xref: /linux/fs/btrfs/ctree.c (revision 57985788158a5a6b77612e531b9d89bcad06e47c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17 
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 		      *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
22 		      int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24 			  struct extent_buffer *dst,
25 			  struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27 			      struct extent_buffer *dst_buf,
28 			      struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 		    int level, int slot);
31 
32 static const struct btrfs_csums {
33 	u16		size;
34 	const char	name[10];
35 	const char	driver[12];
36 } btrfs_csums[] = {
37 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
41 				     .driver = "blake2b-256" },
42 };
43 
44 int btrfs_super_csum_size(const struct btrfs_super_block *s)
45 {
46 	u16 t = btrfs_super_csum_type(s);
47 	/*
48 	 * csum type is validated at mount time
49 	 */
50 	return btrfs_csums[t].size;
51 }
52 
53 const char *btrfs_super_csum_name(u16 csum_type)
54 {
55 	/* csum type is validated at mount time */
56 	return btrfs_csums[csum_type].name;
57 }
58 
59 /*
60  * Return driver name if defined, otherwise the name that's also a valid driver
61  * name
62  */
63 const char *btrfs_super_csum_driver(u16 csum_type)
64 {
65 	/* csum type is validated at mount time */
66 	return btrfs_csums[csum_type].driver[0] ?
67 		btrfs_csums[csum_type].driver :
68 		btrfs_csums[csum_type].name;
69 }
70 
71 size_t __attribute_const__ btrfs_get_num_csums(void)
72 {
73 	return ARRAY_SIZE(btrfs_csums);
74 }
75 
76 struct btrfs_path *btrfs_alloc_path(void)
77 {
78 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
79 }
80 
81 /* this also releases the path */
82 void btrfs_free_path(struct btrfs_path *p)
83 {
84 	if (!p)
85 		return;
86 	btrfs_release_path(p);
87 	kmem_cache_free(btrfs_path_cachep, p);
88 }
89 
90 /*
91  * path release drops references on the extent buffers in the path
92  * and it drops any locks held by this path
93  *
94  * It is safe to call this on paths that no locks or extent buffers held.
95  */
96 noinline void btrfs_release_path(struct btrfs_path *p)
97 {
98 	int i;
99 
100 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
101 		p->slots[i] = 0;
102 		if (!p->nodes[i])
103 			continue;
104 		if (p->locks[i]) {
105 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
106 			p->locks[i] = 0;
107 		}
108 		free_extent_buffer(p->nodes[i]);
109 		p->nodes[i] = NULL;
110 	}
111 }
112 
113 /*
114  * safely gets a reference on the root node of a tree.  A lock
115  * is not taken, so a concurrent writer may put a different node
116  * at the root of the tree.  See btrfs_lock_root_node for the
117  * looping required.
118  *
119  * The extent buffer returned by this has a reference taken, so
120  * it won't disappear.  It may stop being the root of the tree
121  * at any time because there are no locks held.
122  */
123 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
124 {
125 	struct extent_buffer *eb;
126 
127 	while (1) {
128 		rcu_read_lock();
129 		eb = rcu_dereference(root->node);
130 
131 		/*
132 		 * RCU really hurts here, we could free up the root node because
133 		 * it was COWed but we may not get the new root node yet so do
134 		 * the inc_not_zero dance and if it doesn't work then
135 		 * synchronize_rcu and try again.
136 		 */
137 		if (atomic_inc_not_zero(&eb->refs)) {
138 			rcu_read_unlock();
139 			break;
140 		}
141 		rcu_read_unlock();
142 		synchronize_rcu();
143 	}
144 	return eb;
145 }
146 
147 /*
148  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
149  * just get put onto a simple dirty list.  Transaction walks this list to make
150  * sure they get properly updated on disk.
151  */
152 static void add_root_to_dirty_list(struct btrfs_root *root)
153 {
154 	struct btrfs_fs_info *fs_info = root->fs_info;
155 
156 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
157 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
158 		return;
159 
160 	spin_lock(&fs_info->trans_lock);
161 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
162 		/* Want the extent tree to be the last on the list */
163 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
164 			list_move_tail(&root->dirty_list,
165 				       &fs_info->dirty_cowonly_roots);
166 		else
167 			list_move(&root->dirty_list,
168 				  &fs_info->dirty_cowonly_roots);
169 	}
170 	spin_unlock(&fs_info->trans_lock);
171 }
172 
173 /*
174  * used by snapshot creation to make a copy of a root for a tree with
175  * a given objectid.  The buffer with the new root node is returned in
176  * cow_ret, and this func returns zero on success or a negative error code.
177  */
178 int btrfs_copy_root(struct btrfs_trans_handle *trans,
179 		      struct btrfs_root *root,
180 		      struct extent_buffer *buf,
181 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
182 {
183 	struct btrfs_fs_info *fs_info = root->fs_info;
184 	struct extent_buffer *cow;
185 	int ret = 0;
186 	int level;
187 	struct btrfs_disk_key disk_key;
188 
189 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
190 		trans->transid != fs_info->running_transaction->transid);
191 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192 		trans->transid != root->last_trans);
193 
194 	level = btrfs_header_level(buf);
195 	if (level == 0)
196 		btrfs_item_key(buf, &disk_key, 0);
197 	else
198 		btrfs_node_key(buf, &disk_key, 0);
199 
200 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
201 				     &disk_key, level, buf->start, 0,
202 				     BTRFS_NESTING_NEW_ROOT);
203 	if (IS_ERR(cow))
204 		return PTR_ERR(cow);
205 
206 	copy_extent_buffer_full(cow, buf);
207 	btrfs_set_header_bytenr(cow, cow->start);
208 	btrfs_set_header_generation(cow, trans->transid);
209 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
210 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
211 				     BTRFS_HEADER_FLAG_RELOC);
212 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
213 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
214 	else
215 		btrfs_set_header_owner(cow, new_root_objectid);
216 
217 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
218 
219 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
220 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
221 		ret = btrfs_inc_ref(trans, root, cow, 1);
222 	else
223 		ret = btrfs_inc_ref(trans, root, cow, 0);
224 
225 	if (ret)
226 		return ret;
227 
228 	btrfs_mark_buffer_dirty(cow);
229 	*cow_ret = cow;
230 	return 0;
231 }
232 
233 enum mod_log_op {
234 	MOD_LOG_KEY_REPLACE,
235 	MOD_LOG_KEY_ADD,
236 	MOD_LOG_KEY_REMOVE,
237 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
238 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
239 	MOD_LOG_MOVE_KEYS,
240 	MOD_LOG_ROOT_REPLACE,
241 };
242 
243 struct tree_mod_root {
244 	u64 logical;
245 	u8 level;
246 };
247 
248 struct tree_mod_elem {
249 	struct rb_node node;
250 	u64 logical;
251 	u64 seq;
252 	enum mod_log_op op;
253 
254 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
255 	int slot;
256 
257 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
258 	u64 generation;
259 
260 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
261 	struct btrfs_disk_key key;
262 	u64 blockptr;
263 
264 	/* this is used for op == MOD_LOG_MOVE_KEYS */
265 	struct {
266 		int dst_slot;
267 		int nr_items;
268 	} move;
269 
270 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
271 	struct tree_mod_root old_root;
272 };
273 
274 /*
275  * Pull a new tree mod seq number for our operation.
276  */
277 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
278 {
279 	return atomic64_inc_return(&fs_info->tree_mod_seq);
280 }
281 
282 /*
283  * This adds a new blocker to the tree mod log's blocker list if the @elem
284  * passed does not already have a sequence number set. So when a caller expects
285  * to record tree modifications, it should ensure to set elem->seq to zero
286  * before calling btrfs_get_tree_mod_seq.
287  * Returns a fresh, unused tree log modification sequence number, even if no new
288  * blocker was added.
289  */
290 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
291 			   struct seq_list *elem)
292 {
293 	write_lock(&fs_info->tree_mod_log_lock);
294 	if (!elem->seq) {
295 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
296 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
297 	}
298 	write_unlock(&fs_info->tree_mod_log_lock);
299 
300 	return elem->seq;
301 }
302 
303 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
304 			    struct seq_list *elem)
305 {
306 	struct rb_root *tm_root;
307 	struct rb_node *node;
308 	struct rb_node *next;
309 	struct tree_mod_elem *tm;
310 	u64 min_seq = (u64)-1;
311 	u64 seq_putting = elem->seq;
312 
313 	if (!seq_putting)
314 		return;
315 
316 	write_lock(&fs_info->tree_mod_log_lock);
317 	list_del(&elem->list);
318 	elem->seq = 0;
319 
320 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
321 		struct seq_list *first;
322 
323 		first = list_first_entry(&fs_info->tree_mod_seq_list,
324 					 struct seq_list, list);
325 		if (seq_putting > first->seq) {
326 			/*
327 			 * Blocker with lower sequence number exists, we
328 			 * cannot remove anything from the log.
329 			 */
330 			write_unlock(&fs_info->tree_mod_log_lock);
331 			return;
332 		}
333 		min_seq = first->seq;
334 	}
335 
336 	/*
337 	 * anything that's lower than the lowest existing (read: blocked)
338 	 * sequence number can be removed from the tree.
339 	 */
340 	tm_root = &fs_info->tree_mod_log;
341 	for (node = rb_first(tm_root); node; node = next) {
342 		next = rb_next(node);
343 		tm = rb_entry(node, struct tree_mod_elem, node);
344 		if (tm->seq >= min_seq)
345 			continue;
346 		rb_erase(node, tm_root);
347 		kfree(tm);
348 	}
349 	write_unlock(&fs_info->tree_mod_log_lock);
350 }
351 
352 /*
353  * key order of the log:
354  *       node/leaf start address -> sequence
355  *
356  * The 'start address' is the logical address of the *new* root node
357  * for root replace operations, or the logical address of the affected
358  * block for all other operations.
359  */
360 static noinline int
361 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
362 {
363 	struct rb_root *tm_root;
364 	struct rb_node **new;
365 	struct rb_node *parent = NULL;
366 	struct tree_mod_elem *cur;
367 
368 	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
369 
370 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
371 
372 	tm_root = &fs_info->tree_mod_log;
373 	new = &tm_root->rb_node;
374 	while (*new) {
375 		cur = rb_entry(*new, struct tree_mod_elem, node);
376 		parent = *new;
377 		if (cur->logical < tm->logical)
378 			new = &((*new)->rb_left);
379 		else if (cur->logical > tm->logical)
380 			new = &((*new)->rb_right);
381 		else if (cur->seq < tm->seq)
382 			new = &((*new)->rb_left);
383 		else if (cur->seq > tm->seq)
384 			new = &((*new)->rb_right);
385 		else
386 			return -EEXIST;
387 	}
388 
389 	rb_link_node(&tm->node, parent, new);
390 	rb_insert_color(&tm->node, tm_root);
391 	return 0;
392 }
393 
394 /*
395  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
396  * returns zero with the tree_mod_log_lock acquired. The caller must hold
397  * this until all tree mod log insertions are recorded in the rb tree and then
398  * write unlock fs_info::tree_mod_log_lock.
399  */
400 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
401 				    struct extent_buffer *eb) {
402 	smp_mb();
403 	if (list_empty(&(fs_info)->tree_mod_seq_list))
404 		return 1;
405 	if (eb && btrfs_header_level(eb) == 0)
406 		return 1;
407 
408 	write_lock(&fs_info->tree_mod_log_lock);
409 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
410 		write_unlock(&fs_info->tree_mod_log_lock);
411 		return 1;
412 	}
413 
414 	return 0;
415 }
416 
417 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
418 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
419 				    struct extent_buffer *eb)
420 {
421 	smp_mb();
422 	if (list_empty(&(fs_info)->tree_mod_seq_list))
423 		return 0;
424 	if (eb && btrfs_header_level(eb) == 0)
425 		return 0;
426 
427 	return 1;
428 }
429 
430 static struct tree_mod_elem *
431 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
432 		    enum mod_log_op op, gfp_t flags)
433 {
434 	struct tree_mod_elem *tm;
435 
436 	tm = kzalloc(sizeof(*tm), flags);
437 	if (!tm)
438 		return NULL;
439 
440 	tm->logical = eb->start;
441 	if (op != MOD_LOG_KEY_ADD) {
442 		btrfs_node_key(eb, &tm->key, slot);
443 		tm->blockptr = btrfs_node_blockptr(eb, slot);
444 	}
445 	tm->op = op;
446 	tm->slot = slot;
447 	tm->generation = btrfs_node_ptr_generation(eb, slot);
448 	RB_CLEAR_NODE(&tm->node);
449 
450 	return tm;
451 }
452 
453 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
454 		enum mod_log_op op, gfp_t flags)
455 {
456 	struct tree_mod_elem *tm;
457 	int ret;
458 
459 	if (!tree_mod_need_log(eb->fs_info, eb))
460 		return 0;
461 
462 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
463 	if (!tm)
464 		return -ENOMEM;
465 
466 	if (tree_mod_dont_log(eb->fs_info, eb)) {
467 		kfree(tm);
468 		return 0;
469 	}
470 
471 	ret = __tree_mod_log_insert(eb->fs_info, tm);
472 	write_unlock(&eb->fs_info->tree_mod_log_lock);
473 	if (ret)
474 		kfree(tm);
475 
476 	return ret;
477 }
478 
479 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
480 		int dst_slot, int src_slot, int nr_items)
481 {
482 	struct tree_mod_elem *tm = NULL;
483 	struct tree_mod_elem **tm_list = NULL;
484 	int ret = 0;
485 	int i;
486 	int locked = 0;
487 
488 	if (!tree_mod_need_log(eb->fs_info, eb))
489 		return 0;
490 
491 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
492 	if (!tm_list)
493 		return -ENOMEM;
494 
495 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
496 	if (!tm) {
497 		ret = -ENOMEM;
498 		goto free_tms;
499 	}
500 
501 	tm->logical = eb->start;
502 	tm->slot = src_slot;
503 	tm->move.dst_slot = dst_slot;
504 	tm->move.nr_items = nr_items;
505 	tm->op = MOD_LOG_MOVE_KEYS;
506 
507 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
508 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
509 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
510 		if (!tm_list[i]) {
511 			ret = -ENOMEM;
512 			goto free_tms;
513 		}
514 	}
515 
516 	if (tree_mod_dont_log(eb->fs_info, eb))
517 		goto free_tms;
518 	locked = 1;
519 
520 	/*
521 	 * When we override something during the move, we log these removals.
522 	 * This can only happen when we move towards the beginning of the
523 	 * buffer, i.e. dst_slot < src_slot.
524 	 */
525 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
526 		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
527 		if (ret)
528 			goto free_tms;
529 	}
530 
531 	ret = __tree_mod_log_insert(eb->fs_info, tm);
532 	if (ret)
533 		goto free_tms;
534 	write_unlock(&eb->fs_info->tree_mod_log_lock);
535 	kfree(tm_list);
536 
537 	return 0;
538 free_tms:
539 	for (i = 0; i < nr_items; i++) {
540 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
541 			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
542 		kfree(tm_list[i]);
543 	}
544 	if (locked)
545 		write_unlock(&eb->fs_info->tree_mod_log_lock);
546 	kfree(tm_list);
547 	kfree(tm);
548 
549 	return ret;
550 }
551 
552 static inline int
553 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
554 		       struct tree_mod_elem **tm_list,
555 		       int nritems)
556 {
557 	int i, j;
558 	int ret;
559 
560 	for (i = nritems - 1; i >= 0; i--) {
561 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
562 		if (ret) {
563 			for (j = nritems - 1; j > i; j--)
564 				rb_erase(&tm_list[j]->node,
565 					 &fs_info->tree_mod_log);
566 			return ret;
567 		}
568 	}
569 
570 	return 0;
571 }
572 
573 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
574 			 struct extent_buffer *new_root, int log_removal)
575 {
576 	struct btrfs_fs_info *fs_info = old_root->fs_info;
577 	struct tree_mod_elem *tm = NULL;
578 	struct tree_mod_elem **tm_list = NULL;
579 	int nritems = 0;
580 	int ret = 0;
581 	int i;
582 
583 	if (!tree_mod_need_log(fs_info, NULL))
584 		return 0;
585 
586 	if (log_removal && btrfs_header_level(old_root) > 0) {
587 		nritems = btrfs_header_nritems(old_root);
588 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
589 				  GFP_NOFS);
590 		if (!tm_list) {
591 			ret = -ENOMEM;
592 			goto free_tms;
593 		}
594 		for (i = 0; i < nritems; i++) {
595 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
596 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
597 			if (!tm_list[i]) {
598 				ret = -ENOMEM;
599 				goto free_tms;
600 			}
601 		}
602 	}
603 
604 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
605 	if (!tm) {
606 		ret = -ENOMEM;
607 		goto free_tms;
608 	}
609 
610 	tm->logical = new_root->start;
611 	tm->old_root.logical = old_root->start;
612 	tm->old_root.level = btrfs_header_level(old_root);
613 	tm->generation = btrfs_header_generation(old_root);
614 	tm->op = MOD_LOG_ROOT_REPLACE;
615 
616 	if (tree_mod_dont_log(fs_info, NULL))
617 		goto free_tms;
618 
619 	if (tm_list)
620 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
621 	if (!ret)
622 		ret = __tree_mod_log_insert(fs_info, tm);
623 
624 	write_unlock(&fs_info->tree_mod_log_lock);
625 	if (ret)
626 		goto free_tms;
627 	kfree(tm_list);
628 
629 	return ret;
630 
631 free_tms:
632 	if (tm_list) {
633 		for (i = 0; i < nritems; i++)
634 			kfree(tm_list[i]);
635 		kfree(tm_list);
636 	}
637 	kfree(tm);
638 
639 	return ret;
640 }
641 
642 static struct tree_mod_elem *
643 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
644 		      int smallest)
645 {
646 	struct rb_root *tm_root;
647 	struct rb_node *node;
648 	struct tree_mod_elem *cur = NULL;
649 	struct tree_mod_elem *found = NULL;
650 
651 	read_lock(&fs_info->tree_mod_log_lock);
652 	tm_root = &fs_info->tree_mod_log;
653 	node = tm_root->rb_node;
654 	while (node) {
655 		cur = rb_entry(node, struct tree_mod_elem, node);
656 		if (cur->logical < start) {
657 			node = node->rb_left;
658 		} else if (cur->logical > start) {
659 			node = node->rb_right;
660 		} else if (cur->seq < min_seq) {
661 			node = node->rb_left;
662 		} else if (!smallest) {
663 			/* we want the node with the highest seq */
664 			if (found)
665 				BUG_ON(found->seq > cur->seq);
666 			found = cur;
667 			node = node->rb_left;
668 		} else if (cur->seq > min_seq) {
669 			/* we want the node with the smallest seq */
670 			if (found)
671 				BUG_ON(found->seq < cur->seq);
672 			found = cur;
673 			node = node->rb_right;
674 		} else {
675 			found = cur;
676 			break;
677 		}
678 	}
679 	read_unlock(&fs_info->tree_mod_log_lock);
680 
681 	return found;
682 }
683 
684 /*
685  * this returns the element from the log with the smallest time sequence
686  * value that's in the log (the oldest log item). any element with a time
687  * sequence lower than min_seq will be ignored.
688  */
689 static struct tree_mod_elem *
690 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
691 			   u64 min_seq)
692 {
693 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
694 }
695 
696 /*
697  * this returns the element from the log with the largest time sequence
698  * value that's in the log (the most recent log item). any element with
699  * a time sequence lower than min_seq will be ignored.
700  */
701 static struct tree_mod_elem *
702 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
703 {
704 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
705 }
706 
707 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
708 		     struct extent_buffer *src, unsigned long dst_offset,
709 		     unsigned long src_offset, int nr_items)
710 {
711 	struct btrfs_fs_info *fs_info = dst->fs_info;
712 	int ret = 0;
713 	struct tree_mod_elem **tm_list = NULL;
714 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
715 	int i;
716 	int locked = 0;
717 
718 	if (!tree_mod_need_log(fs_info, NULL))
719 		return 0;
720 
721 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
722 		return 0;
723 
724 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
725 			  GFP_NOFS);
726 	if (!tm_list)
727 		return -ENOMEM;
728 
729 	tm_list_add = tm_list;
730 	tm_list_rem = tm_list + nr_items;
731 	for (i = 0; i < nr_items; i++) {
732 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
733 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
734 		if (!tm_list_rem[i]) {
735 			ret = -ENOMEM;
736 			goto free_tms;
737 		}
738 
739 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
740 		    MOD_LOG_KEY_ADD, GFP_NOFS);
741 		if (!tm_list_add[i]) {
742 			ret = -ENOMEM;
743 			goto free_tms;
744 		}
745 	}
746 
747 	if (tree_mod_dont_log(fs_info, NULL))
748 		goto free_tms;
749 	locked = 1;
750 
751 	for (i = 0; i < nr_items; i++) {
752 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
753 		if (ret)
754 			goto free_tms;
755 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
756 		if (ret)
757 			goto free_tms;
758 	}
759 
760 	write_unlock(&fs_info->tree_mod_log_lock);
761 	kfree(tm_list);
762 
763 	return 0;
764 
765 free_tms:
766 	for (i = 0; i < nr_items * 2; i++) {
767 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
768 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
769 		kfree(tm_list[i]);
770 	}
771 	if (locked)
772 		write_unlock(&fs_info->tree_mod_log_lock);
773 	kfree(tm_list);
774 
775 	return ret;
776 }
777 
778 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
779 {
780 	struct tree_mod_elem **tm_list = NULL;
781 	int nritems = 0;
782 	int i;
783 	int ret = 0;
784 
785 	if (btrfs_header_level(eb) == 0)
786 		return 0;
787 
788 	if (!tree_mod_need_log(eb->fs_info, NULL))
789 		return 0;
790 
791 	nritems = btrfs_header_nritems(eb);
792 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
793 	if (!tm_list)
794 		return -ENOMEM;
795 
796 	for (i = 0; i < nritems; i++) {
797 		tm_list[i] = alloc_tree_mod_elem(eb, i,
798 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
799 		if (!tm_list[i]) {
800 			ret = -ENOMEM;
801 			goto free_tms;
802 		}
803 	}
804 
805 	if (tree_mod_dont_log(eb->fs_info, eb))
806 		goto free_tms;
807 
808 	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
809 	write_unlock(&eb->fs_info->tree_mod_log_lock);
810 	if (ret)
811 		goto free_tms;
812 	kfree(tm_list);
813 
814 	return 0;
815 
816 free_tms:
817 	for (i = 0; i < nritems; i++)
818 		kfree(tm_list[i]);
819 	kfree(tm_list);
820 
821 	return ret;
822 }
823 
824 /*
825  * check if the tree block can be shared by multiple trees
826  */
827 int btrfs_block_can_be_shared(struct btrfs_root *root,
828 			      struct extent_buffer *buf)
829 {
830 	/*
831 	 * Tree blocks not in shareable trees and tree roots are never shared.
832 	 * If a block was allocated after the last snapshot and the block was
833 	 * not allocated by tree relocation, we know the block is not shared.
834 	 */
835 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
836 	    buf != root->node && buf != root->commit_root &&
837 	    (btrfs_header_generation(buf) <=
838 	     btrfs_root_last_snapshot(&root->root_item) ||
839 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
840 		return 1;
841 
842 	return 0;
843 }
844 
845 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
846 				       struct btrfs_root *root,
847 				       struct extent_buffer *buf,
848 				       struct extent_buffer *cow,
849 				       int *last_ref)
850 {
851 	struct btrfs_fs_info *fs_info = root->fs_info;
852 	u64 refs;
853 	u64 owner;
854 	u64 flags;
855 	u64 new_flags = 0;
856 	int ret;
857 
858 	/*
859 	 * Backrefs update rules:
860 	 *
861 	 * Always use full backrefs for extent pointers in tree block
862 	 * allocated by tree relocation.
863 	 *
864 	 * If a shared tree block is no longer referenced by its owner
865 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
866 	 * use full backrefs for extent pointers in tree block.
867 	 *
868 	 * If a tree block is been relocating
869 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
870 	 * use full backrefs for extent pointers in tree block.
871 	 * The reason for this is some operations (such as drop tree)
872 	 * are only allowed for blocks use full backrefs.
873 	 */
874 
875 	if (btrfs_block_can_be_shared(root, buf)) {
876 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
877 					       btrfs_header_level(buf), 1,
878 					       &refs, &flags);
879 		if (ret)
880 			return ret;
881 		if (refs == 0) {
882 			ret = -EROFS;
883 			btrfs_handle_fs_error(fs_info, ret, NULL);
884 			return ret;
885 		}
886 	} else {
887 		refs = 1;
888 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
889 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
890 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
891 		else
892 			flags = 0;
893 	}
894 
895 	owner = btrfs_header_owner(buf);
896 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
897 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
898 
899 	if (refs > 1) {
900 		if ((owner == root->root_key.objectid ||
901 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
902 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
903 			ret = btrfs_inc_ref(trans, root, buf, 1);
904 			if (ret)
905 				return ret;
906 
907 			if (root->root_key.objectid ==
908 			    BTRFS_TREE_RELOC_OBJECTID) {
909 				ret = btrfs_dec_ref(trans, root, buf, 0);
910 				if (ret)
911 					return ret;
912 				ret = btrfs_inc_ref(trans, root, cow, 1);
913 				if (ret)
914 					return ret;
915 			}
916 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
917 		} else {
918 
919 			if (root->root_key.objectid ==
920 			    BTRFS_TREE_RELOC_OBJECTID)
921 				ret = btrfs_inc_ref(trans, root, cow, 1);
922 			else
923 				ret = btrfs_inc_ref(trans, root, cow, 0);
924 			if (ret)
925 				return ret;
926 		}
927 		if (new_flags != 0) {
928 			int level = btrfs_header_level(buf);
929 
930 			ret = btrfs_set_disk_extent_flags(trans, buf,
931 							  new_flags, level, 0);
932 			if (ret)
933 				return ret;
934 		}
935 	} else {
936 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
937 			if (root->root_key.objectid ==
938 			    BTRFS_TREE_RELOC_OBJECTID)
939 				ret = btrfs_inc_ref(trans, root, cow, 1);
940 			else
941 				ret = btrfs_inc_ref(trans, root, cow, 0);
942 			if (ret)
943 				return ret;
944 			ret = btrfs_dec_ref(trans, root, buf, 1);
945 			if (ret)
946 				return ret;
947 		}
948 		btrfs_clean_tree_block(buf);
949 		*last_ref = 1;
950 	}
951 	return 0;
952 }
953 
954 static struct extent_buffer *alloc_tree_block_no_bg_flush(
955 					  struct btrfs_trans_handle *trans,
956 					  struct btrfs_root *root,
957 					  u64 parent_start,
958 					  const struct btrfs_disk_key *disk_key,
959 					  int level,
960 					  u64 hint,
961 					  u64 empty_size,
962 					  enum btrfs_lock_nesting nest)
963 {
964 	struct btrfs_fs_info *fs_info = root->fs_info;
965 	struct extent_buffer *ret;
966 
967 	/*
968 	 * If we are COWing a node/leaf from the extent, chunk, device or free
969 	 * space trees, make sure that we do not finish block group creation of
970 	 * pending block groups. We do this to avoid a deadlock.
971 	 * COWing can result in allocation of a new chunk, and flushing pending
972 	 * block groups (btrfs_create_pending_block_groups()) can be triggered
973 	 * when finishing allocation of a new chunk. Creation of a pending block
974 	 * group modifies the extent, chunk, device and free space trees,
975 	 * therefore we could deadlock with ourselves since we are holding a
976 	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
977 	 * try to COW later.
978 	 * For similar reasons, we also need to delay flushing pending block
979 	 * groups when splitting a leaf or node, from one of those trees, since
980 	 * we are holding a write lock on it and its parent or when inserting a
981 	 * new root node for one of those trees.
982 	 */
983 	if (root == fs_info->extent_root ||
984 	    root == fs_info->chunk_root ||
985 	    root == fs_info->dev_root ||
986 	    root == fs_info->free_space_root)
987 		trans->can_flush_pending_bgs = false;
988 
989 	ret = btrfs_alloc_tree_block(trans, root, parent_start,
990 				     root->root_key.objectid, disk_key, level,
991 				     hint, empty_size, nest);
992 	trans->can_flush_pending_bgs = true;
993 
994 	return ret;
995 }
996 
997 /*
998  * does the dirty work in cow of a single block.  The parent block (if
999  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1000  * dirty and returned locked.  If you modify the block it needs to be marked
1001  * dirty again.
1002  *
1003  * search_start -- an allocation hint for the new block
1004  *
1005  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1006  * bytes the allocator should try to find free next to the block it returns.
1007  * This is just a hint and may be ignored by the allocator.
1008  */
1009 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1010 			     struct btrfs_root *root,
1011 			     struct extent_buffer *buf,
1012 			     struct extent_buffer *parent, int parent_slot,
1013 			     struct extent_buffer **cow_ret,
1014 			     u64 search_start, u64 empty_size,
1015 			     enum btrfs_lock_nesting nest)
1016 {
1017 	struct btrfs_fs_info *fs_info = root->fs_info;
1018 	struct btrfs_disk_key disk_key;
1019 	struct extent_buffer *cow;
1020 	int level, ret;
1021 	int last_ref = 0;
1022 	int unlock_orig = 0;
1023 	u64 parent_start = 0;
1024 
1025 	if (*cow_ret == buf)
1026 		unlock_orig = 1;
1027 
1028 	btrfs_assert_tree_locked(buf);
1029 
1030 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1031 		trans->transid != fs_info->running_transaction->transid);
1032 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1033 		trans->transid != root->last_trans);
1034 
1035 	level = btrfs_header_level(buf);
1036 
1037 	if (level == 0)
1038 		btrfs_item_key(buf, &disk_key, 0);
1039 	else
1040 		btrfs_node_key(buf, &disk_key, 0);
1041 
1042 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1043 		parent_start = parent->start;
1044 
1045 	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1046 					   level, search_start, empty_size, nest);
1047 	if (IS_ERR(cow))
1048 		return PTR_ERR(cow);
1049 
1050 	/* cow is set to blocking by btrfs_init_new_buffer */
1051 
1052 	copy_extent_buffer_full(cow, buf);
1053 	btrfs_set_header_bytenr(cow, cow->start);
1054 	btrfs_set_header_generation(cow, trans->transid);
1055 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1056 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1057 				     BTRFS_HEADER_FLAG_RELOC);
1058 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1059 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1060 	else
1061 		btrfs_set_header_owner(cow, root->root_key.objectid);
1062 
1063 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1064 
1065 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1066 	if (ret) {
1067 		btrfs_tree_unlock(cow);
1068 		free_extent_buffer(cow);
1069 		btrfs_abort_transaction(trans, ret);
1070 		return ret;
1071 	}
1072 
1073 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
1074 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1075 		if (ret) {
1076 			btrfs_tree_unlock(cow);
1077 			free_extent_buffer(cow);
1078 			btrfs_abort_transaction(trans, ret);
1079 			return ret;
1080 		}
1081 	}
1082 
1083 	if (buf == root->node) {
1084 		WARN_ON(parent && parent != buf);
1085 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1086 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1087 			parent_start = buf->start;
1088 
1089 		atomic_inc(&cow->refs);
1090 		ret = tree_mod_log_insert_root(root->node, cow, 1);
1091 		BUG_ON(ret < 0);
1092 		rcu_assign_pointer(root->node, cow);
1093 
1094 		btrfs_free_tree_block(trans, root, buf, parent_start,
1095 				      last_ref);
1096 		free_extent_buffer(buf);
1097 		add_root_to_dirty_list(root);
1098 	} else {
1099 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1100 		tree_mod_log_insert_key(parent, parent_slot,
1101 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1102 		btrfs_set_node_blockptr(parent, parent_slot,
1103 					cow->start);
1104 		btrfs_set_node_ptr_generation(parent, parent_slot,
1105 					      trans->transid);
1106 		btrfs_mark_buffer_dirty(parent);
1107 		if (last_ref) {
1108 			ret = tree_mod_log_free_eb(buf);
1109 			if (ret) {
1110 				btrfs_tree_unlock(cow);
1111 				free_extent_buffer(cow);
1112 				btrfs_abort_transaction(trans, ret);
1113 				return ret;
1114 			}
1115 		}
1116 		btrfs_free_tree_block(trans, root, buf, parent_start,
1117 				      last_ref);
1118 	}
1119 	if (unlock_orig)
1120 		btrfs_tree_unlock(buf);
1121 	free_extent_buffer_stale(buf);
1122 	btrfs_mark_buffer_dirty(cow);
1123 	*cow_ret = cow;
1124 	return 0;
1125 }
1126 
1127 /*
1128  * returns the logical address of the oldest predecessor of the given root.
1129  * entries older than time_seq are ignored.
1130  */
1131 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1132 		struct extent_buffer *eb_root, u64 time_seq)
1133 {
1134 	struct tree_mod_elem *tm;
1135 	struct tree_mod_elem *found = NULL;
1136 	u64 root_logical = eb_root->start;
1137 	int looped = 0;
1138 
1139 	if (!time_seq)
1140 		return NULL;
1141 
1142 	/*
1143 	 * the very last operation that's logged for a root is the
1144 	 * replacement operation (if it is replaced at all). this has
1145 	 * the logical address of the *new* root, making it the very
1146 	 * first operation that's logged for this root.
1147 	 */
1148 	while (1) {
1149 		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1150 						time_seq);
1151 		if (!looped && !tm)
1152 			return NULL;
1153 		/*
1154 		 * if there are no tree operation for the oldest root, we simply
1155 		 * return it. this should only happen if that (old) root is at
1156 		 * level 0.
1157 		 */
1158 		if (!tm)
1159 			break;
1160 
1161 		/*
1162 		 * if there's an operation that's not a root replacement, we
1163 		 * found the oldest version of our root. normally, we'll find a
1164 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1165 		 */
1166 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1167 			break;
1168 
1169 		found = tm;
1170 		root_logical = tm->old_root.logical;
1171 		looped = 1;
1172 	}
1173 
1174 	/* if there's no old root to return, return what we found instead */
1175 	if (!found)
1176 		found = tm;
1177 
1178 	return found;
1179 }
1180 
1181 /*
1182  * tm is a pointer to the first operation to rewind within eb. then, all
1183  * previous operations will be rewound (until we reach something older than
1184  * time_seq).
1185  */
1186 static void
1187 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1188 		      u64 time_seq, struct tree_mod_elem *first_tm)
1189 {
1190 	u32 n;
1191 	struct rb_node *next;
1192 	struct tree_mod_elem *tm = first_tm;
1193 	unsigned long o_dst;
1194 	unsigned long o_src;
1195 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1196 
1197 	n = btrfs_header_nritems(eb);
1198 	read_lock(&fs_info->tree_mod_log_lock);
1199 	while (tm && tm->seq >= time_seq) {
1200 		/*
1201 		 * all the operations are recorded with the operator used for
1202 		 * the modification. as we're going backwards, we do the
1203 		 * opposite of each operation here.
1204 		 */
1205 		switch (tm->op) {
1206 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1207 			BUG_ON(tm->slot < n);
1208 			fallthrough;
1209 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1210 		case MOD_LOG_KEY_REMOVE:
1211 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1212 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1213 			btrfs_set_node_ptr_generation(eb, tm->slot,
1214 						      tm->generation);
1215 			n++;
1216 			break;
1217 		case MOD_LOG_KEY_REPLACE:
1218 			BUG_ON(tm->slot >= n);
1219 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1220 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1221 			btrfs_set_node_ptr_generation(eb, tm->slot,
1222 						      tm->generation);
1223 			break;
1224 		case MOD_LOG_KEY_ADD:
1225 			/* if a move operation is needed it's in the log */
1226 			n--;
1227 			break;
1228 		case MOD_LOG_MOVE_KEYS:
1229 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1230 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1231 			memmove_extent_buffer(eb, o_dst, o_src,
1232 					      tm->move.nr_items * p_size);
1233 			break;
1234 		case MOD_LOG_ROOT_REPLACE:
1235 			/*
1236 			 * this operation is special. for roots, this must be
1237 			 * handled explicitly before rewinding.
1238 			 * for non-roots, this operation may exist if the node
1239 			 * was a root: root A -> child B; then A gets empty and
1240 			 * B is promoted to the new root. in the mod log, we'll
1241 			 * have a root-replace operation for B, a tree block
1242 			 * that is no root. we simply ignore that operation.
1243 			 */
1244 			break;
1245 		}
1246 		next = rb_next(&tm->node);
1247 		if (!next)
1248 			break;
1249 		tm = rb_entry(next, struct tree_mod_elem, node);
1250 		if (tm->logical != first_tm->logical)
1251 			break;
1252 	}
1253 	read_unlock(&fs_info->tree_mod_log_lock);
1254 	btrfs_set_header_nritems(eb, n);
1255 }
1256 
1257 /*
1258  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1259  * is returned. If rewind operations happen, a fresh buffer is returned. The
1260  * returned buffer is always read-locked. If the returned buffer is not the
1261  * input buffer, the lock on the input buffer is released and the input buffer
1262  * is freed (its refcount is decremented).
1263  */
1264 static struct extent_buffer *
1265 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1266 		    struct extent_buffer *eb, u64 time_seq)
1267 {
1268 	struct extent_buffer *eb_rewin;
1269 	struct tree_mod_elem *tm;
1270 
1271 	if (!time_seq)
1272 		return eb;
1273 
1274 	if (btrfs_header_level(eb) == 0)
1275 		return eb;
1276 
1277 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1278 	if (!tm)
1279 		return eb;
1280 
1281 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1282 		BUG_ON(tm->slot != 0);
1283 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1284 		if (!eb_rewin) {
1285 			btrfs_tree_read_unlock(eb);
1286 			free_extent_buffer(eb);
1287 			return NULL;
1288 		}
1289 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1290 		btrfs_set_header_backref_rev(eb_rewin,
1291 					     btrfs_header_backref_rev(eb));
1292 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1293 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1294 	} else {
1295 		eb_rewin = btrfs_clone_extent_buffer(eb);
1296 		if (!eb_rewin) {
1297 			btrfs_tree_read_unlock(eb);
1298 			free_extent_buffer(eb);
1299 			return NULL;
1300 		}
1301 	}
1302 
1303 	btrfs_tree_read_unlock(eb);
1304 	free_extent_buffer(eb);
1305 
1306 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
1307 				       eb_rewin, btrfs_header_level(eb_rewin));
1308 	btrfs_tree_read_lock(eb_rewin);
1309 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1310 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1311 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1312 
1313 	return eb_rewin;
1314 }
1315 
1316 /*
1317  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1318  * value. If there are no changes, the current root->root_node is returned. If
1319  * anything changed in between, there's a fresh buffer allocated on which the
1320  * rewind operations are done. In any case, the returned buffer is read locked.
1321  * Returns NULL on error (with no locks held).
1322  */
1323 static inline struct extent_buffer *
1324 get_old_root(struct btrfs_root *root, u64 time_seq)
1325 {
1326 	struct btrfs_fs_info *fs_info = root->fs_info;
1327 	struct tree_mod_elem *tm;
1328 	struct extent_buffer *eb = NULL;
1329 	struct extent_buffer *eb_root;
1330 	u64 eb_root_owner = 0;
1331 	struct extent_buffer *old;
1332 	struct tree_mod_root *old_root = NULL;
1333 	u64 old_generation = 0;
1334 	u64 logical;
1335 	int level;
1336 
1337 	eb_root = btrfs_read_lock_root_node(root);
1338 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1339 	if (!tm)
1340 		return eb_root;
1341 
1342 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1343 		old_root = &tm->old_root;
1344 		old_generation = tm->generation;
1345 		logical = old_root->logical;
1346 		level = old_root->level;
1347 	} else {
1348 		logical = eb_root->start;
1349 		level = btrfs_header_level(eb_root);
1350 	}
1351 
1352 	tm = tree_mod_log_search(fs_info, logical, time_seq);
1353 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1354 		btrfs_tree_read_unlock(eb_root);
1355 		free_extent_buffer(eb_root);
1356 		old = read_tree_block(fs_info, logical, root->root_key.objectid,
1357 				      0, level, NULL);
1358 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1359 			if (!IS_ERR(old))
1360 				free_extent_buffer(old);
1361 			btrfs_warn(fs_info,
1362 				   "failed to read tree block %llu from get_old_root",
1363 				   logical);
1364 		} else {
1365 			eb = btrfs_clone_extent_buffer(old);
1366 			free_extent_buffer(old);
1367 		}
1368 	} else if (old_root) {
1369 		eb_root_owner = btrfs_header_owner(eb_root);
1370 		btrfs_tree_read_unlock(eb_root);
1371 		free_extent_buffer(eb_root);
1372 		eb = alloc_dummy_extent_buffer(fs_info, logical);
1373 	} else {
1374 		eb = btrfs_clone_extent_buffer(eb_root);
1375 		btrfs_tree_read_unlock(eb_root);
1376 		free_extent_buffer(eb_root);
1377 	}
1378 
1379 	if (!eb)
1380 		return NULL;
1381 	if (old_root) {
1382 		btrfs_set_header_bytenr(eb, eb->start);
1383 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1384 		btrfs_set_header_owner(eb, eb_root_owner);
1385 		btrfs_set_header_level(eb, old_root->level);
1386 		btrfs_set_header_generation(eb, old_generation);
1387 	}
1388 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1389 				       btrfs_header_level(eb));
1390 	btrfs_tree_read_lock(eb);
1391 	if (tm)
1392 		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1393 	else
1394 		WARN_ON(btrfs_header_level(eb) != 0);
1395 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1396 
1397 	return eb;
1398 }
1399 
1400 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1401 {
1402 	struct tree_mod_elem *tm;
1403 	int level;
1404 	struct extent_buffer *eb_root = btrfs_root_node(root);
1405 
1406 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1407 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1408 		level = tm->old_root.level;
1409 	} else {
1410 		level = btrfs_header_level(eb_root);
1411 	}
1412 	free_extent_buffer(eb_root);
1413 
1414 	return level;
1415 }
1416 
1417 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1418 				   struct btrfs_root *root,
1419 				   struct extent_buffer *buf)
1420 {
1421 	if (btrfs_is_testing(root->fs_info))
1422 		return 0;
1423 
1424 	/* Ensure we can see the FORCE_COW bit */
1425 	smp_mb__before_atomic();
1426 
1427 	/*
1428 	 * We do not need to cow a block if
1429 	 * 1) this block is not created or changed in this transaction;
1430 	 * 2) this block does not belong to TREE_RELOC tree;
1431 	 * 3) the root is not forced COW.
1432 	 *
1433 	 * What is forced COW:
1434 	 *    when we create snapshot during committing the transaction,
1435 	 *    after we've finished copying src root, we must COW the shared
1436 	 *    block to ensure the metadata consistency.
1437 	 */
1438 	if (btrfs_header_generation(buf) == trans->transid &&
1439 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1440 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1441 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1442 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1443 		return 0;
1444 	return 1;
1445 }
1446 
1447 /*
1448  * cows a single block, see __btrfs_cow_block for the real work.
1449  * This version of it has extra checks so that a block isn't COWed more than
1450  * once per transaction, as long as it hasn't been written yet
1451  */
1452 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1453 		    struct btrfs_root *root, struct extent_buffer *buf,
1454 		    struct extent_buffer *parent, int parent_slot,
1455 		    struct extent_buffer **cow_ret,
1456 		    enum btrfs_lock_nesting nest)
1457 {
1458 	struct btrfs_fs_info *fs_info = root->fs_info;
1459 	u64 search_start;
1460 	int ret;
1461 
1462 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1463 		btrfs_err(fs_info,
1464 			"COW'ing blocks on a fs root that's being dropped");
1465 
1466 	if (trans->transaction != fs_info->running_transaction)
1467 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1468 		       trans->transid,
1469 		       fs_info->running_transaction->transid);
1470 
1471 	if (trans->transid != fs_info->generation)
1472 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1473 		       trans->transid, fs_info->generation);
1474 
1475 	if (!should_cow_block(trans, root, buf)) {
1476 		trans->dirty = true;
1477 		*cow_ret = buf;
1478 		return 0;
1479 	}
1480 
1481 	search_start = buf->start & ~((u64)SZ_1G - 1);
1482 
1483 	/*
1484 	 * Before CoWing this block for later modification, check if it's
1485 	 * the subtree root and do the delayed subtree trace if needed.
1486 	 *
1487 	 * Also We don't care about the error, as it's handled internally.
1488 	 */
1489 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1490 	ret = __btrfs_cow_block(trans, root, buf, parent,
1491 				 parent_slot, cow_ret, search_start, 0, nest);
1492 
1493 	trace_btrfs_cow_block(root, buf, *cow_ret);
1494 
1495 	return ret;
1496 }
1497 
1498 /*
1499  * helper function for defrag to decide if two blocks pointed to by a
1500  * node are actually close by
1501  */
1502 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1503 {
1504 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1505 		return 1;
1506 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1507 		return 1;
1508 	return 0;
1509 }
1510 
1511 #ifdef __LITTLE_ENDIAN
1512 
1513 /*
1514  * Compare two keys, on little-endian the disk order is same as CPU order and
1515  * we can avoid the conversion.
1516  */
1517 static int comp_keys(const struct btrfs_disk_key *disk_key,
1518 		     const struct btrfs_key *k2)
1519 {
1520 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
1521 
1522 	return btrfs_comp_cpu_keys(k1, k2);
1523 }
1524 
1525 #else
1526 
1527 /*
1528  * compare two keys in a memcmp fashion
1529  */
1530 static int comp_keys(const struct btrfs_disk_key *disk,
1531 		     const struct btrfs_key *k2)
1532 {
1533 	struct btrfs_key k1;
1534 
1535 	btrfs_disk_key_to_cpu(&k1, disk);
1536 
1537 	return btrfs_comp_cpu_keys(&k1, k2);
1538 }
1539 #endif
1540 
1541 /*
1542  * same as comp_keys only with two btrfs_key's
1543  */
1544 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1545 {
1546 	if (k1->objectid > k2->objectid)
1547 		return 1;
1548 	if (k1->objectid < k2->objectid)
1549 		return -1;
1550 	if (k1->type > k2->type)
1551 		return 1;
1552 	if (k1->type < k2->type)
1553 		return -1;
1554 	if (k1->offset > k2->offset)
1555 		return 1;
1556 	if (k1->offset < k2->offset)
1557 		return -1;
1558 	return 0;
1559 }
1560 
1561 /*
1562  * this is used by the defrag code to go through all the
1563  * leaves pointed to by a node and reallocate them so that
1564  * disk order is close to key order
1565  */
1566 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1567 		       struct btrfs_root *root, struct extent_buffer *parent,
1568 		       int start_slot, u64 *last_ret,
1569 		       struct btrfs_key *progress)
1570 {
1571 	struct btrfs_fs_info *fs_info = root->fs_info;
1572 	struct extent_buffer *cur;
1573 	u64 blocknr;
1574 	u64 search_start = *last_ret;
1575 	u64 last_block = 0;
1576 	u64 other;
1577 	u32 parent_nritems;
1578 	int end_slot;
1579 	int i;
1580 	int err = 0;
1581 	u32 blocksize;
1582 	int progress_passed = 0;
1583 	struct btrfs_disk_key disk_key;
1584 
1585 	WARN_ON(trans->transaction != fs_info->running_transaction);
1586 	WARN_ON(trans->transid != fs_info->generation);
1587 
1588 	parent_nritems = btrfs_header_nritems(parent);
1589 	blocksize = fs_info->nodesize;
1590 	end_slot = parent_nritems - 1;
1591 
1592 	if (parent_nritems <= 1)
1593 		return 0;
1594 
1595 	for (i = start_slot; i <= end_slot; i++) {
1596 		int close = 1;
1597 
1598 		btrfs_node_key(parent, &disk_key, i);
1599 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1600 			continue;
1601 
1602 		progress_passed = 1;
1603 		blocknr = btrfs_node_blockptr(parent, i);
1604 		if (last_block == 0)
1605 			last_block = blocknr;
1606 
1607 		if (i > 0) {
1608 			other = btrfs_node_blockptr(parent, i - 1);
1609 			close = close_blocks(blocknr, other, blocksize);
1610 		}
1611 		if (!close && i < end_slot) {
1612 			other = btrfs_node_blockptr(parent, i + 1);
1613 			close = close_blocks(blocknr, other, blocksize);
1614 		}
1615 		if (close) {
1616 			last_block = blocknr;
1617 			continue;
1618 		}
1619 
1620 		cur = btrfs_read_node_slot(parent, i);
1621 		if (IS_ERR(cur))
1622 			return PTR_ERR(cur);
1623 		if (search_start == 0)
1624 			search_start = last_block;
1625 
1626 		btrfs_tree_lock(cur);
1627 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1628 					&cur, search_start,
1629 					min(16 * blocksize,
1630 					    (end_slot - i) * blocksize),
1631 					BTRFS_NESTING_COW);
1632 		if (err) {
1633 			btrfs_tree_unlock(cur);
1634 			free_extent_buffer(cur);
1635 			break;
1636 		}
1637 		search_start = cur->start;
1638 		last_block = cur->start;
1639 		*last_ret = search_start;
1640 		btrfs_tree_unlock(cur);
1641 		free_extent_buffer(cur);
1642 	}
1643 	return err;
1644 }
1645 
1646 /*
1647  * search for key in the extent_buffer.  The items start at offset p,
1648  * and they are item_size apart.  There are 'max' items in p.
1649  *
1650  * the slot in the array is returned via slot, and it points to
1651  * the place where you would insert key if it is not found in
1652  * the array.
1653  *
1654  * slot may point to max if the key is bigger than all of the keys
1655  */
1656 static noinline int generic_bin_search(struct extent_buffer *eb,
1657 				       unsigned long p, int item_size,
1658 				       const struct btrfs_key *key,
1659 				       int max, int *slot)
1660 {
1661 	int low = 0;
1662 	int high = max;
1663 	int ret;
1664 	const int key_size = sizeof(struct btrfs_disk_key);
1665 
1666 	if (low > high) {
1667 		btrfs_err(eb->fs_info,
1668 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1669 			  __func__, low, high, eb->start,
1670 			  btrfs_header_owner(eb), btrfs_header_level(eb));
1671 		return -EINVAL;
1672 	}
1673 
1674 	while (low < high) {
1675 		unsigned long oip;
1676 		unsigned long offset;
1677 		struct btrfs_disk_key *tmp;
1678 		struct btrfs_disk_key unaligned;
1679 		int mid;
1680 
1681 		mid = (low + high) / 2;
1682 		offset = p + mid * item_size;
1683 		oip = offset_in_page(offset);
1684 
1685 		if (oip + key_size <= PAGE_SIZE) {
1686 			const unsigned long idx = get_eb_page_index(offset);
1687 			char *kaddr = page_address(eb->pages[idx]);
1688 
1689 			oip = get_eb_offset_in_page(eb, offset);
1690 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
1691 		} else {
1692 			read_extent_buffer(eb, &unaligned, offset, key_size);
1693 			tmp = &unaligned;
1694 		}
1695 
1696 		ret = comp_keys(tmp, key);
1697 
1698 		if (ret < 0)
1699 			low = mid + 1;
1700 		else if (ret > 0)
1701 			high = mid;
1702 		else {
1703 			*slot = mid;
1704 			return 0;
1705 		}
1706 	}
1707 	*slot = low;
1708 	return 1;
1709 }
1710 
1711 /*
1712  * simple bin_search frontend that does the right thing for
1713  * leaves vs nodes
1714  */
1715 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1716 		     int *slot)
1717 {
1718 	if (btrfs_header_level(eb) == 0)
1719 		return generic_bin_search(eb,
1720 					  offsetof(struct btrfs_leaf, items),
1721 					  sizeof(struct btrfs_item),
1722 					  key, btrfs_header_nritems(eb),
1723 					  slot);
1724 	else
1725 		return generic_bin_search(eb,
1726 					  offsetof(struct btrfs_node, ptrs),
1727 					  sizeof(struct btrfs_key_ptr),
1728 					  key, btrfs_header_nritems(eb),
1729 					  slot);
1730 }
1731 
1732 static void root_add_used(struct btrfs_root *root, u32 size)
1733 {
1734 	spin_lock(&root->accounting_lock);
1735 	btrfs_set_root_used(&root->root_item,
1736 			    btrfs_root_used(&root->root_item) + size);
1737 	spin_unlock(&root->accounting_lock);
1738 }
1739 
1740 static void root_sub_used(struct btrfs_root *root, u32 size)
1741 {
1742 	spin_lock(&root->accounting_lock);
1743 	btrfs_set_root_used(&root->root_item,
1744 			    btrfs_root_used(&root->root_item) - size);
1745 	spin_unlock(&root->accounting_lock);
1746 }
1747 
1748 /* given a node and slot number, this reads the blocks it points to.  The
1749  * extent buffer is returned with a reference taken (but unlocked).
1750  */
1751 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1752 					   int slot)
1753 {
1754 	int level = btrfs_header_level(parent);
1755 	struct extent_buffer *eb;
1756 	struct btrfs_key first_key;
1757 
1758 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1759 		return ERR_PTR(-ENOENT);
1760 
1761 	BUG_ON(level == 0);
1762 
1763 	btrfs_node_key_to_cpu(parent, &first_key, slot);
1764 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1765 			     btrfs_header_owner(parent),
1766 			     btrfs_node_ptr_generation(parent, slot),
1767 			     level - 1, &first_key);
1768 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1769 		free_extent_buffer(eb);
1770 		eb = ERR_PTR(-EIO);
1771 	}
1772 
1773 	return eb;
1774 }
1775 
1776 /*
1777  * node level balancing, used to make sure nodes are in proper order for
1778  * item deletion.  We balance from the top down, so we have to make sure
1779  * that a deletion won't leave an node completely empty later on.
1780  */
1781 static noinline int balance_level(struct btrfs_trans_handle *trans,
1782 			 struct btrfs_root *root,
1783 			 struct btrfs_path *path, int level)
1784 {
1785 	struct btrfs_fs_info *fs_info = root->fs_info;
1786 	struct extent_buffer *right = NULL;
1787 	struct extent_buffer *mid;
1788 	struct extent_buffer *left = NULL;
1789 	struct extent_buffer *parent = NULL;
1790 	int ret = 0;
1791 	int wret;
1792 	int pslot;
1793 	int orig_slot = path->slots[level];
1794 	u64 orig_ptr;
1795 
1796 	ASSERT(level > 0);
1797 
1798 	mid = path->nodes[level];
1799 
1800 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1801 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1802 
1803 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1804 
1805 	if (level < BTRFS_MAX_LEVEL - 1) {
1806 		parent = path->nodes[level + 1];
1807 		pslot = path->slots[level + 1];
1808 	}
1809 
1810 	/*
1811 	 * deal with the case where there is only one pointer in the root
1812 	 * by promoting the node below to a root
1813 	 */
1814 	if (!parent) {
1815 		struct extent_buffer *child;
1816 
1817 		if (btrfs_header_nritems(mid) != 1)
1818 			return 0;
1819 
1820 		/* promote the child to a root */
1821 		child = btrfs_read_node_slot(mid, 0);
1822 		if (IS_ERR(child)) {
1823 			ret = PTR_ERR(child);
1824 			btrfs_handle_fs_error(fs_info, ret, NULL);
1825 			goto enospc;
1826 		}
1827 
1828 		btrfs_tree_lock(child);
1829 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1830 				      BTRFS_NESTING_COW);
1831 		if (ret) {
1832 			btrfs_tree_unlock(child);
1833 			free_extent_buffer(child);
1834 			goto enospc;
1835 		}
1836 
1837 		ret = tree_mod_log_insert_root(root->node, child, 1);
1838 		BUG_ON(ret < 0);
1839 		rcu_assign_pointer(root->node, child);
1840 
1841 		add_root_to_dirty_list(root);
1842 		btrfs_tree_unlock(child);
1843 
1844 		path->locks[level] = 0;
1845 		path->nodes[level] = NULL;
1846 		btrfs_clean_tree_block(mid);
1847 		btrfs_tree_unlock(mid);
1848 		/* once for the path */
1849 		free_extent_buffer(mid);
1850 
1851 		root_sub_used(root, mid->len);
1852 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1853 		/* once for the root ptr */
1854 		free_extent_buffer_stale(mid);
1855 		return 0;
1856 	}
1857 	if (btrfs_header_nritems(mid) >
1858 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1859 		return 0;
1860 
1861 	left = btrfs_read_node_slot(parent, pslot - 1);
1862 	if (IS_ERR(left))
1863 		left = NULL;
1864 
1865 	if (left) {
1866 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1867 		wret = btrfs_cow_block(trans, root, left,
1868 				       parent, pslot - 1, &left,
1869 				       BTRFS_NESTING_LEFT_COW);
1870 		if (wret) {
1871 			ret = wret;
1872 			goto enospc;
1873 		}
1874 	}
1875 
1876 	right = btrfs_read_node_slot(parent, pslot + 1);
1877 	if (IS_ERR(right))
1878 		right = NULL;
1879 
1880 	if (right) {
1881 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1882 		wret = btrfs_cow_block(trans, root, right,
1883 				       parent, pslot + 1, &right,
1884 				       BTRFS_NESTING_RIGHT_COW);
1885 		if (wret) {
1886 			ret = wret;
1887 			goto enospc;
1888 		}
1889 	}
1890 
1891 	/* first, try to make some room in the middle buffer */
1892 	if (left) {
1893 		orig_slot += btrfs_header_nritems(left);
1894 		wret = push_node_left(trans, left, mid, 1);
1895 		if (wret < 0)
1896 			ret = wret;
1897 	}
1898 
1899 	/*
1900 	 * then try to empty the right most buffer into the middle
1901 	 */
1902 	if (right) {
1903 		wret = push_node_left(trans, mid, right, 1);
1904 		if (wret < 0 && wret != -ENOSPC)
1905 			ret = wret;
1906 		if (btrfs_header_nritems(right) == 0) {
1907 			btrfs_clean_tree_block(right);
1908 			btrfs_tree_unlock(right);
1909 			del_ptr(root, path, level + 1, pslot + 1);
1910 			root_sub_used(root, right->len);
1911 			btrfs_free_tree_block(trans, root, right, 0, 1);
1912 			free_extent_buffer_stale(right);
1913 			right = NULL;
1914 		} else {
1915 			struct btrfs_disk_key right_key;
1916 			btrfs_node_key(right, &right_key, 0);
1917 			ret = tree_mod_log_insert_key(parent, pslot + 1,
1918 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1919 			BUG_ON(ret < 0);
1920 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1921 			btrfs_mark_buffer_dirty(parent);
1922 		}
1923 	}
1924 	if (btrfs_header_nritems(mid) == 1) {
1925 		/*
1926 		 * we're not allowed to leave a node with one item in the
1927 		 * tree during a delete.  A deletion from lower in the tree
1928 		 * could try to delete the only pointer in this node.
1929 		 * So, pull some keys from the left.
1930 		 * There has to be a left pointer at this point because
1931 		 * otherwise we would have pulled some pointers from the
1932 		 * right
1933 		 */
1934 		if (!left) {
1935 			ret = -EROFS;
1936 			btrfs_handle_fs_error(fs_info, ret, NULL);
1937 			goto enospc;
1938 		}
1939 		wret = balance_node_right(trans, mid, left);
1940 		if (wret < 0) {
1941 			ret = wret;
1942 			goto enospc;
1943 		}
1944 		if (wret == 1) {
1945 			wret = push_node_left(trans, left, mid, 1);
1946 			if (wret < 0)
1947 				ret = wret;
1948 		}
1949 		BUG_ON(wret == 1);
1950 	}
1951 	if (btrfs_header_nritems(mid) == 0) {
1952 		btrfs_clean_tree_block(mid);
1953 		btrfs_tree_unlock(mid);
1954 		del_ptr(root, path, level + 1, pslot);
1955 		root_sub_used(root, mid->len);
1956 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1957 		free_extent_buffer_stale(mid);
1958 		mid = NULL;
1959 	} else {
1960 		/* update the parent key to reflect our changes */
1961 		struct btrfs_disk_key mid_key;
1962 		btrfs_node_key(mid, &mid_key, 0);
1963 		ret = tree_mod_log_insert_key(parent, pslot,
1964 				MOD_LOG_KEY_REPLACE, GFP_NOFS);
1965 		BUG_ON(ret < 0);
1966 		btrfs_set_node_key(parent, &mid_key, pslot);
1967 		btrfs_mark_buffer_dirty(parent);
1968 	}
1969 
1970 	/* update the path */
1971 	if (left) {
1972 		if (btrfs_header_nritems(left) > orig_slot) {
1973 			atomic_inc(&left->refs);
1974 			/* left was locked after cow */
1975 			path->nodes[level] = left;
1976 			path->slots[level + 1] -= 1;
1977 			path->slots[level] = orig_slot;
1978 			if (mid) {
1979 				btrfs_tree_unlock(mid);
1980 				free_extent_buffer(mid);
1981 			}
1982 		} else {
1983 			orig_slot -= btrfs_header_nritems(left);
1984 			path->slots[level] = orig_slot;
1985 		}
1986 	}
1987 	/* double check we haven't messed things up */
1988 	if (orig_ptr !=
1989 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1990 		BUG();
1991 enospc:
1992 	if (right) {
1993 		btrfs_tree_unlock(right);
1994 		free_extent_buffer(right);
1995 	}
1996 	if (left) {
1997 		if (path->nodes[level] != left)
1998 			btrfs_tree_unlock(left);
1999 		free_extent_buffer(left);
2000 	}
2001 	return ret;
2002 }
2003 
2004 /* Node balancing for insertion.  Here we only split or push nodes around
2005  * when they are completely full.  This is also done top down, so we
2006  * have to be pessimistic.
2007  */
2008 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2009 					  struct btrfs_root *root,
2010 					  struct btrfs_path *path, int level)
2011 {
2012 	struct btrfs_fs_info *fs_info = root->fs_info;
2013 	struct extent_buffer *right = NULL;
2014 	struct extent_buffer *mid;
2015 	struct extent_buffer *left = NULL;
2016 	struct extent_buffer *parent = NULL;
2017 	int ret = 0;
2018 	int wret;
2019 	int pslot;
2020 	int orig_slot = path->slots[level];
2021 
2022 	if (level == 0)
2023 		return 1;
2024 
2025 	mid = path->nodes[level];
2026 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2027 
2028 	if (level < BTRFS_MAX_LEVEL - 1) {
2029 		parent = path->nodes[level + 1];
2030 		pslot = path->slots[level + 1];
2031 	}
2032 
2033 	if (!parent)
2034 		return 1;
2035 
2036 	left = btrfs_read_node_slot(parent, pslot - 1);
2037 	if (IS_ERR(left))
2038 		left = NULL;
2039 
2040 	/* first, try to make some room in the middle buffer */
2041 	if (left) {
2042 		u32 left_nr;
2043 
2044 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
2045 
2046 		left_nr = btrfs_header_nritems(left);
2047 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2048 			wret = 1;
2049 		} else {
2050 			ret = btrfs_cow_block(trans, root, left, parent,
2051 					      pslot - 1, &left,
2052 					      BTRFS_NESTING_LEFT_COW);
2053 			if (ret)
2054 				wret = 1;
2055 			else {
2056 				wret = push_node_left(trans, left, mid, 0);
2057 			}
2058 		}
2059 		if (wret < 0)
2060 			ret = wret;
2061 		if (wret == 0) {
2062 			struct btrfs_disk_key disk_key;
2063 			orig_slot += left_nr;
2064 			btrfs_node_key(mid, &disk_key, 0);
2065 			ret = tree_mod_log_insert_key(parent, pslot,
2066 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2067 			BUG_ON(ret < 0);
2068 			btrfs_set_node_key(parent, &disk_key, pslot);
2069 			btrfs_mark_buffer_dirty(parent);
2070 			if (btrfs_header_nritems(left) > orig_slot) {
2071 				path->nodes[level] = left;
2072 				path->slots[level + 1] -= 1;
2073 				path->slots[level] = orig_slot;
2074 				btrfs_tree_unlock(mid);
2075 				free_extent_buffer(mid);
2076 			} else {
2077 				orig_slot -=
2078 					btrfs_header_nritems(left);
2079 				path->slots[level] = orig_slot;
2080 				btrfs_tree_unlock(left);
2081 				free_extent_buffer(left);
2082 			}
2083 			return 0;
2084 		}
2085 		btrfs_tree_unlock(left);
2086 		free_extent_buffer(left);
2087 	}
2088 	right = btrfs_read_node_slot(parent, pslot + 1);
2089 	if (IS_ERR(right))
2090 		right = NULL;
2091 
2092 	/*
2093 	 * then try to empty the right most buffer into the middle
2094 	 */
2095 	if (right) {
2096 		u32 right_nr;
2097 
2098 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2099 
2100 		right_nr = btrfs_header_nritems(right);
2101 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2102 			wret = 1;
2103 		} else {
2104 			ret = btrfs_cow_block(trans, root, right,
2105 					      parent, pslot + 1,
2106 					      &right, BTRFS_NESTING_RIGHT_COW);
2107 			if (ret)
2108 				wret = 1;
2109 			else {
2110 				wret = balance_node_right(trans, right, mid);
2111 			}
2112 		}
2113 		if (wret < 0)
2114 			ret = wret;
2115 		if (wret == 0) {
2116 			struct btrfs_disk_key disk_key;
2117 
2118 			btrfs_node_key(right, &disk_key, 0);
2119 			ret = tree_mod_log_insert_key(parent, pslot + 1,
2120 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2121 			BUG_ON(ret < 0);
2122 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2123 			btrfs_mark_buffer_dirty(parent);
2124 
2125 			if (btrfs_header_nritems(mid) <= orig_slot) {
2126 				path->nodes[level] = right;
2127 				path->slots[level + 1] += 1;
2128 				path->slots[level] = orig_slot -
2129 					btrfs_header_nritems(mid);
2130 				btrfs_tree_unlock(mid);
2131 				free_extent_buffer(mid);
2132 			} else {
2133 				btrfs_tree_unlock(right);
2134 				free_extent_buffer(right);
2135 			}
2136 			return 0;
2137 		}
2138 		btrfs_tree_unlock(right);
2139 		free_extent_buffer(right);
2140 	}
2141 	return 1;
2142 }
2143 
2144 /*
2145  * readahead one full node of leaves, finding things that are close
2146  * to the block in 'slot', and triggering ra on them.
2147  */
2148 static void reada_for_search(struct btrfs_fs_info *fs_info,
2149 			     struct btrfs_path *path,
2150 			     int level, int slot, u64 objectid)
2151 {
2152 	struct extent_buffer *node;
2153 	struct btrfs_disk_key disk_key;
2154 	u32 nritems;
2155 	u64 search;
2156 	u64 target;
2157 	u64 nread = 0;
2158 	struct extent_buffer *eb;
2159 	u32 nr;
2160 	u32 blocksize;
2161 	u32 nscan = 0;
2162 
2163 	if (level != 1)
2164 		return;
2165 
2166 	if (!path->nodes[level])
2167 		return;
2168 
2169 	node = path->nodes[level];
2170 
2171 	search = btrfs_node_blockptr(node, slot);
2172 	blocksize = fs_info->nodesize;
2173 	eb = find_extent_buffer(fs_info, search);
2174 	if (eb) {
2175 		free_extent_buffer(eb);
2176 		return;
2177 	}
2178 
2179 	target = search;
2180 
2181 	nritems = btrfs_header_nritems(node);
2182 	nr = slot;
2183 
2184 	while (1) {
2185 		if (path->reada == READA_BACK) {
2186 			if (nr == 0)
2187 				break;
2188 			nr--;
2189 		} else if (path->reada == READA_FORWARD) {
2190 			nr++;
2191 			if (nr >= nritems)
2192 				break;
2193 		}
2194 		if (path->reada == READA_BACK && objectid) {
2195 			btrfs_node_key(node, &disk_key, nr);
2196 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2197 				break;
2198 		}
2199 		search = btrfs_node_blockptr(node, nr);
2200 		if ((search <= target && target - search <= 65536) ||
2201 		    (search > target && search - target <= 65536)) {
2202 			btrfs_readahead_node_child(node, nr);
2203 			nread += blocksize;
2204 		}
2205 		nscan++;
2206 		if ((nread > 65536 || nscan > 32))
2207 			break;
2208 	}
2209 }
2210 
2211 static noinline void reada_for_balance(struct btrfs_path *path, int level)
2212 {
2213 	struct extent_buffer *parent;
2214 	int slot;
2215 	int nritems;
2216 
2217 	parent = path->nodes[level + 1];
2218 	if (!parent)
2219 		return;
2220 
2221 	nritems = btrfs_header_nritems(parent);
2222 	slot = path->slots[level + 1];
2223 
2224 	if (slot > 0)
2225 		btrfs_readahead_node_child(parent, slot - 1);
2226 	if (slot + 1 < nritems)
2227 		btrfs_readahead_node_child(parent, slot + 1);
2228 }
2229 
2230 
2231 /*
2232  * when we walk down the tree, it is usually safe to unlock the higher layers
2233  * in the tree.  The exceptions are when our path goes through slot 0, because
2234  * operations on the tree might require changing key pointers higher up in the
2235  * tree.
2236  *
2237  * callers might also have set path->keep_locks, which tells this code to keep
2238  * the lock if the path points to the last slot in the block.  This is part of
2239  * walking through the tree, and selecting the next slot in the higher block.
2240  *
2241  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2242  * if lowest_unlock is 1, level 0 won't be unlocked
2243  */
2244 static noinline void unlock_up(struct btrfs_path *path, int level,
2245 			       int lowest_unlock, int min_write_lock_level,
2246 			       int *write_lock_level)
2247 {
2248 	int i;
2249 	int skip_level = level;
2250 	int no_skips = 0;
2251 	struct extent_buffer *t;
2252 
2253 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2254 		if (!path->nodes[i])
2255 			break;
2256 		if (!path->locks[i])
2257 			break;
2258 		if (!no_skips && path->slots[i] == 0) {
2259 			skip_level = i + 1;
2260 			continue;
2261 		}
2262 		if (!no_skips && path->keep_locks) {
2263 			u32 nritems;
2264 			t = path->nodes[i];
2265 			nritems = btrfs_header_nritems(t);
2266 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2267 				skip_level = i + 1;
2268 				continue;
2269 			}
2270 		}
2271 		if (skip_level < i && i >= lowest_unlock)
2272 			no_skips = 1;
2273 
2274 		t = path->nodes[i];
2275 		if (i >= lowest_unlock && i > skip_level) {
2276 			btrfs_tree_unlock_rw(t, path->locks[i]);
2277 			path->locks[i] = 0;
2278 			if (write_lock_level &&
2279 			    i > min_write_lock_level &&
2280 			    i <= *write_lock_level) {
2281 				*write_lock_level = i - 1;
2282 			}
2283 		}
2284 	}
2285 }
2286 
2287 /*
2288  * helper function for btrfs_search_slot.  The goal is to find a block
2289  * in cache without setting the path to blocking.  If we find the block
2290  * we return zero and the path is unchanged.
2291  *
2292  * If we can't find the block, we set the path blocking and do some
2293  * reada.  -EAGAIN is returned and the search must be repeated.
2294  */
2295 static int
2296 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2297 		      struct extent_buffer **eb_ret, int level, int slot,
2298 		      const struct btrfs_key *key)
2299 {
2300 	struct btrfs_fs_info *fs_info = root->fs_info;
2301 	u64 blocknr;
2302 	u64 gen;
2303 	struct extent_buffer *tmp;
2304 	struct btrfs_key first_key;
2305 	int ret;
2306 	int parent_level;
2307 
2308 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
2309 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
2310 	parent_level = btrfs_header_level(*eb_ret);
2311 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
2312 
2313 	tmp = find_extent_buffer(fs_info, blocknr);
2314 	if (tmp) {
2315 		/* first we do an atomic uptodate check */
2316 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2317 			/*
2318 			 * Do extra check for first_key, eb can be stale due to
2319 			 * being cached, read from scrub, or have multiple
2320 			 * parents (shared tree blocks).
2321 			 */
2322 			if (btrfs_verify_level_key(tmp,
2323 					parent_level - 1, &first_key, gen)) {
2324 				free_extent_buffer(tmp);
2325 				return -EUCLEAN;
2326 			}
2327 			*eb_ret = tmp;
2328 			return 0;
2329 		}
2330 
2331 		/* now we're allowed to do a blocking uptodate check */
2332 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2333 		if (!ret) {
2334 			*eb_ret = tmp;
2335 			return 0;
2336 		}
2337 		free_extent_buffer(tmp);
2338 		btrfs_release_path(p);
2339 		return -EIO;
2340 	}
2341 
2342 	/*
2343 	 * reduce lock contention at high levels
2344 	 * of the btree by dropping locks before
2345 	 * we read.  Don't release the lock on the current
2346 	 * level because we need to walk this node to figure
2347 	 * out which blocks to read.
2348 	 */
2349 	btrfs_unlock_up_safe(p, level + 1);
2350 
2351 	if (p->reada != READA_NONE)
2352 		reada_for_search(fs_info, p, level, slot, key->objectid);
2353 
2354 	ret = -EAGAIN;
2355 	tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
2356 			      gen, parent_level - 1, &first_key);
2357 	if (!IS_ERR(tmp)) {
2358 		/*
2359 		 * If the read above didn't mark this buffer up to date,
2360 		 * it will never end up being up to date.  Set ret to EIO now
2361 		 * and give up so that our caller doesn't loop forever
2362 		 * on our EAGAINs.
2363 		 */
2364 		if (!extent_buffer_uptodate(tmp))
2365 			ret = -EIO;
2366 		free_extent_buffer(tmp);
2367 	} else {
2368 		ret = PTR_ERR(tmp);
2369 	}
2370 
2371 	btrfs_release_path(p);
2372 	return ret;
2373 }
2374 
2375 /*
2376  * helper function for btrfs_search_slot.  This does all of the checks
2377  * for node-level blocks and does any balancing required based on
2378  * the ins_len.
2379  *
2380  * If no extra work was required, zero is returned.  If we had to
2381  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2382  * start over
2383  */
2384 static int
2385 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2386 		       struct btrfs_root *root, struct btrfs_path *p,
2387 		       struct extent_buffer *b, int level, int ins_len,
2388 		       int *write_lock_level)
2389 {
2390 	struct btrfs_fs_info *fs_info = root->fs_info;
2391 	int ret = 0;
2392 
2393 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2394 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2395 
2396 		if (*write_lock_level < level + 1) {
2397 			*write_lock_level = level + 1;
2398 			btrfs_release_path(p);
2399 			return -EAGAIN;
2400 		}
2401 
2402 		reada_for_balance(p, level);
2403 		ret = split_node(trans, root, p, level);
2404 
2405 		b = p->nodes[level];
2406 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2407 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2408 
2409 		if (*write_lock_level < level + 1) {
2410 			*write_lock_level = level + 1;
2411 			btrfs_release_path(p);
2412 			return -EAGAIN;
2413 		}
2414 
2415 		reada_for_balance(p, level);
2416 		ret = balance_level(trans, root, p, level);
2417 		if (ret)
2418 			return ret;
2419 
2420 		b = p->nodes[level];
2421 		if (!b) {
2422 			btrfs_release_path(p);
2423 			return -EAGAIN;
2424 		}
2425 		BUG_ON(btrfs_header_nritems(b) == 1);
2426 	}
2427 	return ret;
2428 }
2429 
2430 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2431 		u64 iobjectid, u64 ioff, u8 key_type,
2432 		struct btrfs_key *found_key)
2433 {
2434 	int ret;
2435 	struct btrfs_key key;
2436 	struct extent_buffer *eb;
2437 
2438 	ASSERT(path);
2439 	ASSERT(found_key);
2440 
2441 	key.type = key_type;
2442 	key.objectid = iobjectid;
2443 	key.offset = ioff;
2444 
2445 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2446 	if (ret < 0)
2447 		return ret;
2448 
2449 	eb = path->nodes[0];
2450 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2451 		ret = btrfs_next_leaf(fs_root, path);
2452 		if (ret)
2453 			return ret;
2454 		eb = path->nodes[0];
2455 	}
2456 
2457 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2458 	if (found_key->type != key.type ||
2459 			found_key->objectid != key.objectid)
2460 		return 1;
2461 
2462 	return 0;
2463 }
2464 
2465 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2466 							struct btrfs_path *p,
2467 							int write_lock_level)
2468 {
2469 	struct btrfs_fs_info *fs_info = root->fs_info;
2470 	struct extent_buffer *b;
2471 	int root_lock;
2472 	int level = 0;
2473 
2474 	/* We try very hard to do read locks on the root */
2475 	root_lock = BTRFS_READ_LOCK;
2476 
2477 	if (p->search_commit_root) {
2478 		/*
2479 		 * The commit roots are read only so we always do read locks,
2480 		 * and we always must hold the commit_root_sem when doing
2481 		 * searches on them, the only exception is send where we don't
2482 		 * want to block transaction commits for a long time, so
2483 		 * we need to clone the commit root in order to avoid races
2484 		 * with transaction commits that create a snapshot of one of
2485 		 * the roots used by a send operation.
2486 		 */
2487 		if (p->need_commit_sem) {
2488 			down_read(&fs_info->commit_root_sem);
2489 			b = btrfs_clone_extent_buffer(root->commit_root);
2490 			up_read(&fs_info->commit_root_sem);
2491 			if (!b)
2492 				return ERR_PTR(-ENOMEM);
2493 
2494 		} else {
2495 			b = root->commit_root;
2496 			atomic_inc(&b->refs);
2497 		}
2498 		level = btrfs_header_level(b);
2499 		/*
2500 		 * Ensure that all callers have set skip_locking when
2501 		 * p->search_commit_root = 1.
2502 		 */
2503 		ASSERT(p->skip_locking == 1);
2504 
2505 		goto out;
2506 	}
2507 
2508 	if (p->skip_locking) {
2509 		b = btrfs_root_node(root);
2510 		level = btrfs_header_level(b);
2511 		goto out;
2512 	}
2513 
2514 	/*
2515 	 * If the level is set to maximum, we can skip trying to get the read
2516 	 * lock.
2517 	 */
2518 	if (write_lock_level < BTRFS_MAX_LEVEL) {
2519 		/*
2520 		 * We don't know the level of the root node until we actually
2521 		 * have it read locked
2522 		 */
2523 		b = btrfs_read_lock_root_node(root);
2524 		level = btrfs_header_level(b);
2525 		if (level > write_lock_level)
2526 			goto out;
2527 
2528 		/* Whoops, must trade for write lock */
2529 		btrfs_tree_read_unlock(b);
2530 		free_extent_buffer(b);
2531 	}
2532 
2533 	b = btrfs_lock_root_node(root);
2534 	root_lock = BTRFS_WRITE_LOCK;
2535 
2536 	/* The level might have changed, check again */
2537 	level = btrfs_header_level(b);
2538 
2539 out:
2540 	p->nodes[level] = b;
2541 	if (!p->skip_locking)
2542 		p->locks[level] = root_lock;
2543 	/*
2544 	 * Callers are responsible for dropping b's references.
2545 	 */
2546 	return b;
2547 }
2548 
2549 
2550 /*
2551  * btrfs_search_slot - look for a key in a tree and perform necessary
2552  * modifications to preserve tree invariants.
2553  *
2554  * @trans:	Handle of transaction, used when modifying the tree
2555  * @p:		Holds all btree nodes along the search path
2556  * @root:	The root node of the tree
2557  * @key:	The key we are looking for
2558  * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2559  *		deletions it's -1. 0 for plain searches
2560  * @cow:	boolean should CoW operations be performed. Must always be 1
2561  *		when modifying the tree.
2562  *
2563  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2564  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2565  *
2566  * If @key is found, 0 is returned and you can find the item in the leaf level
2567  * of the path (level 0)
2568  *
2569  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2570  * points to the slot where it should be inserted
2571  *
2572  * If an error is encountered while searching the tree a negative error number
2573  * is returned
2574  */
2575 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2576 		      const struct btrfs_key *key, struct btrfs_path *p,
2577 		      int ins_len, int cow)
2578 {
2579 	struct extent_buffer *b;
2580 	int slot;
2581 	int ret;
2582 	int err;
2583 	int level;
2584 	int lowest_unlock = 1;
2585 	/* everything at write_lock_level or lower must be write locked */
2586 	int write_lock_level = 0;
2587 	u8 lowest_level = 0;
2588 	int min_write_lock_level;
2589 	int prev_cmp;
2590 
2591 	lowest_level = p->lowest_level;
2592 	WARN_ON(lowest_level && ins_len > 0);
2593 	WARN_ON(p->nodes[0] != NULL);
2594 	BUG_ON(!cow && ins_len);
2595 
2596 	if (ins_len < 0) {
2597 		lowest_unlock = 2;
2598 
2599 		/* when we are removing items, we might have to go up to level
2600 		 * two as we update tree pointers  Make sure we keep write
2601 		 * for those levels as well
2602 		 */
2603 		write_lock_level = 2;
2604 	} else if (ins_len > 0) {
2605 		/*
2606 		 * for inserting items, make sure we have a write lock on
2607 		 * level 1 so we can update keys
2608 		 */
2609 		write_lock_level = 1;
2610 	}
2611 
2612 	if (!cow)
2613 		write_lock_level = -1;
2614 
2615 	if (cow && (p->keep_locks || p->lowest_level))
2616 		write_lock_level = BTRFS_MAX_LEVEL;
2617 
2618 	min_write_lock_level = write_lock_level;
2619 
2620 again:
2621 	prev_cmp = -1;
2622 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2623 	if (IS_ERR(b)) {
2624 		ret = PTR_ERR(b);
2625 		goto done;
2626 	}
2627 
2628 	while (b) {
2629 		int dec = 0;
2630 
2631 		level = btrfs_header_level(b);
2632 
2633 		if (cow) {
2634 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2635 
2636 			/*
2637 			 * if we don't really need to cow this block
2638 			 * then we don't want to set the path blocking,
2639 			 * so we test it here
2640 			 */
2641 			if (!should_cow_block(trans, root, b)) {
2642 				trans->dirty = true;
2643 				goto cow_done;
2644 			}
2645 
2646 			/*
2647 			 * must have write locks on this node and the
2648 			 * parent
2649 			 */
2650 			if (level > write_lock_level ||
2651 			    (level + 1 > write_lock_level &&
2652 			    level + 1 < BTRFS_MAX_LEVEL &&
2653 			    p->nodes[level + 1])) {
2654 				write_lock_level = level + 1;
2655 				btrfs_release_path(p);
2656 				goto again;
2657 			}
2658 
2659 			if (last_level)
2660 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2661 						      &b,
2662 						      BTRFS_NESTING_COW);
2663 			else
2664 				err = btrfs_cow_block(trans, root, b,
2665 						      p->nodes[level + 1],
2666 						      p->slots[level + 1], &b,
2667 						      BTRFS_NESTING_COW);
2668 			if (err) {
2669 				ret = err;
2670 				goto done;
2671 			}
2672 		}
2673 cow_done:
2674 		p->nodes[level] = b;
2675 		/*
2676 		 * Leave path with blocking locks to avoid massive
2677 		 * lock context switch, this is made on purpose.
2678 		 */
2679 
2680 		/*
2681 		 * we have a lock on b and as long as we aren't changing
2682 		 * the tree, there is no way to for the items in b to change.
2683 		 * It is safe to drop the lock on our parent before we
2684 		 * go through the expensive btree search on b.
2685 		 *
2686 		 * If we're inserting or deleting (ins_len != 0), then we might
2687 		 * be changing slot zero, which may require changing the parent.
2688 		 * So, we can't drop the lock until after we know which slot
2689 		 * we're operating on.
2690 		 */
2691 		if (!ins_len && !p->keep_locks) {
2692 			int u = level + 1;
2693 
2694 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2695 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2696 				p->locks[u] = 0;
2697 			}
2698 		}
2699 
2700 		/*
2701 		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
2702 		 * we can safely assume the target key will always be in slot 0
2703 		 * on lower levels due to the invariants BTRFS' btree provides,
2704 		 * namely that a btrfs_key_ptr entry always points to the
2705 		 * lowest key in the child node, thus we can skip searching
2706 		 * lower levels
2707 		 */
2708 		if (prev_cmp == 0) {
2709 			slot = 0;
2710 			ret = 0;
2711 		} else {
2712 			ret = btrfs_bin_search(b, key, &slot);
2713 			prev_cmp = ret;
2714 			if (ret < 0)
2715 				goto done;
2716 		}
2717 
2718 		if (level == 0) {
2719 			p->slots[level] = slot;
2720 			if (ins_len > 0 &&
2721 			    btrfs_leaf_free_space(b) < ins_len) {
2722 				if (write_lock_level < 1) {
2723 					write_lock_level = 1;
2724 					btrfs_release_path(p);
2725 					goto again;
2726 				}
2727 
2728 				err = split_leaf(trans, root, key,
2729 						 p, ins_len, ret == 0);
2730 
2731 				BUG_ON(err > 0);
2732 				if (err) {
2733 					ret = err;
2734 					goto done;
2735 				}
2736 			}
2737 			if (!p->search_for_split)
2738 				unlock_up(p, level, lowest_unlock,
2739 					  min_write_lock_level, NULL);
2740 			goto done;
2741 		}
2742 		if (ret && slot > 0) {
2743 			dec = 1;
2744 			slot--;
2745 		}
2746 		p->slots[level] = slot;
2747 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2748 					     &write_lock_level);
2749 		if (err == -EAGAIN)
2750 			goto again;
2751 		if (err) {
2752 			ret = err;
2753 			goto done;
2754 		}
2755 		b = p->nodes[level];
2756 		slot = p->slots[level];
2757 
2758 		/*
2759 		 * Slot 0 is special, if we change the key we have to update
2760 		 * the parent pointer which means we must have a write lock on
2761 		 * the parent
2762 		 */
2763 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2764 			write_lock_level = level + 1;
2765 			btrfs_release_path(p);
2766 			goto again;
2767 		}
2768 
2769 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2770 			  &write_lock_level);
2771 
2772 		if (level == lowest_level) {
2773 			if (dec)
2774 				p->slots[level]++;
2775 			goto done;
2776 		}
2777 
2778 		err = read_block_for_search(root, p, &b, level, slot, key);
2779 		if (err == -EAGAIN)
2780 			goto again;
2781 		if (err) {
2782 			ret = err;
2783 			goto done;
2784 		}
2785 
2786 		if (!p->skip_locking) {
2787 			level = btrfs_header_level(b);
2788 			if (level <= write_lock_level) {
2789 				btrfs_tree_lock(b);
2790 				p->locks[level] = BTRFS_WRITE_LOCK;
2791 			} else {
2792 				btrfs_tree_read_lock(b);
2793 				p->locks[level] = BTRFS_READ_LOCK;
2794 			}
2795 			p->nodes[level] = b;
2796 		}
2797 	}
2798 	ret = 1;
2799 done:
2800 	if (ret < 0 && !p->skip_release_on_error)
2801 		btrfs_release_path(p);
2802 	return ret;
2803 }
2804 
2805 /*
2806  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2807  * current state of the tree together with the operations recorded in the tree
2808  * modification log to search for the key in a previous version of this tree, as
2809  * denoted by the time_seq parameter.
2810  *
2811  * Naturally, there is no support for insert, delete or cow operations.
2812  *
2813  * The resulting path and return value will be set up as if we called
2814  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2815  */
2816 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2817 			  struct btrfs_path *p, u64 time_seq)
2818 {
2819 	struct btrfs_fs_info *fs_info = root->fs_info;
2820 	struct extent_buffer *b;
2821 	int slot;
2822 	int ret;
2823 	int err;
2824 	int level;
2825 	int lowest_unlock = 1;
2826 	u8 lowest_level = 0;
2827 
2828 	lowest_level = p->lowest_level;
2829 	WARN_ON(p->nodes[0] != NULL);
2830 
2831 	if (p->search_commit_root) {
2832 		BUG_ON(time_seq);
2833 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2834 	}
2835 
2836 again:
2837 	b = get_old_root(root, time_seq);
2838 	if (!b) {
2839 		ret = -EIO;
2840 		goto done;
2841 	}
2842 	level = btrfs_header_level(b);
2843 	p->locks[level] = BTRFS_READ_LOCK;
2844 
2845 	while (b) {
2846 		int dec = 0;
2847 
2848 		level = btrfs_header_level(b);
2849 		p->nodes[level] = b;
2850 
2851 		/*
2852 		 * we have a lock on b and as long as we aren't changing
2853 		 * the tree, there is no way to for the items in b to change.
2854 		 * It is safe to drop the lock on our parent before we
2855 		 * go through the expensive btree search on b.
2856 		 */
2857 		btrfs_unlock_up_safe(p, level + 1);
2858 
2859 		ret = btrfs_bin_search(b, key, &slot);
2860 		if (ret < 0)
2861 			goto done;
2862 
2863 		if (level == 0) {
2864 			p->slots[level] = slot;
2865 			unlock_up(p, level, lowest_unlock, 0, NULL);
2866 			goto done;
2867 		}
2868 
2869 		if (ret && slot > 0) {
2870 			dec = 1;
2871 			slot--;
2872 		}
2873 		p->slots[level] = slot;
2874 		unlock_up(p, level, lowest_unlock, 0, NULL);
2875 
2876 		if (level == lowest_level) {
2877 			if (dec)
2878 				p->slots[level]++;
2879 			goto done;
2880 		}
2881 
2882 		err = read_block_for_search(root, p, &b, level, slot, key);
2883 		if (err == -EAGAIN)
2884 			goto again;
2885 		if (err) {
2886 			ret = err;
2887 			goto done;
2888 		}
2889 
2890 		level = btrfs_header_level(b);
2891 		btrfs_tree_read_lock(b);
2892 		b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2893 		if (!b) {
2894 			ret = -ENOMEM;
2895 			goto done;
2896 		}
2897 		p->locks[level] = BTRFS_READ_LOCK;
2898 		p->nodes[level] = b;
2899 	}
2900 	ret = 1;
2901 done:
2902 	if (ret < 0)
2903 		btrfs_release_path(p);
2904 
2905 	return ret;
2906 }
2907 
2908 /*
2909  * helper to use instead of search slot if no exact match is needed but
2910  * instead the next or previous item should be returned.
2911  * When find_higher is true, the next higher item is returned, the next lower
2912  * otherwise.
2913  * When return_any and find_higher are both true, and no higher item is found,
2914  * return the next lower instead.
2915  * When return_any is true and find_higher is false, and no lower item is found,
2916  * return the next higher instead.
2917  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2918  * < 0 on error
2919  */
2920 int btrfs_search_slot_for_read(struct btrfs_root *root,
2921 			       const struct btrfs_key *key,
2922 			       struct btrfs_path *p, int find_higher,
2923 			       int return_any)
2924 {
2925 	int ret;
2926 	struct extent_buffer *leaf;
2927 
2928 again:
2929 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2930 	if (ret <= 0)
2931 		return ret;
2932 	/*
2933 	 * a return value of 1 means the path is at the position where the
2934 	 * item should be inserted. Normally this is the next bigger item,
2935 	 * but in case the previous item is the last in a leaf, path points
2936 	 * to the first free slot in the previous leaf, i.e. at an invalid
2937 	 * item.
2938 	 */
2939 	leaf = p->nodes[0];
2940 
2941 	if (find_higher) {
2942 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2943 			ret = btrfs_next_leaf(root, p);
2944 			if (ret <= 0)
2945 				return ret;
2946 			if (!return_any)
2947 				return 1;
2948 			/*
2949 			 * no higher item found, return the next
2950 			 * lower instead
2951 			 */
2952 			return_any = 0;
2953 			find_higher = 0;
2954 			btrfs_release_path(p);
2955 			goto again;
2956 		}
2957 	} else {
2958 		if (p->slots[0] == 0) {
2959 			ret = btrfs_prev_leaf(root, p);
2960 			if (ret < 0)
2961 				return ret;
2962 			if (!ret) {
2963 				leaf = p->nodes[0];
2964 				if (p->slots[0] == btrfs_header_nritems(leaf))
2965 					p->slots[0]--;
2966 				return 0;
2967 			}
2968 			if (!return_any)
2969 				return 1;
2970 			/*
2971 			 * no lower item found, return the next
2972 			 * higher instead
2973 			 */
2974 			return_any = 0;
2975 			find_higher = 1;
2976 			btrfs_release_path(p);
2977 			goto again;
2978 		} else {
2979 			--p->slots[0];
2980 		}
2981 	}
2982 	return 0;
2983 }
2984 
2985 /*
2986  * adjust the pointers going up the tree, starting at level
2987  * making sure the right key of each node is points to 'key'.
2988  * This is used after shifting pointers to the left, so it stops
2989  * fixing up pointers when a given leaf/node is not in slot 0 of the
2990  * higher levels
2991  *
2992  */
2993 static void fixup_low_keys(struct btrfs_path *path,
2994 			   struct btrfs_disk_key *key, int level)
2995 {
2996 	int i;
2997 	struct extent_buffer *t;
2998 	int ret;
2999 
3000 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3001 		int tslot = path->slots[i];
3002 
3003 		if (!path->nodes[i])
3004 			break;
3005 		t = path->nodes[i];
3006 		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3007 				GFP_ATOMIC);
3008 		BUG_ON(ret < 0);
3009 		btrfs_set_node_key(t, key, tslot);
3010 		btrfs_mark_buffer_dirty(path->nodes[i]);
3011 		if (tslot != 0)
3012 			break;
3013 	}
3014 }
3015 
3016 /*
3017  * update item key.
3018  *
3019  * This function isn't completely safe. It's the caller's responsibility
3020  * that the new key won't break the order
3021  */
3022 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3023 			     struct btrfs_path *path,
3024 			     const struct btrfs_key *new_key)
3025 {
3026 	struct btrfs_disk_key disk_key;
3027 	struct extent_buffer *eb;
3028 	int slot;
3029 
3030 	eb = path->nodes[0];
3031 	slot = path->slots[0];
3032 	if (slot > 0) {
3033 		btrfs_item_key(eb, &disk_key, slot - 1);
3034 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3035 			btrfs_crit(fs_info,
3036 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3037 				   slot, btrfs_disk_key_objectid(&disk_key),
3038 				   btrfs_disk_key_type(&disk_key),
3039 				   btrfs_disk_key_offset(&disk_key),
3040 				   new_key->objectid, new_key->type,
3041 				   new_key->offset);
3042 			btrfs_print_leaf(eb);
3043 			BUG();
3044 		}
3045 	}
3046 	if (slot < btrfs_header_nritems(eb) - 1) {
3047 		btrfs_item_key(eb, &disk_key, slot + 1);
3048 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3049 			btrfs_crit(fs_info,
3050 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3051 				   slot, btrfs_disk_key_objectid(&disk_key),
3052 				   btrfs_disk_key_type(&disk_key),
3053 				   btrfs_disk_key_offset(&disk_key),
3054 				   new_key->objectid, new_key->type,
3055 				   new_key->offset);
3056 			btrfs_print_leaf(eb);
3057 			BUG();
3058 		}
3059 	}
3060 
3061 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3062 	btrfs_set_item_key(eb, &disk_key, slot);
3063 	btrfs_mark_buffer_dirty(eb);
3064 	if (slot == 0)
3065 		fixup_low_keys(path, &disk_key, 1);
3066 }
3067 
3068 /*
3069  * Check key order of two sibling extent buffers.
3070  *
3071  * Return true if something is wrong.
3072  * Return false if everything is fine.
3073  *
3074  * Tree-checker only works inside one tree block, thus the following
3075  * corruption can not be detected by tree-checker:
3076  *
3077  * Leaf @left			| Leaf @right
3078  * --------------------------------------------------------------
3079  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
3080  *
3081  * Key f6 in leaf @left itself is valid, but not valid when the next
3082  * key in leaf @right is 7.
3083  * This can only be checked at tree block merge time.
3084  * And since tree checker has ensured all key order in each tree block
3085  * is correct, we only need to bother the last key of @left and the first
3086  * key of @right.
3087  */
3088 static bool check_sibling_keys(struct extent_buffer *left,
3089 			       struct extent_buffer *right)
3090 {
3091 	struct btrfs_key left_last;
3092 	struct btrfs_key right_first;
3093 	int level = btrfs_header_level(left);
3094 	int nr_left = btrfs_header_nritems(left);
3095 	int nr_right = btrfs_header_nritems(right);
3096 
3097 	/* No key to check in one of the tree blocks */
3098 	if (!nr_left || !nr_right)
3099 		return false;
3100 
3101 	if (level) {
3102 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
3103 		btrfs_node_key_to_cpu(right, &right_first, 0);
3104 	} else {
3105 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
3106 		btrfs_item_key_to_cpu(right, &right_first, 0);
3107 	}
3108 
3109 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
3110 		btrfs_crit(left->fs_info,
3111 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
3112 			   left_last.objectid, left_last.type,
3113 			   left_last.offset, right_first.objectid,
3114 			   right_first.type, right_first.offset);
3115 		return true;
3116 	}
3117 	return false;
3118 }
3119 
3120 /*
3121  * try to push data from one node into the next node left in the
3122  * tree.
3123  *
3124  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3125  * error, and > 0 if there was no room in the left hand block.
3126  */
3127 static int push_node_left(struct btrfs_trans_handle *trans,
3128 			  struct extent_buffer *dst,
3129 			  struct extent_buffer *src, int empty)
3130 {
3131 	struct btrfs_fs_info *fs_info = trans->fs_info;
3132 	int push_items = 0;
3133 	int src_nritems;
3134 	int dst_nritems;
3135 	int ret = 0;
3136 
3137 	src_nritems = btrfs_header_nritems(src);
3138 	dst_nritems = btrfs_header_nritems(dst);
3139 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3140 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3141 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3142 
3143 	if (!empty && src_nritems <= 8)
3144 		return 1;
3145 
3146 	if (push_items <= 0)
3147 		return 1;
3148 
3149 	if (empty) {
3150 		push_items = min(src_nritems, push_items);
3151 		if (push_items < src_nritems) {
3152 			/* leave at least 8 pointers in the node if
3153 			 * we aren't going to empty it
3154 			 */
3155 			if (src_nritems - push_items < 8) {
3156 				if (push_items <= 8)
3157 					return 1;
3158 				push_items -= 8;
3159 			}
3160 		}
3161 	} else
3162 		push_items = min(src_nritems - 8, push_items);
3163 
3164 	/* dst is the left eb, src is the middle eb */
3165 	if (check_sibling_keys(dst, src)) {
3166 		ret = -EUCLEAN;
3167 		btrfs_abort_transaction(trans, ret);
3168 		return ret;
3169 	}
3170 	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3171 	if (ret) {
3172 		btrfs_abort_transaction(trans, ret);
3173 		return ret;
3174 	}
3175 	copy_extent_buffer(dst, src,
3176 			   btrfs_node_key_ptr_offset(dst_nritems),
3177 			   btrfs_node_key_ptr_offset(0),
3178 			   push_items * sizeof(struct btrfs_key_ptr));
3179 
3180 	if (push_items < src_nritems) {
3181 		/*
3182 		 * Don't call tree_mod_log_insert_move here, key removal was
3183 		 * already fully logged by tree_mod_log_eb_copy above.
3184 		 */
3185 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3186 				      btrfs_node_key_ptr_offset(push_items),
3187 				      (src_nritems - push_items) *
3188 				      sizeof(struct btrfs_key_ptr));
3189 	}
3190 	btrfs_set_header_nritems(src, src_nritems - push_items);
3191 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3192 	btrfs_mark_buffer_dirty(src);
3193 	btrfs_mark_buffer_dirty(dst);
3194 
3195 	return ret;
3196 }
3197 
3198 /*
3199  * try to push data from one node into the next node right in the
3200  * tree.
3201  *
3202  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3203  * error, and > 0 if there was no room in the right hand block.
3204  *
3205  * this will  only push up to 1/2 the contents of the left node over
3206  */
3207 static int balance_node_right(struct btrfs_trans_handle *trans,
3208 			      struct extent_buffer *dst,
3209 			      struct extent_buffer *src)
3210 {
3211 	struct btrfs_fs_info *fs_info = trans->fs_info;
3212 	int push_items = 0;
3213 	int max_push;
3214 	int src_nritems;
3215 	int dst_nritems;
3216 	int ret = 0;
3217 
3218 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3219 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3220 
3221 	src_nritems = btrfs_header_nritems(src);
3222 	dst_nritems = btrfs_header_nritems(dst);
3223 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3224 	if (push_items <= 0)
3225 		return 1;
3226 
3227 	if (src_nritems < 4)
3228 		return 1;
3229 
3230 	max_push = src_nritems / 2 + 1;
3231 	/* don't try to empty the node */
3232 	if (max_push >= src_nritems)
3233 		return 1;
3234 
3235 	if (max_push < push_items)
3236 		push_items = max_push;
3237 
3238 	/* dst is the right eb, src is the middle eb */
3239 	if (check_sibling_keys(src, dst)) {
3240 		ret = -EUCLEAN;
3241 		btrfs_abort_transaction(trans, ret);
3242 		return ret;
3243 	}
3244 	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3245 	BUG_ON(ret < 0);
3246 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3247 				      btrfs_node_key_ptr_offset(0),
3248 				      (dst_nritems) *
3249 				      sizeof(struct btrfs_key_ptr));
3250 
3251 	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3252 				   push_items);
3253 	if (ret) {
3254 		btrfs_abort_transaction(trans, ret);
3255 		return ret;
3256 	}
3257 	copy_extent_buffer(dst, src,
3258 			   btrfs_node_key_ptr_offset(0),
3259 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3260 			   push_items * sizeof(struct btrfs_key_ptr));
3261 
3262 	btrfs_set_header_nritems(src, src_nritems - push_items);
3263 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3264 
3265 	btrfs_mark_buffer_dirty(src);
3266 	btrfs_mark_buffer_dirty(dst);
3267 
3268 	return ret;
3269 }
3270 
3271 /*
3272  * helper function to insert a new root level in the tree.
3273  * A new node is allocated, and a single item is inserted to
3274  * point to the existing root
3275  *
3276  * returns zero on success or < 0 on failure.
3277  */
3278 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3279 			   struct btrfs_root *root,
3280 			   struct btrfs_path *path, int level)
3281 {
3282 	struct btrfs_fs_info *fs_info = root->fs_info;
3283 	u64 lower_gen;
3284 	struct extent_buffer *lower;
3285 	struct extent_buffer *c;
3286 	struct extent_buffer *old;
3287 	struct btrfs_disk_key lower_key;
3288 	int ret;
3289 
3290 	BUG_ON(path->nodes[level]);
3291 	BUG_ON(path->nodes[level-1] != root->node);
3292 
3293 	lower = path->nodes[level-1];
3294 	if (level == 1)
3295 		btrfs_item_key(lower, &lower_key, 0);
3296 	else
3297 		btrfs_node_key(lower, &lower_key, 0);
3298 
3299 	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3300 					 root->node->start, 0,
3301 					 BTRFS_NESTING_NEW_ROOT);
3302 	if (IS_ERR(c))
3303 		return PTR_ERR(c);
3304 
3305 	root_add_used(root, fs_info->nodesize);
3306 
3307 	btrfs_set_header_nritems(c, 1);
3308 	btrfs_set_node_key(c, &lower_key, 0);
3309 	btrfs_set_node_blockptr(c, 0, lower->start);
3310 	lower_gen = btrfs_header_generation(lower);
3311 	WARN_ON(lower_gen != trans->transid);
3312 
3313 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3314 
3315 	btrfs_mark_buffer_dirty(c);
3316 
3317 	old = root->node;
3318 	ret = tree_mod_log_insert_root(root->node, c, 0);
3319 	BUG_ON(ret < 0);
3320 	rcu_assign_pointer(root->node, c);
3321 
3322 	/* the super has an extra ref to root->node */
3323 	free_extent_buffer(old);
3324 
3325 	add_root_to_dirty_list(root);
3326 	atomic_inc(&c->refs);
3327 	path->nodes[level] = c;
3328 	path->locks[level] = BTRFS_WRITE_LOCK;
3329 	path->slots[level] = 0;
3330 	return 0;
3331 }
3332 
3333 /*
3334  * worker function to insert a single pointer in a node.
3335  * the node should have enough room for the pointer already
3336  *
3337  * slot and level indicate where you want the key to go, and
3338  * blocknr is the block the key points to.
3339  */
3340 static void insert_ptr(struct btrfs_trans_handle *trans,
3341 		       struct btrfs_path *path,
3342 		       struct btrfs_disk_key *key, u64 bytenr,
3343 		       int slot, int level)
3344 {
3345 	struct extent_buffer *lower;
3346 	int nritems;
3347 	int ret;
3348 
3349 	BUG_ON(!path->nodes[level]);
3350 	btrfs_assert_tree_locked(path->nodes[level]);
3351 	lower = path->nodes[level];
3352 	nritems = btrfs_header_nritems(lower);
3353 	BUG_ON(slot > nritems);
3354 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3355 	if (slot != nritems) {
3356 		if (level) {
3357 			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3358 					nritems - slot);
3359 			BUG_ON(ret < 0);
3360 		}
3361 		memmove_extent_buffer(lower,
3362 			      btrfs_node_key_ptr_offset(slot + 1),
3363 			      btrfs_node_key_ptr_offset(slot),
3364 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3365 	}
3366 	if (level) {
3367 		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3368 				GFP_NOFS);
3369 		BUG_ON(ret < 0);
3370 	}
3371 	btrfs_set_node_key(lower, key, slot);
3372 	btrfs_set_node_blockptr(lower, slot, bytenr);
3373 	WARN_ON(trans->transid == 0);
3374 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3375 	btrfs_set_header_nritems(lower, nritems + 1);
3376 	btrfs_mark_buffer_dirty(lower);
3377 }
3378 
3379 /*
3380  * split the node at the specified level in path in two.
3381  * The path is corrected to point to the appropriate node after the split
3382  *
3383  * Before splitting this tries to make some room in the node by pushing
3384  * left and right, if either one works, it returns right away.
3385  *
3386  * returns 0 on success and < 0 on failure
3387  */
3388 static noinline int split_node(struct btrfs_trans_handle *trans,
3389 			       struct btrfs_root *root,
3390 			       struct btrfs_path *path, int level)
3391 {
3392 	struct btrfs_fs_info *fs_info = root->fs_info;
3393 	struct extent_buffer *c;
3394 	struct extent_buffer *split;
3395 	struct btrfs_disk_key disk_key;
3396 	int mid;
3397 	int ret;
3398 	u32 c_nritems;
3399 
3400 	c = path->nodes[level];
3401 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3402 	if (c == root->node) {
3403 		/*
3404 		 * trying to split the root, lets make a new one
3405 		 *
3406 		 * tree mod log: We don't log_removal old root in
3407 		 * insert_new_root, because that root buffer will be kept as a
3408 		 * normal node. We are going to log removal of half of the
3409 		 * elements below with tree_mod_log_eb_copy. We're holding a
3410 		 * tree lock on the buffer, which is why we cannot race with
3411 		 * other tree_mod_log users.
3412 		 */
3413 		ret = insert_new_root(trans, root, path, level + 1);
3414 		if (ret)
3415 			return ret;
3416 	} else {
3417 		ret = push_nodes_for_insert(trans, root, path, level);
3418 		c = path->nodes[level];
3419 		if (!ret && btrfs_header_nritems(c) <
3420 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3421 			return 0;
3422 		if (ret < 0)
3423 			return ret;
3424 	}
3425 
3426 	c_nritems = btrfs_header_nritems(c);
3427 	mid = (c_nritems + 1) / 2;
3428 	btrfs_node_key(c, &disk_key, mid);
3429 
3430 	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3431 					     c->start, 0, BTRFS_NESTING_SPLIT);
3432 	if (IS_ERR(split))
3433 		return PTR_ERR(split);
3434 
3435 	root_add_used(root, fs_info->nodesize);
3436 	ASSERT(btrfs_header_level(c) == level);
3437 
3438 	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3439 	if (ret) {
3440 		btrfs_abort_transaction(trans, ret);
3441 		return ret;
3442 	}
3443 	copy_extent_buffer(split, c,
3444 			   btrfs_node_key_ptr_offset(0),
3445 			   btrfs_node_key_ptr_offset(mid),
3446 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3447 	btrfs_set_header_nritems(split, c_nritems - mid);
3448 	btrfs_set_header_nritems(c, mid);
3449 
3450 	btrfs_mark_buffer_dirty(c);
3451 	btrfs_mark_buffer_dirty(split);
3452 
3453 	insert_ptr(trans, path, &disk_key, split->start,
3454 		   path->slots[level + 1] + 1, level + 1);
3455 
3456 	if (path->slots[level] >= mid) {
3457 		path->slots[level] -= mid;
3458 		btrfs_tree_unlock(c);
3459 		free_extent_buffer(c);
3460 		path->nodes[level] = split;
3461 		path->slots[level + 1] += 1;
3462 	} else {
3463 		btrfs_tree_unlock(split);
3464 		free_extent_buffer(split);
3465 	}
3466 	return 0;
3467 }
3468 
3469 /*
3470  * how many bytes are required to store the items in a leaf.  start
3471  * and nr indicate which items in the leaf to check.  This totals up the
3472  * space used both by the item structs and the item data
3473  */
3474 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3475 {
3476 	struct btrfs_item *start_item;
3477 	struct btrfs_item *end_item;
3478 	int data_len;
3479 	int nritems = btrfs_header_nritems(l);
3480 	int end = min(nritems, start + nr) - 1;
3481 
3482 	if (!nr)
3483 		return 0;
3484 	start_item = btrfs_item_nr(start);
3485 	end_item = btrfs_item_nr(end);
3486 	data_len = btrfs_item_offset(l, start_item) +
3487 		   btrfs_item_size(l, start_item);
3488 	data_len = data_len - btrfs_item_offset(l, end_item);
3489 	data_len += sizeof(struct btrfs_item) * nr;
3490 	WARN_ON(data_len < 0);
3491 	return data_len;
3492 }
3493 
3494 /*
3495  * The space between the end of the leaf items and
3496  * the start of the leaf data.  IOW, how much room
3497  * the leaf has left for both items and data
3498  */
3499 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3500 {
3501 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3502 	int nritems = btrfs_header_nritems(leaf);
3503 	int ret;
3504 
3505 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3506 	if (ret < 0) {
3507 		btrfs_crit(fs_info,
3508 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3509 			   ret,
3510 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3511 			   leaf_space_used(leaf, 0, nritems), nritems);
3512 	}
3513 	return ret;
3514 }
3515 
3516 /*
3517  * min slot controls the lowest index we're willing to push to the
3518  * right.  We'll push up to and including min_slot, but no lower
3519  */
3520 static noinline int __push_leaf_right(struct btrfs_path *path,
3521 				      int data_size, int empty,
3522 				      struct extent_buffer *right,
3523 				      int free_space, u32 left_nritems,
3524 				      u32 min_slot)
3525 {
3526 	struct btrfs_fs_info *fs_info = right->fs_info;
3527 	struct extent_buffer *left = path->nodes[0];
3528 	struct extent_buffer *upper = path->nodes[1];
3529 	struct btrfs_map_token token;
3530 	struct btrfs_disk_key disk_key;
3531 	int slot;
3532 	u32 i;
3533 	int push_space = 0;
3534 	int push_items = 0;
3535 	struct btrfs_item *item;
3536 	u32 nr;
3537 	u32 right_nritems;
3538 	u32 data_end;
3539 	u32 this_item_size;
3540 
3541 	if (empty)
3542 		nr = 0;
3543 	else
3544 		nr = max_t(u32, 1, min_slot);
3545 
3546 	if (path->slots[0] >= left_nritems)
3547 		push_space += data_size;
3548 
3549 	slot = path->slots[1];
3550 	i = left_nritems - 1;
3551 	while (i >= nr) {
3552 		item = btrfs_item_nr(i);
3553 
3554 		if (!empty && push_items > 0) {
3555 			if (path->slots[0] > i)
3556 				break;
3557 			if (path->slots[0] == i) {
3558 				int space = btrfs_leaf_free_space(left);
3559 
3560 				if (space + push_space * 2 > free_space)
3561 					break;
3562 			}
3563 		}
3564 
3565 		if (path->slots[0] == i)
3566 			push_space += data_size;
3567 
3568 		this_item_size = btrfs_item_size(left, item);
3569 		if (this_item_size + sizeof(*item) + push_space > free_space)
3570 			break;
3571 
3572 		push_items++;
3573 		push_space += this_item_size + sizeof(*item);
3574 		if (i == 0)
3575 			break;
3576 		i--;
3577 	}
3578 
3579 	if (push_items == 0)
3580 		goto out_unlock;
3581 
3582 	WARN_ON(!empty && push_items == left_nritems);
3583 
3584 	/* push left to right */
3585 	right_nritems = btrfs_header_nritems(right);
3586 
3587 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3588 	push_space -= leaf_data_end(left);
3589 
3590 	/* make room in the right data area */
3591 	data_end = leaf_data_end(right);
3592 	memmove_extent_buffer(right,
3593 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3594 			      BTRFS_LEAF_DATA_OFFSET + data_end,
3595 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3596 
3597 	/* copy from the left data area */
3598 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3599 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3600 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3601 		     push_space);
3602 
3603 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3604 			      btrfs_item_nr_offset(0),
3605 			      right_nritems * sizeof(struct btrfs_item));
3606 
3607 	/* copy the items from left to right */
3608 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3609 		   btrfs_item_nr_offset(left_nritems - push_items),
3610 		   push_items * sizeof(struct btrfs_item));
3611 
3612 	/* update the item pointers */
3613 	btrfs_init_map_token(&token, right);
3614 	right_nritems += push_items;
3615 	btrfs_set_header_nritems(right, right_nritems);
3616 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3617 	for (i = 0; i < right_nritems; i++) {
3618 		item = btrfs_item_nr(i);
3619 		push_space -= btrfs_token_item_size(&token, item);
3620 		btrfs_set_token_item_offset(&token, item, push_space);
3621 	}
3622 
3623 	left_nritems -= push_items;
3624 	btrfs_set_header_nritems(left, left_nritems);
3625 
3626 	if (left_nritems)
3627 		btrfs_mark_buffer_dirty(left);
3628 	else
3629 		btrfs_clean_tree_block(left);
3630 
3631 	btrfs_mark_buffer_dirty(right);
3632 
3633 	btrfs_item_key(right, &disk_key, 0);
3634 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3635 	btrfs_mark_buffer_dirty(upper);
3636 
3637 	/* then fixup the leaf pointer in the path */
3638 	if (path->slots[0] >= left_nritems) {
3639 		path->slots[0] -= left_nritems;
3640 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3641 			btrfs_clean_tree_block(path->nodes[0]);
3642 		btrfs_tree_unlock(path->nodes[0]);
3643 		free_extent_buffer(path->nodes[0]);
3644 		path->nodes[0] = right;
3645 		path->slots[1] += 1;
3646 	} else {
3647 		btrfs_tree_unlock(right);
3648 		free_extent_buffer(right);
3649 	}
3650 	return 0;
3651 
3652 out_unlock:
3653 	btrfs_tree_unlock(right);
3654 	free_extent_buffer(right);
3655 	return 1;
3656 }
3657 
3658 /*
3659  * push some data in the path leaf to the right, trying to free up at
3660  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3661  *
3662  * returns 1 if the push failed because the other node didn't have enough
3663  * room, 0 if everything worked out and < 0 if there were major errors.
3664  *
3665  * this will push starting from min_slot to the end of the leaf.  It won't
3666  * push any slot lower than min_slot
3667  */
3668 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3669 			   *root, struct btrfs_path *path,
3670 			   int min_data_size, int data_size,
3671 			   int empty, u32 min_slot)
3672 {
3673 	struct extent_buffer *left = path->nodes[0];
3674 	struct extent_buffer *right;
3675 	struct extent_buffer *upper;
3676 	int slot;
3677 	int free_space;
3678 	u32 left_nritems;
3679 	int ret;
3680 
3681 	if (!path->nodes[1])
3682 		return 1;
3683 
3684 	slot = path->slots[1];
3685 	upper = path->nodes[1];
3686 	if (slot >= btrfs_header_nritems(upper) - 1)
3687 		return 1;
3688 
3689 	btrfs_assert_tree_locked(path->nodes[1]);
3690 
3691 	right = btrfs_read_node_slot(upper, slot + 1);
3692 	/*
3693 	 * slot + 1 is not valid or we fail to read the right node,
3694 	 * no big deal, just return.
3695 	 */
3696 	if (IS_ERR(right))
3697 		return 1;
3698 
3699 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3700 
3701 	free_space = btrfs_leaf_free_space(right);
3702 	if (free_space < data_size)
3703 		goto out_unlock;
3704 
3705 	/* cow and double check */
3706 	ret = btrfs_cow_block(trans, root, right, upper,
3707 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3708 	if (ret)
3709 		goto out_unlock;
3710 
3711 	free_space = btrfs_leaf_free_space(right);
3712 	if (free_space < data_size)
3713 		goto out_unlock;
3714 
3715 	left_nritems = btrfs_header_nritems(left);
3716 	if (left_nritems == 0)
3717 		goto out_unlock;
3718 
3719 	if (check_sibling_keys(left, right)) {
3720 		ret = -EUCLEAN;
3721 		btrfs_tree_unlock(right);
3722 		free_extent_buffer(right);
3723 		return ret;
3724 	}
3725 	if (path->slots[0] == left_nritems && !empty) {
3726 		/* Key greater than all keys in the leaf, right neighbor has
3727 		 * enough room for it and we're not emptying our leaf to delete
3728 		 * it, therefore use right neighbor to insert the new item and
3729 		 * no need to touch/dirty our left leaf. */
3730 		btrfs_tree_unlock(left);
3731 		free_extent_buffer(left);
3732 		path->nodes[0] = right;
3733 		path->slots[0] = 0;
3734 		path->slots[1]++;
3735 		return 0;
3736 	}
3737 
3738 	return __push_leaf_right(path, min_data_size, empty,
3739 				right, free_space, left_nritems, min_slot);
3740 out_unlock:
3741 	btrfs_tree_unlock(right);
3742 	free_extent_buffer(right);
3743 	return 1;
3744 }
3745 
3746 /*
3747  * push some data in the path leaf to the left, trying to free up at
3748  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3749  *
3750  * max_slot can put a limit on how far into the leaf we'll push items.  The
3751  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3752  * items
3753  */
3754 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3755 				     int empty, struct extent_buffer *left,
3756 				     int free_space, u32 right_nritems,
3757 				     u32 max_slot)
3758 {
3759 	struct btrfs_fs_info *fs_info = left->fs_info;
3760 	struct btrfs_disk_key disk_key;
3761 	struct extent_buffer *right = path->nodes[0];
3762 	int i;
3763 	int push_space = 0;
3764 	int push_items = 0;
3765 	struct btrfs_item *item;
3766 	u32 old_left_nritems;
3767 	u32 nr;
3768 	int ret = 0;
3769 	u32 this_item_size;
3770 	u32 old_left_item_size;
3771 	struct btrfs_map_token token;
3772 
3773 	if (empty)
3774 		nr = min(right_nritems, max_slot);
3775 	else
3776 		nr = min(right_nritems - 1, max_slot);
3777 
3778 	for (i = 0; i < nr; i++) {
3779 		item = btrfs_item_nr(i);
3780 
3781 		if (!empty && push_items > 0) {
3782 			if (path->slots[0] < i)
3783 				break;
3784 			if (path->slots[0] == i) {
3785 				int space = btrfs_leaf_free_space(right);
3786 
3787 				if (space + push_space * 2 > free_space)
3788 					break;
3789 			}
3790 		}
3791 
3792 		if (path->slots[0] == i)
3793 			push_space += data_size;
3794 
3795 		this_item_size = btrfs_item_size(right, item);
3796 		if (this_item_size + sizeof(*item) + push_space > free_space)
3797 			break;
3798 
3799 		push_items++;
3800 		push_space += this_item_size + sizeof(*item);
3801 	}
3802 
3803 	if (push_items == 0) {
3804 		ret = 1;
3805 		goto out;
3806 	}
3807 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3808 
3809 	/* push data from right to left */
3810 	copy_extent_buffer(left, right,
3811 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3812 			   btrfs_item_nr_offset(0),
3813 			   push_items * sizeof(struct btrfs_item));
3814 
3815 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3816 		     btrfs_item_offset_nr(right, push_items - 1);
3817 
3818 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3819 		     leaf_data_end(left) - push_space,
3820 		     BTRFS_LEAF_DATA_OFFSET +
3821 		     btrfs_item_offset_nr(right, push_items - 1),
3822 		     push_space);
3823 	old_left_nritems = btrfs_header_nritems(left);
3824 	BUG_ON(old_left_nritems <= 0);
3825 
3826 	btrfs_init_map_token(&token, left);
3827 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3828 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3829 		u32 ioff;
3830 
3831 		item = btrfs_item_nr(i);
3832 
3833 		ioff = btrfs_token_item_offset(&token, item);
3834 		btrfs_set_token_item_offset(&token, item,
3835 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3836 	}
3837 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3838 
3839 	/* fixup right node */
3840 	if (push_items > right_nritems)
3841 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3842 		       right_nritems);
3843 
3844 	if (push_items < right_nritems) {
3845 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3846 						  leaf_data_end(right);
3847 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3848 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3849 				      BTRFS_LEAF_DATA_OFFSET +
3850 				      leaf_data_end(right), push_space);
3851 
3852 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3853 			      btrfs_item_nr_offset(push_items),
3854 			     (btrfs_header_nritems(right) - push_items) *
3855 			     sizeof(struct btrfs_item));
3856 	}
3857 
3858 	btrfs_init_map_token(&token, right);
3859 	right_nritems -= push_items;
3860 	btrfs_set_header_nritems(right, right_nritems);
3861 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3862 	for (i = 0; i < right_nritems; i++) {
3863 		item = btrfs_item_nr(i);
3864 
3865 		push_space = push_space - btrfs_token_item_size(&token, item);
3866 		btrfs_set_token_item_offset(&token, item, push_space);
3867 	}
3868 
3869 	btrfs_mark_buffer_dirty(left);
3870 	if (right_nritems)
3871 		btrfs_mark_buffer_dirty(right);
3872 	else
3873 		btrfs_clean_tree_block(right);
3874 
3875 	btrfs_item_key(right, &disk_key, 0);
3876 	fixup_low_keys(path, &disk_key, 1);
3877 
3878 	/* then fixup the leaf pointer in the path */
3879 	if (path->slots[0] < push_items) {
3880 		path->slots[0] += old_left_nritems;
3881 		btrfs_tree_unlock(path->nodes[0]);
3882 		free_extent_buffer(path->nodes[0]);
3883 		path->nodes[0] = left;
3884 		path->slots[1] -= 1;
3885 	} else {
3886 		btrfs_tree_unlock(left);
3887 		free_extent_buffer(left);
3888 		path->slots[0] -= push_items;
3889 	}
3890 	BUG_ON(path->slots[0] < 0);
3891 	return ret;
3892 out:
3893 	btrfs_tree_unlock(left);
3894 	free_extent_buffer(left);
3895 	return ret;
3896 }
3897 
3898 /*
3899  * push some data in the path leaf to the left, trying to free up at
3900  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3901  *
3902  * max_slot can put a limit on how far into the leaf we'll push items.  The
3903  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3904  * items
3905  */
3906 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3907 			  *root, struct btrfs_path *path, int min_data_size,
3908 			  int data_size, int empty, u32 max_slot)
3909 {
3910 	struct extent_buffer *right = path->nodes[0];
3911 	struct extent_buffer *left;
3912 	int slot;
3913 	int free_space;
3914 	u32 right_nritems;
3915 	int ret = 0;
3916 
3917 	slot = path->slots[1];
3918 	if (slot == 0)
3919 		return 1;
3920 	if (!path->nodes[1])
3921 		return 1;
3922 
3923 	right_nritems = btrfs_header_nritems(right);
3924 	if (right_nritems == 0)
3925 		return 1;
3926 
3927 	btrfs_assert_tree_locked(path->nodes[1]);
3928 
3929 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3930 	/*
3931 	 * slot - 1 is not valid or we fail to read the left node,
3932 	 * no big deal, just return.
3933 	 */
3934 	if (IS_ERR(left))
3935 		return 1;
3936 
3937 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3938 
3939 	free_space = btrfs_leaf_free_space(left);
3940 	if (free_space < data_size) {
3941 		ret = 1;
3942 		goto out;
3943 	}
3944 
3945 	/* cow and double check */
3946 	ret = btrfs_cow_block(trans, root, left,
3947 			      path->nodes[1], slot - 1, &left,
3948 			      BTRFS_NESTING_LEFT_COW);
3949 	if (ret) {
3950 		/* we hit -ENOSPC, but it isn't fatal here */
3951 		if (ret == -ENOSPC)
3952 			ret = 1;
3953 		goto out;
3954 	}
3955 
3956 	free_space = btrfs_leaf_free_space(left);
3957 	if (free_space < data_size) {
3958 		ret = 1;
3959 		goto out;
3960 	}
3961 
3962 	if (check_sibling_keys(left, right)) {
3963 		ret = -EUCLEAN;
3964 		goto out;
3965 	}
3966 	return __push_leaf_left(path, min_data_size,
3967 			       empty, left, free_space, right_nritems,
3968 			       max_slot);
3969 out:
3970 	btrfs_tree_unlock(left);
3971 	free_extent_buffer(left);
3972 	return ret;
3973 }
3974 
3975 /*
3976  * split the path's leaf in two, making sure there is at least data_size
3977  * available for the resulting leaf level of the path.
3978  */
3979 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3980 				    struct btrfs_path *path,
3981 				    struct extent_buffer *l,
3982 				    struct extent_buffer *right,
3983 				    int slot, int mid, int nritems)
3984 {
3985 	struct btrfs_fs_info *fs_info = trans->fs_info;
3986 	int data_copy_size;
3987 	int rt_data_off;
3988 	int i;
3989 	struct btrfs_disk_key disk_key;
3990 	struct btrfs_map_token token;
3991 
3992 	nritems = nritems - mid;
3993 	btrfs_set_header_nritems(right, nritems);
3994 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
3995 
3996 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3997 			   btrfs_item_nr_offset(mid),
3998 			   nritems * sizeof(struct btrfs_item));
3999 
4000 	copy_extent_buffer(right, l,
4001 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4002 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4003 		     leaf_data_end(l), data_copy_size);
4004 
4005 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4006 
4007 	btrfs_init_map_token(&token, right);
4008 	for (i = 0; i < nritems; i++) {
4009 		struct btrfs_item *item = btrfs_item_nr(i);
4010 		u32 ioff;
4011 
4012 		ioff = btrfs_token_item_offset(&token, item);
4013 		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
4014 	}
4015 
4016 	btrfs_set_header_nritems(l, mid);
4017 	btrfs_item_key(right, &disk_key, 0);
4018 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4019 
4020 	btrfs_mark_buffer_dirty(right);
4021 	btrfs_mark_buffer_dirty(l);
4022 	BUG_ON(path->slots[0] != slot);
4023 
4024 	if (mid <= slot) {
4025 		btrfs_tree_unlock(path->nodes[0]);
4026 		free_extent_buffer(path->nodes[0]);
4027 		path->nodes[0] = right;
4028 		path->slots[0] -= mid;
4029 		path->slots[1] += 1;
4030 	} else {
4031 		btrfs_tree_unlock(right);
4032 		free_extent_buffer(right);
4033 	}
4034 
4035 	BUG_ON(path->slots[0] < 0);
4036 }
4037 
4038 /*
4039  * double splits happen when we need to insert a big item in the middle
4040  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4041  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4042  *          A                 B                 C
4043  *
4044  * We avoid this by trying to push the items on either side of our target
4045  * into the adjacent leaves.  If all goes well we can avoid the double split
4046  * completely.
4047  */
4048 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4049 					  struct btrfs_root *root,
4050 					  struct btrfs_path *path,
4051 					  int data_size)
4052 {
4053 	int ret;
4054 	int progress = 0;
4055 	int slot;
4056 	u32 nritems;
4057 	int space_needed = data_size;
4058 
4059 	slot = path->slots[0];
4060 	if (slot < btrfs_header_nritems(path->nodes[0]))
4061 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4062 
4063 	/*
4064 	 * try to push all the items after our slot into the
4065 	 * right leaf
4066 	 */
4067 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4068 	if (ret < 0)
4069 		return ret;
4070 
4071 	if (ret == 0)
4072 		progress++;
4073 
4074 	nritems = btrfs_header_nritems(path->nodes[0]);
4075 	/*
4076 	 * our goal is to get our slot at the start or end of a leaf.  If
4077 	 * we've done so we're done
4078 	 */
4079 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4080 		return 0;
4081 
4082 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4083 		return 0;
4084 
4085 	/* try to push all the items before our slot into the next leaf */
4086 	slot = path->slots[0];
4087 	space_needed = data_size;
4088 	if (slot > 0)
4089 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4090 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4091 	if (ret < 0)
4092 		return ret;
4093 
4094 	if (ret == 0)
4095 		progress++;
4096 
4097 	if (progress)
4098 		return 0;
4099 	return 1;
4100 }
4101 
4102 /*
4103  * split the path's leaf in two, making sure there is at least data_size
4104  * available for the resulting leaf level of the path.
4105  *
4106  * returns 0 if all went well and < 0 on failure.
4107  */
4108 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4109 			       struct btrfs_root *root,
4110 			       const struct btrfs_key *ins_key,
4111 			       struct btrfs_path *path, int data_size,
4112 			       int extend)
4113 {
4114 	struct btrfs_disk_key disk_key;
4115 	struct extent_buffer *l;
4116 	u32 nritems;
4117 	int mid;
4118 	int slot;
4119 	struct extent_buffer *right;
4120 	struct btrfs_fs_info *fs_info = root->fs_info;
4121 	int ret = 0;
4122 	int wret;
4123 	int split;
4124 	int num_doubles = 0;
4125 	int tried_avoid_double = 0;
4126 
4127 	l = path->nodes[0];
4128 	slot = path->slots[0];
4129 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4130 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4131 		return -EOVERFLOW;
4132 
4133 	/* first try to make some room by pushing left and right */
4134 	if (data_size && path->nodes[1]) {
4135 		int space_needed = data_size;
4136 
4137 		if (slot < btrfs_header_nritems(l))
4138 			space_needed -= btrfs_leaf_free_space(l);
4139 
4140 		wret = push_leaf_right(trans, root, path, space_needed,
4141 				       space_needed, 0, 0);
4142 		if (wret < 0)
4143 			return wret;
4144 		if (wret) {
4145 			space_needed = data_size;
4146 			if (slot > 0)
4147 				space_needed -= btrfs_leaf_free_space(l);
4148 			wret = push_leaf_left(trans, root, path, space_needed,
4149 					      space_needed, 0, (u32)-1);
4150 			if (wret < 0)
4151 				return wret;
4152 		}
4153 		l = path->nodes[0];
4154 
4155 		/* did the pushes work? */
4156 		if (btrfs_leaf_free_space(l) >= data_size)
4157 			return 0;
4158 	}
4159 
4160 	if (!path->nodes[1]) {
4161 		ret = insert_new_root(trans, root, path, 1);
4162 		if (ret)
4163 			return ret;
4164 	}
4165 again:
4166 	split = 1;
4167 	l = path->nodes[0];
4168 	slot = path->slots[0];
4169 	nritems = btrfs_header_nritems(l);
4170 	mid = (nritems + 1) / 2;
4171 
4172 	if (mid <= slot) {
4173 		if (nritems == 1 ||
4174 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4175 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4176 			if (slot >= nritems) {
4177 				split = 0;
4178 			} else {
4179 				mid = slot;
4180 				if (mid != nritems &&
4181 				    leaf_space_used(l, mid, nritems - mid) +
4182 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4183 					if (data_size && !tried_avoid_double)
4184 						goto push_for_double;
4185 					split = 2;
4186 				}
4187 			}
4188 		}
4189 	} else {
4190 		if (leaf_space_used(l, 0, mid) + data_size >
4191 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4192 			if (!extend && data_size && slot == 0) {
4193 				split = 0;
4194 			} else if ((extend || !data_size) && slot == 0) {
4195 				mid = 1;
4196 			} else {
4197 				mid = slot;
4198 				if (mid != nritems &&
4199 				    leaf_space_used(l, mid, nritems - mid) +
4200 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4201 					if (data_size && !tried_avoid_double)
4202 						goto push_for_double;
4203 					split = 2;
4204 				}
4205 			}
4206 		}
4207 	}
4208 
4209 	if (split == 0)
4210 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4211 	else
4212 		btrfs_item_key(l, &disk_key, mid);
4213 
4214 	/*
4215 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
4216 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
4217 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
4218 	 * out.  In the future we could add a
4219 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
4220 	 * use BTRFS_NESTING_NEW_ROOT.
4221 	 */
4222 	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4223 					     l->start, 0, num_doubles ?
4224 					     BTRFS_NESTING_NEW_ROOT :
4225 					     BTRFS_NESTING_SPLIT);
4226 	if (IS_ERR(right))
4227 		return PTR_ERR(right);
4228 
4229 	root_add_used(root, fs_info->nodesize);
4230 
4231 	if (split == 0) {
4232 		if (mid <= slot) {
4233 			btrfs_set_header_nritems(right, 0);
4234 			insert_ptr(trans, path, &disk_key,
4235 				   right->start, path->slots[1] + 1, 1);
4236 			btrfs_tree_unlock(path->nodes[0]);
4237 			free_extent_buffer(path->nodes[0]);
4238 			path->nodes[0] = right;
4239 			path->slots[0] = 0;
4240 			path->slots[1] += 1;
4241 		} else {
4242 			btrfs_set_header_nritems(right, 0);
4243 			insert_ptr(trans, path, &disk_key,
4244 				   right->start, path->slots[1], 1);
4245 			btrfs_tree_unlock(path->nodes[0]);
4246 			free_extent_buffer(path->nodes[0]);
4247 			path->nodes[0] = right;
4248 			path->slots[0] = 0;
4249 			if (path->slots[1] == 0)
4250 				fixup_low_keys(path, &disk_key, 1);
4251 		}
4252 		/*
4253 		 * We create a new leaf 'right' for the required ins_len and
4254 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4255 		 * the content of ins_len to 'right'.
4256 		 */
4257 		return ret;
4258 	}
4259 
4260 	copy_for_split(trans, path, l, right, slot, mid, nritems);
4261 
4262 	if (split == 2) {
4263 		BUG_ON(num_doubles != 0);
4264 		num_doubles++;
4265 		goto again;
4266 	}
4267 
4268 	return 0;
4269 
4270 push_for_double:
4271 	push_for_double_split(trans, root, path, data_size);
4272 	tried_avoid_double = 1;
4273 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4274 		return 0;
4275 	goto again;
4276 }
4277 
4278 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4279 					 struct btrfs_root *root,
4280 					 struct btrfs_path *path, int ins_len)
4281 {
4282 	struct btrfs_key key;
4283 	struct extent_buffer *leaf;
4284 	struct btrfs_file_extent_item *fi;
4285 	u64 extent_len = 0;
4286 	u32 item_size;
4287 	int ret;
4288 
4289 	leaf = path->nodes[0];
4290 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4291 
4292 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4293 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4294 
4295 	if (btrfs_leaf_free_space(leaf) >= ins_len)
4296 		return 0;
4297 
4298 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4299 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4300 		fi = btrfs_item_ptr(leaf, path->slots[0],
4301 				    struct btrfs_file_extent_item);
4302 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4303 	}
4304 	btrfs_release_path(path);
4305 
4306 	path->keep_locks = 1;
4307 	path->search_for_split = 1;
4308 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4309 	path->search_for_split = 0;
4310 	if (ret > 0)
4311 		ret = -EAGAIN;
4312 	if (ret < 0)
4313 		goto err;
4314 
4315 	ret = -EAGAIN;
4316 	leaf = path->nodes[0];
4317 	/* if our item isn't there, return now */
4318 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4319 		goto err;
4320 
4321 	/* the leaf has  changed, it now has room.  return now */
4322 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4323 		goto err;
4324 
4325 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4326 		fi = btrfs_item_ptr(leaf, path->slots[0],
4327 				    struct btrfs_file_extent_item);
4328 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4329 			goto err;
4330 	}
4331 
4332 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4333 	if (ret)
4334 		goto err;
4335 
4336 	path->keep_locks = 0;
4337 	btrfs_unlock_up_safe(path, 1);
4338 	return 0;
4339 err:
4340 	path->keep_locks = 0;
4341 	return ret;
4342 }
4343 
4344 static noinline int split_item(struct btrfs_path *path,
4345 			       const struct btrfs_key *new_key,
4346 			       unsigned long split_offset)
4347 {
4348 	struct extent_buffer *leaf;
4349 	struct btrfs_item *item;
4350 	struct btrfs_item *new_item;
4351 	int slot;
4352 	char *buf;
4353 	u32 nritems;
4354 	u32 item_size;
4355 	u32 orig_offset;
4356 	struct btrfs_disk_key disk_key;
4357 
4358 	leaf = path->nodes[0];
4359 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4360 
4361 	item = btrfs_item_nr(path->slots[0]);
4362 	orig_offset = btrfs_item_offset(leaf, item);
4363 	item_size = btrfs_item_size(leaf, item);
4364 
4365 	buf = kmalloc(item_size, GFP_NOFS);
4366 	if (!buf)
4367 		return -ENOMEM;
4368 
4369 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4370 			    path->slots[0]), item_size);
4371 
4372 	slot = path->slots[0] + 1;
4373 	nritems = btrfs_header_nritems(leaf);
4374 	if (slot != nritems) {
4375 		/* shift the items */
4376 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4377 				btrfs_item_nr_offset(slot),
4378 				(nritems - slot) * sizeof(struct btrfs_item));
4379 	}
4380 
4381 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4382 	btrfs_set_item_key(leaf, &disk_key, slot);
4383 
4384 	new_item = btrfs_item_nr(slot);
4385 
4386 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4387 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4388 
4389 	btrfs_set_item_offset(leaf, item,
4390 			      orig_offset + item_size - split_offset);
4391 	btrfs_set_item_size(leaf, item, split_offset);
4392 
4393 	btrfs_set_header_nritems(leaf, nritems + 1);
4394 
4395 	/* write the data for the start of the original item */
4396 	write_extent_buffer(leaf, buf,
4397 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4398 			    split_offset);
4399 
4400 	/* write the data for the new item */
4401 	write_extent_buffer(leaf, buf + split_offset,
4402 			    btrfs_item_ptr_offset(leaf, slot),
4403 			    item_size - split_offset);
4404 	btrfs_mark_buffer_dirty(leaf);
4405 
4406 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4407 	kfree(buf);
4408 	return 0;
4409 }
4410 
4411 /*
4412  * This function splits a single item into two items,
4413  * giving 'new_key' to the new item and splitting the
4414  * old one at split_offset (from the start of the item).
4415  *
4416  * The path may be released by this operation.  After
4417  * the split, the path is pointing to the old item.  The
4418  * new item is going to be in the same node as the old one.
4419  *
4420  * Note, the item being split must be smaller enough to live alone on
4421  * a tree block with room for one extra struct btrfs_item
4422  *
4423  * This allows us to split the item in place, keeping a lock on the
4424  * leaf the entire time.
4425  */
4426 int btrfs_split_item(struct btrfs_trans_handle *trans,
4427 		     struct btrfs_root *root,
4428 		     struct btrfs_path *path,
4429 		     const struct btrfs_key *new_key,
4430 		     unsigned long split_offset)
4431 {
4432 	int ret;
4433 	ret = setup_leaf_for_split(trans, root, path,
4434 				   sizeof(struct btrfs_item));
4435 	if (ret)
4436 		return ret;
4437 
4438 	ret = split_item(path, new_key, split_offset);
4439 	return ret;
4440 }
4441 
4442 /*
4443  * This function duplicate a item, giving 'new_key' to the new item.
4444  * It guarantees both items live in the same tree leaf and the new item
4445  * is contiguous with the original item.
4446  *
4447  * This allows us to split file extent in place, keeping a lock on the
4448  * leaf the entire time.
4449  */
4450 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4451 			 struct btrfs_root *root,
4452 			 struct btrfs_path *path,
4453 			 const struct btrfs_key *new_key)
4454 {
4455 	struct extent_buffer *leaf;
4456 	int ret;
4457 	u32 item_size;
4458 
4459 	leaf = path->nodes[0];
4460 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4461 	ret = setup_leaf_for_split(trans, root, path,
4462 				   item_size + sizeof(struct btrfs_item));
4463 	if (ret)
4464 		return ret;
4465 
4466 	path->slots[0]++;
4467 	setup_items_for_insert(root, path, new_key, &item_size, 1);
4468 	leaf = path->nodes[0];
4469 	memcpy_extent_buffer(leaf,
4470 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4471 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4472 			     item_size);
4473 	return 0;
4474 }
4475 
4476 /*
4477  * make the item pointed to by the path smaller.  new_size indicates
4478  * how small to make it, and from_end tells us if we just chop bytes
4479  * off the end of the item or if we shift the item to chop bytes off
4480  * the front.
4481  */
4482 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4483 {
4484 	int slot;
4485 	struct extent_buffer *leaf;
4486 	struct btrfs_item *item;
4487 	u32 nritems;
4488 	unsigned int data_end;
4489 	unsigned int old_data_start;
4490 	unsigned int old_size;
4491 	unsigned int size_diff;
4492 	int i;
4493 	struct btrfs_map_token token;
4494 
4495 	leaf = path->nodes[0];
4496 	slot = path->slots[0];
4497 
4498 	old_size = btrfs_item_size_nr(leaf, slot);
4499 	if (old_size == new_size)
4500 		return;
4501 
4502 	nritems = btrfs_header_nritems(leaf);
4503 	data_end = leaf_data_end(leaf);
4504 
4505 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4506 
4507 	size_diff = old_size - new_size;
4508 
4509 	BUG_ON(slot < 0);
4510 	BUG_ON(slot >= nritems);
4511 
4512 	/*
4513 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4514 	 */
4515 	/* first correct the data pointers */
4516 	btrfs_init_map_token(&token, leaf);
4517 	for (i = slot; i < nritems; i++) {
4518 		u32 ioff;
4519 		item = btrfs_item_nr(i);
4520 
4521 		ioff = btrfs_token_item_offset(&token, item);
4522 		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
4523 	}
4524 
4525 	/* shift the data */
4526 	if (from_end) {
4527 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4528 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4529 			      data_end, old_data_start + new_size - data_end);
4530 	} else {
4531 		struct btrfs_disk_key disk_key;
4532 		u64 offset;
4533 
4534 		btrfs_item_key(leaf, &disk_key, slot);
4535 
4536 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4537 			unsigned long ptr;
4538 			struct btrfs_file_extent_item *fi;
4539 
4540 			fi = btrfs_item_ptr(leaf, slot,
4541 					    struct btrfs_file_extent_item);
4542 			fi = (struct btrfs_file_extent_item *)(
4543 			     (unsigned long)fi - size_diff);
4544 
4545 			if (btrfs_file_extent_type(leaf, fi) ==
4546 			    BTRFS_FILE_EXTENT_INLINE) {
4547 				ptr = btrfs_item_ptr_offset(leaf, slot);
4548 				memmove_extent_buffer(leaf, ptr,
4549 				      (unsigned long)fi,
4550 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4551 			}
4552 		}
4553 
4554 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4555 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4556 			      data_end, old_data_start - data_end);
4557 
4558 		offset = btrfs_disk_key_offset(&disk_key);
4559 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4560 		btrfs_set_item_key(leaf, &disk_key, slot);
4561 		if (slot == 0)
4562 			fixup_low_keys(path, &disk_key, 1);
4563 	}
4564 
4565 	item = btrfs_item_nr(slot);
4566 	btrfs_set_item_size(leaf, item, new_size);
4567 	btrfs_mark_buffer_dirty(leaf);
4568 
4569 	if (btrfs_leaf_free_space(leaf) < 0) {
4570 		btrfs_print_leaf(leaf);
4571 		BUG();
4572 	}
4573 }
4574 
4575 /*
4576  * make the item pointed to by the path bigger, data_size is the added size.
4577  */
4578 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4579 {
4580 	int slot;
4581 	struct extent_buffer *leaf;
4582 	struct btrfs_item *item;
4583 	u32 nritems;
4584 	unsigned int data_end;
4585 	unsigned int old_data;
4586 	unsigned int old_size;
4587 	int i;
4588 	struct btrfs_map_token token;
4589 
4590 	leaf = path->nodes[0];
4591 
4592 	nritems = btrfs_header_nritems(leaf);
4593 	data_end = leaf_data_end(leaf);
4594 
4595 	if (btrfs_leaf_free_space(leaf) < data_size) {
4596 		btrfs_print_leaf(leaf);
4597 		BUG();
4598 	}
4599 	slot = path->slots[0];
4600 	old_data = btrfs_item_end_nr(leaf, slot);
4601 
4602 	BUG_ON(slot < 0);
4603 	if (slot >= nritems) {
4604 		btrfs_print_leaf(leaf);
4605 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4606 			   slot, nritems);
4607 		BUG();
4608 	}
4609 
4610 	/*
4611 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4612 	 */
4613 	/* first correct the data pointers */
4614 	btrfs_init_map_token(&token, leaf);
4615 	for (i = slot; i < nritems; i++) {
4616 		u32 ioff;
4617 		item = btrfs_item_nr(i);
4618 
4619 		ioff = btrfs_token_item_offset(&token, item);
4620 		btrfs_set_token_item_offset(&token, item, ioff - data_size);
4621 	}
4622 
4623 	/* shift the data */
4624 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4625 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4626 		      data_end, old_data - data_end);
4627 
4628 	data_end = old_data;
4629 	old_size = btrfs_item_size_nr(leaf, slot);
4630 	item = btrfs_item_nr(slot);
4631 	btrfs_set_item_size(leaf, item, old_size + data_size);
4632 	btrfs_mark_buffer_dirty(leaf);
4633 
4634 	if (btrfs_leaf_free_space(leaf) < 0) {
4635 		btrfs_print_leaf(leaf);
4636 		BUG();
4637 	}
4638 }
4639 
4640 /**
4641  * setup_items_for_insert - Helper called before inserting one or more items
4642  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
4643  * in a function that doesn't call btrfs_search_slot
4644  *
4645  * @root:	root we are inserting items to
4646  * @path:	points to the leaf/slot where we are going to insert new items
4647  * @cpu_key:	array of keys for items to be inserted
4648  * @data_size:	size of the body of each item we are going to insert
4649  * @nr:		size of @cpu_key/@data_size arrays
4650  */
4651 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4652 			    const struct btrfs_key *cpu_key, u32 *data_size,
4653 			    int nr)
4654 {
4655 	struct btrfs_fs_info *fs_info = root->fs_info;
4656 	struct btrfs_item *item;
4657 	int i;
4658 	u32 nritems;
4659 	unsigned int data_end;
4660 	struct btrfs_disk_key disk_key;
4661 	struct extent_buffer *leaf;
4662 	int slot;
4663 	struct btrfs_map_token token;
4664 	u32 total_size;
4665 	u32 total_data = 0;
4666 
4667 	for (i = 0; i < nr; i++)
4668 		total_data += data_size[i];
4669 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4670 
4671 	if (path->slots[0] == 0) {
4672 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4673 		fixup_low_keys(path, &disk_key, 1);
4674 	}
4675 	btrfs_unlock_up_safe(path, 1);
4676 
4677 	leaf = path->nodes[0];
4678 	slot = path->slots[0];
4679 
4680 	nritems = btrfs_header_nritems(leaf);
4681 	data_end = leaf_data_end(leaf);
4682 
4683 	if (btrfs_leaf_free_space(leaf) < total_size) {
4684 		btrfs_print_leaf(leaf);
4685 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4686 			   total_size, btrfs_leaf_free_space(leaf));
4687 		BUG();
4688 	}
4689 
4690 	btrfs_init_map_token(&token, leaf);
4691 	if (slot != nritems) {
4692 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4693 
4694 		if (old_data < data_end) {
4695 			btrfs_print_leaf(leaf);
4696 			btrfs_crit(fs_info,
4697 		"item at slot %d with data offset %u beyond data end of leaf %u",
4698 				   slot, old_data, data_end);
4699 			BUG();
4700 		}
4701 		/*
4702 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4703 		 */
4704 		/* first correct the data pointers */
4705 		for (i = slot; i < nritems; i++) {
4706 			u32 ioff;
4707 
4708 			item = btrfs_item_nr(i);
4709 			ioff = btrfs_token_item_offset(&token, item);
4710 			btrfs_set_token_item_offset(&token, item,
4711 						    ioff - total_data);
4712 		}
4713 		/* shift the items */
4714 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4715 			      btrfs_item_nr_offset(slot),
4716 			      (nritems - slot) * sizeof(struct btrfs_item));
4717 
4718 		/* shift the data */
4719 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4720 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4721 			      data_end, old_data - data_end);
4722 		data_end = old_data;
4723 	}
4724 
4725 	/* setup the item for the new data */
4726 	for (i = 0; i < nr; i++) {
4727 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4728 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4729 		item = btrfs_item_nr(slot + i);
4730 		data_end -= data_size[i];
4731 		btrfs_set_token_item_offset(&token, item, data_end);
4732 		btrfs_set_token_item_size(&token, item, data_size[i]);
4733 	}
4734 
4735 	btrfs_set_header_nritems(leaf, nritems + nr);
4736 	btrfs_mark_buffer_dirty(leaf);
4737 
4738 	if (btrfs_leaf_free_space(leaf) < 0) {
4739 		btrfs_print_leaf(leaf);
4740 		BUG();
4741 	}
4742 }
4743 
4744 /*
4745  * Given a key and some data, insert items into the tree.
4746  * This does all the path init required, making room in the tree if needed.
4747  */
4748 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4749 			    struct btrfs_root *root,
4750 			    struct btrfs_path *path,
4751 			    const struct btrfs_key *cpu_key, u32 *data_size,
4752 			    int nr)
4753 {
4754 	int ret = 0;
4755 	int slot;
4756 	int i;
4757 	u32 total_size = 0;
4758 	u32 total_data = 0;
4759 
4760 	for (i = 0; i < nr; i++)
4761 		total_data += data_size[i];
4762 
4763 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4764 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4765 	if (ret == 0)
4766 		return -EEXIST;
4767 	if (ret < 0)
4768 		return ret;
4769 
4770 	slot = path->slots[0];
4771 	BUG_ON(slot < 0);
4772 
4773 	setup_items_for_insert(root, path, cpu_key, data_size, nr);
4774 	return 0;
4775 }
4776 
4777 /*
4778  * Given a key and some data, insert an item into the tree.
4779  * This does all the path init required, making room in the tree if needed.
4780  */
4781 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4782 		      const struct btrfs_key *cpu_key, void *data,
4783 		      u32 data_size)
4784 {
4785 	int ret = 0;
4786 	struct btrfs_path *path;
4787 	struct extent_buffer *leaf;
4788 	unsigned long ptr;
4789 
4790 	path = btrfs_alloc_path();
4791 	if (!path)
4792 		return -ENOMEM;
4793 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4794 	if (!ret) {
4795 		leaf = path->nodes[0];
4796 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4797 		write_extent_buffer(leaf, data, ptr, data_size);
4798 		btrfs_mark_buffer_dirty(leaf);
4799 	}
4800 	btrfs_free_path(path);
4801 	return ret;
4802 }
4803 
4804 /*
4805  * delete the pointer from a given node.
4806  *
4807  * the tree should have been previously balanced so the deletion does not
4808  * empty a node.
4809  */
4810 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4811 		    int level, int slot)
4812 {
4813 	struct extent_buffer *parent = path->nodes[level];
4814 	u32 nritems;
4815 	int ret;
4816 
4817 	nritems = btrfs_header_nritems(parent);
4818 	if (slot != nritems - 1) {
4819 		if (level) {
4820 			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4821 					nritems - slot - 1);
4822 			BUG_ON(ret < 0);
4823 		}
4824 		memmove_extent_buffer(parent,
4825 			      btrfs_node_key_ptr_offset(slot),
4826 			      btrfs_node_key_ptr_offset(slot + 1),
4827 			      sizeof(struct btrfs_key_ptr) *
4828 			      (nritems - slot - 1));
4829 	} else if (level) {
4830 		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4831 				GFP_NOFS);
4832 		BUG_ON(ret < 0);
4833 	}
4834 
4835 	nritems--;
4836 	btrfs_set_header_nritems(parent, nritems);
4837 	if (nritems == 0 && parent == root->node) {
4838 		BUG_ON(btrfs_header_level(root->node) != 1);
4839 		/* just turn the root into a leaf and break */
4840 		btrfs_set_header_level(root->node, 0);
4841 	} else if (slot == 0) {
4842 		struct btrfs_disk_key disk_key;
4843 
4844 		btrfs_node_key(parent, &disk_key, 0);
4845 		fixup_low_keys(path, &disk_key, level + 1);
4846 	}
4847 	btrfs_mark_buffer_dirty(parent);
4848 }
4849 
4850 /*
4851  * a helper function to delete the leaf pointed to by path->slots[1] and
4852  * path->nodes[1].
4853  *
4854  * This deletes the pointer in path->nodes[1] and frees the leaf
4855  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4856  *
4857  * The path must have already been setup for deleting the leaf, including
4858  * all the proper balancing.  path->nodes[1] must be locked.
4859  */
4860 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4861 				    struct btrfs_root *root,
4862 				    struct btrfs_path *path,
4863 				    struct extent_buffer *leaf)
4864 {
4865 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4866 	del_ptr(root, path, 1, path->slots[1]);
4867 
4868 	/*
4869 	 * btrfs_free_extent is expensive, we want to make sure we
4870 	 * aren't holding any locks when we call it
4871 	 */
4872 	btrfs_unlock_up_safe(path, 0);
4873 
4874 	root_sub_used(root, leaf->len);
4875 
4876 	atomic_inc(&leaf->refs);
4877 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4878 	free_extent_buffer_stale(leaf);
4879 }
4880 /*
4881  * delete the item at the leaf level in path.  If that empties
4882  * the leaf, remove it from the tree
4883  */
4884 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4885 		    struct btrfs_path *path, int slot, int nr)
4886 {
4887 	struct btrfs_fs_info *fs_info = root->fs_info;
4888 	struct extent_buffer *leaf;
4889 	struct btrfs_item *item;
4890 	u32 last_off;
4891 	u32 dsize = 0;
4892 	int ret = 0;
4893 	int wret;
4894 	int i;
4895 	u32 nritems;
4896 
4897 	leaf = path->nodes[0];
4898 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4899 
4900 	for (i = 0; i < nr; i++)
4901 		dsize += btrfs_item_size_nr(leaf, slot + i);
4902 
4903 	nritems = btrfs_header_nritems(leaf);
4904 
4905 	if (slot + nr != nritems) {
4906 		int data_end = leaf_data_end(leaf);
4907 		struct btrfs_map_token token;
4908 
4909 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4910 			      data_end + dsize,
4911 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4912 			      last_off - data_end);
4913 
4914 		btrfs_init_map_token(&token, leaf);
4915 		for (i = slot + nr; i < nritems; i++) {
4916 			u32 ioff;
4917 
4918 			item = btrfs_item_nr(i);
4919 			ioff = btrfs_token_item_offset(&token, item);
4920 			btrfs_set_token_item_offset(&token, item, ioff + dsize);
4921 		}
4922 
4923 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4924 			      btrfs_item_nr_offset(slot + nr),
4925 			      sizeof(struct btrfs_item) *
4926 			      (nritems - slot - nr));
4927 	}
4928 	btrfs_set_header_nritems(leaf, nritems - nr);
4929 	nritems -= nr;
4930 
4931 	/* delete the leaf if we've emptied it */
4932 	if (nritems == 0) {
4933 		if (leaf == root->node) {
4934 			btrfs_set_header_level(leaf, 0);
4935 		} else {
4936 			btrfs_clean_tree_block(leaf);
4937 			btrfs_del_leaf(trans, root, path, leaf);
4938 		}
4939 	} else {
4940 		int used = leaf_space_used(leaf, 0, nritems);
4941 		if (slot == 0) {
4942 			struct btrfs_disk_key disk_key;
4943 
4944 			btrfs_item_key(leaf, &disk_key, 0);
4945 			fixup_low_keys(path, &disk_key, 1);
4946 		}
4947 
4948 		/* delete the leaf if it is mostly empty */
4949 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4950 			/* push_leaf_left fixes the path.
4951 			 * make sure the path still points to our leaf
4952 			 * for possible call to del_ptr below
4953 			 */
4954 			slot = path->slots[1];
4955 			atomic_inc(&leaf->refs);
4956 
4957 			wret = push_leaf_left(trans, root, path, 1, 1,
4958 					      1, (u32)-1);
4959 			if (wret < 0 && wret != -ENOSPC)
4960 				ret = wret;
4961 
4962 			if (path->nodes[0] == leaf &&
4963 			    btrfs_header_nritems(leaf)) {
4964 				wret = push_leaf_right(trans, root, path, 1,
4965 						       1, 1, 0);
4966 				if (wret < 0 && wret != -ENOSPC)
4967 					ret = wret;
4968 			}
4969 
4970 			if (btrfs_header_nritems(leaf) == 0) {
4971 				path->slots[1] = slot;
4972 				btrfs_del_leaf(trans, root, path, leaf);
4973 				free_extent_buffer(leaf);
4974 				ret = 0;
4975 			} else {
4976 				/* if we're still in the path, make sure
4977 				 * we're dirty.  Otherwise, one of the
4978 				 * push_leaf functions must have already
4979 				 * dirtied this buffer
4980 				 */
4981 				if (path->nodes[0] == leaf)
4982 					btrfs_mark_buffer_dirty(leaf);
4983 				free_extent_buffer(leaf);
4984 			}
4985 		} else {
4986 			btrfs_mark_buffer_dirty(leaf);
4987 		}
4988 	}
4989 	return ret;
4990 }
4991 
4992 /*
4993  * search the tree again to find a leaf with lesser keys
4994  * returns 0 if it found something or 1 if there are no lesser leaves.
4995  * returns < 0 on io errors.
4996  *
4997  * This may release the path, and so you may lose any locks held at the
4998  * time you call it.
4999  */
5000 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5001 {
5002 	struct btrfs_key key;
5003 	struct btrfs_disk_key found_key;
5004 	int ret;
5005 
5006 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5007 
5008 	if (key.offset > 0) {
5009 		key.offset--;
5010 	} else if (key.type > 0) {
5011 		key.type--;
5012 		key.offset = (u64)-1;
5013 	} else if (key.objectid > 0) {
5014 		key.objectid--;
5015 		key.type = (u8)-1;
5016 		key.offset = (u64)-1;
5017 	} else {
5018 		return 1;
5019 	}
5020 
5021 	btrfs_release_path(path);
5022 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5023 	if (ret < 0)
5024 		return ret;
5025 	btrfs_item_key(path->nodes[0], &found_key, 0);
5026 	ret = comp_keys(&found_key, &key);
5027 	/*
5028 	 * We might have had an item with the previous key in the tree right
5029 	 * before we released our path. And after we released our path, that
5030 	 * item might have been pushed to the first slot (0) of the leaf we
5031 	 * were holding due to a tree balance. Alternatively, an item with the
5032 	 * previous key can exist as the only element of a leaf (big fat item).
5033 	 * Therefore account for these 2 cases, so that our callers (like
5034 	 * btrfs_previous_item) don't miss an existing item with a key matching
5035 	 * the previous key we computed above.
5036 	 */
5037 	if (ret <= 0)
5038 		return 0;
5039 	return 1;
5040 }
5041 
5042 /*
5043  * A helper function to walk down the tree starting at min_key, and looking
5044  * for nodes or leaves that are have a minimum transaction id.
5045  * This is used by the btree defrag code, and tree logging
5046  *
5047  * This does not cow, but it does stuff the starting key it finds back
5048  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5049  * key and get a writable path.
5050  *
5051  * This honors path->lowest_level to prevent descent past a given level
5052  * of the tree.
5053  *
5054  * min_trans indicates the oldest transaction that you are interested
5055  * in walking through.  Any nodes or leaves older than min_trans are
5056  * skipped over (without reading them).
5057  *
5058  * returns zero if something useful was found, < 0 on error and 1 if there
5059  * was nothing in the tree that matched the search criteria.
5060  */
5061 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5062 			 struct btrfs_path *path,
5063 			 u64 min_trans)
5064 {
5065 	struct extent_buffer *cur;
5066 	struct btrfs_key found_key;
5067 	int slot;
5068 	int sret;
5069 	u32 nritems;
5070 	int level;
5071 	int ret = 1;
5072 	int keep_locks = path->keep_locks;
5073 
5074 	path->keep_locks = 1;
5075 again:
5076 	cur = btrfs_read_lock_root_node(root);
5077 	level = btrfs_header_level(cur);
5078 	WARN_ON(path->nodes[level]);
5079 	path->nodes[level] = cur;
5080 	path->locks[level] = BTRFS_READ_LOCK;
5081 
5082 	if (btrfs_header_generation(cur) < min_trans) {
5083 		ret = 1;
5084 		goto out;
5085 	}
5086 	while (1) {
5087 		nritems = btrfs_header_nritems(cur);
5088 		level = btrfs_header_level(cur);
5089 		sret = btrfs_bin_search(cur, min_key, &slot);
5090 		if (sret < 0) {
5091 			ret = sret;
5092 			goto out;
5093 		}
5094 
5095 		/* at the lowest level, we're done, setup the path and exit */
5096 		if (level == path->lowest_level) {
5097 			if (slot >= nritems)
5098 				goto find_next_key;
5099 			ret = 0;
5100 			path->slots[level] = slot;
5101 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5102 			goto out;
5103 		}
5104 		if (sret && slot > 0)
5105 			slot--;
5106 		/*
5107 		 * check this node pointer against the min_trans parameters.
5108 		 * If it is too old, skip to the next one.
5109 		 */
5110 		while (slot < nritems) {
5111 			u64 gen;
5112 
5113 			gen = btrfs_node_ptr_generation(cur, slot);
5114 			if (gen < min_trans) {
5115 				slot++;
5116 				continue;
5117 			}
5118 			break;
5119 		}
5120 find_next_key:
5121 		/*
5122 		 * we didn't find a candidate key in this node, walk forward
5123 		 * and find another one
5124 		 */
5125 		if (slot >= nritems) {
5126 			path->slots[level] = slot;
5127 			sret = btrfs_find_next_key(root, path, min_key, level,
5128 						  min_trans);
5129 			if (sret == 0) {
5130 				btrfs_release_path(path);
5131 				goto again;
5132 			} else {
5133 				goto out;
5134 			}
5135 		}
5136 		/* save our key for returning back */
5137 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5138 		path->slots[level] = slot;
5139 		if (level == path->lowest_level) {
5140 			ret = 0;
5141 			goto out;
5142 		}
5143 		cur = btrfs_read_node_slot(cur, slot);
5144 		if (IS_ERR(cur)) {
5145 			ret = PTR_ERR(cur);
5146 			goto out;
5147 		}
5148 
5149 		btrfs_tree_read_lock(cur);
5150 
5151 		path->locks[level - 1] = BTRFS_READ_LOCK;
5152 		path->nodes[level - 1] = cur;
5153 		unlock_up(path, level, 1, 0, NULL);
5154 	}
5155 out:
5156 	path->keep_locks = keep_locks;
5157 	if (ret == 0) {
5158 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5159 		memcpy(min_key, &found_key, sizeof(found_key));
5160 	}
5161 	return ret;
5162 }
5163 
5164 /*
5165  * this is similar to btrfs_next_leaf, but does not try to preserve
5166  * and fixup the path.  It looks for and returns the next key in the
5167  * tree based on the current path and the min_trans parameters.
5168  *
5169  * 0 is returned if another key is found, < 0 if there are any errors
5170  * and 1 is returned if there are no higher keys in the tree
5171  *
5172  * path->keep_locks should be set to 1 on the search made before
5173  * calling this function.
5174  */
5175 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5176 			struct btrfs_key *key, int level, u64 min_trans)
5177 {
5178 	int slot;
5179 	struct extent_buffer *c;
5180 
5181 	WARN_ON(!path->keep_locks && !path->skip_locking);
5182 	while (level < BTRFS_MAX_LEVEL) {
5183 		if (!path->nodes[level])
5184 			return 1;
5185 
5186 		slot = path->slots[level] + 1;
5187 		c = path->nodes[level];
5188 next:
5189 		if (slot >= btrfs_header_nritems(c)) {
5190 			int ret;
5191 			int orig_lowest;
5192 			struct btrfs_key cur_key;
5193 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5194 			    !path->nodes[level + 1])
5195 				return 1;
5196 
5197 			if (path->locks[level + 1] || path->skip_locking) {
5198 				level++;
5199 				continue;
5200 			}
5201 
5202 			slot = btrfs_header_nritems(c) - 1;
5203 			if (level == 0)
5204 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5205 			else
5206 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5207 
5208 			orig_lowest = path->lowest_level;
5209 			btrfs_release_path(path);
5210 			path->lowest_level = level;
5211 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5212 						0, 0);
5213 			path->lowest_level = orig_lowest;
5214 			if (ret < 0)
5215 				return ret;
5216 
5217 			c = path->nodes[level];
5218 			slot = path->slots[level];
5219 			if (ret == 0)
5220 				slot++;
5221 			goto next;
5222 		}
5223 
5224 		if (level == 0)
5225 			btrfs_item_key_to_cpu(c, key, slot);
5226 		else {
5227 			u64 gen = btrfs_node_ptr_generation(c, slot);
5228 
5229 			if (gen < min_trans) {
5230 				slot++;
5231 				goto next;
5232 			}
5233 			btrfs_node_key_to_cpu(c, key, slot);
5234 		}
5235 		return 0;
5236 	}
5237 	return 1;
5238 }
5239 
5240 /*
5241  * search the tree again to find a leaf with greater keys
5242  * returns 0 if it found something or 1 if there are no greater leaves.
5243  * returns < 0 on io errors.
5244  */
5245 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5246 {
5247 	return btrfs_next_old_leaf(root, path, 0);
5248 }
5249 
5250 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5251 			u64 time_seq)
5252 {
5253 	int slot;
5254 	int level;
5255 	struct extent_buffer *c;
5256 	struct extent_buffer *next;
5257 	struct btrfs_key key;
5258 	u32 nritems;
5259 	int ret;
5260 	int i;
5261 
5262 	nritems = btrfs_header_nritems(path->nodes[0]);
5263 	if (nritems == 0)
5264 		return 1;
5265 
5266 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5267 again:
5268 	level = 1;
5269 	next = NULL;
5270 	btrfs_release_path(path);
5271 
5272 	path->keep_locks = 1;
5273 
5274 	if (time_seq)
5275 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5276 	else
5277 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5278 	path->keep_locks = 0;
5279 
5280 	if (ret < 0)
5281 		return ret;
5282 
5283 	nritems = btrfs_header_nritems(path->nodes[0]);
5284 	/*
5285 	 * by releasing the path above we dropped all our locks.  A balance
5286 	 * could have added more items next to the key that used to be
5287 	 * at the very end of the block.  So, check again here and
5288 	 * advance the path if there are now more items available.
5289 	 */
5290 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5291 		if (ret == 0)
5292 			path->slots[0]++;
5293 		ret = 0;
5294 		goto done;
5295 	}
5296 	/*
5297 	 * So the above check misses one case:
5298 	 * - after releasing the path above, someone has removed the item that
5299 	 *   used to be at the very end of the block, and balance between leafs
5300 	 *   gets another one with bigger key.offset to replace it.
5301 	 *
5302 	 * This one should be returned as well, or we can get leaf corruption
5303 	 * later(esp. in __btrfs_drop_extents()).
5304 	 *
5305 	 * And a bit more explanation about this check,
5306 	 * with ret > 0, the key isn't found, the path points to the slot
5307 	 * where it should be inserted, so the path->slots[0] item must be the
5308 	 * bigger one.
5309 	 */
5310 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5311 		ret = 0;
5312 		goto done;
5313 	}
5314 
5315 	while (level < BTRFS_MAX_LEVEL) {
5316 		if (!path->nodes[level]) {
5317 			ret = 1;
5318 			goto done;
5319 		}
5320 
5321 		slot = path->slots[level] + 1;
5322 		c = path->nodes[level];
5323 		if (slot >= btrfs_header_nritems(c)) {
5324 			level++;
5325 			if (level == BTRFS_MAX_LEVEL) {
5326 				ret = 1;
5327 				goto done;
5328 			}
5329 			continue;
5330 		}
5331 
5332 
5333 		/*
5334 		 * Our current level is where we're going to start from, and to
5335 		 * make sure lockdep doesn't complain we need to drop our locks
5336 		 * and nodes from 0 to our current level.
5337 		 */
5338 		for (i = 0; i < level; i++) {
5339 			if (path->locks[level]) {
5340 				btrfs_tree_read_unlock(path->nodes[i]);
5341 				path->locks[i] = 0;
5342 			}
5343 			free_extent_buffer(path->nodes[i]);
5344 			path->nodes[i] = NULL;
5345 		}
5346 
5347 		next = c;
5348 		ret = read_block_for_search(root, path, &next, level,
5349 					    slot, &key);
5350 		if (ret == -EAGAIN)
5351 			goto again;
5352 
5353 		if (ret < 0) {
5354 			btrfs_release_path(path);
5355 			goto done;
5356 		}
5357 
5358 		if (!path->skip_locking) {
5359 			ret = btrfs_try_tree_read_lock(next);
5360 			if (!ret && time_seq) {
5361 				/*
5362 				 * If we don't get the lock, we may be racing
5363 				 * with push_leaf_left, holding that lock while
5364 				 * itself waiting for the leaf we've currently
5365 				 * locked. To solve this situation, we give up
5366 				 * on our lock and cycle.
5367 				 */
5368 				free_extent_buffer(next);
5369 				btrfs_release_path(path);
5370 				cond_resched();
5371 				goto again;
5372 			}
5373 			if (!ret)
5374 				btrfs_tree_read_lock(next);
5375 		}
5376 		break;
5377 	}
5378 	path->slots[level] = slot;
5379 	while (1) {
5380 		level--;
5381 		path->nodes[level] = next;
5382 		path->slots[level] = 0;
5383 		if (!path->skip_locking)
5384 			path->locks[level] = BTRFS_READ_LOCK;
5385 		if (!level)
5386 			break;
5387 
5388 		ret = read_block_for_search(root, path, &next, level,
5389 					    0, &key);
5390 		if (ret == -EAGAIN)
5391 			goto again;
5392 
5393 		if (ret < 0) {
5394 			btrfs_release_path(path);
5395 			goto done;
5396 		}
5397 
5398 		if (!path->skip_locking)
5399 			btrfs_tree_read_lock(next);
5400 	}
5401 	ret = 0;
5402 done:
5403 	unlock_up(path, 0, 1, 0, NULL);
5404 
5405 	return ret;
5406 }
5407 
5408 /*
5409  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5410  * searching until it gets past min_objectid or finds an item of 'type'
5411  *
5412  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5413  */
5414 int btrfs_previous_item(struct btrfs_root *root,
5415 			struct btrfs_path *path, u64 min_objectid,
5416 			int type)
5417 {
5418 	struct btrfs_key found_key;
5419 	struct extent_buffer *leaf;
5420 	u32 nritems;
5421 	int ret;
5422 
5423 	while (1) {
5424 		if (path->slots[0] == 0) {
5425 			ret = btrfs_prev_leaf(root, path);
5426 			if (ret != 0)
5427 				return ret;
5428 		} else {
5429 			path->slots[0]--;
5430 		}
5431 		leaf = path->nodes[0];
5432 		nritems = btrfs_header_nritems(leaf);
5433 		if (nritems == 0)
5434 			return 1;
5435 		if (path->slots[0] == nritems)
5436 			path->slots[0]--;
5437 
5438 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5439 		if (found_key.objectid < min_objectid)
5440 			break;
5441 		if (found_key.type == type)
5442 			return 0;
5443 		if (found_key.objectid == min_objectid &&
5444 		    found_key.type < type)
5445 			break;
5446 	}
5447 	return 1;
5448 }
5449 
5450 /*
5451  * search in extent tree to find a previous Metadata/Data extent item with
5452  * min objecitd.
5453  *
5454  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5455  */
5456 int btrfs_previous_extent_item(struct btrfs_root *root,
5457 			struct btrfs_path *path, u64 min_objectid)
5458 {
5459 	struct btrfs_key found_key;
5460 	struct extent_buffer *leaf;
5461 	u32 nritems;
5462 	int ret;
5463 
5464 	while (1) {
5465 		if (path->slots[0] == 0) {
5466 			ret = btrfs_prev_leaf(root, path);
5467 			if (ret != 0)
5468 				return ret;
5469 		} else {
5470 			path->slots[0]--;
5471 		}
5472 		leaf = path->nodes[0];
5473 		nritems = btrfs_header_nritems(leaf);
5474 		if (nritems == 0)
5475 			return 1;
5476 		if (path->slots[0] == nritems)
5477 			path->slots[0]--;
5478 
5479 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5480 		if (found_key.objectid < min_objectid)
5481 			break;
5482 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5483 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5484 			return 0;
5485 		if (found_key.objectid == min_objectid &&
5486 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5487 			break;
5488 	}
5489 	return 1;
5490 }
5491