xref: /linux/fs/btrfs/ctree.c (revision 6ee738610f41b59733f63718f0bdbcba7d3a3f12)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
25 
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27 		      *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_key *ins_key,
30 		      struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32 			  struct btrfs_root *root, struct extent_buffer *dst,
33 			  struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35 			      struct btrfs_root *root,
36 			      struct extent_buffer *dst_buf,
37 			      struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39 		   struct btrfs_path *path, int level, int slot);
40 
41 struct btrfs_path *btrfs_alloc_path(void)
42 {
43 	struct btrfs_path *path;
44 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
45 	if (path)
46 		path->reada = 1;
47 	return path;
48 }
49 
50 /*
51  * set all locked nodes in the path to blocking locks.  This should
52  * be done before scheduling
53  */
54 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
55 {
56 	int i;
57 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
58 		if (p->nodes[i] && p->locks[i])
59 			btrfs_set_lock_blocking(p->nodes[i]);
60 	}
61 }
62 
63 /*
64  * reset all the locked nodes in the patch to spinning locks.
65  *
66  * held is used to keep lockdep happy, when lockdep is enabled
67  * we set held to a blocking lock before we go around and
68  * retake all the spinlocks in the path.  You can safely use NULL
69  * for held
70  */
71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
72 					struct extent_buffer *held)
73 {
74 	int i;
75 
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
77 	/* lockdep really cares that we take all of these spinlocks
78 	 * in the right order.  If any of the locks in the path are not
79 	 * currently blocking, it is going to complain.  So, make really
80 	 * really sure by forcing the path to blocking before we clear
81 	 * the path blocking.
82 	 */
83 	if (held)
84 		btrfs_set_lock_blocking(held);
85 	btrfs_set_path_blocking(p);
86 #endif
87 
88 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
89 		if (p->nodes[i] && p->locks[i])
90 			btrfs_clear_lock_blocking(p->nodes[i]);
91 	}
92 
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 	if (held)
95 		btrfs_clear_lock_blocking(held);
96 #endif
97 }
98 
99 /* this also releases the path */
100 void btrfs_free_path(struct btrfs_path *p)
101 {
102 	btrfs_release_path(NULL, p);
103 	kmem_cache_free(btrfs_path_cachep, p);
104 }
105 
106 /*
107  * path release drops references on the extent buffers in the path
108  * and it drops any locks held by this path
109  *
110  * It is safe to call this on paths that no locks or extent buffers held.
111  */
112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
113 {
114 	int i;
115 
116 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
117 		p->slots[i] = 0;
118 		if (!p->nodes[i])
119 			continue;
120 		if (p->locks[i]) {
121 			btrfs_tree_unlock(p->nodes[i]);
122 			p->locks[i] = 0;
123 		}
124 		free_extent_buffer(p->nodes[i]);
125 		p->nodes[i] = NULL;
126 	}
127 }
128 
129 /*
130  * safely gets a reference on the root node of a tree.  A lock
131  * is not taken, so a concurrent writer may put a different node
132  * at the root of the tree.  See btrfs_lock_root_node for the
133  * looping required.
134  *
135  * The extent buffer returned by this has a reference taken, so
136  * it won't disappear.  It may stop being the root of the tree
137  * at any time because there are no locks held.
138  */
139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
140 {
141 	struct extent_buffer *eb;
142 	spin_lock(&root->node_lock);
143 	eb = root->node;
144 	extent_buffer_get(eb);
145 	spin_unlock(&root->node_lock);
146 	return eb;
147 }
148 
149 /* loop around taking references on and locking the root node of the
150  * tree until you end up with a lock on the root.  A locked buffer
151  * is returned, with a reference held.
152  */
153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
154 {
155 	struct extent_buffer *eb;
156 
157 	while (1) {
158 		eb = btrfs_root_node(root);
159 		btrfs_tree_lock(eb);
160 
161 		spin_lock(&root->node_lock);
162 		if (eb == root->node) {
163 			spin_unlock(&root->node_lock);
164 			break;
165 		}
166 		spin_unlock(&root->node_lock);
167 
168 		btrfs_tree_unlock(eb);
169 		free_extent_buffer(eb);
170 	}
171 	return eb;
172 }
173 
174 /* cowonly root (everything not a reference counted cow subvolume), just get
175  * put onto a simple dirty list.  transaction.c walks this to make sure they
176  * get properly updated on disk.
177  */
178 static void add_root_to_dirty_list(struct btrfs_root *root)
179 {
180 	if (root->track_dirty && list_empty(&root->dirty_list)) {
181 		list_add(&root->dirty_list,
182 			 &root->fs_info->dirty_cowonly_roots);
183 	}
184 }
185 
186 /*
187  * used by snapshot creation to make a copy of a root for a tree with
188  * a given objectid.  The buffer with the new root node is returned in
189  * cow_ret, and this func returns zero on success or a negative error code.
190  */
191 int btrfs_copy_root(struct btrfs_trans_handle *trans,
192 		      struct btrfs_root *root,
193 		      struct extent_buffer *buf,
194 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
195 {
196 	struct extent_buffer *cow;
197 	u32 nritems;
198 	int ret = 0;
199 	int level;
200 	struct btrfs_disk_key disk_key;
201 
202 	WARN_ON(root->ref_cows && trans->transid !=
203 		root->fs_info->running_transaction->transid);
204 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
205 
206 	level = btrfs_header_level(buf);
207 	nritems = btrfs_header_nritems(buf);
208 	if (level == 0)
209 		btrfs_item_key(buf, &disk_key, 0);
210 	else
211 		btrfs_node_key(buf, &disk_key, 0);
212 
213 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
214 				     new_root_objectid, &disk_key, level,
215 				     buf->start, 0);
216 	if (IS_ERR(cow))
217 		return PTR_ERR(cow);
218 
219 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
220 	btrfs_set_header_bytenr(cow, cow->start);
221 	btrfs_set_header_generation(cow, trans->transid);
222 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
223 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
224 				     BTRFS_HEADER_FLAG_RELOC);
225 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
226 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
227 	else
228 		btrfs_set_header_owner(cow, new_root_objectid);
229 
230 	write_extent_buffer(cow, root->fs_info->fsid,
231 			    (unsigned long)btrfs_header_fsid(cow),
232 			    BTRFS_FSID_SIZE);
233 
234 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
235 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
236 		ret = btrfs_inc_ref(trans, root, cow, 1);
237 	else
238 		ret = btrfs_inc_ref(trans, root, cow, 0);
239 
240 	if (ret)
241 		return ret;
242 
243 	btrfs_mark_buffer_dirty(cow);
244 	*cow_ret = cow;
245 	return 0;
246 }
247 
248 /*
249  * check if the tree block can be shared by multiple trees
250  */
251 int btrfs_block_can_be_shared(struct btrfs_root *root,
252 			      struct extent_buffer *buf)
253 {
254 	/*
255 	 * Tree blocks not in refernece counted trees and tree roots
256 	 * are never shared. If a block was allocated after the last
257 	 * snapshot and the block was not allocated by tree relocation,
258 	 * we know the block is not shared.
259 	 */
260 	if (root->ref_cows &&
261 	    buf != root->node && buf != root->commit_root &&
262 	    (btrfs_header_generation(buf) <=
263 	     btrfs_root_last_snapshot(&root->root_item) ||
264 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
265 		return 1;
266 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
267 	if (root->ref_cows &&
268 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
269 		return 1;
270 #endif
271 	return 0;
272 }
273 
274 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
275 				       struct btrfs_root *root,
276 				       struct extent_buffer *buf,
277 				       struct extent_buffer *cow)
278 {
279 	u64 refs;
280 	u64 owner;
281 	u64 flags;
282 	u64 new_flags = 0;
283 	int ret;
284 
285 	/*
286 	 * Backrefs update rules:
287 	 *
288 	 * Always use full backrefs for extent pointers in tree block
289 	 * allocated by tree relocation.
290 	 *
291 	 * If a shared tree block is no longer referenced by its owner
292 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
293 	 * use full backrefs for extent pointers in tree block.
294 	 *
295 	 * If a tree block is been relocating
296 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
297 	 * use full backrefs for extent pointers in tree block.
298 	 * The reason for this is some operations (such as drop tree)
299 	 * are only allowed for blocks use full backrefs.
300 	 */
301 
302 	if (btrfs_block_can_be_shared(root, buf)) {
303 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
304 					       buf->len, &refs, &flags);
305 		BUG_ON(ret);
306 		BUG_ON(refs == 0);
307 	} else {
308 		refs = 1;
309 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
310 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
311 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
312 		else
313 			flags = 0;
314 	}
315 
316 	owner = btrfs_header_owner(buf);
317 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
318 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
319 
320 	if (refs > 1) {
321 		if ((owner == root->root_key.objectid ||
322 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
323 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
324 			ret = btrfs_inc_ref(trans, root, buf, 1);
325 			BUG_ON(ret);
326 
327 			if (root->root_key.objectid ==
328 			    BTRFS_TREE_RELOC_OBJECTID) {
329 				ret = btrfs_dec_ref(trans, root, buf, 0);
330 				BUG_ON(ret);
331 				ret = btrfs_inc_ref(trans, root, cow, 1);
332 				BUG_ON(ret);
333 			}
334 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
335 		} else {
336 
337 			if (root->root_key.objectid ==
338 			    BTRFS_TREE_RELOC_OBJECTID)
339 				ret = btrfs_inc_ref(trans, root, cow, 1);
340 			else
341 				ret = btrfs_inc_ref(trans, root, cow, 0);
342 			BUG_ON(ret);
343 		}
344 		if (new_flags != 0) {
345 			ret = btrfs_set_disk_extent_flags(trans, root,
346 							  buf->start,
347 							  buf->len,
348 							  new_flags, 0);
349 			BUG_ON(ret);
350 		}
351 	} else {
352 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
353 			if (root->root_key.objectid ==
354 			    BTRFS_TREE_RELOC_OBJECTID)
355 				ret = btrfs_inc_ref(trans, root, cow, 1);
356 			else
357 				ret = btrfs_inc_ref(trans, root, cow, 0);
358 			BUG_ON(ret);
359 			ret = btrfs_dec_ref(trans, root, buf, 1);
360 			BUG_ON(ret);
361 		}
362 		clean_tree_block(trans, root, buf);
363 	}
364 	return 0;
365 }
366 
367 /*
368  * does the dirty work in cow of a single block.  The parent block (if
369  * supplied) is updated to point to the new cow copy.  The new buffer is marked
370  * dirty and returned locked.  If you modify the block it needs to be marked
371  * dirty again.
372  *
373  * search_start -- an allocation hint for the new block
374  *
375  * empty_size -- a hint that you plan on doing more cow.  This is the size in
376  * bytes the allocator should try to find free next to the block it returns.
377  * This is just a hint and may be ignored by the allocator.
378  */
379 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
380 			     struct btrfs_root *root,
381 			     struct extent_buffer *buf,
382 			     struct extent_buffer *parent, int parent_slot,
383 			     struct extent_buffer **cow_ret,
384 			     u64 search_start, u64 empty_size)
385 {
386 	struct btrfs_disk_key disk_key;
387 	struct extent_buffer *cow;
388 	int level;
389 	int unlock_orig = 0;
390 	u64 parent_start;
391 
392 	if (*cow_ret == buf)
393 		unlock_orig = 1;
394 
395 	btrfs_assert_tree_locked(buf);
396 
397 	WARN_ON(root->ref_cows && trans->transid !=
398 		root->fs_info->running_transaction->transid);
399 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
400 
401 	level = btrfs_header_level(buf);
402 
403 	if (level == 0)
404 		btrfs_item_key(buf, &disk_key, 0);
405 	else
406 		btrfs_node_key(buf, &disk_key, 0);
407 
408 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
409 		if (parent)
410 			parent_start = parent->start;
411 		else
412 			parent_start = 0;
413 	} else
414 		parent_start = 0;
415 
416 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
417 				     root->root_key.objectid, &disk_key,
418 				     level, search_start, empty_size);
419 	if (IS_ERR(cow))
420 		return PTR_ERR(cow);
421 
422 	/* cow is set to blocking by btrfs_init_new_buffer */
423 
424 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
425 	btrfs_set_header_bytenr(cow, cow->start);
426 	btrfs_set_header_generation(cow, trans->transid);
427 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
428 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
429 				     BTRFS_HEADER_FLAG_RELOC);
430 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
431 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
432 	else
433 		btrfs_set_header_owner(cow, root->root_key.objectid);
434 
435 	write_extent_buffer(cow, root->fs_info->fsid,
436 			    (unsigned long)btrfs_header_fsid(cow),
437 			    BTRFS_FSID_SIZE);
438 
439 	update_ref_for_cow(trans, root, buf, cow);
440 
441 	if (buf == root->node) {
442 		WARN_ON(parent && parent != buf);
443 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
444 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
445 			parent_start = buf->start;
446 		else
447 			parent_start = 0;
448 
449 		spin_lock(&root->node_lock);
450 		root->node = cow;
451 		extent_buffer_get(cow);
452 		spin_unlock(&root->node_lock);
453 
454 		btrfs_free_extent(trans, root, buf->start, buf->len,
455 				  parent_start, root->root_key.objectid,
456 				  level, 0);
457 		free_extent_buffer(buf);
458 		add_root_to_dirty_list(root);
459 	} else {
460 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
461 			parent_start = parent->start;
462 		else
463 			parent_start = 0;
464 
465 		WARN_ON(trans->transid != btrfs_header_generation(parent));
466 		btrfs_set_node_blockptr(parent, parent_slot,
467 					cow->start);
468 		btrfs_set_node_ptr_generation(parent, parent_slot,
469 					      trans->transid);
470 		btrfs_mark_buffer_dirty(parent);
471 		btrfs_free_extent(trans, root, buf->start, buf->len,
472 				  parent_start, root->root_key.objectid,
473 				  level, 0);
474 	}
475 	if (unlock_orig)
476 		btrfs_tree_unlock(buf);
477 	free_extent_buffer(buf);
478 	btrfs_mark_buffer_dirty(cow);
479 	*cow_ret = cow;
480 	return 0;
481 }
482 
483 static inline int should_cow_block(struct btrfs_trans_handle *trans,
484 				   struct btrfs_root *root,
485 				   struct extent_buffer *buf)
486 {
487 	if (btrfs_header_generation(buf) == trans->transid &&
488 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
489 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
490 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
491 		return 0;
492 	return 1;
493 }
494 
495 /*
496  * cows a single block, see __btrfs_cow_block for the real work.
497  * This version of it has extra checks so that a block isn't cow'd more than
498  * once per transaction, as long as it hasn't been written yet
499  */
500 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
501 		    struct btrfs_root *root, struct extent_buffer *buf,
502 		    struct extent_buffer *parent, int parent_slot,
503 		    struct extent_buffer **cow_ret)
504 {
505 	u64 search_start;
506 	int ret;
507 
508 	if (trans->transaction != root->fs_info->running_transaction) {
509 		printk(KERN_CRIT "trans %llu running %llu\n",
510 		       (unsigned long long)trans->transid,
511 		       (unsigned long long)
512 		       root->fs_info->running_transaction->transid);
513 		WARN_ON(1);
514 	}
515 	if (trans->transid != root->fs_info->generation) {
516 		printk(KERN_CRIT "trans %llu running %llu\n",
517 		       (unsigned long long)trans->transid,
518 		       (unsigned long long)root->fs_info->generation);
519 		WARN_ON(1);
520 	}
521 
522 	if (!should_cow_block(trans, root, buf)) {
523 		*cow_ret = buf;
524 		return 0;
525 	}
526 
527 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
528 
529 	if (parent)
530 		btrfs_set_lock_blocking(parent);
531 	btrfs_set_lock_blocking(buf);
532 
533 	ret = __btrfs_cow_block(trans, root, buf, parent,
534 				 parent_slot, cow_ret, search_start, 0);
535 	return ret;
536 }
537 
538 /*
539  * helper function for defrag to decide if two blocks pointed to by a
540  * node are actually close by
541  */
542 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
543 {
544 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
545 		return 1;
546 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
547 		return 1;
548 	return 0;
549 }
550 
551 /*
552  * compare two keys in a memcmp fashion
553  */
554 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
555 {
556 	struct btrfs_key k1;
557 
558 	btrfs_disk_key_to_cpu(&k1, disk);
559 
560 	return btrfs_comp_cpu_keys(&k1, k2);
561 }
562 
563 /*
564  * same as comp_keys only with two btrfs_key's
565  */
566 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
567 {
568 	if (k1->objectid > k2->objectid)
569 		return 1;
570 	if (k1->objectid < k2->objectid)
571 		return -1;
572 	if (k1->type > k2->type)
573 		return 1;
574 	if (k1->type < k2->type)
575 		return -1;
576 	if (k1->offset > k2->offset)
577 		return 1;
578 	if (k1->offset < k2->offset)
579 		return -1;
580 	return 0;
581 }
582 
583 /*
584  * this is used by the defrag code to go through all the
585  * leaves pointed to by a node and reallocate them so that
586  * disk order is close to key order
587  */
588 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
589 		       struct btrfs_root *root, struct extent_buffer *parent,
590 		       int start_slot, int cache_only, u64 *last_ret,
591 		       struct btrfs_key *progress)
592 {
593 	struct extent_buffer *cur;
594 	u64 blocknr;
595 	u64 gen;
596 	u64 search_start = *last_ret;
597 	u64 last_block = 0;
598 	u64 other;
599 	u32 parent_nritems;
600 	int end_slot;
601 	int i;
602 	int err = 0;
603 	int parent_level;
604 	int uptodate;
605 	u32 blocksize;
606 	int progress_passed = 0;
607 	struct btrfs_disk_key disk_key;
608 
609 	parent_level = btrfs_header_level(parent);
610 	if (cache_only && parent_level != 1)
611 		return 0;
612 
613 	if (trans->transaction != root->fs_info->running_transaction)
614 		WARN_ON(1);
615 	if (trans->transid != root->fs_info->generation)
616 		WARN_ON(1);
617 
618 	parent_nritems = btrfs_header_nritems(parent);
619 	blocksize = btrfs_level_size(root, parent_level - 1);
620 	end_slot = parent_nritems;
621 
622 	if (parent_nritems == 1)
623 		return 0;
624 
625 	btrfs_set_lock_blocking(parent);
626 
627 	for (i = start_slot; i < end_slot; i++) {
628 		int close = 1;
629 
630 		if (!parent->map_token) {
631 			map_extent_buffer(parent,
632 					btrfs_node_key_ptr_offset(i),
633 					sizeof(struct btrfs_key_ptr),
634 					&parent->map_token, &parent->kaddr,
635 					&parent->map_start, &parent->map_len,
636 					KM_USER1);
637 		}
638 		btrfs_node_key(parent, &disk_key, i);
639 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
640 			continue;
641 
642 		progress_passed = 1;
643 		blocknr = btrfs_node_blockptr(parent, i);
644 		gen = btrfs_node_ptr_generation(parent, i);
645 		if (last_block == 0)
646 			last_block = blocknr;
647 
648 		if (i > 0) {
649 			other = btrfs_node_blockptr(parent, i - 1);
650 			close = close_blocks(blocknr, other, blocksize);
651 		}
652 		if (!close && i < end_slot - 2) {
653 			other = btrfs_node_blockptr(parent, i + 1);
654 			close = close_blocks(blocknr, other, blocksize);
655 		}
656 		if (close) {
657 			last_block = blocknr;
658 			continue;
659 		}
660 		if (parent->map_token) {
661 			unmap_extent_buffer(parent, parent->map_token,
662 					    KM_USER1);
663 			parent->map_token = NULL;
664 		}
665 
666 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
667 		if (cur)
668 			uptodate = btrfs_buffer_uptodate(cur, gen);
669 		else
670 			uptodate = 0;
671 		if (!cur || !uptodate) {
672 			if (cache_only) {
673 				free_extent_buffer(cur);
674 				continue;
675 			}
676 			if (!cur) {
677 				cur = read_tree_block(root, blocknr,
678 							 blocksize, gen);
679 			} else if (!uptodate) {
680 				btrfs_read_buffer(cur, gen);
681 			}
682 		}
683 		if (search_start == 0)
684 			search_start = last_block;
685 
686 		btrfs_tree_lock(cur);
687 		btrfs_set_lock_blocking(cur);
688 		err = __btrfs_cow_block(trans, root, cur, parent, i,
689 					&cur, search_start,
690 					min(16 * blocksize,
691 					    (end_slot - i) * blocksize));
692 		if (err) {
693 			btrfs_tree_unlock(cur);
694 			free_extent_buffer(cur);
695 			break;
696 		}
697 		search_start = cur->start;
698 		last_block = cur->start;
699 		*last_ret = search_start;
700 		btrfs_tree_unlock(cur);
701 		free_extent_buffer(cur);
702 	}
703 	if (parent->map_token) {
704 		unmap_extent_buffer(parent, parent->map_token,
705 				    KM_USER1);
706 		parent->map_token = NULL;
707 	}
708 	return err;
709 }
710 
711 /*
712  * The leaf data grows from end-to-front in the node.
713  * this returns the address of the start of the last item,
714  * which is the stop of the leaf data stack
715  */
716 static inline unsigned int leaf_data_end(struct btrfs_root *root,
717 					 struct extent_buffer *leaf)
718 {
719 	u32 nr = btrfs_header_nritems(leaf);
720 	if (nr == 0)
721 		return BTRFS_LEAF_DATA_SIZE(root);
722 	return btrfs_item_offset_nr(leaf, nr - 1);
723 }
724 
725 /*
726  * extra debugging checks to make sure all the items in a key are
727  * well formed and in the proper order
728  */
729 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
730 		      int level)
731 {
732 	struct extent_buffer *parent = NULL;
733 	struct extent_buffer *node = path->nodes[level];
734 	struct btrfs_disk_key parent_key;
735 	struct btrfs_disk_key node_key;
736 	int parent_slot;
737 	int slot;
738 	struct btrfs_key cpukey;
739 	u32 nritems = btrfs_header_nritems(node);
740 
741 	if (path->nodes[level + 1])
742 		parent = path->nodes[level + 1];
743 
744 	slot = path->slots[level];
745 	BUG_ON(nritems == 0);
746 	if (parent) {
747 		parent_slot = path->slots[level + 1];
748 		btrfs_node_key(parent, &parent_key, parent_slot);
749 		btrfs_node_key(node, &node_key, 0);
750 		BUG_ON(memcmp(&parent_key, &node_key,
751 			      sizeof(struct btrfs_disk_key)));
752 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
753 		       btrfs_header_bytenr(node));
754 	}
755 	BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
756 	if (slot != 0) {
757 		btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
758 		btrfs_node_key(node, &node_key, slot);
759 		BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
760 	}
761 	if (slot < nritems - 1) {
762 		btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
763 		btrfs_node_key(node, &node_key, slot);
764 		BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
765 	}
766 	return 0;
767 }
768 
769 /*
770  * extra checking to make sure all the items in a leaf are
771  * well formed and in the proper order
772  */
773 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
774 		      int level)
775 {
776 	struct extent_buffer *leaf = path->nodes[level];
777 	struct extent_buffer *parent = NULL;
778 	int parent_slot;
779 	struct btrfs_key cpukey;
780 	struct btrfs_disk_key parent_key;
781 	struct btrfs_disk_key leaf_key;
782 	int slot = path->slots[0];
783 
784 	u32 nritems = btrfs_header_nritems(leaf);
785 
786 	if (path->nodes[level + 1])
787 		parent = path->nodes[level + 1];
788 
789 	if (nritems == 0)
790 		return 0;
791 
792 	if (parent) {
793 		parent_slot = path->slots[level + 1];
794 		btrfs_node_key(parent, &parent_key, parent_slot);
795 		btrfs_item_key(leaf, &leaf_key, 0);
796 
797 		BUG_ON(memcmp(&parent_key, &leaf_key,
798 		       sizeof(struct btrfs_disk_key)));
799 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
800 		       btrfs_header_bytenr(leaf));
801 	}
802 	if (slot != 0 && slot < nritems - 1) {
803 		btrfs_item_key(leaf, &leaf_key, slot);
804 		btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
805 		if (comp_keys(&leaf_key, &cpukey) <= 0) {
806 			btrfs_print_leaf(root, leaf);
807 			printk(KERN_CRIT "slot %d offset bad key\n", slot);
808 			BUG_ON(1);
809 		}
810 		if (btrfs_item_offset_nr(leaf, slot - 1) !=
811 		       btrfs_item_end_nr(leaf, slot)) {
812 			btrfs_print_leaf(root, leaf);
813 			printk(KERN_CRIT "slot %d offset bad\n", slot);
814 			BUG_ON(1);
815 		}
816 	}
817 	if (slot < nritems - 1) {
818 		btrfs_item_key(leaf, &leaf_key, slot);
819 		btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
820 		BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
821 		if (btrfs_item_offset_nr(leaf, slot) !=
822 			btrfs_item_end_nr(leaf, slot + 1)) {
823 			btrfs_print_leaf(root, leaf);
824 			printk(KERN_CRIT "slot %d offset bad\n", slot);
825 			BUG_ON(1);
826 		}
827 	}
828 	BUG_ON(btrfs_item_offset_nr(leaf, 0) +
829 	       btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
830 	return 0;
831 }
832 
833 static noinline int check_block(struct btrfs_root *root,
834 				struct btrfs_path *path, int level)
835 {
836 	return 0;
837 	if (level == 0)
838 		return check_leaf(root, path, level);
839 	return check_node(root, path, level);
840 }
841 
842 /*
843  * search for key in the extent_buffer.  The items start at offset p,
844  * and they are item_size apart.  There are 'max' items in p.
845  *
846  * the slot in the array is returned via slot, and it points to
847  * the place where you would insert key if it is not found in
848  * the array.
849  *
850  * slot may point to max if the key is bigger than all of the keys
851  */
852 static noinline int generic_bin_search(struct extent_buffer *eb,
853 				       unsigned long p,
854 				       int item_size, struct btrfs_key *key,
855 				       int max, int *slot)
856 {
857 	int low = 0;
858 	int high = max;
859 	int mid;
860 	int ret;
861 	struct btrfs_disk_key *tmp = NULL;
862 	struct btrfs_disk_key unaligned;
863 	unsigned long offset;
864 	char *map_token = NULL;
865 	char *kaddr = NULL;
866 	unsigned long map_start = 0;
867 	unsigned long map_len = 0;
868 	int err;
869 
870 	while (low < high) {
871 		mid = (low + high) / 2;
872 		offset = p + mid * item_size;
873 
874 		if (!map_token || offset < map_start ||
875 		    (offset + sizeof(struct btrfs_disk_key)) >
876 		    map_start + map_len) {
877 			if (map_token) {
878 				unmap_extent_buffer(eb, map_token, KM_USER0);
879 				map_token = NULL;
880 			}
881 
882 			err = map_private_extent_buffer(eb, offset,
883 						sizeof(struct btrfs_disk_key),
884 						&map_token, &kaddr,
885 						&map_start, &map_len, KM_USER0);
886 
887 			if (!err) {
888 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
889 							map_start);
890 			} else {
891 				read_extent_buffer(eb, &unaligned,
892 						   offset, sizeof(unaligned));
893 				tmp = &unaligned;
894 			}
895 
896 		} else {
897 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
898 							map_start);
899 		}
900 		ret = comp_keys(tmp, key);
901 
902 		if (ret < 0)
903 			low = mid + 1;
904 		else if (ret > 0)
905 			high = mid;
906 		else {
907 			*slot = mid;
908 			if (map_token)
909 				unmap_extent_buffer(eb, map_token, KM_USER0);
910 			return 0;
911 		}
912 	}
913 	*slot = low;
914 	if (map_token)
915 		unmap_extent_buffer(eb, map_token, KM_USER0);
916 	return 1;
917 }
918 
919 /*
920  * simple bin_search frontend that does the right thing for
921  * leaves vs nodes
922  */
923 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
924 		      int level, int *slot)
925 {
926 	if (level == 0) {
927 		return generic_bin_search(eb,
928 					  offsetof(struct btrfs_leaf, items),
929 					  sizeof(struct btrfs_item),
930 					  key, btrfs_header_nritems(eb),
931 					  slot);
932 	} else {
933 		return generic_bin_search(eb,
934 					  offsetof(struct btrfs_node, ptrs),
935 					  sizeof(struct btrfs_key_ptr),
936 					  key, btrfs_header_nritems(eb),
937 					  slot);
938 	}
939 	return -1;
940 }
941 
942 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
943 		     int level, int *slot)
944 {
945 	return bin_search(eb, key, level, slot);
946 }
947 
948 /* given a node and slot number, this reads the blocks it points to.  The
949  * extent buffer is returned with a reference taken (but unlocked).
950  * NULL is returned on error.
951  */
952 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
953 				   struct extent_buffer *parent, int slot)
954 {
955 	int level = btrfs_header_level(parent);
956 	if (slot < 0)
957 		return NULL;
958 	if (slot >= btrfs_header_nritems(parent))
959 		return NULL;
960 
961 	BUG_ON(level == 0);
962 
963 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
964 		       btrfs_level_size(root, level - 1),
965 		       btrfs_node_ptr_generation(parent, slot));
966 }
967 
968 /*
969  * node level balancing, used to make sure nodes are in proper order for
970  * item deletion.  We balance from the top down, so we have to make sure
971  * that a deletion won't leave an node completely empty later on.
972  */
973 static noinline int balance_level(struct btrfs_trans_handle *trans,
974 			 struct btrfs_root *root,
975 			 struct btrfs_path *path, int level)
976 {
977 	struct extent_buffer *right = NULL;
978 	struct extent_buffer *mid;
979 	struct extent_buffer *left = NULL;
980 	struct extent_buffer *parent = NULL;
981 	int ret = 0;
982 	int wret;
983 	int pslot;
984 	int orig_slot = path->slots[level];
985 	int err_on_enospc = 0;
986 	u64 orig_ptr;
987 
988 	if (level == 0)
989 		return 0;
990 
991 	mid = path->nodes[level];
992 
993 	WARN_ON(!path->locks[level]);
994 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
995 
996 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
997 
998 	if (level < BTRFS_MAX_LEVEL - 1)
999 		parent = path->nodes[level + 1];
1000 	pslot = path->slots[level + 1];
1001 
1002 	/*
1003 	 * deal with the case where there is only one pointer in the root
1004 	 * by promoting the node below to a root
1005 	 */
1006 	if (!parent) {
1007 		struct extent_buffer *child;
1008 
1009 		if (btrfs_header_nritems(mid) != 1)
1010 			return 0;
1011 
1012 		/* promote the child to a root */
1013 		child = read_node_slot(root, mid, 0);
1014 		BUG_ON(!child);
1015 		btrfs_tree_lock(child);
1016 		btrfs_set_lock_blocking(child);
1017 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1018 		BUG_ON(ret);
1019 
1020 		spin_lock(&root->node_lock);
1021 		root->node = child;
1022 		spin_unlock(&root->node_lock);
1023 
1024 		add_root_to_dirty_list(root);
1025 		btrfs_tree_unlock(child);
1026 
1027 		path->locks[level] = 0;
1028 		path->nodes[level] = NULL;
1029 		clean_tree_block(trans, root, mid);
1030 		btrfs_tree_unlock(mid);
1031 		/* once for the path */
1032 		free_extent_buffer(mid);
1033 		ret = btrfs_free_extent(trans, root, mid->start, mid->len,
1034 					0, root->root_key.objectid, level, 1);
1035 		/* once for the root ptr */
1036 		free_extent_buffer(mid);
1037 		return ret;
1038 	}
1039 	if (btrfs_header_nritems(mid) >
1040 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1041 		return 0;
1042 
1043 	if (btrfs_header_nritems(mid) < 2)
1044 		err_on_enospc = 1;
1045 
1046 	left = read_node_slot(root, parent, pslot - 1);
1047 	if (left) {
1048 		btrfs_tree_lock(left);
1049 		btrfs_set_lock_blocking(left);
1050 		wret = btrfs_cow_block(trans, root, left,
1051 				       parent, pslot - 1, &left);
1052 		if (wret) {
1053 			ret = wret;
1054 			goto enospc;
1055 		}
1056 	}
1057 	right = read_node_slot(root, parent, pslot + 1);
1058 	if (right) {
1059 		btrfs_tree_lock(right);
1060 		btrfs_set_lock_blocking(right);
1061 		wret = btrfs_cow_block(trans, root, right,
1062 				       parent, pslot + 1, &right);
1063 		if (wret) {
1064 			ret = wret;
1065 			goto enospc;
1066 		}
1067 	}
1068 
1069 	/* first, try to make some room in the middle buffer */
1070 	if (left) {
1071 		orig_slot += btrfs_header_nritems(left);
1072 		wret = push_node_left(trans, root, left, mid, 1);
1073 		if (wret < 0)
1074 			ret = wret;
1075 		if (btrfs_header_nritems(mid) < 2)
1076 			err_on_enospc = 1;
1077 	}
1078 
1079 	/*
1080 	 * then try to empty the right most buffer into the middle
1081 	 */
1082 	if (right) {
1083 		wret = push_node_left(trans, root, mid, right, 1);
1084 		if (wret < 0 && wret != -ENOSPC)
1085 			ret = wret;
1086 		if (btrfs_header_nritems(right) == 0) {
1087 			u64 bytenr = right->start;
1088 			u32 blocksize = right->len;
1089 
1090 			clean_tree_block(trans, root, right);
1091 			btrfs_tree_unlock(right);
1092 			free_extent_buffer(right);
1093 			right = NULL;
1094 			wret = del_ptr(trans, root, path, level + 1, pslot +
1095 				       1);
1096 			if (wret)
1097 				ret = wret;
1098 			wret = btrfs_free_extent(trans, root, bytenr,
1099 						 blocksize, 0,
1100 						 root->root_key.objectid,
1101 						 level, 0);
1102 			if (wret)
1103 				ret = wret;
1104 		} else {
1105 			struct btrfs_disk_key right_key;
1106 			btrfs_node_key(right, &right_key, 0);
1107 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1108 			btrfs_mark_buffer_dirty(parent);
1109 		}
1110 	}
1111 	if (btrfs_header_nritems(mid) == 1) {
1112 		/*
1113 		 * we're not allowed to leave a node with one item in the
1114 		 * tree during a delete.  A deletion from lower in the tree
1115 		 * could try to delete the only pointer in this node.
1116 		 * So, pull some keys from the left.
1117 		 * There has to be a left pointer at this point because
1118 		 * otherwise we would have pulled some pointers from the
1119 		 * right
1120 		 */
1121 		BUG_ON(!left);
1122 		wret = balance_node_right(trans, root, mid, left);
1123 		if (wret < 0) {
1124 			ret = wret;
1125 			goto enospc;
1126 		}
1127 		if (wret == 1) {
1128 			wret = push_node_left(trans, root, left, mid, 1);
1129 			if (wret < 0)
1130 				ret = wret;
1131 		}
1132 		BUG_ON(wret == 1);
1133 	}
1134 	if (btrfs_header_nritems(mid) == 0) {
1135 		/* we've managed to empty the middle node, drop it */
1136 		u64 bytenr = mid->start;
1137 		u32 blocksize = mid->len;
1138 
1139 		clean_tree_block(trans, root, mid);
1140 		btrfs_tree_unlock(mid);
1141 		free_extent_buffer(mid);
1142 		mid = NULL;
1143 		wret = del_ptr(trans, root, path, level + 1, pslot);
1144 		if (wret)
1145 			ret = wret;
1146 		wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1147 					 0, root->root_key.objectid,
1148 					 level, 0);
1149 		if (wret)
1150 			ret = wret;
1151 	} else {
1152 		/* update the parent key to reflect our changes */
1153 		struct btrfs_disk_key mid_key;
1154 		btrfs_node_key(mid, &mid_key, 0);
1155 		btrfs_set_node_key(parent, &mid_key, pslot);
1156 		btrfs_mark_buffer_dirty(parent);
1157 	}
1158 
1159 	/* update the path */
1160 	if (left) {
1161 		if (btrfs_header_nritems(left) > orig_slot) {
1162 			extent_buffer_get(left);
1163 			/* left was locked after cow */
1164 			path->nodes[level] = left;
1165 			path->slots[level + 1] -= 1;
1166 			path->slots[level] = orig_slot;
1167 			if (mid) {
1168 				btrfs_tree_unlock(mid);
1169 				free_extent_buffer(mid);
1170 			}
1171 		} else {
1172 			orig_slot -= btrfs_header_nritems(left);
1173 			path->slots[level] = orig_slot;
1174 		}
1175 	}
1176 	/* double check we haven't messed things up */
1177 	check_block(root, path, level);
1178 	if (orig_ptr !=
1179 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1180 		BUG();
1181 enospc:
1182 	if (right) {
1183 		btrfs_tree_unlock(right);
1184 		free_extent_buffer(right);
1185 	}
1186 	if (left) {
1187 		if (path->nodes[level] != left)
1188 			btrfs_tree_unlock(left);
1189 		free_extent_buffer(left);
1190 	}
1191 	return ret;
1192 }
1193 
1194 /* Node balancing for insertion.  Here we only split or push nodes around
1195  * when they are completely full.  This is also done top down, so we
1196  * have to be pessimistic.
1197  */
1198 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1199 					  struct btrfs_root *root,
1200 					  struct btrfs_path *path, int level)
1201 {
1202 	struct extent_buffer *right = NULL;
1203 	struct extent_buffer *mid;
1204 	struct extent_buffer *left = NULL;
1205 	struct extent_buffer *parent = NULL;
1206 	int ret = 0;
1207 	int wret;
1208 	int pslot;
1209 	int orig_slot = path->slots[level];
1210 	u64 orig_ptr;
1211 
1212 	if (level == 0)
1213 		return 1;
1214 
1215 	mid = path->nodes[level];
1216 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1217 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1218 
1219 	if (level < BTRFS_MAX_LEVEL - 1)
1220 		parent = path->nodes[level + 1];
1221 	pslot = path->slots[level + 1];
1222 
1223 	if (!parent)
1224 		return 1;
1225 
1226 	left = read_node_slot(root, parent, pslot - 1);
1227 
1228 	/* first, try to make some room in the middle buffer */
1229 	if (left) {
1230 		u32 left_nr;
1231 
1232 		btrfs_tree_lock(left);
1233 		btrfs_set_lock_blocking(left);
1234 
1235 		left_nr = btrfs_header_nritems(left);
1236 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1237 			wret = 1;
1238 		} else {
1239 			ret = btrfs_cow_block(trans, root, left, parent,
1240 					      pslot - 1, &left);
1241 			if (ret)
1242 				wret = 1;
1243 			else {
1244 				wret = push_node_left(trans, root,
1245 						      left, mid, 0);
1246 			}
1247 		}
1248 		if (wret < 0)
1249 			ret = wret;
1250 		if (wret == 0) {
1251 			struct btrfs_disk_key disk_key;
1252 			orig_slot += left_nr;
1253 			btrfs_node_key(mid, &disk_key, 0);
1254 			btrfs_set_node_key(parent, &disk_key, pslot);
1255 			btrfs_mark_buffer_dirty(parent);
1256 			if (btrfs_header_nritems(left) > orig_slot) {
1257 				path->nodes[level] = left;
1258 				path->slots[level + 1] -= 1;
1259 				path->slots[level] = orig_slot;
1260 				btrfs_tree_unlock(mid);
1261 				free_extent_buffer(mid);
1262 			} else {
1263 				orig_slot -=
1264 					btrfs_header_nritems(left);
1265 				path->slots[level] = orig_slot;
1266 				btrfs_tree_unlock(left);
1267 				free_extent_buffer(left);
1268 			}
1269 			return 0;
1270 		}
1271 		btrfs_tree_unlock(left);
1272 		free_extent_buffer(left);
1273 	}
1274 	right = read_node_slot(root, parent, pslot + 1);
1275 
1276 	/*
1277 	 * then try to empty the right most buffer into the middle
1278 	 */
1279 	if (right) {
1280 		u32 right_nr;
1281 
1282 		btrfs_tree_lock(right);
1283 		btrfs_set_lock_blocking(right);
1284 
1285 		right_nr = btrfs_header_nritems(right);
1286 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1287 			wret = 1;
1288 		} else {
1289 			ret = btrfs_cow_block(trans, root, right,
1290 					      parent, pslot + 1,
1291 					      &right);
1292 			if (ret)
1293 				wret = 1;
1294 			else {
1295 				wret = balance_node_right(trans, root,
1296 							  right, mid);
1297 			}
1298 		}
1299 		if (wret < 0)
1300 			ret = wret;
1301 		if (wret == 0) {
1302 			struct btrfs_disk_key disk_key;
1303 
1304 			btrfs_node_key(right, &disk_key, 0);
1305 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1306 			btrfs_mark_buffer_dirty(parent);
1307 
1308 			if (btrfs_header_nritems(mid) <= orig_slot) {
1309 				path->nodes[level] = right;
1310 				path->slots[level + 1] += 1;
1311 				path->slots[level] = orig_slot -
1312 					btrfs_header_nritems(mid);
1313 				btrfs_tree_unlock(mid);
1314 				free_extent_buffer(mid);
1315 			} else {
1316 				btrfs_tree_unlock(right);
1317 				free_extent_buffer(right);
1318 			}
1319 			return 0;
1320 		}
1321 		btrfs_tree_unlock(right);
1322 		free_extent_buffer(right);
1323 	}
1324 	return 1;
1325 }
1326 
1327 /*
1328  * readahead one full node of leaves, finding things that are close
1329  * to the block in 'slot', and triggering ra on them.
1330  */
1331 static void reada_for_search(struct btrfs_root *root,
1332 			     struct btrfs_path *path,
1333 			     int level, int slot, u64 objectid)
1334 {
1335 	struct extent_buffer *node;
1336 	struct btrfs_disk_key disk_key;
1337 	u32 nritems;
1338 	u64 search;
1339 	u64 target;
1340 	u64 nread = 0;
1341 	int direction = path->reada;
1342 	struct extent_buffer *eb;
1343 	u32 nr;
1344 	u32 blocksize;
1345 	u32 nscan = 0;
1346 
1347 	if (level != 1)
1348 		return;
1349 
1350 	if (!path->nodes[level])
1351 		return;
1352 
1353 	node = path->nodes[level];
1354 
1355 	search = btrfs_node_blockptr(node, slot);
1356 	blocksize = btrfs_level_size(root, level - 1);
1357 	eb = btrfs_find_tree_block(root, search, blocksize);
1358 	if (eb) {
1359 		free_extent_buffer(eb);
1360 		return;
1361 	}
1362 
1363 	target = search;
1364 
1365 	nritems = btrfs_header_nritems(node);
1366 	nr = slot;
1367 	while (1) {
1368 		if (direction < 0) {
1369 			if (nr == 0)
1370 				break;
1371 			nr--;
1372 		} else if (direction > 0) {
1373 			nr++;
1374 			if (nr >= nritems)
1375 				break;
1376 		}
1377 		if (path->reada < 0 && objectid) {
1378 			btrfs_node_key(node, &disk_key, nr);
1379 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1380 				break;
1381 		}
1382 		search = btrfs_node_blockptr(node, nr);
1383 		if ((search <= target && target - search <= 65536) ||
1384 		    (search > target && search - target <= 65536)) {
1385 			readahead_tree_block(root, search, blocksize,
1386 				     btrfs_node_ptr_generation(node, nr));
1387 			nread += blocksize;
1388 		}
1389 		nscan++;
1390 		if ((nread > 65536 || nscan > 32))
1391 			break;
1392 	}
1393 }
1394 
1395 /*
1396  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1397  * cache
1398  */
1399 static noinline int reada_for_balance(struct btrfs_root *root,
1400 				      struct btrfs_path *path, int level)
1401 {
1402 	int slot;
1403 	int nritems;
1404 	struct extent_buffer *parent;
1405 	struct extent_buffer *eb;
1406 	u64 gen;
1407 	u64 block1 = 0;
1408 	u64 block2 = 0;
1409 	int ret = 0;
1410 	int blocksize;
1411 
1412 	parent = path->nodes[level + 1];
1413 	if (!parent)
1414 		return 0;
1415 
1416 	nritems = btrfs_header_nritems(parent);
1417 	slot = path->slots[level + 1];
1418 	blocksize = btrfs_level_size(root, level);
1419 
1420 	if (slot > 0) {
1421 		block1 = btrfs_node_blockptr(parent, slot - 1);
1422 		gen = btrfs_node_ptr_generation(parent, slot - 1);
1423 		eb = btrfs_find_tree_block(root, block1, blocksize);
1424 		if (eb && btrfs_buffer_uptodate(eb, gen))
1425 			block1 = 0;
1426 		free_extent_buffer(eb);
1427 	}
1428 	if (slot + 1 < nritems) {
1429 		block2 = btrfs_node_blockptr(parent, slot + 1);
1430 		gen = btrfs_node_ptr_generation(parent, slot + 1);
1431 		eb = btrfs_find_tree_block(root, block2, blocksize);
1432 		if (eb && btrfs_buffer_uptodate(eb, gen))
1433 			block2 = 0;
1434 		free_extent_buffer(eb);
1435 	}
1436 	if (block1 || block2) {
1437 		ret = -EAGAIN;
1438 
1439 		/* release the whole path */
1440 		btrfs_release_path(root, path);
1441 
1442 		/* read the blocks */
1443 		if (block1)
1444 			readahead_tree_block(root, block1, blocksize, 0);
1445 		if (block2)
1446 			readahead_tree_block(root, block2, blocksize, 0);
1447 
1448 		if (block1) {
1449 			eb = read_tree_block(root, block1, blocksize, 0);
1450 			free_extent_buffer(eb);
1451 		}
1452 		if (block2) {
1453 			eb = read_tree_block(root, block2, blocksize, 0);
1454 			free_extent_buffer(eb);
1455 		}
1456 	}
1457 	return ret;
1458 }
1459 
1460 
1461 /*
1462  * when we walk down the tree, it is usually safe to unlock the higher layers
1463  * in the tree.  The exceptions are when our path goes through slot 0, because
1464  * operations on the tree might require changing key pointers higher up in the
1465  * tree.
1466  *
1467  * callers might also have set path->keep_locks, which tells this code to keep
1468  * the lock if the path points to the last slot in the block.  This is part of
1469  * walking through the tree, and selecting the next slot in the higher block.
1470  *
1471  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1472  * if lowest_unlock is 1, level 0 won't be unlocked
1473  */
1474 static noinline void unlock_up(struct btrfs_path *path, int level,
1475 			       int lowest_unlock)
1476 {
1477 	int i;
1478 	int skip_level = level;
1479 	int no_skips = 0;
1480 	struct extent_buffer *t;
1481 
1482 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1483 		if (!path->nodes[i])
1484 			break;
1485 		if (!path->locks[i])
1486 			break;
1487 		if (!no_skips && path->slots[i] == 0) {
1488 			skip_level = i + 1;
1489 			continue;
1490 		}
1491 		if (!no_skips && path->keep_locks) {
1492 			u32 nritems;
1493 			t = path->nodes[i];
1494 			nritems = btrfs_header_nritems(t);
1495 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1496 				skip_level = i + 1;
1497 				continue;
1498 			}
1499 		}
1500 		if (skip_level < i && i >= lowest_unlock)
1501 			no_skips = 1;
1502 
1503 		t = path->nodes[i];
1504 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1505 			btrfs_tree_unlock(t);
1506 			path->locks[i] = 0;
1507 		}
1508 	}
1509 }
1510 
1511 /*
1512  * This releases any locks held in the path starting at level and
1513  * going all the way up to the root.
1514  *
1515  * btrfs_search_slot will keep the lock held on higher nodes in a few
1516  * corner cases, such as COW of the block at slot zero in the node.  This
1517  * ignores those rules, and it should only be called when there are no
1518  * more updates to be done higher up in the tree.
1519  */
1520 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1521 {
1522 	int i;
1523 
1524 	if (path->keep_locks)
1525 		return;
1526 
1527 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1528 		if (!path->nodes[i])
1529 			continue;
1530 		if (!path->locks[i])
1531 			continue;
1532 		btrfs_tree_unlock(path->nodes[i]);
1533 		path->locks[i] = 0;
1534 	}
1535 }
1536 
1537 /*
1538  * helper function for btrfs_search_slot.  The goal is to find a block
1539  * in cache without setting the path to blocking.  If we find the block
1540  * we return zero and the path is unchanged.
1541  *
1542  * If we can't find the block, we set the path blocking and do some
1543  * reada.  -EAGAIN is returned and the search must be repeated.
1544  */
1545 static int
1546 read_block_for_search(struct btrfs_trans_handle *trans,
1547 		       struct btrfs_root *root, struct btrfs_path *p,
1548 		       struct extent_buffer **eb_ret, int level, int slot,
1549 		       struct btrfs_key *key)
1550 {
1551 	u64 blocknr;
1552 	u64 gen;
1553 	u32 blocksize;
1554 	struct extent_buffer *b = *eb_ret;
1555 	struct extent_buffer *tmp;
1556 	int ret;
1557 
1558 	blocknr = btrfs_node_blockptr(b, slot);
1559 	gen = btrfs_node_ptr_generation(b, slot);
1560 	blocksize = btrfs_level_size(root, level - 1);
1561 
1562 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1563 	if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1564 		/*
1565 		 * we found an up to date block without sleeping, return
1566 		 * right away
1567 		 */
1568 		*eb_ret = tmp;
1569 		return 0;
1570 	}
1571 
1572 	/*
1573 	 * reduce lock contention at high levels
1574 	 * of the btree by dropping locks before
1575 	 * we read.  Don't release the lock on the current
1576 	 * level because we need to walk this node to figure
1577 	 * out which blocks to read.
1578 	 */
1579 	btrfs_unlock_up_safe(p, level + 1);
1580 	btrfs_set_path_blocking(p);
1581 
1582 	if (tmp)
1583 		free_extent_buffer(tmp);
1584 	if (p->reada)
1585 		reada_for_search(root, p, level, slot, key->objectid);
1586 
1587 	btrfs_release_path(NULL, p);
1588 
1589 	ret = -EAGAIN;
1590 	tmp = read_tree_block(root, blocknr, blocksize, gen);
1591 	if (tmp) {
1592 		/*
1593 		 * If the read above didn't mark this buffer up to date,
1594 		 * it will never end up being up to date.  Set ret to EIO now
1595 		 * and give up so that our caller doesn't loop forever
1596 		 * on our EAGAINs.
1597 		 */
1598 		if (!btrfs_buffer_uptodate(tmp, 0))
1599 			ret = -EIO;
1600 		free_extent_buffer(tmp);
1601 	}
1602 	return ret;
1603 }
1604 
1605 /*
1606  * helper function for btrfs_search_slot.  This does all of the checks
1607  * for node-level blocks and does any balancing required based on
1608  * the ins_len.
1609  *
1610  * If no extra work was required, zero is returned.  If we had to
1611  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1612  * start over
1613  */
1614 static int
1615 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1616 		       struct btrfs_root *root, struct btrfs_path *p,
1617 		       struct extent_buffer *b, int level, int ins_len)
1618 {
1619 	int ret;
1620 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1621 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1622 		int sret;
1623 
1624 		sret = reada_for_balance(root, p, level);
1625 		if (sret)
1626 			goto again;
1627 
1628 		btrfs_set_path_blocking(p);
1629 		sret = split_node(trans, root, p, level);
1630 		btrfs_clear_path_blocking(p, NULL);
1631 
1632 		BUG_ON(sret > 0);
1633 		if (sret) {
1634 			ret = sret;
1635 			goto done;
1636 		}
1637 		b = p->nodes[level];
1638 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1639 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1640 		int sret;
1641 
1642 		sret = reada_for_balance(root, p, level);
1643 		if (sret)
1644 			goto again;
1645 
1646 		btrfs_set_path_blocking(p);
1647 		sret = balance_level(trans, root, p, level);
1648 		btrfs_clear_path_blocking(p, NULL);
1649 
1650 		if (sret) {
1651 			ret = sret;
1652 			goto done;
1653 		}
1654 		b = p->nodes[level];
1655 		if (!b) {
1656 			btrfs_release_path(NULL, p);
1657 			goto again;
1658 		}
1659 		BUG_ON(btrfs_header_nritems(b) == 1);
1660 	}
1661 	return 0;
1662 
1663 again:
1664 	ret = -EAGAIN;
1665 done:
1666 	return ret;
1667 }
1668 
1669 /*
1670  * look for key in the tree.  path is filled in with nodes along the way
1671  * if key is found, we return zero and you can find the item in the leaf
1672  * level of the path (level 0)
1673  *
1674  * If the key isn't found, the path points to the slot where it should
1675  * be inserted, and 1 is returned.  If there are other errors during the
1676  * search a negative error number is returned.
1677  *
1678  * if ins_len > 0, nodes and leaves will be split as we walk down the
1679  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1680  * possible)
1681  */
1682 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1683 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1684 		      ins_len, int cow)
1685 {
1686 	struct extent_buffer *b;
1687 	int slot;
1688 	int ret;
1689 	int err;
1690 	int level;
1691 	int lowest_unlock = 1;
1692 	u8 lowest_level = 0;
1693 
1694 	lowest_level = p->lowest_level;
1695 	WARN_ON(lowest_level && ins_len > 0);
1696 	WARN_ON(p->nodes[0] != NULL);
1697 
1698 	if (ins_len < 0)
1699 		lowest_unlock = 2;
1700 
1701 again:
1702 	if (p->search_commit_root) {
1703 		b = root->commit_root;
1704 		extent_buffer_get(b);
1705 		if (!p->skip_locking)
1706 			btrfs_tree_lock(b);
1707 	} else {
1708 		if (p->skip_locking)
1709 			b = btrfs_root_node(root);
1710 		else
1711 			b = btrfs_lock_root_node(root);
1712 	}
1713 
1714 	while (b) {
1715 		level = btrfs_header_level(b);
1716 
1717 		/*
1718 		 * setup the path here so we can release it under lock
1719 		 * contention with the cow code
1720 		 */
1721 		p->nodes[level] = b;
1722 		if (!p->skip_locking)
1723 			p->locks[level] = 1;
1724 
1725 		if (cow) {
1726 			/*
1727 			 * if we don't really need to cow this block
1728 			 * then we don't want to set the path blocking,
1729 			 * so we test it here
1730 			 */
1731 			if (!should_cow_block(trans, root, b))
1732 				goto cow_done;
1733 
1734 			btrfs_set_path_blocking(p);
1735 
1736 			err = btrfs_cow_block(trans, root, b,
1737 					      p->nodes[level + 1],
1738 					      p->slots[level + 1], &b);
1739 			if (err) {
1740 				free_extent_buffer(b);
1741 				ret = err;
1742 				goto done;
1743 			}
1744 		}
1745 cow_done:
1746 		BUG_ON(!cow && ins_len);
1747 		if (level != btrfs_header_level(b))
1748 			WARN_ON(1);
1749 		level = btrfs_header_level(b);
1750 
1751 		p->nodes[level] = b;
1752 		if (!p->skip_locking)
1753 			p->locks[level] = 1;
1754 
1755 		btrfs_clear_path_blocking(p, NULL);
1756 
1757 		/*
1758 		 * we have a lock on b and as long as we aren't changing
1759 		 * the tree, there is no way to for the items in b to change.
1760 		 * It is safe to drop the lock on our parent before we
1761 		 * go through the expensive btree search on b.
1762 		 *
1763 		 * If cow is true, then we might be changing slot zero,
1764 		 * which may require changing the parent.  So, we can't
1765 		 * drop the lock until after we know which slot we're
1766 		 * operating on.
1767 		 */
1768 		if (!cow)
1769 			btrfs_unlock_up_safe(p, level + 1);
1770 
1771 		ret = check_block(root, p, level);
1772 		if (ret) {
1773 			ret = -1;
1774 			goto done;
1775 		}
1776 
1777 		ret = bin_search(b, key, level, &slot);
1778 
1779 		if (level != 0) {
1780 			int dec = 0;
1781 			if (ret && slot > 0) {
1782 				dec = 1;
1783 				slot -= 1;
1784 			}
1785 			p->slots[level] = slot;
1786 			err = setup_nodes_for_search(trans, root, p, b, level,
1787 						     ins_len);
1788 			if (err == -EAGAIN)
1789 				goto again;
1790 			if (err) {
1791 				ret = err;
1792 				goto done;
1793 			}
1794 			b = p->nodes[level];
1795 			slot = p->slots[level];
1796 
1797 			unlock_up(p, level, lowest_unlock);
1798 
1799 			if (level == lowest_level) {
1800 				if (dec)
1801 					p->slots[level]++;
1802 				goto done;
1803 			}
1804 
1805 			err = read_block_for_search(trans, root, p,
1806 						    &b, level, slot, key);
1807 			if (err == -EAGAIN)
1808 				goto again;
1809 			if (err) {
1810 				ret = err;
1811 				goto done;
1812 			}
1813 
1814 			if (!p->skip_locking) {
1815 				btrfs_clear_path_blocking(p, NULL);
1816 				err = btrfs_try_spin_lock(b);
1817 
1818 				if (!err) {
1819 					btrfs_set_path_blocking(p);
1820 					btrfs_tree_lock(b);
1821 					btrfs_clear_path_blocking(p, b);
1822 				}
1823 			}
1824 		} else {
1825 			p->slots[level] = slot;
1826 			if (ins_len > 0 &&
1827 			    btrfs_leaf_free_space(root, b) < ins_len) {
1828 				btrfs_set_path_blocking(p);
1829 				err = split_leaf(trans, root, key,
1830 						 p, ins_len, ret == 0);
1831 				btrfs_clear_path_blocking(p, NULL);
1832 
1833 				BUG_ON(err > 0);
1834 				if (err) {
1835 					ret = err;
1836 					goto done;
1837 				}
1838 			}
1839 			if (!p->search_for_split)
1840 				unlock_up(p, level, lowest_unlock);
1841 			goto done;
1842 		}
1843 	}
1844 	ret = 1;
1845 done:
1846 	/*
1847 	 * we don't really know what they plan on doing with the path
1848 	 * from here on, so for now just mark it as blocking
1849 	 */
1850 	if (!p->leave_spinning)
1851 		btrfs_set_path_blocking(p);
1852 	if (ret < 0)
1853 		btrfs_release_path(root, p);
1854 	return ret;
1855 }
1856 
1857 /*
1858  * adjust the pointers going up the tree, starting at level
1859  * making sure the right key of each node is points to 'key'.
1860  * This is used after shifting pointers to the left, so it stops
1861  * fixing up pointers when a given leaf/node is not in slot 0 of the
1862  * higher levels
1863  *
1864  * If this fails to write a tree block, it returns -1, but continues
1865  * fixing up the blocks in ram so the tree is consistent.
1866  */
1867 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1868 			  struct btrfs_root *root, struct btrfs_path *path,
1869 			  struct btrfs_disk_key *key, int level)
1870 {
1871 	int i;
1872 	int ret = 0;
1873 	struct extent_buffer *t;
1874 
1875 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1876 		int tslot = path->slots[i];
1877 		if (!path->nodes[i])
1878 			break;
1879 		t = path->nodes[i];
1880 		btrfs_set_node_key(t, key, tslot);
1881 		btrfs_mark_buffer_dirty(path->nodes[i]);
1882 		if (tslot != 0)
1883 			break;
1884 	}
1885 	return ret;
1886 }
1887 
1888 /*
1889  * update item key.
1890  *
1891  * This function isn't completely safe. It's the caller's responsibility
1892  * that the new key won't break the order
1893  */
1894 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1895 			    struct btrfs_root *root, struct btrfs_path *path,
1896 			    struct btrfs_key *new_key)
1897 {
1898 	struct btrfs_disk_key disk_key;
1899 	struct extent_buffer *eb;
1900 	int slot;
1901 
1902 	eb = path->nodes[0];
1903 	slot = path->slots[0];
1904 	if (slot > 0) {
1905 		btrfs_item_key(eb, &disk_key, slot - 1);
1906 		if (comp_keys(&disk_key, new_key) >= 0)
1907 			return -1;
1908 	}
1909 	if (slot < btrfs_header_nritems(eb) - 1) {
1910 		btrfs_item_key(eb, &disk_key, slot + 1);
1911 		if (comp_keys(&disk_key, new_key) <= 0)
1912 			return -1;
1913 	}
1914 
1915 	btrfs_cpu_key_to_disk(&disk_key, new_key);
1916 	btrfs_set_item_key(eb, &disk_key, slot);
1917 	btrfs_mark_buffer_dirty(eb);
1918 	if (slot == 0)
1919 		fixup_low_keys(trans, root, path, &disk_key, 1);
1920 	return 0;
1921 }
1922 
1923 /*
1924  * try to push data from one node into the next node left in the
1925  * tree.
1926  *
1927  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1928  * error, and > 0 if there was no room in the left hand block.
1929  */
1930 static int push_node_left(struct btrfs_trans_handle *trans,
1931 			  struct btrfs_root *root, struct extent_buffer *dst,
1932 			  struct extent_buffer *src, int empty)
1933 {
1934 	int push_items = 0;
1935 	int src_nritems;
1936 	int dst_nritems;
1937 	int ret = 0;
1938 
1939 	src_nritems = btrfs_header_nritems(src);
1940 	dst_nritems = btrfs_header_nritems(dst);
1941 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1942 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1943 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1944 
1945 	if (!empty && src_nritems <= 8)
1946 		return 1;
1947 
1948 	if (push_items <= 0)
1949 		return 1;
1950 
1951 	if (empty) {
1952 		push_items = min(src_nritems, push_items);
1953 		if (push_items < src_nritems) {
1954 			/* leave at least 8 pointers in the node if
1955 			 * we aren't going to empty it
1956 			 */
1957 			if (src_nritems - push_items < 8) {
1958 				if (push_items <= 8)
1959 					return 1;
1960 				push_items -= 8;
1961 			}
1962 		}
1963 	} else
1964 		push_items = min(src_nritems - 8, push_items);
1965 
1966 	copy_extent_buffer(dst, src,
1967 			   btrfs_node_key_ptr_offset(dst_nritems),
1968 			   btrfs_node_key_ptr_offset(0),
1969 			   push_items * sizeof(struct btrfs_key_ptr));
1970 
1971 	if (push_items < src_nritems) {
1972 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1973 				      btrfs_node_key_ptr_offset(push_items),
1974 				      (src_nritems - push_items) *
1975 				      sizeof(struct btrfs_key_ptr));
1976 	}
1977 	btrfs_set_header_nritems(src, src_nritems - push_items);
1978 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1979 	btrfs_mark_buffer_dirty(src);
1980 	btrfs_mark_buffer_dirty(dst);
1981 
1982 	return ret;
1983 }
1984 
1985 /*
1986  * try to push data from one node into the next node right in the
1987  * tree.
1988  *
1989  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1990  * error, and > 0 if there was no room in the right hand block.
1991  *
1992  * this will  only push up to 1/2 the contents of the left node over
1993  */
1994 static int balance_node_right(struct btrfs_trans_handle *trans,
1995 			      struct btrfs_root *root,
1996 			      struct extent_buffer *dst,
1997 			      struct extent_buffer *src)
1998 {
1999 	int push_items = 0;
2000 	int max_push;
2001 	int src_nritems;
2002 	int dst_nritems;
2003 	int ret = 0;
2004 
2005 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2006 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2007 
2008 	src_nritems = btrfs_header_nritems(src);
2009 	dst_nritems = btrfs_header_nritems(dst);
2010 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2011 	if (push_items <= 0)
2012 		return 1;
2013 
2014 	if (src_nritems < 4)
2015 		return 1;
2016 
2017 	max_push = src_nritems / 2 + 1;
2018 	/* don't try to empty the node */
2019 	if (max_push >= src_nritems)
2020 		return 1;
2021 
2022 	if (max_push < push_items)
2023 		push_items = max_push;
2024 
2025 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2026 				      btrfs_node_key_ptr_offset(0),
2027 				      (dst_nritems) *
2028 				      sizeof(struct btrfs_key_ptr));
2029 
2030 	copy_extent_buffer(dst, src,
2031 			   btrfs_node_key_ptr_offset(0),
2032 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2033 			   push_items * sizeof(struct btrfs_key_ptr));
2034 
2035 	btrfs_set_header_nritems(src, src_nritems - push_items);
2036 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2037 
2038 	btrfs_mark_buffer_dirty(src);
2039 	btrfs_mark_buffer_dirty(dst);
2040 
2041 	return ret;
2042 }
2043 
2044 /*
2045  * helper function to insert a new root level in the tree.
2046  * A new node is allocated, and a single item is inserted to
2047  * point to the existing root
2048  *
2049  * returns zero on success or < 0 on failure.
2050  */
2051 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2052 			   struct btrfs_root *root,
2053 			   struct btrfs_path *path, int level)
2054 {
2055 	u64 lower_gen;
2056 	struct extent_buffer *lower;
2057 	struct extent_buffer *c;
2058 	struct extent_buffer *old;
2059 	struct btrfs_disk_key lower_key;
2060 
2061 	BUG_ON(path->nodes[level]);
2062 	BUG_ON(path->nodes[level-1] != root->node);
2063 
2064 	lower = path->nodes[level-1];
2065 	if (level == 1)
2066 		btrfs_item_key(lower, &lower_key, 0);
2067 	else
2068 		btrfs_node_key(lower, &lower_key, 0);
2069 
2070 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2071 				   root->root_key.objectid, &lower_key,
2072 				   level, root->node->start, 0);
2073 	if (IS_ERR(c))
2074 		return PTR_ERR(c);
2075 
2076 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2077 	btrfs_set_header_nritems(c, 1);
2078 	btrfs_set_header_level(c, level);
2079 	btrfs_set_header_bytenr(c, c->start);
2080 	btrfs_set_header_generation(c, trans->transid);
2081 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2082 	btrfs_set_header_owner(c, root->root_key.objectid);
2083 
2084 	write_extent_buffer(c, root->fs_info->fsid,
2085 			    (unsigned long)btrfs_header_fsid(c),
2086 			    BTRFS_FSID_SIZE);
2087 
2088 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2089 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2090 			    BTRFS_UUID_SIZE);
2091 
2092 	btrfs_set_node_key(c, &lower_key, 0);
2093 	btrfs_set_node_blockptr(c, 0, lower->start);
2094 	lower_gen = btrfs_header_generation(lower);
2095 	WARN_ON(lower_gen != trans->transid);
2096 
2097 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2098 
2099 	btrfs_mark_buffer_dirty(c);
2100 
2101 	spin_lock(&root->node_lock);
2102 	old = root->node;
2103 	root->node = c;
2104 	spin_unlock(&root->node_lock);
2105 
2106 	/* the super has an extra ref to root->node */
2107 	free_extent_buffer(old);
2108 
2109 	add_root_to_dirty_list(root);
2110 	extent_buffer_get(c);
2111 	path->nodes[level] = c;
2112 	path->locks[level] = 1;
2113 	path->slots[level] = 0;
2114 	return 0;
2115 }
2116 
2117 /*
2118  * worker function to insert a single pointer in a node.
2119  * the node should have enough room for the pointer already
2120  *
2121  * slot and level indicate where you want the key to go, and
2122  * blocknr is the block the key points to.
2123  *
2124  * returns zero on success and < 0 on any error
2125  */
2126 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2127 		      *root, struct btrfs_path *path, struct btrfs_disk_key
2128 		      *key, u64 bytenr, int slot, int level)
2129 {
2130 	struct extent_buffer *lower;
2131 	int nritems;
2132 
2133 	BUG_ON(!path->nodes[level]);
2134 	lower = path->nodes[level];
2135 	nritems = btrfs_header_nritems(lower);
2136 	BUG_ON(slot > nritems);
2137 	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2138 		BUG();
2139 	if (slot != nritems) {
2140 		memmove_extent_buffer(lower,
2141 			      btrfs_node_key_ptr_offset(slot + 1),
2142 			      btrfs_node_key_ptr_offset(slot),
2143 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2144 	}
2145 	btrfs_set_node_key(lower, key, slot);
2146 	btrfs_set_node_blockptr(lower, slot, bytenr);
2147 	WARN_ON(trans->transid == 0);
2148 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2149 	btrfs_set_header_nritems(lower, nritems + 1);
2150 	btrfs_mark_buffer_dirty(lower);
2151 	return 0;
2152 }
2153 
2154 /*
2155  * split the node at the specified level in path in two.
2156  * The path is corrected to point to the appropriate node after the split
2157  *
2158  * Before splitting this tries to make some room in the node by pushing
2159  * left and right, if either one works, it returns right away.
2160  *
2161  * returns 0 on success and < 0 on failure
2162  */
2163 static noinline int split_node(struct btrfs_trans_handle *trans,
2164 			       struct btrfs_root *root,
2165 			       struct btrfs_path *path, int level)
2166 {
2167 	struct extent_buffer *c;
2168 	struct extent_buffer *split;
2169 	struct btrfs_disk_key disk_key;
2170 	int mid;
2171 	int ret;
2172 	int wret;
2173 	u32 c_nritems;
2174 
2175 	c = path->nodes[level];
2176 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2177 	if (c == root->node) {
2178 		/* trying to split the root, lets make a new one */
2179 		ret = insert_new_root(trans, root, path, level + 1);
2180 		if (ret)
2181 			return ret;
2182 	} else {
2183 		ret = push_nodes_for_insert(trans, root, path, level);
2184 		c = path->nodes[level];
2185 		if (!ret && btrfs_header_nritems(c) <
2186 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2187 			return 0;
2188 		if (ret < 0)
2189 			return ret;
2190 	}
2191 
2192 	c_nritems = btrfs_header_nritems(c);
2193 	mid = (c_nritems + 1) / 2;
2194 	btrfs_node_key(c, &disk_key, mid);
2195 
2196 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2197 					root->root_key.objectid,
2198 					&disk_key, level, c->start, 0);
2199 	if (IS_ERR(split))
2200 		return PTR_ERR(split);
2201 
2202 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2203 	btrfs_set_header_level(split, btrfs_header_level(c));
2204 	btrfs_set_header_bytenr(split, split->start);
2205 	btrfs_set_header_generation(split, trans->transid);
2206 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2207 	btrfs_set_header_owner(split, root->root_key.objectid);
2208 	write_extent_buffer(split, root->fs_info->fsid,
2209 			    (unsigned long)btrfs_header_fsid(split),
2210 			    BTRFS_FSID_SIZE);
2211 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2212 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2213 			    BTRFS_UUID_SIZE);
2214 
2215 
2216 	copy_extent_buffer(split, c,
2217 			   btrfs_node_key_ptr_offset(0),
2218 			   btrfs_node_key_ptr_offset(mid),
2219 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2220 	btrfs_set_header_nritems(split, c_nritems - mid);
2221 	btrfs_set_header_nritems(c, mid);
2222 	ret = 0;
2223 
2224 	btrfs_mark_buffer_dirty(c);
2225 	btrfs_mark_buffer_dirty(split);
2226 
2227 	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2228 			  path->slots[level + 1] + 1,
2229 			  level + 1);
2230 	if (wret)
2231 		ret = wret;
2232 
2233 	if (path->slots[level] >= mid) {
2234 		path->slots[level] -= mid;
2235 		btrfs_tree_unlock(c);
2236 		free_extent_buffer(c);
2237 		path->nodes[level] = split;
2238 		path->slots[level + 1] += 1;
2239 	} else {
2240 		btrfs_tree_unlock(split);
2241 		free_extent_buffer(split);
2242 	}
2243 	return ret;
2244 }
2245 
2246 /*
2247  * how many bytes are required to store the items in a leaf.  start
2248  * and nr indicate which items in the leaf to check.  This totals up the
2249  * space used both by the item structs and the item data
2250  */
2251 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2252 {
2253 	int data_len;
2254 	int nritems = btrfs_header_nritems(l);
2255 	int end = min(nritems, start + nr) - 1;
2256 
2257 	if (!nr)
2258 		return 0;
2259 	data_len = btrfs_item_end_nr(l, start);
2260 	data_len = data_len - btrfs_item_offset_nr(l, end);
2261 	data_len += sizeof(struct btrfs_item) * nr;
2262 	WARN_ON(data_len < 0);
2263 	return data_len;
2264 }
2265 
2266 /*
2267  * The space between the end of the leaf items and
2268  * the start of the leaf data.  IOW, how much room
2269  * the leaf has left for both items and data
2270  */
2271 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2272 				   struct extent_buffer *leaf)
2273 {
2274 	int nritems = btrfs_header_nritems(leaf);
2275 	int ret;
2276 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2277 	if (ret < 0) {
2278 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2279 		       "used %d nritems %d\n",
2280 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2281 		       leaf_space_used(leaf, 0, nritems), nritems);
2282 	}
2283 	return ret;
2284 }
2285 
2286 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2287 				      struct btrfs_root *root,
2288 				      struct btrfs_path *path,
2289 				      int data_size, int empty,
2290 				      struct extent_buffer *right,
2291 				      int free_space, u32 left_nritems)
2292 {
2293 	struct extent_buffer *left = path->nodes[0];
2294 	struct extent_buffer *upper = path->nodes[1];
2295 	struct btrfs_disk_key disk_key;
2296 	int slot;
2297 	u32 i;
2298 	int push_space = 0;
2299 	int push_items = 0;
2300 	struct btrfs_item *item;
2301 	u32 nr;
2302 	u32 right_nritems;
2303 	u32 data_end;
2304 	u32 this_item_size;
2305 
2306 	if (empty)
2307 		nr = 0;
2308 	else
2309 		nr = 1;
2310 
2311 	if (path->slots[0] >= left_nritems)
2312 		push_space += data_size;
2313 
2314 	slot = path->slots[1];
2315 	i = left_nritems - 1;
2316 	while (i >= nr) {
2317 		item = btrfs_item_nr(left, i);
2318 
2319 		if (!empty && push_items > 0) {
2320 			if (path->slots[0] > i)
2321 				break;
2322 			if (path->slots[0] == i) {
2323 				int space = btrfs_leaf_free_space(root, left);
2324 				if (space + push_space * 2 > free_space)
2325 					break;
2326 			}
2327 		}
2328 
2329 		if (path->slots[0] == i)
2330 			push_space += data_size;
2331 
2332 		if (!left->map_token) {
2333 			map_extent_buffer(left, (unsigned long)item,
2334 					sizeof(struct btrfs_item),
2335 					&left->map_token, &left->kaddr,
2336 					&left->map_start, &left->map_len,
2337 					KM_USER1);
2338 		}
2339 
2340 		this_item_size = btrfs_item_size(left, item);
2341 		if (this_item_size + sizeof(*item) + push_space > free_space)
2342 			break;
2343 
2344 		push_items++;
2345 		push_space += this_item_size + sizeof(*item);
2346 		if (i == 0)
2347 			break;
2348 		i--;
2349 	}
2350 	if (left->map_token) {
2351 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2352 		left->map_token = NULL;
2353 	}
2354 
2355 	if (push_items == 0)
2356 		goto out_unlock;
2357 
2358 	if (!empty && push_items == left_nritems)
2359 		WARN_ON(1);
2360 
2361 	/* push left to right */
2362 	right_nritems = btrfs_header_nritems(right);
2363 
2364 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2365 	push_space -= leaf_data_end(root, left);
2366 
2367 	/* make room in the right data area */
2368 	data_end = leaf_data_end(root, right);
2369 	memmove_extent_buffer(right,
2370 			      btrfs_leaf_data(right) + data_end - push_space,
2371 			      btrfs_leaf_data(right) + data_end,
2372 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2373 
2374 	/* copy from the left data area */
2375 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2376 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2377 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2378 		     push_space);
2379 
2380 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2381 			      btrfs_item_nr_offset(0),
2382 			      right_nritems * sizeof(struct btrfs_item));
2383 
2384 	/* copy the items from left to right */
2385 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2386 		   btrfs_item_nr_offset(left_nritems - push_items),
2387 		   push_items * sizeof(struct btrfs_item));
2388 
2389 	/* update the item pointers */
2390 	right_nritems += push_items;
2391 	btrfs_set_header_nritems(right, right_nritems);
2392 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2393 	for (i = 0; i < right_nritems; i++) {
2394 		item = btrfs_item_nr(right, i);
2395 		if (!right->map_token) {
2396 			map_extent_buffer(right, (unsigned long)item,
2397 					sizeof(struct btrfs_item),
2398 					&right->map_token, &right->kaddr,
2399 					&right->map_start, &right->map_len,
2400 					KM_USER1);
2401 		}
2402 		push_space -= btrfs_item_size(right, item);
2403 		btrfs_set_item_offset(right, item, push_space);
2404 	}
2405 
2406 	if (right->map_token) {
2407 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2408 		right->map_token = NULL;
2409 	}
2410 	left_nritems -= push_items;
2411 	btrfs_set_header_nritems(left, left_nritems);
2412 
2413 	if (left_nritems)
2414 		btrfs_mark_buffer_dirty(left);
2415 	btrfs_mark_buffer_dirty(right);
2416 
2417 	btrfs_item_key(right, &disk_key, 0);
2418 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2419 	btrfs_mark_buffer_dirty(upper);
2420 
2421 	/* then fixup the leaf pointer in the path */
2422 	if (path->slots[0] >= left_nritems) {
2423 		path->slots[0] -= left_nritems;
2424 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2425 			clean_tree_block(trans, root, path->nodes[0]);
2426 		btrfs_tree_unlock(path->nodes[0]);
2427 		free_extent_buffer(path->nodes[0]);
2428 		path->nodes[0] = right;
2429 		path->slots[1] += 1;
2430 	} else {
2431 		btrfs_tree_unlock(right);
2432 		free_extent_buffer(right);
2433 	}
2434 	return 0;
2435 
2436 out_unlock:
2437 	btrfs_tree_unlock(right);
2438 	free_extent_buffer(right);
2439 	return 1;
2440 }
2441 
2442 /*
2443  * push some data in the path leaf to the right, trying to free up at
2444  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2445  *
2446  * returns 1 if the push failed because the other node didn't have enough
2447  * room, 0 if everything worked out and < 0 if there were major errors.
2448  */
2449 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2450 			   *root, struct btrfs_path *path, int data_size,
2451 			   int empty)
2452 {
2453 	struct extent_buffer *left = path->nodes[0];
2454 	struct extent_buffer *right;
2455 	struct extent_buffer *upper;
2456 	int slot;
2457 	int free_space;
2458 	u32 left_nritems;
2459 	int ret;
2460 
2461 	if (!path->nodes[1])
2462 		return 1;
2463 
2464 	slot = path->slots[1];
2465 	upper = path->nodes[1];
2466 	if (slot >= btrfs_header_nritems(upper) - 1)
2467 		return 1;
2468 
2469 	btrfs_assert_tree_locked(path->nodes[1]);
2470 
2471 	right = read_node_slot(root, upper, slot + 1);
2472 	btrfs_tree_lock(right);
2473 	btrfs_set_lock_blocking(right);
2474 
2475 	free_space = btrfs_leaf_free_space(root, right);
2476 	if (free_space < data_size)
2477 		goto out_unlock;
2478 
2479 	/* cow and double check */
2480 	ret = btrfs_cow_block(trans, root, right, upper,
2481 			      slot + 1, &right);
2482 	if (ret)
2483 		goto out_unlock;
2484 
2485 	free_space = btrfs_leaf_free_space(root, right);
2486 	if (free_space < data_size)
2487 		goto out_unlock;
2488 
2489 	left_nritems = btrfs_header_nritems(left);
2490 	if (left_nritems == 0)
2491 		goto out_unlock;
2492 
2493 	return __push_leaf_right(trans, root, path, data_size, empty,
2494 				right, free_space, left_nritems);
2495 out_unlock:
2496 	btrfs_tree_unlock(right);
2497 	free_extent_buffer(right);
2498 	return 1;
2499 }
2500 
2501 /*
2502  * push some data in the path leaf to the left, trying to free up at
2503  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2504  */
2505 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2506 				     struct btrfs_root *root,
2507 				     struct btrfs_path *path, int data_size,
2508 				     int empty, struct extent_buffer *left,
2509 				     int free_space, int right_nritems)
2510 {
2511 	struct btrfs_disk_key disk_key;
2512 	struct extent_buffer *right = path->nodes[0];
2513 	int slot;
2514 	int i;
2515 	int push_space = 0;
2516 	int push_items = 0;
2517 	struct btrfs_item *item;
2518 	u32 old_left_nritems;
2519 	u32 nr;
2520 	int ret = 0;
2521 	int wret;
2522 	u32 this_item_size;
2523 	u32 old_left_item_size;
2524 
2525 	slot = path->slots[1];
2526 
2527 	if (empty)
2528 		nr = right_nritems;
2529 	else
2530 		nr = right_nritems - 1;
2531 
2532 	for (i = 0; i < nr; i++) {
2533 		item = btrfs_item_nr(right, i);
2534 		if (!right->map_token) {
2535 			map_extent_buffer(right, (unsigned long)item,
2536 					sizeof(struct btrfs_item),
2537 					&right->map_token, &right->kaddr,
2538 					&right->map_start, &right->map_len,
2539 					KM_USER1);
2540 		}
2541 
2542 		if (!empty && push_items > 0) {
2543 			if (path->slots[0] < i)
2544 				break;
2545 			if (path->slots[0] == i) {
2546 				int space = btrfs_leaf_free_space(root, right);
2547 				if (space + push_space * 2 > free_space)
2548 					break;
2549 			}
2550 		}
2551 
2552 		if (path->slots[0] == i)
2553 			push_space += data_size;
2554 
2555 		this_item_size = btrfs_item_size(right, item);
2556 		if (this_item_size + sizeof(*item) + push_space > free_space)
2557 			break;
2558 
2559 		push_items++;
2560 		push_space += this_item_size + sizeof(*item);
2561 	}
2562 
2563 	if (right->map_token) {
2564 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2565 		right->map_token = NULL;
2566 	}
2567 
2568 	if (push_items == 0) {
2569 		ret = 1;
2570 		goto out;
2571 	}
2572 	if (!empty && push_items == btrfs_header_nritems(right))
2573 		WARN_ON(1);
2574 
2575 	/* push data from right to left */
2576 	copy_extent_buffer(left, right,
2577 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2578 			   btrfs_item_nr_offset(0),
2579 			   push_items * sizeof(struct btrfs_item));
2580 
2581 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2582 		     btrfs_item_offset_nr(right, push_items - 1);
2583 
2584 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2585 		     leaf_data_end(root, left) - push_space,
2586 		     btrfs_leaf_data(right) +
2587 		     btrfs_item_offset_nr(right, push_items - 1),
2588 		     push_space);
2589 	old_left_nritems = btrfs_header_nritems(left);
2590 	BUG_ON(old_left_nritems <= 0);
2591 
2592 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2593 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2594 		u32 ioff;
2595 
2596 		item = btrfs_item_nr(left, i);
2597 		if (!left->map_token) {
2598 			map_extent_buffer(left, (unsigned long)item,
2599 					sizeof(struct btrfs_item),
2600 					&left->map_token, &left->kaddr,
2601 					&left->map_start, &left->map_len,
2602 					KM_USER1);
2603 		}
2604 
2605 		ioff = btrfs_item_offset(left, item);
2606 		btrfs_set_item_offset(left, item,
2607 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2608 	}
2609 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2610 	if (left->map_token) {
2611 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2612 		left->map_token = NULL;
2613 	}
2614 
2615 	/* fixup right node */
2616 	if (push_items > right_nritems) {
2617 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2618 		       right_nritems);
2619 		WARN_ON(1);
2620 	}
2621 
2622 	if (push_items < right_nritems) {
2623 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2624 						  leaf_data_end(root, right);
2625 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2626 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2627 				      btrfs_leaf_data(right) +
2628 				      leaf_data_end(root, right), push_space);
2629 
2630 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2631 			      btrfs_item_nr_offset(push_items),
2632 			     (btrfs_header_nritems(right) - push_items) *
2633 			     sizeof(struct btrfs_item));
2634 	}
2635 	right_nritems -= push_items;
2636 	btrfs_set_header_nritems(right, right_nritems);
2637 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2638 	for (i = 0; i < right_nritems; i++) {
2639 		item = btrfs_item_nr(right, i);
2640 
2641 		if (!right->map_token) {
2642 			map_extent_buffer(right, (unsigned long)item,
2643 					sizeof(struct btrfs_item),
2644 					&right->map_token, &right->kaddr,
2645 					&right->map_start, &right->map_len,
2646 					KM_USER1);
2647 		}
2648 
2649 		push_space = push_space - btrfs_item_size(right, item);
2650 		btrfs_set_item_offset(right, item, push_space);
2651 	}
2652 	if (right->map_token) {
2653 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2654 		right->map_token = NULL;
2655 	}
2656 
2657 	btrfs_mark_buffer_dirty(left);
2658 	if (right_nritems)
2659 		btrfs_mark_buffer_dirty(right);
2660 
2661 	btrfs_item_key(right, &disk_key, 0);
2662 	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2663 	if (wret)
2664 		ret = wret;
2665 
2666 	/* then fixup the leaf pointer in the path */
2667 	if (path->slots[0] < push_items) {
2668 		path->slots[0] += old_left_nritems;
2669 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2670 			clean_tree_block(trans, root, path->nodes[0]);
2671 		btrfs_tree_unlock(path->nodes[0]);
2672 		free_extent_buffer(path->nodes[0]);
2673 		path->nodes[0] = left;
2674 		path->slots[1] -= 1;
2675 	} else {
2676 		btrfs_tree_unlock(left);
2677 		free_extent_buffer(left);
2678 		path->slots[0] -= push_items;
2679 	}
2680 	BUG_ON(path->slots[0] < 0);
2681 	return ret;
2682 out:
2683 	btrfs_tree_unlock(left);
2684 	free_extent_buffer(left);
2685 	return ret;
2686 }
2687 
2688 /*
2689  * push some data in the path leaf to the left, trying to free up at
2690  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2691  */
2692 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2693 			  *root, struct btrfs_path *path, int data_size,
2694 			  int empty)
2695 {
2696 	struct extent_buffer *right = path->nodes[0];
2697 	struct extent_buffer *left;
2698 	int slot;
2699 	int free_space;
2700 	u32 right_nritems;
2701 	int ret = 0;
2702 
2703 	slot = path->slots[1];
2704 	if (slot == 0)
2705 		return 1;
2706 	if (!path->nodes[1])
2707 		return 1;
2708 
2709 	right_nritems = btrfs_header_nritems(right);
2710 	if (right_nritems == 0)
2711 		return 1;
2712 
2713 	btrfs_assert_tree_locked(path->nodes[1]);
2714 
2715 	left = read_node_slot(root, path->nodes[1], slot - 1);
2716 	btrfs_tree_lock(left);
2717 	btrfs_set_lock_blocking(left);
2718 
2719 	free_space = btrfs_leaf_free_space(root, left);
2720 	if (free_space < data_size) {
2721 		ret = 1;
2722 		goto out;
2723 	}
2724 
2725 	/* cow and double check */
2726 	ret = btrfs_cow_block(trans, root, left,
2727 			      path->nodes[1], slot - 1, &left);
2728 	if (ret) {
2729 		/* we hit -ENOSPC, but it isn't fatal here */
2730 		ret = 1;
2731 		goto out;
2732 	}
2733 
2734 	free_space = btrfs_leaf_free_space(root, left);
2735 	if (free_space < data_size) {
2736 		ret = 1;
2737 		goto out;
2738 	}
2739 
2740 	return __push_leaf_left(trans, root, path, data_size,
2741 			       empty, left, free_space, right_nritems);
2742 out:
2743 	btrfs_tree_unlock(left);
2744 	free_extent_buffer(left);
2745 	return ret;
2746 }
2747 
2748 /*
2749  * split the path's leaf in two, making sure there is at least data_size
2750  * available for the resulting leaf level of the path.
2751  *
2752  * returns 0 if all went well and < 0 on failure.
2753  */
2754 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2755 			       struct btrfs_root *root,
2756 			       struct btrfs_path *path,
2757 			       struct extent_buffer *l,
2758 			       struct extent_buffer *right,
2759 			       int slot, int mid, int nritems)
2760 {
2761 	int data_copy_size;
2762 	int rt_data_off;
2763 	int i;
2764 	int ret = 0;
2765 	int wret;
2766 	struct btrfs_disk_key disk_key;
2767 
2768 	nritems = nritems - mid;
2769 	btrfs_set_header_nritems(right, nritems);
2770 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2771 
2772 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2773 			   btrfs_item_nr_offset(mid),
2774 			   nritems * sizeof(struct btrfs_item));
2775 
2776 	copy_extent_buffer(right, l,
2777 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2778 		     data_copy_size, btrfs_leaf_data(l) +
2779 		     leaf_data_end(root, l), data_copy_size);
2780 
2781 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2782 		      btrfs_item_end_nr(l, mid);
2783 
2784 	for (i = 0; i < nritems; i++) {
2785 		struct btrfs_item *item = btrfs_item_nr(right, i);
2786 		u32 ioff;
2787 
2788 		if (!right->map_token) {
2789 			map_extent_buffer(right, (unsigned long)item,
2790 					sizeof(struct btrfs_item),
2791 					&right->map_token, &right->kaddr,
2792 					&right->map_start, &right->map_len,
2793 					KM_USER1);
2794 		}
2795 
2796 		ioff = btrfs_item_offset(right, item);
2797 		btrfs_set_item_offset(right, item, ioff + rt_data_off);
2798 	}
2799 
2800 	if (right->map_token) {
2801 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2802 		right->map_token = NULL;
2803 	}
2804 
2805 	btrfs_set_header_nritems(l, mid);
2806 	ret = 0;
2807 	btrfs_item_key(right, &disk_key, 0);
2808 	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2809 			  path->slots[1] + 1, 1);
2810 	if (wret)
2811 		ret = wret;
2812 
2813 	btrfs_mark_buffer_dirty(right);
2814 	btrfs_mark_buffer_dirty(l);
2815 	BUG_ON(path->slots[0] != slot);
2816 
2817 	if (mid <= slot) {
2818 		btrfs_tree_unlock(path->nodes[0]);
2819 		free_extent_buffer(path->nodes[0]);
2820 		path->nodes[0] = right;
2821 		path->slots[0] -= mid;
2822 		path->slots[1] += 1;
2823 	} else {
2824 		btrfs_tree_unlock(right);
2825 		free_extent_buffer(right);
2826 	}
2827 
2828 	BUG_ON(path->slots[0] < 0);
2829 
2830 	return ret;
2831 }
2832 
2833 /*
2834  * split the path's leaf in two, making sure there is at least data_size
2835  * available for the resulting leaf level of the path.
2836  *
2837  * returns 0 if all went well and < 0 on failure.
2838  */
2839 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2840 			       struct btrfs_root *root,
2841 			       struct btrfs_key *ins_key,
2842 			       struct btrfs_path *path, int data_size,
2843 			       int extend)
2844 {
2845 	struct btrfs_disk_key disk_key;
2846 	struct extent_buffer *l;
2847 	u32 nritems;
2848 	int mid;
2849 	int slot;
2850 	struct extent_buffer *right;
2851 	int ret = 0;
2852 	int wret;
2853 	int split;
2854 	int num_doubles = 0;
2855 
2856 	l = path->nodes[0];
2857 	slot = path->slots[0];
2858 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
2859 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2860 		return -EOVERFLOW;
2861 
2862 	/* first try to make some room by pushing left and right */
2863 	if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2864 		wret = push_leaf_right(trans, root, path, data_size, 0);
2865 		if (wret < 0)
2866 			return wret;
2867 		if (wret) {
2868 			wret = push_leaf_left(trans, root, path, data_size, 0);
2869 			if (wret < 0)
2870 				return wret;
2871 		}
2872 		l = path->nodes[0];
2873 
2874 		/* did the pushes work? */
2875 		if (btrfs_leaf_free_space(root, l) >= data_size)
2876 			return 0;
2877 	}
2878 
2879 	if (!path->nodes[1]) {
2880 		ret = insert_new_root(trans, root, path, 1);
2881 		if (ret)
2882 			return ret;
2883 	}
2884 again:
2885 	split = 1;
2886 	l = path->nodes[0];
2887 	slot = path->slots[0];
2888 	nritems = btrfs_header_nritems(l);
2889 	mid = (nritems + 1) / 2;
2890 
2891 	if (mid <= slot) {
2892 		if (nritems == 1 ||
2893 		    leaf_space_used(l, mid, nritems - mid) + data_size >
2894 			BTRFS_LEAF_DATA_SIZE(root)) {
2895 			if (slot >= nritems) {
2896 				split = 0;
2897 			} else {
2898 				mid = slot;
2899 				if (mid != nritems &&
2900 				    leaf_space_used(l, mid, nritems - mid) +
2901 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2902 					split = 2;
2903 				}
2904 			}
2905 		}
2906 	} else {
2907 		if (leaf_space_used(l, 0, mid) + data_size >
2908 			BTRFS_LEAF_DATA_SIZE(root)) {
2909 			if (!extend && data_size && slot == 0) {
2910 				split = 0;
2911 			} else if ((extend || !data_size) && slot == 0) {
2912 				mid = 1;
2913 			} else {
2914 				mid = slot;
2915 				if (mid != nritems &&
2916 				    leaf_space_used(l, mid, nritems - mid) +
2917 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2918 					split = 2 ;
2919 				}
2920 			}
2921 		}
2922 	}
2923 
2924 	if (split == 0)
2925 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
2926 	else
2927 		btrfs_item_key(l, &disk_key, mid);
2928 
2929 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2930 					root->root_key.objectid,
2931 					&disk_key, 0, l->start, 0);
2932 	if (IS_ERR(right)) {
2933 		BUG_ON(1);
2934 		return PTR_ERR(right);
2935 	}
2936 
2937 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2938 	btrfs_set_header_bytenr(right, right->start);
2939 	btrfs_set_header_generation(right, trans->transid);
2940 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2941 	btrfs_set_header_owner(right, root->root_key.objectid);
2942 	btrfs_set_header_level(right, 0);
2943 	write_extent_buffer(right, root->fs_info->fsid,
2944 			    (unsigned long)btrfs_header_fsid(right),
2945 			    BTRFS_FSID_SIZE);
2946 
2947 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2948 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
2949 			    BTRFS_UUID_SIZE);
2950 
2951 	if (split == 0) {
2952 		if (mid <= slot) {
2953 			btrfs_set_header_nritems(right, 0);
2954 			wret = insert_ptr(trans, root, path,
2955 					  &disk_key, right->start,
2956 					  path->slots[1] + 1, 1);
2957 			if (wret)
2958 				ret = wret;
2959 
2960 			btrfs_tree_unlock(path->nodes[0]);
2961 			free_extent_buffer(path->nodes[0]);
2962 			path->nodes[0] = right;
2963 			path->slots[0] = 0;
2964 			path->slots[1] += 1;
2965 		} else {
2966 			btrfs_set_header_nritems(right, 0);
2967 			wret = insert_ptr(trans, root, path,
2968 					  &disk_key,
2969 					  right->start,
2970 					  path->slots[1], 1);
2971 			if (wret)
2972 				ret = wret;
2973 			btrfs_tree_unlock(path->nodes[0]);
2974 			free_extent_buffer(path->nodes[0]);
2975 			path->nodes[0] = right;
2976 			path->slots[0] = 0;
2977 			if (path->slots[1] == 0) {
2978 				wret = fixup_low_keys(trans, root,
2979 						path, &disk_key, 1);
2980 				if (wret)
2981 					ret = wret;
2982 			}
2983 		}
2984 		btrfs_mark_buffer_dirty(right);
2985 		return ret;
2986 	}
2987 
2988 	ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2989 	BUG_ON(ret);
2990 
2991 	if (split == 2) {
2992 		BUG_ON(num_doubles != 0);
2993 		num_doubles++;
2994 		goto again;
2995 	}
2996 
2997 	return ret;
2998 }
2999 
3000 /*
3001  * This function splits a single item into two items,
3002  * giving 'new_key' to the new item and splitting the
3003  * old one at split_offset (from the start of the item).
3004  *
3005  * The path may be released by this operation.  After
3006  * the split, the path is pointing to the old item.  The
3007  * new item is going to be in the same node as the old one.
3008  *
3009  * Note, the item being split must be smaller enough to live alone on
3010  * a tree block with room for one extra struct btrfs_item
3011  *
3012  * This allows us to split the item in place, keeping a lock on the
3013  * leaf the entire time.
3014  */
3015 int btrfs_split_item(struct btrfs_trans_handle *trans,
3016 		     struct btrfs_root *root,
3017 		     struct btrfs_path *path,
3018 		     struct btrfs_key *new_key,
3019 		     unsigned long split_offset)
3020 {
3021 	u32 item_size;
3022 	struct extent_buffer *leaf;
3023 	struct btrfs_key orig_key;
3024 	struct btrfs_item *item;
3025 	struct btrfs_item *new_item;
3026 	int ret = 0;
3027 	int slot;
3028 	u32 nritems;
3029 	u32 orig_offset;
3030 	struct btrfs_disk_key disk_key;
3031 	char *buf;
3032 
3033 	leaf = path->nodes[0];
3034 	btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
3035 	if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
3036 		goto split;
3037 
3038 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3039 	btrfs_release_path(root, path);
3040 
3041 	path->search_for_split = 1;
3042 	path->keep_locks = 1;
3043 
3044 	ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
3045 	path->search_for_split = 0;
3046 
3047 	/* if our item isn't there or got smaller, return now */
3048 	if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
3049 							path->slots[0])) {
3050 		path->keep_locks = 0;
3051 		return -EAGAIN;
3052 	}
3053 
3054 	btrfs_set_path_blocking(path);
3055 	ret = split_leaf(trans, root, &orig_key, path,
3056 			 sizeof(struct btrfs_item), 1);
3057 	path->keep_locks = 0;
3058 	BUG_ON(ret);
3059 
3060 	btrfs_unlock_up_safe(path, 1);
3061 	leaf = path->nodes[0];
3062 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3063 
3064 split:
3065 	/*
3066 	 * make sure any changes to the path from split_leaf leave it
3067 	 * in a blocking state
3068 	 */
3069 	btrfs_set_path_blocking(path);
3070 
3071 	item = btrfs_item_nr(leaf, path->slots[0]);
3072 	orig_offset = btrfs_item_offset(leaf, item);
3073 	item_size = btrfs_item_size(leaf, item);
3074 
3075 	buf = kmalloc(item_size, GFP_NOFS);
3076 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3077 			    path->slots[0]), item_size);
3078 	slot = path->slots[0] + 1;
3079 	leaf = path->nodes[0];
3080 
3081 	nritems = btrfs_header_nritems(leaf);
3082 
3083 	if (slot != nritems) {
3084 		/* shift the items */
3085 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3086 			      btrfs_item_nr_offset(slot),
3087 			      (nritems - slot) * sizeof(struct btrfs_item));
3088 
3089 	}
3090 
3091 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3092 	btrfs_set_item_key(leaf, &disk_key, slot);
3093 
3094 	new_item = btrfs_item_nr(leaf, slot);
3095 
3096 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3097 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3098 
3099 	btrfs_set_item_offset(leaf, item,
3100 			      orig_offset + item_size - split_offset);
3101 	btrfs_set_item_size(leaf, item, split_offset);
3102 
3103 	btrfs_set_header_nritems(leaf, nritems + 1);
3104 
3105 	/* write the data for the start of the original item */
3106 	write_extent_buffer(leaf, buf,
3107 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3108 			    split_offset);
3109 
3110 	/* write the data for the new item */
3111 	write_extent_buffer(leaf, buf + split_offset,
3112 			    btrfs_item_ptr_offset(leaf, slot),
3113 			    item_size - split_offset);
3114 	btrfs_mark_buffer_dirty(leaf);
3115 
3116 	ret = 0;
3117 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3118 		btrfs_print_leaf(root, leaf);
3119 		BUG();
3120 	}
3121 	kfree(buf);
3122 	return ret;
3123 }
3124 
3125 /*
3126  * make the item pointed to by the path smaller.  new_size indicates
3127  * how small to make it, and from_end tells us if we just chop bytes
3128  * off the end of the item or if we shift the item to chop bytes off
3129  * the front.
3130  */
3131 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3132 			struct btrfs_root *root,
3133 			struct btrfs_path *path,
3134 			u32 new_size, int from_end)
3135 {
3136 	int ret = 0;
3137 	int slot;
3138 	int slot_orig;
3139 	struct extent_buffer *leaf;
3140 	struct btrfs_item *item;
3141 	u32 nritems;
3142 	unsigned int data_end;
3143 	unsigned int old_data_start;
3144 	unsigned int old_size;
3145 	unsigned int size_diff;
3146 	int i;
3147 
3148 	slot_orig = path->slots[0];
3149 	leaf = path->nodes[0];
3150 	slot = path->slots[0];
3151 
3152 	old_size = btrfs_item_size_nr(leaf, slot);
3153 	if (old_size == new_size)
3154 		return 0;
3155 
3156 	nritems = btrfs_header_nritems(leaf);
3157 	data_end = leaf_data_end(root, leaf);
3158 
3159 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3160 
3161 	size_diff = old_size - new_size;
3162 
3163 	BUG_ON(slot < 0);
3164 	BUG_ON(slot >= nritems);
3165 
3166 	/*
3167 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3168 	 */
3169 	/* first correct the data pointers */
3170 	for (i = slot; i < nritems; i++) {
3171 		u32 ioff;
3172 		item = btrfs_item_nr(leaf, i);
3173 
3174 		if (!leaf->map_token) {
3175 			map_extent_buffer(leaf, (unsigned long)item,
3176 					sizeof(struct btrfs_item),
3177 					&leaf->map_token, &leaf->kaddr,
3178 					&leaf->map_start, &leaf->map_len,
3179 					KM_USER1);
3180 		}
3181 
3182 		ioff = btrfs_item_offset(leaf, item);
3183 		btrfs_set_item_offset(leaf, item, ioff + size_diff);
3184 	}
3185 
3186 	if (leaf->map_token) {
3187 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3188 		leaf->map_token = NULL;
3189 	}
3190 
3191 	/* shift the data */
3192 	if (from_end) {
3193 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3194 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3195 			      data_end, old_data_start + new_size - data_end);
3196 	} else {
3197 		struct btrfs_disk_key disk_key;
3198 		u64 offset;
3199 
3200 		btrfs_item_key(leaf, &disk_key, slot);
3201 
3202 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3203 			unsigned long ptr;
3204 			struct btrfs_file_extent_item *fi;
3205 
3206 			fi = btrfs_item_ptr(leaf, slot,
3207 					    struct btrfs_file_extent_item);
3208 			fi = (struct btrfs_file_extent_item *)(
3209 			     (unsigned long)fi - size_diff);
3210 
3211 			if (btrfs_file_extent_type(leaf, fi) ==
3212 			    BTRFS_FILE_EXTENT_INLINE) {
3213 				ptr = btrfs_item_ptr_offset(leaf, slot);
3214 				memmove_extent_buffer(leaf, ptr,
3215 				      (unsigned long)fi,
3216 				      offsetof(struct btrfs_file_extent_item,
3217 						 disk_bytenr));
3218 			}
3219 		}
3220 
3221 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3222 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3223 			      data_end, old_data_start - data_end);
3224 
3225 		offset = btrfs_disk_key_offset(&disk_key);
3226 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3227 		btrfs_set_item_key(leaf, &disk_key, slot);
3228 		if (slot == 0)
3229 			fixup_low_keys(trans, root, path, &disk_key, 1);
3230 	}
3231 
3232 	item = btrfs_item_nr(leaf, slot);
3233 	btrfs_set_item_size(leaf, item, new_size);
3234 	btrfs_mark_buffer_dirty(leaf);
3235 
3236 	ret = 0;
3237 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3238 		btrfs_print_leaf(root, leaf);
3239 		BUG();
3240 	}
3241 	return ret;
3242 }
3243 
3244 /*
3245  * make the item pointed to by the path bigger, data_size is the new size.
3246  */
3247 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3248 		      struct btrfs_root *root, struct btrfs_path *path,
3249 		      u32 data_size)
3250 {
3251 	int ret = 0;
3252 	int slot;
3253 	int slot_orig;
3254 	struct extent_buffer *leaf;
3255 	struct btrfs_item *item;
3256 	u32 nritems;
3257 	unsigned int data_end;
3258 	unsigned int old_data;
3259 	unsigned int old_size;
3260 	int i;
3261 
3262 	slot_orig = path->slots[0];
3263 	leaf = path->nodes[0];
3264 
3265 	nritems = btrfs_header_nritems(leaf);
3266 	data_end = leaf_data_end(root, leaf);
3267 
3268 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3269 		btrfs_print_leaf(root, leaf);
3270 		BUG();
3271 	}
3272 	slot = path->slots[0];
3273 	old_data = btrfs_item_end_nr(leaf, slot);
3274 
3275 	BUG_ON(slot < 0);
3276 	if (slot >= nritems) {
3277 		btrfs_print_leaf(root, leaf);
3278 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3279 		       slot, nritems);
3280 		BUG_ON(1);
3281 	}
3282 
3283 	/*
3284 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3285 	 */
3286 	/* first correct the data pointers */
3287 	for (i = slot; i < nritems; i++) {
3288 		u32 ioff;
3289 		item = btrfs_item_nr(leaf, i);
3290 
3291 		if (!leaf->map_token) {
3292 			map_extent_buffer(leaf, (unsigned long)item,
3293 					sizeof(struct btrfs_item),
3294 					&leaf->map_token, &leaf->kaddr,
3295 					&leaf->map_start, &leaf->map_len,
3296 					KM_USER1);
3297 		}
3298 		ioff = btrfs_item_offset(leaf, item);
3299 		btrfs_set_item_offset(leaf, item, ioff - data_size);
3300 	}
3301 
3302 	if (leaf->map_token) {
3303 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3304 		leaf->map_token = NULL;
3305 	}
3306 
3307 	/* shift the data */
3308 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3309 		      data_end - data_size, btrfs_leaf_data(leaf) +
3310 		      data_end, old_data - data_end);
3311 
3312 	data_end = old_data;
3313 	old_size = btrfs_item_size_nr(leaf, slot);
3314 	item = btrfs_item_nr(leaf, slot);
3315 	btrfs_set_item_size(leaf, item, old_size + data_size);
3316 	btrfs_mark_buffer_dirty(leaf);
3317 
3318 	ret = 0;
3319 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3320 		btrfs_print_leaf(root, leaf);
3321 		BUG();
3322 	}
3323 	return ret;
3324 }
3325 
3326 /*
3327  * Given a key and some data, insert items into the tree.
3328  * This does all the path init required, making room in the tree if needed.
3329  * Returns the number of keys that were inserted.
3330  */
3331 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3332 			    struct btrfs_root *root,
3333 			    struct btrfs_path *path,
3334 			    struct btrfs_key *cpu_key, u32 *data_size,
3335 			    int nr)
3336 {
3337 	struct extent_buffer *leaf;
3338 	struct btrfs_item *item;
3339 	int ret = 0;
3340 	int slot;
3341 	int i;
3342 	u32 nritems;
3343 	u32 total_data = 0;
3344 	u32 total_size = 0;
3345 	unsigned int data_end;
3346 	struct btrfs_disk_key disk_key;
3347 	struct btrfs_key found_key;
3348 
3349 	for (i = 0; i < nr; i++) {
3350 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3351 		    BTRFS_LEAF_DATA_SIZE(root)) {
3352 			break;
3353 			nr = i;
3354 		}
3355 		total_data += data_size[i];
3356 		total_size += data_size[i] + sizeof(struct btrfs_item);
3357 	}
3358 	BUG_ON(nr == 0);
3359 
3360 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3361 	if (ret == 0)
3362 		return -EEXIST;
3363 	if (ret < 0)
3364 		goto out;
3365 
3366 	leaf = path->nodes[0];
3367 
3368 	nritems = btrfs_header_nritems(leaf);
3369 	data_end = leaf_data_end(root, leaf);
3370 
3371 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3372 		for (i = nr; i >= 0; i--) {
3373 			total_data -= data_size[i];
3374 			total_size -= data_size[i] + sizeof(struct btrfs_item);
3375 			if (total_size < btrfs_leaf_free_space(root, leaf))
3376 				break;
3377 		}
3378 		nr = i;
3379 	}
3380 
3381 	slot = path->slots[0];
3382 	BUG_ON(slot < 0);
3383 
3384 	if (slot != nritems) {
3385 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3386 
3387 		item = btrfs_item_nr(leaf, slot);
3388 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3389 
3390 		/* figure out how many keys we can insert in here */
3391 		total_data = data_size[0];
3392 		for (i = 1; i < nr; i++) {
3393 			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3394 				break;
3395 			total_data += data_size[i];
3396 		}
3397 		nr = i;
3398 
3399 		if (old_data < data_end) {
3400 			btrfs_print_leaf(root, leaf);
3401 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3402 			       slot, old_data, data_end);
3403 			BUG_ON(1);
3404 		}
3405 		/*
3406 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3407 		 */
3408 		/* first correct the data pointers */
3409 		WARN_ON(leaf->map_token);
3410 		for (i = slot; i < nritems; i++) {
3411 			u32 ioff;
3412 
3413 			item = btrfs_item_nr(leaf, i);
3414 			if (!leaf->map_token) {
3415 				map_extent_buffer(leaf, (unsigned long)item,
3416 					sizeof(struct btrfs_item),
3417 					&leaf->map_token, &leaf->kaddr,
3418 					&leaf->map_start, &leaf->map_len,
3419 					KM_USER1);
3420 			}
3421 
3422 			ioff = btrfs_item_offset(leaf, item);
3423 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3424 		}
3425 		if (leaf->map_token) {
3426 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3427 			leaf->map_token = NULL;
3428 		}
3429 
3430 		/* shift the items */
3431 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3432 			      btrfs_item_nr_offset(slot),
3433 			      (nritems - slot) * sizeof(struct btrfs_item));
3434 
3435 		/* shift the data */
3436 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3437 			      data_end - total_data, btrfs_leaf_data(leaf) +
3438 			      data_end, old_data - data_end);
3439 		data_end = old_data;
3440 	} else {
3441 		/*
3442 		 * this sucks but it has to be done, if we are inserting at
3443 		 * the end of the leaf only insert 1 of the items, since we
3444 		 * have no way of knowing whats on the next leaf and we'd have
3445 		 * to drop our current locks to figure it out
3446 		 */
3447 		nr = 1;
3448 	}
3449 
3450 	/* setup the item for the new data */
3451 	for (i = 0; i < nr; i++) {
3452 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3453 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3454 		item = btrfs_item_nr(leaf, slot + i);
3455 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3456 		data_end -= data_size[i];
3457 		btrfs_set_item_size(leaf, item, data_size[i]);
3458 	}
3459 	btrfs_set_header_nritems(leaf, nritems + nr);
3460 	btrfs_mark_buffer_dirty(leaf);
3461 
3462 	ret = 0;
3463 	if (slot == 0) {
3464 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3465 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3466 	}
3467 
3468 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3469 		btrfs_print_leaf(root, leaf);
3470 		BUG();
3471 	}
3472 out:
3473 	if (!ret)
3474 		ret = nr;
3475 	return ret;
3476 }
3477 
3478 /*
3479  * this is a helper for btrfs_insert_empty_items, the main goal here is
3480  * to save stack depth by doing the bulk of the work in a function
3481  * that doesn't call btrfs_search_slot
3482  */
3483 static noinline_for_stack int
3484 setup_items_for_insert(struct btrfs_trans_handle *trans,
3485 		      struct btrfs_root *root, struct btrfs_path *path,
3486 		      struct btrfs_key *cpu_key, u32 *data_size,
3487 		      u32 total_data, u32 total_size, int nr)
3488 {
3489 	struct btrfs_item *item;
3490 	int i;
3491 	u32 nritems;
3492 	unsigned int data_end;
3493 	struct btrfs_disk_key disk_key;
3494 	int ret;
3495 	struct extent_buffer *leaf;
3496 	int slot;
3497 
3498 	leaf = path->nodes[0];
3499 	slot = path->slots[0];
3500 
3501 	nritems = btrfs_header_nritems(leaf);
3502 	data_end = leaf_data_end(root, leaf);
3503 
3504 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3505 		btrfs_print_leaf(root, leaf);
3506 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3507 		       total_size, btrfs_leaf_free_space(root, leaf));
3508 		BUG();
3509 	}
3510 
3511 	if (slot != nritems) {
3512 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3513 
3514 		if (old_data < data_end) {
3515 			btrfs_print_leaf(root, leaf);
3516 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3517 			       slot, old_data, data_end);
3518 			BUG_ON(1);
3519 		}
3520 		/*
3521 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3522 		 */
3523 		/* first correct the data pointers */
3524 		WARN_ON(leaf->map_token);
3525 		for (i = slot; i < nritems; i++) {
3526 			u32 ioff;
3527 
3528 			item = btrfs_item_nr(leaf, i);
3529 			if (!leaf->map_token) {
3530 				map_extent_buffer(leaf, (unsigned long)item,
3531 					sizeof(struct btrfs_item),
3532 					&leaf->map_token, &leaf->kaddr,
3533 					&leaf->map_start, &leaf->map_len,
3534 					KM_USER1);
3535 			}
3536 
3537 			ioff = btrfs_item_offset(leaf, item);
3538 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3539 		}
3540 		if (leaf->map_token) {
3541 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3542 			leaf->map_token = NULL;
3543 		}
3544 
3545 		/* shift the items */
3546 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3547 			      btrfs_item_nr_offset(slot),
3548 			      (nritems - slot) * sizeof(struct btrfs_item));
3549 
3550 		/* shift the data */
3551 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3552 			      data_end - total_data, btrfs_leaf_data(leaf) +
3553 			      data_end, old_data - data_end);
3554 		data_end = old_data;
3555 	}
3556 
3557 	/* setup the item for the new data */
3558 	for (i = 0; i < nr; i++) {
3559 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3560 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3561 		item = btrfs_item_nr(leaf, slot + i);
3562 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3563 		data_end -= data_size[i];
3564 		btrfs_set_item_size(leaf, item, data_size[i]);
3565 	}
3566 
3567 	btrfs_set_header_nritems(leaf, nritems + nr);
3568 
3569 	ret = 0;
3570 	if (slot == 0) {
3571 		struct btrfs_disk_key disk_key;
3572 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3573 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3574 	}
3575 	btrfs_unlock_up_safe(path, 1);
3576 	btrfs_mark_buffer_dirty(leaf);
3577 
3578 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3579 		btrfs_print_leaf(root, leaf);
3580 		BUG();
3581 	}
3582 	return ret;
3583 }
3584 
3585 /*
3586  * Given a key and some data, insert items into the tree.
3587  * This does all the path init required, making room in the tree if needed.
3588  */
3589 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3590 			    struct btrfs_root *root,
3591 			    struct btrfs_path *path,
3592 			    struct btrfs_key *cpu_key, u32 *data_size,
3593 			    int nr)
3594 {
3595 	struct extent_buffer *leaf;
3596 	int ret = 0;
3597 	int slot;
3598 	int i;
3599 	u32 total_size = 0;
3600 	u32 total_data = 0;
3601 
3602 	for (i = 0; i < nr; i++)
3603 		total_data += data_size[i];
3604 
3605 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3606 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3607 	if (ret == 0)
3608 		return -EEXIST;
3609 	if (ret < 0)
3610 		goto out;
3611 
3612 	leaf = path->nodes[0];
3613 	slot = path->slots[0];
3614 	BUG_ON(slot < 0);
3615 
3616 	ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3617 			       total_data, total_size, nr);
3618 
3619 out:
3620 	return ret;
3621 }
3622 
3623 /*
3624  * Given a key and some data, insert an item into the tree.
3625  * This does all the path init required, making room in the tree if needed.
3626  */
3627 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3628 		      *root, struct btrfs_key *cpu_key, void *data, u32
3629 		      data_size)
3630 {
3631 	int ret = 0;
3632 	struct btrfs_path *path;
3633 	struct extent_buffer *leaf;
3634 	unsigned long ptr;
3635 
3636 	path = btrfs_alloc_path();
3637 	BUG_ON(!path);
3638 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3639 	if (!ret) {
3640 		leaf = path->nodes[0];
3641 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3642 		write_extent_buffer(leaf, data, ptr, data_size);
3643 		btrfs_mark_buffer_dirty(leaf);
3644 	}
3645 	btrfs_free_path(path);
3646 	return ret;
3647 }
3648 
3649 /*
3650  * delete the pointer from a given node.
3651  *
3652  * the tree should have been previously balanced so the deletion does not
3653  * empty a node.
3654  */
3655 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3656 		   struct btrfs_path *path, int level, int slot)
3657 {
3658 	struct extent_buffer *parent = path->nodes[level];
3659 	u32 nritems;
3660 	int ret = 0;
3661 	int wret;
3662 
3663 	nritems = btrfs_header_nritems(parent);
3664 	if (slot != nritems - 1) {
3665 		memmove_extent_buffer(parent,
3666 			      btrfs_node_key_ptr_offset(slot),
3667 			      btrfs_node_key_ptr_offset(slot + 1),
3668 			      sizeof(struct btrfs_key_ptr) *
3669 			      (nritems - slot - 1));
3670 	}
3671 	nritems--;
3672 	btrfs_set_header_nritems(parent, nritems);
3673 	if (nritems == 0 && parent == root->node) {
3674 		BUG_ON(btrfs_header_level(root->node) != 1);
3675 		/* just turn the root into a leaf and break */
3676 		btrfs_set_header_level(root->node, 0);
3677 	} else if (slot == 0) {
3678 		struct btrfs_disk_key disk_key;
3679 
3680 		btrfs_node_key(parent, &disk_key, 0);
3681 		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3682 		if (wret)
3683 			ret = wret;
3684 	}
3685 	btrfs_mark_buffer_dirty(parent);
3686 	return ret;
3687 }
3688 
3689 /*
3690  * a helper function to delete the leaf pointed to by path->slots[1] and
3691  * path->nodes[1].
3692  *
3693  * This deletes the pointer in path->nodes[1] and frees the leaf
3694  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3695  *
3696  * The path must have already been setup for deleting the leaf, including
3697  * all the proper balancing.  path->nodes[1] must be locked.
3698  */
3699 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3700 				   struct btrfs_root *root,
3701 				   struct btrfs_path *path,
3702 				   struct extent_buffer *leaf)
3703 {
3704 	int ret;
3705 
3706 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3707 	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3708 	if (ret)
3709 		return ret;
3710 
3711 	/*
3712 	 * btrfs_free_extent is expensive, we want to make sure we
3713 	 * aren't holding any locks when we call it
3714 	 */
3715 	btrfs_unlock_up_safe(path, 0);
3716 
3717 	ret = btrfs_free_extent(trans, root, leaf->start, leaf->len,
3718 				0, root->root_key.objectid, 0, 0);
3719 	return ret;
3720 }
3721 /*
3722  * delete the item at the leaf level in path.  If that empties
3723  * the leaf, remove it from the tree
3724  */
3725 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3726 		    struct btrfs_path *path, int slot, int nr)
3727 {
3728 	struct extent_buffer *leaf;
3729 	struct btrfs_item *item;
3730 	int last_off;
3731 	int dsize = 0;
3732 	int ret = 0;
3733 	int wret;
3734 	int i;
3735 	u32 nritems;
3736 
3737 	leaf = path->nodes[0];
3738 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3739 
3740 	for (i = 0; i < nr; i++)
3741 		dsize += btrfs_item_size_nr(leaf, slot + i);
3742 
3743 	nritems = btrfs_header_nritems(leaf);
3744 
3745 	if (slot + nr != nritems) {
3746 		int data_end = leaf_data_end(root, leaf);
3747 
3748 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3749 			      data_end + dsize,
3750 			      btrfs_leaf_data(leaf) + data_end,
3751 			      last_off - data_end);
3752 
3753 		for (i = slot + nr; i < nritems; i++) {
3754 			u32 ioff;
3755 
3756 			item = btrfs_item_nr(leaf, i);
3757 			if (!leaf->map_token) {
3758 				map_extent_buffer(leaf, (unsigned long)item,
3759 					sizeof(struct btrfs_item),
3760 					&leaf->map_token, &leaf->kaddr,
3761 					&leaf->map_start, &leaf->map_len,
3762 					KM_USER1);
3763 			}
3764 			ioff = btrfs_item_offset(leaf, item);
3765 			btrfs_set_item_offset(leaf, item, ioff + dsize);
3766 		}
3767 
3768 		if (leaf->map_token) {
3769 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3770 			leaf->map_token = NULL;
3771 		}
3772 
3773 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3774 			      btrfs_item_nr_offset(slot + nr),
3775 			      sizeof(struct btrfs_item) *
3776 			      (nritems - slot - nr));
3777 	}
3778 	btrfs_set_header_nritems(leaf, nritems - nr);
3779 	nritems -= nr;
3780 
3781 	/* delete the leaf if we've emptied it */
3782 	if (nritems == 0) {
3783 		if (leaf == root->node) {
3784 			btrfs_set_header_level(leaf, 0);
3785 		} else {
3786 			ret = btrfs_del_leaf(trans, root, path, leaf);
3787 			BUG_ON(ret);
3788 		}
3789 	} else {
3790 		int used = leaf_space_used(leaf, 0, nritems);
3791 		if (slot == 0) {
3792 			struct btrfs_disk_key disk_key;
3793 
3794 			btrfs_item_key(leaf, &disk_key, 0);
3795 			wret = fixup_low_keys(trans, root, path,
3796 					      &disk_key, 1);
3797 			if (wret)
3798 				ret = wret;
3799 		}
3800 
3801 		/* delete the leaf if it is mostly empty */
3802 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3803 			/* push_leaf_left fixes the path.
3804 			 * make sure the path still points to our leaf
3805 			 * for possible call to del_ptr below
3806 			 */
3807 			slot = path->slots[1];
3808 			extent_buffer_get(leaf);
3809 
3810 			btrfs_set_path_blocking(path);
3811 			wret = push_leaf_left(trans, root, path, 1, 1);
3812 			if (wret < 0 && wret != -ENOSPC)
3813 				ret = wret;
3814 
3815 			if (path->nodes[0] == leaf &&
3816 			    btrfs_header_nritems(leaf)) {
3817 				wret = push_leaf_right(trans, root, path, 1, 1);
3818 				if (wret < 0 && wret != -ENOSPC)
3819 					ret = wret;
3820 			}
3821 
3822 			if (btrfs_header_nritems(leaf) == 0) {
3823 				path->slots[1] = slot;
3824 				ret = btrfs_del_leaf(trans, root, path, leaf);
3825 				BUG_ON(ret);
3826 				free_extent_buffer(leaf);
3827 			} else {
3828 				/* if we're still in the path, make sure
3829 				 * we're dirty.  Otherwise, one of the
3830 				 * push_leaf functions must have already
3831 				 * dirtied this buffer
3832 				 */
3833 				if (path->nodes[0] == leaf)
3834 					btrfs_mark_buffer_dirty(leaf);
3835 				free_extent_buffer(leaf);
3836 			}
3837 		} else {
3838 			btrfs_mark_buffer_dirty(leaf);
3839 		}
3840 	}
3841 	return ret;
3842 }
3843 
3844 /*
3845  * search the tree again to find a leaf with lesser keys
3846  * returns 0 if it found something or 1 if there are no lesser leaves.
3847  * returns < 0 on io errors.
3848  *
3849  * This may release the path, and so you may lose any locks held at the
3850  * time you call it.
3851  */
3852 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3853 {
3854 	struct btrfs_key key;
3855 	struct btrfs_disk_key found_key;
3856 	int ret;
3857 
3858 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3859 
3860 	if (key.offset > 0)
3861 		key.offset--;
3862 	else if (key.type > 0)
3863 		key.type--;
3864 	else if (key.objectid > 0)
3865 		key.objectid--;
3866 	else
3867 		return 1;
3868 
3869 	btrfs_release_path(root, path);
3870 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3871 	if (ret < 0)
3872 		return ret;
3873 	btrfs_item_key(path->nodes[0], &found_key, 0);
3874 	ret = comp_keys(&found_key, &key);
3875 	if (ret < 0)
3876 		return 0;
3877 	return 1;
3878 }
3879 
3880 /*
3881  * A helper function to walk down the tree starting at min_key, and looking
3882  * for nodes or leaves that are either in cache or have a minimum
3883  * transaction id.  This is used by the btree defrag code, and tree logging
3884  *
3885  * This does not cow, but it does stuff the starting key it finds back
3886  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3887  * key and get a writable path.
3888  *
3889  * This does lock as it descends, and path->keep_locks should be set
3890  * to 1 by the caller.
3891  *
3892  * This honors path->lowest_level to prevent descent past a given level
3893  * of the tree.
3894  *
3895  * min_trans indicates the oldest transaction that you are interested
3896  * in walking through.  Any nodes or leaves older than min_trans are
3897  * skipped over (without reading them).
3898  *
3899  * returns zero if something useful was found, < 0 on error and 1 if there
3900  * was nothing in the tree that matched the search criteria.
3901  */
3902 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3903 			 struct btrfs_key *max_key,
3904 			 struct btrfs_path *path, int cache_only,
3905 			 u64 min_trans)
3906 {
3907 	struct extent_buffer *cur;
3908 	struct btrfs_key found_key;
3909 	int slot;
3910 	int sret;
3911 	u32 nritems;
3912 	int level;
3913 	int ret = 1;
3914 
3915 	WARN_ON(!path->keep_locks);
3916 again:
3917 	cur = btrfs_lock_root_node(root);
3918 	level = btrfs_header_level(cur);
3919 	WARN_ON(path->nodes[level]);
3920 	path->nodes[level] = cur;
3921 	path->locks[level] = 1;
3922 
3923 	if (btrfs_header_generation(cur) < min_trans) {
3924 		ret = 1;
3925 		goto out;
3926 	}
3927 	while (1) {
3928 		nritems = btrfs_header_nritems(cur);
3929 		level = btrfs_header_level(cur);
3930 		sret = bin_search(cur, min_key, level, &slot);
3931 
3932 		/* at the lowest level, we're done, setup the path and exit */
3933 		if (level == path->lowest_level) {
3934 			if (slot >= nritems)
3935 				goto find_next_key;
3936 			ret = 0;
3937 			path->slots[level] = slot;
3938 			btrfs_item_key_to_cpu(cur, &found_key, slot);
3939 			goto out;
3940 		}
3941 		if (sret && slot > 0)
3942 			slot--;
3943 		/*
3944 		 * check this node pointer against the cache_only and
3945 		 * min_trans parameters.  If it isn't in cache or is too
3946 		 * old, skip to the next one.
3947 		 */
3948 		while (slot < nritems) {
3949 			u64 blockptr;
3950 			u64 gen;
3951 			struct extent_buffer *tmp;
3952 			struct btrfs_disk_key disk_key;
3953 
3954 			blockptr = btrfs_node_blockptr(cur, slot);
3955 			gen = btrfs_node_ptr_generation(cur, slot);
3956 			if (gen < min_trans) {
3957 				slot++;
3958 				continue;
3959 			}
3960 			if (!cache_only)
3961 				break;
3962 
3963 			if (max_key) {
3964 				btrfs_node_key(cur, &disk_key, slot);
3965 				if (comp_keys(&disk_key, max_key) >= 0) {
3966 					ret = 1;
3967 					goto out;
3968 				}
3969 			}
3970 
3971 			tmp = btrfs_find_tree_block(root, blockptr,
3972 					    btrfs_level_size(root, level - 1));
3973 
3974 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
3975 				free_extent_buffer(tmp);
3976 				break;
3977 			}
3978 			if (tmp)
3979 				free_extent_buffer(tmp);
3980 			slot++;
3981 		}
3982 find_next_key:
3983 		/*
3984 		 * we didn't find a candidate key in this node, walk forward
3985 		 * and find another one
3986 		 */
3987 		if (slot >= nritems) {
3988 			path->slots[level] = slot;
3989 			btrfs_set_path_blocking(path);
3990 			sret = btrfs_find_next_key(root, path, min_key, level,
3991 						  cache_only, min_trans);
3992 			if (sret == 0) {
3993 				btrfs_release_path(root, path);
3994 				goto again;
3995 			} else {
3996 				goto out;
3997 			}
3998 		}
3999 		/* save our key for returning back */
4000 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4001 		path->slots[level] = slot;
4002 		if (level == path->lowest_level) {
4003 			ret = 0;
4004 			unlock_up(path, level, 1);
4005 			goto out;
4006 		}
4007 		btrfs_set_path_blocking(path);
4008 		cur = read_node_slot(root, cur, slot);
4009 
4010 		btrfs_tree_lock(cur);
4011 
4012 		path->locks[level - 1] = 1;
4013 		path->nodes[level - 1] = cur;
4014 		unlock_up(path, level, 1);
4015 		btrfs_clear_path_blocking(path, NULL);
4016 	}
4017 out:
4018 	if (ret == 0)
4019 		memcpy(min_key, &found_key, sizeof(found_key));
4020 	btrfs_set_path_blocking(path);
4021 	return ret;
4022 }
4023 
4024 /*
4025  * this is similar to btrfs_next_leaf, but does not try to preserve
4026  * and fixup the path.  It looks for and returns the next key in the
4027  * tree based on the current path and the cache_only and min_trans
4028  * parameters.
4029  *
4030  * 0 is returned if another key is found, < 0 if there are any errors
4031  * and 1 is returned if there are no higher keys in the tree
4032  *
4033  * path->keep_locks should be set to 1 on the search made before
4034  * calling this function.
4035  */
4036 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4037 			struct btrfs_key *key, int level,
4038 			int cache_only, u64 min_trans)
4039 {
4040 	int slot;
4041 	struct extent_buffer *c;
4042 
4043 	WARN_ON(!path->keep_locks);
4044 	while (level < BTRFS_MAX_LEVEL) {
4045 		if (!path->nodes[level])
4046 			return 1;
4047 
4048 		slot = path->slots[level] + 1;
4049 		c = path->nodes[level];
4050 next:
4051 		if (slot >= btrfs_header_nritems(c)) {
4052 			int ret;
4053 			int orig_lowest;
4054 			struct btrfs_key cur_key;
4055 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4056 			    !path->nodes[level + 1])
4057 				return 1;
4058 
4059 			if (path->locks[level + 1]) {
4060 				level++;
4061 				continue;
4062 			}
4063 
4064 			slot = btrfs_header_nritems(c) - 1;
4065 			if (level == 0)
4066 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4067 			else
4068 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4069 
4070 			orig_lowest = path->lowest_level;
4071 			btrfs_release_path(root, path);
4072 			path->lowest_level = level;
4073 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4074 						0, 0);
4075 			path->lowest_level = orig_lowest;
4076 			if (ret < 0)
4077 				return ret;
4078 
4079 			c = path->nodes[level];
4080 			slot = path->slots[level];
4081 			if (ret == 0)
4082 				slot++;
4083 			goto next;
4084 		}
4085 
4086 		if (level == 0)
4087 			btrfs_item_key_to_cpu(c, key, slot);
4088 		else {
4089 			u64 blockptr = btrfs_node_blockptr(c, slot);
4090 			u64 gen = btrfs_node_ptr_generation(c, slot);
4091 
4092 			if (cache_only) {
4093 				struct extent_buffer *cur;
4094 				cur = btrfs_find_tree_block(root, blockptr,
4095 					    btrfs_level_size(root, level - 1));
4096 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4097 					slot++;
4098 					if (cur)
4099 						free_extent_buffer(cur);
4100 					goto next;
4101 				}
4102 				free_extent_buffer(cur);
4103 			}
4104 			if (gen < min_trans) {
4105 				slot++;
4106 				goto next;
4107 			}
4108 			btrfs_node_key_to_cpu(c, key, slot);
4109 		}
4110 		return 0;
4111 	}
4112 	return 1;
4113 }
4114 
4115 /*
4116  * search the tree again to find a leaf with greater keys
4117  * returns 0 if it found something or 1 if there are no greater leaves.
4118  * returns < 0 on io errors.
4119  */
4120 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4121 {
4122 	int slot;
4123 	int level;
4124 	struct extent_buffer *c;
4125 	struct extent_buffer *next;
4126 	struct btrfs_key key;
4127 	u32 nritems;
4128 	int ret;
4129 	int old_spinning = path->leave_spinning;
4130 	int force_blocking = 0;
4131 
4132 	nritems = btrfs_header_nritems(path->nodes[0]);
4133 	if (nritems == 0)
4134 		return 1;
4135 
4136 	/*
4137 	 * we take the blocks in an order that upsets lockdep.  Using
4138 	 * blocking mode is the only way around it.
4139 	 */
4140 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4141 	force_blocking = 1;
4142 #endif
4143 
4144 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4145 again:
4146 	level = 1;
4147 	next = NULL;
4148 	btrfs_release_path(root, path);
4149 
4150 	path->keep_locks = 1;
4151 
4152 	if (!force_blocking)
4153 		path->leave_spinning = 1;
4154 
4155 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4156 	path->keep_locks = 0;
4157 
4158 	if (ret < 0)
4159 		return ret;
4160 
4161 	nritems = btrfs_header_nritems(path->nodes[0]);
4162 	/*
4163 	 * by releasing the path above we dropped all our locks.  A balance
4164 	 * could have added more items next to the key that used to be
4165 	 * at the very end of the block.  So, check again here and
4166 	 * advance the path if there are now more items available.
4167 	 */
4168 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4169 		if (ret == 0)
4170 			path->slots[0]++;
4171 		ret = 0;
4172 		goto done;
4173 	}
4174 
4175 	while (level < BTRFS_MAX_LEVEL) {
4176 		if (!path->nodes[level]) {
4177 			ret = 1;
4178 			goto done;
4179 		}
4180 
4181 		slot = path->slots[level] + 1;
4182 		c = path->nodes[level];
4183 		if (slot >= btrfs_header_nritems(c)) {
4184 			level++;
4185 			if (level == BTRFS_MAX_LEVEL) {
4186 				ret = 1;
4187 				goto done;
4188 			}
4189 			continue;
4190 		}
4191 
4192 		if (next) {
4193 			btrfs_tree_unlock(next);
4194 			free_extent_buffer(next);
4195 		}
4196 
4197 		next = c;
4198 		ret = read_block_for_search(NULL, root, path, &next, level,
4199 					    slot, &key);
4200 		if (ret == -EAGAIN)
4201 			goto again;
4202 
4203 		if (ret < 0) {
4204 			btrfs_release_path(root, path);
4205 			goto done;
4206 		}
4207 
4208 		if (!path->skip_locking) {
4209 			ret = btrfs_try_spin_lock(next);
4210 			if (!ret) {
4211 				btrfs_set_path_blocking(path);
4212 				btrfs_tree_lock(next);
4213 				if (!force_blocking)
4214 					btrfs_clear_path_blocking(path, next);
4215 			}
4216 			if (force_blocking)
4217 				btrfs_set_lock_blocking(next);
4218 		}
4219 		break;
4220 	}
4221 	path->slots[level] = slot;
4222 	while (1) {
4223 		level--;
4224 		c = path->nodes[level];
4225 		if (path->locks[level])
4226 			btrfs_tree_unlock(c);
4227 
4228 		free_extent_buffer(c);
4229 		path->nodes[level] = next;
4230 		path->slots[level] = 0;
4231 		if (!path->skip_locking)
4232 			path->locks[level] = 1;
4233 
4234 		if (!level)
4235 			break;
4236 
4237 		ret = read_block_for_search(NULL, root, path, &next, level,
4238 					    0, &key);
4239 		if (ret == -EAGAIN)
4240 			goto again;
4241 
4242 		if (ret < 0) {
4243 			btrfs_release_path(root, path);
4244 			goto done;
4245 		}
4246 
4247 		if (!path->skip_locking) {
4248 			btrfs_assert_tree_locked(path->nodes[level]);
4249 			ret = btrfs_try_spin_lock(next);
4250 			if (!ret) {
4251 				btrfs_set_path_blocking(path);
4252 				btrfs_tree_lock(next);
4253 				if (!force_blocking)
4254 					btrfs_clear_path_blocking(path, next);
4255 			}
4256 			if (force_blocking)
4257 				btrfs_set_lock_blocking(next);
4258 		}
4259 	}
4260 	ret = 0;
4261 done:
4262 	unlock_up(path, 0, 1);
4263 	path->leave_spinning = old_spinning;
4264 	if (!old_spinning)
4265 		btrfs_set_path_blocking(path);
4266 
4267 	return ret;
4268 }
4269 
4270 /*
4271  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4272  * searching until it gets past min_objectid or finds an item of 'type'
4273  *
4274  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4275  */
4276 int btrfs_previous_item(struct btrfs_root *root,
4277 			struct btrfs_path *path, u64 min_objectid,
4278 			int type)
4279 {
4280 	struct btrfs_key found_key;
4281 	struct extent_buffer *leaf;
4282 	u32 nritems;
4283 	int ret;
4284 
4285 	while (1) {
4286 		if (path->slots[0] == 0) {
4287 			btrfs_set_path_blocking(path);
4288 			ret = btrfs_prev_leaf(root, path);
4289 			if (ret != 0)
4290 				return ret;
4291 		} else {
4292 			path->slots[0]--;
4293 		}
4294 		leaf = path->nodes[0];
4295 		nritems = btrfs_header_nritems(leaf);
4296 		if (nritems == 0)
4297 			return 1;
4298 		if (path->slots[0] == nritems)
4299 			path->slots[0]--;
4300 
4301 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4302 		if (found_key.objectid < min_objectid)
4303 			break;
4304 		if (found_key.type == type)
4305 			return 0;
4306 		if (found_key.objectid == min_objectid &&
4307 		    found_key.type < type)
4308 			break;
4309 	}
4310 	return 1;
4311 }
4312