1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 #include "qgroup.h" 17 18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 19 *root, struct btrfs_path *path, int level); 20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 21 const struct btrfs_key *ins_key, struct btrfs_path *path, 22 int data_size, int extend); 23 static int push_node_left(struct btrfs_trans_handle *trans, 24 struct btrfs_fs_info *fs_info, 25 struct extent_buffer *dst, 26 struct extent_buffer *src, int empty); 27 static int balance_node_right(struct btrfs_trans_handle *trans, 28 struct btrfs_fs_info *fs_info, 29 struct extent_buffer *dst_buf, 30 struct extent_buffer *src_buf); 31 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 32 int level, int slot); 33 34 struct btrfs_path *btrfs_alloc_path(void) 35 { 36 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 37 } 38 39 /* 40 * set all locked nodes in the path to blocking locks. This should 41 * be done before scheduling 42 */ 43 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 44 { 45 int i; 46 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 47 if (!p->nodes[i] || !p->locks[i]) 48 continue; 49 /* 50 * If we currently have a spinning reader or writer lock this 51 * will bump the count of blocking holders and drop the 52 * spinlock. 53 */ 54 if (p->locks[i] == BTRFS_READ_LOCK) { 55 btrfs_set_lock_blocking_read(p->nodes[i]); 56 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 57 } else if (p->locks[i] == BTRFS_WRITE_LOCK) { 58 btrfs_set_lock_blocking_write(p->nodes[i]); 59 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 60 } 61 } 62 } 63 64 /* this also releases the path */ 65 void btrfs_free_path(struct btrfs_path *p) 66 { 67 if (!p) 68 return; 69 btrfs_release_path(p); 70 kmem_cache_free(btrfs_path_cachep, p); 71 } 72 73 /* 74 * path release drops references on the extent buffers in the path 75 * and it drops any locks held by this path 76 * 77 * It is safe to call this on paths that no locks or extent buffers held. 78 */ 79 noinline void btrfs_release_path(struct btrfs_path *p) 80 { 81 int i; 82 83 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 84 p->slots[i] = 0; 85 if (!p->nodes[i]) 86 continue; 87 if (p->locks[i]) { 88 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 89 p->locks[i] = 0; 90 } 91 free_extent_buffer(p->nodes[i]); 92 p->nodes[i] = NULL; 93 } 94 } 95 96 /* 97 * safely gets a reference on the root node of a tree. A lock 98 * is not taken, so a concurrent writer may put a different node 99 * at the root of the tree. See btrfs_lock_root_node for the 100 * looping required. 101 * 102 * The extent buffer returned by this has a reference taken, so 103 * it won't disappear. It may stop being the root of the tree 104 * at any time because there are no locks held. 105 */ 106 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 107 { 108 struct extent_buffer *eb; 109 110 while (1) { 111 rcu_read_lock(); 112 eb = rcu_dereference(root->node); 113 114 /* 115 * RCU really hurts here, we could free up the root node because 116 * it was COWed but we may not get the new root node yet so do 117 * the inc_not_zero dance and if it doesn't work then 118 * synchronize_rcu and try again. 119 */ 120 if (atomic_inc_not_zero(&eb->refs)) { 121 rcu_read_unlock(); 122 break; 123 } 124 rcu_read_unlock(); 125 synchronize_rcu(); 126 } 127 return eb; 128 } 129 130 /* loop around taking references on and locking the root node of the 131 * tree until you end up with a lock on the root. A locked buffer 132 * is returned, with a reference held. 133 */ 134 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 135 { 136 struct extent_buffer *eb; 137 138 while (1) { 139 eb = btrfs_root_node(root); 140 btrfs_tree_lock(eb); 141 if (eb == root->node) 142 break; 143 btrfs_tree_unlock(eb); 144 free_extent_buffer(eb); 145 } 146 return eb; 147 } 148 149 /* loop around taking references on and locking the root node of the 150 * tree until you end up with a lock on the root. A locked buffer 151 * is returned, with a reference held. 152 */ 153 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 154 { 155 struct extent_buffer *eb; 156 157 while (1) { 158 eb = btrfs_root_node(root); 159 btrfs_tree_read_lock(eb); 160 if (eb == root->node) 161 break; 162 btrfs_tree_read_unlock(eb); 163 free_extent_buffer(eb); 164 } 165 return eb; 166 } 167 168 /* cowonly root (everything not a reference counted cow subvolume), just get 169 * put onto a simple dirty list. transaction.c walks this to make sure they 170 * get properly updated on disk. 171 */ 172 static void add_root_to_dirty_list(struct btrfs_root *root) 173 { 174 struct btrfs_fs_info *fs_info = root->fs_info; 175 176 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 177 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 178 return; 179 180 spin_lock(&fs_info->trans_lock); 181 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 182 /* Want the extent tree to be the last on the list */ 183 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 184 list_move_tail(&root->dirty_list, 185 &fs_info->dirty_cowonly_roots); 186 else 187 list_move(&root->dirty_list, 188 &fs_info->dirty_cowonly_roots); 189 } 190 spin_unlock(&fs_info->trans_lock); 191 } 192 193 /* 194 * used by snapshot creation to make a copy of a root for a tree with 195 * a given objectid. The buffer with the new root node is returned in 196 * cow_ret, and this func returns zero on success or a negative error code. 197 */ 198 int btrfs_copy_root(struct btrfs_trans_handle *trans, 199 struct btrfs_root *root, 200 struct extent_buffer *buf, 201 struct extent_buffer **cow_ret, u64 new_root_objectid) 202 { 203 struct btrfs_fs_info *fs_info = root->fs_info; 204 struct extent_buffer *cow; 205 int ret = 0; 206 int level; 207 struct btrfs_disk_key disk_key; 208 209 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 210 trans->transid != fs_info->running_transaction->transid); 211 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 212 trans->transid != root->last_trans); 213 214 level = btrfs_header_level(buf); 215 if (level == 0) 216 btrfs_item_key(buf, &disk_key, 0); 217 else 218 btrfs_node_key(buf, &disk_key, 0); 219 220 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 221 &disk_key, level, buf->start, 0); 222 if (IS_ERR(cow)) 223 return PTR_ERR(cow); 224 225 copy_extent_buffer_full(cow, buf); 226 btrfs_set_header_bytenr(cow, cow->start); 227 btrfs_set_header_generation(cow, trans->transid); 228 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 229 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 230 BTRFS_HEADER_FLAG_RELOC); 231 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 232 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 233 else 234 btrfs_set_header_owner(cow, new_root_objectid); 235 236 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 237 238 WARN_ON(btrfs_header_generation(buf) > trans->transid); 239 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 240 ret = btrfs_inc_ref(trans, root, cow, 1); 241 else 242 ret = btrfs_inc_ref(trans, root, cow, 0); 243 244 if (ret) 245 return ret; 246 247 btrfs_mark_buffer_dirty(cow); 248 *cow_ret = cow; 249 return 0; 250 } 251 252 enum mod_log_op { 253 MOD_LOG_KEY_REPLACE, 254 MOD_LOG_KEY_ADD, 255 MOD_LOG_KEY_REMOVE, 256 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 257 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 258 MOD_LOG_MOVE_KEYS, 259 MOD_LOG_ROOT_REPLACE, 260 }; 261 262 struct tree_mod_root { 263 u64 logical; 264 u8 level; 265 }; 266 267 struct tree_mod_elem { 268 struct rb_node node; 269 u64 logical; 270 u64 seq; 271 enum mod_log_op op; 272 273 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 274 int slot; 275 276 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 277 u64 generation; 278 279 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 280 struct btrfs_disk_key key; 281 u64 blockptr; 282 283 /* this is used for op == MOD_LOG_MOVE_KEYS */ 284 struct { 285 int dst_slot; 286 int nr_items; 287 } move; 288 289 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 290 struct tree_mod_root old_root; 291 }; 292 293 /* 294 * Pull a new tree mod seq number for our operation. 295 */ 296 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 297 { 298 return atomic64_inc_return(&fs_info->tree_mod_seq); 299 } 300 301 /* 302 * This adds a new blocker to the tree mod log's blocker list if the @elem 303 * passed does not already have a sequence number set. So when a caller expects 304 * to record tree modifications, it should ensure to set elem->seq to zero 305 * before calling btrfs_get_tree_mod_seq. 306 * Returns a fresh, unused tree log modification sequence number, even if no new 307 * blocker was added. 308 */ 309 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 310 struct seq_list *elem) 311 { 312 write_lock(&fs_info->tree_mod_log_lock); 313 spin_lock(&fs_info->tree_mod_seq_lock); 314 if (!elem->seq) { 315 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 316 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 317 } 318 spin_unlock(&fs_info->tree_mod_seq_lock); 319 write_unlock(&fs_info->tree_mod_log_lock); 320 321 return elem->seq; 322 } 323 324 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 325 struct seq_list *elem) 326 { 327 struct rb_root *tm_root; 328 struct rb_node *node; 329 struct rb_node *next; 330 struct seq_list *cur_elem; 331 struct tree_mod_elem *tm; 332 u64 min_seq = (u64)-1; 333 u64 seq_putting = elem->seq; 334 335 if (!seq_putting) 336 return; 337 338 spin_lock(&fs_info->tree_mod_seq_lock); 339 list_del(&elem->list); 340 elem->seq = 0; 341 342 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 343 if (cur_elem->seq < min_seq) { 344 if (seq_putting > cur_elem->seq) { 345 /* 346 * blocker with lower sequence number exists, we 347 * cannot remove anything from the log 348 */ 349 spin_unlock(&fs_info->tree_mod_seq_lock); 350 return; 351 } 352 min_seq = cur_elem->seq; 353 } 354 } 355 spin_unlock(&fs_info->tree_mod_seq_lock); 356 357 /* 358 * anything that's lower than the lowest existing (read: blocked) 359 * sequence number can be removed from the tree. 360 */ 361 write_lock(&fs_info->tree_mod_log_lock); 362 tm_root = &fs_info->tree_mod_log; 363 for (node = rb_first(tm_root); node; node = next) { 364 next = rb_next(node); 365 tm = rb_entry(node, struct tree_mod_elem, node); 366 if (tm->seq > min_seq) 367 continue; 368 rb_erase(node, tm_root); 369 kfree(tm); 370 } 371 write_unlock(&fs_info->tree_mod_log_lock); 372 } 373 374 /* 375 * key order of the log: 376 * node/leaf start address -> sequence 377 * 378 * The 'start address' is the logical address of the *new* root node 379 * for root replace operations, or the logical address of the affected 380 * block for all other operations. 381 * 382 * Note: must be called with write lock for fs_info::tree_mod_log_lock. 383 */ 384 static noinline int 385 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 386 { 387 struct rb_root *tm_root; 388 struct rb_node **new; 389 struct rb_node *parent = NULL; 390 struct tree_mod_elem *cur; 391 392 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 393 394 tm_root = &fs_info->tree_mod_log; 395 new = &tm_root->rb_node; 396 while (*new) { 397 cur = rb_entry(*new, struct tree_mod_elem, node); 398 parent = *new; 399 if (cur->logical < tm->logical) 400 new = &((*new)->rb_left); 401 else if (cur->logical > tm->logical) 402 new = &((*new)->rb_right); 403 else if (cur->seq < tm->seq) 404 new = &((*new)->rb_left); 405 else if (cur->seq > tm->seq) 406 new = &((*new)->rb_right); 407 else 408 return -EEXIST; 409 } 410 411 rb_link_node(&tm->node, parent, new); 412 rb_insert_color(&tm->node, tm_root); 413 return 0; 414 } 415 416 /* 417 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 418 * returns zero with the tree_mod_log_lock acquired. The caller must hold 419 * this until all tree mod log insertions are recorded in the rb tree and then 420 * write unlock fs_info::tree_mod_log_lock. 421 */ 422 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 423 struct extent_buffer *eb) { 424 smp_mb(); 425 if (list_empty(&(fs_info)->tree_mod_seq_list)) 426 return 1; 427 if (eb && btrfs_header_level(eb) == 0) 428 return 1; 429 430 write_lock(&fs_info->tree_mod_log_lock); 431 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 432 write_unlock(&fs_info->tree_mod_log_lock); 433 return 1; 434 } 435 436 return 0; 437 } 438 439 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 440 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 441 struct extent_buffer *eb) 442 { 443 smp_mb(); 444 if (list_empty(&(fs_info)->tree_mod_seq_list)) 445 return 0; 446 if (eb && btrfs_header_level(eb) == 0) 447 return 0; 448 449 return 1; 450 } 451 452 static struct tree_mod_elem * 453 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 454 enum mod_log_op op, gfp_t flags) 455 { 456 struct tree_mod_elem *tm; 457 458 tm = kzalloc(sizeof(*tm), flags); 459 if (!tm) 460 return NULL; 461 462 tm->logical = eb->start; 463 if (op != MOD_LOG_KEY_ADD) { 464 btrfs_node_key(eb, &tm->key, slot); 465 tm->blockptr = btrfs_node_blockptr(eb, slot); 466 } 467 tm->op = op; 468 tm->slot = slot; 469 tm->generation = btrfs_node_ptr_generation(eb, slot); 470 RB_CLEAR_NODE(&tm->node); 471 472 return tm; 473 } 474 475 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 476 enum mod_log_op op, gfp_t flags) 477 { 478 struct tree_mod_elem *tm; 479 int ret; 480 481 if (!tree_mod_need_log(eb->fs_info, eb)) 482 return 0; 483 484 tm = alloc_tree_mod_elem(eb, slot, op, flags); 485 if (!tm) 486 return -ENOMEM; 487 488 if (tree_mod_dont_log(eb->fs_info, eb)) { 489 kfree(tm); 490 return 0; 491 } 492 493 ret = __tree_mod_log_insert(eb->fs_info, tm); 494 write_unlock(&eb->fs_info->tree_mod_log_lock); 495 if (ret) 496 kfree(tm); 497 498 return ret; 499 } 500 501 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 502 int dst_slot, int src_slot, int nr_items) 503 { 504 struct tree_mod_elem *tm = NULL; 505 struct tree_mod_elem **tm_list = NULL; 506 int ret = 0; 507 int i; 508 int locked = 0; 509 510 if (!tree_mod_need_log(eb->fs_info, eb)) 511 return 0; 512 513 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 514 if (!tm_list) 515 return -ENOMEM; 516 517 tm = kzalloc(sizeof(*tm), GFP_NOFS); 518 if (!tm) { 519 ret = -ENOMEM; 520 goto free_tms; 521 } 522 523 tm->logical = eb->start; 524 tm->slot = src_slot; 525 tm->move.dst_slot = dst_slot; 526 tm->move.nr_items = nr_items; 527 tm->op = MOD_LOG_MOVE_KEYS; 528 529 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 530 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 531 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 532 if (!tm_list[i]) { 533 ret = -ENOMEM; 534 goto free_tms; 535 } 536 } 537 538 if (tree_mod_dont_log(eb->fs_info, eb)) 539 goto free_tms; 540 locked = 1; 541 542 /* 543 * When we override something during the move, we log these removals. 544 * This can only happen when we move towards the beginning of the 545 * buffer, i.e. dst_slot < src_slot. 546 */ 547 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 548 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 549 if (ret) 550 goto free_tms; 551 } 552 553 ret = __tree_mod_log_insert(eb->fs_info, tm); 554 if (ret) 555 goto free_tms; 556 write_unlock(&eb->fs_info->tree_mod_log_lock); 557 kfree(tm_list); 558 559 return 0; 560 free_tms: 561 for (i = 0; i < nr_items; i++) { 562 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 563 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 564 kfree(tm_list[i]); 565 } 566 if (locked) 567 write_unlock(&eb->fs_info->tree_mod_log_lock); 568 kfree(tm_list); 569 kfree(tm); 570 571 return ret; 572 } 573 574 static inline int 575 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 576 struct tree_mod_elem **tm_list, 577 int nritems) 578 { 579 int i, j; 580 int ret; 581 582 for (i = nritems - 1; i >= 0; i--) { 583 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 584 if (ret) { 585 for (j = nritems - 1; j > i; j--) 586 rb_erase(&tm_list[j]->node, 587 &fs_info->tree_mod_log); 588 return ret; 589 } 590 } 591 592 return 0; 593 } 594 595 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 596 struct extent_buffer *new_root, int log_removal) 597 { 598 struct btrfs_fs_info *fs_info = old_root->fs_info; 599 struct tree_mod_elem *tm = NULL; 600 struct tree_mod_elem **tm_list = NULL; 601 int nritems = 0; 602 int ret = 0; 603 int i; 604 605 if (!tree_mod_need_log(fs_info, NULL)) 606 return 0; 607 608 if (log_removal && btrfs_header_level(old_root) > 0) { 609 nritems = btrfs_header_nritems(old_root); 610 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 611 GFP_NOFS); 612 if (!tm_list) { 613 ret = -ENOMEM; 614 goto free_tms; 615 } 616 for (i = 0; i < nritems; i++) { 617 tm_list[i] = alloc_tree_mod_elem(old_root, i, 618 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 619 if (!tm_list[i]) { 620 ret = -ENOMEM; 621 goto free_tms; 622 } 623 } 624 } 625 626 tm = kzalloc(sizeof(*tm), GFP_NOFS); 627 if (!tm) { 628 ret = -ENOMEM; 629 goto free_tms; 630 } 631 632 tm->logical = new_root->start; 633 tm->old_root.logical = old_root->start; 634 tm->old_root.level = btrfs_header_level(old_root); 635 tm->generation = btrfs_header_generation(old_root); 636 tm->op = MOD_LOG_ROOT_REPLACE; 637 638 if (tree_mod_dont_log(fs_info, NULL)) 639 goto free_tms; 640 641 if (tm_list) 642 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 643 if (!ret) 644 ret = __tree_mod_log_insert(fs_info, tm); 645 646 write_unlock(&fs_info->tree_mod_log_lock); 647 if (ret) 648 goto free_tms; 649 kfree(tm_list); 650 651 return ret; 652 653 free_tms: 654 if (tm_list) { 655 for (i = 0; i < nritems; i++) 656 kfree(tm_list[i]); 657 kfree(tm_list); 658 } 659 kfree(tm); 660 661 return ret; 662 } 663 664 static struct tree_mod_elem * 665 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 666 int smallest) 667 { 668 struct rb_root *tm_root; 669 struct rb_node *node; 670 struct tree_mod_elem *cur = NULL; 671 struct tree_mod_elem *found = NULL; 672 673 read_lock(&fs_info->tree_mod_log_lock); 674 tm_root = &fs_info->tree_mod_log; 675 node = tm_root->rb_node; 676 while (node) { 677 cur = rb_entry(node, struct tree_mod_elem, node); 678 if (cur->logical < start) { 679 node = node->rb_left; 680 } else if (cur->logical > start) { 681 node = node->rb_right; 682 } else if (cur->seq < min_seq) { 683 node = node->rb_left; 684 } else if (!smallest) { 685 /* we want the node with the highest seq */ 686 if (found) 687 BUG_ON(found->seq > cur->seq); 688 found = cur; 689 node = node->rb_left; 690 } else if (cur->seq > min_seq) { 691 /* we want the node with the smallest seq */ 692 if (found) 693 BUG_ON(found->seq < cur->seq); 694 found = cur; 695 node = node->rb_right; 696 } else { 697 found = cur; 698 break; 699 } 700 } 701 read_unlock(&fs_info->tree_mod_log_lock); 702 703 return found; 704 } 705 706 /* 707 * this returns the element from the log with the smallest time sequence 708 * value that's in the log (the oldest log item). any element with a time 709 * sequence lower than min_seq will be ignored. 710 */ 711 static struct tree_mod_elem * 712 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 713 u64 min_seq) 714 { 715 return __tree_mod_log_search(fs_info, start, min_seq, 1); 716 } 717 718 /* 719 * this returns the element from the log with the largest time sequence 720 * value that's in the log (the most recent log item). any element with 721 * a time sequence lower than min_seq will be ignored. 722 */ 723 static struct tree_mod_elem * 724 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 725 { 726 return __tree_mod_log_search(fs_info, start, min_seq, 0); 727 } 728 729 static noinline int 730 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 731 struct extent_buffer *src, unsigned long dst_offset, 732 unsigned long src_offset, int nr_items) 733 { 734 int ret = 0; 735 struct tree_mod_elem **tm_list = NULL; 736 struct tree_mod_elem **tm_list_add, **tm_list_rem; 737 int i; 738 int locked = 0; 739 740 if (!tree_mod_need_log(fs_info, NULL)) 741 return 0; 742 743 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 744 return 0; 745 746 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 747 GFP_NOFS); 748 if (!tm_list) 749 return -ENOMEM; 750 751 tm_list_add = tm_list; 752 tm_list_rem = tm_list + nr_items; 753 for (i = 0; i < nr_items; i++) { 754 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 755 MOD_LOG_KEY_REMOVE, GFP_NOFS); 756 if (!tm_list_rem[i]) { 757 ret = -ENOMEM; 758 goto free_tms; 759 } 760 761 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 762 MOD_LOG_KEY_ADD, GFP_NOFS); 763 if (!tm_list_add[i]) { 764 ret = -ENOMEM; 765 goto free_tms; 766 } 767 } 768 769 if (tree_mod_dont_log(fs_info, NULL)) 770 goto free_tms; 771 locked = 1; 772 773 for (i = 0; i < nr_items; i++) { 774 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 775 if (ret) 776 goto free_tms; 777 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 778 if (ret) 779 goto free_tms; 780 } 781 782 write_unlock(&fs_info->tree_mod_log_lock); 783 kfree(tm_list); 784 785 return 0; 786 787 free_tms: 788 for (i = 0; i < nr_items * 2; i++) { 789 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 790 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 791 kfree(tm_list[i]); 792 } 793 if (locked) 794 write_unlock(&fs_info->tree_mod_log_lock); 795 kfree(tm_list); 796 797 return ret; 798 } 799 800 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 801 { 802 struct tree_mod_elem **tm_list = NULL; 803 int nritems = 0; 804 int i; 805 int ret = 0; 806 807 if (btrfs_header_level(eb) == 0) 808 return 0; 809 810 if (!tree_mod_need_log(eb->fs_info, NULL)) 811 return 0; 812 813 nritems = btrfs_header_nritems(eb); 814 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 815 if (!tm_list) 816 return -ENOMEM; 817 818 for (i = 0; i < nritems; i++) { 819 tm_list[i] = alloc_tree_mod_elem(eb, i, 820 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 821 if (!tm_list[i]) { 822 ret = -ENOMEM; 823 goto free_tms; 824 } 825 } 826 827 if (tree_mod_dont_log(eb->fs_info, eb)) 828 goto free_tms; 829 830 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 831 write_unlock(&eb->fs_info->tree_mod_log_lock); 832 if (ret) 833 goto free_tms; 834 kfree(tm_list); 835 836 return 0; 837 838 free_tms: 839 for (i = 0; i < nritems; i++) 840 kfree(tm_list[i]); 841 kfree(tm_list); 842 843 return ret; 844 } 845 846 /* 847 * check if the tree block can be shared by multiple trees 848 */ 849 int btrfs_block_can_be_shared(struct btrfs_root *root, 850 struct extent_buffer *buf) 851 { 852 /* 853 * Tree blocks not in reference counted trees and tree roots 854 * are never shared. If a block was allocated after the last 855 * snapshot and the block was not allocated by tree relocation, 856 * we know the block is not shared. 857 */ 858 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 859 buf != root->node && buf != root->commit_root && 860 (btrfs_header_generation(buf) <= 861 btrfs_root_last_snapshot(&root->root_item) || 862 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 863 return 1; 864 865 return 0; 866 } 867 868 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 869 struct btrfs_root *root, 870 struct extent_buffer *buf, 871 struct extent_buffer *cow, 872 int *last_ref) 873 { 874 struct btrfs_fs_info *fs_info = root->fs_info; 875 u64 refs; 876 u64 owner; 877 u64 flags; 878 u64 new_flags = 0; 879 int ret; 880 881 /* 882 * Backrefs update rules: 883 * 884 * Always use full backrefs for extent pointers in tree block 885 * allocated by tree relocation. 886 * 887 * If a shared tree block is no longer referenced by its owner 888 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 889 * use full backrefs for extent pointers in tree block. 890 * 891 * If a tree block is been relocating 892 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 893 * use full backrefs for extent pointers in tree block. 894 * The reason for this is some operations (such as drop tree) 895 * are only allowed for blocks use full backrefs. 896 */ 897 898 if (btrfs_block_can_be_shared(root, buf)) { 899 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 900 btrfs_header_level(buf), 1, 901 &refs, &flags); 902 if (ret) 903 return ret; 904 if (refs == 0) { 905 ret = -EROFS; 906 btrfs_handle_fs_error(fs_info, ret, NULL); 907 return ret; 908 } 909 } else { 910 refs = 1; 911 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 912 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 913 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 914 else 915 flags = 0; 916 } 917 918 owner = btrfs_header_owner(buf); 919 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 920 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 921 922 if (refs > 1) { 923 if ((owner == root->root_key.objectid || 924 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 925 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 926 ret = btrfs_inc_ref(trans, root, buf, 1); 927 if (ret) 928 return ret; 929 930 if (root->root_key.objectid == 931 BTRFS_TREE_RELOC_OBJECTID) { 932 ret = btrfs_dec_ref(trans, root, buf, 0); 933 if (ret) 934 return ret; 935 ret = btrfs_inc_ref(trans, root, cow, 1); 936 if (ret) 937 return ret; 938 } 939 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 940 } else { 941 942 if (root->root_key.objectid == 943 BTRFS_TREE_RELOC_OBJECTID) 944 ret = btrfs_inc_ref(trans, root, cow, 1); 945 else 946 ret = btrfs_inc_ref(trans, root, cow, 0); 947 if (ret) 948 return ret; 949 } 950 if (new_flags != 0) { 951 int level = btrfs_header_level(buf); 952 953 ret = btrfs_set_disk_extent_flags(trans, fs_info, 954 buf->start, 955 buf->len, 956 new_flags, level, 0); 957 if (ret) 958 return ret; 959 } 960 } else { 961 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 962 if (root->root_key.objectid == 963 BTRFS_TREE_RELOC_OBJECTID) 964 ret = btrfs_inc_ref(trans, root, cow, 1); 965 else 966 ret = btrfs_inc_ref(trans, root, cow, 0); 967 if (ret) 968 return ret; 969 ret = btrfs_dec_ref(trans, root, buf, 1); 970 if (ret) 971 return ret; 972 } 973 clean_tree_block(fs_info, buf); 974 *last_ref = 1; 975 } 976 return 0; 977 } 978 979 static struct extent_buffer *alloc_tree_block_no_bg_flush( 980 struct btrfs_trans_handle *trans, 981 struct btrfs_root *root, 982 u64 parent_start, 983 const struct btrfs_disk_key *disk_key, 984 int level, 985 u64 hint, 986 u64 empty_size) 987 { 988 struct btrfs_fs_info *fs_info = root->fs_info; 989 struct extent_buffer *ret; 990 991 /* 992 * If we are COWing a node/leaf from the extent, chunk, device or free 993 * space trees, make sure that we do not finish block group creation of 994 * pending block groups. We do this to avoid a deadlock. 995 * COWing can result in allocation of a new chunk, and flushing pending 996 * block groups (btrfs_create_pending_block_groups()) can be triggered 997 * when finishing allocation of a new chunk. Creation of a pending block 998 * group modifies the extent, chunk, device and free space trees, 999 * therefore we could deadlock with ourselves since we are holding a 1000 * lock on an extent buffer that btrfs_create_pending_block_groups() may 1001 * try to COW later. 1002 * For similar reasons, we also need to delay flushing pending block 1003 * groups when splitting a leaf or node, from one of those trees, since 1004 * we are holding a write lock on it and its parent or when inserting a 1005 * new root node for one of those trees. 1006 */ 1007 if (root == fs_info->extent_root || 1008 root == fs_info->chunk_root || 1009 root == fs_info->dev_root || 1010 root == fs_info->free_space_root) 1011 trans->can_flush_pending_bgs = false; 1012 1013 ret = btrfs_alloc_tree_block(trans, root, parent_start, 1014 root->root_key.objectid, disk_key, level, 1015 hint, empty_size); 1016 trans->can_flush_pending_bgs = true; 1017 1018 return ret; 1019 } 1020 1021 /* 1022 * does the dirty work in cow of a single block. The parent block (if 1023 * supplied) is updated to point to the new cow copy. The new buffer is marked 1024 * dirty and returned locked. If you modify the block it needs to be marked 1025 * dirty again. 1026 * 1027 * search_start -- an allocation hint for the new block 1028 * 1029 * empty_size -- a hint that you plan on doing more cow. This is the size in 1030 * bytes the allocator should try to find free next to the block it returns. 1031 * This is just a hint and may be ignored by the allocator. 1032 */ 1033 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1034 struct btrfs_root *root, 1035 struct extent_buffer *buf, 1036 struct extent_buffer *parent, int parent_slot, 1037 struct extent_buffer **cow_ret, 1038 u64 search_start, u64 empty_size) 1039 { 1040 struct btrfs_fs_info *fs_info = root->fs_info; 1041 struct btrfs_disk_key disk_key; 1042 struct extent_buffer *cow; 1043 int level, ret; 1044 int last_ref = 0; 1045 int unlock_orig = 0; 1046 u64 parent_start = 0; 1047 1048 if (*cow_ret == buf) 1049 unlock_orig = 1; 1050 1051 btrfs_assert_tree_locked(buf); 1052 1053 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1054 trans->transid != fs_info->running_transaction->transid); 1055 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1056 trans->transid != root->last_trans); 1057 1058 level = btrfs_header_level(buf); 1059 1060 if (level == 0) 1061 btrfs_item_key(buf, &disk_key, 0); 1062 else 1063 btrfs_node_key(buf, &disk_key, 0); 1064 1065 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1066 parent_start = parent->start; 1067 1068 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key, 1069 level, search_start, empty_size); 1070 if (IS_ERR(cow)) 1071 return PTR_ERR(cow); 1072 1073 /* cow is set to blocking by btrfs_init_new_buffer */ 1074 1075 copy_extent_buffer_full(cow, buf); 1076 btrfs_set_header_bytenr(cow, cow->start); 1077 btrfs_set_header_generation(cow, trans->transid); 1078 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1079 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1080 BTRFS_HEADER_FLAG_RELOC); 1081 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1082 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1083 else 1084 btrfs_set_header_owner(cow, root->root_key.objectid); 1085 1086 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 1087 1088 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1089 if (ret) { 1090 btrfs_abort_transaction(trans, ret); 1091 return ret; 1092 } 1093 1094 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1095 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1096 if (ret) { 1097 btrfs_abort_transaction(trans, ret); 1098 return ret; 1099 } 1100 } 1101 1102 if (buf == root->node) { 1103 WARN_ON(parent && parent != buf); 1104 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1105 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1106 parent_start = buf->start; 1107 1108 extent_buffer_get(cow); 1109 ret = tree_mod_log_insert_root(root->node, cow, 1); 1110 BUG_ON(ret < 0); 1111 rcu_assign_pointer(root->node, cow); 1112 1113 btrfs_free_tree_block(trans, root, buf, parent_start, 1114 last_ref); 1115 free_extent_buffer(buf); 1116 add_root_to_dirty_list(root); 1117 } else { 1118 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1119 tree_mod_log_insert_key(parent, parent_slot, 1120 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1121 btrfs_set_node_blockptr(parent, parent_slot, 1122 cow->start); 1123 btrfs_set_node_ptr_generation(parent, parent_slot, 1124 trans->transid); 1125 btrfs_mark_buffer_dirty(parent); 1126 if (last_ref) { 1127 ret = tree_mod_log_free_eb(buf); 1128 if (ret) { 1129 btrfs_abort_transaction(trans, ret); 1130 return ret; 1131 } 1132 } 1133 btrfs_free_tree_block(trans, root, buf, parent_start, 1134 last_ref); 1135 } 1136 if (unlock_orig) 1137 btrfs_tree_unlock(buf); 1138 free_extent_buffer_stale(buf); 1139 btrfs_mark_buffer_dirty(cow); 1140 *cow_ret = cow; 1141 return 0; 1142 } 1143 1144 /* 1145 * returns the logical address of the oldest predecessor of the given root. 1146 * entries older than time_seq are ignored. 1147 */ 1148 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1149 struct extent_buffer *eb_root, u64 time_seq) 1150 { 1151 struct tree_mod_elem *tm; 1152 struct tree_mod_elem *found = NULL; 1153 u64 root_logical = eb_root->start; 1154 int looped = 0; 1155 1156 if (!time_seq) 1157 return NULL; 1158 1159 /* 1160 * the very last operation that's logged for a root is the 1161 * replacement operation (if it is replaced at all). this has 1162 * the logical address of the *new* root, making it the very 1163 * first operation that's logged for this root. 1164 */ 1165 while (1) { 1166 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1167 time_seq); 1168 if (!looped && !tm) 1169 return NULL; 1170 /* 1171 * if there are no tree operation for the oldest root, we simply 1172 * return it. this should only happen if that (old) root is at 1173 * level 0. 1174 */ 1175 if (!tm) 1176 break; 1177 1178 /* 1179 * if there's an operation that's not a root replacement, we 1180 * found the oldest version of our root. normally, we'll find a 1181 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1182 */ 1183 if (tm->op != MOD_LOG_ROOT_REPLACE) 1184 break; 1185 1186 found = tm; 1187 root_logical = tm->old_root.logical; 1188 looped = 1; 1189 } 1190 1191 /* if there's no old root to return, return what we found instead */ 1192 if (!found) 1193 found = tm; 1194 1195 return found; 1196 } 1197 1198 /* 1199 * tm is a pointer to the first operation to rewind within eb. then, all 1200 * previous operations will be rewound (until we reach something older than 1201 * time_seq). 1202 */ 1203 static void 1204 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1205 u64 time_seq, struct tree_mod_elem *first_tm) 1206 { 1207 u32 n; 1208 struct rb_node *next; 1209 struct tree_mod_elem *tm = first_tm; 1210 unsigned long o_dst; 1211 unsigned long o_src; 1212 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1213 1214 n = btrfs_header_nritems(eb); 1215 read_lock(&fs_info->tree_mod_log_lock); 1216 while (tm && tm->seq >= time_seq) { 1217 /* 1218 * all the operations are recorded with the operator used for 1219 * the modification. as we're going backwards, we do the 1220 * opposite of each operation here. 1221 */ 1222 switch (tm->op) { 1223 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1224 BUG_ON(tm->slot < n); 1225 /* Fallthrough */ 1226 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1227 case MOD_LOG_KEY_REMOVE: 1228 btrfs_set_node_key(eb, &tm->key, tm->slot); 1229 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1230 btrfs_set_node_ptr_generation(eb, tm->slot, 1231 tm->generation); 1232 n++; 1233 break; 1234 case MOD_LOG_KEY_REPLACE: 1235 BUG_ON(tm->slot >= n); 1236 btrfs_set_node_key(eb, &tm->key, tm->slot); 1237 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1238 btrfs_set_node_ptr_generation(eb, tm->slot, 1239 tm->generation); 1240 break; 1241 case MOD_LOG_KEY_ADD: 1242 /* if a move operation is needed it's in the log */ 1243 n--; 1244 break; 1245 case MOD_LOG_MOVE_KEYS: 1246 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1247 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1248 memmove_extent_buffer(eb, o_dst, o_src, 1249 tm->move.nr_items * p_size); 1250 break; 1251 case MOD_LOG_ROOT_REPLACE: 1252 /* 1253 * this operation is special. for roots, this must be 1254 * handled explicitly before rewinding. 1255 * for non-roots, this operation may exist if the node 1256 * was a root: root A -> child B; then A gets empty and 1257 * B is promoted to the new root. in the mod log, we'll 1258 * have a root-replace operation for B, a tree block 1259 * that is no root. we simply ignore that operation. 1260 */ 1261 break; 1262 } 1263 next = rb_next(&tm->node); 1264 if (!next) 1265 break; 1266 tm = rb_entry(next, struct tree_mod_elem, node); 1267 if (tm->logical != first_tm->logical) 1268 break; 1269 } 1270 read_unlock(&fs_info->tree_mod_log_lock); 1271 btrfs_set_header_nritems(eb, n); 1272 } 1273 1274 /* 1275 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1276 * is returned. If rewind operations happen, a fresh buffer is returned. The 1277 * returned buffer is always read-locked. If the returned buffer is not the 1278 * input buffer, the lock on the input buffer is released and the input buffer 1279 * is freed (its refcount is decremented). 1280 */ 1281 static struct extent_buffer * 1282 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1283 struct extent_buffer *eb, u64 time_seq) 1284 { 1285 struct extent_buffer *eb_rewin; 1286 struct tree_mod_elem *tm; 1287 1288 if (!time_seq) 1289 return eb; 1290 1291 if (btrfs_header_level(eb) == 0) 1292 return eb; 1293 1294 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1295 if (!tm) 1296 return eb; 1297 1298 btrfs_set_path_blocking(path); 1299 btrfs_set_lock_blocking_read(eb); 1300 1301 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1302 BUG_ON(tm->slot != 0); 1303 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1304 if (!eb_rewin) { 1305 btrfs_tree_read_unlock_blocking(eb); 1306 free_extent_buffer(eb); 1307 return NULL; 1308 } 1309 btrfs_set_header_bytenr(eb_rewin, eb->start); 1310 btrfs_set_header_backref_rev(eb_rewin, 1311 btrfs_header_backref_rev(eb)); 1312 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1313 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1314 } else { 1315 eb_rewin = btrfs_clone_extent_buffer(eb); 1316 if (!eb_rewin) { 1317 btrfs_tree_read_unlock_blocking(eb); 1318 free_extent_buffer(eb); 1319 return NULL; 1320 } 1321 } 1322 1323 btrfs_tree_read_unlock_blocking(eb); 1324 free_extent_buffer(eb); 1325 1326 btrfs_tree_read_lock(eb_rewin); 1327 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1328 WARN_ON(btrfs_header_nritems(eb_rewin) > 1329 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1330 1331 return eb_rewin; 1332 } 1333 1334 /* 1335 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1336 * value. If there are no changes, the current root->root_node is returned. If 1337 * anything changed in between, there's a fresh buffer allocated on which the 1338 * rewind operations are done. In any case, the returned buffer is read locked. 1339 * Returns NULL on error (with no locks held). 1340 */ 1341 static inline struct extent_buffer * 1342 get_old_root(struct btrfs_root *root, u64 time_seq) 1343 { 1344 struct btrfs_fs_info *fs_info = root->fs_info; 1345 struct tree_mod_elem *tm; 1346 struct extent_buffer *eb = NULL; 1347 struct extent_buffer *eb_root; 1348 struct extent_buffer *old; 1349 struct tree_mod_root *old_root = NULL; 1350 u64 old_generation = 0; 1351 u64 logical; 1352 int level; 1353 1354 eb_root = btrfs_read_lock_root_node(root); 1355 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1356 if (!tm) 1357 return eb_root; 1358 1359 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1360 old_root = &tm->old_root; 1361 old_generation = tm->generation; 1362 logical = old_root->logical; 1363 level = old_root->level; 1364 } else { 1365 logical = eb_root->start; 1366 level = btrfs_header_level(eb_root); 1367 } 1368 1369 tm = tree_mod_log_search(fs_info, logical, time_seq); 1370 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1371 btrfs_tree_read_unlock(eb_root); 1372 free_extent_buffer(eb_root); 1373 old = read_tree_block(fs_info, logical, 0, level, NULL); 1374 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1375 if (!IS_ERR(old)) 1376 free_extent_buffer(old); 1377 btrfs_warn(fs_info, 1378 "failed to read tree block %llu from get_old_root", 1379 logical); 1380 } else { 1381 eb = btrfs_clone_extent_buffer(old); 1382 free_extent_buffer(old); 1383 } 1384 } else if (old_root) { 1385 btrfs_tree_read_unlock(eb_root); 1386 free_extent_buffer(eb_root); 1387 eb = alloc_dummy_extent_buffer(fs_info, logical); 1388 } else { 1389 btrfs_set_lock_blocking_read(eb_root); 1390 eb = btrfs_clone_extent_buffer(eb_root); 1391 btrfs_tree_read_unlock_blocking(eb_root); 1392 free_extent_buffer(eb_root); 1393 } 1394 1395 if (!eb) 1396 return NULL; 1397 btrfs_tree_read_lock(eb); 1398 if (old_root) { 1399 btrfs_set_header_bytenr(eb, eb->start); 1400 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1401 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1402 btrfs_set_header_level(eb, old_root->level); 1403 btrfs_set_header_generation(eb, old_generation); 1404 } 1405 if (tm) 1406 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1407 else 1408 WARN_ON(btrfs_header_level(eb) != 0); 1409 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1410 1411 return eb; 1412 } 1413 1414 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1415 { 1416 struct tree_mod_elem *tm; 1417 int level; 1418 struct extent_buffer *eb_root = btrfs_root_node(root); 1419 1420 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1421 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1422 level = tm->old_root.level; 1423 } else { 1424 level = btrfs_header_level(eb_root); 1425 } 1426 free_extent_buffer(eb_root); 1427 1428 return level; 1429 } 1430 1431 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1432 struct btrfs_root *root, 1433 struct extent_buffer *buf) 1434 { 1435 if (btrfs_is_testing(root->fs_info)) 1436 return 0; 1437 1438 /* Ensure we can see the FORCE_COW bit */ 1439 smp_mb__before_atomic(); 1440 1441 /* 1442 * We do not need to cow a block if 1443 * 1) this block is not created or changed in this transaction; 1444 * 2) this block does not belong to TREE_RELOC tree; 1445 * 3) the root is not forced COW. 1446 * 1447 * What is forced COW: 1448 * when we create snapshot during committing the transaction, 1449 * after we've finished copying src root, we must COW the shared 1450 * block to ensure the metadata consistency. 1451 */ 1452 if (btrfs_header_generation(buf) == trans->transid && 1453 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1454 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1455 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1456 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1457 return 0; 1458 return 1; 1459 } 1460 1461 /* 1462 * cows a single block, see __btrfs_cow_block for the real work. 1463 * This version of it has extra checks so that a block isn't COWed more than 1464 * once per transaction, as long as it hasn't been written yet 1465 */ 1466 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1467 struct btrfs_root *root, struct extent_buffer *buf, 1468 struct extent_buffer *parent, int parent_slot, 1469 struct extent_buffer **cow_ret) 1470 { 1471 struct btrfs_fs_info *fs_info = root->fs_info; 1472 u64 search_start; 1473 int ret; 1474 1475 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 1476 btrfs_err(fs_info, 1477 "COW'ing blocks on a fs root that's being dropped"); 1478 1479 if (trans->transaction != fs_info->running_transaction) 1480 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1481 trans->transid, 1482 fs_info->running_transaction->transid); 1483 1484 if (trans->transid != fs_info->generation) 1485 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1486 trans->transid, fs_info->generation); 1487 1488 if (!should_cow_block(trans, root, buf)) { 1489 trans->dirty = true; 1490 *cow_ret = buf; 1491 return 0; 1492 } 1493 1494 search_start = buf->start & ~((u64)SZ_1G - 1); 1495 1496 if (parent) 1497 btrfs_set_lock_blocking_write(parent); 1498 btrfs_set_lock_blocking_write(buf); 1499 1500 /* 1501 * Before CoWing this block for later modification, check if it's 1502 * the subtree root and do the delayed subtree trace if needed. 1503 * 1504 * Also We don't care about the error, as it's handled internally. 1505 */ 1506 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 1507 ret = __btrfs_cow_block(trans, root, buf, parent, 1508 parent_slot, cow_ret, search_start, 0); 1509 1510 trace_btrfs_cow_block(root, buf, *cow_ret); 1511 1512 return ret; 1513 } 1514 1515 /* 1516 * helper function for defrag to decide if two blocks pointed to by a 1517 * node are actually close by 1518 */ 1519 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1520 { 1521 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1522 return 1; 1523 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1524 return 1; 1525 return 0; 1526 } 1527 1528 /* 1529 * compare two keys in a memcmp fashion 1530 */ 1531 static int comp_keys(const struct btrfs_disk_key *disk, 1532 const struct btrfs_key *k2) 1533 { 1534 struct btrfs_key k1; 1535 1536 btrfs_disk_key_to_cpu(&k1, disk); 1537 1538 return btrfs_comp_cpu_keys(&k1, k2); 1539 } 1540 1541 /* 1542 * same as comp_keys only with two btrfs_key's 1543 */ 1544 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1545 { 1546 if (k1->objectid > k2->objectid) 1547 return 1; 1548 if (k1->objectid < k2->objectid) 1549 return -1; 1550 if (k1->type > k2->type) 1551 return 1; 1552 if (k1->type < k2->type) 1553 return -1; 1554 if (k1->offset > k2->offset) 1555 return 1; 1556 if (k1->offset < k2->offset) 1557 return -1; 1558 return 0; 1559 } 1560 1561 /* 1562 * this is used by the defrag code to go through all the 1563 * leaves pointed to by a node and reallocate them so that 1564 * disk order is close to key order 1565 */ 1566 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1567 struct btrfs_root *root, struct extent_buffer *parent, 1568 int start_slot, u64 *last_ret, 1569 struct btrfs_key *progress) 1570 { 1571 struct btrfs_fs_info *fs_info = root->fs_info; 1572 struct extent_buffer *cur; 1573 u64 blocknr; 1574 u64 gen; 1575 u64 search_start = *last_ret; 1576 u64 last_block = 0; 1577 u64 other; 1578 u32 parent_nritems; 1579 int end_slot; 1580 int i; 1581 int err = 0; 1582 int parent_level; 1583 int uptodate; 1584 u32 blocksize; 1585 int progress_passed = 0; 1586 struct btrfs_disk_key disk_key; 1587 1588 parent_level = btrfs_header_level(parent); 1589 1590 WARN_ON(trans->transaction != fs_info->running_transaction); 1591 WARN_ON(trans->transid != fs_info->generation); 1592 1593 parent_nritems = btrfs_header_nritems(parent); 1594 blocksize = fs_info->nodesize; 1595 end_slot = parent_nritems - 1; 1596 1597 if (parent_nritems <= 1) 1598 return 0; 1599 1600 btrfs_set_lock_blocking_write(parent); 1601 1602 for (i = start_slot; i <= end_slot; i++) { 1603 struct btrfs_key first_key; 1604 int close = 1; 1605 1606 btrfs_node_key(parent, &disk_key, i); 1607 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1608 continue; 1609 1610 progress_passed = 1; 1611 blocknr = btrfs_node_blockptr(parent, i); 1612 gen = btrfs_node_ptr_generation(parent, i); 1613 btrfs_node_key_to_cpu(parent, &first_key, i); 1614 if (last_block == 0) 1615 last_block = blocknr; 1616 1617 if (i > 0) { 1618 other = btrfs_node_blockptr(parent, i - 1); 1619 close = close_blocks(blocknr, other, blocksize); 1620 } 1621 if (!close && i < end_slot) { 1622 other = btrfs_node_blockptr(parent, i + 1); 1623 close = close_blocks(blocknr, other, blocksize); 1624 } 1625 if (close) { 1626 last_block = blocknr; 1627 continue; 1628 } 1629 1630 cur = find_extent_buffer(fs_info, blocknr); 1631 if (cur) 1632 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1633 else 1634 uptodate = 0; 1635 if (!cur || !uptodate) { 1636 if (!cur) { 1637 cur = read_tree_block(fs_info, blocknr, gen, 1638 parent_level - 1, 1639 &first_key); 1640 if (IS_ERR(cur)) { 1641 return PTR_ERR(cur); 1642 } else if (!extent_buffer_uptodate(cur)) { 1643 free_extent_buffer(cur); 1644 return -EIO; 1645 } 1646 } else if (!uptodate) { 1647 err = btrfs_read_buffer(cur, gen, 1648 parent_level - 1,&first_key); 1649 if (err) { 1650 free_extent_buffer(cur); 1651 return err; 1652 } 1653 } 1654 } 1655 if (search_start == 0) 1656 search_start = last_block; 1657 1658 btrfs_tree_lock(cur); 1659 btrfs_set_lock_blocking_write(cur); 1660 err = __btrfs_cow_block(trans, root, cur, parent, i, 1661 &cur, search_start, 1662 min(16 * blocksize, 1663 (end_slot - i) * blocksize)); 1664 if (err) { 1665 btrfs_tree_unlock(cur); 1666 free_extent_buffer(cur); 1667 break; 1668 } 1669 search_start = cur->start; 1670 last_block = cur->start; 1671 *last_ret = search_start; 1672 btrfs_tree_unlock(cur); 1673 free_extent_buffer(cur); 1674 } 1675 return err; 1676 } 1677 1678 /* 1679 * search for key in the extent_buffer. The items start at offset p, 1680 * and they are item_size apart. There are 'max' items in p. 1681 * 1682 * the slot in the array is returned via slot, and it points to 1683 * the place where you would insert key if it is not found in 1684 * the array. 1685 * 1686 * slot may point to max if the key is bigger than all of the keys 1687 */ 1688 static noinline int generic_bin_search(struct extent_buffer *eb, 1689 unsigned long p, int item_size, 1690 const struct btrfs_key *key, 1691 int max, int *slot) 1692 { 1693 int low = 0; 1694 int high = max; 1695 int mid; 1696 int ret; 1697 struct btrfs_disk_key *tmp = NULL; 1698 struct btrfs_disk_key unaligned; 1699 unsigned long offset; 1700 char *kaddr = NULL; 1701 unsigned long map_start = 0; 1702 unsigned long map_len = 0; 1703 int err; 1704 1705 if (low > high) { 1706 btrfs_err(eb->fs_info, 1707 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1708 __func__, low, high, eb->start, 1709 btrfs_header_owner(eb), btrfs_header_level(eb)); 1710 return -EINVAL; 1711 } 1712 1713 while (low < high) { 1714 mid = (low + high) / 2; 1715 offset = p + mid * item_size; 1716 1717 if (!kaddr || offset < map_start || 1718 (offset + sizeof(struct btrfs_disk_key)) > 1719 map_start + map_len) { 1720 1721 err = map_private_extent_buffer(eb, offset, 1722 sizeof(struct btrfs_disk_key), 1723 &kaddr, &map_start, &map_len); 1724 1725 if (!err) { 1726 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1727 map_start); 1728 } else if (err == 1) { 1729 read_extent_buffer(eb, &unaligned, 1730 offset, sizeof(unaligned)); 1731 tmp = &unaligned; 1732 } else { 1733 return err; 1734 } 1735 1736 } else { 1737 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1738 map_start); 1739 } 1740 ret = comp_keys(tmp, key); 1741 1742 if (ret < 0) 1743 low = mid + 1; 1744 else if (ret > 0) 1745 high = mid; 1746 else { 1747 *slot = mid; 1748 return 0; 1749 } 1750 } 1751 *slot = low; 1752 return 1; 1753 } 1754 1755 /* 1756 * simple bin_search frontend that does the right thing for 1757 * leaves vs nodes 1758 */ 1759 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1760 int level, int *slot) 1761 { 1762 if (level == 0) 1763 return generic_bin_search(eb, 1764 offsetof(struct btrfs_leaf, items), 1765 sizeof(struct btrfs_item), 1766 key, btrfs_header_nritems(eb), 1767 slot); 1768 else 1769 return generic_bin_search(eb, 1770 offsetof(struct btrfs_node, ptrs), 1771 sizeof(struct btrfs_key_ptr), 1772 key, btrfs_header_nritems(eb), 1773 slot); 1774 } 1775 1776 static void root_add_used(struct btrfs_root *root, u32 size) 1777 { 1778 spin_lock(&root->accounting_lock); 1779 btrfs_set_root_used(&root->root_item, 1780 btrfs_root_used(&root->root_item) + size); 1781 spin_unlock(&root->accounting_lock); 1782 } 1783 1784 static void root_sub_used(struct btrfs_root *root, u32 size) 1785 { 1786 spin_lock(&root->accounting_lock); 1787 btrfs_set_root_used(&root->root_item, 1788 btrfs_root_used(&root->root_item) - size); 1789 spin_unlock(&root->accounting_lock); 1790 } 1791 1792 /* given a node and slot number, this reads the blocks it points to. The 1793 * extent buffer is returned with a reference taken (but unlocked). 1794 */ 1795 static noinline struct extent_buffer * 1796 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent, 1797 int slot) 1798 { 1799 int level = btrfs_header_level(parent); 1800 struct extent_buffer *eb; 1801 struct btrfs_key first_key; 1802 1803 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1804 return ERR_PTR(-ENOENT); 1805 1806 BUG_ON(level == 0); 1807 1808 btrfs_node_key_to_cpu(parent, &first_key, slot); 1809 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot), 1810 btrfs_node_ptr_generation(parent, slot), 1811 level - 1, &first_key); 1812 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1813 free_extent_buffer(eb); 1814 eb = ERR_PTR(-EIO); 1815 } 1816 1817 return eb; 1818 } 1819 1820 /* 1821 * node level balancing, used to make sure nodes are in proper order for 1822 * item deletion. We balance from the top down, so we have to make sure 1823 * that a deletion won't leave an node completely empty later on. 1824 */ 1825 static noinline int balance_level(struct btrfs_trans_handle *trans, 1826 struct btrfs_root *root, 1827 struct btrfs_path *path, int level) 1828 { 1829 struct btrfs_fs_info *fs_info = root->fs_info; 1830 struct extent_buffer *right = NULL; 1831 struct extent_buffer *mid; 1832 struct extent_buffer *left = NULL; 1833 struct extent_buffer *parent = NULL; 1834 int ret = 0; 1835 int wret; 1836 int pslot; 1837 int orig_slot = path->slots[level]; 1838 u64 orig_ptr; 1839 1840 ASSERT(level > 0); 1841 1842 mid = path->nodes[level]; 1843 1844 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1845 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1846 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1847 1848 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1849 1850 if (level < BTRFS_MAX_LEVEL - 1) { 1851 parent = path->nodes[level + 1]; 1852 pslot = path->slots[level + 1]; 1853 } 1854 1855 /* 1856 * deal with the case where there is only one pointer in the root 1857 * by promoting the node below to a root 1858 */ 1859 if (!parent) { 1860 struct extent_buffer *child; 1861 1862 if (btrfs_header_nritems(mid) != 1) 1863 return 0; 1864 1865 /* promote the child to a root */ 1866 child = read_node_slot(fs_info, mid, 0); 1867 if (IS_ERR(child)) { 1868 ret = PTR_ERR(child); 1869 btrfs_handle_fs_error(fs_info, ret, NULL); 1870 goto enospc; 1871 } 1872 1873 btrfs_tree_lock(child); 1874 btrfs_set_lock_blocking_write(child); 1875 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1876 if (ret) { 1877 btrfs_tree_unlock(child); 1878 free_extent_buffer(child); 1879 goto enospc; 1880 } 1881 1882 ret = tree_mod_log_insert_root(root->node, child, 1); 1883 BUG_ON(ret < 0); 1884 rcu_assign_pointer(root->node, child); 1885 1886 add_root_to_dirty_list(root); 1887 btrfs_tree_unlock(child); 1888 1889 path->locks[level] = 0; 1890 path->nodes[level] = NULL; 1891 clean_tree_block(fs_info, mid); 1892 btrfs_tree_unlock(mid); 1893 /* once for the path */ 1894 free_extent_buffer(mid); 1895 1896 root_sub_used(root, mid->len); 1897 btrfs_free_tree_block(trans, root, mid, 0, 1); 1898 /* once for the root ptr */ 1899 free_extent_buffer_stale(mid); 1900 return 0; 1901 } 1902 if (btrfs_header_nritems(mid) > 1903 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1904 return 0; 1905 1906 left = read_node_slot(fs_info, parent, pslot - 1); 1907 if (IS_ERR(left)) 1908 left = NULL; 1909 1910 if (left) { 1911 btrfs_tree_lock(left); 1912 btrfs_set_lock_blocking_write(left); 1913 wret = btrfs_cow_block(trans, root, left, 1914 parent, pslot - 1, &left); 1915 if (wret) { 1916 ret = wret; 1917 goto enospc; 1918 } 1919 } 1920 1921 right = read_node_slot(fs_info, parent, pslot + 1); 1922 if (IS_ERR(right)) 1923 right = NULL; 1924 1925 if (right) { 1926 btrfs_tree_lock(right); 1927 btrfs_set_lock_blocking_write(right); 1928 wret = btrfs_cow_block(trans, root, right, 1929 parent, pslot + 1, &right); 1930 if (wret) { 1931 ret = wret; 1932 goto enospc; 1933 } 1934 } 1935 1936 /* first, try to make some room in the middle buffer */ 1937 if (left) { 1938 orig_slot += btrfs_header_nritems(left); 1939 wret = push_node_left(trans, fs_info, left, mid, 1); 1940 if (wret < 0) 1941 ret = wret; 1942 } 1943 1944 /* 1945 * then try to empty the right most buffer into the middle 1946 */ 1947 if (right) { 1948 wret = push_node_left(trans, fs_info, mid, right, 1); 1949 if (wret < 0 && wret != -ENOSPC) 1950 ret = wret; 1951 if (btrfs_header_nritems(right) == 0) { 1952 clean_tree_block(fs_info, right); 1953 btrfs_tree_unlock(right); 1954 del_ptr(root, path, level + 1, pslot + 1); 1955 root_sub_used(root, right->len); 1956 btrfs_free_tree_block(trans, root, right, 0, 1); 1957 free_extent_buffer_stale(right); 1958 right = NULL; 1959 } else { 1960 struct btrfs_disk_key right_key; 1961 btrfs_node_key(right, &right_key, 0); 1962 ret = tree_mod_log_insert_key(parent, pslot + 1, 1963 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1964 BUG_ON(ret < 0); 1965 btrfs_set_node_key(parent, &right_key, pslot + 1); 1966 btrfs_mark_buffer_dirty(parent); 1967 } 1968 } 1969 if (btrfs_header_nritems(mid) == 1) { 1970 /* 1971 * we're not allowed to leave a node with one item in the 1972 * tree during a delete. A deletion from lower in the tree 1973 * could try to delete the only pointer in this node. 1974 * So, pull some keys from the left. 1975 * There has to be a left pointer at this point because 1976 * otherwise we would have pulled some pointers from the 1977 * right 1978 */ 1979 if (!left) { 1980 ret = -EROFS; 1981 btrfs_handle_fs_error(fs_info, ret, NULL); 1982 goto enospc; 1983 } 1984 wret = balance_node_right(trans, fs_info, mid, left); 1985 if (wret < 0) { 1986 ret = wret; 1987 goto enospc; 1988 } 1989 if (wret == 1) { 1990 wret = push_node_left(trans, fs_info, left, mid, 1); 1991 if (wret < 0) 1992 ret = wret; 1993 } 1994 BUG_ON(wret == 1); 1995 } 1996 if (btrfs_header_nritems(mid) == 0) { 1997 clean_tree_block(fs_info, mid); 1998 btrfs_tree_unlock(mid); 1999 del_ptr(root, path, level + 1, pslot); 2000 root_sub_used(root, mid->len); 2001 btrfs_free_tree_block(trans, root, mid, 0, 1); 2002 free_extent_buffer_stale(mid); 2003 mid = NULL; 2004 } else { 2005 /* update the parent key to reflect our changes */ 2006 struct btrfs_disk_key mid_key; 2007 btrfs_node_key(mid, &mid_key, 0); 2008 ret = tree_mod_log_insert_key(parent, pslot, 2009 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2010 BUG_ON(ret < 0); 2011 btrfs_set_node_key(parent, &mid_key, pslot); 2012 btrfs_mark_buffer_dirty(parent); 2013 } 2014 2015 /* update the path */ 2016 if (left) { 2017 if (btrfs_header_nritems(left) > orig_slot) { 2018 extent_buffer_get(left); 2019 /* left was locked after cow */ 2020 path->nodes[level] = left; 2021 path->slots[level + 1] -= 1; 2022 path->slots[level] = orig_slot; 2023 if (mid) { 2024 btrfs_tree_unlock(mid); 2025 free_extent_buffer(mid); 2026 } 2027 } else { 2028 orig_slot -= btrfs_header_nritems(left); 2029 path->slots[level] = orig_slot; 2030 } 2031 } 2032 /* double check we haven't messed things up */ 2033 if (orig_ptr != 2034 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2035 BUG(); 2036 enospc: 2037 if (right) { 2038 btrfs_tree_unlock(right); 2039 free_extent_buffer(right); 2040 } 2041 if (left) { 2042 if (path->nodes[level] != left) 2043 btrfs_tree_unlock(left); 2044 free_extent_buffer(left); 2045 } 2046 return ret; 2047 } 2048 2049 /* Node balancing for insertion. Here we only split or push nodes around 2050 * when they are completely full. This is also done top down, so we 2051 * have to be pessimistic. 2052 */ 2053 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2054 struct btrfs_root *root, 2055 struct btrfs_path *path, int level) 2056 { 2057 struct btrfs_fs_info *fs_info = root->fs_info; 2058 struct extent_buffer *right = NULL; 2059 struct extent_buffer *mid; 2060 struct extent_buffer *left = NULL; 2061 struct extent_buffer *parent = NULL; 2062 int ret = 0; 2063 int wret; 2064 int pslot; 2065 int orig_slot = path->slots[level]; 2066 2067 if (level == 0) 2068 return 1; 2069 2070 mid = path->nodes[level]; 2071 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2072 2073 if (level < BTRFS_MAX_LEVEL - 1) { 2074 parent = path->nodes[level + 1]; 2075 pslot = path->slots[level + 1]; 2076 } 2077 2078 if (!parent) 2079 return 1; 2080 2081 left = read_node_slot(fs_info, parent, pslot - 1); 2082 if (IS_ERR(left)) 2083 left = NULL; 2084 2085 /* first, try to make some room in the middle buffer */ 2086 if (left) { 2087 u32 left_nr; 2088 2089 btrfs_tree_lock(left); 2090 btrfs_set_lock_blocking_write(left); 2091 2092 left_nr = btrfs_header_nritems(left); 2093 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2094 wret = 1; 2095 } else { 2096 ret = btrfs_cow_block(trans, root, left, parent, 2097 pslot - 1, &left); 2098 if (ret) 2099 wret = 1; 2100 else { 2101 wret = push_node_left(trans, fs_info, 2102 left, mid, 0); 2103 } 2104 } 2105 if (wret < 0) 2106 ret = wret; 2107 if (wret == 0) { 2108 struct btrfs_disk_key disk_key; 2109 orig_slot += left_nr; 2110 btrfs_node_key(mid, &disk_key, 0); 2111 ret = tree_mod_log_insert_key(parent, pslot, 2112 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2113 BUG_ON(ret < 0); 2114 btrfs_set_node_key(parent, &disk_key, pslot); 2115 btrfs_mark_buffer_dirty(parent); 2116 if (btrfs_header_nritems(left) > orig_slot) { 2117 path->nodes[level] = left; 2118 path->slots[level + 1] -= 1; 2119 path->slots[level] = orig_slot; 2120 btrfs_tree_unlock(mid); 2121 free_extent_buffer(mid); 2122 } else { 2123 orig_slot -= 2124 btrfs_header_nritems(left); 2125 path->slots[level] = orig_slot; 2126 btrfs_tree_unlock(left); 2127 free_extent_buffer(left); 2128 } 2129 return 0; 2130 } 2131 btrfs_tree_unlock(left); 2132 free_extent_buffer(left); 2133 } 2134 right = read_node_slot(fs_info, parent, pslot + 1); 2135 if (IS_ERR(right)) 2136 right = NULL; 2137 2138 /* 2139 * then try to empty the right most buffer into the middle 2140 */ 2141 if (right) { 2142 u32 right_nr; 2143 2144 btrfs_tree_lock(right); 2145 btrfs_set_lock_blocking_write(right); 2146 2147 right_nr = btrfs_header_nritems(right); 2148 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2149 wret = 1; 2150 } else { 2151 ret = btrfs_cow_block(trans, root, right, 2152 parent, pslot + 1, 2153 &right); 2154 if (ret) 2155 wret = 1; 2156 else { 2157 wret = balance_node_right(trans, fs_info, 2158 right, mid); 2159 } 2160 } 2161 if (wret < 0) 2162 ret = wret; 2163 if (wret == 0) { 2164 struct btrfs_disk_key disk_key; 2165 2166 btrfs_node_key(right, &disk_key, 0); 2167 ret = tree_mod_log_insert_key(parent, pslot + 1, 2168 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2169 BUG_ON(ret < 0); 2170 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2171 btrfs_mark_buffer_dirty(parent); 2172 2173 if (btrfs_header_nritems(mid) <= orig_slot) { 2174 path->nodes[level] = right; 2175 path->slots[level + 1] += 1; 2176 path->slots[level] = orig_slot - 2177 btrfs_header_nritems(mid); 2178 btrfs_tree_unlock(mid); 2179 free_extent_buffer(mid); 2180 } else { 2181 btrfs_tree_unlock(right); 2182 free_extent_buffer(right); 2183 } 2184 return 0; 2185 } 2186 btrfs_tree_unlock(right); 2187 free_extent_buffer(right); 2188 } 2189 return 1; 2190 } 2191 2192 /* 2193 * readahead one full node of leaves, finding things that are close 2194 * to the block in 'slot', and triggering ra on them. 2195 */ 2196 static void reada_for_search(struct btrfs_fs_info *fs_info, 2197 struct btrfs_path *path, 2198 int level, int slot, u64 objectid) 2199 { 2200 struct extent_buffer *node; 2201 struct btrfs_disk_key disk_key; 2202 u32 nritems; 2203 u64 search; 2204 u64 target; 2205 u64 nread = 0; 2206 struct extent_buffer *eb; 2207 u32 nr; 2208 u32 blocksize; 2209 u32 nscan = 0; 2210 2211 if (level != 1) 2212 return; 2213 2214 if (!path->nodes[level]) 2215 return; 2216 2217 node = path->nodes[level]; 2218 2219 search = btrfs_node_blockptr(node, slot); 2220 blocksize = fs_info->nodesize; 2221 eb = find_extent_buffer(fs_info, search); 2222 if (eb) { 2223 free_extent_buffer(eb); 2224 return; 2225 } 2226 2227 target = search; 2228 2229 nritems = btrfs_header_nritems(node); 2230 nr = slot; 2231 2232 while (1) { 2233 if (path->reada == READA_BACK) { 2234 if (nr == 0) 2235 break; 2236 nr--; 2237 } else if (path->reada == READA_FORWARD) { 2238 nr++; 2239 if (nr >= nritems) 2240 break; 2241 } 2242 if (path->reada == READA_BACK && objectid) { 2243 btrfs_node_key(node, &disk_key, nr); 2244 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2245 break; 2246 } 2247 search = btrfs_node_blockptr(node, nr); 2248 if ((search <= target && target - search <= 65536) || 2249 (search > target && search - target <= 65536)) { 2250 readahead_tree_block(fs_info, search); 2251 nread += blocksize; 2252 } 2253 nscan++; 2254 if ((nread > 65536 || nscan > 32)) 2255 break; 2256 } 2257 } 2258 2259 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2260 struct btrfs_path *path, int level) 2261 { 2262 int slot; 2263 int nritems; 2264 struct extent_buffer *parent; 2265 struct extent_buffer *eb; 2266 u64 gen; 2267 u64 block1 = 0; 2268 u64 block2 = 0; 2269 2270 parent = path->nodes[level + 1]; 2271 if (!parent) 2272 return; 2273 2274 nritems = btrfs_header_nritems(parent); 2275 slot = path->slots[level + 1]; 2276 2277 if (slot > 0) { 2278 block1 = btrfs_node_blockptr(parent, slot - 1); 2279 gen = btrfs_node_ptr_generation(parent, slot - 1); 2280 eb = find_extent_buffer(fs_info, block1); 2281 /* 2282 * if we get -eagain from btrfs_buffer_uptodate, we 2283 * don't want to return eagain here. That will loop 2284 * forever 2285 */ 2286 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2287 block1 = 0; 2288 free_extent_buffer(eb); 2289 } 2290 if (slot + 1 < nritems) { 2291 block2 = btrfs_node_blockptr(parent, slot + 1); 2292 gen = btrfs_node_ptr_generation(parent, slot + 1); 2293 eb = find_extent_buffer(fs_info, block2); 2294 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2295 block2 = 0; 2296 free_extent_buffer(eb); 2297 } 2298 2299 if (block1) 2300 readahead_tree_block(fs_info, block1); 2301 if (block2) 2302 readahead_tree_block(fs_info, block2); 2303 } 2304 2305 2306 /* 2307 * when we walk down the tree, it is usually safe to unlock the higher layers 2308 * in the tree. The exceptions are when our path goes through slot 0, because 2309 * operations on the tree might require changing key pointers higher up in the 2310 * tree. 2311 * 2312 * callers might also have set path->keep_locks, which tells this code to keep 2313 * the lock if the path points to the last slot in the block. This is part of 2314 * walking through the tree, and selecting the next slot in the higher block. 2315 * 2316 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2317 * if lowest_unlock is 1, level 0 won't be unlocked 2318 */ 2319 static noinline void unlock_up(struct btrfs_path *path, int level, 2320 int lowest_unlock, int min_write_lock_level, 2321 int *write_lock_level) 2322 { 2323 int i; 2324 int skip_level = level; 2325 int no_skips = 0; 2326 struct extent_buffer *t; 2327 2328 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2329 if (!path->nodes[i]) 2330 break; 2331 if (!path->locks[i]) 2332 break; 2333 if (!no_skips && path->slots[i] == 0) { 2334 skip_level = i + 1; 2335 continue; 2336 } 2337 if (!no_skips && path->keep_locks) { 2338 u32 nritems; 2339 t = path->nodes[i]; 2340 nritems = btrfs_header_nritems(t); 2341 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2342 skip_level = i + 1; 2343 continue; 2344 } 2345 } 2346 if (skip_level < i && i >= lowest_unlock) 2347 no_skips = 1; 2348 2349 t = path->nodes[i]; 2350 if (i >= lowest_unlock && i > skip_level) { 2351 btrfs_tree_unlock_rw(t, path->locks[i]); 2352 path->locks[i] = 0; 2353 if (write_lock_level && 2354 i > min_write_lock_level && 2355 i <= *write_lock_level) { 2356 *write_lock_level = i - 1; 2357 } 2358 } 2359 } 2360 } 2361 2362 /* 2363 * This releases any locks held in the path starting at level and 2364 * going all the way up to the root. 2365 * 2366 * btrfs_search_slot will keep the lock held on higher nodes in a few 2367 * corner cases, such as COW of the block at slot zero in the node. This 2368 * ignores those rules, and it should only be called when there are no 2369 * more updates to be done higher up in the tree. 2370 */ 2371 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2372 { 2373 int i; 2374 2375 if (path->keep_locks) 2376 return; 2377 2378 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2379 if (!path->nodes[i]) 2380 continue; 2381 if (!path->locks[i]) 2382 continue; 2383 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2384 path->locks[i] = 0; 2385 } 2386 } 2387 2388 /* 2389 * helper function for btrfs_search_slot. The goal is to find a block 2390 * in cache without setting the path to blocking. If we find the block 2391 * we return zero and the path is unchanged. 2392 * 2393 * If we can't find the block, we set the path blocking and do some 2394 * reada. -EAGAIN is returned and the search must be repeated. 2395 */ 2396 static int 2397 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2398 struct extent_buffer **eb_ret, int level, int slot, 2399 const struct btrfs_key *key) 2400 { 2401 struct btrfs_fs_info *fs_info = root->fs_info; 2402 u64 blocknr; 2403 u64 gen; 2404 struct extent_buffer *b = *eb_ret; 2405 struct extent_buffer *tmp; 2406 struct btrfs_key first_key; 2407 int ret; 2408 int parent_level; 2409 2410 blocknr = btrfs_node_blockptr(b, slot); 2411 gen = btrfs_node_ptr_generation(b, slot); 2412 parent_level = btrfs_header_level(b); 2413 btrfs_node_key_to_cpu(b, &first_key, slot); 2414 2415 tmp = find_extent_buffer(fs_info, blocknr); 2416 if (tmp) { 2417 /* first we do an atomic uptodate check */ 2418 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2419 *eb_ret = tmp; 2420 return 0; 2421 } 2422 2423 /* the pages were up to date, but we failed 2424 * the generation number check. Do a full 2425 * read for the generation number that is correct. 2426 * We must do this without dropping locks so 2427 * we can trust our generation number 2428 */ 2429 btrfs_set_path_blocking(p); 2430 2431 /* now we're allowed to do a blocking uptodate check */ 2432 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2433 if (!ret) { 2434 *eb_ret = tmp; 2435 return 0; 2436 } 2437 free_extent_buffer(tmp); 2438 btrfs_release_path(p); 2439 return -EIO; 2440 } 2441 2442 /* 2443 * reduce lock contention at high levels 2444 * of the btree by dropping locks before 2445 * we read. Don't release the lock on the current 2446 * level because we need to walk this node to figure 2447 * out which blocks to read. 2448 */ 2449 btrfs_unlock_up_safe(p, level + 1); 2450 btrfs_set_path_blocking(p); 2451 2452 if (p->reada != READA_NONE) 2453 reada_for_search(fs_info, p, level, slot, key->objectid); 2454 2455 ret = -EAGAIN; 2456 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1, 2457 &first_key); 2458 if (!IS_ERR(tmp)) { 2459 /* 2460 * If the read above didn't mark this buffer up to date, 2461 * it will never end up being up to date. Set ret to EIO now 2462 * and give up so that our caller doesn't loop forever 2463 * on our EAGAINs. 2464 */ 2465 if (!extent_buffer_uptodate(tmp)) 2466 ret = -EIO; 2467 free_extent_buffer(tmp); 2468 } else { 2469 ret = PTR_ERR(tmp); 2470 } 2471 2472 btrfs_release_path(p); 2473 return ret; 2474 } 2475 2476 /* 2477 * helper function for btrfs_search_slot. This does all of the checks 2478 * for node-level blocks and does any balancing required based on 2479 * the ins_len. 2480 * 2481 * If no extra work was required, zero is returned. If we had to 2482 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2483 * start over 2484 */ 2485 static int 2486 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2487 struct btrfs_root *root, struct btrfs_path *p, 2488 struct extent_buffer *b, int level, int ins_len, 2489 int *write_lock_level) 2490 { 2491 struct btrfs_fs_info *fs_info = root->fs_info; 2492 int ret; 2493 2494 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2495 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2496 int sret; 2497 2498 if (*write_lock_level < level + 1) { 2499 *write_lock_level = level + 1; 2500 btrfs_release_path(p); 2501 goto again; 2502 } 2503 2504 btrfs_set_path_blocking(p); 2505 reada_for_balance(fs_info, p, level); 2506 sret = split_node(trans, root, p, level); 2507 2508 BUG_ON(sret > 0); 2509 if (sret) { 2510 ret = sret; 2511 goto done; 2512 } 2513 b = p->nodes[level]; 2514 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2515 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2516 int sret; 2517 2518 if (*write_lock_level < level + 1) { 2519 *write_lock_level = level + 1; 2520 btrfs_release_path(p); 2521 goto again; 2522 } 2523 2524 btrfs_set_path_blocking(p); 2525 reada_for_balance(fs_info, p, level); 2526 sret = balance_level(trans, root, p, level); 2527 2528 if (sret) { 2529 ret = sret; 2530 goto done; 2531 } 2532 b = p->nodes[level]; 2533 if (!b) { 2534 btrfs_release_path(p); 2535 goto again; 2536 } 2537 BUG_ON(btrfs_header_nritems(b) == 1); 2538 } 2539 return 0; 2540 2541 again: 2542 ret = -EAGAIN; 2543 done: 2544 return ret; 2545 } 2546 2547 static int key_search(struct extent_buffer *b, const struct btrfs_key *key, 2548 int level, int *prev_cmp, int *slot) 2549 { 2550 if (*prev_cmp != 0) { 2551 *prev_cmp = btrfs_bin_search(b, key, level, slot); 2552 return *prev_cmp; 2553 } 2554 2555 *slot = 0; 2556 2557 return 0; 2558 } 2559 2560 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2561 u64 iobjectid, u64 ioff, u8 key_type, 2562 struct btrfs_key *found_key) 2563 { 2564 int ret; 2565 struct btrfs_key key; 2566 struct extent_buffer *eb; 2567 2568 ASSERT(path); 2569 ASSERT(found_key); 2570 2571 key.type = key_type; 2572 key.objectid = iobjectid; 2573 key.offset = ioff; 2574 2575 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2576 if (ret < 0) 2577 return ret; 2578 2579 eb = path->nodes[0]; 2580 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2581 ret = btrfs_next_leaf(fs_root, path); 2582 if (ret) 2583 return ret; 2584 eb = path->nodes[0]; 2585 } 2586 2587 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2588 if (found_key->type != key.type || 2589 found_key->objectid != key.objectid) 2590 return 1; 2591 2592 return 0; 2593 } 2594 2595 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2596 struct btrfs_path *p, 2597 int write_lock_level) 2598 { 2599 struct btrfs_fs_info *fs_info = root->fs_info; 2600 struct extent_buffer *b; 2601 int root_lock; 2602 int level = 0; 2603 2604 /* We try very hard to do read locks on the root */ 2605 root_lock = BTRFS_READ_LOCK; 2606 2607 if (p->search_commit_root) { 2608 /* 2609 * The commit roots are read only so we always do read locks, 2610 * and we always must hold the commit_root_sem when doing 2611 * searches on them, the only exception is send where we don't 2612 * want to block transaction commits for a long time, so 2613 * we need to clone the commit root in order to avoid races 2614 * with transaction commits that create a snapshot of one of 2615 * the roots used by a send operation. 2616 */ 2617 if (p->need_commit_sem) { 2618 down_read(&fs_info->commit_root_sem); 2619 b = btrfs_clone_extent_buffer(root->commit_root); 2620 up_read(&fs_info->commit_root_sem); 2621 if (!b) 2622 return ERR_PTR(-ENOMEM); 2623 2624 } else { 2625 b = root->commit_root; 2626 extent_buffer_get(b); 2627 } 2628 level = btrfs_header_level(b); 2629 /* 2630 * Ensure that all callers have set skip_locking when 2631 * p->search_commit_root = 1. 2632 */ 2633 ASSERT(p->skip_locking == 1); 2634 2635 goto out; 2636 } 2637 2638 if (p->skip_locking) { 2639 b = btrfs_root_node(root); 2640 level = btrfs_header_level(b); 2641 goto out; 2642 } 2643 2644 /* 2645 * If the level is set to maximum, we can skip trying to get the read 2646 * lock. 2647 */ 2648 if (write_lock_level < BTRFS_MAX_LEVEL) { 2649 /* 2650 * We don't know the level of the root node until we actually 2651 * have it read locked 2652 */ 2653 b = btrfs_read_lock_root_node(root); 2654 level = btrfs_header_level(b); 2655 if (level > write_lock_level) 2656 goto out; 2657 2658 /* Whoops, must trade for write lock */ 2659 btrfs_tree_read_unlock(b); 2660 free_extent_buffer(b); 2661 } 2662 2663 b = btrfs_lock_root_node(root); 2664 root_lock = BTRFS_WRITE_LOCK; 2665 2666 /* The level might have changed, check again */ 2667 level = btrfs_header_level(b); 2668 2669 out: 2670 p->nodes[level] = b; 2671 if (!p->skip_locking) 2672 p->locks[level] = root_lock; 2673 /* 2674 * Callers are responsible for dropping b's references. 2675 */ 2676 return b; 2677 } 2678 2679 2680 /* 2681 * btrfs_search_slot - look for a key in a tree and perform necessary 2682 * modifications to preserve tree invariants. 2683 * 2684 * @trans: Handle of transaction, used when modifying the tree 2685 * @p: Holds all btree nodes along the search path 2686 * @root: The root node of the tree 2687 * @key: The key we are looking for 2688 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2689 * deletions it's -1. 0 for plain searches 2690 * @cow: boolean should CoW operations be performed. Must always be 1 2691 * when modifying the tree. 2692 * 2693 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2694 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2695 * 2696 * If @key is found, 0 is returned and you can find the item in the leaf level 2697 * of the path (level 0) 2698 * 2699 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2700 * points to the slot where it should be inserted 2701 * 2702 * If an error is encountered while searching the tree a negative error number 2703 * is returned 2704 */ 2705 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2706 const struct btrfs_key *key, struct btrfs_path *p, 2707 int ins_len, int cow) 2708 { 2709 struct btrfs_fs_info *fs_info = root->fs_info; 2710 struct extent_buffer *b; 2711 int slot; 2712 int ret; 2713 int err; 2714 int level; 2715 int lowest_unlock = 1; 2716 /* everything at write_lock_level or lower must be write locked */ 2717 int write_lock_level = 0; 2718 u8 lowest_level = 0; 2719 int min_write_lock_level; 2720 int prev_cmp; 2721 2722 lowest_level = p->lowest_level; 2723 WARN_ON(lowest_level && ins_len > 0); 2724 WARN_ON(p->nodes[0] != NULL); 2725 BUG_ON(!cow && ins_len); 2726 2727 if (ins_len < 0) { 2728 lowest_unlock = 2; 2729 2730 /* when we are removing items, we might have to go up to level 2731 * two as we update tree pointers Make sure we keep write 2732 * for those levels as well 2733 */ 2734 write_lock_level = 2; 2735 } else if (ins_len > 0) { 2736 /* 2737 * for inserting items, make sure we have a write lock on 2738 * level 1 so we can update keys 2739 */ 2740 write_lock_level = 1; 2741 } 2742 2743 if (!cow) 2744 write_lock_level = -1; 2745 2746 if (cow && (p->keep_locks || p->lowest_level)) 2747 write_lock_level = BTRFS_MAX_LEVEL; 2748 2749 min_write_lock_level = write_lock_level; 2750 2751 again: 2752 prev_cmp = -1; 2753 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2754 if (IS_ERR(b)) { 2755 ret = PTR_ERR(b); 2756 goto done; 2757 } 2758 2759 while (b) { 2760 level = btrfs_header_level(b); 2761 2762 /* 2763 * setup the path here so we can release it under lock 2764 * contention with the cow code 2765 */ 2766 if (cow) { 2767 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2768 2769 /* 2770 * if we don't really need to cow this block 2771 * then we don't want to set the path blocking, 2772 * so we test it here 2773 */ 2774 if (!should_cow_block(trans, root, b)) { 2775 trans->dirty = true; 2776 goto cow_done; 2777 } 2778 2779 /* 2780 * must have write locks on this node and the 2781 * parent 2782 */ 2783 if (level > write_lock_level || 2784 (level + 1 > write_lock_level && 2785 level + 1 < BTRFS_MAX_LEVEL && 2786 p->nodes[level + 1])) { 2787 write_lock_level = level + 1; 2788 btrfs_release_path(p); 2789 goto again; 2790 } 2791 2792 btrfs_set_path_blocking(p); 2793 if (last_level) 2794 err = btrfs_cow_block(trans, root, b, NULL, 0, 2795 &b); 2796 else 2797 err = btrfs_cow_block(trans, root, b, 2798 p->nodes[level + 1], 2799 p->slots[level + 1], &b); 2800 if (err) { 2801 ret = err; 2802 goto done; 2803 } 2804 } 2805 cow_done: 2806 p->nodes[level] = b; 2807 /* 2808 * Leave path with blocking locks to avoid massive 2809 * lock context switch, this is made on purpose. 2810 */ 2811 2812 /* 2813 * we have a lock on b and as long as we aren't changing 2814 * the tree, there is no way to for the items in b to change. 2815 * It is safe to drop the lock on our parent before we 2816 * go through the expensive btree search on b. 2817 * 2818 * If we're inserting or deleting (ins_len != 0), then we might 2819 * be changing slot zero, which may require changing the parent. 2820 * So, we can't drop the lock until after we know which slot 2821 * we're operating on. 2822 */ 2823 if (!ins_len && !p->keep_locks) { 2824 int u = level + 1; 2825 2826 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2827 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2828 p->locks[u] = 0; 2829 } 2830 } 2831 2832 ret = key_search(b, key, level, &prev_cmp, &slot); 2833 if (ret < 0) 2834 goto done; 2835 2836 if (level != 0) { 2837 int dec = 0; 2838 if (ret && slot > 0) { 2839 dec = 1; 2840 slot -= 1; 2841 } 2842 p->slots[level] = slot; 2843 err = setup_nodes_for_search(trans, root, p, b, level, 2844 ins_len, &write_lock_level); 2845 if (err == -EAGAIN) 2846 goto again; 2847 if (err) { 2848 ret = err; 2849 goto done; 2850 } 2851 b = p->nodes[level]; 2852 slot = p->slots[level]; 2853 2854 /* 2855 * slot 0 is special, if we change the key 2856 * we have to update the parent pointer 2857 * which means we must have a write lock 2858 * on the parent 2859 */ 2860 if (slot == 0 && ins_len && 2861 write_lock_level < level + 1) { 2862 write_lock_level = level + 1; 2863 btrfs_release_path(p); 2864 goto again; 2865 } 2866 2867 unlock_up(p, level, lowest_unlock, 2868 min_write_lock_level, &write_lock_level); 2869 2870 if (level == lowest_level) { 2871 if (dec) 2872 p->slots[level]++; 2873 goto done; 2874 } 2875 2876 err = read_block_for_search(root, p, &b, level, 2877 slot, key); 2878 if (err == -EAGAIN) 2879 goto again; 2880 if (err) { 2881 ret = err; 2882 goto done; 2883 } 2884 2885 if (!p->skip_locking) { 2886 level = btrfs_header_level(b); 2887 if (level <= write_lock_level) { 2888 err = btrfs_try_tree_write_lock(b); 2889 if (!err) { 2890 btrfs_set_path_blocking(p); 2891 btrfs_tree_lock(b); 2892 } 2893 p->locks[level] = BTRFS_WRITE_LOCK; 2894 } else { 2895 err = btrfs_tree_read_lock_atomic(b); 2896 if (!err) { 2897 btrfs_set_path_blocking(p); 2898 btrfs_tree_read_lock(b); 2899 } 2900 p->locks[level] = BTRFS_READ_LOCK; 2901 } 2902 p->nodes[level] = b; 2903 } 2904 } else { 2905 p->slots[level] = slot; 2906 if (ins_len > 0 && 2907 btrfs_leaf_free_space(fs_info, b) < ins_len) { 2908 if (write_lock_level < 1) { 2909 write_lock_level = 1; 2910 btrfs_release_path(p); 2911 goto again; 2912 } 2913 2914 btrfs_set_path_blocking(p); 2915 err = split_leaf(trans, root, key, 2916 p, ins_len, ret == 0); 2917 2918 BUG_ON(err > 0); 2919 if (err) { 2920 ret = err; 2921 goto done; 2922 } 2923 } 2924 if (!p->search_for_split) 2925 unlock_up(p, level, lowest_unlock, 2926 min_write_lock_level, NULL); 2927 goto done; 2928 } 2929 } 2930 ret = 1; 2931 done: 2932 /* 2933 * we don't really know what they plan on doing with the path 2934 * from here on, so for now just mark it as blocking 2935 */ 2936 if (!p->leave_spinning) 2937 btrfs_set_path_blocking(p); 2938 if (ret < 0 && !p->skip_release_on_error) 2939 btrfs_release_path(p); 2940 return ret; 2941 } 2942 2943 /* 2944 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2945 * current state of the tree together with the operations recorded in the tree 2946 * modification log to search for the key in a previous version of this tree, as 2947 * denoted by the time_seq parameter. 2948 * 2949 * Naturally, there is no support for insert, delete or cow operations. 2950 * 2951 * The resulting path and return value will be set up as if we called 2952 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2953 */ 2954 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2955 struct btrfs_path *p, u64 time_seq) 2956 { 2957 struct btrfs_fs_info *fs_info = root->fs_info; 2958 struct extent_buffer *b; 2959 int slot; 2960 int ret; 2961 int err; 2962 int level; 2963 int lowest_unlock = 1; 2964 u8 lowest_level = 0; 2965 int prev_cmp = -1; 2966 2967 lowest_level = p->lowest_level; 2968 WARN_ON(p->nodes[0] != NULL); 2969 2970 if (p->search_commit_root) { 2971 BUG_ON(time_seq); 2972 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2973 } 2974 2975 again: 2976 b = get_old_root(root, time_seq); 2977 if (!b) { 2978 ret = -EIO; 2979 goto done; 2980 } 2981 level = btrfs_header_level(b); 2982 p->locks[level] = BTRFS_READ_LOCK; 2983 2984 while (b) { 2985 level = btrfs_header_level(b); 2986 p->nodes[level] = b; 2987 2988 /* 2989 * we have a lock on b and as long as we aren't changing 2990 * the tree, there is no way to for the items in b to change. 2991 * It is safe to drop the lock on our parent before we 2992 * go through the expensive btree search on b. 2993 */ 2994 btrfs_unlock_up_safe(p, level + 1); 2995 2996 /* 2997 * Since we can unwind ebs we want to do a real search every 2998 * time. 2999 */ 3000 prev_cmp = -1; 3001 ret = key_search(b, key, level, &prev_cmp, &slot); 3002 if (ret < 0) 3003 goto done; 3004 3005 if (level != 0) { 3006 int dec = 0; 3007 if (ret && slot > 0) { 3008 dec = 1; 3009 slot -= 1; 3010 } 3011 p->slots[level] = slot; 3012 unlock_up(p, level, lowest_unlock, 0, NULL); 3013 3014 if (level == lowest_level) { 3015 if (dec) 3016 p->slots[level]++; 3017 goto done; 3018 } 3019 3020 err = read_block_for_search(root, p, &b, level, 3021 slot, key); 3022 if (err == -EAGAIN) 3023 goto again; 3024 if (err) { 3025 ret = err; 3026 goto done; 3027 } 3028 3029 level = btrfs_header_level(b); 3030 err = btrfs_tree_read_lock_atomic(b); 3031 if (!err) { 3032 btrfs_set_path_blocking(p); 3033 btrfs_tree_read_lock(b); 3034 } 3035 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 3036 if (!b) { 3037 ret = -ENOMEM; 3038 goto done; 3039 } 3040 p->locks[level] = BTRFS_READ_LOCK; 3041 p->nodes[level] = b; 3042 } else { 3043 p->slots[level] = slot; 3044 unlock_up(p, level, lowest_unlock, 0, NULL); 3045 goto done; 3046 } 3047 } 3048 ret = 1; 3049 done: 3050 if (!p->leave_spinning) 3051 btrfs_set_path_blocking(p); 3052 if (ret < 0) 3053 btrfs_release_path(p); 3054 3055 return ret; 3056 } 3057 3058 /* 3059 * helper to use instead of search slot if no exact match is needed but 3060 * instead the next or previous item should be returned. 3061 * When find_higher is true, the next higher item is returned, the next lower 3062 * otherwise. 3063 * When return_any and find_higher are both true, and no higher item is found, 3064 * return the next lower instead. 3065 * When return_any is true and find_higher is false, and no lower item is found, 3066 * return the next higher instead. 3067 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3068 * < 0 on error 3069 */ 3070 int btrfs_search_slot_for_read(struct btrfs_root *root, 3071 const struct btrfs_key *key, 3072 struct btrfs_path *p, int find_higher, 3073 int return_any) 3074 { 3075 int ret; 3076 struct extent_buffer *leaf; 3077 3078 again: 3079 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3080 if (ret <= 0) 3081 return ret; 3082 /* 3083 * a return value of 1 means the path is at the position where the 3084 * item should be inserted. Normally this is the next bigger item, 3085 * but in case the previous item is the last in a leaf, path points 3086 * to the first free slot in the previous leaf, i.e. at an invalid 3087 * item. 3088 */ 3089 leaf = p->nodes[0]; 3090 3091 if (find_higher) { 3092 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3093 ret = btrfs_next_leaf(root, p); 3094 if (ret <= 0) 3095 return ret; 3096 if (!return_any) 3097 return 1; 3098 /* 3099 * no higher item found, return the next 3100 * lower instead 3101 */ 3102 return_any = 0; 3103 find_higher = 0; 3104 btrfs_release_path(p); 3105 goto again; 3106 } 3107 } else { 3108 if (p->slots[0] == 0) { 3109 ret = btrfs_prev_leaf(root, p); 3110 if (ret < 0) 3111 return ret; 3112 if (!ret) { 3113 leaf = p->nodes[0]; 3114 if (p->slots[0] == btrfs_header_nritems(leaf)) 3115 p->slots[0]--; 3116 return 0; 3117 } 3118 if (!return_any) 3119 return 1; 3120 /* 3121 * no lower item found, return the next 3122 * higher instead 3123 */ 3124 return_any = 0; 3125 find_higher = 1; 3126 btrfs_release_path(p); 3127 goto again; 3128 } else { 3129 --p->slots[0]; 3130 } 3131 } 3132 return 0; 3133 } 3134 3135 /* 3136 * adjust the pointers going up the tree, starting at level 3137 * making sure the right key of each node is points to 'key'. 3138 * This is used after shifting pointers to the left, so it stops 3139 * fixing up pointers when a given leaf/node is not in slot 0 of the 3140 * higher levels 3141 * 3142 */ 3143 static void fixup_low_keys(struct btrfs_path *path, 3144 struct btrfs_disk_key *key, int level) 3145 { 3146 int i; 3147 struct extent_buffer *t; 3148 int ret; 3149 3150 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3151 int tslot = path->slots[i]; 3152 3153 if (!path->nodes[i]) 3154 break; 3155 t = path->nodes[i]; 3156 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3157 GFP_ATOMIC); 3158 BUG_ON(ret < 0); 3159 btrfs_set_node_key(t, key, tslot); 3160 btrfs_mark_buffer_dirty(path->nodes[i]); 3161 if (tslot != 0) 3162 break; 3163 } 3164 } 3165 3166 /* 3167 * update item key. 3168 * 3169 * This function isn't completely safe. It's the caller's responsibility 3170 * that the new key won't break the order 3171 */ 3172 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3173 struct btrfs_path *path, 3174 const struct btrfs_key *new_key) 3175 { 3176 struct btrfs_disk_key disk_key; 3177 struct extent_buffer *eb; 3178 int slot; 3179 3180 eb = path->nodes[0]; 3181 slot = path->slots[0]; 3182 if (slot > 0) { 3183 btrfs_item_key(eb, &disk_key, slot - 1); 3184 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3185 } 3186 if (slot < btrfs_header_nritems(eb) - 1) { 3187 btrfs_item_key(eb, &disk_key, slot + 1); 3188 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3189 } 3190 3191 btrfs_cpu_key_to_disk(&disk_key, new_key); 3192 btrfs_set_item_key(eb, &disk_key, slot); 3193 btrfs_mark_buffer_dirty(eb); 3194 if (slot == 0) 3195 fixup_low_keys(path, &disk_key, 1); 3196 } 3197 3198 /* 3199 * try to push data from one node into the next node left in the 3200 * tree. 3201 * 3202 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3203 * error, and > 0 if there was no room in the left hand block. 3204 */ 3205 static int push_node_left(struct btrfs_trans_handle *trans, 3206 struct btrfs_fs_info *fs_info, 3207 struct extent_buffer *dst, 3208 struct extent_buffer *src, int empty) 3209 { 3210 int push_items = 0; 3211 int src_nritems; 3212 int dst_nritems; 3213 int ret = 0; 3214 3215 src_nritems = btrfs_header_nritems(src); 3216 dst_nritems = btrfs_header_nritems(dst); 3217 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3218 WARN_ON(btrfs_header_generation(src) != trans->transid); 3219 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3220 3221 if (!empty && src_nritems <= 8) 3222 return 1; 3223 3224 if (push_items <= 0) 3225 return 1; 3226 3227 if (empty) { 3228 push_items = min(src_nritems, push_items); 3229 if (push_items < src_nritems) { 3230 /* leave at least 8 pointers in the node if 3231 * we aren't going to empty it 3232 */ 3233 if (src_nritems - push_items < 8) { 3234 if (push_items <= 8) 3235 return 1; 3236 push_items -= 8; 3237 } 3238 } 3239 } else 3240 push_items = min(src_nritems - 8, push_items); 3241 3242 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0, 3243 push_items); 3244 if (ret) { 3245 btrfs_abort_transaction(trans, ret); 3246 return ret; 3247 } 3248 copy_extent_buffer(dst, src, 3249 btrfs_node_key_ptr_offset(dst_nritems), 3250 btrfs_node_key_ptr_offset(0), 3251 push_items * sizeof(struct btrfs_key_ptr)); 3252 3253 if (push_items < src_nritems) { 3254 /* 3255 * Don't call tree_mod_log_insert_move here, key removal was 3256 * already fully logged by tree_mod_log_eb_copy above. 3257 */ 3258 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3259 btrfs_node_key_ptr_offset(push_items), 3260 (src_nritems - push_items) * 3261 sizeof(struct btrfs_key_ptr)); 3262 } 3263 btrfs_set_header_nritems(src, src_nritems - push_items); 3264 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3265 btrfs_mark_buffer_dirty(src); 3266 btrfs_mark_buffer_dirty(dst); 3267 3268 return ret; 3269 } 3270 3271 /* 3272 * try to push data from one node into the next node right in the 3273 * tree. 3274 * 3275 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3276 * error, and > 0 if there was no room in the right hand block. 3277 * 3278 * this will only push up to 1/2 the contents of the left node over 3279 */ 3280 static int balance_node_right(struct btrfs_trans_handle *trans, 3281 struct btrfs_fs_info *fs_info, 3282 struct extent_buffer *dst, 3283 struct extent_buffer *src) 3284 { 3285 int push_items = 0; 3286 int max_push; 3287 int src_nritems; 3288 int dst_nritems; 3289 int ret = 0; 3290 3291 WARN_ON(btrfs_header_generation(src) != trans->transid); 3292 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3293 3294 src_nritems = btrfs_header_nritems(src); 3295 dst_nritems = btrfs_header_nritems(dst); 3296 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3297 if (push_items <= 0) 3298 return 1; 3299 3300 if (src_nritems < 4) 3301 return 1; 3302 3303 max_push = src_nritems / 2 + 1; 3304 /* don't try to empty the node */ 3305 if (max_push >= src_nritems) 3306 return 1; 3307 3308 if (max_push < push_items) 3309 push_items = max_push; 3310 3311 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3312 BUG_ON(ret < 0); 3313 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3314 btrfs_node_key_ptr_offset(0), 3315 (dst_nritems) * 3316 sizeof(struct btrfs_key_ptr)); 3317 3318 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0, 3319 src_nritems - push_items, push_items); 3320 if (ret) { 3321 btrfs_abort_transaction(trans, ret); 3322 return ret; 3323 } 3324 copy_extent_buffer(dst, src, 3325 btrfs_node_key_ptr_offset(0), 3326 btrfs_node_key_ptr_offset(src_nritems - push_items), 3327 push_items * sizeof(struct btrfs_key_ptr)); 3328 3329 btrfs_set_header_nritems(src, src_nritems - push_items); 3330 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3331 3332 btrfs_mark_buffer_dirty(src); 3333 btrfs_mark_buffer_dirty(dst); 3334 3335 return ret; 3336 } 3337 3338 /* 3339 * helper function to insert a new root level in the tree. 3340 * A new node is allocated, and a single item is inserted to 3341 * point to the existing root 3342 * 3343 * returns zero on success or < 0 on failure. 3344 */ 3345 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3346 struct btrfs_root *root, 3347 struct btrfs_path *path, int level) 3348 { 3349 struct btrfs_fs_info *fs_info = root->fs_info; 3350 u64 lower_gen; 3351 struct extent_buffer *lower; 3352 struct extent_buffer *c; 3353 struct extent_buffer *old; 3354 struct btrfs_disk_key lower_key; 3355 int ret; 3356 3357 BUG_ON(path->nodes[level]); 3358 BUG_ON(path->nodes[level-1] != root->node); 3359 3360 lower = path->nodes[level-1]; 3361 if (level == 1) 3362 btrfs_item_key(lower, &lower_key, 0); 3363 else 3364 btrfs_node_key(lower, &lower_key, 0); 3365 3366 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level, 3367 root->node->start, 0); 3368 if (IS_ERR(c)) 3369 return PTR_ERR(c); 3370 3371 root_add_used(root, fs_info->nodesize); 3372 3373 btrfs_set_header_nritems(c, 1); 3374 btrfs_set_node_key(c, &lower_key, 0); 3375 btrfs_set_node_blockptr(c, 0, lower->start); 3376 lower_gen = btrfs_header_generation(lower); 3377 WARN_ON(lower_gen != trans->transid); 3378 3379 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3380 3381 btrfs_mark_buffer_dirty(c); 3382 3383 old = root->node; 3384 ret = tree_mod_log_insert_root(root->node, c, 0); 3385 BUG_ON(ret < 0); 3386 rcu_assign_pointer(root->node, c); 3387 3388 /* the super has an extra ref to root->node */ 3389 free_extent_buffer(old); 3390 3391 add_root_to_dirty_list(root); 3392 extent_buffer_get(c); 3393 path->nodes[level] = c; 3394 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3395 path->slots[level] = 0; 3396 return 0; 3397 } 3398 3399 /* 3400 * worker function to insert a single pointer in a node. 3401 * the node should have enough room for the pointer already 3402 * 3403 * slot and level indicate where you want the key to go, and 3404 * blocknr is the block the key points to. 3405 */ 3406 static void insert_ptr(struct btrfs_trans_handle *trans, 3407 struct btrfs_fs_info *fs_info, struct btrfs_path *path, 3408 struct btrfs_disk_key *key, u64 bytenr, 3409 int slot, int level) 3410 { 3411 struct extent_buffer *lower; 3412 int nritems; 3413 int ret; 3414 3415 BUG_ON(!path->nodes[level]); 3416 btrfs_assert_tree_locked(path->nodes[level]); 3417 lower = path->nodes[level]; 3418 nritems = btrfs_header_nritems(lower); 3419 BUG_ON(slot > nritems); 3420 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 3421 if (slot != nritems) { 3422 if (level) { 3423 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3424 nritems - slot); 3425 BUG_ON(ret < 0); 3426 } 3427 memmove_extent_buffer(lower, 3428 btrfs_node_key_ptr_offset(slot + 1), 3429 btrfs_node_key_ptr_offset(slot), 3430 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3431 } 3432 if (level) { 3433 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3434 GFP_NOFS); 3435 BUG_ON(ret < 0); 3436 } 3437 btrfs_set_node_key(lower, key, slot); 3438 btrfs_set_node_blockptr(lower, slot, bytenr); 3439 WARN_ON(trans->transid == 0); 3440 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3441 btrfs_set_header_nritems(lower, nritems + 1); 3442 btrfs_mark_buffer_dirty(lower); 3443 } 3444 3445 /* 3446 * split the node at the specified level in path in two. 3447 * The path is corrected to point to the appropriate node after the split 3448 * 3449 * Before splitting this tries to make some room in the node by pushing 3450 * left and right, if either one works, it returns right away. 3451 * 3452 * returns 0 on success and < 0 on failure 3453 */ 3454 static noinline int split_node(struct btrfs_trans_handle *trans, 3455 struct btrfs_root *root, 3456 struct btrfs_path *path, int level) 3457 { 3458 struct btrfs_fs_info *fs_info = root->fs_info; 3459 struct extent_buffer *c; 3460 struct extent_buffer *split; 3461 struct btrfs_disk_key disk_key; 3462 int mid; 3463 int ret; 3464 u32 c_nritems; 3465 3466 c = path->nodes[level]; 3467 WARN_ON(btrfs_header_generation(c) != trans->transid); 3468 if (c == root->node) { 3469 /* 3470 * trying to split the root, lets make a new one 3471 * 3472 * tree mod log: We don't log_removal old root in 3473 * insert_new_root, because that root buffer will be kept as a 3474 * normal node. We are going to log removal of half of the 3475 * elements below with tree_mod_log_eb_copy. We're holding a 3476 * tree lock on the buffer, which is why we cannot race with 3477 * other tree_mod_log users. 3478 */ 3479 ret = insert_new_root(trans, root, path, level + 1); 3480 if (ret) 3481 return ret; 3482 } else { 3483 ret = push_nodes_for_insert(trans, root, path, level); 3484 c = path->nodes[level]; 3485 if (!ret && btrfs_header_nritems(c) < 3486 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3487 return 0; 3488 if (ret < 0) 3489 return ret; 3490 } 3491 3492 c_nritems = btrfs_header_nritems(c); 3493 mid = (c_nritems + 1) / 2; 3494 btrfs_node_key(c, &disk_key, mid); 3495 3496 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level, 3497 c->start, 0); 3498 if (IS_ERR(split)) 3499 return PTR_ERR(split); 3500 3501 root_add_used(root, fs_info->nodesize); 3502 ASSERT(btrfs_header_level(c) == level); 3503 3504 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid); 3505 if (ret) { 3506 btrfs_abort_transaction(trans, ret); 3507 return ret; 3508 } 3509 copy_extent_buffer(split, c, 3510 btrfs_node_key_ptr_offset(0), 3511 btrfs_node_key_ptr_offset(mid), 3512 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3513 btrfs_set_header_nritems(split, c_nritems - mid); 3514 btrfs_set_header_nritems(c, mid); 3515 ret = 0; 3516 3517 btrfs_mark_buffer_dirty(c); 3518 btrfs_mark_buffer_dirty(split); 3519 3520 insert_ptr(trans, fs_info, path, &disk_key, split->start, 3521 path->slots[level + 1] + 1, level + 1); 3522 3523 if (path->slots[level] >= mid) { 3524 path->slots[level] -= mid; 3525 btrfs_tree_unlock(c); 3526 free_extent_buffer(c); 3527 path->nodes[level] = split; 3528 path->slots[level + 1] += 1; 3529 } else { 3530 btrfs_tree_unlock(split); 3531 free_extent_buffer(split); 3532 } 3533 return ret; 3534 } 3535 3536 /* 3537 * how many bytes are required to store the items in a leaf. start 3538 * and nr indicate which items in the leaf to check. This totals up the 3539 * space used both by the item structs and the item data 3540 */ 3541 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3542 { 3543 struct btrfs_item *start_item; 3544 struct btrfs_item *end_item; 3545 struct btrfs_map_token token; 3546 int data_len; 3547 int nritems = btrfs_header_nritems(l); 3548 int end = min(nritems, start + nr) - 1; 3549 3550 if (!nr) 3551 return 0; 3552 btrfs_init_map_token(&token); 3553 start_item = btrfs_item_nr(start); 3554 end_item = btrfs_item_nr(end); 3555 data_len = btrfs_token_item_offset(l, start_item, &token) + 3556 btrfs_token_item_size(l, start_item, &token); 3557 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3558 data_len += sizeof(struct btrfs_item) * nr; 3559 WARN_ON(data_len < 0); 3560 return data_len; 3561 } 3562 3563 /* 3564 * The space between the end of the leaf items and 3565 * the start of the leaf data. IOW, how much room 3566 * the leaf has left for both items and data 3567 */ 3568 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info, 3569 struct extent_buffer *leaf) 3570 { 3571 int nritems = btrfs_header_nritems(leaf); 3572 int ret; 3573 3574 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3575 if (ret < 0) { 3576 btrfs_crit(fs_info, 3577 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3578 ret, 3579 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3580 leaf_space_used(leaf, 0, nritems), nritems); 3581 } 3582 return ret; 3583 } 3584 3585 /* 3586 * min slot controls the lowest index we're willing to push to the 3587 * right. We'll push up to and including min_slot, but no lower 3588 */ 3589 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info, 3590 struct btrfs_path *path, 3591 int data_size, int empty, 3592 struct extent_buffer *right, 3593 int free_space, u32 left_nritems, 3594 u32 min_slot) 3595 { 3596 struct extent_buffer *left = path->nodes[0]; 3597 struct extent_buffer *upper = path->nodes[1]; 3598 struct btrfs_map_token token; 3599 struct btrfs_disk_key disk_key; 3600 int slot; 3601 u32 i; 3602 int push_space = 0; 3603 int push_items = 0; 3604 struct btrfs_item *item; 3605 u32 nr; 3606 u32 right_nritems; 3607 u32 data_end; 3608 u32 this_item_size; 3609 3610 btrfs_init_map_token(&token); 3611 3612 if (empty) 3613 nr = 0; 3614 else 3615 nr = max_t(u32, 1, min_slot); 3616 3617 if (path->slots[0] >= left_nritems) 3618 push_space += data_size; 3619 3620 slot = path->slots[1]; 3621 i = left_nritems - 1; 3622 while (i >= nr) { 3623 item = btrfs_item_nr(i); 3624 3625 if (!empty && push_items > 0) { 3626 if (path->slots[0] > i) 3627 break; 3628 if (path->slots[0] == i) { 3629 int space = btrfs_leaf_free_space(fs_info, left); 3630 if (space + push_space * 2 > free_space) 3631 break; 3632 } 3633 } 3634 3635 if (path->slots[0] == i) 3636 push_space += data_size; 3637 3638 this_item_size = btrfs_item_size(left, item); 3639 if (this_item_size + sizeof(*item) + push_space > free_space) 3640 break; 3641 3642 push_items++; 3643 push_space += this_item_size + sizeof(*item); 3644 if (i == 0) 3645 break; 3646 i--; 3647 } 3648 3649 if (push_items == 0) 3650 goto out_unlock; 3651 3652 WARN_ON(!empty && push_items == left_nritems); 3653 3654 /* push left to right */ 3655 right_nritems = btrfs_header_nritems(right); 3656 3657 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3658 push_space -= leaf_data_end(fs_info, left); 3659 3660 /* make room in the right data area */ 3661 data_end = leaf_data_end(fs_info, right); 3662 memmove_extent_buffer(right, 3663 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3664 BTRFS_LEAF_DATA_OFFSET + data_end, 3665 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3666 3667 /* copy from the left data area */ 3668 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3669 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3670 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left), 3671 push_space); 3672 3673 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3674 btrfs_item_nr_offset(0), 3675 right_nritems * sizeof(struct btrfs_item)); 3676 3677 /* copy the items from left to right */ 3678 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3679 btrfs_item_nr_offset(left_nritems - push_items), 3680 push_items * sizeof(struct btrfs_item)); 3681 3682 /* update the item pointers */ 3683 right_nritems += push_items; 3684 btrfs_set_header_nritems(right, right_nritems); 3685 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3686 for (i = 0; i < right_nritems; i++) { 3687 item = btrfs_item_nr(i); 3688 push_space -= btrfs_token_item_size(right, item, &token); 3689 btrfs_set_token_item_offset(right, item, push_space, &token); 3690 } 3691 3692 left_nritems -= push_items; 3693 btrfs_set_header_nritems(left, left_nritems); 3694 3695 if (left_nritems) 3696 btrfs_mark_buffer_dirty(left); 3697 else 3698 clean_tree_block(fs_info, left); 3699 3700 btrfs_mark_buffer_dirty(right); 3701 3702 btrfs_item_key(right, &disk_key, 0); 3703 btrfs_set_node_key(upper, &disk_key, slot + 1); 3704 btrfs_mark_buffer_dirty(upper); 3705 3706 /* then fixup the leaf pointer in the path */ 3707 if (path->slots[0] >= left_nritems) { 3708 path->slots[0] -= left_nritems; 3709 if (btrfs_header_nritems(path->nodes[0]) == 0) 3710 clean_tree_block(fs_info, path->nodes[0]); 3711 btrfs_tree_unlock(path->nodes[0]); 3712 free_extent_buffer(path->nodes[0]); 3713 path->nodes[0] = right; 3714 path->slots[1] += 1; 3715 } else { 3716 btrfs_tree_unlock(right); 3717 free_extent_buffer(right); 3718 } 3719 return 0; 3720 3721 out_unlock: 3722 btrfs_tree_unlock(right); 3723 free_extent_buffer(right); 3724 return 1; 3725 } 3726 3727 /* 3728 * push some data in the path leaf to the right, trying to free up at 3729 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3730 * 3731 * returns 1 if the push failed because the other node didn't have enough 3732 * room, 0 if everything worked out and < 0 if there were major errors. 3733 * 3734 * this will push starting from min_slot to the end of the leaf. It won't 3735 * push any slot lower than min_slot 3736 */ 3737 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3738 *root, struct btrfs_path *path, 3739 int min_data_size, int data_size, 3740 int empty, u32 min_slot) 3741 { 3742 struct btrfs_fs_info *fs_info = root->fs_info; 3743 struct extent_buffer *left = path->nodes[0]; 3744 struct extent_buffer *right; 3745 struct extent_buffer *upper; 3746 int slot; 3747 int free_space; 3748 u32 left_nritems; 3749 int ret; 3750 3751 if (!path->nodes[1]) 3752 return 1; 3753 3754 slot = path->slots[1]; 3755 upper = path->nodes[1]; 3756 if (slot >= btrfs_header_nritems(upper) - 1) 3757 return 1; 3758 3759 btrfs_assert_tree_locked(path->nodes[1]); 3760 3761 right = read_node_slot(fs_info, upper, slot + 1); 3762 /* 3763 * slot + 1 is not valid or we fail to read the right node, 3764 * no big deal, just return. 3765 */ 3766 if (IS_ERR(right)) 3767 return 1; 3768 3769 btrfs_tree_lock(right); 3770 btrfs_set_lock_blocking_write(right); 3771 3772 free_space = btrfs_leaf_free_space(fs_info, right); 3773 if (free_space < data_size) 3774 goto out_unlock; 3775 3776 /* cow and double check */ 3777 ret = btrfs_cow_block(trans, root, right, upper, 3778 slot + 1, &right); 3779 if (ret) 3780 goto out_unlock; 3781 3782 free_space = btrfs_leaf_free_space(fs_info, right); 3783 if (free_space < data_size) 3784 goto out_unlock; 3785 3786 left_nritems = btrfs_header_nritems(left); 3787 if (left_nritems == 0) 3788 goto out_unlock; 3789 3790 if (path->slots[0] == left_nritems && !empty) { 3791 /* Key greater than all keys in the leaf, right neighbor has 3792 * enough room for it and we're not emptying our leaf to delete 3793 * it, therefore use right neighbor to insert the new item and 3794 * no need to touch/dirty our left leaf. */ 3795 btrfs_tree_unlock(left); 3796 free_extent_buffer(left); 3797 path->nodes[0] = right; 3798 path->slots[0] = 0; 3799 path->slots[1]++; 3800 return 0; 3801 } 3802 3803 return __push_leaf_right(fs_info, path, min_data_size, empty, 3804 right, free_space, left_nritems, min_slot); 3805 out_unlock: 3806 btrfs_tree_unlock(right); 3807 free_extent_buffer(right); 3808 return 1; 3809 } 3810 3811 /* 3812 * push some data in the path leaf to the left, trying to free up at 3813 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3814 * 3815 * max_slot can put a limit on how far into the leaf we'll push items. The 3816 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3817 * items 3818 */ 3819 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info, 3820 struct btrfs_path *path, int data_size, 3821 int empty, struct extent_buffer *left, 3822 int free_space, u32 right_nritems, 3823 u32 max_slot) 3824 { 3825 struct btrfs_disk_key disk_key; 3826 struct extent_buffer *right = path->nodes[0]; 3827 int i; 3828 int push_space = 0; 3829 int push_items = 0; 3830 struct btrfs_item *item; 3831 u32 old_left_nritems; 3832 u32 nr; 3833 int ret = 0; 3834 u32 this_item_size; 3835 u32 old_left_item_size; 3836 struct btrfs_map_token token; 3837 3838 btrfs_init_map_token(&token); 3839 3840 if (empty) 3841 nr = min(right_nritems, max_slot); 3842 else 3843 nr = min(right_nritems - 1, max_slot); 3844 3845 for (i = 0; i < nr; i++) { 3846 item = btrfs_item_nr(i); 3847 3848 if (!empty && push_items > 0) { 3849 if (path->slots[0] < i) 3850 break; 3851 if (path->slots[0] == i) { 3852 int space = btrfs_leaf_free_space(fs_info, right); 3853 if (space + push_space * 2 > free_space) 3854 break; 3855 } 3856 } 3857 3858 if (path->slots[0] == i) 3859 push_space += data_size; 3860 3861 this_item_size = btrfs_item_size(right, item); 3862 if (this_item_size + sizeof(*item) + push_space > free_space) 3863 break; 3864 3865 push_items++; 3866 push_space += this_item_size + sizeof(*item); 3867 } 3868 3869 if (push_items == 0) { 3870 ret = 1; 3871 goto out; 3872 } 3873 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3874 3875 /* push data from right to left */ 3876 copy_extent_buffer(left, right, 3877 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3878 btrfs_item_nr_offset(0), 3879 push_items * sizeof(struct btrfs_item)); 3880 3881 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3882 btrfs_item_offset_nr(right, push_items - 1); 3883 3884 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3885 leaf_data_end(fs_info, left) - push_space, 3886 BTRFS_LEAF_DATA_OFFSET + 3887 btrfs_item_offset_nr(right, push_items - 1), 3888 push_space); 3889 old_left_nritems = btrfs_header_nritems(left); 3890 BUG_ON(old_left_nritems <= 0); 3891 3892 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3893 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3894 u32 ioff; 3895 3896 item = btrfs_item_nr(i); 3897 3898 ioff = btrfs_token_item_offset(left, item, &token); 3899 btrfs_set_token_item_offset(left, item, 3900 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), 3901 &token); 3902 } 3903 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3904 3905 /* fixup right node */ 3906 if (push_items > right_nritems) 3907 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3908 right_nritems); 3909 3910 if (push_items < right_nritems) { 3911 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3912 leaf_data_end(fs_info, right); 3913 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3914 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3915 BTRFS_LEAF_DATA_OFFSET + 3916 leaf_data_end(fs_info, right), push_space); 3917 3918 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3919 btrfs_item_nr_offset(push_items), 3920 (btrfs_header_nritems(right) - push_items) * 3921 sizeof(struct btrfs_item)); 3922 } 3923 right_nritems -= push_items; 3924 btrfs_set_header_nritems(right, right_nritems); 3925 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3926 for (i = 0; i < right_nritems; i++) { 3927 item = btrfs_item_nr(i); 3928 3929 push_space = push_space - btrfs_token_item_size(right, 3930 item, &token); 3931 btrfs_set_token_item_offset(right, item, push_space, &token); 3932 } 3933 3934 btrfs_mark_buffer_dirty(left); 3935 if (right_nritems) 3936 btrfs_mark_buffer_dirty(right); 3937 else 3938 clean_tree_block(fs_info, right); 3939 3940 btrfs_item_key(right, &disk_key, 0); 3941 fixup_low_keys(path, &disk_key, 1); 3942 3943 /* then fixup the leaf pointer in the path */ 3944 if (path->slots[0] < push_items) { 3945 path->slots[0] += old_left_nritems; 3946 btrfs_tree_unlock(path->nodes[0]); 3947 free_extent_buffer(path->nodes[0]); 3948 path->nodes[0] = left; 3949 path->slots[1] -= 1; 3950 } else { 3951 btrfs_tree_unlock(left); 3952 free_extent_buffer(left); 3953 path->slots[0] -= push_items; 3954 } 3955 BUG_ON(path->slots[0] < 0); 3956 return ret; 3957 out: 3958 btrfs_tree_unlock(left); 3959 free_extent_buffer(left); 3960 return ret; 3961 } 3962 3963 /* 3964 * push some data in the path leaf to the left, trying to free up at 3965 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3966 * 3967 * max_slot can put a limit on how far into the leaf we'll push items. The 3968 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3969 * items 3970 */ 3971 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3972 *root, struct btrfs_path *path, int min_data_size, 3973 int data_size, int empty, u32 max_slot) 3974 { 3975 struct btrfs_fs_info *fs_info = root->fs_info; 3976 struct extent_buffer *right = path->nodes[0]; 3977 struct extent_buffer *left; 3978 int slot; 3979 int free_space; 3980 u32 right_nritems; 3981 int ret = 0; 3982 3983 slot = path->slots[1]; 3984 if (slot == 0) 3985 return 1; 3986 if (!path->nodes[1]) 3987 return 1; 3988 3989 right_nritems = btrfs_header_nritems(right); 3990 if (right_nritems == 0) 3991 return 1; 3992 3993 btrfs_assert_tree_locked(path->nodes[1]); 3994 3995 left = read_node_slot(fs_info, path->nodes[1], slot - 1); 3996 /* 3997 * slot - 1 is not valid or we fail to read the left node, 3998 * no big deal, just return. 3999 */ 4000 if (IS_ERR(left)) 4001 return 1; 4002 4003 btrfs_tree_lock(left); 4004 btrfs_set_lock_blocking_write(left); 4005 4006 free_space = btrfs_leaf_free_space(fs_info, left); 4007 if (free_space < data_size) { 4008 ret = 1; 4009 goto out; 4010 } 4011 4012 /* cow and double check */ 4013 ret = btrfs_cow_block(trans, root, left, 4014 path->nodes[1], slot - 1, &left); 4015 if (ret) { 4016 /* we hit -ENOSPC, but it isn't fatal here */ 4017 if (ret == -ENOSPC) 4018 ret = 1; 4019 goto out; 4020 } 4021 4022 free_space = btrfs_leaf_free_space(fs_info, left); 4023 if (free_space < data_size) { 4024 ret = 1; 4025 goto out; 4026 } 4027 4028 return __push_leaf_left(fs_info, path, min_data_size, 4029 empty, left, free_space, right_nritems, 4030 max_slot); 4031 out: 4032 btrfs_tree_unlock(left); 4033 free_extent_buffer(left); 4034 return ret; 4035 } 4036 4037 /* 4038 * split the path's leaf in two, making sure there is at least data_size 4039 * available for the resulting leaf level of the path. 4040 */ 4041 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4042 struct btrfs_fs_info *fs_info, 4043 struct btrfs_path *path, 4044 struct extent_buffer *l, 4045 struct extent_buffer *right, 4046 int slot, int mid, int nritems) 4047 { 4048 int data_copy_size; 4049 int rt_data_off; 4050 int i; 4051 struct btrfs_disk_key disk_key; 4052 struct btrfs_map_token token; 4053 4054 btrfs_init_map_token(&token); 4055 4056 nritems = nritems - mid; 4057 btrfs_set_header_nritems(right, nritems); 4058 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l); 4059 4060 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4061 btrfs_item_nr_offset(mid), 4062 nritems * sizeof(struct btrfs_item)); 4063 4064 copy_extent_buffer(right, l, 4065 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4066 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4067 leaf_data_end(fs_info, l), data_copy_size); 4068 4069 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4070 4071 for (i = 0; i < nritems; i++) { 4072 struct btrfs_item *item = btrfs_item_nr(i); 4073 u32 ioff; 4074 4075 ioff = btrfs_token_item_offset(right, item, &token); 4076 btrfs_set_token_item_offset(right, item, 4077 ioff + rt_data_off, &token); 4078 } 4079 4080 btrfs_set_header_nritems(l, mid); 4081 btrfs_item_key(right, &disk_key, 0); 4082 insert_ptr(trans, fs_info, path, &disk_key, right->start, 4083 path->slots[1] + 1, 1); 4084 4085 btrfs_mark_buffer_dirty(right); 4086 btrfs_mark_buffer_dirty(l); 4087 BUG_ON(path->slots[0] != slot); 4088 4089 if (mid <= slot) { 4090 btrfs_tree_unlock(path->nodes[0]); 4091 free_extent_buffer(path->nodes[0]); 4092 path->nodes[0] = right; 4093 path->slots[0] -= mid; 4094 path->slots[1] += 1; 4095 } else { 4096 btrfs_tree_unlock(right); 4097 free_extent_buffer(right); 4098 } 4099 4100 BUG_ON(path->slots[0] < 0); 4101 } 4102 4103 /* 4104 * double splits happen when we need to insert a big item in the middle 4105 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4106 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4107 * A B C 4108 * 4109 * We avoid this by trying to push the items on either side of our target 4110 * into the adjacent leaves. If all goes well we can avoid the double split 4111 * completely. 4112 */ 4113 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4114 struct btrfs_root *root, 4115 struct btrfs_path *path, 4116 int data_size) 4117 { 4118 struct btrfs_fs_info *fs_info = root->fs_info; 4119 int ret; 4120 int progress = 0; 4121 int slot; 4122 u32 nritems; 4123 int space_needed = data_size; 4124 4125 slot = path->slots[0]; 4126 if (slot < btrfs_header_nritems(path->nodes[0])) 4127 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4128 4129 /* 4130 * try to push all the items after our slot into the 4131 * right leaf 4132 */ 4133 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4134 if (ret < 0) 4135 return ret; 4136 4137 if (ret == 0) 4138 progress++; 4139 4140 nritems = btrfs_header_nritems(path->nodes[0]); 4141 /* 4142 * our goal is to get our slot at the start or end of a leaf. If 4143 * we've done so we're done 4144 */ 4145 if (path->slots[0] == 0 || path->slots[0] == nritems) 4146 return 0; 4147 4148 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4149 return 0; 4150 4151 /* try to push all the items before our slot into the next leaf */ 4152 slot = path->slots[0]; 4153 space_needed = data_size; 4154 if (slot > 0) 4155 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4156 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4157 if (ret < 0) 4158 return ret; 4159 4160 if (ret == 0) 4161 progress++; 4162 4163 if (progress) 4164 return 0; 4165 return 1; 4166 } 4167 4168 /* 4169 * split the path's leaf in two, making sure there is at least data_size 4170 * available for the resulting leaf level of the path. 4171 * 4172 * returns 0 if all went well and < 0 on failure. 4173 */ 4174 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4175 struct btrfs_root *root, 4176 const struct btrfs_key *ins_key, 4177 struct btrfs_path *path, int data_size, 4178 int extend) 4179 { 4180 struct btrfs_disk_key disk_key; 4181 struct extent_buffer *l; 4182 u32 nritems; 4183 int mid; 4184 int slot; 4185 struct extent_buffer *right; 4186 struct btrfs_fs_info *fs_info = root->fs_info; 4187 int ret = 0; 4188 int wret; 4189 int split; 4190 int num_doubles = 0; 4191 int tried_avoid_double = 0; 4192 4193 l = path->nodes[0]; 4194 slot = path->slots[0]; 4195 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4196 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4197 return -EOVERFLOW; 4198 4199 /* first try to make some room by pushing left and right */ 4200 if (data_size && path->nodes[1]) { 4201 int space_needed = data_size; 4202 4203 if (slot < btrfs_header_nritems(l)) 4204 space_needed -= btrfs_leaf_free_space(fs_info, l); 4205 4206 wret = push_leaf_right(trans, root, path, space_needed, 4207 space_needed, 0, 0); 4208 if (wret < 0) 4209 return wret; 4210 if (wret) { 4211 space_needed = data_size; 4212 if (slot > 0) 4213 space_needed -= btrfs_leaf_free_space(fs_info, 4214 l); 4215 wret = push_leaf_left(trans, root, path, space_needed, 4216 space_needed, 0, (u32)-1); 4217 if (wret < 0) 4218 return wret; 4219 } 4220 l = path->nodes[0]; 4221 4222 /* did the pushes work? */ 4223 if (btrfs_leaf_free_space(fs_info, l) >= data_size) 4224 return 0; 4225 } 4226 4227 if (!path->nodes[1]) { 4228 ret = insert_new_root(trans, root, path, 1); 4229 if (ret) 4230 return ret; 4231 } 4232 again: 4233 split = 1; 4234 l = path->nodes[0]; 4235 slot = path->slots[0]; 4236 nritems = btrfs_header_nritems(l); 4237 mid = (nritems + 1) / 2; 4238 4239 if (mid <= slot) { 4240 if (nritems == 1 || 4241 leaf_space_used(l, mid, nritems - mid) + data_size > 4242 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4243 if (slot >= nritems) { 4244 split = 0; 4245 } else { 4246 mid = slot; 4247 if (mid != nritems && 4248 leaf_space_used(l, mid, nritems - mid) + 4249 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4250 if (data_size && !tried_avoid_double) 4251 goto push_for_double; 4252 split = 2; 4253 } 4254 } 4255 } 4256 } else { 4257 if (leaf_space_used(l, 0, mid) + data_size > 4258 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4259 if (!extend && data_size && slot == 0) { 4260 split = 0; 4261 } else if ((extend || !data_size) && slot == 0) { 4262 mid = 1; 4263 } else { 4264 mid = slot; 4265 if (mid != nritems && 4266 leaf_space_used(l, mid, nritems - mid) + 4267 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4268 if (data_size && !tried_avoid_double) 4269 goto push_for_double; 4270 split = 2; 4271 } 4272 } 4273 } 4274 } 4275 4276 if (split == 0) 4277 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4278 else 4279 btrfs_item_key(l, &disk_key, mid); 4280 4281 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0, 4282 l->start, 0); 4283 if (IS_ERR(right)) 4284 return PTR_ERR(right); 4285 4286 root_add_used(root, fs_info->nodesize); 4287 4288 if (split == 0) { 4289 if (mid <= slot) { 4290 btrfs_set_header_nritems(right, 0); 4291 insert_ptr(trans, fs_info, path, &disk_key, 4292 right->start, path->slots[1] + 1, 1); 4293 btrfs_tree_unlock(path->nodes[0]); 4294 free_extent_buffer(path->nodes[0]); 4295 path->nodes[0] = right; 4296 path->slots[0] = 0; 4297 path->slots[1] += 1; 4298 } else { 4299 btrfs_set_header_nritems(right, 0); 4300 insert_ptr(trans, fs_info, path, &disk_key, 4301 right->start, path->slots[1], 1); 4302 btrfs_tree_unlock(path->nodes[0]); 4303 free_extent_buffer(path->nodes[0]); 4304 path->nodes[0] = right; 4305 path->slots[0] = 0; 4306 if (path->slots[1] == 0) 4307 fixup_low_keys(path, &disk_key, 1); 4308 } 4309 /* 4310 * We create a new leaf 'right' for the required ins_len and 4311 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4312 * the content of ins_len to 'right'. 4313 */ 4314 return ret; 4315 } 4316 4317 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems); 4318 4319 if (split == 2) { 4320 BUG_ON(num_doubles != 0); 4321 num_doubles++; 4322 goto again; 4323 } 4324 4325 return 0; 4326 4327 push_for_double: 4328 push_for_double_split(trans, root, path, data_size); 4329 tried_avoid_double = 1; 4330 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4331 return 0; 4332 goto again; 4333 } 4334 4335 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4336 struct btrfs_root *root, 4337 struct btrfs_path *path, int ins_len) 4338 { 4339 struct btrfs_fs_info *fs_info = root->fs_info; 4340 struct btrfs_key key; 4341 struct extent_buffer *leaf; 4342 struct btrfs_file_extent_item *fi; 4343 u64 extent_len = 0; 4344 u32 item_size; 4345 int ret; 4346 4347 leaf = path->nodes[0]; 4348 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4349 4350 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4351 key.type != BTRFS_EXTENT_CSUM_KEY); 4352 4353 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len) 4354 return 0; 4355 4356 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4357 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4358 fi = btrfs_item_ptr(leaf, path->slots[0], 4359 struct btrfs_file_extent_item); 4360 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4361 } 4362 btrfs_release_path(path); 4363 4364 path->keep_locks = 1; 4365 path->search_for_split = 1; 4366 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4367 path->search_for_split = 0; 4368 if (ret > 0) 4369 ret = -EAGAIN; 4370 if (ret < 0) 4371 goto err; 4372 4373 ret = -EAGAIN; 4374 leaf = path->nodes[0]; 4375 /* if our item isn't there, return now */ 4376 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4377 goto err; 4378 4379 /* the leaf has changed, it now has room. return now */ 4380 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len) 4381 goto err; 4382 4383 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4384 fi = btrfs_item_ptr(leaf, path->slots[0], 4385 struct btrfs_file_extent_item); 4386 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4387 goto err; 4388 } 4389 4390 btrfs_set_path_blocking(path); 4391 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4392 if (ret) 4393 goto err; 4394 4395 path->keep_locks = 0; 4396 btrfs_unlock_up_safe(path, 1); 4397 return 0; 4398 err: 4399 path->keep_locks = 0; 4400 return ret; 4401 } 4402 4403 static noinline int split_item(struct btrfs_fs_info *fs_info, 4404 struct btrfs_path *path, 4405 const struct btrfs_key *new_key, 4406 unsigned long split_offset) 4407 { 4408 struct extent_buffer *leaf; 4409 struct btrfs_item *item; 4410 struct btrfs_item *new_item; 4411 int slot; 4412 char *buf; 4413 u32 nritems; 4414 u32 item_size; 4415 u32 orig_offset; 4416 struct btrfs_disk_key disk_key; 4417 4418 leaf = path->nodes[0]; 4419 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item)); 4420 4421 btrfs_set_path_blocking(path); 4422 4423 item = btrfs_item_nr(path->slots[0]); 4424 orig_offset = btrfs_item_offset(leaf, item); 4425 item_size = btrfs_item_size(leaf, item); 4426 4427 buf = kmalloc(item_size, GFP_NOFS); 4428 if (!buf) 4429 return -ENOMEM; 4430 4431 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4432 path->slots[0]), item_size); 4433 4434 slot = path->slots[0] + 1; 4435 nritems = btrfs_header_nritems(leaf); 4436 if (slot != nritems) { 4437 /* shift the items */ 4438 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4439 btrfs_item_nr_offset(slot), 4440 (nritems - slot) * sizeof(struct btrfs_item)); 4441 } 4442 4443 btrfs_cpu_key_to_disk(&disk_key, new_key); 4444 btrfs_set_item_key(leaf, &disk_key, slot); 4445 4446 new_item = btrfs_item_nr(slot); 4447 4448 btrfs_set_item_offset(leaf, new_item, orig_offset); 4449 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4450 4451 btrfs_set_item_offset(leaf, item, 4452 orig_offset + item_size - split_offset); 4453 btrfs_set_item_size(leaf, item, split_offset); 4454 4455 btrfs_set_header_nritems(leaf, nritems + 1); 4456 4457 /* write the data for the start of the original item */ 4458 write_extent_buffer(leaf, buf, 4459 btrfs_item_ptr_offset(leaf, path->slots[0]), 4460 split_offset); 4461 4462 /* write the data for the new item */ 4463 write_extent_buffer(leaf, buf + split_offset, 4464 btrfs_item_ptr_offset(leaf, slot), 4465 item_size - split_offset); 4466 btrfs_mark_buffer_dirty(leaf); 4467 4468 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0); 4469 kfree(buf); 4470 return 0; 4471 } 4472 4473 /* 4474 * This function splits a single item into two items, 4475 * giving 'new_key' to the new item and splitting the 4476 * old one at split_offset (from the start of the item). 4477 * 4478 * The path may be released by this operation. After 4479 * the split, the path is pointing to the old item. The 4480 * new item is going to be in the same node as the old one. 4481 * 4482 * Note, the item being split must be smaller enough to live alone on 4483 * a tree block with room for one extra struct btrfs_item 4484 * 4485 * This allows us to split the item in place, keeping a lock on the 4486 * leaf the entire time. 4487 */ 4488 int btrfs_split_item(struct btrfs_trans_handle *trans, 4489 struct btrfs_root *root, 4490 struct btrfs_path *path, 4491 const struct btrfs_key *new_key, 4492 unsigned long split_offset) 4493 { 4494 int ret; 4495 ret = setup_leaf_for_split(trans, root, path, 4496 sizeof(struct btrfs_item)); 4497 if (ret) 4498 return ret; 4499 4500 ret = split_item(root->fs_info, path, new_key, split_offset); 4501 return ret; 4502 } 4503 4504 /* 4505 * This function duplicate a item, giving 'new_key' to the new item. 4506 * It guarantees both items live in the same tree leaf and the new item 4507 * is contiguous with the original item. 4508 * 4509 * This allows us to split file extent in place, keeping a lock on the 4510 * leaf the entire time. 4511 */ 4512 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4513 struct btrfs_root *root, 4514 struct btrfs_path *path, 4515 const struct btrfs_key *new_key) 4516 { 4517 struct extent_buffer *leaf; 4518 int ret; 4519 u32 item_size; 4520 4521 leaf = path->nodes[0]; 4522 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4523 ret = setup_leaf_for_split(trans, root, path, 4524 item_size + sizeof(struct btrfs_item)); 4525 if (ret) 4526 return ret; 4527 4528 path->slots[0]++; 4529 setup_items_for_insert(root, path, new_key, &item_size, 4530 item_size, item_size + 4531 sizeof(struct btrfs_item), 1); 4532 leaf = path->nodes[0]; 4533 memcpy_extent_buffer(leaf, 4534 btrfs_item_ptr_offset(leaf, path->slots[0]), 4535 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4536 item_size); 4537 return 0; 4538 } 4539 4540 /* 4541 * make the item pointed to by the path smaller. new_size indicates 4542 * how small to make it, and from_end tells us if we just chop bytes 4543 * off the end of the item or if we shift the item to chop bytes off 4544 * the front. 4545 */ 4546 void btrfs_truncate_item(struct btrfs_fs_info *fs_info, 4547 struct btrfs_path *path, u32 new_size, int from_end) 4548 { 4549 int slot; 4550 struct extent_buffer *leaf; 4551 struct btrfs_item *item; 4552 u32 nritems; 4553 unsigned int data_end; 4554 unsigned int old_data_start; 4555 unsigned int old_size; 4556 unsigned int size_diff; 4557 int i; 4558 struct btrfs_map_token token; 4559 4560 btrfs_init_map_token(&token); 4561 4562 leaf = path->nodes[0]; 4563 slot = path->slots[0]; 4564 4565 old_size = btrfs_item_size_nr(leaf, slot); 4566 if (old_size == new_size) 4567 return; 4568 4569 nritems = btrfs_header_nritems(leaf); 4570 data_end = leaf_data_end(fs_info, leaf); 4571 4572 old_data_start = btrfs_item_offset_nr(leaf, slot); 4573 4574 size_diff = old_size - new_size; 4575 4576 BUG_ON(slot < 0); 4577 BUG_ON(slot >= nritems); 4578 4579 /* 4580 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4581 */ 4582 /* first correct the data pointers */ 4583 for (i = slot; i < nritems; i++) { 4584 u32 ioff; 4585 item = btrfs_item_nr(i); 4586 4587 ioff = btrfs_token_item_offset(leaf, item, &token); 4588 btrfs_set_token_item_offset(leaf, item, 4589 ioff + size_diff, &token); 4590 } 4591 4592 /* shift the data */ 4593 if (from_end) { 4594 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4595 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4596 data_end, old_data_start + new_size - data_end); 4597 } else { 4598 struct btrfs_disk_key disk_key; 4599 u64 offset; 4600 4601 btrfs_item_key(leaf, &disk_key, slot); 4602 4603 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4604 unsigned long ptr; 4605 struct btrfs_file_extent_item *fi; 4606 4607 fi = btrfs_item_ptr(leaf, slot, 4608 struct btrfs_file_extent_item); 4609 fi = (struct btrfs_file_extent_item *)( 4610 (unsigned long)fi - size_diff); 4611 4612 if (btrfs_file_extent_type(leaf, fi) == 4613 BTRFS_FILE_EXTENT_INLINE) { 4614 ptr = btrfs_item_ptr_offset(leaf, slot); 4615 memmove_extent_buffer(leaf, ptr, 4616 (unsigned long)fi, 4617 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4618 } 4619 } 4620 4621 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4622 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4623 data_end, old_data_start - data_end); 4624 4625 offset = btrfs_disk_key_offset(&disk_key); 4626 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4627 btrfs_set_item_key(leaf, &disk_key, slot); 4628 if (slot == 0) 4629 fixup_low_keys(path, &disk_key, 1); 4630 } 4631 4632 item = btrfs_item_nr(slot); 4633 btrfs_set_item_size(leaf, item, new_size); 4634 btrfs_mark_buffer_dirty(leaf); 4635 4636 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4637 btrfs_print_leaf(leaf); 4638 BUG(); 4639 } 4640 } 4641 4642 /* 4643 * make the item pointed to by the path bigger, data_size is the added size. 4644 */ 4645 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 4646 u32 data_size) 4647 { 4648 int slot; 4649 struct extent_buffer *leaf; 4650 struct btrfs_item *item; 4651 u32 nritems; 4652 unsigned int data_end; 4653 unsigned int old_data; 4654 unsigned int old_size; 4655 int i; 4656 struct btrfs_map_token token; 4657 4658 btrfs_init_map_token(&token); 4659 4660 leaf = path->nodes[0]; 4661 4662 nritems = btrfs_header_nritems(leaf); 4663 data_end = leaf_data_end(fs_info, leaf); 4664 4665 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) { 4666 btrfs_print_leaf(leaf); 4667 BUG(); 4668 } 4669 slot = path->slots[0]; 4670 old_data = btrfs_item_end_nr(leaf, slot); 4671 4672 BUG_ON(slot < 0); 4673 if (slot >= nritems) { 4674 btrfs_print_leaf(leaf); 4675 btrfs_crit(fs_info, "slot %d too large, nritems %d", 4676 slot, nritems); 4677 BUG_ON(1); 4678 } 4679 4680 /* 4681 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4682 */ 4683 /* first correct the data pointers */ 4684 for (i = slot; i < nritems; i++) { 4685 u32 ioff; 4686 item = btrfs_item_nr(i); 4687 4688 ioff = btrfs_token_item_offset(leaf, item, &token); 4689 btrfs_set_token_item_offset(leaf, item, 4690 ioff - data_size, &token); 4691 } 4692 4693 /* shift the data */ 4694 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4695 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4696 data_end, old_data - data_end); 4697 4698 data_end = old_data; 4699 old_size = btrfs_item_size_nr(leaf, slot); 4700 item = btrfs_item_nr(slot); 4701 btrfs_set_item_size(leaf, item, old_size + data_size); 4702 btrfs_mark_buffer_dirty(leaf); 4703 4704 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4705 btrfs_print_leaf(leaf); 4706 BUG(); 4707 } 4708 } 4709 4710 /* 4711 * this is a helper for btrfs_insert_empty_items, the main goal here is 4712 * to save stack depth by doing the bulk of the work in a function 4713 * that doesn't call btrfs_search_slot 4714 */ 4715 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4716 const struct btrfs_key *cpu_key, u32 *data_size, 4717 u32 total_data, u32 total_size, int nr) 4718 { 4719 struct btrfs_fs_info *fs_info = root->fs_info; 4720 struct btrfs_item *item; 4721 int i; 4722 u32 nritems; 4723 unsigned int data_end; 4724 struct btrfs_disk_key disk_key; 4725 struct extent_buffer *leaf; 4726 int slot; 4727 struct btrfs_map_token token; 4728 4729 if (path->slots[0] == 0) { 4730 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4731 fixup_low_keys(path, &disk_key, 1); 4732 } 4733 btrfs_unlock_up_safe(path, 1); 4734 4735 btrfs_init_map_token(&token); 4736 4737 leaf = path->nodes[0]; 4738 slot = path->slots[0]; 4739 4740 nritems = btrfs_header_nritems(leaf); 4741 data_end = leaf_data_end(fs_info, leaf); 4742 4743 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) { 4744 btrfs_print_leaf(leaf); 4745 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4746 total_size, btrfs_leaf_free_space(fs_info, leaf)); 4747 BUG(); 4748 } 4749 4750 if (slot != nritems) { 4751 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4752 4753 if (old_data < data_end) { 4754 btrfs_print_leaf(leaf); 4755 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4756 slot, old_data, data_end); 4757 BUG_ON(1); 4758 } 4759 /* 4760 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4761 */ 4762 /* first correct the data pointers */ 4763 for (i = slot; i < nritems; i++) { 4764 u32 ioff; 4765 4766 item = btrfs_item_nr(i); 4767 ioff = btrfs_token_item_offset(leaf, item, &token); 4768 btrfs_set_token_item_offset(leaf, item, 4769 ioff - total_data, &token); 4770 } 4771 /* shift the items */ 4772 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4773 btrfs_item_nr_offset(slot), 4774 (nritems - slot) * sizeof(struct btrfs_item)); 4775 4776 /* shift the data */ 4777 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4778 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4779 data_end, old_data - data_end); 4780 data_end = old_data; 4781 } 4782 4783 /* setup the item for the new data */ 4784 for (i = 0; i < nr; i++) { 4785 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4786 btrfs_set_item_key(leaf, &disk_key, slot + i); 4787 item = btrfs_item_nr(slot + i); 4788 btrfs_set_token_item_offset(leaf, item, 4789 data_end - data_size[i], &token); 4790 data_end -= data_size[i]; 4791 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4792 } 4793 4794 btrfs_set_header_nritems(leaf, nritems + nr); 4795 btrfs_mark_buffer_dirty(leaf); 4796 4797 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4798 btrfs_print_leaf(leaf); 4799 BUG(); 4800 } 4801 } 4802 4803 /* 4804 * Given a key and some data, insert items into the tree. 4805 * This does all the path init required, making room in the tree if needed. 4806 */ 4807 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4808 struct btrfs_root *root, 4809 struct btrfs_path *path, 4810 const struct btrfs_key *cpu_key, u32 *data_size, 4811 int nr) 4812 { 4813 int ret = 0; 4814 int slot; 4815 int i; 4816 u32 total_size = 0; 4817 u32 total_data = 0; 4818 4819 for (i = 0; i < nr; i++) 4820 total_data += data_size[i]; 4821 4822 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4823 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4824 if (ret == 0) 4825 return -EEXIST; 4826 if (ret < 0) 4827 return ret; 4828 4829 slot = path->slots[0]; 4830 BUG_ON(slot < 0); 4831 4832 setup_items_for_insert(root, path, cpu_key, data_size, 4833 total_data, total_size, nr); 4834 return 0; 4835 } 4836 4837 /* 4838 * Given a key and some data, insert an item into the tree. 4839 * This does all the path init required, making room in the tree if needed. 4840 */ 4841 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4842 const struct btrfs_key *cpu_key, void *data, 4843 u32 data_size) 4844 { 4845 int ret = 0; 4846 struct btrfs_path *path; 4847 struct extent_buffer *leaf; 4848 unsigned long ptr; 4849 4850 path = btrfs_alloc_path(); 4851 if (!path) 4852 return -ENOMEM; 4853 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4854 if (!ret) { 4855 leaf = path->nodes[0]; 4856 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4857 write_extent_buffer(leaf, data, ptr, data_size); 4858 btrfs_mark_buffer_dirty(leaf); 4859 } 4860 btrfs_free_path(path); 4861 return ret; 4862 } 4863 4864 /* 4865 * delete the pointer from a given node. 4866 * 4867 * the tree should have been previously balanced so the deletion does not 4868 * empty a node. 4869 */ 4870 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4871 int level, int slot) 4872 { 4873 struct extent_buffer *parent = path->nodes[level]; 4874 u32 nritems; 4875 int ret; 4876 4877 nritems = btrfs_header_nritems(parent); 4878 if (slot != nritems - 1) { 4879 if (level) { 4880 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4881 nritems - slot - 1); 4882 BUG_ON(ret < 0); 4883 } 4884 memmove_extent_buffer(parent, 4885 btrfs_node_key_ptr_offset(slot), 4886 btrfs_node_key_ptr_offset(slot + 1), 4887 sizeof(struct btrfs_key_ptr) * 4888 (nritems - slot - 1)); 4889 } else if (level) { 4890 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4891 GFP_NOFS); 4892 BUG_ON(ret < 0); 4893 } 4894 4895 nritems--; 4896 btrfs_set_header_nritems(parent, nritems); 4897 if (nritems == 0 && parent == root->node) { 4898 BUG_ON(btrfs_header_level(root->node) != 1); 4899 /* just turn the root into a leaf and break */ 4900 btrfs_set_header_level(root->node, 0); 4901 } else if (slot == 0) { 4902 struct btrfs_disk_key disk_key; 4903 4904 btrfs_node_key(parent, &disk_key, 0); 4905 fixup_low_keys(path, &disk_key, level + 1); 4906 } 4907 btrfs_mark_buffer_dirty(parent); 4908 } 4909 4910 /* 4911 * a helper function to delete the leaf pointed to by path->slots[1] and 4912 * path->nodes[1]. 4913 * 4914 * This deletes the pointer in path->nodes[1] and frees the leaf 4915 * block extent. zero is returned if it all worked out, < 0 otherwise. 4916 * 4917 * The path must have already been setup for deleting the leaf, including 4918 * all the proper balancing. path->nodes[1] must be locked. 4919 */ 4920 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4921 struct btrfs_root *root, 4922 struct btrfs_path *path, 4923 struct extent_buffer *leaf) 4924 { 4925 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4926 del_ptr(root, path, 1, path->slots[1]); 4927 4928 /* 4929 * btrfs_free_extent is expensive, we want to make sure we 4930 * aren't holding any locks when we call it 4931 */ 4932 btrfs_unlock_up_safe(path, 0); 4933 4934 root_sub_used(root, leaf->len); 4935 4936 extent_buffer_get(leaf); 4937 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4938 free_extent_buffer_stale(leaf); 4939 } 4940 /* 4941 * delete the item at the leaf level in path. If that empties 4942 * the leaf, remove it from the tree 4943 */ 4944 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4945 struct btrfs_path *path, int slot, int nr) 4946 { 4947 struct btrfs_fs_info *fs_info = root->fs_info; 4948 struct extent_buffer *leaf; 4949 struct btrfs_item *item; 4950 u32 last_off; 4951 u32 dsize = 0; 4952 int ret = 0; 4953 int wret; 4954 int i; 4955 u32 nritems; 4956 struct btrfs_map_token token; 4957 4958 btrfs_init_map_token(&token); 4959 4960 leaf = path->nodes[0]; 4961 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4962 4963 for (i = 0; i < nr; i++) 4964 dsize += btrfs_item_size_nr(leaf, slot + i); 4965 4966 nritems = btrfs_header_nritems(leaf); 4967 4968 if (slot + nr != nritems) { 4969 int data_end = leaf_data_end(fs_info, leaf); 4970 4971 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4972 data_end + dsize, 4973 BTRFS_LEAF_DATA_OFFSET + data_end, 4974 last_off - data_end); 4975 4976 for (i = slot + nr; i < nritems; i++) { 4977 u32 ioff; 4978 4979 item = btrfs_item_nr(i); 4980 ioff = btrfs_token_item_offset(leaf, item, &token); 4981 btrfs_set_token_item_offset(leaf, item, 4982 ioff + dsize, &token); 4983 } 4984 4985 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4986 btrfs_item_nr_offset(slot + nr), 4987 sizeof(struct btrfs_item) * 4988 (nritems - slot - nr)); 4989 } 4990 btrfs_set_header_nritems(leaf, nritems - nr); 4991 nritems -= nr; 4992 4993 /* delete the leaf if we've emptied it */ 4994 if (nritems == 0) { 4995 if (leaf == root->node) { 4996 btrfs_set_header_level(leaf, 0); 4997 } else { 4998 btrfs_set_path_blocking(path); 4999 clean_tree_block(fs_info, leaf); 5000 btrfs_del_leaf(trans, root, path, leaf); 5001 } 5002 } else { 5003 int used = leaf_space_used(leaf, 0, nritems); 5004 if (slot == 0) { 5005 struct btrfs_disk_key disk_key; 5006 5007 btrfs_item_key(leaf, &disk_key, 0); 5008 fixup_low_keys(path, &disk_key, 1); 5009 } 5010 5011 /* delete the leaf if it is mostly empty */ 5012 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 5013 /* push_leaf_left fixes the path. 5014 * make sure the path still points to our leaf 5015 * for possible call to del_ptr below 5016 */ 5017 slot = path->slots[1]; 5018 extent_buffer_get(leaf); 5019 5020 btrfs_set_path_blocking(path); 5021 wret = push_leaf_left(trans, root, path, 1, 1, 5022 1, (u32)-1); 5023 if (wret < 0 && wret != -ENOSPC) 5024 ret = wret; 5025 5026 if (path->nodes[0] == leaf && 5027 btrfs_header_nritems(leaf)) { 5028 wret = push_leaf_right(trans, root, path, 1, 5029 1, 1, 0); 5030 if (wret < 0 && wret != -ENOSPC) 5031 ret = wret; 5032 } 5033 5034 if (btrfs_header_nritems(leaf) == 0) { 5035 path->slots[1] = slot; 5036 btrfs_del_leaf(trans, root, path, leaf); 5037 free_extent_buffer(leaf); 5038 ret = 0; 5039 } else { 5040 /* if we're still in the path, make sure 5041 * we're dirty. Otherwise, one of the 5042 * push_leaf functions must have already 5043 * dirtied this buffer 5044 */ 5045 if (path->nodes[0] == leaf) 5046 btrfs_mark_buffer_dirty(leaf); 5047 free_extent_buffer(leaf); 5048 } 5049 } else { 5050 btrfs_mark_buffer_dirty(leaf); 5051 } 5052 } 5053 return ret; 5054 } 5055 5056 /* 5057 * search the tree again to find a leaf with lesser keys 5058 * returns 0 if it found something or 1 if there are no lesser leaves. 5059 * returns < 0 on io errors. 5060 * 5061 * This may release the path, and so you may lose any locks held at the 5062 * time you call it. 5063 */ 5064 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5065 { 5066 struct btrfs_key key; 5067 struct btrfs_disk_key found_key; 5068 int ret; 5069 5070 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5071 5072 if (key.offset > 0) { 5073 key.offset--; 5074 } else if (key.type > 0) { 5075 key.type--; 5076 key.offset = (u64)-1; 5077 } else if (key.objectid > 0) { 5078 key.objectid--; 5079 key.type = (u8)-1; 5080 key.offset = (u64)-1; 5081 } else { 5082 return 1; 5083 } 5084 5085 btrfs_release_path(path); 5086 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5087 if (ret < 0) 5088 return ret; 5089 btrfs_item_key(path->nodes[0], &found_key, 0); 5090 ret = comp_keys(&found_key, &key); 5091 /* 5092 * We might have had an item with the previous key in the tree right 5093 * before we released our path. And after we released our path, that 5094 * item might have been pushed to the first slot (0) of the leaf we 5095 * were holding due to a tree balance. Alternatively, an item with the 5096 * previous key can exist as the only element of a leaf (big fat item). 5097 * Therefore account for these 2 cases, so that our callers (like 5098 * btrfs_previous_item) don't miss an existing item with a key matching 5099 * the previous key we computed above. 5100 */ 5101 if (ret <= 0) 5102 return 0; 5103 return 1; 5104 } 5105 5106 /* 5107 * A helper function to walk down the tree starting at min_key, and looking 5108 * for nodes or leaves that are have a minimum transaction id. 5109 * This is used by the btree defrag code, and tree logging 5110 * 5111 * This does not cow, but it does stuff the starting key it finds back 5112 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5113 * key and get a writable path. 5114 * 5115 * This honors path->lowest_level to prevent descent past a given level 5116 * of the tree. 5117 * 5118 * min_trans indicates the oldest transaction that you are interested 5119 * in walking through. Any nodes or leaves older than min_trans are 5120 * skipped over (without reading them). 5121 * 5122 * returns zero if something useful was found, < 0 on error and 1 if there 5123 * was nothing in the tree that matched the search criteria. 5124 */ 5125 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5126 struct btrfs_path *path, 5127 u64 min_trans) 5128 { 5129 struct btrfs_fs_info *fs_info = root->fs_info; 5130 struct extent_buffer *cur; 5131 struct btrfs_key found_key; 5132 int slot; 5133 int sret; 5134 u32 nritems; 5135 int level; 5136 int ret = 1; 5137 int keep_locks = path->keep_locks; 5138 5139 path->keep_locks = 1; 5140 again: 5141 cur = btrfs_read_lock_root_node(root); 5142 level = btrfs_header_level(cur); 5143 WARN_ON(path->nodes[level]); 5144 path->nodes[level] = cur; 5145 path->locks[level] = BTRFS_READ_LOCK; 5146 5147 if (btrfs_header_generation(cur) < min_trans) { 5148 ret = 1; 5149 goto out; 5150 } 5151 while (1) { 5152 nritems = btrfs_header_nritems(cur); 5153 level = btrfs_header_level(cur); 5154 sret = btrfs_bin_search(cur, min_key, level, &slot); 5155 if (sret < 0) { 5156 ret = sret; 5157 goto out; 5158 } 5159 5160 /* at the lowest level, we're done, setup the path and exit */ 5161 if (level == path->lowest_level) { 5162 if (slot >= nritems) 5163 goto find_next_key; 5164 ret = 0; 5165 path->slots[level] = slot; 5166 btrfs_item_key_to_cpu(cur, &found_key, slot); 5167 goto out; 5168 } 5169 if (sret && slot > 0) 5170 slot--; 5171 /* 5172 * check this node pointer against the min_trans parameters. 5173 * If it is too old, old, skip to the next one. 5174 */ 5175 while (slot < nritems) { 5176 u64 gen; 5177 5178 gen = btrfs_node_ptr_generation(cur, slot); 5179 if (gen < min_trans) { 5180 slot++; 5181 continue; 5182 } 5183 break; 5184 } 5185 find_next_key: 5186 /* 5187 * we didn't find a candidate key in this node, walk forward 5188 * and find another one 5189 */ 5190 if (slot >= nritems) { 5191 path->slots[level] = slot; 5192 btrfs_set_path_blocking(path); 5193 sret = btrfs_find_next_key(root, path, min_key, level, 5194 min_trans); 5195 if (sret == 0) { 5196 btrfs_release_path(path); 5197 goto again; 5198 } else { 5199 goto out; 5200 } 5201 } 5202 /* save our key for returning back */ 5203 btrfs_node_key_to_cpu(cur, &found_key, slot); 5204 path->slots[level] = slot; 5205 if (level == path->lowest_level) { 5206 ret = 0; 5207 goto out; 5208 } 5209 btrfs_set_path_blocking(path); 5210 cur = read_node_slot(fs_info, cur, slot); 5211 if (IS_ERR(cur)) { 5212 ret = PTR_ERR(cur); 5213 goto out; 5214 } 5215 5216 btrfs_tree_read_lock(cur); 5217 5218 path->locks[level - 1] = BTRFS_READ_LOCK; 5219 path->nodes[level - 1] = cur; 5220 unlock_up(path, level, 1, 0, NULL); 5221 } 5222 out: 5223 path->keep_locks = keep_locks; 5224 if (ret == 0) { 5225 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5226 btrfs_set_path_blocking(path); 5227 memcpy(min_key, &found_key, sizeof(found_key)); 5228 } 5229 return ret; 5230 } 5231 5232 static int tree_move_down(struct btrfs_fs_info *fs_info, 5233 struct btrfs_path *path, 5234 int *level) 5235 { 5236 struct extent_buffer *eb; 5237 5238 BUG_ON(*level == 0); 5239 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]); 5240 if (IS_ERR(eb)) 5241 return PTR_ERR(eb); 5242 5243 path->nodes[*level - 1] = eb; 5244 path->slots[*level - 1] = 0; 5245 (*level)--; 5246 return 0; 5247 } 5248 5249 static int tree_move_next_or_upnext(struct btrfs_path *path, 5250 int *level, int root_level) 5251 { 5252 int ret = 0; 5253 int nritems; 5254 nritems = btrfs_header_nritems(path->nodes[*level]); 5255 5256 path->slots[*level]++; 5257 5258 while (path->slots[*level] >= nritems) { 5259 if (*level == root_level) 5260 return -1; 5261 5262 /* move upnext */ 5263 path->slots[*level] = 0; 5264 free_extent_buffer(path->nodes[*level]); 5265 path->nodes[*level] = NULL; 5266 (*level)++; 5267 path->slots[*level]++; 5268 5269 nritems = btrfs_header_nritems(path->nodes[*level]); 5270 ret = 1; 5271 } 5272 return ret; 5273 } 5274 5275 /* 5276 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5277 * or down. 5278 */ 5279 static int tree_advance(struct btrfs_fs_info *fs_info, 5280 struct btrfs_path *path, 5281 int *level, int root_level, 5282 int allow_down, 5283 struct btrfs_key *key) 5284 { 5285 int ret; 5286 5287 if (*level == 0 || !allow_down) { 5288 ret = tree_move_next_or_upnext(path, level, root_level); 5289 } else { 5290 ret = tree_move_down(fs_info, path, level); 5291 } 5292 if (ret >= 0) { 5293 if (*level == 0) 5294 btrfs_item_key_to_cpu(path->nodes[*level], key, 5295 path->slots[*level]); 5296 else 5297 btrfs_node_key_to_cpu(path->nodes[*level], key, 5298 path->slots[*level]); 5299 } 5300 return ret; 5301 } 5302 5303 static int tree_compare_item(struct btrfs_path *left_path, 5304 struct btrfs_path *right_path, 5305 char *tmp_buf) 5306 { 5307 int cmp; 5308 int len1, len2; 5309 unsigned long off1, off2; 5310 5311 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5312 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5313 if (len1 != len2) 5314 return 1; 5315 5316 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5317 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5318 right_path->slots[0]); 5319 5320 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5321 5322 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5323 if (cmp) 5324 return 1; 5325 return 0; 5326 } 5327 5328 #define ADVANCE 1 5329 #define ADVANCE_ONLY_NEXT -1 5330 5331 /* 5332 * This function compares two trees and calls the provided callback for 5333 * every changed/new/deleted item it finds. 5334 * If shared tree blocks are encountered, whole subtrees are skipped, making 5335 * the compare pretty fast on snapshotted subvolumes. 5336 * 5337 * This currently works on commit roots only. As commit roots are read only, 5338 * we don't do any locking. The commit roots are protected with transactions. 5339 * Transactions are ended and rejoined when a commit is tried in between. 5340 * 5341 * This function checks for modifications done to the trees while comparing. 5342 * If it detects a change, it aborts immediately. 5343 */ 5344 int btrfs_compare_trees(struct btrfs_root *left_root, 5345 struct btrfs_root *right_root, 5346 btrfs_changed_cb_t changed_cb, void *ctx) 5347 { 5348 struct btrfs_fs_info *fs_info = left_root->fs_info; 5349 int ret; 5350 int cmp; 5351 struct btrfs_path *left_path = NULL; 5352 struct btrfs_path *right_path = NULL; 5353 struct btrfs_key left_key; 5354 struct btrfs_key right_key; 5355 char *tmp_buf = NULL; 5356 int left_root_level; 5357 int right_root_level; 5358 int left_level; 5359 int right_level; 5360 int left_end_reached; 5361 int right_end_reached; 5362 int advance_left; 5363 int advance_right; 5364 u64 left_blockptr; 5365 u64 right_blockptr; 5366 u64 left_gen; 5367 u64 right_gen; 5368 5369 left_path = btrfs_alloc_path(); 5370 if (!left_path) { 5371 ret = -ENOMEM; 5372 goto out; 5373 } 5374 right_path = btrfs_alloc_path(); 5375 if (!right_path) { 5376 ret = -ENOMEM; 5377 goto out; 5378 } 5379 5380 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 5381 if (!tmp_buf) { 5382 ret = -ENOMEM; 5383 goto out; 5384 } 5385 5386 left_path->search_commit_root = 1; 5387 left_path->skip_locking = 1; 5388 right_path->search_commit_root = 1; 5389 right_path->skip_locking = 1; 5390 5391 /* 5392 * Strategy: Go to the first items of both trees. Then do 5393 * 5394 * If both trees are at level 0 5395 * Compare keys of current items 5396 * If left < right treat left item as new, advance left tree 5397 * and repeat 5398 * If left > right treat right item as deleted, advance right tree 5399 * and repeat 5400 * If left == right do deep compare of items, treat as changed if 5401 * needed, advance both trees and repeat 5402 * If both trees are at the same level but not at level 0 5403 * Compare keys of current nodes/leafs 5404 * If left < right advance left tree and repeat 5405 * If left > right advance right tree and repeat 5406 * If left == right compare blockptrs of the next nodes/leafs 5407 * If they match advance both trees but stay at the same level 5408 * and repeat 5409 * If they don't match advance both trees while allowing to go 5410 * deeper and repeat 5411 * If tree levels are different 5412 * Advance the tree that needs it and repeat 5413 * 5414 * Advancing a tree means: 5415 * If we are at level 0, try to go to the next slot. If that's not 5416 * possible, go one level up and repeat. Stop when we found a level 5417 * where we could go to the next slot. We may at this point be on a 5418 * node or a leaf. 5419 * 5420 * If we are not at level 0 and not on shared tree blocks, go one 5421 * level deeper. 5422 * 5423 * If we are not at level 0 and on shared tree blocks, go one slot to 5424 * the right if possible or go up and right. 5425 */ 5426 5427 down_read(&fs_info->commit_root_sem); 5428 left_level = btrfs_header_level(left_root->commit_root); 5429 left_root_level = left_level; 5430 left_path->nodes[left_level] = 5431 btrfs_clone_extent_buffer(left_root->commit_root); 5432 if (!left_path->nodes[left_level]) { 5433 up_read(&fs_info->commit_root_sem); 5434 ret = -ENOMEM; 5435 goto out; 5436 } 5437 5438 right_level = btrfs_header_level(right_root->commit_root); 5439 right_root_level = right_level; 5440 right_path->nodes[right_level] = 5441 btrfs_clone_extent_buffer(right_root->commit_root); 5442 if (!right_path->nodes[right_level]) { 5443 up_read(&fs_info->commit_root_sem); 5444 ret = -ENOMEM; 5445 goto out; 5446 } 5447 up_read(&fs_info->commit_root_sem); 5448 5449 if (left_level == 0) 5450 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5451 &left_key, left_path->slots[left_level]); 5452 else 5453 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5454 &left_key, left_path->slots[left_level]); 5455 if (right_level == 0) 5456 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5457 &right_key, right_path->slots[right_level]); 5458 else 5459 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5460 &right_key, right_path->slots[right_level]); 5461 5462 left_end_reached = right_end_reached = 0; 5463 advance_left = advance_right = 0; 5464 5465 while (1) { 5466 if (advance_left && !left_end_reached) { 5467 ret = tree_advance(fs_info, left_path, &left_level, 5468 left_root_level, 5469 advance_left != ADVANCE_ONLY_NEXT, 5470 &left_key); 5471 if (ret == -1) 5472 left_end_reached = ADVANCE; 5473 else if (ret < 0) 5474 goto out; 5475 advance_left = 0; 5476 } 5477 if (advance_right && !right_end_reached) { 5478 ret = tree_advance(fs_info, right_path, &right_level, 5479 right_root_level, 5480 advance_right != ADVANCE_ONLY_NEXT, 5481 &right_key); 5482 if (ret == -1) 5483 right_end_reached = ADVANCE; 5484 else if (ret < 0) 5485 goto out; 5486 advance_right = 0; 5487 } 5488 5489 if (left_end_reached && right_end_reached) { 5490 ret = 0; 5491 goto out; 5492 } else if (left_end_reached) { 5493 if (right_level == 0) { 5494 ret = changed_cb(left_path, right_path, 5495 &right_key, 5496 BTRFS_COMPARE_TREE_DELETED, 5497 ctx); 5498 if (ret < 0) 5499 goto out; 5500 } 5501 advance_right = ADVANCE; 5502 continue; 5503 } else if (right_end_reached) { 5504 if (left_level == 0) { 5505 ret = changed_cb(left_path, right_path, 5506 &left_key, 5507 BTRFS_COMPARE_TREE_NEW, 5508 ctx); 5509 if (ret < 0) 5510 goto out; 5511 } 5512 advance_left = ADVANCE; 5513 continue; 5514 } 5515 5516 if (left_level == 0 && right_level == 0) { 5517 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5518 if (cmp < 0) { 5519 ret = changed_cb(left_path, right_path, 5520 &left_key, 5521 BTRFS_COMPARE_TREE_NEW, 5522 ctx); 5523 if (ret < 0) 5524 goto out; 5525 advance_left = ADVANCE; 5526 } else if (cmp > 0) { 5527 ret = changed_cb(left_path, right_path, 5528 &right_key, 5529 BTRFS_COMPARE_TREE_DELETED, 5530 ctx); 5531 if (ret < 0) 5532 goto out; 5533 advance_right = ADVANCE; 5534 } else { 5535 enum btrfs_compare_tree_result result; 5536 5537 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5538 ret = tree_compare_item(left_path, right_path, 5539 tmp_buf); 5540 if (ret) 5541 result = BTRFS_COMPARE_TREE_CHANGED; 5542 else 5543 result = BTRFS_COMPARE_TREE_SAME; 5544 ret = changed_cb(left_path, right_path, 5545 &left_key, result, ctx); 5546 if (ret < 0) 5547 goto out; 5548 advance_left = ADVANCE; 5549 advance_right = ADVANCE; 5550 } 5551 } else if (left_level == right_level) { 5552 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5553 if (cmp < 0) { 5554 advance_left = ADVANCE; 5555 } else if (cmp > 0) { 5556 advance_right = ADVANCE; 5557 } else { 5558 left_blockptr = btrfs_node_blockptr( 5559 left_path->nodes[left_level], 5560 left_path->slots[left_level]); 5561 right_blockptr = btrfs_node_blockptr( 5562 right_path->nodes[right_level], 5563 right_path->slots[right_level]); 5564 left_gen = btrfs_node_ptr_generation( 5565 left_path->nodes[left_level], 5566 left_path->slots[left_level]); 5567 right_gen = btrfs_node_ptr_generation( 5568 right_path->nodes[right_level], 5569 right_path->slots[right_level]); 5570 if (left_blockptr == right_blockptr && 5571 left_gen == right_gen) { 5572 /* 5573 * As we're on a shared block, don't 5574 * allow to go deeper. 5575 */ 5576 advance_left = ADVANCE_ONLY_NEXT; 5577 advance_right = ADVANCE_ONLY_NEXT; 5578 } else { 5579 advance_left = ADVANCE; 5580 advance_right = ADVANCE; 5581 } 5582 } 5583 } else if (left_level < right_level) { 5584 advance_right = ADVANCE; 5585 } else { 5586 advance_left = ADVANCE; 5587 } 5588 } 5589 5590 out: 5591 btrfs_free_path(left_path); 5592 btrfs_free_path(right_path); 5593 kvfree(tmp_buf); 5594 return ret; 5595 } 5596 5597 /* 5598 * this is similar to btrfs_next_leaf, but does not try to preserve 5599 * and fixup the path. It looks for and returns the next key in the 5600 * tree based on the current path and the min_trans parameters. 5601 * 5602 * 0 is returned if another key is found, < 0 if there are any errors 5603 * and 1 is returned if there are no higher keys in the tree 5604 * 5605 * path->keep_locks should be set to 1 on the search made before 5606 * calling this function. 5607 */ 5608 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5609 struct btrfs_key *key, int level, u64 min_trans) 5610 { 5611 int slot; 5612 struct extent_buffer *c; 5613 5614 WARN_ON(!path->keep_locks); 5615 while (level < BTRFS_MAX_LEVEL) { 5616 if (!path->nodes[level]) 5617 return 1; 5618 5619 slot = path->slots[level] + 1; 5620 c = path->nodes[level]; 5621 next: 5622 if (slot >= btrfs_header_nritems(c)) { 5623 int ret; 5624 int orig_lowest; 5625 struct btrfs_key cur_key; 5626 if (level + 1 >= BTRFS_MAX_LEVEL || 5627 !path->nodes[level + 1]) 5628 return 1; 5629 5630 if (path->locks[level + 1]) { 5631 level++; 5632 continue; 5633 } 5634 5635 slot = btrfs_header_nritems(c) - 1; 5636 if (level == 0) 5637 btrfs_item_key_to_cpu(c, &cur_key, slot); 5638 else 5639 btrfs_node_key_to_cpu(c, &cur_key, slot); 5640 5641 orig_lowest = path->lowest_level; 5642 btrfs_release_path(path); 5643 path->lowest_level = level; 5644 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5645 0, 0); 5646 path->lowest_level = orig_lowest; 5647 if (ret < 0) 5648 return ret; 5649 5650 c = path->nodes[level]; 5651 slot = path->slots[level]; 5652 if (ret == 0) 5653 slot++; 5654 goto next; 5655 } 5656 5657 if (level == 0) 5658 btrfs_item_key_to_cpu(c, key, slot); 5659 else { 5660 u64 gen = btrfs_node_ptr_generation(c, slot); 5661 5662 if (gen < min_trans) { 5663 slot++; 5664 goto next; 5665 } 5666 btrfs_node_key_to_cpu(c, key, slot); 5667 } 5668 return 0; 5669 } 5670 return 1; 5671 } 5672 5673 /* 5674 * search the tree again to find a leaf with greater keys 5675 * returns 0 if it found something or 1 if there are no greater leaves. 5676 * returns < 0 on io errors. 5677 */ 5678 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5679 { 5680 return btrfs_next_old_leaf(root, path, 0); 5681 } 5682 5683 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5684 u64 time_seq) 5685 { 5686 int slot; 5687 int level; 5688 struct extent_buffer *c; 5689 struct extent_buffer *next; 5690 struct btrfs_key key; 5691 u32 nritems; 5692 int ret; 5693 int old_spinning = path->leave_spinning; 5694 int next_rw_lock = 0; 5695 5696 nritems = btrfs_header_nritems(path->nodes[0]); 5697 if (nritems == 0) 5698 return 1; 5699 5700 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5701 again: 5702 level = 1; 5703 next = NULL; 5704 next_rw_lock = 0; 5705 btrfs_release_path(path); 5706 5707 path->keep_locks = 1; 5708 path->leave_spinning = 1; 5709 5710 if (time_seq) 5711 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5712 else 5713 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5714 path->keep_locks = 0; 5715 5716 if (ret < 0) 5717 return ret; 5718 5719 nritems = btrfs_header_nritems(path->nodes[0]); 5720 /* 5721 * by releasing the path above we dropped all our locks. A balance 5722 * could have added more items next to the key that used to be 5723 * at the very end of the block. So, check again here and 5724 * advance the path if there are now more items available. 5725 */ 5726 if (nritems > 0 && path->slots[0] < nritems - 1) { 5727 if (ret == 0) 5728 path->slots[0]++; 5729 ret = 0; 5730 goto done; 5731 } 5732 /* 5733 * So the above check misses one case: 5734 * - after releasing the path above, someone has removed the item that 5735 * used to be at the very end of the block, and balance between leafs 5736 * gets another one with bigger key.offset to replace it. 5737 * 5738 * This one should be returned as well, or we can get leaf corruption 5739 * later(esp. in __btrfs_drop_extents()). 5740 * 5741 * And a bit more explanation about this check, 5742 * with ret > 0, the key isn't found, the path points to the slot 5743 * where it should be inserted, so the path->slots[0] item must be the 5744 * bigger one. 5745 */ 5746 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5747 ret = 0; 5748 goto done; 5749 } 5750 5751 while (level < BTRFS_MAX_LEVEL) { 5752 if (!path->nodes[level]) { 5753 ret = 1; 5754 goto done; 5755 } 5756 5757 slot = path->slots[level] + 1; 5758 c = path->nodes[level]; 5759 if (slot >= btrfs_header_nritems(c)) { 5760 level++; 5761 if (level == BTRFS_MAX_LEVEL) { 5762 ret = 1; 5763 goto done; 5764 } 5765 continue; 5766 } 5767 5768 if (next) { 5769 btrfs_tree_unlock_rw(next, next_rw_lock); 5770 free_extent_buffer(next); 5771 } 5772 5773 next = c; 5774 next_rw_lock = path->locks[level]; 5775 ret = read_block_for_search(root, path, &next, level, 5776 slot, &key); 5777 if (ret == -EAGAIN) 5778 goto again; 5779 5780 if (ret < 0) { 5781 btrfs_release_path(path); 5782 goto done; 5783 } 5784 5785 if (!path->skip_locking) { 5786 ret = btrfs_try_tree_read_lock(next); 5787 if (!ret && time_seq) { 5788 /* 5789 * If we don't get the lock, we may be racing 5790 * with push_leaf_left, holding that lock while 5791 * itself waiting for the leaf we've currently 5792 * locked. To solve this situation, we give up 5793 * on our lock and cycle. 5794 */ 5795 free_extent_buffer(next); 5796 btrfs_release_path(path); 5797 cond_resched(); 5798 goto again; 5799 } 5800 if (!ret) { 5801 btrfs_set_path_blocking(path); 5802 btrfs_tree_read_lock(next); 5803 } 5804 next_rw_lock = BTRFS_READ_LOCK; 5805 } 5806 break; 5807 } 5808 path->slots[level] = slot; 5809 while (1) { 5810 level--; 5811 c = path->nodes[level]; 5812 if (path->locks[level]) 5813 btrfs_tree_unlock_rw(c, path->locks[level]); 5814 5815 free_extent_buffer(c); 5816 path->nodes[level] = next; 5817 path->slots[level] = 0; 5818 if (!path->skip_locking) 5819 path->locks[level] = next_rw_lock; 5820 if (!level) 5821 break; 5822 5823 ret = read_block_for_search(root, path, &next, level, 5824 0, &key); 5825 if (ret == -EAGAIN) 5826 goto again; 5827 5828 if (ret < 0) { 5829 btrfs_release_path(path); 5830 goto done; 5831 } 5832 5833 if (!path->skip_locking) { 5834 ret = btrfs_try_tree_read_lock(next); 5835 if (!ret) { 5836 btrfs_set_path_blocking(path); 5837 btrfs_tree_read_lock(next); 5838 } 5839 next_rw_lock = BTRFS_READ_LOCK; 5840 } 5841 } 5842 ret = 0; 5843 done: 5844 unlock_up(path, 0, 1, 0, NULL); 5845 path->leave_spinning = old_spinning; 5846 if (!old_spinning) 5847 btrfs_set_path_blocking(path); 5848 5849 return ret; 5850 } 5851 5852 /* 5853 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5854 * searching until it gets past min_objectid or finds an item of 'type' 5855 * 5856 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5857 */ 5858 int btrfs_previous_item(struct btrfs_root *root, 5859 struct btrfs_path *path, u64 min_objectid, 5860 int type) 5861 { 5862 struct btrfs_key found_key; 5863 struct extent_buffer *leaf; 5864 u32 nritems; 5865 int ret; 5866 5867 while (1) { 5868 if (path->slots[0] == 0) { 5869 btrfs_set_path_blocking(path); 5870 ret = btrfs_prev_leaf(root, path); 5871 if (ret != 0) 5872 return ret; 5873 } else { 5874 path->slots[0]--; 5875 } 5876 leaf = path->nodes[0]; 5877 nritems = btrfs_header_nritems(leaf); 5878 if (nritems == 0) 5879 return 1; 5880 if (path->slots[0] == nritems) 5881 path->slots[0]--; 5882 5883 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5884 if (found_key.objectid < min_objectid) 5885 break; 5886 if (found_key.type == type) 5887 return 0; 5888 if (found_key.objectid == min_objectid && 5889 found_key.type < type) 5890 break; 5891 } 5892 return 1; 5893 } 5894 5895 /* 5896 * search in extent tree to find a previous Metadata/Data extent item with 5897 * min objecitd. 5898 * 5899 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5900 */ 5901 int btrfs_previous_extent_item(struct btrfs_root *root, 5902 struct btrfs_path *path, u64 min_objectid) 5903 { 5904 struct btrfs_key found_key; 5905 struct extent_buffer *leaf; 5906 u32 nritems; 5907 int ret; 5908 5909 while (1) { 5910 if (path->slots[0] == 0) { 5911 btrfs_set_path_blocking(path); 5912 ret = btrfs_prev_leaf(root, path); 5913 if (ret != 0) 5914 return ret; 5915 } else { 5916 path->slots[0]--; 5917 } 5918 leaf = path->nodes[0]; 5919 nritems = btrfs_header_nritems(leaf); 5920 if (nritems == 0) 5921 return 1; 5922 if (path->slots[0] == nritems) 5923 path->slots[0]--; 5924 5925 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5926 if (found_key.objectid < min_objectid) 5927 break; 5928 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5929 found_key.type == BTRFS_METADATA_ITEM_KEY) 5930 return 0; 5931 if (found_key.objectid == min_objectid && 5932 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5933 break; 5934 } 5935 return 1; 5936 } 5937