 			goto done;
2246 		}
2247 
2248 		if (!p->skip_locking) {
2249 			level = btrfs_header_level(b);
2250 
2251 			btrfs_maybe_reset_lockdep_class(root, b);
2252 
2253 			if (level <= write_lock_level) {
2254 				btrfs_tree_lock(b);
2255 				p->locks[level] = BTRFS_WRITE_LOCK;
2256 			} else {
2257 				if (p->nowait) {
2258 					if (!btrfs_try_tree_read_lock(b)) {
2259 						free_extent_buffer(b);
2260 						ret = -EAGAIN;
2261 						goto done;
2262 					}
2263 				} else {
2264 					btrfs_tree_read_lock(b);
2265 				}
2266 				p->locks[level] = BTRFS_READ_LOCK;
2267 			}
2268 			p->nodes[level] = b;
2269 		}
2270 	}
2271 	ret = 1;
2272 done:
2273 	if (ret < 0 && !p->skip_release_on_error)
2274 		btrfs_release_path(p);
2275 
2276 	if (p->need_commit_sem) {
2277 		int ret2;
2278 
2279 		ret2 = finish_need_commit_sem_search(p);
2280 		up_read(&fs_info->commit_root_sem);
2281 		if (ret2)
2282 			ret = ret2;
2283 	}
2284 
2285 	return ret;
2286 }
2287 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2288 
2289 /*
2290  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2291  * current state of the tree together with the operations recorded in the tree
2292  * modification log to search for the key in a previous version of this tree, as
2293  * denoted by the time_seq parameter.
2294  *
2295  * Naturally, there is no support for insert, delete or cow operations.
2296  *
2297  * The resulting path and return value will be set up as if we called
2298  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2299  */
2300 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2301 			  struct btrfs_path *p, u64 time_seq)
2302 {
2303 	struct btrfs_fs_info *fs_info = root->fs_info;
2304 	struct extent_buffer *b;
2305 	int slot;
2306 	int ret;
2307 	int err;
2308 	int level;
2309 	int lowest_unlock = 1;
2310 	u8 lowest_level = 0;
2311 
2312 	lowest_level = p->lowest_level;
2313 	WARN_ON(p->nodes[0] != NULL);
2314 	ASSERT(!p->nowait);
2315 
2316 	if (p->search_commit_root) {
2317 		BUG_ON(time_seq);
2318 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2319 	}
2320 
2321 again:
2322 	b = btrfs_get_old_root(root, time_seq);
2323 	if (!b) {
2324 		ret = -EIO;
2325 		goto done;
2326 	}
2327 	level = btrfs_header_level(b);
2328 	p->locks[level] = BTRFS_READ_LOCK;
2329 
2330 	while (b) {
2331 		int dec = 0;
2332 
2333 		level = btrfs_header_level(b);
2334 		p->nodes[level] = b;
2335 
2336 		/*
2337 		 * we have a lock on b and as long as we aren't changing
2338 		 * the tree, there is no way to for the items in b to change.
2339 		 * It is safe to drop the lock on our parent before we
2340 		 * go through the expensive btree search on b.
2341 		 */
2342 		btrfs_unlock_up_safe(p, level + 1);
2343 
2344 		ret = btrfs_bin_search(b, 0, key, &slot);
2345 		if (ret < 0)
2346 			goto done;
2347 
2348 		if (level == 0) {
2349 			p->slots[level] = slot;
2350 			unlock_up(p, level, lowest_unlock, 0, NULL);
2351 			goto done;
2352 		}
2353 
2354 		if (ret && slot > 0) {
2355 			dec = 1;
2356 			slot--;
2357 		}
2358 		p->slots[level] = slot;
2359 		unlock_up(p, level, lowest_unlock, 0, NULL);
2360 
2361 		if (level == lowest_level) {
2362 			if (dec)
2363 				p->slots[level]++;
2364 			goto done;
2365 		}
2366 
2367 		err = read_block_for_search(root, p, &b, slot, key);
2368 		if (err == -EAGAIN && !p->nowait)
2369 			goto again;
2370 		if (err) {
2371 			ret = err;
2372 			goto done;
2373 		}
2374 
2375 		level = btrfs_header_level(b);
2376 		btrfs_tree_read_lock(b);
2377 		b = btrfs_tree_mod_log_rewind(fs_info, b, time_seq);
2378 		if (!b) {
2379 			ret = -ENOMEM;
2380 			goto done;
2381 		}
2382 		p->locks[level] = BTRFS_READ_LOCK;
2383 		p->nodes[level] = b;
2384 	}
2385 	ret = 1;
2386 done:
2387 	if (ret < 0)
2388 		btrfs_release_path(p);
2389 
2390 	return ret;
2391 }
2392 
2393 /*
2394  * Search the tree again to find a leaf with smaller keys.
2395  * Returns 0 if it found something.
2396  * Returns 1 if there are no smaller keys.
2397  * Returns < 0 on error.
2398  *
2399  * This may release the path, and so you may lose any locks held at the
2400  * time you call it.
2401  */
2402 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2403 {
2404 	struct btrfs_key key;
2405 	struct btrfs_key orig_key;
2406 	struct btrfs_disk_key found_key;
2407 	int ret;
2408 
2409 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2410 	orig_key = key;
2411 
2412 	if (key.offset > 0) {
2413 		key.offset--;
2414 	} else if (key.type > 0) {
2415 		key.type--;
2416 		key.offset = (u64)-1;
2417 	} else if (key.objectid > 0) {
2418 		key.objectid--;
2419 		key.type = (u8)-1;
2420 		key.offset = (u64)-1;
2421 	} else {
2422 		return 1;
2423 	}
2424 
2425 	btrfs_release_path(path);
2426 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2427 	if (ret <= 0)
2428 		return ret;
2429 
2430 	/*
2431 	 * Previous key not found. Even if we were at slot 0 of the leaf we had
2432 	 * before releasing the path and calling btrfs_search_slot(), we now may
2433 	 * be in a slot pointing to the same original key - this can happen if
2434 	 * after we released the path, one of more items were moved from a
2435 	 * sibling leaf into the front of the leaf we had due to an insertion
2436 	 * (see push_leaf_right()).
2437 	 * If we hit this case and our slot is > 0 and just decrement the slot
2438 	 * so that the caller does not process the same key again, which may or
2439 	 * may not break the caller, depending on its logic.
2440 	 */
2441 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2442 		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2443 		ret = btrfs_comp_keys(&found_key, &orig_key);
2444 		if (ret == 0) {
2445 			if (path->slots[0] > 0) {
2446 				path->slots[0]--;
2447 				return 0;
2448 			}
2449 			/*
2450 			 * At slot 0, same key as before, it means orig_key is
2451 			 * the lowest, leftmost, key in the tree. We're done.
2452 			 */
2453 			return 1;
2454 		}
2455 	}
2456 
2457 	btrfs_item_key(path->nodes[0], &found_key, 0);
2458 	ret = btrfs_comp_keys(&found_key, &key);
2459 	/*
2460 	 * We might have had an item with the previous key in the tree right
2461 	 * before we released our path. And after we released our path, that
2462 	 * item might have been pushed to the first slot (0) of the leaf we
2463 	 * were holding due to a tree balance. Alternatively, an item with the
2464 	 * previous key can exist as the only element of a leaf (big fat item).
2465 	 * Therefore account for these 2 cases, so that our callers (like
2466 	 * btrfs_previous_item) don't miss an existing item with a key matching
2467 	 * the previous key we computed above.
2468 	 */
2469 	if (ret <= 0)
2470 		return 0;
2471 	return 1;
2472 }
2473 
2474 /*
2475  * helper to use instead of search slot if no exact match is needed but
2476  * instead the next or previous item should be returned.
2477  * When find_higher is true, the next higher item is returned, the next lower
2478  * otherwise.
2479  * When return_any and find_higher are both true, and no higher item is found,
2480  * return the next lower instead.
2481  * When return_any is true and find_higher is false, and no lower item is found,
2482  * return the next higher instead.
2483  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2484  * < 0 on error
2485  */
2486 int btrfs_search_slot_for_read(struct btrfs_root *root,
2487 			       const struct btrfs_key *key,
2488 			       struct btrfs_path *p, int find_higher,
2489 			       int return_any)
2490 {
2491 	int ret;
2492 	struct extent_buffer *leaf;
2493 
2494 again:
2495 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2496 	if (ret <= 0)
2497 		return ret;
2498 	/*
2499 	 * a return value of 1 means the path is at the position where the
2500 	 * item should be inserted. Normally this is the next bigger item,
2501 	 * but in case the previous item is the last in a leaf, path points
2502 	 * to the first free slot in the previous leaf, i.e. at an invalid
2503 	 * item.
2504 	 */
2505 	leaf = p->nodes[0];
2506 
2507 	if (find_higher) {
2508 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2509 			ret = btrfs_next_leaf(root, p);
2510 			if (ret <= 0)
2511 				return ret;
2512 			if (!return_any)
2513 				return 1;
2514 			/*
2515 			 * no higher item found, return the next
2516 			 * lower instead
2517 			 */
2518 			return_any = 0;
2519 			find_higher = 0;
2520 			btrfs_release_path(p);
2521 			goto again;
2522 		}
2523 	} else {
2524 		if (p->slots[0] == 0) {
2525 			ret = btrfs_prev_leaf(root, p);
2526 			if (ret < 0)
2527 				return ret;
2528 			if (!ret) {
2529 				leaf = p->nodes[0];
2530 				if (p->slots[0] == btrfs_header_nritems(leaf))
2531 					p->slots[0]--;
2532 				return 0;
2533 			}
2534 			if (!return_any)
2535 				return 1;
2536 			/*
2537 			 * no lower item found, return the next
2538 			 * higher instead
2539 			 */
2540 			return_any = 0;
2541 			find_higher = 1;
2542 			btrfs_release_path(p);
2543 			goto again;
2544 		} else {
2545 			--p->slots[0];
2546 		}
2547 	}
2548 	return 0;
2549 }
2550 
2551 /*
2552  * Execute search and call btrfs_previous_item to traverse backwards if the item
2553  * was not found.
2554  *
2555  * Return 0 if found, 1 if not found and < 0 if error.
2556  */
2557 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2558 			   struct btrfs_path *path)
2559 {
2560 	int ret;
2561 
2562 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2563 	if (ret > 0)
2564 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2565 
2566 	if (ret == 0)
2567 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2568 
2569 	return ret;
2570 }
2571 
2572 /*
2573  * Search for a valid slot for the given path.
2574  *
2575  * @root:	The root node of the tree.
2576  * @key:	Will contain a valid item if found.
2577  * @path:	The starting point to validate the slot.
2578  *
2579  * Return: 0  if the item is valid
2580  *         1  if not found
2581  *         <0 if error.
2582  */
2583 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2584 			      struct btrfs_path *path)
2585 {
2586 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2587 		int ret;
2588 
2589 		ret = btrfs_next_leaf(root, path);
2590 		if (ret)
2591 			return ret;
2592 	}
2593 
2594 	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2595 	return 0;
2596 }
2597 
2598 /*
2599  * adjust the pointers going up the tree, starting at level
2600  * making sure the right key of each node is points to 'key'.
2601  * This is used after shifting pointers to the left, so it stops
2602  * fixing up pointers when a given leaf/node is not in slot 0 of the
2603  * higher levels
2604  *
2605  */
2606 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2607 			   const struct btrfs_path *path,
2608 			   const struct btrfs_disk_key *key, int level)
2609 {
2610 	int i;
2611 	struct extent_buffer *t;
2612 	int ret;
2613 
2614 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2615 		int tslot = path->slots[i];
2616 
2617 		if (!path->nodes[i])
2618 			break;
2619 		t = path->nodes[i];
2620 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2621 						    BTRFS_MOD_LOG_KEY_REPLACE);
2622 		BUG_ON(ret < 0);
2623 		btrfs_set_node_key(t, key, tslot);
2624 		btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2625 		if (tslot != 0)
2626 			break;
2627 	}
2628 }
2629 
2630 /*
2631  * update item key.
2632  *
2633  * This function isn't completely safe. It's the caller's responsibility
2634  * that the new key won't break the order
2635  */
2636 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2637 			     const struct btrfs_path *path,
2638 			     const struct btrfs_key *new_key)
2639 {
2640 	struct btrfs_fs_info *fs_info = trans->fs_info;
2641 	struct btrfs_disk_key disk_key;
2642 	struct extent_buffer *eb;
2643 	int slot;
2644 
2645 	eb = path->nodes[0];
2646 	slot = path->slots[0];
2647 	if (slot > 0) {
2648 		btrfs_item_key(eb, &disk_key, slot - 1);
2649 		if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2650 			btrfs_print_leaf(eb);
2651 			btrfs_crit(fs_info,
2652 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2653 				   slot, btrfs_disk_key_objectid(&disk_key),
2654 				   btrfs_disk_key_type(&disk_key),
2655 				   btrfs_disk_key_offset(&disk_key),
2656 				   new_key->objectid, new_key->type,
2657 				   new_key->offset);
2658 			BUG();
2659 		}
2660 	}
2661 	if (slot < btrfs_header_nritems(eb) - 1) {
2662 		btrfs_item_key(eb, &disk_key, slot + 1);
2663 		if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2664 			btrfs_print_leaf(eb);
2665 			btrfs_crit(fs_info,
2666 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2667 				   slot, btrfs_disk_key_objectid(&disk_key),
2668 				   btrfs_disk_key_type(&disk_key),
2669 				   btrfs_disk_key_offset(&disk_key),
2670 				   new_key->objectid, new_key->type,
2671 				   new_key->offset);
2672 			BUG();
2673 		}
2674 	}
2675 
2676 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2677 	btrfs_set_item_key(eb, &disk_key, slot);
2678 	btrfs_mark_buffer_dirty(trans, eb);
2679 	if (slot == 0)
2680 		fixup_low_keys(trans, path, &disk_key, 1);
2681 }
2682 
2683 /*
2684  * Check key order of two sibling extent buffers.
2685  *
2686  * Return true if something is wrong.
2687  * Return false if everything is fine.
2688  *
2689  * Tree-checker only works inside one tree block, thus the following
2690  * corruption can not be detected by tree-checker:
2691  *
2692  * Leaf @left			| Leaf @right
2693  * --------------------------------------------------------------
2694  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2695  *
2696  * Key f6 in leaf @left itself is valid, but not valid when the next
2697  * key in leaf @right is 7.
2698  * This can only be checked at tree block merge time.
2699  * And since tree checker has ensured all key order in each tree block
2700  * is correct, we only need to bother the last key of @left and the first
2701  * key of @right.
2702  */
2703 static bool check_sibling_keys(const struct extent_buffer *left,
2704 			       const struct extent_buffer *right)
2705 {
2706 	struct btrfs_key left_last;
2707 	struct btrfs_key right_first;
2708 	int level = btrfs_header_level(left);
2709 	int nr_left = btrfs_header_nritems(left);
2710 	int nr_right = btrfs_header_nritems(right);
2711 
2712 	/* No key to check in one of the tree blocks */
2713 	if (!nr_left || !nr_right)
2714 		return false;
2715 
2716 	if (level) {
2717 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2718 		btrfs_node_key_to_cpu(right, &right_first, 0);
2719 	} else {
2720 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2721 		btrfs_item_key_to_cpu(right, &right_first, 0);
2722 	}
2723 
2724 	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2725 		btrfs_crit(left->fs_info, "left extent buffer:");
2726 		btrfs_print_tree(left, false);
2727 		btrfs_crit(left->fs_info, "right extent buffer:");
2728 		btrfs_print_tree(right, false);
2729 		btrfs_crit(left->fs_info,
2730 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2731 			   left_last.objectid, left_last.type,
2732 			   left_last.offset, right_first.objectid,
2733 			   right_first.type, right_first.offset);
2734 		return true;
2735 	}
2736 	return false;
2737 }
2738 
2739 /*
2740  * try to push data from one node into the next node left in the
2741  * tree.
2742  *
2743  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2744  * error, and > 0 if there was no room in the left hand block.
2745  */
2746 static int push_node_left(struct btrfs_trans_handle *trans,
2747 			  struct extent_buffer *dst,
2748 			  struct extent_buffer *src, int empty)
2749 {
2750 	struct btrfs_fs_info *fs_info = trans->fs_info;
2751 	int push_items = 0;
2752 	int src_nritems;
2753 	int dst_nritems;
2754 	int ret = 0;
2755 
2756 	src_nritems = btrfs_header_nritems(src);
2757 	dst_nritems = btrfs_header_nritems(dst);
2758 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2759 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2760 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2761 
2762 	if (!empty && src_nritems <= 8)
2763 		return 1;
2764 
2765 	if (push_items <= 0)
2766 		return 1;
2767 
2768 	if (empty) {
2769 		push_items = min(src_nritems, push_items);
2770 		if (push_items < src_nritems) {
2771 			/* leave at least 8 pointers in the node if
2772 			 * we aren't going to empty it
2773 			 */
2774 			if (src_nritems - push_items < 8) {
2775 				if (push_items <= 8)
2776 					return 1;
2777 				push_items -= 8;
2778 			}
2779 		}
2780 	} else
2781 		push_items = min(src_nritems - 8, push_items);
2782 
2783 	/* dst is the left eb, src is the middle eb */
2784 	if (check_sibling_keys(dst, src)) {
2785 		ret = -EUCLEAN;
2786 		btrfs_abort_transaction(trans, ret);
2787 		return ret;
2788 	}
2789 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2790 	if (ret) {
2791 		btrfs_abort_transaction(trans, ret);
2792 		return ret;
2793 	}
2794 	copy_extent_buffer(dst, src,
2795 			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2796 			   btrfs_node_key_ptr_offset(src, 0),
2797 			   push_items * sizeof(struct btrfs_key_ptr));
2798 
2799 	if (push_items < src_nritems) {
2800 		/*
2801 		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2802 		 * don't need to do an explicit tree mod log operation for it.
2803 		 */
2804 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2805 				      btrfs_node_key_ptr_offset(src, push_items),
2806 				      (src_nritems - push_items) *
2807 				      sizeof(struct btrfs_key_ptr));
2808 	}
2809 	btrfs_set_header_nritems(src, src_nritems - push_items);
2810 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2811 	btrfs_mark_buffer_dirty(trans, src);
2812 	btrfs_mark_buffer_dirty(trans, dst);
2813 
2814 	return ret;
2815 }
2816 
2817 /*
2818  * try to push data from one node into the next node right in the
2819  * tree.
2820  *
2821  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2822  * error, and > 0 if there was no room in the right hand block.
2823  *
2824  * this will  only push up to 1/2 the contents of the left node over
2825  */
2826 static int balance_node_right(struct btrfs_trans_handle *trans,
2827 			      struct extent_buffer *dst,
2828 			      struct extent_buffer *src)
2829 {
2830 	struct btrfs_fs_info *fs_info = trans->fs_info;
2831 	int push_items = 0;
2832 	int max_push;
2833 	int src_nritems;
2834 	int dst_nritems;
2835 	int ret = 0;
2836 
2837 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2838 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2839 
2840 	src_nritems = btrfs_header_nritems(src);
2841 	dst_nritems = btrfs_header_nritems(dst);
2842 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2843 	if (push_items <= 0)
2844 		return 1;
2845 
2846 	if (src_nritems < 4)
2847 		return 1;
2848 
2849 	max_push = src_nritems / 2 + 1;
2850 	/* don't try to empty the node */
2851 	if (max_push >= src_nritems)
2852 		return 1;
2853 
2854 	if (max_push < push_items)
2855 		push_items = max_push;
2856 
2857 	/* dst is the right eb, src is the middle eb */
2858 	if (check_sibling_keys(src, dst)) {
2859 		ret = -EUCLEAN;
2860 		btrfs_abort_transaction(trans, ret);
2861 		return ret;
2862 	}
2863 
2864 	/*
2865 	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2866 	 * need to do an explicit tree mod log operation for it.
2867 	 */
2868 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2869 				      btrfs_node_key_ptr_offset(dst, 0),
2870 				      (dst_nritems) *
2871 				      sizeof(struct btrfs_key_ptr));
2872 
2873 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2874 					 push_items);
2875 	if (ret) {
2876 		btrfs_abort_transaction(trans, ret);
2877 		return ret;
2878 	}
2879 	copy_extent_buffer(dst, src,
2880 			   btrfs_node_key_ptr_offset(dst, 0),
2881 			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2882 			   push_items * sizeof(struct btrfs_key_ptr));
2883 
2884 	btrfs_set_header_nritems(src, src_nritems - push_items);
2885 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2886 
2887 	btrfs_mark_buffer_dirty(trans, src);
2888 	btrfs_mark_buffer_dirty(trans, dst);
2889 
2890 	return ret;
2891 }
2892 
2893 /*
2894  * helper function to insert a new root level in the tree.
2895  * A new node is allocated, and a single item is inserted to
2896  * point to the existing root
2897  *
2898  * returns zero on success or < 0 on failure.
2899  */
2900 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2901 			   struct btrfs_root *root,
2902 			   struct btrfs_path *path, int level)
2903 {
2904 	u64 lower_gen;
2905 	struct extent_buffer *lower;
2906 	struct extent_buffer *c;
2907 	struct extent_buffer *old;
2908 	struct btrfs_disk_key lower_key;
2909 	int ret;
2910 
2911 	BUG_ON(path->nodes[level]);
2912 	BUG_ON(path->nodes[level-1] != root->node);
2913 
2914 	lower = path->nodes[level-1];
2915 	if (level == 1)
2916 		btrfs_item_key(lower, &lower_key, 0);
2917 	else
2918 		btrfs_node_key(lower, &lower_key, 0);
2919 
2920 	c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
2921 				   &lower_key, level, root->node->start, 0,
2922 				   0, BTRFS_NESTING_NEW_ROOT);
2923 	if (IS_ERR(c))
2924 		return PTR_ERR(c);
2925 
2926 	root_add_used_bytes(root);
2927 
2928 	btrfs_set_header_nritems(c, 1);
2929 	btrfs_set_node_key(c, &lower_key, 0);
2930 	btrfs_set_node_blockptr(c, 0, lower->start);
2931 	lower_gen = btrfs_header_generation(lower);
2932 	WARN_ON(lower_gen != trans->transid);
2933 
2934 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2935 
2936 	btrfs_mark_buffer_dirty(trans, c);
2937 
2938 	old = root->node;
2939 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2940 	if (ret < 0) {
2941 		int ret2;
2942 
2943 		ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2944 		if (ret2 < 0)
2945 			btrfs_abort_transaction(trans, ret2);
2946 		btrfs_tree_unlock(c);
2947 		free_extent_buffer(c);
2948 		return ret;
2949 	}
2950 	rcu_assign_pointer(root->node, c);
2951 
2952 	/* the super has an extra ref to root->node */
2953 	free_extent_buffer(old);
2954 
2955 	add_root_to_dirty_list(root);
2956 	atomic_inc(&c->refs);
2957 	path->nodes[level] = c;
2958 	path->locks[level] = BTRFS_WRITE_LOCK;
2959 	path->slots[level] = 0;
2960 	return 0;
2961 }
2962 
2963 /*
2964  * worker function to insert a single pointer in a node.
2965  * the node should have enough room for the pointer already
2966  *
2967  * slot and level indicate where you want the key to go, and
2968  * blocknr is the block the key points to.
2969  */
2970 static int insert_ptr(struct btrfs_trans_handle *trans,
2971 		      const struct btrfs_path *path,
2972 		      const struct btrfs_disk_key *key, u64 bytenr,
2973 		      int slot, int level)
2974 {
2975 	struct extent_buffer *lower;
2976 	int nritems;
2977 	int ret;
2978 
2979 	BUG_ON(!path->nodes[level]);
2980 	btrfs_assert_tree_write_locked(path->nodes[level]);
2981 	lower = path->nodes[level];
2982 	nritems = btrfs_header_nritems(lower);
2983 	BUG_ON(slot > nritems);
2984 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2985 	if (slot != nritems) {
2986 		if (level) {
2987 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2988 					slot, nritems - slot);
2989 			if (ret < 0) {
2990 				btrfs_abort_transaction(trans, ret);
2991 				return ret;
2992 			}
2993 		}
2994 		memmove_extent_buffer(lower,
2995 			      btrfs_node_key_ptr_offset(lower, slot + 1),
2996 			      btrfs_node_key_ptr_offset(lower, slot),
2997 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2998 	}
2999 	if (level) {
3000 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
3001 						    BTRFS_MOD_LOG_KEY_ADD);
3002 		if (ret < 0) {
3003 			btrfs_abort_transaction(trans, ret);
3004 			return ret;
3005 		}
3006 	}
3007 	btrfs_set_node_key(lower, key, slot);
3008 	btrfs_set_node_blockptr(lower, slot, bytenr);
3009 	WARN_ON(trans->transid == 0);
3010 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3011 	btrfs_set_header_nritems(lower, nritems + 1);
3012 	btrfs_mark_buffer_dirty(trans, lower);
3013 
3014 	return 0;
3015 }
3016 
3017 /*
3018  * split the node at the specified level in path in two.
3019  * The path is corrected to point to the appropriate node after the split
3020  *
3021  * Before splitting this tries to make some room in the node by pushing
3022  * left and right, if either one works, it returns right away.
3023  *
3024  * returns 0 on success and < 0 on failure
3025  */
3026 static noinline int split_node(struct btrfs_trans_handle *trans,
3027 			       struct btrfs_root *root,
3028 			       struct btrfs_path *path, int level)
3029 {
3030 	struct btrfs_fs_info *fs_info = root->fs_info;
3031 	struct extent_buffer *c;
3032 	struct extent_buffer *split;
3033 	struct btrfs_disk_key disk_key;
3034 	int mid;
3035 	int ret;
3036 	u32 c_nritems;
3037 
3038 	c = path->nodes[level];
3039 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3040 	if (c == root->node) {
3041 		/*
3042 		 * trying to split the root, lets make a new one
3043 		 *
3044 		 * tree mod log: We don't log_removal old root in
3045 		 * insert_new_root, because that root buffer will be kept as a
3046 		 * normal node. We are going to log removal of half of the
3047 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3048 		 * holding a tree lock on the buffer, which is why we cannot
3049 		 * race with other tree_mod_log users.
3050 		 */
3051 		ret = insert_new_root(trans, root, path, level + 1);
3052 		if (ret)
3053 			return ret;
3054 	} else {
3055 		ret = push_nodes_for_insert(trans, root, path, level);
3056 		c = path->nodes[level];
3057 		if (!ret && btrfs_header_nritems(c) <
3058 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3059 			return 0;
3060 		if (ret < 0)
3061 			return ret;
3062 	}
3063 
3064 	c_nritems = btrfs_header_nritems(c);
3065 	mid = (c_nritems + 1) / 2;
3066 	btrfs_node_key(c, &disk_key, mid);
3067 
3068 	split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3069 				       &disk_key, level, c->start, 0,
3070 				       0, BTRFS_NESTING_SPLIT);
3071 	if (IS_ERR(split))
3072 		return PTR_ERR(split);
3073 
3074 	root_add_used_bytes(root);
3075 	ASSERT(btrfs_header_level(c) == level);
3076 
3077 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3078 	if (ret) {
3079 		btrfs_tree_unlock(split);
3080 		free_extent_buffer(split);
3081 		btrfs_abort_transaction(trans, ret);
3082 		return ret;
3083 	}
3084 	copy_extent_buffer(split, c,
3085 			   btrfs_node_key_ptr_offset(split, 0),
3086 			   btrfs_node_key_ptr_offset(c, mid),
3087 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3088 	btrfs_set_header_nritems(split, c_nritems - mid);
3089 	btrfs_set_header_nritems(c, mid);
3090 
3091 	btrfs_mark_buffer_dirty(trans, c);
3092 	btrfs_mark_buffer_dirty(trans, split);
3093 
3094 	ret = insert_ptr(trans, path, &disk_key, split->start,
3095 			 path->slots[level + 1] + 1, level + 1);
3096 	if (ret < 0) {
3097 		btrfs_tree_unlock(split);
3098 		free_extent_buffer(split);
3099 		return ret;
3100 	}
3101 
3102 	if (path->slots[level] >= mid) {
3103 		path->slots[level] -= mid;
3104 		btrfs_tree_unlock(c);
3105 		free_extent_buffer(c);
3106 		path->nodes[level] = split;
3107 		path->slots[level + 1] += 1;
3108 	} else {
3109 		btrfs_tree_unlock(split);
3110 		free_extent_buffer(split);
3111 	}
3112 	return 0;
3113 }
3114 
3115 /*
3116  * how many bytes are required to store the items in a leaf.  start
3117  * and nr indicate which items in the leaf to check.  This totals up the
3118  * space used both by the item structs and the item data
3119  */
3120 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3121 {
3122 	int data_len;
3123 	int nritems = btrfs_header_nritems(l);
3124 	int end = min(nritems, start + nr) - 1;
3125 
3126 	if (!nr)
3127 		return 0;
3128 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3129 	data_len = data_len - btrfs_item_offset(l, end);
3130 	data_len += sizeof(struct btrfs_item) * nr;
3131 	WARN_ON(data_len < 0);
3132 	return data_len;
3133 }
3134 
3135 /*
3136  * The space between the end of the leaf items and
3137  * the start of the leaf data.  IOW, how much room
3138  * the leaf has left for both items and data
3139  */
3140 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3141 {
3142 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3143 	int nritems = btrfs_header_nritems(leaf);
3144 	int ret;
3145 
3146 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3147 	if (ret < 0) {
3148 		btrfs_crit(fs_info,
3149 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3150 			   ret,
3151 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3152 			   leaf_space_used(leaf, 0, nritems), nritems);
3153 	}
3154 	return ret;
3155 }
3156 
3157 /*
3158  * min slot controls the lowest index we're willing to push to the
3159  * right.  We'll push up to and including min_slot, but no lower
3160  */
3161 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3162 				      struct btrfs_path *path,
3163 				      int data_size, int empty,
3164 				      struct extent_buffer *right,
3165 				      int free_space, u32 left_nritems,
3166 				      u32 min_slot)
3167 {
3168 	struct btrfs_fs_info *fs_info = right->fs_info;
3169 	struct extent_buffer *left = path->nodes[0];
3170 	struct extent_buffer *upper = path->nodes[1];
3171 	struct btrfs_map_token token;
3172 	struct btrfs_disk_key disk_key;
3173 	int slot;
3174 	u32 i;
3175 	int push_space = 0;
3176 	int push_items = 0;
3177 	u32 nr;
3178 	u32 right_nritems;
3179 	u32 data_end;
3180 	u32 this_item_size;
3181 
3182 	if (empty)
3183 		nr = 0;
3184 	else
3185 		nr = max_t(u32, 1, min_slot);
3186 
3187 	if (path->slots[0] >= left_nritems)
3188 		push_space += data_size;
3189 
3190 	slot = path->slots[1];
3191 	i = left_nritems - 1;
3192 	while (i >= nr) {
3193 		if (!empty && push_items > 0) {
3194 			if (path->slots[0] > i)
3195 				break;
3196 			if (path->slots[0] == i) {
3197 				int space = btrfs_leaf_free_space(left);
3198 
3199 				if (space + push_space * 2 > free_space)
3200 					break;
3201 			}
3202 		}
3203 
3204 		if (path->slots[0] == i)
3205 			push_space += data_size;
3206 
3207 		this_item_size = btrfs_item_size(left, i);
3208 		if (this_item_size + sizeof(struct btrfs_item) +
3209 		    push_space > free_space)
3210 			break;
3211 
3212 		push_items++;
3213 		push_space += this_item_size + sizeof(struct btrfs_item);
3214 		if (i == 0)
3215 			break;
3216 		i--;
3217 	}
3218 
3219 	if (push_items == 0)
3220 		goto out_unlock;
3221 
3222 	WARN_ON(!empty && push_items == left_nritems);
3223 
3224 	/* push left to right */
3225 	right_nritems = btrfs_header_nritems(right);
3226 
3227 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3228 	push_space -= leaf_data_end(left);
3229 
3230 	/* make room in the right data area */
3231 	data_end = leaf_data_end(right);
3232 	memmove_leaf_data(right, data_end - push_space, data_end,
3233 			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3234 
3235 	/* copy from the left data area */
3236 	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3237 		       leaf_data_end(left), push_space);
3238 
3239 	memmove_leaf_items(right, push_items, 0, right_nritems);
3240 
3241 	/* copy the items from left to right */
3242 	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3243 
3244 	/* update the item pointers */
3245 	btrfs_init_map_token(&token, right);
3246 	right_nritems += push_items;
3247 	btrfs_set_header_nritems(right, right_nritems);
3248 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3249 	for (i = 0; i < right_nritems; i++) {
3250 		push_space -= btrfs_token_item_size(&token, i);
3251 		btrfs_set_token_item_offset(&token, i, push_space);
3252 	}
3253 
3254 	left_nritems -= push_items;
3255 	btrfs_set_header_nritems(left, left_nritems);
3256 
3257 	if (left_nritems)
3258 		btrfs_mark_buffer_dirty(trans, left);
3259 	else
3260 		btrfs_clear_buffer_dirty(trans, left);
3261 
3262 	btrfs_mark_buffer_dirty(trans, right);
3263 
3264 	btrfs_item_key(right, &disk_key, 0);
3265 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3266 	btrfs_mark_buffer_dirty(trans, upper);
3267 
3268 	/* then fixup the leaf pointer in the path */
3269 	if (path->slots[0] >= left_nritems) {
3270 		path->slots[0] -= left_nritems;
3271 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3272 			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3273 		btrfs_tree_unlock(path->nodes[0]);
3274 		free_extent_buffer(path->nodes[0]);
3275 		path->nodes[0] = right;
3276 		path->slots[1] += 1;
3277 	} else {
3278 		btrfs_tree_unlock(right);
3279 		free_extent_buffer(right);
3280 	}
3281 	return 0;
3282 
3283 out_unlock:
3284 	btrfs_tree_unlock(right);
3285 	free_extent_buffer(right);
3286 	return 1;
3287 }
3288 
3289 /*
3290  * push some data in the path leaf to the right, trying to free up at
3291  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3292  *
3293  * returns 1 if the push failed because the other node didn't have enough
3294  * room, 0 if everything worked out and < 0 if there were major errors.
3295  *
3296  * this will push starting from min_slot to the end of the leaf.  It won't
3297  * push any slot lower than min_slot
3298  */
3299 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3300 			   *root, struct btrfs_path *path,
3301 			   int min_data_size, int data_size,
3302 			   int empty, u32 min_slot)
3303 {
3304 	struct extent_buffer *left = path->nodes[0];
3305 	struct extent_buffer *right;
3306 	struct extent_buffer *upper;
3307 	int slot;
3308 	int free_space;
3309 	u32 left_nritems;
3310 	int ret;
3311 
3312 	if (!path->nodes[1])
3313 		return 1;
3314 
3315 	slot = path->slots[1];
3316 	upper = path->nodes[1];
3317 	if (slot >= btrfs_header_nritems(upper) - 1)
3318 		return 1;
3319 
3320 	btrfs_assert_tree_write_locked(path->nodes[1]);
3321 
3322 	right = btrfs_read_node_slot(upper, slot + 1);
3323 	if (IS_ERR(right))
3324 		return PTR_ERR(right);
3325 
3326 	btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT);
3327 
3328 	free_space = btrfs_leaf_free_space(right);
3329 	if (free_space < data_size)
3330 		goto out_unlock;
3331 
3332 	ret = btrfs_cow_block(trans, root, right, upper,
3333 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3334 	if (ret)
3335 		goto out_unlock;
3336 
3337 	left_nritems = btrfs_header_nritems(left);
3338 	if (left_nritems == 0)
3339 		goto out_unlock;
3340 
3341 	if (check_sibling_keys(left, right)) {
3342 		ret = -EUCLEAN;
3343 		btrfs_abort_transaction(trans, ret);
3344 		btrfs_tree_unlock(right);
3345 		free_extent_buffer(right);
3346 		return ret;
3347 	}
3348 	if (path->slots[0] == left_nritems && !empty) {
3349 		/* Key greater than all keys in the leaf, right neighbor has
3350 		 * enough room for it and we're not emptying our leaf to delete
3351 		 * it, therefore use right neighbor to insert the new item and
3352 		 * no need to touch/dirty our left leaf. */
3353 		btrfs_tree_unlock(left);
3354 		free_extent_buffer(left);
3355 		path->nodes[0] = right;
3356 		path->slots[0] = 0;
3357 		path->slots[1]++;
3358 		return 0;
3359 	}
3360 
3361 	return __push_leaf_right(trans, path, min_data_size, empty, right,
3362 				 free_space, left_nritems, min_slot);
3363 out_unlock:
3364 	btrfs_tree_unlock(right);
3365 	free_extent_buffer(right);
3366 	return 1;
3367 }
3368 
3369 /*
3370  * push some data in the path leaf to the left, trying to free up at
3371  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3372  *
3373  * max_slot can put a limit on how far into the leaf we'll push items.  The
3374  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3375  * items
3376  */
3377 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3378 				     struct btrfs_path *path, int data_size,
3379 				     int empty, struct extent_buffer *left,
3380 				     int free_space, u32 right_nritems,
3381 				     u32 max_slot)
3382 {
3383 	struct btrfs_fs_info *fs_info = left->fs_info;
3384 	struct btrfs_disk_key disk_key;
3385 	struct extent_buffer *right = path->nodes[0];
3386 	int i;
3387 	int push_space = 0;
3388 	int push_items = 0;
3389 	u32 old_left_nritems;
3390 	u32 nr;
3391 	int ret = 0;
3392 	u32 this_item_size;
3393 	u32 old_left_item_size;
3394 	struct btrfs_map_token token;
3395 
3396 	if (empty)
3397 		nr = min(right_nritems, max_slot);
3398 	else
3399 		nr = min(right_nritems - 1, max_slot);
3400 
3401 	for (i = 0; i < nr; i++) {
3402 		if (!empty && push_items > 0) {
3403 			if (path->slots[0] < i)
3404 				break;
3405 			if (path->slots[0] == i) {
3406 				int space = btrfs_leaf_free_space(right);
3407 
3408 				if (space + push_space * 2 > free_space)
3409 					break;
3410 			}
3411 		}
3412 
3413 		if (path->slots[0] == i)
3414 			push_space += data_size;
3415 
3416 		this_item_size = btrfs_item_size(right, i);
3417 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3418 		    free_space)
3419 			break;
3420 
3421 		push_items++;
3422 		push_space += this_item_size + sizeof(struct btrfs_item);
3423 	}
3424 
3425 	if (push_items == 0) {
3426 		ret = 1;
3427 		goto out;
3428 	}
3429 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3430 
3431 	/* push data from right to left */
3432 	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3433 
3434 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3435 		     btrfs_item_offset(right, push_items - 1);
3436 
3437 	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3438 		       btrfs_item_offset(right, push_items - 1), push_space);
3439 	old_left_nritems = btrfs_header_nritems(left);
3440 	BUG_ON(old_left_nritems <= 0);
3441 
3442 	btrfs_init_map_token(&token, left);
3443 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3444 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3445 		u32 ioff;
3446 
3447 		ioff = btrfs_token_item_offset(&token, i);
3448 		btrfs_set_token_item_offset(&token, i,
3449 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3450 	}
3451 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3452 
3453 	/* fixup right node */
3454 	if (push_items > right_nritems)
3455 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3456 		       right_nritems);
3457 
3458 	if (push_items < right_nritems) {
3459 		push_space = btrfs_item_offset(right, push_items - 1) -
3460 						  leaf_data_end(right);
3461 		memmove_leaf_data(right,
3462 				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3463 				  leaf_data_end(right), push_space);
3464 
3465 		memmove_leaf_items(right, 0, push_items,
3466 				   btrfs_header_nritems(right) - push_items);
3467 	}
3468 
3469 	btrfs_init_map_token(&token, right);
3470 	right_nritems -= push_items;
3471 	btrfs_set_header_nritems(right, right_nritems);
3472 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3473 	for (i = 0; i < right_nritems; i++) {
3474 		push_space = push_space - btrfs_token_item_size(&token, i);
3475 		btrfs_set_token_item_offset(&token, i, push_space);
3476 	}
3477 
3478 	btrfs_mark_buffer_dirty(trans, left);
3479 	if (right_nritems)
3480 		btrfs_mark_buffer_dirty(trans, right);
3481 	else
3482 		btrfs_clear_buffer_dirty(trans, right);
3483 
3484 	btrfs_item_key(right, &disk_key, 0);
3485 	fixup_low_keys(trans, path, &disk_key, 1);
3486 
3487 	/* then fixup the leaf pointer in the path */
3488 	if (path->slots[0] < push_items) {
3489 		path->slots[0] += old_left_nritems;
3490 		btrfs_tree_unlock(path->nodes[0]);
3491 		free_extent_buffer(path->nodes[0]);
3492 		path->nodes[0] = left;
3493 		path->slots[1] -= 1;
3494 	} else {
3495 		btrfs_tree_unlock(left);
3496 		free_extent_buffer(left);
3497 		path->slots[0] -= push_items;
3498 	}
3499 	BUG_ON(path->slots[0] < 0);
3500 	return ret;
3501 out:
3502 	btrfs_tree_unlock(left);
3503 	free_extent_buffer(left);
3504 	return ret;
3505 }
3506 
3507 /*
3508  * push some data in the path leaf to the left, trying to free up at
3509  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3510  *
3511  * max_slot can put a limit on how far into the leaf we'll push items.  The
3512  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3513  * items
3514  */
3515 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3516 			  *root, struct btrfs_path *path, int min_data_size,
3517 			  int data_size, int empty, u32 max_slot)
3518 {
3519 	struct extent_buffer *right = path->nodes[0];
3520 	struct extent_buffer *left;
3521 	int slot;
3522 	int free_space;
3523 	u32 right_nritems;
3524 	int ret = 0;
3525 
3526 	slot = path->slots[1];
3527 	if (slot == 0)
3528 		return 1;
3529 	if (!path->nodes[1])
3530 		return 1;
3531 
3532 	right_nritems = btrfs_header_nritems(right);
3533 	if (right_nritems == 0)
3534 		return 1;
3535 
3536 	btrfs_assert_tree_write_locked(path->nodes[1]);
3537 
3538 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3539 	if (IS_ERR(left))
3540 		return PTR_ERR(left);
3541 
3542 	btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT);
3543 
3544 	free_space = btrfs_leaf_free_space(left);
3545 	if (free_space < data_size) {
3546 		ret = 1;
3547 		goto out;
3548 	}
3549 
3550 	ret = btrfs_cow_block(trans, root, left,
3551 			      path->nodes[1], slot - 1, &left,
3552 			      BTRFS_NESTING_LEFT_COW);
3553 	if (ret) {
3554 		/* we hit -ENOSPC, but it isn't fatal here */
3555 		if (ret == -ENOSPC)
3556 			ret = 1;
3557 		goto out;
3558 	}
3559 
3560 	if (check_sibling_keys(left, right)) {
3561 		ret = -EUCLEAN;
3562 		btrfs_abort_transaction(trans, ret);
3563 		goto out;
3564 	}
3565 	return __push_leaf_left(trans, path, min_data_size, empty, left,
3566 				free_space, right_nritems, max_slot);
3567 out:
3568 	btrfs_tree_unlock(left);
3569 	free_extent_buffer(left);
3570 	return ret;
3571 }
3572 
3573 /*
3574  * split the path's leaf in two, making sure there is at least data_size
3575  * available for the resulting leaf level of the path.
3576  */
3577 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3578 				   struct btrfs_path *path,
3579 				   struct extent_buffer *l,
3580 				   struct extent_buffer *right,
3581 				   int slot, int mid, int nritems)
3582 {
3583 	struct btrfs_fs_info *fs_info = trans->fs_info;
3584 	int data_copy_size;
3585 	int rt_data_off;
3586 	int i;
3587 	int ret;
3588 	struct btrfs_disk_key disk_key;
3589 	struct btrfs_map_token token;
3590 
3591 	nritems = nritems - mid;
3592 	btrfs_set_header_nritems(right, nritems);
3593 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3594 
3595 	copy_leaf_items(right, l, 0, mid, nritems);
3596 
3597 	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3598 		       leaf_data_end(l), data_copy_size);
3599 
3600 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3601 
3602 	btrfs_init_map_token(&token, right);
3603 	for (i = 0; i < nritems; i++) {
3604 		u32 ioff;
3605 
3606 		ioff = btrfs_token_item_offset(&token, i);
3607 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3608 	}
3609 
3610 	btrfs_set_header_nritems(l, mid);
3611 	btrfs_item_key(right, &disk_key, 0);
3612 	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3613 	if (ret < 0)
3614 		return ret;
3615 
3616 	btrfs_mark_buffer_dirty(trans, right);
3617 	btrfs_mark_buffer_dirty(trans, l);
3618 	BUG_ON(path->slots[0] != slot);
3619 
3620 	if (mid <= slot) {
3621 		btrfs_tree_unlock(path->nodes[0]);
3622 		free_extent_buffer(path->nodes[0]);
3623 		path->nodes[0] = right;
3624 		path->slots[0] -= mid;
3625 		path->slots[1] += 1;
3626 	} else {
3627 		btrfs_tree_unlock(right);
3628 		free_extent_buffer(right);
3629 	}
3630 
3631 	BUG_ON(path->slots[0] < 0);
3632 
3633 	return 0;
3634 }
3635 
3636 /*
3637  * double splits happen when we need to insert a big item in the middle
3638  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3639  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3640  *          A                 B                 C
3641  *
3642  * We avoid this by trying to push the items on either side of our target
3643  * into the adjacent leaves.  If all goes well we can avoid the double split
3644  * completely.
3645  */
3646 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3647 					  struct btrfs_root *root,
3648 					  struct btrfs_path *path,
3649 					  int data_size)
3650 {
3651 	int ret;
3652 	int progress = 0;
3653 	int slot;
3654 	u32 nritems;
3655 	int space_needed = data_size;
3656 
3657 	slot = path->slots[0];
3658 	if (slot < btrfs_header_nritems(path->nodes[0]))
3659 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3660 
3661 	/*
3662 	 * try to push all the items after our slot into the
3663 	 * right leaf
3664 	 */
3665 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3666 	if (ret < 0)
3667 		return ret;
3668 
3669 	if (ret == 0)
3670 		progress++;
3671 
3672 	nritems = btrfs_header_nritems(path->nodes[0]);
3673 	/*
3674 	 * our goal is to get our slot at the start or end of a leaf.  If
3675 	 * we've done so we're done
3676 	 */
3677 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3678 		return 0;
3679 
3680 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3681 		return 0;
3682 
3683 	/* try to push all the items before our slot into the next leaf */
3684 	slot = path->slots[0];
3685 	space_needed = data_size;
3686 	if (slot > 0)
3687 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3688 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3689 	if (ret < 0)
3690 		return ret;
3691 
3692 	if (ret == 0)
3693 		progress++;
3694 
3695 	if (progress)
3696 		return 0;
3697 	return 1;
3698 }
3699 
3700 /*
3701  * split the path's leaf in two, making sure there is at least data_size
3702  * available for the resulting leaf level of the path.
3703  *
3704  * returns 0 if all went well and < 0 on failure.
3705  */
3706 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3707 			       struct btrfs_root *root,
3708 			       const struct btrfs_key *ins_key,
3709 			       struct btrfs_path *path, int data_size,
3710 			       int extend)
3711 {
3712 	struct btrfs_disk_key disk_key;
3713 	struct extent_buffer *l;
3714 	u32 nritems;
3715 	int mid;
3716 	int slot;
3717 	struct extent_buffer *right;
3718 	struct btrfs_fs_info *fs_info = root->fs_info;
3719 	int ret = 0;
3720 	int wret;
3721 	int split;
3722 	int num_doubles = 0;
3723 	int tried_avoid_double = 0;
3724 
3725 	l = path->nodes[0];
3726 	slot = path->slots[0];
3727 	if (extend && data_size + btrfs_item_size(l, slot) +
3728 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3729 		return -EOVERFLOW;
3730 
3731 	/* first try to make some room by pushing left and right */
3732 	if (data_size && path->nodes[1]) {
3733 		int space_needed = data_size;
3734 
3735 		if (slot < btrfs_header_nritems(l))
3736 			space_needed -= btrfs_leaf_free_space(l);
3737 
3738 		wret = push_leaf_right(trans, root, path, space_needed,
3739 				       space_needed, 0, 0);
3740 		if (wret < 0)
3741 			return wret;
3742 		if (wret) {
3743 			space_needed = data_size;
3744 			if (slot > 0)
3745 				space_needed -= btrfs_leaf_free_space(l);
3746 			wret = push_leaf_left(trans, root, path, space_needed,
3747 					      space_needed, 0, (u32)-1);
3748 			if (wret < 0)
3749 				return wret;
3750 		}
3751 		l = path->nodes[0];
3752 
3753 		/* did the pushes work? */
3754 		if (btrfs_leaf_free_space(l) >= data_size)
3755 			return 0;
3756 	}
3757 
3758 	if (!path->nodes[1]) {
3759 		ret = insert_new_root(trans, root, path, 1);
3760 		if (ret)
3761 			return ret;
3762 	}
3763 again:
3764 	split = 1;
3765 	l = path->nodes[0];
3766 	slot = path->slots[0];
3767 	nritems = btrfs_header_nritems(l);
3768 	mid = (nritems + 1) / 2;
3769 
3770 	if (mid <= slot) {
3771 		if (nritems == 1 ||
3772 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3773 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3774 			if (slot >= nritems) {
3775 				split = 0;
3776 			} else {
3777 				mid = slot;
3778 				if (mid != nritems &&
3779 				    leaf_space_used(l, mid, nritems - mid) +
3780 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3781 					if (data_size && !tried_avoid_double)
3782 						goto push_for_double;
3783 					split = 2;
3784 				}
3785 			}
3786 		}
3787 	} else {
3788 		if (leaf_space_used(l, 0, mid) + data_size >
3789 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3790 			if (!extend && data_size && slot == 0) {
3791 				split = 0;
3792 			} else if ((extend || !data_size) && slot == 0) {
3793 				mid = 1;
3794 			} else {
3795 				mid = slot;
3796 				if (mid != nritems &&
3797 				    leaf_space_used(l, mid, nritems - mid) +
3798 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3799 					if (data_size && !tried_avoid_double)
3800 						goto push_for_double;
3801 					split = 2;
3802 				}
3803 			}
3804 		}
3805 	}
3806 
3807 	if (split == 0)
3808 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3809 	else
3810 		btrfs_item_key(l, &disk_key, mid);
3811 
3812 	/*
3813 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3814 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3815 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3816 	 * out.  In the future we could add a
3817 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3818 	 * use BTRFS_NESTING_NEW_ROOT.
3819 	 */
3820 	right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root),
3821 				       &disk_key, 0, l->start, 0, 0,
3822 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3823 				       BTRFS_NESTING_SPLIT);
3824 	if (IS_ERR(right))
3825 		return PTR_ERR(right);
3826 
3827 	root_add_used_bytes(root);
3828 
3829 	if (split == 0) {
3830 		if (mid <= slot) {
3831 			btrfs_set_header_nritems(right, 0);
3832 			ret = insert_ptr(trans, path, &disk_key,
3833 					 right->start, path->slots[1] + 1, 1);
3834 			if (ret < 0) {
3835 				btrfs_tree_unlock(right);
3836 				free_extent_buffer(right);
3837 				return ret;
3838 			}
3839 			btrfs_tree_unlock(path->nodes[0]);
3840 			free_extent_buffer(path->nodes[0]);
3841 			path->nodes[0] = right;
3842 			path->slots[0] = 0;
3843 			path->slots[1] += 1;
3844 		} else {
3845 			btrfs_set_header_nritems(right, 0);
3846 			ret = insert_ptr(trans, path, &disk_key,
3847 					 right->start, path->slots[1], 1);
3848 			if (ret < 0) {
3849 				btrfs_tree_unlock(right);
3850 				free_extent_buffer(right);
3851 				return ret;
3852 			}
3853 			btrfs_tree_unlock(path->nodes[0]);
3854 			free_extent_buffer(path->nodes[0]);
3855 			path->nodes[0] = right;
3856 			path->slots[0] = 0;
3857 			if (path->slots[1] == 0)
3858 				fixup_low_keys(trans, path, &disk_key, 1);
3859 		}
3860 		/*
3861 		 * We create a new leaf 'right' for the required ins_len and
3862 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3863 		 * the content of ins_len to 'right'.
3864 		 */
3865 		return ret;
3866 	}
3867 
3868 	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3869 	if (ret < 0) {
3870 		btrfs_tree_unlock(right);
3871 		free_extent_buffer(right);
3872 		return ret;
3873 	}
3874 
3875 	if (split == 2) {
3876 		BUG_ON(num_doubles != 0);
3877 		num_doubles++;
3878 		goto again;
3879 	}
3880 
3881 	return 0;
3882 
3883 push_for_double:
3884 	push_for_double_split(trans, root, path, data_size);
3885 	tried_avoid_double = 1;
3886 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3887 		return 0;
3888 	goto again;
3889 }
3890 
3891 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3892 					 struct btrfs_root *root,
3893 					 struct btrfs_path *path, int ins_len)
3894 {
3895 	struct btrfs_key key;
3896 	struct extent_buffer *leaf;
3897 	struct btrfs_file_extent_item *fi;
3898 	u64 extent_len = 0;
3899 	u32 item_size;
3900 	int ret;
3901 
3902 	leaf = path->nodes[0];
3903 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3904 
3905 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3906 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3907 
3908 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3909 		return 0;
3910 
3911 	item_size = btrfs_item_size(leaf, path->slots[0]);
3912 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3913 		fi = btrfs_item_ptr(leaf, path->slots[0],
3914 				    struct btrfs_file_extent_item);
3915 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3916 	}
3917 	btrfs_release_path(path);
3918 
3919 	path->keep_locks = 1;
3920 	path->search_for_split = 1;
3921 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3922 	path->search_for_split = 0;
3923 	if (ret > 0)
3924 		ret = -EAGAIN;
3925 	if (ret < 0)
3926 		goto err;
3927 
3928 	ret = -EAGAIN;
3929 	leaf = path->nodes[0];
3930 	/* if our item isn't there, return now */
3931 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3932 		goto err;
3933 
3934 	/* the leaf has  changed, it now has room.  return now */
3935 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3936 		goto err;
3937 
3938 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3939 		fi = btrfs_item_ptr(leaf, path->slots[0],
3940 				    struct btrfs_file_extent_item);
3941 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3942 			goto err;
3943 	}
3944 
3945 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3946 	if (ret)
3947 		goto err;
3948 
3949 	path->keep_locks = 0;
3950 	btrfs_unlock_up_safe(path, 1);
3951 	return 0;
3952 err:
3953 	path->keep_locks = 0;
3954 	return ret;
3955 }
3956 
3957 static noinline int split_item(struct btrfs_trans_handle *trans,
3958 			       struct btrfs_path *path,
3959 			       const struct btrfs_key *new_key,
3960 			       unsigned long split_offset)
3961 {
3962 	struct extent_buffer *leaf;
3963 	int orig_slot, slot;
3964 	char *buf;
3965 	u32 nritems;
3966 	u32 item_size;
3967 	u32 orig_offset;
3968 	struct btrfs_disk_key disk_key;
3969 
3970 	leaf = path->nodes[0];
3971 	/*
3972 	 * Shouldn't happen because the caller must have previously called
3973 	 * setup_leaf_for_split() to make room for the new item in the leaf.
3974 	 */
3975 	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3976 		return -ENOSPC;
3977 
3978 	orig_slot = path->slots[0];
3979 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3980 	item_size = btrfs_item_size(leaf, path->slots[0]);
3981 
3982 	buf = kmalloc(item_size, GFP_NOFS);
3983 	if (!buf)
3984 		return -ENOMEM;
3985 
3986 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3987 			    path->slots[0]), item_size);
3988 
3989 	slot = path->slots[0] + 1;
3990 	nritems = btrfs_header_nritems(leaf);
3991 	if (slot != nritems) {
3992 		/* shift the items */
3993 		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3994 	}
3995 
3996 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3997 	btrfs_set_item_key(leaf, &disk_key, slot);
3998 
3999 	btrfs_set_item_offset(leaf, slot, orig_offset);
4000 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
4001 
4002 	btrfs_set_item_offset(leaf, orig_slot,
4003 				 orig_offset + item_size - split_offset);
4004 	btrfs_set_item_size(leaf, orig_slot, split_offset);
4005 
4006 	btrfs_set_header_nritems(leaf, nritems + 1);
4007 
4008 	/* write the data for the start of the original item */
4009 	write_extent_buffer(leaf, buf,
4010 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4011 			    split_offset);
4012 
4013 	/* write the data for the new item */
4014 	write_extent_buffer(leaf, buf + split_offset,
4015 			    btrfs_item_ptr_offset(leaf, slot),
4016 			    item_size - split_offset);
4017 	btrfs_mark_buffer_dirty(trans, leaf);
4018 
4019 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4020 	kfree(buf);
4021 	return 0;
4022 }
4023 
4024 /*
4025  * This function splits a single item into two items,
4026  * giving 'new_key' to the new item and splitting the
4027  * old one at split_offset (from the start of the item).
4028  *
4029  * The path may be released by this operation.  After
4030  * the split, the path is pointing to the old item.  The
4031  * new item is going to be in the same node as the old one.
4032  *
4033  * Note, the item being split must be smaller enough to live alone on
4034  * a tree block with room for one extra struct btrfs_item
4035  *
4036  * This allows us to split the item in place, keeping a lock on the
4037  * leaf the entire time.
4038  */
4039 int btrfs_split_item(struct btrfs_trans_handle *trans,
4040 		     struct btrfs_root *root,
4041 		     struct btrfs_path *path,
4042 		     const struct btrfs_key *new_key,
4043 		     unsigned long split_offset)
4044 {
4045 	int ret;
4046 	ret = setup_leaf_for_split(trans, root, path,
4047 				   sizeof(struct btrfs_item));
4048 	if (ret)
4049 		return ret;
4050 
4051 	ret = split_item(trans, path, new_key, split_offset);
4052 	return ret;
4053 }
4054 
4055 /*
4056  * make the item pointed to by the path smaller.  new_size indicates
4057  * how small to make it, and from_end tells us if we just chop bytes
4058  * off the end of the item or if we shift the item to chop bytes off
4059  * the front.
4060  */
4061 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4062 			 const struct btrfs_path *path, u32 new_size, int from_end)
4063 {
4064 	int slot;
4065 	struct extent_buffer *leaf;
4066 	u32 nritems;
4067 	unsigned int data_end;
4068 	unsigned int old_data_start;
4069 	unsigned int old_size;
4070 	unsigned int size_diff;
4071 	int i;
4072 	struct btrfs_map_token token;
4073 
4074 	leaf = path->nodes[0];
4075 	slot = path->slots[0];
4076 
4077 	old_size = btrfs_item_size(leaf, slot);
4078 	if (old_size == new_size)
4079 		return;
4080 
4081 	nritems = btrfs_header_nritems(leaf);
4082 	data_end = leaf_data_end(leaf);
4083 
4084 	old_data_start = btrfs_item_offset(leaf, slot);
4085 
4086 	size_diff = old_size - new_size;
4087 
4088 	BUG_ON(slot < 0);
4089 	BUG_ON(slot >= nritems);
4090 
4091 	/*
4092 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4093 	 */
4094 	/* first correct the data pointers */
4095 	btrfs_init_map_token(&token, leaf);
4096 	for (i = slot; i < nritems; i++) {
4097 		u32 ioff;
4098 
4099 		ioff = btrfs_token_item_offset(&token, i);
4100 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4101 	}
4102 
4103 	/* shift the data */
4104 	if (from_end) {
4105 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4106 				  old_data_start + new_size - data_end);
4107 	} else {
4108 		struct btrfs_disk_key disk_key;
4109 		u64 offset;
4110 
4111 		btrfs_item_key(leaf, &disk_key, slot);
4112 
4113 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4114 			unsigned long ptr;
4115 			struct btrfs_file_extent_item *fi;
4116 
4117 			fi = btrfs_item_ptr(leaf, slot,
4118 					    struct btrfs_file_extent_item);
4119 			fi = (struct btrfs_file_extent_item *)(
4120 			     (unsigned long)fi - size_diff);
4121 
4122 			if (btrfs_file_extent_type(leaf, fi) ==
4123 			    BTRFS_FILE_EXTENT_INLINE) {
4124 				ptr = btrfs_item_ptr_offset(leaf, slot);
4125 				memmove_extent_buffer(leaf, ptr,
4126 				      (unsigned long)fi,
4127 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4128 			}
4129 		}
4130 
4131 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4132 				  old_data_start - data_end);
4133 
4134 		offset = btrfs_disk_key_offset(&disk_key);
4135 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4136 		btrfs_set_item_key(leaf, &disk_key, slot);
4137 		if (slot == 0)
4138 			fixup_low_keys(trans, path, &disk_key, 1);
4139 	}
4140 
4141 	btrfs_set_item_size(leaf, slot, new_size);
4142 	btrfs_mark_buffer_dirty(trans, leaf);
4143 
4144 	if (btrfs_leaf_free_space(leaf) < 0) {
4145 		btrfs_print_leaf(leaf);
4146 		BUG();
4147 	}
4148 }
4149 
4150 /*
4151  * make the item pointed to by the path bigger, data_size is the added size.
4152  */
4153 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4154 		       const struct btrfs_path *path, u32 data_size)
4155 {
4156 	int slot;
4157 	struct extent_buffer *leaf;
4158 	u32 nritems;
4159 	unsigned int data_end;
4160 	unsigned int old_data;
4161 	unsigned int old_size;
4162 	int i;
4163 	struct btrfs_map_token token;
4164 
4165 	leaf = path->nodes[0];
4166 
4167 	nritems = btrfs_header_nritems(leaf);
4168 	data_end = leaf_data_end(leaf);
4169 
4170 	if (btrfs_leaf_free_space(leaf) < data_size) {
4171 		btrfs_print_leaf(leaf);
4172 		BUG();
4173 	}
4174 	slot = path->slots[0];
4175 	old_data = btrfs_item_data_end(leaf, slot);
4176 
4177 	BUG_ON(slot < 0);
4178 	if (slot >= nritems) {
4179 		btrfs_print_leaf(leaf);
4180 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4181 			   slot, nritems);
4182 		BUG();
4183 	}
4184 
4185 	/*
4186 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4187 	 */
4188 	/* first correct the data pointers */
4189 	btrfs_init_map_token(&token, leaf);
4190 	for (i = slot; i < nritems; i++) {
4191 		u32 ioff;
4192 
4193 		ioff = btrfs_token_item_offset(&token, i);
4194 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4195 	}
4196 
4197 	/* shift the data */
4198 	memmove_leaf_data(leaf, data_end - data_size, data_end,
4199 			  old_data - data_end);
4200 
4201 	data_end = old_data;
4202 	old_size = btrfs_item_size(leaf, slot);
4203 	btrfs_set_item_size(leaf, slot, old_size + data_size);
4204 	btrfs_mark_buffer_dirty(trans, leaf);
4205 
4206 	if (btrfs_leaf_free_space(leaf) < 0) {
4207 		btrfs_print_leaf(leaf);
4208 		BUG();
4209 	}
4210 }
4211 
4212 /*
4213  * Make space in the node before inserting one or more items.
4214  *
4215  * @trans:	transaction handle
4216  * @root:	root we are inserting items to
4217  * @path:	points to the leaf/slot where we are going to insert new items
4218  * @batch:      information about the batch of items to insert
4219  *
4220  * Main purpose is to save stack depth by doing the bulk of the work in a
4221  * function that doesn't call btrfs_search_slot
4222  */
4223 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4224 				   struct btrfs_root *root, struct btrfs_path *path,
4225 				   const struct btrfs_item_batch *batch)
4226 {
4227 	struct btrfs_fs_info *fs_info = root->fs_info;
4228 	int i;
4229 	u32 nritems;
4230 	unsigned int data_end;
4231 	struct btrfs_disk_key disk_key;
4232 	struct extent_buffer *leaf;
4233 	int slot;
4234 	struct btrfs_map_token token;
4235 	u32 total_size;
4236 
4237 	/*
4238 	 * Before anything else, update keys in the parent and other ancestors
4239 	 * if needed, then release the write locks on them, so that other tasks
4240 	 * can use them while we modify the leaf.
4241 	 */
4242 	if (path->slots[0] == 0) {
4243 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4244 		fixup_low_keys(trans, path, &disk_key, 1);
4245 	}
4246 	btrfs_unlock_up_safe(path, 1);
4247 
4248 	leaf = path->nodes[0];
4249 	slot = path->slots[0];
4250 
4251 	nritems = btrfs_header_nritems(leaf);
4252 	data_end = leaf_data_end(leaf);
4253 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4254 
4255 	if (btrfs_leaf_free_space(leaf) < total_size) {
4256 		btrfs_print_leaf(leaf);
4257 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4258 			   total_size, btrfs_leaf_free_space(leaf));
4259 		BUG();
4260 	}
4261 
4262 	btrfs_init_map_token(&token, leaf);
4263 	if (slot != nritems) {
4264 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4265 
4266 		if (old_data < data_end) {
4267 			btrfs_print_leaf(leaf);
4268 			btrfs_crit(fs_info,
4269 		"item at slot %d with data offset %u beyond data end of leaf %u",
4270 				   slot, old_data, data_end);
4271 			BUG();
4272 		}
4273 		/*
4274 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4275 		 */
4276 		/* first correct the data pointers */
4277 		for (i = slot; i < nritems; i++) {
4278 			u32 ioff;
4279 
4280 			ioff = btrfs_token_item_offset(&token, i);
4281 			btrfs_set_token_item_offset(&token, i,
4282 						       ioff - batch->total_data_size);
4283 		}
4284 		/* shift the items */
4285 		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4286 
4287 		/* shift the data */
4288 		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4289 				  data_end, old_data - data_end);
4290 		data_end = old_data;
4291 	}
4292 
4293 	/* setup the item for the new data */
4294 	for (i = 0; i < batch->nr; i++) {
4295 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4296 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4297 		data_end -= batch->data_sizes[i];
4298 		btrfs_set_token_item_offset(&token, slot + i, data_end);
4299 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4300 	}
4301 
4302 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4303 	btrfs_mark_buffer_dirty(trans, leaf);
4304 
4305 	if (btrfs_leaf_free_space(leaf) < 0) {
4306 		btrfs_print_leaf(leaf);
4307 		BUG();
4308 	}
4309 }
4310 
4311 /*
4312  * Insert a new item into a leaf.
4313  *
4314  * @trans:     Transaction handle.
4315  * @root:      The root of the btree.
4316  * @path:      A path pointing to the target leaf and slot.
4317  * @key:       The key of the new item.
4318  * @data_size: The size of the data associated with the new key.
4319  */
4320 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4321 				 struct btrfs_root *root,
4322 				 struct btrfs_path *path,
4323 				 const struct btrfs_key *key,
4324 				 u32 data_size)
4325 {
4326 	struct btrfs_item_batch batch;
4327 
4328 	batch.keys = key;
4329 	batch.data_sizes = &data_size;
4330 	batch.total_data_size = data_size;
4331 	batch.nr = 1;
4332 
4333 	setup_items_for_insert(trans, root, path, &batch);
4334 }
4335 
4336 /*
4337  * Given a key and some data, insert items into the tree.
4338  * This does all the path init required, making room in the tree if needed.
4339  *
4340  * Returns: 0        on success
4341  *          -EEXIST  if the first key already exists
4342  *          < 0      on other errors
4343  */
4344 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4345 			    struct btrfs_root *root,
4346 			    struct btrfs_path *path,
4347 			    const struct btrfs_item_batch *batch)
4348 {
4349 	int ret = 0;
4350 	int slot;
4351 	u32 total_size;
4352 
4353 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4354 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4355 	if (ret == 0)
4356 		return -EEXIST;
4357 	if (ret < 0)
4358 		return ret;
4359 
4360 	slot = path->slots[0];
4361 	BUG_ON(slot < 0);
4362 
4363 	setup_items_for_insert(trans, root, path, batch);
4364 	return 0;
4365 }
4366 
4367 /*
4368  * Given a key and some data, insert an item into the tree.
4369  * This does all the path init required, making room in the tree if needed.
4370  */
4371 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4372 		      const struct btrfs_key *cpu_key, void *data,
4373 		      u32 data_size)
4374 {
4375 	int ret = 0;
4376 	struct btrfs_path *path;
4377 	struct extent_buffer *leaf;
4378 	unsigned long ptr;
4379 
4380 	path = btrfs_alloc_path();
4381 	if (!path)
4382 		return -ENOMEM;
4383 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4384 	if (!ret) {
4385 		leaf = path->nodes[0];
4386 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4387 		write_extent_buffer(leaf, data, ptr, data_size);
4388 		btrfs_mark_buffer_dirty(trans, leaf);
4389 	}
4390 	btrfs_free_path(path);
4391 	return ret;
4392 }
4393 
4394 /*
4395  * This function duplicates an item, giving 'new_key' to the new item.
4396  * It guarantees both items live in the same tree leaf and the new item is
4397  * contiguous with the original item.
4398  *
4399  * This allows us to split a file extent in place, keeping a lock on the leaf
4400  * the entire time.
4401  */
4402 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4403 			 struct btrfs_root *root,
4404 			 struct btrfs_path *path,
4405 			 const struct btrfs_key *new_key)
4406 {
4407 	struct extent_buffer *leaf;
4408 	int ret;
4409 	u32 item_size;
4410 
4411 	leaf = path->nodes[0];
4412 	item_size = btrfs_item_size(leaf, path->slots[0]);
4413 	ret = setup_leaf_for_split(trans, root, path,
4414 				   item_size + sizeof(struct btrfs_item));
4415 	if (ret)
4416 		return ret;
4417 
4418 	path->slots[0]++;
4419 	btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4420 	leaf = path->nodes[0];
4421 	memcpy_extent_buffer(leaf,
4422 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4423 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4424 			     item_size);
4425 	return 0;
4426 }
4427 
4428 /*
4429  * delete the pointer from a given node.
4430  *
4431  * the tree should have been previously balanced so the deletion does not
4432  * empty a node.
4433  *
4434  * This is exported for use inside btrfs-progs, don't un-export it.
4435  */
4436 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4437 		  struct btrfs_path *path, int level, int slot)
4438 {
4439 	struct extent_buffer *parent = path->nodes[level];
4440 	u32 nritems;
4441 	int ret;
4442 
4443 	nritems = btrfs_header_nritems(parent);
4444 	if (slot != nritems - 1) {
4445 		if (level) {
4446 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4447 					slot + 1, nritems - slot - 1);
4448 			if (ret < 0) {
4449 				btrfs_abort_transaction(trans, ret);
4450 				return ret;
4451 			}
4452 		}
4453 		memmove_extent_buffer(parent,
4454 			      btrfs_node_key_ptr_offset(parent, slot),
4455 			      btrfs_node_key_ptr_offset(parent, slot + 1),
4456 			      sizeof(struct btrfs_key_ptr) *
4457 			      (nritems - slot - 1));
4458 	} else if (level) {
4459 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4460 						    BTRFS_MOD_LOG_KEY_REMOVE);
4461 		if (ret < 0) {
4462 			btrfs_abort_transaction(trans, ret);
4463 			return ret;
4464 		}
4465 	}
4466 
4467 	nritems--;
4468 	btrfs_set_header_nritems(parent, nritems);
4469 	if (nritems == 0 && parent == root->node) {
4470 		BUG_ON(btrfs_header_level(root->node) != 1);
4471 		/* just turn the root into a leaf and break */
4472 		btrfs_set_header_level(root->node, 0);
4473 	} else if (slot == 0) {
4474 		struct btrfs_disk_key disk_key;
4475 
4476 		btrfs_node_key(parent, &disk_key, 0);
4477 		fixup_low_keys(trans, path, &disk_key, level + 1);
4478 	}
4479 	btrfs_mark_buffer_dirty(trans, parent);
4480 	return 0;
4481 }
4482 
4483 /*
4484  * a helper function to delete the leaf pointed to by path->slots[1] and
4485  * path->nodes[1].
4486  *
4487  * This deletes the pointer in path->nodes[1] and frees the leaf
4488  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4489  *
4490  * The path must have already been setup for deleting the leaf, including
4491  * all the proper balancing.  path->nodes[1] must be locked.
4492  */
4493 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4494 				   struct btrfs_root *root,
4495 				   struct btrfs_path *path,
4496 				   struct extent_buffer *leaf)
4497 {
4498 	int ret;
4499 
4500 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4501 	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4502 	if (ret < 0)
4503 		return ret;
4504 
4505 	/*
4506 	 * btrfs_free_extent is expensive, we want to make sure we
4507 	 * aren't holding any locks when we call it
4508 	 */
4509 	btrfs_unlock_up_safe(path, 0);
4510 
4511 	root_sub_used_bytes(root);
4512 
4513 	atomic_inc(&leaf->refs);
4514 	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4515 	free_extent_buffer_stale(leaf);
4516 	if (ret < 0)
4517 		btrfs_abort_transaction(trans, ret);
4518 
4519 	return ret;
4520 }
4521 /*
4522  * delete the item at the leaf level in path.  If that empties
4523  * the leaf, remove it from the tree
4524  */
4525 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4526 		    struct btrfs_path *path, int slot, int nr)
4527 {
4528 	struct btrfs_fs_info *fs_info = root->fs_info;
4529 	struct extent_buffer *leaf;
4530 	int ret = 0;
4531 	int wret;
4532 	u32 nritems;
4533 
4534 	leaf = path->nodes[0];
4535 	nritems = btrfs_header_nritems(leaf);
4536 
4537 	if (slot + nr != nritems) {
4538 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4539 		const int data_end = leaf_data_end(leaf);
4540 		struct btrfs_map_token token;
4541 		u32 dsize = 0;
4542 		int i;
4543 
4544 		for (i = 0; i < nr; i++)
4545 			dsize += btrfs_item_size(leaf, slot + i);
4546 
4547 		memmove_leaf_data(leaf, data_end + dsize, data_end,
4548 				  last_off - data_end);
4549 
4550 		btrfs_init_map_token(&token, leaf);
4551 		for (i = slot + nr; i < nritems; i++) {
4552 			u32 ioff;
4553 
4554 			ioff = btrfs_token_item_offset(&token, i);
4555 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4556 		}
4557 
4558 		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4559 	}
4560 	btrfs_set_header_nritems(leaf, nritems - nr);
4561 	nritems -= nr;
4562 
4563 	/* delete the leaf if we've emptied it */
4564 	if (nritems == 0) {
4565 		if (leaf == root->node) {
4566 			btrfs_set_header_level(leaf, 0);
4567 		} else {
4568 			btrfs_clear_buffer_dirty(trans, leaf);
4569 			ret = btrfs_del_leaf(trans, root, path, leaf);
4570 			if (ret < 0)
4571 				return ret;
4572 		}
4573 	} else {
4574 		int used = leaf_space_used(leaf, 0, nritems);
4575 		if (slot == 0) {
4576 			struct btrfs_disk_key disk_key;
4577 
4578 			btrfs_item_key(leaf, &disk_key, 0);
4579 			fixup_low_keys(trans, path, &disk_key, 1);
4580 		}
4581 
4582 		/*
4583 		 * Try to delete the leaf if it is mostly empty. We do this by
4584 		 * trying to move all its items into its left and right neighbours.
4585 		 * If we can't move all the items, then we don't delete it - it's
4586 		 * not ideal, but future insertions might fill the leaf with more
4587 		 * items, or items from other leaves might be moved later into our
4588 		 * leaf due to deletions on those leaves.
4589 		 */
4590 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4591 			u32 min_push_space;
4592 
4593 			/* push_leaf_left fixes the path.
4594 			 * make sure the path still points to our leaf
4595 			 * for possible call to btrfs_del_ptr below
4596 			 */
4597 			slot = path->slots[1];
4598 			atomic_inc(&leaf->refs);
4599 			/*
4600 			 * We want to be able to at least push one item to the
4601 			 * left neighbour leaf, and that's the first item.
4602 			 */
4603 			min_push_space = sizeof(struct btrfs_item) +
4604 				btrfs_item_size(leaf, 0);
4605 			wret = push_leaf_left(trans, root, path, 0,
4606 					      min_push_space, 1, (u32)-1);
4607 			if (wret < 0 && wret != -ENOSPC)
4608 				ret = wret;
4609 
4610 			if (path->nodes[0] == leaf &&
4611 			    btrfs_header_nritems(leaf)) {
4612 				/*
4613 				 * If we were not able to push all items from our
4614 				 * leaf to its left neighbour, then attempt to
4615 				 * either push all the remaining items to the
4616 				 * right neighbour or none. There's no advantage
4617 				 * in pushing only some items, instead of all, as
4618 				 * it's pointless to end up with a leaf having
4619 				 * too few items while the neighbours can be full
4620 				 * or nearly full.
4621 				 */
4622 				nritems = btrfs_header_nritems(leaf);
4623 				min_push_space = leaf_space_used(leaf, 0, nritems);
4624 				wret = push_leaf_right(trans, root, path, 0,
4625 						       min_push_space, 1, 0);
4626 				if (wret < 0 && wret != -ENOSPC)
4627 					ret = wret;
4628 			}
4629 
4630 			if (btrfs_header_nritems(leaf) == 0) {
4631 				path->slots[1] = slot;
4632 				ret = btrfs_del_leaf(trans, root, path, leaf);
4633 				if (ret < 0)
4634 					return ret;
4635 				free_extent_buffer(leaf);
4636 				ret = 0;
4637 			} else {
4638 				/* if we're still in the path, make sure
4639 				 * we're dirty.  Otherwise, one of the
4640 				 * push_leaf functions must have already
4641 				 * dirtied this buffer
4642 				 */
4643 				if (path->nodes[0] == leaf)
4644 					btrfs_mark_buffer_dirty(trans, leaf);
4645 				free_extent_buffer(leaf);
4646 			}
4647 		} else {
4648 			btrfs_mark_buffer_dirty(trans, leaf);
4649 		}
4650 	}
4651 	return ret;
4652 }
4653 
4654 /*
4655  * A helper function to walk down the tree starting at min_key, and looking
4656  * for nodes or leaves that are have a minimum transaction id.
4657  * This is used by the btree defrag code, and tree logging
4658  *
4659  * This does not cow, but it does stuff the starting key it finds back
4660  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4661  * key and get a writable path.
4662  *
4663  * This honors path->lowest_level to prevent descent past a given level
4664  * of the tree.
4665  *
4666  * min_trans indicates the oldest transaction that you are interested
4667  * in walking through.  Any nodes or leaves older than min_trans are
4668  * skipped over (without reading them).
4669  *
4670  * returns zero if something useful was found, < 0 on error and 1 if there
4671  * was nothing in the tree that matched the search criteria.
4672  */
4673 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4674 			 struct btrfs_path *path,
4675 			 u64 min_trans)
4676 {
4677 	struct extent_buffer *cur;
4678 	struct btrfs_key found_key;
4679 	int slot;
4680 	int sret;
4681 	u32 nritems;
4682 	int level;
4683 	int ret = 1;
4684 	int keep_locks = path->keep_locks;
4685 
4686 	ASSERT(!path->nowait);
4687 	path->keep_locks = 1;
4688 again:
4689 	cur = btrfs_read_lock_root_node(root);
4690 	level = btrfs_header_level(cur);
4691 	WARN_ON(path->nodes[level]);
4692 	path->nodes[level] = cur;
4693 	path->locks[level] = BTRFS_READ_LOCK;
4694 
4695 	if (btrfs_header_generation(cur) < min_trans) {
4696 		ret = 1;
4697 		goto out;
4698 	}
4699 	while (1) {
4700 		nritems = btrfs_header_nritems(cur);
4701 		level = btrfs_header_level(cur);
4702 		sret = btrfs_bin_search(cur, 0, min_key, &slot);
4703 		if (sret < 0) {
4704 			ret = sret;
4705 			goto out;
4706 		}
4707 
4708 		/* at the lowest level, we're done, setup the path and exit */
4709 		if (level == path->lowest_level) {
4710 			if (slot >= nritems)
4711 				goto find_next_key;
4712 			ret = 0;
4713 			path->slots[level] = slot;
4714 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4715 			goto out;
4716 		}
4717 		if (sret && slot > 0)
4718 			slot--;
4719 		/*
4720 		 * check this node pointer against the min_trans parameters.
4721 		 * If it is too old, skip to the next one.
4722 		 */
4723 		while (slot < nritems) {
4724 			u64 gen;
4725 
4726 			gen = btrfs_node_ptr_generation(cur, slot);
4727 			if (gen < min_trans) {
4728 				slot++;
4729 				continue;
4730 			}
4731 			break;
4732 		}
4733 find_next_key:
4734 		/*
4735 		 * we didn't find a candidate key in this node, walk forward
4736 		 * and find another one
4737 		 */
4738 		if (slot >= nritems) {
4739 			path->slots[level] = slot;
4740 			sret = btrfs_find_next_key(root, path, min_key, level,
4741 						  min_trans);
4742 			if (sret == 0) {
4743 				btrfs_release_path(path);
4744 				goto again;
4745 			} else {
4746 				goto out;
4747 			}
4748 		}
4749 		/* save our key for returning back */
4750 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4751 		path->slots[level] = slot;
4752 		if (level == path->lowest_level) {
4753 			ret = 0;
4754 			goto out;
4755 		}
4756 		cur = btrfs_read_node_slot(cur, slot);
4757 		if (IS_ERR(cur)) {
4758 			ret = PTR_ERR(cur);
4759 			goto out;
4760 		}
4761 
4762 		btrfs_tree_read_lock(cur);
4763 
4764 		path->locks[level - 1] = BTRFS_READ_LOCK;
4765 		path->nodes[level - 1] = cur;
4766 		unlock_up(path, level, 1, 0, NULL);
4767 	}
4768 out:
4769 	path->keep_locks = keep_locks;
4770 	if (ret == 0) {
4771 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4772 		memcpy(min_key, &found_key, sizeof(found_key));
4773 	}
4774 	return ret;
4775 }
4776 
4777 /*
4778  * this is similar to btrfs_next_leaf, but does not try to preserve
4779  * and fixup the path.  It looks for and returns the next key in the
4780  * tree based on the current path and the min_trans parameters.
4781  *
4782  * 0 is returned if another key is found, < 0 if there are any errors
4783  * and 1 is returned if there are no higher keys in the tree
4784  *
4785  * path->keep_locks should be set to 1 on the search made before
4786  * calling this function.
4787  */
4788 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4789 			struct btrfs_key *key, int level, u64 min_trans)
4790 {
4791 	int slot;
4792 	struct extent_buffer *c;
4793 
4794 	WARN_ON(!path->keep_locks && !path->skip_locking);
4795 	while (level < BTRFS_MAX_LEVEL) {
4796 		if (!path->nodes[level])
4797 			return 1;
4798 
4799 		slot = path->slots[level] + 1;
4800 		c = path->nodes[level];
4801 next:
4802 		if (slot >= btrfs_header_nritems(c)) {
4803 			int ret;
4804 			int orig_lowest;
4805 			struct btrfs_key cur_key;
4806 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4807 			    !path->nodes[level + 1])
4808 				return 1;
4809 
4810 			if (path->locks[level + 1] || path->skip_locking) {
4811 				level++;
4812 				continue;
4813 			}
4814 
4815 			slot = btrfs_header_nritems(c) - 1;
4816 			if (level == 0)
4817 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4818 			else
4819 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4820 
4821 			orig_lowest = path->lowest_level;
4822 			btrfs_release_path(path);
4823 			path->lowest_level = level;
4824 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4825 						0, 0);
4826 			path->lowest_level = orig_lowest;
4827 			if (ret < 0)
4828 				return ret;
4829 
4830 			c = path->nodes[level];
4831 			slot = path->slots[level];
4832 			if (ret == 0)
4833 				slot++;
4834 			goto next;
4835 		}
4836 
4837 		if (level == 0)
4838 			btrfs_item_key_to_cpu(c, key, slot);
4839 		else {
4840 			u64 gen = btrfs_node_ptr_generation(c, slot);
4841 
4842 			if (gen < min_trans) {
4843 				slot++;
4844 				goto next;
4845 			}
4846 			btrfs_node_key_to_cpu(c, key, slot);
4847 		}
4848 		return 0;
4849 	}
4850 	return 1;
4851 }
4852 
4853 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4854 			u64 time_seq)
4855 {
4856 	int slot;
4857 	int level;
4858 	struct extent_buffer *c;
4859 	struct extent_buffer *next;
4860 	struct btrfs_fs_info *fs_info = root->fs_info;
4861 	struct btrfs_key key;
4862 	bool need_commit_sem = false;
4863 	u32 nritems;
4864 	int ret;
4865 	int i;
4866 
4867 	/*
4868 	 * The nowait semantics are used only for write paths, where we don't
4869 	 * use the tree mod log and sequence numbers.
4870 	 */
4871 	if (time_seq)
4872 		ASSERT(!path->nowait);
4873 
4874 	nritems = btrfs_header_nritems(path->nodes[0]);
4875 	if (nritems == 0)
4876 		return 1;
4877 
4878 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4879 again:
4880 	level = 1;
4881 	next = NULL;
4882 	btrfs_release_path(path);
4883 
4884 	path->keep_locks = 1;
4885 
4886 	if (time_seq) {
4887 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4888 	} else {
4889 		if (path->need_commit_sem) {
4890 			path->need_commit_sem = 0;
4891 			need_commit_sem = true;
4892 			if (path->nowait) {
4893 				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4894 					ret = -EAGAIN;
4895 					goto done;
4896 				}
4897 			} else {
4898 				down_read(&fs_info->commit_root_sem);
4899 			}
4900 		}
4901 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4902 	}
4903 	path->keep_locks = 0;
4904 
4905 	if (ret < 0)
4906 		goto done;
4907 
4908 	nritems = btrfs_header_nritems(path->nodes[0]);
4909 	/*
4910 	 * by releasing the path above we dropped all our locks.  A balance
4911 	 * could have added more items next to the key that used to be
4912 	 * at the very end of the block.  So, check again here and
4913 	 * advance the path if there are now more items available.
4914 	 */
4915 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4916 		if (ret == 0)
4917 			path->slots[0]++;
4918 		ret = 0;
4919 		goto done;
4920 	}
4921 	/*
4922 	 * So the above check misses one case:
4923 	 * - after releasing the path above, someone has removed the item that
4924 	 *   used to be at the very end of the block, and balance between leafs
4925 	 *   gets another one with bigger key.offset to replace it.
4926 	 *
4927 	 * This one should be returned as well, or we can get leaf corruption
4928 	 * later(esp. in __btrfs_drop_extents()).
4929 	 *
4930 	 * And a bit more explanation about this check,
4931 	 * with ret > 0, the key isn't found, the path points to the slot
4932 	 * where it should be inserted, so the path->slots[0] item must be the
4933 	 * bigger one.
4934 	 */
4935 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4936 		ret = 0;
4937 		goto done;
4938 	}
4939 
4940 	while (level < BTRFS_MAX_LEVEL) {
4941 		if (!path->nodes[level]) {
4942 			ret = 1;
4943 			goto done;
4944 		}
4945 
4946 		slot = path->slots[level] + 1;
4947 		c = path->nodes[level];
4948 		if (slot >= btrfs_header_nritems(c)) {
4949 			level++;
4950 			if (level == BTRFS_MAX_LEVEL) {
4951 				ret = 1;
4952 				goto done;
4953 			}
4954 			continue;
4955 		}
4956 
4957 
4958 		/*
4959 		 * Our current level is where we're going to start from, and to
4960 		 * make sure lockdep doesn't complain we need to drop our locks
4961 		 * and nodes from 0 to our current level.
4962 		 */
4963 		for (i = 0; i < level; i++) {
4964 			if (path->locks[level]) {
4965 				btrfs_tree_read_unlock(path->nodes[i]);
4966 				path->locks[i] = 0;
4967 			}
4968 			free_extent_buffer(path->nodes[i]);
4969 			path->nodes[i] = NULL;
4970 		}
4971 
4972 		next = c;
4973 		ret = read_block_for_search(root, path, &next, slot, &key);
4974 		if (ret == -EAGAIN && !path->nowait)
4975 			goto again;
4976 
4977 		if (ret < 0) {
4978 			btrfs_release_path(path);
4979 			goto done;
4980 		}
4981 
4982 		if (!path->skip_locking) {
4983 			ret = btrfs_try_tree_read_lock(next);
4984 			if (!ret && path->nowait) {
4985 				ret = -EAGAIN;
4986 				goto done;
4987 			}
4988 			if (!ret && time_seq) {
4989 				/*
4990 				 * If we don't get the lock, we may be racing
4991 				 * with push_leaf_left, holding that lock while
4992 				 * itself waiting for the leaf we've currently
4993 				 * locked. To solve this situation, we give up
4994 				 * on our lock and cycle.
4995 				 */
4996 				free_extent_buffer(next);
4997 				btrfs_release_path(path);
4998 				cond_resched();
4999 				goto again;
5000 			}
5001 			if (!ret)
5002 				btrfs_tree_read_lock(next);
5003 		}
5004 		break;
5005 	}
5006 	path->slots[level] = slot;
5007 	while (1) {
5008 		level--;
5009 		path->nodes[level] = next;
5010 		path->slots[level] = 0;
5011 		if (!path->skip_locking)
5012 			path->locks[level] = BTRFS_READ_LOCK;
5013 		if (!level)
5014 			break;
5015 
5016 		ret = read_block_for_search(root, path, &next, 0, &key);
5017 		if (ret == -EAGAIN && !path->nowait)
5018 			goto again;
5019 
5020 		if (ret < 0) {
5021 			btrfs_release_path(path);
5022 			goto done;
5023 		}
5024 
5025 		if (!path->skip_locking) {
5026 			if (path->nowait) {
5027 				if (!btrfs_try_tree_read_lock(next)) {
5028 					ret = -EAGAIN;
5029 					goto done;
5030 				}
5031 			} else {
5032 				btrfs_tree_read_lock(next);
5033 			}
5034 		}
5035 	}
5036 	ret = 0;
5037 done:
5038 	unlock_up(path, 0, 1, 0, NULL);
5039 	if (need_commit_sem) {
5040 		int ret2;
5041 
5042 		path->need_commit_sem = 1;
5043 		ret2 = finish_need_commit_sem_search(path);
5044 		up_read(&fs_info->commit_root_sem);
5045 		if (ret2)
5046 			ret = ret2;
5047 	}
5048 
5049 	return ret;
5050 }
5051 
5052 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5053 {
5054 	path->slots[0]++;
5055 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5056 		return btrfs_next_old_leaf(root, path, time_seq);
5057 	return 0;
5058 }
5059 
5060 /*
5061  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5062  * searching until it gets past min_objectid or finds an item of 'type'
5063  *
5064  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5065  */
5066 int btrfs_previous_item(struct btrfs_root *root,
5067 			struct btrfs_path *path, u64 min_objectid,
5068 			int type)
5069 {
5070 	struct btrfs_key found_key;
5071 	struct extent_buffer *leaf;
5072 	u32 nritems;
5073 	int ret;
5074 
5075 	while (1) {
5076 		if (path->slots[0] == 0) {
5077 			ret = btrfs_prev_leaf(root, path);
5078 			if (ret != 0)
5079 				return ret;
5080 		} else {
5081 			path->slots[0]--;
5082 		}
5083 		leaf = path->nodes[0];
5084 		nritems = btrfs_header_nritems(leaf);
5085 		if (nritems == 0)
5086 			return 1;
5087 		if (path->slots[0] == nritems)
5088 			path->slots[0]--;
5089 
5090 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5091 		if (found_key.objectid < min_objectid)
5092 			break;
5093 		if (found_key.type == type)
5094 			return 0;
5095 		if (found_key.objectid == min_objectid &&
5096 		    found_key.type < type)
5097 			break;
5098 	}
5099 	return 1;
5100 }
5101 
5102 /*
5103  * search in extent tree to find a previous Metadata/Data extent item with
5104  * min objecitd.
5105  *
5106  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5107  */
5108 int btrfs_previous_extent_item(struct btrfs_root *root,
5109 			struct btrfs_path *path, u64 min_objectid)
5110 {
5111 	struct btrfs_key found_key;
5112 	struct extent_buffer *leaf;
5113 	u32 nritems;
5114 	int ret;
5115 
5116 	while (1) {
5117 		if (path->slots[0] == 0) {
5118 			ret = btrfs_prev_leaf(root, path);
5119 			if (ret != 0)
5120 				return ret;
5121 		} else {
5122 			path->slots[0]--;
5123 		}
5124 		leaf = path->nodes[0];
5125 		nritems = btrfs_header_nritems(leaf);
5126 		if (nritems == 0)
5127 			return 1;
5128 		if (path->slots[0] == nritems)
5129 			path->slots[0]--;
5130 
5131 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5132 		if (found_key.objectid < min_objectid)
5133 			break;
5134 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5135 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5136 			return 0;
5137 		if (found_key.objectid == min_objectid &&
5138 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5139 			break;
5140 	}
5141 	return 1;
5142 }
5143 
5144 int __init btrfs_ctree_init(void)
5145 {
5146 	btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0);
5147 	if (!btrfs_path_cachep)
5148 		return -ENOMEM;
5149 	return 0;
5150 }
5151 
5152 void __cold btrfs_ctree_exit(void)
5153 {
5154 	kmem_cache_destroy(btrfs_path_cachep);
5155 }
5156