xref: /linux/fs/btrfs/ctree.c (revision 4e0ae876f77bc01a7e77724dea57b4b82bd53244)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17 
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 		      *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
22 		      int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24 			  struct btrfs_fs_info *fs_info,
25 			  struct extent_buffer *dst,
26 			  struct extent_buffer *src, int empty);
27 static int balance_node_right(struct btrfs_trans_handle *trans,
28 			      struct btrfs_fs_info *fs_info,
29 			      struct extent_buffer *dst_buf,
30 			      struct extent_buffer *src_buf);
31 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
32 		    int level, int slot);
33 
34 struct btrfs_path *btrfs_alloc_path(void)
35 {
36 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
37 }
38 
39 /*
40  * set all locked nodes in the path to blocking locks.  This should
41  * be done before scheduling
42  */
43 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
44 {
45 	int i;
46 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
47 		if (!p->nodes[i] || !p->locks[i])
48 			continue;
49 		/*
50 		 * If we currently have a spinning reader or writer lock this
51 		 * will bump the count of blocking holders and drop the
52 		 * spinlock.
53 		 */
54 		if (p->locks[i] == BTRFS_READ_LOCK) {
55 			btrfs_set_lock_blocking_read(p->nodes[i]);
56 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
57 		} else if (p->locks[i] == BTRFS_WRITE_LOCK) {
58 			btrfs_set_lock_blocking_write(p->nodes[i]);
59 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
60 		}
61 	}
62 }
63 
64 /* this also releases the path */
65 void btrfs_free_path(struct btrfs_path *p)
66 {
67 	if (!p)
68 		return;
69 	btrfs_release_path(p);
70 	kmem_cache_free(btrfs_path_cachep, p);
71 }
72 
73 /*
74  * path release drops references on the extent buffers in the path
75  * and it drops any locks held by this path
76  *
77  * It is safe to call this on paths that no locks or extent buffers held.
78  */
79 noinline void btrfs_release_path(struct btrfs_path *p)
80 {
81 	int i;
82 
83 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
84 		p->slots[i] = 0;
85 		if (!p->nodes[i])
86 			continue;
87 		if (p->locks[i]) {
88 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
89 			p->locks[i] = 0;
90 		}
91 		free_extent_buffer(p->nodes[i]);
92 		p->nodes[i] = NULL;
93 	}
94 }
95 
96 /*
97  * safely gets a reference on the root node of a tree.  A lock
98  * is not taken, so a concurrent writer may put a different node
99  * at the root of the tree.  See btrfs_lock_root_node for the
100  * looping required.
101  *
102  * The extent buffer returned by this has a reference taken, so
103  * it won't disappear.  It may stop being the root of the tree
104  * at any time because there are no locks held.
105  */
106 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
107 {
108 	struct extent_buffer *eb;
109 
110 	while (1) {
111 		rcu_read_lock();
112 		eb = rcu_dereference(root->node);
113 
114 		/*
115 		 * RCU really hurts here, we could free up the root node because
116 		 * it was COWed but we may not get the new root node yet so do
117 		 * the inc_not_zero dance and if it doesn't work then
118 		 * synchronize_rcu and try again.
119 		 */
120 		if (atomic_inc_not_zero(&eb->refs)) {
121 			rcu_read_unlock();
122 			break;
123 		}
124 		rcu_read_unlock();
125 		synchronize_rcu();
126 	}
127 	return eb;
128 }
129 
130 /* loop around taking references on and locking the root node of the
131  * tree until you end up with a lock on the root.  A locked buffer
132  * is returned, with a reference held.
133  */
134 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
135 {
136 	struct extent_buffer *eb;
137 
138 	while (1) {
139 		eb = btrfs_root_node(root);
140 		btrfs_tree_lock(eb);
141 		if (eb == root->node)
142 			break;
143 		btrfs_tree_unlock(eb);
144 		free_extent_buffer(eb);
145 	}
146 	return eb;
147 }
148 
149 /* loop around taking references on and locking the root node of the
150  * tree until you end up with a lock on the root.  A locked buffer
151  * is returned, with a reference held.
152  */
153 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
154 {
155 	struct extent_buffer *eb;
156 
157 	while (1) {
158 		eb = btrfs_root_node(root);
159 		btrfs_tree_read_lock(eb);
160 		if (eb == root->node)
161 			break;
162 		btrfs_tree_read_unlock(eb);
163 		free_extent_buffer(eb);
164 	}
165 	return eb;
166 }
167 
168 /* cowonly root (everything not a reference counted cow subvolume), just get
169  * put onto a simple dirty list.  transaction.c walks this to make sure they
170  * get properly updated on disk.
171  */
172 static void add_root_to_dirty_list(struct btrfs_root *root)
173 {
174 	struct btrfs_fs_info *fs_info = root->fs_info;
175 
176 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
177 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
178 		return;
179 
180 	spin_lock(&fs_info->trans_lock);
181 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
182 		/* Want the extent tree to be the last on the list */
183 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
184 			list_move_tail(&root->dirty_list,
185 				       &fs_info->dirty_cowonly_roots);
186 		else
187 			list_move(&root->dirty_list,
188 				  &fs_info->dirty_cowonly_roots);
189 	}
190 	spin_unlock(&fs_info->trans_lock);
191 }
192 
193 /*
194  * used by snapshot creation to make a copy of a root for a tree with
195  * a given objectid.  The buffer with the new root node is returned in
196  * cow_ret, and this func returns zero on success or a negative error code.
197  */
198 int btrfs_copy_root(struct btrfs_trans_handle *trans,
199 		      struct btrfs_root *root,
200 		      struct extent_buffer *buf,
201 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
202 {
203 	struct btrfs_fs_info *fs_info = root->fs_info;
204 	struct extent_buffer *cow;
205 	int ret = 0;
206 	int level;
207 	struct btrfs_disk_key disk_key;
208 
209 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
210 		trans->transid != fs_info->running_transaction->transid);
211 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
212 		trans->transid != root->last_trans);
213 
214 	level = btrfs_header_level(buf);
215 	if (level == 0)
216 		btrfs_item_key(buf, &disk_key, 0);
217 	else
218 		btrfs_node_key(buf, &disk_key, 0);
219 
220 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
221 			&disk_key, level, buf->start, 0);
222 	if (IS_ERR(cow))
223 		return PTR_ERR(cow);
224 
225 	copy_extent_buffer_full(cow, buf);
226 	btrfs_set_header_bytenr(cow, cow->start);
227 	btrfs_set_header_generation(cow, trans->transid);
228 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
229 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
230 				     BTRFS_HEADER_FLAG_RELOC);
231 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
232 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
233 	else
234 		btrfs_set_header_owner(cow, new_root_objectid);
235 
236 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
237 
238 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
239 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
240 		ret = btrfs_inc_ref(trans, root, cow, 1);
241 	else
242 		ret = btrfs_inc_ref(trans, root, cow, 0);
243 
244 	if (ret)
245 		return ret;
246 
247 	btrfs_mark_buffer_dirty(cow);
248 	*cow_ret = cow;
249 	return 0;
250 }
251 
252 enum mod_log_op {
253 	MOD_LOG_KEY_REPLACE,
254 	MOD_LOG_KEY_ADD,
255 	MOD_LOG_KEY_REMOVE,
256 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
257 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
258 	MOD_LOG_MOVE_KEYS,
259 	MOD_LOG_ROOT_REPLACE,
260 };
261 
262 struct tree_mod_root {
263 	u64 logical;
264 	u8 level;
265 };
266 
267 struct tree_mod_elem {
268 	struct rb_node node;
269 	u64 logical;
270 	u64 seq;
271 	enum mod_log_op op;
272 
273 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
274 	int slot;
275 
276 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
277 	u64 generation;
278 
279 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
280 	struct btrfs_disk_key key;
281 	u64 blockptr;
282 
283 	/* this is used for op == MOD_LOG_MOVE_KEYS */
284 	struct {
285 		int dst_slot;
286 		int nr_items;
287 	} move;
288 
289 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
290 	struct tree_mod_root old_root;
291 };
292 
293 /*
294  * Pull a new tree mod seq number for our operation.
295  */
296 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
297 {
298 	return atomic64_inc_return(&fs_info->tree_mod_seq);
299 }
300 
301 /*
302  * This adds a new blocker to the tree mod log's blocker list if the @elem
303  * passed does not already have a sequence number set. So when a caller expects
304  * to record tree modifications, it should ensure to set elem->seq to zero
305  * before calling btrfs_get_tree_mod_seq.
306  * Returns a fresh, unused tree log modification sequence number, even if no new
307  * blocker was added.
308  */
309 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
310 			   struct seq_list *elem)
311 {
312 	write_lock(&fs_info->tree_mod_log_lock);
313 	spin_lock(&fs_info->tree_mod_seq_lock);
314 	if (!elem->seq) {
315 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
316 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
317 	}
318 	spin_unlock(&fs_info->tree_mod_seq_lock);
319 	write_unlock(&fs_info->tree_mod_log_lock);
320 
321 	return elem->seq;
322 }
323 
324 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
325 			    struct seq_list *elem)
326 {
327 	struct rb_root *tm_root;
328 	struct rb_node *node;
329 	struct rb_node *next;
330 	struct seq_list *cur_elem;
331 	struct tree_mod_elem *tm;
332 	u64 min_seq = (u64)-1;
333 	u64 seq_putting = elem->seq;
334 
335 	if (!seq_putting)
336 		return;
337 
338 	spin_lock(&fs_info->tree_mod_seq_lock);
339 	list_del(&elem->list);
340 	elem->seq = 0;
341 
342 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
343 		if (cur_elem->seq < min_seq) {
344 			if (seq_putting > cur_elem->seq) {
345 				/*
346 				 * blocker with lower sequence number exists, we
347 				 * cannot remove anything from the log
348 				 */
349 				spin_unlock(&fs_info->tree_mod_seq_lock);
350 				return;
351 			}
352 			min_seq = cur_elem->seq;
353 		}
354 	}
355 	spin_unlock(&fs_info->tree_mod_seq_lock);
356 
357 	/*
358 	 * anything that's lower than the lowest existing (read: blocked)
359 	 * sequence number can be removed from the tree.
360 	 */
361 	write_lock(&fs_info->tree_mod_log_lock);
362 	tm_root = &fs_info->tree_mod_log;
363 	for (node = rb_first(tm_root); node; node = next) {
364 		next = rb_next(node);
365 		tm = rb_entry(node, struct tree_mod_elem, node);
366 		if (tm->seq > min_seq)
367 			continue;
368 		rb_erase(node, tm_root);
369 		kfree(tm);
370 	}
371 	write_unlock(&fs_info->tree_mod_log_lock);
372 }
373 
374 /*
375  * key order of the log:
376  *       node/leaf start address -> sequence
377  *
378  * The 'start address' is the logical address of the *new* root node
379  * for root replace operations, or the logical address of the affected
380  * block for all other operations.
381  *
382  * Note: must be called with write lock for fs_info::tree_mod_log_lock.
383  */
384 static noinline int
385 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
386 {
387 	struct rb_root *tm_root;
388 	struct rb_node **new;
389 	struct rb_node *parent = NULL;
390 	struct tree_mod_elem *cur;
391 
392 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
393 
394 	tm_root = &fs_info->tree_mod_log;
395 	new = &tm_root->rb_node;
396 	while (*new) {
397 		cur = rb_entry(*new, struct tree_mod_elem, node);
398 		parent = *new;
399 		if (cur->logical < tm->logical)
400 			new = &((*new)->rb_left);
401 		else if (cur->logical > tm->logical)
402 			new = &((*new)->rb_right);
403 		else if (cur->seq < tm->seq)
404 			new = &((*new)->rb_left);
405 		else if (cur->seq > tm->seq)
406 			new = &((*new)->rb_right);
407 		else
408 			return -EEXIST;
409 	}
410 
411 	rb_link_node(&tm->node, parent, new);
412 	rb_insert_color(&tm->node, tm_root);
413 	return 0;
414 }
415 
416 /*
417  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
418  * returns zero with the tree_mod_log_lock acquired. The caller must hold
419  * this until all tree mod log insertions are recorded in the rb tree and then
420  * write unlock fs_info::tree_mod_log_lock.
421  */
422 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
423 				    struct extent_buffer *eb) {
424 	smp_mb();
425 	if (list_empty(&(fs_info)->tree_mod_seq_list))
426 		return 1;
427 	if (eb && btrfs_header_level(eb) == 0)
428 		return 1;
429 
430 	write_lock(&fs_info->tree_mod_log_lock);
431 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
432 		write_unlock(&fs_info->tree_mod_log_lock);
433 		return 1;
434 	}
435 
436 	return 0;
437 }
438 
439 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
440 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
441 				    struct extent_buffer *eb)
442 {
443 	smp_mb();
444 	if (list_empty(&(fs_info)->tree_mod_seq_list))
445 		return 0;
446 	if (eb && btrfs_header_level(eb) == 0)
447 		return 0;
448 
449 	return 1;
450 }
451 
452 static struct tree_mod_elem *
453 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
454 		    enum mod_log_op op, gfp_t flags)
455 {
456 	struct tree_mod_elem *tm;
457 
458 	tm = kzalloc(sizeof(*tm), flags);
459 	if (!tm)
460 		return NULL;
461 
462 	tm->logical = eb->start;
463 	if (op != MOD_LOG_KEY_ADD) {
464 		btrfs_node_key(eb, &tm->key, slot);
465 		tm->blockptr = btrfs_node_blockptr(eb, slot);
466 	}
467 	tm->op = op;
468 	tm->slot = slot;
469 	tm->generation = btrfs_node_ptr_generation(eb, slot);
470 	RB_CLEAR_NODE(&tm->node);
471 
472 	return tm;
473 }
474 
475 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
476 		enum mod_log_op op, gfp_t flags)
477 {
478 	struct tree_mod_elem *tm;
479 	int ret;
480 
481 	if (!tree_mod_need_log(eb->fs_info, eb))
482 		return 0;
483 
484 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
485 	if (!tm)
486 		return -ENOMEM;
487 
488 	if (tree_mod_dont_log(eb->fs_info, eb)) {
489 		kfree(tm);
490 		return 0;
491 	}
492 
493 	ret = __tree_mod_log_insert(eb->fs_info, tm);
494 	write_unlock(&eb->fs_info->tree_mod_log_lock);
495 	if (ret)
496 		kfree(tm);
497 
498 	return ret;
499 }
500 
501 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
502 		int dst_slot, int src_slot, int nr_items)
503 {
504 	struct tree_mod_elem *tm = NULL;
505 	struct tree_mod_elem **tm_list = NULL;
506 	int ret = 0;
507 	int i;
508 	int locked = 0;
509 
510 	if (!tree_mod_need_log(eb->fs_info, eb))
511 		return 0;
512 
513 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
514 	if (!tm_list)
515 		return -ENOMEM;
516 
517 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
518 	if (!tm) {
519 		ret = -ENOMEM;
520 		goto free_tms;
521 	}
522 
523 	tm->logical = eb->start;
524 	tm->slot = src_slot;
525 	tm->move.dst_slot = dst_slot;
526 	tm->move.nr_items = nr_items;
527 	tm->op = MOD_LOG_MOVE_KEYS;
528 
529 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
530 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
531 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
532 		if (!tm_list[i]) {
533 			ret = -ENOMEM;
534 			goto free_tms;
535 		}
536 	}
537 
538 	if (tree_mod_dont_log(eb->fs_info, eb))
539 		goto free_tms;
540 	locked = 1;
541 
542 	/*
543 	 * When we override something during the move, we log these removals.
544 	 * This can only happen when we move towards the beginning of the
545 	 * buffer, i.e. dst_slot < src_slot.
546 	 */
547 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
548 		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
549 		if (ret)
550 			goto free_tms;
551 	}
552 
553 	ret = __tree_mod_log_insert(eb->fs_info, tm);
554 	if (ret)
555 		goto free_tms;
556 	write_unlock(&eb->fs_info->tree_mod_log_lock);
557 	kfree(tm_list);
558 
559 	return 0;
560 free_tms:
561 	for (i = 0; i < nr_items; i++) {
562 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
563 			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
564 		kfree(tm_list[i]);
565 	}
566 	if (locked)
567 		write_unlock(&eb->fs_info->tree_mod_log_lock);
568 	kfree(tm_list);
569 	kfree(tm);
570 
571 	return ret;
572 }
573 
574 static inline int
575 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
576 		       struct tree_mod_elem **tm_list,
577 		       int nritems)
578 {
579 	int i, j;
580 	int ret;
581 
582 	for (i = nritems - 1; i >= 0; i--) {
583 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
584 		if (ret) {
585 			for (j = nritems - 1; j > i; j--)
586 				rb_erase(&tm_list[j]->node,
587 					 &fs_info->tree_mod_log);
588 			return ret;
589 		}
590 	}
591 
592 	return 0;
593 }
594 
595 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
596 			 struct extent_buffer *new_root, int log_removal)
597 {
598 	struct btrfs_fs_info *fs_info = old_root->fs_info;
599 	struct tree_mod_elem *tm = NULL;
600 	struct tree_mod_elem **tm_list = NULL;
601 	int nritems = 0;
602 	int ret = 0;
603 	int i;
604 
605 	if (!tree_mod_need_log(fs_info, NULL))
606 		return 0;
607 
608 	if (log_removal && btrfs_header_level(old_root) > 0) {
609 		nritems = btrfs_header_nritems(old_root);
610 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
611 				  GFP_NOFS);
612 		if (!tm_list) {
613 			ret = -ENOMEM;
614 			goto free_tms;
615 		}
616 		for (i = 0; i < nritems; i++) {
617 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
618 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
619 			if (!tm_list[i]) {
620 				ret = -ENOMEM;
621 				goto free_tms;
622 			}
623 		}
624 	}
625 
626 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
627 	if (!tm) {
628 		ret = -ENOMEM;
629 		goto free_tms;
630 	}
631 
632 	tm->logical = new_root->start;
633 	tm->old_root.logical = old_root->start;
634 	tm->old_root.level = btrfs_header_level(old_root);
635 	tm->generation = btrfs_header_generation(old_root);
636 	tm->op = MOD_LOG_ROOT_REPLACE;
637 
638 	if (tree_mod_dont_log(fs_info, NULL))
639 		goto free_tms;
640 
641 	if (tm_list)
642 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
643 	if (!ret)
644 		ret = __tree_mod_log_insert(fs_info, tm);
645 
646 	write_unlock(&fs_info->tree_mod_log_lock);
647 	if (ret)
648 		goto free_tms;
649 	kfree(tm_list);
650 
651 	return ret;
652 
653 free_tms:
654 	if (tm_list) {
655 		for (i = 0; i < nritems; i++)
656 			kfree(tm_list[i]);
657 		kfree(tm_list);
658 	}
659 	kfree(tm);
660 
661 	return ret;
662 }
663 
664 static struct tree_mod_elem *
665 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
666 		      int smallest)
667 {
668 	struct rb_root *tm_root;
669 	struct rb_node *node;
670 	struct tree_mod_elem *cur = NULL;
671 	struct tree_mod_elem *found = NULL;
672 
673 	read_lock(&fs_info->tree_mod_log_lock);
674 	tm_root = &fs_info->tree_mod_log;
675 	node = tm_root->rb_node;
676 	while (node) {
677 		cur = rb_entry(node, struct tree_mod_elem, node);
678 		if (cur->logical < start) {
679 			node = node->rb_left;
680 		} else if (cur->logical > start) {
681 			node = node->rb_right;
682 		} else if (cur->seq < min_seq) {
683 			node = node->rb_left;
684 		} else if (!smallest) {
685 			/* we want the node with the highest seq */
686 			if (found)
687 				BUG_ON(found->seq > cur->seq);
688 			found = cur;
689 			node = node->rb_left;
690 		} else if (cur->seq > min_seq) {
691 			/* we want the node with the smallest seq */
692 			if (found)
693 				BUG_ON(found->seq < cur->seq);
694 			found = cur;
695 			node = node->rb_right;
696 		} else {
697 			found = cur;
698 			break;
699 		}
700 	}
701 	read_unlock(&fs_info->tree_mod_log_lock);
702 
703 	return found;
704 }
705 
706 /*
707  * this returns the element from the log with the smallest time sequence
708  * value that's in the log (the oldest log item). any element with a time
709  * sequence lower than min_seq will be ignored.
710  */
711 static struct tree_mod_elem *
712 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
713 			   u64 min_seq)
714 {
715 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
716 }
717 
718 /*
719  * this returns the element from the log with the largest time sequence
720  * value that's in the log (the most recent log item). any element with
721  * a time sequence lower than min_seq will be ignored.
722  */
723 static struct tree_mod_elem *
724 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
725 {
726 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
727 }
728 
729 static noinline int
730 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
731 		     struct extent_buffer *src, unsigned long dst_offset,
732 		     unsigned long src_offset, int nr_items)
733 {
734 	int ret = 0;
735 	struct tree_mod_elem **tm_list = NULL;
736 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
737 	int i;
738 	int locked = 0;
739 
740 	if (!tree_mod_need_log(fs_info, NULL))
741 		return 0;
742 
743 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
744 		return 0;
745 
746 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
747 			  GFP_NOFS);
748 	if (!tm_list)
749 		return -ENOMEM;
750 
751 	tm_list_add = tm_list;
752 	tm_list_rem = tm_list + nr_items;
753 	for (i = 0; i < nr_items; i++) {
754 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
755 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
756 		if (!tm_list_rem[i]) {
757 			ret = -ENOMEM;
758 			goto free_tms;
759 		}
760 
761 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
762 		    MOD_LOG_KEY_ADD, GFP_NOFS);
763 		if (!tm_list_add[i]) {
764 			ret = -ENOMEM;
765 			goto free_tms;
766 		}
767 	}
768 
769 	if (tree_mod_dont_log(fs_info, NULL))
770 		goto free_tms;
771 	locked = 1;
772 
773 	for (i = 0; i < nr_items; i++) {
774 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
775 		if (ret)
776 			goto free_tms;
777 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
778 		if (ret)
779 			goto free_tms;
780 	}
781 
782 	write_unlock(&fs_info->tree_mod_log_lock);
783 	kfree(tm_list);
784 
785 	return 0;
786 
787 free_tms:
788 	for (i = 0; i < nr_items * 2; i++) {
789 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
790 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
791 		kfree(tm_list[i]);
792 	}
793 	if (locked)
794 		write_unlock(&fs_info->tree_mod_log_lock);
795 	kfree(tm_list);
796 
797 	return ret;
798 }
799 
800 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
801 {
802 	struct tree_mod_elem **tm_list = NULL;
803 	int nritems = 0;
804 	int i;
805 	int ret = 0;
806 
807 	if (btrfs_header_level(eb) == 0)
808 		return 0;
809 
810 	if (!tree_mod_need_log(eb->fs_info, NULL))
811 		return 0;
812 
813 	nritems = btrfs_header_nritems(eb);
814 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
815 	if (!tm_list)
816 		return -ENOMEM;
817 
818 	for (i = 0; i < nritems; i++) {
819 		tm_list[i] = alloc_tree_mod_elem(eb, i,
820 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
821 		if (!tm_list[i]) {
822 			ret = -ENOMEM;
823 			goto free_tms;
824 		}
825 	}
826 
827 	if (tree_mod_dont_log(eb->fs_info, eb))
828 		goto free_tms;
829 
830 	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
831 	write_unlock(&eb->fs_info->tree_mod_log_lock);
832 	if (ret)
833 		goto free_tms;
834 	kfree(tm_list);
835 
836 	return 0;
837 
838 free_tms:
839 	for (i = 0; i < nritems; i++)
840 		kfree(tm_list[i]);
841 	kfree(tm_list);
842 
843 	return ret;
844 }
845 
846 /*
847  * check if the tree block can be shared by multiple trees
848  */
849 int btrfs_block_can_be_shared(struct btrfs_root *root,
850 			      struct extent_buffer *buf)
851 {
852 	/*
853 	 * Tree blocks not in reference counted trees and tree roots
854 	 * are never shared. If a block was allocated after the last
855 	 * snapshot and the block was not allocated by tree relocation,
856 	 * we know the block is not shared.
857 	 */
858 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
859 	    buf != root->node && buf != root->commit_root &&
860 	    (btrfs_header_generation(buf) <=
861 	     btrfs_root_last_snapshot(&root->root_item) ||
862 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
863 		return 1;
864 
865 	return 0;
866 }
867 
868 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
869 				       struct btrfs_root *root,
870 				       struct extent_buffer *buf,
871 				       struct extent_buffer *cow,
872 				       int *last_ref)
873 {
874 	struct btrfs_fs_info *fs_info = root->fs_info;
875 	u64 refs;
876 	u64 owner;
877 	u64 flags;
878 	u64 new_flags = 0;
879 	int ret;
880 
881 	/*
882 	 * Backrefs update rules:
883 	 *
884 	 * Always use full backrefs for extent pointers in tree block
885 	 * allocated by tree relocation.
886 	 *
887 	 * If a shared tree block is no longer referenced by its owner
888 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
889 	 * use full backrefs for extent pointers in tree block.
890 	 *
891 	 * If a tree block is been relocating
892 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
893 	 * use full backrefs for extent pointers in tree block.
894 	 * The reason for this is some operations (such as drop tree)
895 	 * are only allowed for blocks use full backrefs.
896 	 */
897 
898 	if (btrfs_block_can_be_shared(root, buf)) {
899 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
900 					       btrfs_header_level(buf), 1,
901 					       &refs, &flags);
902 		if (ret)
903 			return ret;
904 		if (refs == 0) {
905 			ret = -EROFS;
906 			btrfs_handle_fs_error(fs_info, ret, NULL);
907 			return ret;
908 		}
909 	} else {
910 		refs = 1;
911 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
912 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
913 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
914 		else
915 			flags = 0;
916 	}
917 
918 	owner = btrfs_header_owner(buf);
919 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
920 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
921 
922 	if (refs > 1) {
923 		if ((owner == root->root_key.objectid ||
924 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
925 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
926 			ret = btrfs_inc_ref(trans, root, buf, 1);
927 			if (ret)
928 				return ret;
929 
930 			if (root->root_key.objectid ==
931 			    BTRFS_TREE_RELOC_OBJECTID) {
932 				ret = btrfs_dec_ref(trans, root, buf, 0);
933 				if (ret)
934 					return ret;
935 				ret = btrfs_inc_ref(trans, root, cow, 1);
936 				if (ret)
937 					return ret;
938 			}
939 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
940 		} else {
941 
942 			if (root->root_key.objectid ==
943 			    BTRFS_TREE_RELOC_OBJECTID)
944 				ret = btrfs_inc_ref(trans, root, cow, 1);
945 			else
946 				ret = btrfs_inc_ref(trans, root, cow, 0);
947 			if (ret)
948 				return ret;
949 		}
950 		if (new_flags != 0) {
951 			int level = btrfs_header_level(buf);
952 
953 			ret = btrfs_set_disk_extent_flags(trans, fs_info,
954 							  buf->start,
955 							  buf->len,
956 							  new_flags, level, 0);
957 			if (ret)
958 				return ret;
959 		}
960 	} else {
961 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
962 			if (root->root_key.objectid ==
963 			    BTRFS_TREE_RELOC_OBJECTID)
964 				ret = btrfs_inc_ref(trans, root, cow, 1);
965 			else
966 				ret = btrfs_inc_ref(trans, root, cow, 0);
967 			if (ret)
968 				return ret;
969 			ret = btrfs_dec_ref(trans, root, buf, 1);
970 			if (ret)
971 				return ret;
972 		}
973 		clean_tree_block(fs_info, buf);
974 		*last_ref = 1;
975 	}
976 	return 0;
977 }
978 
979 static struct extent_buffer *alloc_tree_block_no_bg_flush(
980 					  struct btrfs_trans_handle *trans,
981 					  struct btrfs_root *root,
982 					  u64 parent_start,
983 					  const struct btrfs_disk_key *disk_key,
984 					  int level,
985 					  u64 hint,
986 					  u64 empty_size)
987 {
988 	struct btrfs_fs_info *fs_info = root->fs_info;
989 	struct extent_buffer *ret;
990 
991 	/*
992 	 * If we are COWing a node/leaf from the extent, chunk, device or free
993 	 * space trees, make sure that we do not finish block group creation of
994 	 * pending block groups. We do this to avoid a deadlock.
995 	 * COWing can result in allocation of a new chunk, and flushing pending
996 	 * block groups (btrfs_create_pending_block_groups()) can be triggered
997 	 * when finishing allocation of a new chunk. Creation of a pending block
998 	 * group modifies the extent, chunk, device and free space trees,
999 	 * therefore we could deadlock with ourselves since we are holding a
1000 	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
1001 	 * try to COW later.
1002 	 * For similar reasons, we also need to delay flushing pending block
1003 	 * groups when splitting a leaf or node, from one of those trees, since
1004 	 * we are holding a write lock on it and its parent or when inserting a
1005 	 * new root node for one of those trees.
1006 	 */
1007 	if (root == fs_info->extent_root ||
1008 	    root == fs_info->chunk_root ||
1009 	    root == fs_info->dev_root ||
1010 	    root == fs_info->free_space_root)
1011 		trans->can_flush_pending_bgs = false;
1012 
1013 	ret = btrfs_alloc_tree_block(trans, root, parent_start,
1014 				     root->root_key.objectid, disk_key, level,
1015 				     hint, empty_size);
1016 	trans->can_flush_pending_bgs = true;
1017 
1018 	return ret;
1019 }
1020 
1021 /*
1022  * does the dirty work in cow of a single block.  The parent block (if
1023  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1024  * dirty and returned locked.  If you modify the block it needs to be marked
1025  * dirty again.
1026  *
1027  * search_start -- an allocation hint for the new block
1028  *
1029  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1030  * bytes the allocator should try to find free next to the block it returns.
1031  * This is just a hint and may be ignored by the allocator.
1032  */
1033 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1034 			     struct btrfs_root *root,
1035 			     struct extent_buffer *buf,
1036 			     struct extent_buffer *parent, int parent_slot,
1037 			     struct extent_buffer **cow_ret,
1038 			     u64 search_start, u64 empty_size)
1039 {
1040 	struct btrfs_fs_info *fs_info = root->fs_info;
1041 	struct btrfs_disk_key disk_key;
1042 	struct extent_buffer *cow;
1043 	int level, ret;
1044 	int last_ref = 0;
1045 	int unlock_orig = 0;
1046 	u64 parent_start = 0;
1047 
1048 	if (*cow_ret == buf)
1049 		unlock_orig = 1;
1050 
1051 	btrfs_assert_tree_locked(buf);
1052 
1053 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1054 		trans->transid != fs_info->running_transaction->transid);
1055 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1056 		trans->transid != root->last_trans);
1057 
1058 	level = btrfs_header_level(buf);
1059 
1060 	if (level == 0)
1061 		btrfs_item_key(buf, &disk_key, 0);
1062 	else
1063 		btrfs_node_key(buf, &disk_key, 0);
1064 
1065 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1066 		parent_start = parent->start;
1067 
1068 	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1069 					   level, search_start, empty_size);
1070 	if (IS_ERR(cow))
1071 		return PTR_ERR(cow);
1072 
1073 	/* cow is set to blocking by btrfs_init_new_buffer */
1074 
1075 	copy_extent_buffer_full(cow, buf);
1076 	btrfs_set_header_bytenr(cow, cow->start);
1077 	btrfs_set_header_generation(cow, trans->transid);
1078 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1079 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1080 				     BTRFS_HEADER_FLAG_RELOC);
1081 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1082 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1083 	else
1084 		btrfs_set_header_owner(cow, root->root_key.objectid);
1085 
1086 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1087 
1088 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1089 	if (ret) {
1090 		btrfs_abort_transaction(trans, ret);
1091 		return ret;
1092 	}
1093 
1094 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1095 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1096 		if (ret) {
1097 			btrfs_abort_transaction(trans, ret);
1098 			return ret;
1099 		}
1100 	}
1101 
1102 	if (buf == root->node) {
1103 		WARN_ON(parent && parent != buf);
1104 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1105 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1106 			parent_start = buf->start;
1107 
1108 		extent_buffer_get(cow);
1109 		ret = tree_mod_log_insert_root(root->node, cow, 1);
1110 		BUG_ON(ret < 0);
1111 		rcu_assign_pointer(root->node, cow);
1112 
1113 		btrfs_free_tree_block(trans, root, buf, parent_start,
1114 				      last_ref);
1115 		free_extent_buffer(buf);
1116 		add_root_to_dirty_list(root);
1117 	} else {
1118 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1119 		tree_mod_log_insert_key(parent, parent_slot,
1120 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1121 		btrfs_set_node_blockptr(parent, parent_slot,
1122 					cow->start);
1123 		btrfs_set_node_ptr_generation(parent, parent_slot,
1124 					      trans->transid);
1125 		btrfs_mark_buffer_dirty(parent);
1126 		if (last_ref) {
1127 			ret = tree_mod_log_free_eb(buf);
1128 			if (ret) {
1129 				btrfs_abort_transaction(trans, ret);
1130 				return ret;
1131 			}
1132 		}
1133 		btrfs_free_tree_block(trans, root, buf, parent_start,
1134 				      last_ref);
1135 	}
1136 	if (unlock_orig)
1137 		btrfs_tree_unlock(buf);
1138 	free_extent_buffer_stale(buf);
1139 	btrfs_mark_buffer_dirty(cow);
1140 	*cow_ret = cow;
1141 	return 0;
1142 }
1143 
1144 /*
1145  * returns the logical address of the oldest predecessor of the given root.
1146  * entries older than time_seq are ignored.
1147  */
1148 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1149 		struct extent_buffer *eb_root, u64 time_seq)
1150 {
1151 	struct tree_mod_elem *tm;
1152 	struct tree_mod_elem *found = NULL;
1153 	u64 root_logical = eb_root->start;
1154 	int looped = 0;
1155 
1156 	if (!time_seq)
1157 		return NULL;
1158 
1159 	/*
1160 	 * the very last operation that's logged for a root is the
1161 	 * replacement operation (if it is replaced at all). this has
1162 	 * the logical address of the *new* root, making it the very
1163 	 * first operation that's logged for this root.
1164 	 */
1165 	while (1) {
1166 		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1167 						time_seq);
1168 		if (!looped && !tm)
1169 			return NULL;
1170 		/*
1171 		 * if there are no tree operation for the oldest root, we simply
1172 		 * return it. this should only happen if that (old) root is at
1173 		 * level 0.
1174 		 */
1175 		if (!tm)
1176 			break;
1177 
1178 		/*
1179 		 * if there's an operation that's not a root replacement, we
1180 		 * found the oldest version of our root. normally, we'll find a
1181 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1182 		 */
1183 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1184 			break;
1185 
1186 		found = tm;
1187 		root_logical = tm->old_root.logical;
1188 		looped = 1;
1189 	}
1190 
1191 	/* if there's no old root to return, return what we found instead */
1192 	if (!found)
1193 		found = tm;
1194 
1195 	return found;
1196 }
1197 
1198 /*
1199  * tm is a pointer to the first operation to rewind within eb. then, all
1200  * previous operations will be rewound (until we reach something older than
1201  * time_seq).
1202  */
1203 static void
1204 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1205 		      u64 time_seq, struct tree_mod_elem *first_tm)
1206 {
1207 	u32 n;
1208 	struct rb_node *next;
1209 	struct tree_mod_elem *tm = first_tm;
1210 	unsigned long o_dst;
1211 	unsigned long o_src;
1212 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1213 
1214 	n = btrfs_header_nritems(eb);
1215 	read_lock(&fs_info->tree_mod_log_lock);
1216 	while (tm && tm->seq >= time_seq) {
1217 		/*
1218 		 * all the operations are recorded with the operator used for
1219 		 * the modification. as we're going backwards, we do the
1220 		 * opposite of each operation here.
1221 		 */
1222 		switch (tm->op) {
1223 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1224 			BUG_ON(tm->slot < n);
1225 			/* Fallthrough */
1226 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1227 		case MOD_LOG_KEY_REMOVE:
1228 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1229 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1230 			btrfs_set_node_ptr_generation(eb, tm->slot,
1231 						      tm->generation);
1232 			n++;
1233 			break;
1234 		case MOD_LOG_KEY_REPLACE:
1235 			BUG_ON(tm->slot >= n);
1236 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1237 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1238 			btrfs_set_node_ptr_generation(eb, tm->slot,
1239 						      tm->generation);
1240 			break;
1241 		case MOD_LOG_KEY_ADD:
1242 			/* if a move operation is needed it's in the log */
1243 			n--;
1244 			break;
1245 		case MOD_LOG_MOVE_KEYS:
1246 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1247 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1248 			memmove_extent_buffer(eb, o_dst, o_src,
1249 					      tm->move.nr_items * p_size);
1250 			break;
1251 		case MOD_LOG_ROOT_REPLACE:
1252 			/*
1253 			 * this operation is special. for roots, this must be
1254 			 * handled explicitly before rewinding.
1255 			 * for non-roots, this operation may exist if the node
1256 			 * was a root: root A -> child B; then A gets empty and
1257 			 * B is promoted to the new root. in the mod log, we'll
1258 			 * have a root-replace operation for B, a tree block
1259 			 * that is no root. we simply ignore that operation.
1260 			 */
1261 			break;
1262 		}
1263 		next = rb_next(&tm->node);
1264 		if (!next)
1265 			break;
1266 		tm = rb_entry(next, struct tree_mod_elem, node);
1267 		if (tm->logical != first_tm->logical)
1268 			break;
1269 	}
1270 	read_unlock(&fs_info->tree_mod_log_lock);
1271 	btrfs_set_header_nritems(eb, n);
1272 }
1273 
1274 /*
1275  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1276  * is returned. If rewind operations happen, a fresh buffer is returned. The
1277  * returned buffer is always read-locked. If the returned buffer is not the
1278  * input buffer, the lock on the input buffer is released and the input buffer
1279  * is freed (its refcount is decremented).
1280  */
1281 static struct extent_buffer *
1282 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1283 		    struct extent_buffer *eb, u64 time_seq)
1284 {
1285 	struct extent_buffer *eb_rewin;
1286 	struct tree_mod_elem *tm;
1287 
1288 	if (!time_seq)
1289 		return eb;
1290 
1291 	if (btrfs_header_level(eb) == 0)
1292 		return eb;
1293 
1294 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1295 	if (!tm)
1296 		return eb;
1297 
1298 	btrfs_set_path_blocking(path);
1299 	btrfs_set_lock_blocking_read(eb);
1300 
1301 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1302 		BUG_ON(tm->slot != 0);
1303 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1304 		if (!eb_rewin) {
1305 			btrfs_tree_read_unlock_blocking(eb);
1306 			free_extent_buffer(eb);
1307 			return NULL;
1308 		}
1309 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1310 		btrfs_set_header_backref_rev(eb_rewin,
1311 					     btrfs_header_backref_rev(eb));
1312 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1313 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1314 	} else {
1315 		eb_rewin = btrfs_clone_extent_buffer(eb);
1316 		if (!eb_rewin) {
1317 			btrfs_tree_read_unlock_blocking(eb);
1318 			free_extent_buffer(eb);
1319 			return NULL;
1320 		}
1321 	}
1322 
1323 	btrfs_tree_read_unlock_blocking(eb);
1324 	free_extent_buffer(eb);
1325 
1326 	btrfs_tree_read_lock(eb_rewin);
1327 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1328 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1329 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1330 
1331 	return eb_rewin;
1332 }
1333 
1334 /*
1335  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1336  * value. If there are no changes, the current root->root_node is returned. If
1337  * anything changed in between, there's a fresh buffer allocated on which the
1338  * rewind operations are done. In any case, the returned buffer is read locked.
1339  * Returns NULL on error (with no locks held).
1340  */
1341 static inline struct extent_buffer *
1342 get_old_root(struct btrfs_root *root, u64 time_seq)
1343 {
1344 	struct btrfs_fs_info *fs_info = root->fs_info;
1345 	struct tree_mod_elem *tm;
1346 	struct extent_buffer *eb = NULL;
1347 	struct extent_buffer *eb_root;
1348 	struct extent_buffer *old;
1349 	struct tree_mod_root *old_root = NULL;
1350 	u64 old_generation = 0;
1351 	u64 logical;
1352 	int level;
1353 
1354 	eb_root = btrfs_read_lock_root_node(root);
1355 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1356 	if (!tm)
1357 		return eb_root;
1358 
1359 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1360 		old_root = &tm->old_root;
1361 		old_generation = tm->generation;
1362 		logical = old_root->logical;
1363 		level = old_root->level;
1364 	} else {
1365 		logical = eb_root->start;
1366 		level = btrfs_header_level(eb_root);
1367 	}
1368 
1369 	tm = tree_mod_log_search(fs_info, logical, time_seq);
1370 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1371 		btrfs_tree_read_unlock(eb_root);
1372 		free_extent_buffer(eb_root);
1373 		old = read_tree_block(fs_info, logical, 0, level, NULL);
1374 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1375 			if (!IS_ERR(old))
1376 				free_extent_buffer(old);
1377 			btrfs_warn(fs_info,
1378 				   "failed to read tree block %llu from get_old_root",
1379 				   logical);
1380 		} else {
1381 			eb = btrfs_clone_extent_buffer(old);
1382 			free_extent_buffer(old);
1383 		}
1384 	} else if (old_root) {
1385 		btrfs_tree_read_unlock(eb_root);
1386 		free_extent_buffer(eb_root);
1387 		eb = alloc_dummy_extent_buffer(fs_info, logical);
1388 	} else {
1389 		btrfs_set_lock_blocking_read(eb_root);
1390 		eb = btrfs_clone_extent_buffer(eb_root);
1391 		btrfs_tree_read_unlock_blocking(eb_root);
1392 		free_extent_buffer(eb_root);
1393 	}
1394 
1395 	if (!eb)
1396 		return NULL;
1397 	btrfs_tree_read_lock(eb);
1398 	if (old_root) {
1399 		btrfs_set_header_bytenr(eb, eb->start);
1400 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1401 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1402 		btrfs_set_header_level(eb, old_root->level);
1403 		btrfs_set_header_generation(eb, old_generation);
1404 	}
1405 	if (tm)
1406 		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1407 	else
1408 		WARN_ON(btrfs_header_level(eb) != 0);
1409 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1410 
1411 	return eb;
1412 }
1413 
1414 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1415 {
1416 	struct tree_mod_elem *tm;
1417 	int level;
1418 	struct extent_buffer *eb_root = btrfs_root_node(root);
1419 
1420 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1421 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1422 		level = tm->old_root.level;
1423 	} else {
1424 		level = btrfs_header_level(eb_root);
1425 	}
1426 	free_extent_buffer(eb_root);
1427 
1428 	return level;
1429 }
1430 
1431 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1432 				   struct btrfs_root *root,
1433 				   struct extent_buffer *buf)
1434 {
1435 	if (btrfs_is_testing(root->fs_info))
1436 		return 0;
1437 
1438 	/* Ensure we can see the FORCE_COW bit */
1439 	smp_mb__before_atomic();
1440 
1441 	/*
1442 	 * We do not need to cow a block if
1443 	 * 1) this block is not created or changed in this transaction;
1444 	 * 2) this block does not belong to TREE_RELOC tree;
1445 	 * 3) the root is not forced COW.
1446 	 *
1447 	 * What is forced COW:
1448 	 *    when we create snapshot during committing the transaction,
1449 	 *    after we've finished copying src root, we must COW the shared
1450 	 *    block to ensure the metadata consistency.
1451 	 */
1452 	if (btrfs_header_generation(buf) == trans->transid &&
1453 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1454 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1455 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1456 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1457 		return 0;
1458 	return 1;
1459 }
1460 
1461 /*
1462  * cows a single block, see __btrfs_cow_block for the real work.
1463  * This version of it has extra checks so that a block isn't COWed more than
1464  * once per transaction, as long as it hasn't been written yet
1465  */
1466 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1467 		    struct btrfs_root *root, struct extent_buffer *buf,
1468 		    struct extent_buffer *parent, int parent_slot,
1469 		    struct extent_buffer **cow_ret)
1470 {
1471 	struct btrfs_fs_info *fs_info = root->fs_info;
1472 	u64 search_start;
1473 	int ret;
1474 
1475 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1476 		btrfs_err(fs_info,
1477 			"COW'ing blocks on a fs root that's being dropped");
1478 
1479 	if (trans->transaction != fs_info->running_transaction)
1480 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1481 		       trans->transid,
1482 		       fs_info->running_transaction->transid);
1483 
1484 	if (trans->transid != fs_info->generation)
1485 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1486 		       trans->transid, fs_info->generation);
1487 
1488 	if (!should_cow_block(trans, root, buf)) {
1489 		trans->dirty = true;
1490 		*cow_ret = buf;
1491 		return 0;
1492 	}
1493 
1494 	search_start = buf->start & ~((u64)SZ_1G - 1);
1495 
1496 	if (parent)
1497 		btrfs_set_lock_blocking_write(parent);
1498 	btrfs_set_lock_blocking_write(buf);
1499 
1500 	/*
1501 	 * Before CoWing this block for later modification, check if it's
1502 	 * the subtree root and do the delayed subtree trace if needed.
1503 	 *
1504 	 * Also We don't care about the error, as it's handled internally.
1505 	 */
1506 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1507 	ret = __btrfs_cow_block(trans, root, buf, parent,
1508 				 parent_slot, cow_ret, search_start, 0);
1509 
1510 	trace_btrfs_cow_block(root, buf, *cow_ret);
1511 
1512 	return ret;
1513 }
1514 
1515 /*
1516  * helper function for defrag to decide if two blocks pointed to by a
1517  * node are actually close by
1518  */
1519 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1520 {
1521 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1522 		return 1;
1523 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1524 		return 1;
1525 	return 0;
1526 }
1527 
1528 /*
1529  * compare two keys in a memcmp fashion
1530  */
1531 static int comp_keys(const struct btrfs_disk_key *disk,
1532 		     const struct btrfs_key *k2)
1533 {
1534 	struct btrfs_key k1;
1535 
1536 	btrfs_disk_key_to_cpu(&k1, disk);
1537 
1538 	return btrfs_comp_cpu_keys(&k1, k2);
1539 }
1540 
1541 /*
1542  * same as comp_keys only with two btrfs_key's
1543  */
1544 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1545 {
1546 	if (k1->objectid > k2->objectid)
1547 		return 1;
1548 	if (k1->objectid < k2->objectid)
1549 		return -1;
1550 	if (k1->type > k2->type)
1551 		return 1;
1552 	if (k1->type < k2->type)
1553 		return -1;
1554 	if (k1->offset > k2->offset)
1555 		return 1;
1556 	if (k1->offset < k2->offset)
1557 		return -1;
1558 	return 0;
1559 }
1560 
1561 /*
1562  * this is used by the defrag code to go through all the
1563  * leaves pointed to by a node and reallocate them so that
1564  * disk order is close to key order
1565  */
1566 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1567 		       struct btrfs_root *root, struct extent_buffer *parent,
1568 		       int start_slot, u64 *last_ret,
1569 		       struct btrfs_key *progress)
1570 {
1571 	struct btrfs_fs_info *fs_info = root->fs_info;
1572 	struct extent_buffer *cur;
1573 	u64 blocknr;
1574 	u64 gen;
1575 	u64 search_start = *last_ret;
1576 	u64 last_block = 0;
1577 	u64 other;
1578 	u32 parent_nritems;
1579 	int end_slot;
1580 	int i;
1581 	int err = 0;
1582 	int parent_level;
1583 	int uptodate;
1584 	u32 blocksize;
1585 	int progress_passed = 0;
1586 	struct btrfs_disk_key disk_key;
1587 
1588 	parent_level = btrfs_header_level(parent);
1589 
1590 	WARN_ON(trans->transaction != fs_info->running_transaction);
1591 	WARN_ON(trans->transid != fs_info->generation);
1592 
1593 	parent_nritems = btrfs_header_nritems(parent);
1594 	blocksize = fs_info->nodesize;
1595 	end_slot = parent_nritems - 1;
1596 
1597 	if (parent_nritems <= 1)
1598 		return 0;
1599 
1600 	btrfs_set_lock_blocking_write(parent);
1601 
1602 	for (i = start_slot; i <= end_slot; i++) {
1603 		struct btrfs_key first_key;
1604 		int close = 1;
1605 
1606 		btrfs_node_key(parent, &disk_key, i);
1607 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1608 			continue;
1609 
1610 		progress_passed = 1;
1611 		blocknr = btrfs_node_blockptr(parent, i);
1612 		gen = btrfs_node_ptr_generation(parent, i);
1613 		btrfs_node_key_to_cpu(parent, &first_key, i);
1614 		if (last_block == 0)
1615 			last_block = blocknr;
1616 
1617 		if (i > 0) {
1618 			other = btrfs_node_blockptr(parent, i - 1);
1619 			close = close_blocks(blocknr, other, blocksize);
1620 		}
1621 		if (!close && i < end_slot) {
1622 			other = btrfs_node_blockptr(parent, i + 1);
1623 			close = close_blocks(blocknr, other, blocksize);
1624 		}
1625 		if (close) {
1626 			last_block = blocknr;
1627 			continue;
1628 		}
1629 
1630 		cur = find_extent_buffer(fs_info, blocknr);
1631 		if (cur)
1632 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1633 		else
1634 			uptodate = 0;
1635 		if (!cur || !uptodate) {
1636 			if (!cur) {
1637 				cur = read_tree_block(fs_info, blocknr, gen,
1638 						      parent_level - 1,
1639 						      &first_key);
1640 				if (IS_ERR(cur)) {
1641 					return PTR_ERR(cur);
1642 				} else if (!extent_buffer_uptodate(cur)) {
1643 					free_extent_buffer(cur);
1644 					return -EIO;
1645 				}
1646 			} else if (!uptodate) {
1647 				err = btrfs_read_buffer(cur, gen,
1648 						parent_level - 1,&first_key);
1649 				if (err) {
1650 					free_extent_buffer(cur);
1651 					return err;
1652 				}
1653 			}
1654 		}
1655 		if (search_start == 0)
1656 			search_start = last_block;
1657 
1658 		btrfs_tree_lock(cur);
1659 		btrfs_set_lock_blocking_write(cur);
1660 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1661 					&cur, search_start,
1662 					min(16 * blocksize,
1663 					    (end_slot - i) * blocksize));
1664 		if (err) {
1665 			btrfs_tree_unlock(cur);
1666 			free_extent_buffer(cur);
1667 			break;
1668 		}
1669 		search_start = cur->start;
1670 		last_block = cur->start;
1671 		*last_ret = search_start;
1672 		btrfs_tree_unlock(cur);
1673 		free_extent_buffer(cur);
1674 	}
1675 	return err;
1676 }
1677 
1678 /*
1679  * search for key in the extent_buffer.  The items start at offset p,
1680  * and they are item_size apart.  There are 'max' items in p.
1681  *
1682  * the slot in the array is returned via slot, and it points to
1683  * the place where you would insert key if it is not found in
1684  * the array.
1685  *
1686  * slot may point to max if the key is bigger than all of the keys
1687  */
1688 static noinline int generic_bin_search(struct extent_buffer *eb,
1689 				       unsigned long p, int item_size,
1690 				       const struct btrfs_key *key,
1691 				       int max, int *slot)
1692 {
1693 	int low = 0;
1694 	int high = max;
1695 	int mid;
1696 	int ret;
1697 	struct btrfs_disk_key *tmp = NULL;
1698 	struct btrfs_disk_key unaligned;
1699 	unsigned long offset;
1700 	char *kaddr = NULL;
1701 	unsigned long map_start = 0;
1702 	unsigned long map_len = 0;
1703 	int err;
1704 
1705 	if (low > high) {
1706 		btrfs_err(eb->fs_info,
1707 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1708 			  __func__, low, high, eb->start,
1709 			  btrfs_header_owner(eb), btrfs_header_level(eb));
1710 		return -EINVAL;
1711 	}
1712 
1713 	while (low < high) {
1714 		mid = (low + high) / 2;
1715 		offset = p + mid * item_size;
1716 
1717 		if (!kaddr || offset < map_start ||
1718 		    (offset + sizeof(struct btrfs_disk_key)) >
1719 		    map_start + map_len) {
1720 
1721 			err = map_private_extent_buffer(eb, offset,
1722 						sizeof(struct btrfs_disk_key),
1723 						&kaddr, &map_start, &map_len);
1724 
1725 			if (!err) {
1726 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1727 							map_start);
1728 			} else if (err == 1) {
1729 				read_extent_buffer(eb, &unaligned,
1730 						   offset, sizeof(unaligned));
1731 				tmp = &unaligned;
1732 			} else {
1733 				return err;
1734 			}
1735 
1736 		} else {
1737 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1738 							map_start);
1739 		}
1740 		ret = comp_keys(tmp, key);
1741 
1742 		if (ret < 0)
1743 			low = mid + 1;
1744 		else if (ret > 0)
1745 			high = mid;
1746 		else {
1747 			*slot = mid;
1748 			return 0;
1749 		}
1750 	}
1751 	*slot = low;
1752 	return 1;
1753 }
1754 
1755 /*
1756  * simple bin_search frontend that does the right thing for
1757  * leaves vs nodes
1758  */
1759 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1760 		     int level, int *slot)
1761 {
1762 	if (level == 0)
1763 		return generic_bin_search(eb,
1764 					  offsetof(struct btrfs_leaf, items),
1765 					  sizeof(struct btrfs_item),
1766 					  key, btrfs_header_nritems(eb),
1767 					  slot);
1768 	else
1769 		return generic_bin_search(eb,
1770 					  offsetof(struct btrfs_node, ptrs),
1771 					  sizeof(struct btrfs_key_ptr),
1772 					  key, btrfs_header_nritems(eb),
1773 					  slot);
1774 }
1775 
1776 static void root_add_used(struct btrfs_root *root, u32 size)
1777 {
1778 	spin_lock(&root->accounting_lock);
1779 	btrfs_set_root_used(&root->root_item,
1780 			    btrfs_root_used(&root->root_item) + size);
1781 	spin_unlock(&root->accounting_lock);
1782 }
1783 
1784 static void root_sub_used(struct btrfs_root *root, u32 size)
1785 {
1786 	spin_lock(&root->accounting_lock);
1787 	btrfs_set_root_used(&root->root_item,
1788 			    btrfs_root_used(&root->root_item) - size);
1789 	spin_unlock(&root->accounting_lock);
1790 }
1791 
1792 /* given a node and slot number, this reads the blocks it points to.  The
1793  * extent buffer is returned with a reference taken (but unlocked).
1794  */
1795 static noinline struct extent_buffer *
1796 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1797 	       int slot)
1798 {
1799 	int level = btrfs_header_level(parent);
1800 	struct extent_buffer *eb;
1801 	struct btrfs_key first_key;
1802 
1803 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1804 		return ERR_PTR(-ENOENT);
1805 
1806 	BUG_ON(level == 0);
1807 
1808 	btrfs_node_key_to_cpu(parent, &first_key, slot);
1809 	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1810 			     btrfs_node_ptr_generation(parent, slot),
1811 			     level - 1, &first_key);
1812 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1813 		free_extent_buffer(eb);
1814 		eb = ERR_PTR(-EIO);
1815 	}
1816 
1817 	return eb;
1818 }
1819 
1820 /*
1821  * node level balancing, used to make sure nodes are in proper order for
1822  * item deletion.  We balance from the top down, so we have to make sure
1823  * that a deletion won't leave an node completely empty later on.
1824  */
1825 static noinline int balance_level(struct btrfs_trans_handle *trans,
1826 			 struct btrfs_root *root,
1827 			 struct btrfs_path *path, int level)
1828 {
1829 	struct btrfs_fs_info *fs_info = root->fs_info;
1830 	struct extent_buffer *right = NULL;
1831 	struct extent_buffer *mid;
1832 	struct extent_buffer *left = NULL;
1833 	struct extent_buffer *parent = NULL;
1834 	int ret = 0;
1835 	int wret;
1836 	int pslot;
1837 	int orig_slot = path->slots[level];
1838 	u64 orig_ptr;
1839 
1840 	ASSERT(level > 0);
1841 
1842 	mid = path->nodes[level];
1843 
1844 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1845 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1846 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1847 
1848 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1849 
1850 	if (level < BTRFS_MAX_LEVEL - 1) {
1851 		parent = path->nodes[level + 1];
1852 		pslot = path->slots[level + 1];
1853 	}
1854 
1855 	/*
1856 	 * deal with the case where there is only one pointer in the root
1857 	 * by promoting the node below to a root
1858 	 */
1859 	if (!parent) {
1860 		struct extent_buffer *child;
1861 
1862 		if (btrfs_header_nritems(mid) != 1)
1863 			return 0;
1864 
1865 		/* promote the child to a root */
1866 		child = read_node_slot(fs_info, mid, 0);
1867 		if (IS_ERR(child)) {
1868 			ret = PTR_ERR(child);
1869 			btrfs_handle_fs_error(fs_info, ret, NULL);
1870 			goto enospc;
1871 		}
1872 
1873 		btrfs_tree_lock(child);
1874 		btrfs_set_lock_blocking_write(child);
1875 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1876 		if (ret) {
1877 			btrfs_tree_unlock(child);
1878 			free_extent_buffer(child);
1879 			goto enospc;
1880 		}
1881 
1882 		ret = tree_mod_log_insert_root(root->node, child, 1);
1883 		BUG_ON(ret < 0);
1884 		rcu_assign_pointer(root->node, child);
1885 
1886 		add_root_to_dirty_list(root);
1887 		btrfs_tree_unlock(child);
1888 
1889 		path->locks[level] = 0;
1890 		path->nodes[level] = NULL;
1891 		clean_tree_block(fs_info, mid);
1892 		btrfs_tree_unlock(mid);
1893 		/* once for the path */
1894 		free_extent_buffer(mid);
1895 
1896 		root_sub_used(root, mid->len);
1897 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1898 		/* once for the root ptr */
1899 		free_extent_buffer_stale(mid);
1900 		return 0;
1901 	}
1902 	if (btrfs_header_nritems(mid) >
1903 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1904 		return 0;
1905 
1906 	left = read_node_slot(fs_info, parent, pslot - 1);
1907 	if (IS_ERR(left))
1908 		left = NULL;
1909 
1910 	if (left) {
1911 		btrfs_tree_lock(left);
1912 		btrfs_set_lock_blocking_write(left);
1913 		wret = btrfs_cow_block(trans, root, left,
1914 				       parent, pslot - 1, &left);
1915 		if (wret) {
1916 			ret = wret;
1917 			goto enospc;
1918 		}
1919 	}
1920 
1921 	right = read_node_slot(fs_info, parent, pslot + 1);
1922 	if (IS_ERR(right))
1923 		right = NULL;
1924 
1925 	if (right) {
1926 		btrfs_tree_lock(right);
1927 		btrfs_set_lock_blocking_write(right);
1928 		wret = btrfs_cow_block(trans, root, right,
1929 				       parent, pslot + 1, &right);
1930 		if (wret) {
1931 			ret = wret;
1932 			goto enospc;
1933 		}
1934 	}
1935 
1936 	/* first, try to make some room in the middle buffer */
1937 	if (left) {
1938 		orig_slot += btrfs_header_nritems(left);
1939 		wret = push_node_left(trans, fs_info, left, mid, 1);
1940 		if (wret < 0)
1941 			ret = wret;
1942 	}
1943 
1944 	/*
1945 	 * then try to empty the right most buffer into the middle
1946 	 */
1947 	if (right) {
1948 		wret = push_node_left(trans, fs_info, mid, right, 1);
1949 		if (wret < 0 && wret != -ENOSPC)
1950 			ret = wret;
1951 		if (btrfs_header_nritems(right) == 0) {
1952 			clean_tree_block(fs_info, right);
1953 			btrfs_tree_unlock(right);
1954 			del_ptr(root, path, level + 1, pslot + 1);
1955 			root_sub_used(root, right->len);
1956 			btrfs_free_tree_block(trans, root, right, 0, 1);
1957 			free_extent_buffer_stale(right);
1958 			right = NULL;
1959 		} else {
1960 			struct btrfs_disk_key right_key;
1961 			btrfs_node_key(right, &right_key, 0);
1962 			ret = tree_mod_log_insert_key(parent, pslot + 1,
1963 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1964 			BUG_ON(ret < 0);
1965 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1966 			btrfs_mark_buffer_dirty(parent);
1967 		}
1968 	}
1969 	if (btrfs_header_nritems(mid) == 1) {
1970 		/*
1971 		 * we're not allowed to leave a node with one item in the
1972 		 * tree during a delete.  A deletion from lower in the tree
1973 		 * could try to delete the only pointer in this node.
1974 		 * So, pull some keys from the left.
1975 		 * There has to be a left pointer at this point because
1976 		 * otherwise we would have pulled some pointers from the
1977 		 * right
1978 		 */
1979 		if (!left) {
1980 			ret = -EROFS;
1981 			btrfs_handle_fs_error(fs_info, ret, NULL);
1982 			goto enospc;
1983 		}
1984 		wret = balance_node_right(trans, fs_info, mid, left);
1985 		if (wret < 0) {
1986 			ret = wret;
1987 			goto enospc;
1988 		}
1989 		if (wret == 1) {
1990 			wret = push_node_left(trans, fs_info, left, mid, 1);
1991 			if (wret < 0)
1992 				ret = wret;
1993 		}
1994 		BUG_ON(wret == 1);
1995 	}
1996 	if (btrfs_header_nritems(mid) == 0) {
1997 		clean_tree_block(fs_info, mid);
1998 		btrfs_tree_unlock(mid);
1999 		del_ptr(root, path, level + 1, pslot);
2000 		root_sub_used(root, mid->len);
2001 		btrfs_free_tree_block(trans, root, mid, 0, 1);
2002 		free_extent_buffer_stale(mid);
2003 		mid = NULL;
2004 	} else {
2005 		/* update the parent key to reflect our changes */
2006 		struct btrfs_disk_key mid_key;
2007 		btrfs_node_key(mid, &mid_key, 0);
2008 		ret = tree_mod_log_insert_key(parent, pslot,
2009 				MOD_LOG_KEY_REPLACE, GFP_NOFS);
2010 		BUG_ON(ret < 0);
2011 		btrfs_set_node_key(parent, &mid_key, pslot);
2012 		btrfs_mark_buffer_dirty(parent);
2013 	}
2014 
2015 	/* update the path */
2016 	if (left) {
2017 		if (btrfs_header_nritems(left) > orig_slot) {
2018 			extent_buffer_get(left);
2019 			/* left was locked after cow */
2020 			path->nodes[level] = left;
2021 			path->slots[level + 1] -= 1;
2022 			path->slots[level] = orig_slot;
2023 			if (mid) {
2024 				btrfs_tree_unlock(mid);
2025 				free_extent_buffer(mid);
2026 			}
2027 		} else {
2028 			orig_slot -= btrfs_header_nritems(left);
2029 			path->slots[level] = orig_slot;
2030 		}
2031 	}
2032 	/* double check we haven't messed things up */
2033 	if (orig_ptr !=
2034 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2035 		BUG();
2036 enospc:
2037 	if (right) {
2038 		btrfs_tree_unlock(right);
2039 		free_extent_buffer(right);
2040 	}
2041 	if (left) {
2042 		if (path->nodes[level] != left)
2043 			btrfs_tree_unlock(left);
2044 		free_extent_buffer(left);
2045 	}
2046 	return ret;
2047 }
2048 
2049 /* Node balancing for insertion.  Here we only split or push nodes around
2050  * when they are completely full.  This is also done top down, so we
2051  * have to be pessimistic.
2052  */
2053 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2054 					  struct btrfs_root *root,
2055 					  struct btrfs_path *path, int level)
2056 {
2057 	struct btrfs_fs_info *fs_info = root->fs_info;
2058 	struct extent_buffer *right = NULL;
2059 	struct extent_buffer *mid;
2060 	struct extent_buffer *left = NULL;
2061 	struct extent_buffer *parent = NULL;
2062 	int ret = 0;
2063 	int wret;
2064 	int pslot;
2065 	int orig_slot = path->slots[level];
2066 
2067 	if (level == 0)
2068 		return 1;
2069 
2070 	mid = path->nodes[level];
2071 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2072 
2073 	if (level < BTRFS_MAX_LEVEL - 1) {
2074 		parent = path->nodes[level + 1];
2075 		pslot = path->slots[level + 1];
2076 	}
2077 
2078 	if (!parent)
2079 		return 1;
2080 
2081 	left = read_node_slot(fs_info, parent, pslot - 1);
2082 	if (IS_ERR(left))
2083 		left = NULL;
2084 
2085 	/* first, try to make some room in the middle buffer */
2086 	if (left) {
2087 		u32 left_nr;
2088 
2089 		btrfs_tree_lock(left);
2090 		btrfs_set_lock_blocking_write(left);
2091 
2092 		left_nr = btrfs_header_nritems(left);
2093 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2094 			wret = 1;
2095 		} else {
2096 			ret = btrfs_cow_block(trans, root, left, parent,
2097 					      pslot - 1, &left);
2098 			if (ret)
2099 				wret = 1;
2100 			else {
2101 				wret = push_node_left(trans, fs_info,
2102 						      left, mid, 0);
2103 			}
2104 		}
2105 		if (wret < 0)
2106 			ret = wret;
2107 		if (wret == 0) {
2108 			struct btrfs_disk_key disk_key;
2109 			orig_slot += left_nr;
2110 			btrfs_node_key(mid, &disk_key, 0);
2111 			ret = tree_mod_log_insert_key(parent, pslot,
2112 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2113 			BUG_ON(ret < 0);
2114 			btrfs_set_node_key(parent, &disk_key, pslot);
2115 			btrfs_mark_buffer_dirty(parent);
2116 			if (btrfs_header_nritems(left) > orig_slot) {
2117 				path->nodes[level] = left;
2118 				path->slots[level + 1] -= 1;
2119 				path->slots[level] = orig_slot;
2120 				btrfs_tree_unlock(mid);
2121 				free_extent_buffer(mid);
2122 			} else {
2123 				orig_slot -=
2124 					btrfs_header_nritems(left);
2125 				path->slots[level] = orig_slot;
2126 				btrfs_tree_unlock(left);
2127 				free_extent_buffer(left);
2128 			}
2129 			return 0;
2130 		}
2131 		btrfs_tree_unlock(left);
2132 		free_extent_buffer(left);
2133 	}
2134 	right = read_node_slot(fs_info, parent, pslot + 1);
2135 	if (IS_ERR(right))
2136 		right = NULL;
2137 
2138 	/*
2139 	 * then try to empty the right most buffer into the middle
2140 	 */
2141 	if (right) {
2142 		u32 right_nr;
2143 
2144 		btrfs_tree_lock(right);
2145 		btrfs_set_lock_blocking_write(right);
2146 
2147 		right_nr = btrfs_header_nritems(right);
2148 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2149 			wret = 1;
2150 		} else {
2151 			ret = btrfs_cow_block(trans, root, right,
2152 					      parent, pslot + 1,
2153 					      &right);
2154 			if (ret)
2155 				wret = 1;
2156 			else {
2157 				wret = balance_node_right(trans, fs_info,
2158 							  right, mid);
2159 			}
2160 		}
2161 		if (wret < 0)
2162 			ret = wret;
2163 		if (wret == 0) {
2164 			struct btrfs_disk_key disk_key;
2165 
2166 			btrfs_node_key(right, &disk_key, 0);
2167 			ret = tree_mod_log_insert_key(parent, pslot + 1,
2168 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2169 			BUG_ON(ret < 0);
2170 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2171 			btrfs_mark_buffer_dirty(parent);
2172 
2173 			if (btrfs_header_nritems(mid) <= orig_slot) {
2174 				path->nodes[level] = right;
2175 				path->slots[level + 1] += 1;
2176 				path->slots[level] = orig_slot -
2177 					btrfs_header_nritems(mid);
2178 				btrfs_tree_unlock(mid);
2179 				free_extent_buffer(mid);
2180 			} else {
2181 				btrfs_tree_unlock(right);
2182 				free_extent_buffer(right);
2183 			}
2184 			return 0;
2185 		}
2186 		btrfs_tree_unlock(right);
2187 		free_extent_buffer(right);
2188 	}
2189 	return 1;
2190 }
2191 
2192 /*
2193  * readahead one full node of leaves, finding things that are close
2194  * to the block in 'slot', and triggering ra on them.
2195  */
2196 static void reada_for_search(struct btrfs_fs_info *fs_info,
2197 			     struct btrfs_path *path,
2198 			     int level, int slot, u64 objectid)
2199 {
2200 	struct extent_buffer *node;
2201 	struct btrfs_disk_key disk_key;
2202 	u32 nritems;
2203 	u64 search;
2204 	u64 target;
2205 	u64 nread = 0;
2206 	struct extent_buffer *eb;
2207 	u32 nr;
2208 	u32 blocksize;
2209 	u32 nscan = 0;
2210 
2211 	if (level != 1)
2212 		return;
2213 
2214 	if (!path->nodes[level])
2215 		return;
2216 
2217 	node = path->nodes[level];
2218 
2219 	search = btrfs_node_blockptr(node, slot);
2220 	blocksize = fs_info->nodesize;
2221 	eb = find_extent_buffer(fs_info, search);
2222 	if (eb) {
2223 		free_extent_buffer(eb);
2224 		return;
2225 	}
2226 
2227 	target = search;
2228 
2229 	nritems = btrfs_header_nritems(node);
2230 	nr = slot;
2231 
2232 	while (1) {
2233 		if (path->reada == READA_BACK) {
2234 			if (nr == 0)
2235 				break;
2236 			nr--;
2237 		} else if (path->reada == READA_FORWARD) {
2238 			nr++;
2239 			if (nr >= nritems)
2240 				break;
2241 		}
2242 		if (path->reada == READA_BACK && objectid) {
2243 			btrfs_node_key(node, &disk_key, nr);
2244 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2245 				break;
2246 		}
2247 		search = btrfs_node_blockptr(node, nr);
2248 		if ((search <= target && target - search <= 65536) ||
2249 		    (search > target && search - target <= 65536)) {
2250 			readahead_tree_block(fs_info, search);
2251 			nread += blocksize;
2252 		}
2253 		nscan++;
2254 		if ((nread > 65536 || nscan > 32))
2255 			break;
2256 	}
2257 }
2258 
2259 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2260 				       struct btrfs_path *path, int level)
2261 {
2262 	int slot;
2263 	int nritems;
2264 	struct extent_buffer *parent;
2265 	struct extent_buffer *eb;
2266 	u64 gen;
2267 	u64 block1 = 0;
2268 	u64 block2 = 0;
2269 
2270 	parent = path->nodes[level + 1];
2271 	if (!parent)
2272 		return;
2273 
2274 	nritems = btrfs_header_nritems(parent);
2275 	slot = path->slots[level + 1];
2276 
2277 	if (slot > 0) {
2278 		block1 = btrfs_node_blockptr(parent, slot - 1);
2279 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2280 		eb = find_extent_buffer(fs_info, block1);
2281 		/*
2282 		 * if we get -eagain from btrfs_buffer_uptodate, we
2283 		 * don't want to return eagain here.  That will loop
2284 		 * forever
2285 		 */
2286 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2287 			block1 = 0;
2288 		free_extent_buffer(eb);
2289 	}
2290 	if (slot + 1 < nritems) {
2291 		block2 = btrfs_node_blockptr(parent, slot + 1);
2292 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2293 		eb = find_extent_buffer(fs_info, block2);
2294 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2295 			block2 = 0;
2296 		free_extent_buffer(eb);
2297 	}
2298 
2299 	if (block1)
2300 		readahead_tree_block(fs_info, block1);
2301 	if (block2)
2302 		readahead_tree_block(fs_info, block2);
2303 }
2304 
2305 
2306 /*
2307  * when we walk down the tree, it is usually safe to unlock the higher layers
2308  * in the tree.  The exceptions are when our path goes through slot 0, because
2309  * operations on the tree might require changing key pointers higher up in the
2310  * tree.
2311  *
2312  * callers might also have set path->keep_locks, which tells this code to keep
2313  * the lock if the path points to the last slot in the block.  This is part of
2314  * walking through the tree, and selecting the next slot in the higher block.
2315  *
2316  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2317  * if lowest_unlock is 1, level 0 won't be unlocked
2318  */
2319 static noinline void unlock_up(struct btrfs_path *path, int level,
2320 			       int lowest_unlock, int min_write_lock_level,
2321 			       int *write_lock_level)
2322 {
2323 	int i;
2324 	int skip_level = level;
2325 	int no_skips = 0;
2326 	struct extent_buffer *t;
2327 
2328 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2329 		if (!path->nodes[i])
2330 			break;
2331 		if (!path->locks[i])
2332 			break;
2333 		if (!no_skips && path->slots[i] == 0) {
2334 			skip_level = i + 1;
2335 			continue;
2336 		}
2337 		if (!no_skips && path->keep_locks) {
2338 			u32 nritems;
2339 			t = path->nodes[i];
2340 			nritems = btrfs_header_nritems(t);
2341 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2342 				skip_level = i + 1;
2343 				continue;
2344 			}
2345 		}
2346 		if (skip_level < i && i >= lowest_unlock)
2347 			no_skips = 1;
2348 
2349 		t = path->nodes[i];
2350 		if (i >= lowest_unlock && i > skip_level) {
2351 			btrfs_tree_unlock_rw(t, path->locks[i]);
2352 			path->locks[i] = 0;
2353 			if (write_lock_level &&
2354 			    i > min_write_lock_level &&
2355 			    i <= *write_lock_level) {
2356 				*write_lock_level = i - 1;
2357 			}
2358 		}
2359 	}
2360 }
2361 
2362 /*
2363  * This releases any locks held in the path starting at level and
2364  * going all the way up to the root.
2365  *
2366  * btrfs_search_slot will keep the lock held on higher nodes in a few
2367  * corner cases, such as COW of the block at slot zero in the node.  This
2368  * ignores those rules, and it should only be called when there are no
2369  * more updates to be done higher up in the tree.
2370  */
2371 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2372 {
2373 	int i;
2374 
2375 	if (path->keep_locks)
2376 		return;
2377 
2378 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2379 		if (!path->nodes[i])
2380 			continue;
2381 		if (!path->locks[i])
2382 			continue;
2383 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2384 		path->locks[i] = 0;
2385 	}
2386 }
2387 
2388 /*
2389  * helper function for btrfs_search_slot.  The goal is to find a block
2390  * in cache without setting the path to blocking.  If we find the block
2391  * we return zero and the path is unchanged.
2392  *
2393  * If we can't find the block, we set the path blocking and do some
2394  * reada.  -EAGAIN is returned and the search must be repeated.
2395  */
2396 static int
2397 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2398 		      struct extent_buffer **eb_ret, int level, int slot,
2399 		      const struct btrfs_key *key)
2400 {
2401 	struct btrfs_fs_info *fs_info = root->fs_info;
2402 	u64 blocknr;
2403 	u64 gen;
2404 	struct extent_buffer *b = *eb_ret;
2405 	struct extent_buffer *tmp;
2406 	struct btrfs_key first_key;
2407 	int ret;
2408 	int parent_level;
2409 
2410 	blocknr = btrfs_node_blockptr(b, slot);
2411 	gen = btrfs_node_ptr_generation(b, slot);
2412 	parent_level = btrfs_header_level(b);
2413 	btrfs_node_key_to_cpu(b, &first_key, slot);
2414 
2415 	tmp = find_extent_buffer(fs_info, blocknr);
2416 	if (tmp) {
2417 		/* first we do an atomic uptodate check */
2418 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2419 			*eb_ret = tmp;
2420 			return 0;
2421 		}
2422 
2423 		/* the pages were up to date, but we failed
2424 		 * the generation number check.  Do a full
2425 		 * read for the generation number that is correct.
2426 		 * We must do this without dropping locks so
2427 		 * we can trust our generation number
2428 		 */
2429 		btrfs_set_path_blocking(p);
2430 
2431 		/* now we're allowed to do a blocking uptodate check */
2432 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2433 		if (!ret) {
2434 			*eb_ret = tmp;
2435 			return 0;
2436 		}
2437 		free_extent_buffer(tmp);
2438 		btrfs_release_path(p);
2439 		return -EIO;
2440 	}
2441 
2442 	/*
2443 	 * reduce lock contention at high levels
2444 	 * of the btree by dropping locks before
2445 	 * we read.  Don't release the lock on the current
2446 	 * level because we need to walk this node to figure
2447 	 * out which blocks to read.
2448 	 */
2449 	btrfs_unlock_up_safe(p, level + 1);
2450 	btrfs_set_path_blocking(p);
2451 
2452 	if (p->reada != READA_NONE)
2453 		reada_for_search(fs_info, p, level, slot, key->objectid);
2454 
2455 	ret = -EAGAIN;
2456 	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2457 			      &first_key);
2458 	if (!IS_ERR(tmp)) {
2459 		/*
2460 		 * If the read above didn't mark this buffer up to date,
2461 		 * it will never end up being up to date.  Set ret to EIO now
2462 		 * and give up so that our caller doesn't loop forever
2463 		 * on our EAGAINs.
2464 		 */
2465 		if (!extent_buffer_uptodate(tmp))
2466 			ret = -EIO;
2467 		free_extent_buffer(tmp);
2468 	} else {
2469 		ret = PTR_ERR(tmp);
2470 	}
2471 
2472 	btrfs_release_path(p);
2473 	return ret;
2474 }
2475 
2476 /*
2477  * helper function for btrfs_search_slot.  This does all of the checks
2478  * for node-level blocks and does any balancing required based on
2479  * the ins_len.
2480  *
2481  * If no extra work was required, zero is returned.  If we had to
2482  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2483  * start over
2484  */
2485 static int
2486 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2487 		       struct btrfs_root *root, struct btrfs_path *p,
2488 		       struct extent_buffer *b, int level, int ins_len,
2489 		       int *write_lock_level)
2490 {
2491 	struct btrfs_fs_info *fs_info = root->fs_info;
2492 	int ret;
2493 
2494 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2495 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2496 		int sret;
2497 
2498 		if (*write_lock_level < level + 1) {
2499 			*write_lock_level = level + 1;
2500 			btrfs_release_path(p);
2501 			goto again;
2502 		}
2503 
2504 		btrfs_set_path_blocking(p);
2505 		reada_for_balance(fs_info, p, level);
2506 		sret = split_node(trans, root, p, level);
2507 
2508 		BUG_ON(sret > 0);
2509 		if (sret) {
2510 			ret = sret;
2511 			goto done;
2512 		}
2513 		b = p->nodes[level];
2514 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2515 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2516 		int sret;
2517 
2518 		if (*write_lock_level < level + 1) {
2519 			*write_lock_level = level + 1;
2520 			btrfs_release_path(p);
2521 			goto again;
2522 		}
2523 
2524 		btrfs_set_path_blocking(p);
2525 		reada_for_balance(fs_info, p, level);
2526 		sret = balance_level(trans, root, p, level);
2527 
2528 		if (sret) {
2529 			ret = sret;
2530 			goto done;
2531 		}
2532 		b = p->nodes[level];
2533 		if (!b) {
2534 			btrfs_release_path(p);
2535 			goto again;
2536 		}
2537 		BUG_ON(btrfs_header_nritems(b) == 1);
2538 	}
2539 	return 0;
2540 
2541 again:
2542 	ret = -EAGAIN;
2543 done:
2544 	return ret;
2545 }
2546 
2547 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2548 		      int level, int *prev_cmp, int *slot)
2549 {
2550 	if (*prev_cmp != 0) {
2551 		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2552 		return *prev_cmp;
2553 	}
2554 
2555 	*slot = 0;
2556 
2557 	return 0;
2558 }
2559 
2560 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2561 		u64 iobjectid, u64 ioff, u8 key_type,
2562 		struct btrfs_key *found_key)
2563 {
2564 	int ret;
2565 	struct btrfs_key key;
2566 	struct extent_buffer *eb;
2567 
2568 	ASSERT(path);
2569 	ASSERT(found_key);
2570 
2571 	key.type = key_type;
2572 	key.objectid = iobjectid;
2573 	key.offset = ioff;
2574 
2575 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2576 	if (ret < 0)
2577 		return ret;
2578 
2579 	eb = path->nodes[0];
2580 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2581 		ret = btrfs_next_leaf(fs_root, path);
2582 		if (ret)
2583 			return ret;
2584 		eb = path->nodes[0];
2585 	}
2586 
2587 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2588 	if (found_key->type != key.type ||
2589 			found_key->objectid != key.objectid)
2590 		return 1;
2591 
2592 	return 0;
2593 }
2594 
2595 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2596 							struct btrfs_path *p,
2597 							int write_lock_level)
2598 {
2599 	struct btrfs_fs_info *fs_info = root->fs_info;
2600 	struct extent_buffer *b;
2601 	int root_lock;
2602 	int level = 0;
2603 
2604 	/* We try very hard to do read locks on the root */
2605 	root_lock = BTRFS_READ_LOCK;
2606 
2607 	if (p->search_commit_root) {
2608 		/*
2609 		 * The commit roots are read only so we always do read locks,
2610 		 * and we always must hold the commit_root_sem when doing
2611 		 * searches on them, the only exception is send where we don't
2612 		 * want to block transaction commits for a long time, so
2613 		 * we need to clone the commit root in order to avoid races
2614 		 * with transaction commits that create a snapshot of one of
2615 		 * the roots used by a send operation.
2616 		 */
2617 		if (p->need_commit_sem) {
2618 			down_read(&fs_info->commit_root_sem);
2619 			b = btrfs_clone_extent_buffer(root->commit_root);
2620 			up_read(&fs_info->commit_root_sem);
2621 			if (!b)
2622 				return ERR_PTR(-ENOMEM);
2623 
2624 		} else {
2625 			b = root->commit_root;
2626 			extent_buffer_get(b);
2627 		}
2628 		level = btrfs_header_level(b);
2629 		/*
2630 		 * Ensure that all callers have set skip_locking when
2631 		 * p->search_commit_root = 1.
2632 		 */
2633 		ASSERT(p->skip_locking == 1);
2634 
2635 		goto out;
2636 	}
2637 
2638 	if (p->skip_locking) {
2639 		b = btrfs_root_node(root);
2640 		level = btrfs_header_level(b);
2641 		goto out;
2642 	}
2643 
2644 	/*
2645 	 * If the level is set to maximum, we can skip trying to get the read
2646 	 * lock.
2647 	 */
2648 	if (write_lock_level < BTRFS_MAX_LEVEL) {
2649 		/*
2650 		 * We don't know the level of the root node until we actually
2651 		 * have it read locked
2652 		 */
2653 		b = btrfs_read_lock_root_node(root);
2654 		level = btrfs_header_level(b);
2655 		if (level > write_lock_level)
2656 			goto out;
2657 
2658 		/* Whoops, must trade for write lock */
2659 		btrfs_tree_read_unlock(b);
2660 		free_extent_buffer(b);
2661 	}
2662 
2663 	b = btrfs_lock_root_node(root);
2664 	root_lock = BTRFS_WRITE_LOCK;
2665 
2666 	/* The level might have changed, check again */
2667 	level = btrfs_header_level(b);
2668 
2669 out:
2670 	p->nodes[level] = b;
2671 	if (!p->skip_locking)
2672 		p->locks[level] = root_lock;
2673 	/*
2674 	 * Callers are responsible for dropping b's references.
2675 	 */
2676 	return b;
2677 }
2678 
2679 
2680 /*
2681  * btrfs_search_slot - look for a key in a tree and perform necessary
2682  * modifications to preserve tree invariants.
2683  *
2684  * @trans:	Handle of transaction, used when modifying the tree
2685  * @p:		Holds all btree nodes along the search path
2686  * @root:	The root node of the tree
2687  * @key:	The key we are looking for
2688  * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2689  *		deletions it's -1. 0 for plain searches
2690  * @cow:	boolean should CoW operations be performed. Must always be 1
2691  *		when modifying the tree.
2692  *
2693  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2694  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2695  *
2696  * If @key is found, 0 is returned and you can find the item in the leaf level
2697  * of the path (level 0)
2698  *
2699  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2700  * points to the slot where it should be inserted
2701  *
2702  * If an error is encountered while searching the tree a negative error number
2703  * is returned
2704  */
2705 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2706 		      const struct btrfs_key *key, struct btrfs_path *p,
2707 		      int ins_len, int cow)
2708 {
2709 	struct btrfs_fs_info *fs_info = root->fs_info;
2710 	struct extent_buffer *b;
2711 	int slot;
2712 	int ret;
2713 	int err;
2714 	int level;
2715 	int lowest_unlock = 1;
2716 	/* everything at write_lock_level or lower must be write locked */
2717 	int write_lock_level = 0;
2718 	u8 lowest_level = 0;
2719 	int min_write_lock_level;
2720 	int prev_cmp;
2721 
2722 	lowest_level = p->lowest_level;
2723 	WARN_ON(lowest_level && ins_len > 0);
2724 	WARN_ON(p->nodes[0] != NULL);
2725 	BUG_ON(!cow && ins_len);
2726 
2727 	if (ins_len < 0) {
2728 		lowest_unlock = 2;
2729 
2730 		/* when we are removing items, we might have to go up to level
2731 		 * two as we update tree pointers  Make sure we keep write
2732 		 * for those levels as well
2733 		 */
2734 		write_lock_level = 2;
2735 	} else if (ins_len > 0) {
2736 		/*
2737 		 * for inserting items, make sure we have a write lock on
2738 		 * level 1 so we can update keys
2739 		 */
2740 		write_lock_level = 1;
2741 	}
2742 
2743 	if (!cow)
2744 		write_lock_level = -1;
2745 
2746 	if (cow && (p->keep_locks || p->lowest_level))
2747 		write_lock_level = BTRFS_MAX_LEVEL;
2748 
2749 	min_write_lock_level = write_lock_level;
2750 
2751 again:
2752 	prev_cmp = -1;
2753 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2754 	if (IS_ERR(b)) {
2755 		ret = PTR_ERR(b);
2756 		goto done;
2757 	}
2758 
2759 	while (b) {
2760 		level = btrfs_header_level(b);
2761 
2762 		/*
2763 		 * setup the path here so we can release it under lock
2764 		 * contention with the cow code
2765 		 */
2766 		if (cow) {
2767 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2768 
2769 			/*
2770 			 * if we don't really need to cow this block
2771 			 * then we don't want to set the path blocking,
2772 			 * so we test it here
2773 			 */
2774 			if (!should_cow_block(trans, root, b)) {
2775 				trans->dirty = true;
2776 				goto cow_done;
2777 			}
2778 
2779 			/*
2780 			 * must have write locks on this node and the
2781 			 * parent
2782 			 */
2783 			if (level > write_lock_level ||
2784 			    (level + 1 > write_lock_level &&
2785 			    level + 1 < BTRFS_MAX_LEVEL &&
2786 			    p->nodes[level + 1])) {
2787 				write_lock_level = level + 1;
2788 				btrfs_release_path(p);
2789 				goto again;
2790 			}
2791 
2792 			btrfs_set_path_blocking(p);
2793 			if (last_level)
2794 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2795 						      &b);
2796 			else
2797 				err = btrfs_cow_block(trans, root, b,
2798 						      p->nodes[level + 1],
2799 						      p->slots[level + 1], &b);
2800 			if (err) {
2801 				ret = err;
2802 				goto done;
2803 			}
2804 		}
2805 cow_done:
2806 		p->nodes[level] = b;
2807 		/*
2808 		 * Leave path with blocking locks to avoid massive
2809 		 * lock context switch, this is made on purpose.
2810 		 */
2811 
2812 		/*
2813 		 * we have a lock on b and as long as we aren't changing
2814 		 * the tree, there is no way to for the items in b to change.
2815 		 * It is safe to drop the lock on our parent before we
2816 		 * go through the expensive btree search on b.
2817 		 *
2818 		 * If we're inserting or deleting (ins_len != 0), then we might
2819 		 * be changing slot zero, which may require changing the parent.
2820 		 * So, we can't drop the lock until after we know which slot
2821 		 * we're operating on.
2822 		 */
2823 		if (!ins_len && !p->keep_locks) {
2824 			int u = level + 1;
2825 
2826 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2827 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2828 				p->locks[u] = 0;
2829 			}
2830 		}
2831 
2832 		ret = key_search(b, key, level, &prev_cmp, &slot);
2833 		if (ret < 0)
2834 			goto done;
2835 
2836 		if (level != 0) {
2837 			int dec = 0;
2838 			if (ret && slot > 0) {
2839 				dec = 1;
2840 				slot -= 1;
2841 			}
2842 			p->slots[level] = slot;
2843 			err = setup_nodes_for_search(trans, root, p, b, level,
2844 					     ins_len, &write_lock_level);
2845 			if (err == -EAGAIN)
2846 				goto again;
2847 			if (err) {
2848 				ret = err;
2849 				goto done;
2850 			}
2851 			b = p->nodes[level];
2852 			slot = p->slots[level];
2853 
2854 			/*
2855 			 * slot 0 is special, if we change the key
2856 			 * we have to update the parent pointer
2857 			 * which means we must have a write lock
2858 			 * on the parent
2859 			 */
2860 			if (slot == 0 && ins_len &&
2861 			    write_lock_level < level + 1) {
2862 				write_lock_level = level + 1;
2863 				btrfs_release_path(p);
2864 				goto again;
2865 			}
2866 
2867 			unlock_up(p, level, lowest_unlock,
2868 				  min_write_lock_level, &write_lock_level);
2869 
2870 			if (level == lowest_level) {
2871 				if (dec)
2872 					p->slots[level]++;
2873 				goto done;
2874 			}
2875 
2876 			err = read_block_for_search(root, p, &b, level,
2877 						    slot, key);
2878 			if (err == -EAGAIN)
2879 				goto again;
2880 			if (err) {
2881 				ret = err;
2882 				goto done;
2883 			}
2884 
2885 			if (!p->skip_locking) {
2886 				level = btrfs_header_level(b);
2887 				if (level <= write_lock_level) {
2888 					err = btrfs_try_tree_write_lock(b);
2889 					if (!err) {
2890 						btrfs_set_path_blocking(p);
2891 						btrfs_tree_lock(b);
2892 					}
2893 					p->locks[level] = BTRFS_WRITE_LOCK;
2894 				} else {
2895 					err = btrfs_tree_read_lock_atomic(b);
2896 					if (!err) {
2897 						btrfs_set_path_blocking(p);
2898 						btrfs_tree_read_lock(b);
2899 					}
2900 					p->locks[level] = BTRFS_READ_LOCK;
2901 				}
2902 				p->nodes[level] = b;
2903 			}
2904 		} else {
2905 			p->slots[level] = slot;
2906 			if (ins_len > 0 &&
2907 			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2908 				if (write_lock_level < 1) {
2909 					write_lock_level = 1;
2910 					btrfs_release_path(p);
2911 					goto again;
2912 				}
2913 
2914 				btrfs_set_path_blocking(p);
2915 				err = split_leaf(trans, root, key,
2916 						 p, ins_len, ret == 0);
2917 
2918 				BUG_ON(err > 0);
2919 				if (err) {
2920 					ret = err;
2921 					goto done;
2922 				}
2923 			}
2924 			if (!p->search_for_split)
2925 				unlock_up(p, level, lowest_unlock,
2926 					  min_write_lock_level, NULL);
2927 			goto done;
2928 		}
2929 	}
2930 	ret = 1;
2931 done:
2932 	/*
2933 	 * we don't really know what they plan on doing with the path
2934 	 * from here on, so for now just mark it as blocking
2935 	 */
2936 	if (!p->leave_spinning)
2937 		btrfs_set_path_blocking(p);
2938 	if (ret < 0 && !p->skip_release_on_error)
2939 		btrfs_release_path(p);
2940 	return ret;
2941 }
2942 
2943 /*
2944  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2945  * current state of the tree together with the operations recorded in the tree
2946  * modification log to search for the key in a previous version of this tree, as
2947  * denoted by the time_seq parameter.
2948  *
2949  * Naturally, there is no support for insert, delete or cow operations.
2950  *
2951  * The resulting path and return value will be set up as if we called
2952  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2953  */
2954 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2955 			  struct btrfs_path *p, u64 time_seq)
2956 {
2957 	struct btrfs_fs_info *fs_info = root->fs_info;
2958 	struct extent_buffer *b;
2959 	int slot;
2960 	int ret;
2961 	int err;
2962 	int level;
2963 	int lowest_unlock = 1;
2964 	u8 lowest_level = 0;
2965 	int prev_cmp = -1;
2966 
2967 	lowest_level = p->lowest_level;
2968 	WARN_ON(p->nodes[0] != NULL);
2969 
2970 	if (p->search_commit_root) {
2971 		BUG_ON(time_seq);
2972 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2973 	}
2974 
2975 again:
2976 	b = get_old_root(root, time_seq);
2977 	if (!b) {
2978 		ret = -EIO;
2979 		goto done;
2980 	}
2981 	level = btrfs_header_level(b);
2982 	p->locks[level] = BTRFS_READ_LOCK;
2983 
2984 	while (b) {
2985 		level = btrfs_header_level(b);
2986 		p->nodes[level] = b;
2987 
2988 		/*
2989 		 * we have a lock on b and as long as we aren't changing
2990 		 * the tree, there is no way to for the items in b to change.
2991 		 * It is safe to drop the lock on our parent before we
2992 		 * go through the expensive btree search on b.
2993 		 */
2994 		btrfs_unlock_up_safe(p, level + 1);
2995 
2996 		/*
2997 		 * Since we can unwind ebs we want to do a real search every
2998 		 * time.
2999 		 */
3000 		prev_cmp = -1;
3001 		ret = key_search(b, key, level, &prev_cmp, &slot);
3002 		if (ret < 0)
3003 			goto done;
3004 
3005 		if (level != 0) {
3006 			int dec = 0;
3007 			if (ret && slot > 0) {
3008 				dec = 1;
3009 				slot -= 1;
3010 			}
3011 			p->slots[level] = slot;
3012 			unlock_up(p, level, lowest_unlock, 0, NULL);
3013 
3014 			if (level == lowest_level) {
3015 				if (dec)
3016 					p->slots[level]++;
3017 				goto done;
3018 			}
3019 
3020 			err = read_block_for_search(root, p, &b, level,
3021 						    slot, key);
3022 			if (err == -EAGAIN)
3023 				goto again;
3024 			if (err) {
3025 				ret = err;
3026 				goto done;
3027 			}
3028 
3029 			level = btrfs_header_level(b);
3030 			err = btrfs_tree_read_lock_atomic(b);
3031 			if (!err) {
3032 				btrfs_set_path_blocking(p);
3033 				btrfs_tree_read_lock(b);
3034 			}
3035 			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3036 			if (!b) {
3037 				ret = -ENOMEM;
3038 				goto done;
3039 			}
3040 			p->locks[level] = BTRFS_READ_LOCK;
3041 			p->nodes[level] = b;
3042 		} else {
3043 			p->slots[level] = slot;
3044 			unlock_up(p, level, lowest_unlock, 0, NULL);
3045 			goto done;
3046 		}
3047 	}
3048 	ret = 1;
3049 done:
3050 	if (!p->leave_spinning)
3051 		btrfs_set_path_blocking(p);
3052 	if (ret < 0)
3053 		btrfs_release_path(p);
3054 
3055 	return ret;
3056 }
3057 
3058 /*
3059  * helper to use instead of search slot if no exact match is needed but
3060  * instead the next or previous item should be returned.
3061  * When find_higher is true, the next higher item is returned, the next lower
3062  * otherwise.
3063  * When return_any and find_higher are both true, and no higher item is found,
3064  * return the next lower instead.
3065  * When return_any is true and find_higher is false, and no lower item is found,
3066  * return the next higher instead.
3067  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3068  * < 0 on error
3069  */
3070 int btrfs_search_slot_for_read(struct btrfs_root *root,
3071 			       const struct btrfs_key *key,
3072 			       struct btrfs_path *p, int find_higher,
3073 			       int return_any)
3074 {
3075 	int ret;
3076 	struct extent_buffer *leaf;
3077 
3078 again:
3079 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3080 	if (ret <= 0)
3081 		return ret;
3082 	/*
3083 	 * a return value of 1 means the path is at the position where the
3084 	 * item should be inserted. Normally this is the next bigger item,
3085 	 * but in case the previous item is the last in a leaf, path points
3086 	 * to the first free slot in the previous leaf, i.e. at an invalid
3087 	 * item.
3088 	 */
3089 	leaf = p->nodes[0];
3090 
3091 	if (find_higher) {
3092 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3093 			ret = btrfs_next_leaf(root, p);
3094 			if (ret <= 0)
3095 				return ret;
3096 			if (!return_any)
3097 				return 1;
3098 			/*
3099 			 * no higher item found, return the next
3100 			 * lower instead
3101 			 */
3102 			return_any = 0;
3103 			find_higher = 0;
3104 			btrfs_release_path(p);
3105 			goto again;
3106 		}
3107 	} else {
3108 		if (p->slots[0] == 0) {
3109 			ret = btrfs_prev_leaf(root, p);
3110 			if (ret < 0)
3111 				return ret;
3112 			if (!ret) {
3113 				leaf = p->nodes[0];
3114 				if (p->slots[0] == btrfs_header_nritems(leaf))
3115 					p->slots[0]--;
3116 				return 0;
3117 			}
3118 			if (!return_any)
3119 				return 1;
3120 			/*
3121 			 * no lower item found, return the next
3122 			 * higher instead
3123 			 */
3124 			return_any = 0;
3125 			find_higher = 1;
3126 			btrfs_release_path(p);
3127 			goto again;
3128 		} else {
3129 			--p->slots[0];
3130 		}
3131 	}
3132 	return 0;
3133 }
3134 
3135 /*
3136  * adjust the pointers going up the tree, starting at level
3137  * making sure the right key of each node is points to 'key'.
3138  * This is used after shifting pointers to the left, so it stops
3139  * fixing up pointers when a given leaf/node is not in slot 0 of the
3140  * higher levels
3141  *
3142  */
3143 static void fixup_low_keys(struct btrfs_path *path,
3144 			   struct btrfs_disk_key *key, int level)
3145 {
3146 	int i;
3147 	struct extent_buffer *t;
3148 	int ret;
3149 
3150 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3151 		int tslot = path->slots[i];
3152 
3153 		if (!path->nodes[i])
3154 			break;
3155 		t = path->nodes[i];
3156 		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3157 				GFP_ATOMIC);
3158 		BUG_ON(ret < 0);
3159 		btrfs_set_node_key(t, key, tslot);
3160 		btrfs_mark_buffer_dirty(path->nodes[i]);
3161 		if (tslot != 0)
3162 			break;
3163 	}
3164 }
3165 
3166 /*
3167  * update item key.
3168  *
3169  * This function isn't completely safe. It's the caller's responsibility
3170  * that the new key won't break the order
3171  */
3172 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3173 			     struct btrfs_path *path,
3174 			     const struct btrfs_key *new_key)
3175 {
3176 	struct btrfs_disk_key disk_key;
3177 	struct extent_buffer *eb;
3178 	int slot;
3179 
3180 	eb = path->nodes[0];
3181 	slot = path->slots[0];
3182 	if (slot > 0) {
3183 		btrfs_item_key(eb, &disk_key, slot - 1);
3184 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3185 	}
3186 	if (slot < btrfs_header_nritems(eb) - 1) {
3187 		btrfs_item_key(eb, &disk_key, slot + 1);
3188 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3189 	}
3190 
3191 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3192 	btrfs_set_item_key(eb, &disk_key, slot);
3193 	btrfs_mark_buffer_dirty(eb);
3194 	if (slot == 0)
3195 		fixup_low_keys(path, &disk_key, 1);
3196 }
3197 
3198 /*
3199  * try to push data from one node into the next node left in the
3200  * tree.
3201  *
3202  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3203  * error, and > 0 if there was no room in the left hand block.
3204  */
3205 static int push_node_left(struct btrfs_trans_handle *trans,
3206 			  struct btrfs_fs_info *fs_info,
3207 			  struct extent_buffer *dst,
3208 			  struct extent_buffer *src, int empty)
3209 {
3210 	int push_items = 0;
3211 	int src_nritems;
3212 	int dst_nritems;
3213 	int ret = 0;
3214 
3215 	src_nritems = btrfs_header_nritems(src);
3216 	dst_nritems = btrfs_header_nritems(dst);
3217 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3218 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3219 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3220 
3221 	if (!empty && src_nritems <= 8)
3222 		return 1;
3223 
3224 	if (push_items <= 0)
3225 		return 1;
3226 
3227 	if (empty) {
3228 		push_items = min(src_nritems, push_items);
3229 		if (push_items < src_nritems) {
3230 			/* leave at least 8 pointers in the node if
3231 			 * we aren't going to empty it
3232 			 */
3233 			if (src_nritems - push_items < 8) {
3234 				if (push_items <= 8)
3235 					return 1;
3236 				push_items -= 8;
3237 			}
3238 		}
3239 	} else
3240 		push_items = min(src_nritems - 8, push_items);
3241 
3242 	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3243 				   push_items);
3244 	if (ret) {
3245 		btrfs_abort_transaction(trans, ret);
3246 		return ret;
3247 	}
3248 	copy_extent_buffer(dst, src,
3249 			   btrfs_node_key_ptr_offset(dst_nritems),
3250 			   btrfs_node_key_ptr_offset(0),
3251 			   push_items * sizeof(struct btrfs_key_ptr));
3252 
3253 	if (push_items < src_nritems) {
3254 		/*
3255 		 * Don't call tree_mod_log_insert_move here, key removal was
3256 		 * already fully logged by tree_mod_log_eb_copy above.
3257 		 */
3258 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3259 				      btrfs_node_key_ptr_offset(push_items),
3260 				      (src_nritems - push_items) *
3261 				      sizeof(struct btrfs_key_ptr));
3262 	}
3263 	btrfs_set_header_nritems(src, src_nritems - push_items);
3264 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3265 	btrfs_mark_buffer_dirty(src);
3266 	btrfs_mark_buffer_dirty(dst);
3267 
3268 	return ret;
3269 }
3270 
3271 /*
3272  * try to push data from one node into the next node right in the
3273  * tree.
3274  *
3275  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3276  * error, and > 0 if there was no room in the right hand block.
3277  *
3278  * this will  only push up to 1/2 the contents of the left node over
3279  */
3280 static int balance_node_right(struct btrfs_trans_handle *trans,
3281 			      struct btrfs_fs_info *fs_info,
3282 			      struct extent_buffer *dst,
3283 			      struct extent_buffer *src)
3284 {
3285 	int push_items = 0;
3286 	int max_push;
3287 	int src_nritems;
3288 	int dst_nritems;
3289 	int ret = 0;
3290 
3291 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3292 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3293 
3294 	src_nritems = btrfs_header_nritems(src);
3295 	dst_nritems = btrfs_header_nritems(dst);
3296 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3297 	if (push_items <= 0)
3298 		return 1;
3299 
3300 	if (src_nritems < 4)
3301 		return 1;
3302 
3303 	max_push = src_nritems / 2 + 1;
3304 	/* don't try to empty the node */
3305 	if (max_push >= src_nritems)
3306 		return 1;
3307 
3308 	if (max_push < push_items)
3309 		push_items = max_push;
3310 
3311 	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3312 	BUG_ON(ret < 0);
3313 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3314 				      btrfs_node_key_ptr_offset(0),
3315 				      (dst_nritems) *
3316 				      sizeof(struct btrfs_key_ptr));
3317 
3318 	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3319 				   src_nritems - push_items, push_items);
3320 	if (ret) {
3321 		btrfs_abort_transaction(trans, ret);
3322 		return ret;
3323 	}
3324 	copy_extent_buffer(dst, src,
3325 			   btrfs_node_key_ptr_offset(0),
3326 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3327 			   push_items * sizeof(struct btrfs_key_ptr));
3328 
3329 	btrfs_set_header_nritems(src, src_nritems - push_items);
3330 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3331 
3332 	btrfs_mark_buffer_dirty(src);
3333 	btrfs_mark_buffer_dirty(dst);
3334 
3335 	return ret;
3336 }
3337 
3338 /*
3339  * helper function to insert a new root level in the tree.
3340  * A new node is allocated, and a single item is inserted to
3341  * point to the existing root
3342  *
3343  * returns zero on success or < 0 on failure.
3344  */
3345 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3346 			   struct btrfs_root *root,
3347 			   struct btrfs_path *path, int level)
3348 {
3349 	struct btrfs_fs_info *fs_info = root->fs_info;
3350 	u64 lower_gen;
3351 	struct extent_buffer *lower;
3352 	struct extent_buffer *c;
3353 	struct extent_buffer *old;
3354 	struct btrfs_disk_key lower_key;
3355 	int ret;
3356 
3357 	BUG_ON(path->nodes[level]);
3358 	BUG_ON(path->nodes[level-1] != root->node);
3359 
3360 	lower = path->nodes[level-1];
3361 	if (level == 1)
3362 		btrfs_item_key(lower, &lower_key, 0);
3363 	else
3364 		btrfs_node_key(lower, &lower_key, 0);
3365 
3366 	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3367 					 root->node->start, 0);
3368 	if (IS_ERR(c))
3369 		return PTR_ERR(c);
3370 
3371 	root_add_used(root, fs_info->nodesize);
3372 
3373 	btrfs_set_header_nritems(c, 1);
3374 	btrfs_set_node_key(c, &lower_key, 0);
3375 	btrfs_set_node_blockptr(c, 0, lower->start);
3376 	lower_gen = btrfs_header_generation(lower);
3377 	WARN_ON(lower_gen != trans->transid);
3378 
3379 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3380 
3381 	btrfs_mark_buffer_dirty(c);
3382 
3383 	old = root->node;
3384 	ret = tree_mod_log_insert_root(root->node, c, 0);
3385 	BUG_ON(ret < 0);
3386 	rcu_assign_pointer(root->node, c);
3387 
3388 	/* the super has an extra ref to root->node */
3389 	free_extent_buffer(old);
3390 
3391 	add_root_to_dirty_list(root);
3392 	extent_buffer_get(c);
3393 	path->nodes[level] = c;
3394 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3395 	path->slots[level] = 0;
3396 	return 0;
3397 }
3398 
3399 /*
3400  * worker function to insert a single pointer in a node.
3401  * the node should have enough room for the pointer already
3402  *
3403  * slot and level indicate where you want the key to go, and
3404  * blocknr is the block the key points to.
3405  */
3406 static void insert_ptr(struct btrfs_trans_handle *trans,
3407 		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3408 		       struct btrfs_disk_key *key, u64 bytenr,
3409 		       int slot, int level)
3410 {
3411 	struct extent_buffer *lower;
3412 	int nritems;
3413 	int ret;
3414 
3415 	BUG_ON(!path->nodes[level]);
3416 	btrfs_assert_tree_locked(path->nodes[level]);
3417 	lower = path->nodes[level];
3418 	nritems = btrfs_header_nritems(lower);
3419 	BUG_ON(slot > nritems);
3420 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3421 	if (slot != nritems) {
3422 		if (level) {
3423 			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3424 					nritems - slot);
3425 			BUG_ON(ret < 0);
3426 		}
3427 		memmove_extent_buffer(lower,
3428 			      btrfs_node_key_ptr_offset(slot + 1),
3429 			      btrfs_node_key_ptr_offset(slot),
3430 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3431 	}
3432 	if (level) {
3433 		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3434 				GFP_NOFS);
3435 		BUG_ON(ret < 0);
3436 	}
3437 	btrfs_set_node_key(lower, key, slot);
3438 	btrfs_set_node_blockptr(lower, slot, bytenr);
3439 	WARN_ON(trans->transid == 0);
3440 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3441 	btrfs_set_header_nritems(lower, nritems + 1);
3442 	btrfs_mark_buffer_dirty(lower);
3443 }
3444 
3445 /*
3446  * split the node at the specified level in path in two.
3447  * The path is corrected to point to the appropriate node after the split
3448  *
3449  * Before splitting this tries to make some room in the node by pushing
3450  * left and right, if either one works, it returns right away.
3451  *
3452  * returns 0 on success and < 0 on failure
3453  */
3454 static noinline int split_node(struct btrfs_trans_handle *trans,
3455 			       struct btrfs_root *root,
3456 			       struct btrfs_path *path, int level)
3457 {
3458 	struct btrfs_fs_info *fs_info = root->fs_info;
3459 	struct extent_buffer *c;
3460 	struct extent_buffer *split;
3461 	struct btrfs_disk_key disk_key;
3462 	int mid;
3463 	int ret;
3464 	u32 c_nritems;
3465 
3466 	c = path->nodes[level];
3467 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3468 	if (c == root->node) {
3469 		/*
3470 		 * trying to split the root, lets make a new one
3471 		 *
3472 		 * tree mod log: We don't log_removal old root in
3473 		 * insert_new_root, because that root buffer will be kept as a
3474 		 * normal node. We are going to log removal of half of the
3475 		 * elements below with tree_mod_log_eb_copy. We're holding a
3476 		 * tree lock on the buffer, which is why we cannot race with
3477 		 * other tree_mod_log users.
3478 		 */
3479 		ret = insert_new_root(trans, root, path, level + 1);
3480 		if (ret)
3481 			return ret;
3482 	} else {
3483 		ret = push_nodes_for_insert(trans, root, path, level);
3484 		c = path->nodes[level];
3485 		if (!ret && btrfs_header_nritems(c) <
3486 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3487 			return 0;
3488 		if (ret < 0)
3489 			return ret;
3490 	}
3491 
3492 	c_nritems = btrfs_header_nritems(c);
3493 	mid = (c_nritems + 1) / 2;
3494 	btrfs_node_key(c, &disk_key, mid);
3495 
3496 	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3497 					     c->start, 0);
3498 	if (IS_ERR(split))
3499 		return PTR_ERR(split);
3500 
3501 	root_add_used(root, fs_info->nodesize);
3502 	ASSERT(btrfs_header_level(c) == level);
3503 
3504 	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3505 	if (ret) {
3506 		btrfs_abort_transaction(trans, ret);
3507 		return ret;
3508 	}
3509 	copy_extent_buffer(split, c,
3510 			   btrfs_node_key_ptr_offset(0),
3511 			   btrfs_node_key_ptr_offset(mid),
3512 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3513 	btrfs_set_header_nritems(split, c_nritems - mid);
3514 	btrfs_set_header_nritems(c, mid);
3515 	ret = 0;
3516 
3517 	btrfs_mark_buffer_dirty(c);
3518 	btrfs_mark_buffer_dirty(split);
3519 
3520 	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3521 		   path->slots[level + 1] + 1, level + 1);
3522 
3523 	if (path->slots[level] >= mid) {
3524 		path->slots[level] -= mid;
3525 		btrfs_tree_unlock(c);
3526 		free_extent_buffer(c);
3527 		path->nodes[level] = split;
3528 		path->slots[level + 1] += 1;
3529 	} else {
3530 		btrfs_tree_unlock(split);
3531 		free_extent_buffer(split);
3532 	}
3533 	return ret;
3534 }
3535 
3536 /*
3537  * how many bytes are required to store the items in a leaf.  start
3538  * and nr indicate which items in the leaf to check.  This totals up the
3539  * space used both by the item structs and the item data
3540  */
3541 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3542 {
3543 	struct btrfs_item *start_item;
3544 	struct btrfs_item *end_item;
3545 	struct btrfs_map_token token;
3546 	int data_len;
3547 	int nritems = btrfs_header_nritems(l);
3548 	int end = min(nritems, start + nr) - 1;
3549 
3550 	if (!nr)
3551 		return 0;
3552 	btrfs_init_map_token(&token);
3553 	start_item = btrfs_item_nr(start);
3554 	end_item = btrfs_item_nr(end);
3555 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3556 		btrfs_token_item_size(l, start_item, &token);
3557 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3558 	data_len += sizeof(struct btrfs_item) * nr;
3559 	WARN_ON(data_len < 0);
3560 	return data_len;
3561 }
3562 
3563 /*
3564  * The space between the end of the leaf items and
3565  * the start of the leaf data.  IOW, how much room
3566  * the leaf has left for both items and data
3567  */
3568 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3569 				   struct extent_buffer *leaf)
3570 {
3571 	int nritems = btrfs_header_nritems(leaf);
3572 	int ret;
3573 
3574 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3575 	if (ret < 0) {
3576 		btrfs_crit(fs_info,
3577 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3578 			   ret,
3579 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3580 			   leaf_space_used(leaf, 0, nritems), nritems);
3581 	}
3582 	return ret;
3583 }
3584 
3585 /*
3586  * min slot controls the lowest index we're willing to push to the
3587  * right.  We'll push up to and including min_slot, but no lower
3588  */
3589 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3590 				      struct btrfs_path *path,
3591 				      int data_size, int empty,
3592 				      struct extent_buffer *right,
3593 				      int free_space, u32 left_nritems,
3594 				      u32 min_slot)
3595 {
3596 	struct extent_buffer *left = path->nodes[0];
3597 	struct extent_buffer *upper = path->nodes[1];
3598 	struct btrfs_map_token token;
3599 	struct btrfs_disk_key disk_key;
3600 	int slot;
3601 	u32 i;
3602 	int push_space = 0;
3603 	int push_items = 0;
3604 	struct btrfs_item *item;
3605 	u32 nr;
3606 	u32 right_nritems;
3607 	u32 data_end;
3608 	u32 this_item_size;
3609 
3610 	btrfs_init_map_token(&token);
3611 
3612 	if (empty)
3613 		nr = 0;
3614 	else
3615 		nr = max_t(u32, 1, min_slot);
3616 
3617 	if (path->slots[0] >= left_nritems)
3618 		push_space += data_size;
3619 
3620 	slot = path->slots[1];
3621 	i = left_nritems - 1;
3622 	while (i >= nr) {
3623 		item = btrfs_item_nr(i);
3624 
3625 		if (!empty && push_items > 0) {
3626 			if (path->slots[0] > i)
3627 				break;
3628 			if (path->slots[0] == i) {
3629 				int space = btrfs_leaf_free_space(fs_info, left);
3630 				if (space + push_space * 2 > free_space)
3631 					break;
3632 			}
3633 		}
3634 
3635 		if (path->slots[0] == i)
3636 			push_space += data_size;
3637 
3638 		this_item_size = btrfs_item_size(left, item);
3639 		if (this_item_size + sizeof(*item) + push_space > free_space)
3640 			break;
3641 
3642 		push_items++;
3643 		push_space += this_item_size + sizeof(*item);
3644 		if (i == 0)
3645 			break;
3646 		i--;
3647 	}
3648 
3649 	if (push_items == 0)
3650 		goto out_unlock;
3651 
3652 	WARN_ON(!empty && push_items == left_nritems);
3653 
3654 	/* push left to right */
3655 	right_nritems = btrfs_header_nritems(right);
3656 
3657 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3658 	push_space -= leaf_data_end(fs_info, left);
3659 
3660 	/* make room in the right data area */
3661 	data_end = leaf_data_end(fs_info, right);
3662 	memmove_extent_buffer(right,
3663 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3664 			      BTRFS_LEAF_DATA_OFFSET + data_end,
3665 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3666 
3667 	/* copy from the left data area */
3668 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3669 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3670 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3671 		     push_space);
3672 
3673 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3674 			      btrfs_item_nr_offset(0),
3675 			      right_nritems * sizeof(struct btrfs_item));
3676 
3677 	/* copy the items from left to right */
3678 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3679 		   btrfs_item_nr_offset(left_nritems - push_items),
3680 		   push_items * sizeof(struct btrfs_item));
3681 
3682 	/* update the item pointers */
3683 	right_nritems += push_items;
3684 	btrfs_set_header_nritems(right, right_nritems);
3685 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3686 	for (i = 0; i < right_nritems; i++) {
3687 		item = btrfs_item_nr(i);
3688 		push_space -= btrfs_token_item_size(right, item, &token);
3689 		btrfs_set_token_item_offset(right, item, push_space, &token);
3690 	}
3691 
3692 	left_nritems -= push_items;
3693 	btrfs_set_header_nritems(left, left_nritems);
3694 
3695 	if (left_nritems)
3696 		btrfs_mark_buffer_dirty(left);
3697 	else
3698 		clean_tree_block(fs_info, left);
3699 
3700 	btrfs_mark_buffer_dirty(right);
3701 
3702 	btrfs_item_key(right, &disk_key, 0);
3703 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3704 	btrfs_mark_buffer_dirty(upper);
3705 
3706 	/* then fixup the leaf pointer in the path */
3707 	if (path->slots[0] >= left_nritems) {
3708 		path->slots[0] -= left_nritems;
3709 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3710 			clean_tree_block(fs_info, path->nodes[0]);
3711 		btrfs_tree_unlock(path->nodes[0]);
3712 		free_extent_buffer(path->nodes[0]);
3713 		path->nodes[0] = right;
3714 		path->slots[1] += 1;
3715 	} else {
3716 		btrfs_tree_unlock(right);
3717 		free_extent_buffer(right);
3718 	}
3719 	return 0;
3720 
3721 out_unlock:
3722 	btrfs_tree_unlock(right);
3723 	free_extent_buffer(right);
3724 	return 1;
3725 }
3726 
3727 /*
3728  * push some data in the path leaf to the right, trying to free up at
3729  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3730  *
3731  * returns 1 if the push failed because the other node didn't have enough
3732  * room, 0 if everything worked out and < 0 if there were major errors.
3733  *
3734  * this will push starting from min_slot to the end of the leaf.  It won't
3735  * push any slot lower than min_slot
3736  */
3737 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3738 			   *root, struct btrfs_path *path,
3739 			   int min_data_size, int data_size,
3740 			   int empty, u32 min_slot)
3741 {
3742 	struct btrfs_fs_info *fs_info = root->fs_info;
3743 	struct extent_buffer *left = path->nodes[0];
3744 	struct extent_buffer *right;
3745 	struct extent_buffer *upper;
3746 	int slot;
3747 	int free_space;
3748 	u32 left_nritems;
3749 	int ret;
3750 
3751 	if (!path->nodes[1])
3752 		return 1;
3753 
3754 	slot = path->slots[1];
3755 	upper = path->nodes[1];
3756 	if (slot >= btrfs_header_nritems(upper) - 1)
3757 		return 1;
3758 
3759 	btrfs_assert_tree_locked(path->nodes[1]);
3760 
3761 	right = read_node_slot(fs_info, upper, slot + 1);
3762 	/*
3763 	 * slot + 1 is not valid or we fail to read the right node,
3764 	 * no big deal, just return.
3765 	 */
3766 	if (IS_ERR(right))
3767 		return 1;
3768 
3769 	btrfs_tree_lock(right);
3770 	btrfs_set_lock_blocking_write(right);
3771 
3772 	free_space = btrfs_leaf_free_space(fs_info, right);
3773 	if (free_space < data_size)
3774 		goto out_unlock;
3775 
3776 	/* cow and double check */
3777 	ret = btrfs_cow_block(trans, root, right, upper,
3778 			      slot + 1, &right);
3779 	if (ret)
3780 		goto out_unlock;
3781 
3782 	free_space = btrfs_leaf_free_space(fs_info, right);
3783 	if (free_space < data_size)
3784 		goto out_unlock;
3785 
3786 	left_nritems = btrfs_header_nritems(left);
3787 	if (left_nritems == 0)
3788 		goto out_unlock;
3789 
3790 	if (path->slots[0] == left_nritems && !empty) {
3791 		/* Key greater than all keys in the leaf, right neighbor has
3792 		 * enough room for it and we're not emptying our leaf to delete
3793 		 * it, therefore use right neighbor to insert the new item and
3794 		 * no need to touch/dirty our left leaf. */
3795 		btrfs_tree_unlock(left);
3796 		free_extent_buffer(left);
3797 		path->nodes[0] = right;
3798 		path->slots[0] = 0;
3799 		path->slots[1]++;
3800 		return 0;
3801 	}
3802 
3803 	return __push_leaf_right(fs_info, path, min_data_size, empty,
3804 				right, free_space, left_nritems, min_slot);
3805 out_unlock:
3806 	btrfs_tree_unlock(right);
3807 	free_extent_buffer(right);
3808 	return 1;
3809 }
3810 
3811 /*
3812  * push some data in the path leaf to the left, trying to free up at
3813  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3814  *
3815  * max_slot can put a limit on how far into the leaf we'll push items.  The
3816  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3817  * items
3818  */
3819 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3820 				     struct btrfs_path *path, int data_size,
3821 				     int empty, struct extent_buffer *left,
3822 				     int free_space, u32 right_nritems,
3823 				     u32 max_slot)
3824 {
3825 	struct btrfs_disk_key disk_key;
3826 	struct extent_buffer *right = path->nodes[0];
3827 	int i;
3828 	int push_space = 0;
3829 	int push_items = 0;
3830 	struct btrfs_item *item;
3831 	u32 old_left_nritems;
3832 	u32 nr;
3833 	int ret = 0;
3834 	u32 this_item_size;
3835 	u32 old_left_item_size;
3836 	struct btrfs_map_token token;
3837 
3838 	btrfs_init_map_token(&token);
3839 
3840 	if (empty)
3841 		nr = min(right_nritems, max_slot);
3842 	else
3843 		nr = min(right_nritems - 1, max_slot);
3844 
3845 	for (i = 0; i < nr; i++) {
3846 		item = btrfs_item_nr(i);
3847 
3848 		if (!empty && push_items > 0) {
3849 			if (path->slots[0] < i)
3850 				break;
3851 			if (path->slots[0] == i) {
3852 				int space = btrfs_leaf_free_space(fs_info, right);
3853 				if (space + push_space * 2 > free_space)
3854 					break;
3855 			}
3856 		}
3857 
3858 		if (path->slots[0] == i)
3859 			push_space += data_size;
3860 
3861 		this_item_size = btrfs_item_size(right, item);
3862 		if (this_item_size + sizeof(*item) + push_space > free_space)
3863 			break;
3864 
3865 		push_items++;
3866 		push_space += this_item_size + sizeof(*item);
3867 	}
3868 
3869 	if (push_items == 0) {
3870 		ret = 1;
3871 		goto out;
3872 	}
3873 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3874 
3875 	/* push data from right to left */
3876 	copy_extent_buffer(left, right,
3877 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3878 			   btrfs_item_nr_offset(0),
3879 			   push_items * sizeof(struct btrfs_item));
3880 
3881 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3882 		     btrfs_item_offset_nr(right, push_items - 1);
3883 
3884 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3885 		     leaf_data_end(fs_info, left) - push_space,
3886 		     BTRFS_LEAF_DATA_OFFSET +
3887 		     btrfs_item_offset_nr(right, push_items - 1),
3888 		     push_space);
3889 	old_left_nritems = btrfs_header_nritems(left);
3890 	BUG_ON(old_left_nritems <= 0);
3891 
3892 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3893 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3894 		u32 ioff;
3895 
3896 		item = btrfs_item_nr(i);
3897 
3898 		ioff = btrfs_token_item_offset(left, item, &token);
3899 		btrfs_set_token_item_offset(left, item,
3900 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3901 		      &token);
3902 	}
3903 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3904 
3905 	/* fixup right node */
3906 	if (push_items > right_nritems)
3907 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3908 		       right_nritems);
3909 
3910 	if (push_items < right_nritems) {
3911 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3912 						  leaf_data_end(fs_info, right);
3913 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3914 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3915 				      BTRFS_LEAF_DATA_OFFSET +
3916 				      leaf_data_end(fs_info, right), push_space);
3917 
3918 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3919 			      btrfs_item_nr_offset(push_items),
3920 			     (btrfs_header_nritems(right) - push_items) *
3921 			     sizeof(struct btrfs_item));
3922 	}
3923 	right_nritems -= push_items;
3924 	btrfs_set_header_nritems(right, right_nritems);
3925 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3926 	for (i = 0; i < right_nritems; i++) {
3927 		item = btrfs_item_nr(i);
3928 
3929 		push_space = push_space - btrfs_token_item_size(right,
3930 								item, &token);
3931 		btrfs_set_token_item_offset(right, item, push_space, &token);
3932 	}
3933 
3934 	btrfs_mark_buffer_dirty(left);
3935 	if (right_nritems)
3936 		btrfs_mark_buffer_dirty(right);
3937 	else
3938 		clean_tree_block(fs_info, right);
3939 
3940 	btrfs_item_key(right, &disk_key, 0);
3941 	fixup_low_keys(path, &disk_key, 1);
3942 
3943 	/* then fixup the leaf pointer in the path */
3944 	if (path->slots[0] < push_items) {
3945 		path->slots[0] += old_left_nritems;
3946 		btrfs_tree_unlock(path->nodes[0]);
3947 		free_extent_buffer(path->nodes[0]);
3948 		path->nodes[0] = left;
3949 		path->slots[1] -= 1;
3950 	} else {
3951 		btrfs_tree_unlock(left);
3952 		free_extent_buffer(left);
3953 		path->slots[0] -= push_items;
3954 	}
3955 	BUG_ON(path->slots[0] < 0);
3956 	return ret;
3957 out:
3958 	btrfs_tree_unlock(left);
3959 	free_extent_buffer(left);
3960 	return ret;
3961 }
3962 
3963 /*
3964  * push some data in the path leaf to the left, trying to free up at
3965  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3966  *
3967  * max_slot can put a limit on how far into the leaf we'll push items.  The
3968  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3969  * items
3970  */
3971 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3972 			  *root, struct btrfs_path *path, int min_data_size,
3973 			  int data_size, int empty, u32 max_slot)
3974 {
3975 	struct btrfs_fs_info *fs_info = root->fs_info;
3976 	struct extent_buffer *right = path->nodes[0];
3977 	struct extent_buffer *left;
3978 	int slot;
3979 	int free_space;
3980 	u32 right_nritems;
3981 	int ret = 0;
3982 
3983 	slot = path->slots[1];
3984 	if (slot == 0)
3985 		return 1;
3986 	if (!path->nodes[1])
3987 		return 1;
3988 
3989 	right_nritems = btrfs_header_nritems(right);
3990 	if (right_nritems == 0)
3991 		return 1;
3992 
3993 	btrfs_assert_tree_locked(path->nodes[1]);
3994 
3995 	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3996 	/*
3997 	 * slot - 1 is not valid or we fail to read the left node,
3998 	 * no big deal, just return.
3999 	 */
4000 	if (IS_ERR(left))
4001 		return 1;
4002 
4003 	btrfs_tree_lock(left);
4004 	btrfs_set_lock_blocking_write(left);
4005 
4006 	free_space = btrfs_leaf_free_space(fs_info, left);
4007 	if (free_space < data_size) {
4008 		ret = 1;
4009 		goto out;
4010 	}
4011 
4012 	/* cow and double check */
4013 	ret = btrfs_cow_block(trans, root, left,
4014 			      path->nodes[1], slot - 1, &left);
4015 	if (ret) {
4016 		/* we hit -ENOSPC, but it isn't fatal here */
4017 		if (ret == -ENOSPC)
4018 			ret = 1;
4019 		goto out;
4020 	}
4021 
4022 	free_space = btrfs_leaf_free_space(fs_info, left);
4023 	if (free_space < data_size) {
4024 		ret = 1;
4025 		goto out;
4026 	}
4027 
4028 	return __push_leaf_left(fs_info, path, min_data_size,
4029 			       empty, left, free_space, right_nritems,
4030 			       max_slot);
4031 out:
4032 	btrfs_tree_unlock(left);
4033 	free_extent_buffer(left);
4034 	return ret;
4035 }
4036 
4037 /*
4038  * split the path's leaf in two, making sure there is at least data_size
4039  * available for the resulting leaf level of the path.
4040  */
4041 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4042 				    struct btrfs_fs_info *fs_info,
4043 				    struct btrfs_path *path,
4044 				    struct extent_buffer *l,
4045 				    struct extent_buffer *right,
4046 				    int slot, int mid, int nritems)
4047 {
4048 	int data_copy_size;
4049 	int rt_data_off;
4050 	int i;
4051 	struct btrfs_disk_key disk_key;
4052 	struct btrfs_map_token token;
4053 
4054 	btrfs_init_map_token(&token);
4055 
4056 	nritems = nritems - mid;
4057 	btrfs_set_header_nritems(right, nritems);
4058 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4059 
4060 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4061 			   btrfs_item_nr_offset(mid),
4062 			   nritems * sizeof(struct btrfs_item));
4063 
4064 	copy_extent_buffer(right, l,
4065 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4066 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4067 		     leaf_data_end(fs_info, l), data_copy_size);
4068 
4069 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4070 
4071 	for (i = 0; i < nritems; i++) {
4072 		struct btrfs_item *item = btrfs_item_nr(i);
4073 		u32 ioff;
4074 
4075 		ioff = btrfs_token_item_offset(right, item, &token);
4076 		btrfs_set_token_item_offset(right, item,
4077 					    ioff + rt_data_off, &token);
4078 	}
4079 
4080 	btrfs_set_header_nritems(l, mid);
4081 	btrfs_item_key(right, &disk_key, 0);
4082 	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4083 		   path->slots[1] + 1, 1);
4084 
4085 	btrfs_mark_buffer_dirty(right);
4086 	btrfs_mark_buffer_dirty(l);
4087 	BUG_ON(path->slots[0] != slot);
4088 
4089 	if (mid <= slot) {
4090 		btrfs_tree_unlock(path->nodes[0]);
4091 		free_extent_buffer(path->nodes[0]);
4092 		path->nodes[0] = right;
4093 		path->slots[0] -= mid;
4094 		path->slots[1] += 1;
4095 	} else {
4096 		btrfs_tree_unlock(right);
4097 		free_extent_buffer(right);
4098 	}
4099 
4100 	BUG_ON(path->slots[0] < 0);
4101 }
4102 
4103 /*
4104  * double splits happen when we need to insert a big item in the middle
4105  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4106  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4107  *          A                 B                 C
4108  *
4109  * We avoid this by trying to push the items on either side of our target
4110  * into the adjacent leaves.  If all goes well we can avoid the double split
4111  * completely.
4112  */
4113 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4114 					  struct btrfs_root *root,
4115 					  struct btrfs_path *path,
4116 					  int data_size)
4117 {
4118 	struct btrfs_fs_info *fs_info = root->fs_info;
4119 	int ret;
4120 	int progress = 0;
4121 	int slot;
4122 	u32 nritems;
4123 	int space_needed = data_size;
4124 
4125 	slot = path->slots[0];
4126 	if (slot < btrfs_header_nritems(path->nodes[0]))
4127 		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4128 
4129 	/*
4130 	 * try to push all the items after our slot into the
4131 	 * right leaf
4132 	 */
4133 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4134 	if (ret < 0)
4135 		return ret;
4136 
4137 	if (ret == 0)
4138 		progress++;
4139 
4140 	nritems = btrfs_header_nritems(path->nodes[0]);
4141 	/*
4142 	 * our goal is to get our slot at the start or end of a leaf.  If
4143 	 * we've done so we're done
4144 	 */
4145 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4146 		return 0;
4147 
4148 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4149 		return 0;
4150 
4151 	/* try to push all the items before our slot into the next leaf */
4152 	slot = path->slots[0];
4153 	space_needed = data_size;
4154 	if (slot > 0)
4155 		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4156 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4157 	if (ret < 0)
4158 		return ret;
4159 
4160 	if (ret == 0)
4161 		progress++;
4162 
4163 	if (progress)
4164 		return 0;
4165 	return 1;
4166 }
4167 
4168 /*
4169  * split the path's leaf in two, making sure there is at least data_size
4170  * available for the resulting leaf level of the path.
4171  *
4172  * returns 0 if all went well and < 0 on failure.
4173  */
4174 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4175 			       struct btrfs_root *root,
4176 			       const struct btrfs_key *ins_key,
4177 			       struct btrfs_path *path, int data_size,
4178 			       int extend)
4179 {
4180 	struct btrfs_disk_key disk_key;
4181 	struct extent_buffer *l;
4182 	u32 nritems;
4183 	int mid;
4184 	int slot;
4185 	struct extent_buffer *right;
4186 	struct btrfs_fs_info *fs_info = root->fs_info;
4187 	int ret = 0;
4188 	int wret;
4189 	int split;
4190 	int num_doubles = 0;
4191 	int tried_avoid_double = 0;
4192 
4193 	l = path->nodes[0];
4194 	slot = path->slots[0];
4195 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4196 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4197 		return -EOVERFLOW;
4198 
4199 	/* first try to make some room by pushing left and right */
4200 	if (data_size && path->nodes[1]) {
4201 		int space_needed = data_size;
4202 
4203 		if (slot < btrfs_header_nritems(l))
4204 			space_needed -= btrfs_leaf_free_space(fs_info, l);
4205 
4206 		wret = push_leaf_right(trans, root, path, space_needed,
4207 				       space_needed, 0, 0);
4208 		if (wret < 0)
4209 			return wret;
4210 		if (wret) {
4211 			space_needed = data_size;
4212 			if (slot > 0)
4213 				space_needed -= btrfs_leaf_free_space(fs_info,
4214 								      l);
4215 			wret = push_leaf_left(trans, root, path, space_needed,
4216 					      space_needed, 0, (u32)-1);
4217 			if (wret < 0)
4218 				return wret;
4219 		}
4220 		l = path->nodes[0];
4221 
4222 		/* did the pushes work? */
4223 		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4224 			return 0;
4225 	}
4226 
4227 	if (!path->nodes[1]) {
4228 		ret = insert_new_root(trans, root, path, 1);
4229 		if (ret)
4230 			return ret;
4231 	}
4232 again:
4233 	split = 1;
4234 	l = path->nodes[0];
4235 	slot = path->slots[0];
4236 	nritems = btrfs_header_nritems(l);
4237 	mid = (nritems + 1) / 2;
4238 
4239 	if (mid <= slot) {
4240 		if (nritems == 1 ||
4241 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4242 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4243 			if (slot >= nritems) {
4244 				split = 0;
4245 			} else {
4246 				mid = slot;
4247 				if (mid != nritems &&
4248 				    leaf_space_used(l, mid, nritems - mid) +
4249 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4250 					if (data_size && !tried_avoid_double)
4251 						goto push_for_double;
4252 					split = 2;
4253 				}
4254 			}
4255 		}
4256 	} else {
4257 		if (leaf_space_used(l, 0, mid) + data_size >
4258 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4259 			if (!extend && data_size && slot == 0) {
4260 				split = 0;
4261 			} else if ((extend || !data_size) && slot == 0) {
4262 				mid = 1;
4263 			} else {
4264 				mid = slot;
4265 				if (mid != nritems &&
4266 				    leaf_space_used(l, mid, nritems - mid) +
4267 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4268 					if (data_size && !tried_avoid_double)
4269 						goto push_for_double;
4270 					split = 2;
4271 				}
4272 			}
4273 		}
4274 	}
4275 
4276 	if (split == 0)
4277 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4278 	else
4279 		btrfs_item_key(l, &disk_key, mid);
4280 
4281 	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4282 					     l->start, 0);
4283 	if (IS_ERR(right))
4284 		return PTR_ERR(right);
4285 
4286 	root_add_used(root, fs_info->nodesize);
4287 
4288 	if (split == 0) {
4289 		if (mid <= slot) {
4290 			btrfs_set_header_nritems(right, 0);
4291 			insert_ptr(trans, fs_info, path, &disk_key,
4292 				   right->start, path->slots[1] + 1, 1);
4293 			btrfs_tree_unlock(path->nodes[0]);
4294 			free_extent_buffer(path->nodes[0]);
4295 			path->nodes[0] = right;
4296 			path->slots[0] = 0;
4297 			path->slots[1] += 1;
4298 		} else {
4299 			btrfs_set_header_nritems(right, 0);
4300 			insert_ptr(trans, fs_info, path, &disk_key,
4301 				   right->start, path->slots[1], 1);
4302 			btrfs_tree_unlock(path->nodes[0]);
4303 			free_extent_buffer(path->nodes[0]);
4304 			path->nodes[0] = right;
4305 			path->slots[0] = 0;
4306 			if (path->slots[1] == 0)
4307 				fixup_low_keys(path, &disk_key, 1);
4308 		}
4309 		/*
4310 		 * We create a new leaf 'right' for the required ins_len and
4311 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4312 		 * the content of ins_len to 'right'.
4313 		 */
4314 		return ret;
4315 	}
4316 
4317 	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4318 
4319 	if (split == 2) {
4320 		BUG_ON(num_doubles != 0);
4321 		num_doubles++;
4322 		goto again;
4323 	}
4324 
4325 	return 0;
4326 
4327 push_for_double:
4328 	push_for_double_split(trans, root, path, data_size);
4329 	tried_avoid_double = 1;
4330 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4331 		return 0;
4332 	goto again;
4333 }
4334 
4335 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4336 					 struct btrfs_root *root,
4337 					 struct btrfs_path *path, int ins_len)
4338 {
4339 	struct btrfs_fs_info *fs_info = root->fs_info;
4340 	struct btrfs_key key;
4341 	struct extent_buffer *leaf;
4342 	struct btrfs_file_extent_item *fi;
4343 	u64 extent_len = 0;
4344 	u32 item_size;
4345 	int ret;
4346 
4347 	leaf = path->nodes[0];
4348 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4349 
4350 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4351 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4352 
4353 	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4354 		return 0;
4355 
4356 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4357 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4358 		fi = btrfs_item_ptr(leaf, path->slots[0],
4359 				    struct btrfs_file_extent_item);
4360 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4361 	}
4362 	btrfs_release_path(path);
4363 
4364 	path->keep_locks = 1;
4365 	path->search_for_split = 1;
4366 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4367 	path->search_for_split = 0;
4368 	if (ret > 0)
4369 		ret = -EAGAIN;
4370 	if (ret < 0)
4371 		goto err;
4372 
4373 	ret = -EAGAIN;
4374 	leaf = path->nodes[0];
4375 	/* if our item isn't there, return now */
4376 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4377 		goto err;
4378 
4379 	/* the leaf has  changed, it now has room.  return now */
4380 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4381 		goto err;
4382 
4383 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4384 		fi = btrfs_item_ptr(leaf, path->slots[0],
4385 				    struct btrfs_file_extent_item);
4386 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4387 			goto err;
4388 	}
4389 
4390 	btrfs_set_path_blocking(path);
4391 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4392 	if (ret)
4393 		goto err;
4394 
4395 	path->keep_locks = 0;
4396 	btrfs_unlock_up_safe(path, 1);
4397 	return 0;
4398 err:
4399 	path->keep_locks = 0;
4400 	return ret;
4401 }
4402 
4403 static noinline int split_item(struct btrfs_fs_info *fs_info,
4404 			       struct btrfs_path *path,
4405 			       const struct btrfs_key *new_key,
4406 			       unsigned long split_offset)
4407 {
4408 	struct extent_buffer *leaf;
4409 	struct btrfs_item *item;
4410 	struct btrfs_item *new_item;
4411 	int slot;
4412 	char *buf;
4413 	u32 nritems;
4414 	u32 item_size;
4415 	u32 orig_offset;
4416 	struct btrfs_disk_key disk_key;
4417 
4418 	leaf = path->nodes[0];
4419 	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4420 
4421 	btrfs_set_path_blocking(path);
4422 
4423 	item = btrfs_item_nr(path->slots[0]);
4424 	orig_offset = btrfs_item_offset(leaf, item);
4425 	item_size = btrfs_item_size(leaf, item);
4426 
4427 	buf = kmalloc(item_size, GFP_NOFS);
4428 	if (!buf)
4429 		return -ENOMEM;
4430 
4431 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4432 			    path->slots[0]), item_size);
4433 
4434 	slot = path->slots[0] + 1;
4435 	nritems = btrfs_header_nritems(leaf);
4436 	if (slot != nritems) {
4437 		/* shift the items */
4438 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4439 				btrfs_item_nr_offset(slot),
4440 				(nritems - slot) * sizeof(struct btrfs_item));
4441 	}
4442 
4443 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4444 	btrfs_set_item_key(leaf, &disk_key, slot);
4445 
4446 	new_item = btrfs_item_nr(slot);
4447 
4448 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4449 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4450 
4451 	btrfs_set_item_offset(leaf, item,
4452 			      orig_offset + item_size - split_offset);
4453 	btrfs_set_item_size(leaf, item, split_offset);
4454 
4455 	btrfs_set_header_nritems(leaf, nritems + 1);
4456 
4457 	/* write the data for the start of the original item */
4458 	write_extent_buffer(leaf, buf,
4459 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4460 			    split_offset);
4461 
4462 	/* write the data for the new item */
4463 	write_extent_buffer(leaf, buf + split_offset,
4464 			    btrfs_item_ptr_offset(leaf, slot),
4465 			    item_size - split_offset);
4466 	btrfs_mark_buffer_dirty(leaf);
4467 
4468 	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4469 	kfree(buf);
4470 	return 0;
4471 }
4472 
4473 /*
4474  * This function splits a single item into two items,
4475  * giving 'new_key' to the new item and splitting the
4476  * old one at split_offset (from the start of the item).
4477  *
4478  * The path may be released by this operation.  After
4479  * the split, the path is pointing to the old item.  The
4480  * new item is going to be in the same node as the old one.
4481  *
4482  * Note, the item being split must be smaller enough to live alone on
4483  * a tree block with room for one extra struct btrfs_item
4484  *
4485  * This allows us to split the item in place, keeping a lock on the
4486  * leaf the entire time.
4487  */
4488 int btrfs_split_item(struct btrfs_trans_handle *trans,
4489 		     struct btrfs_root *root,
4490 		     struct btrfs_path *path,
4491 		     const struct btrfs_key *new_key,
4492 		     unsigned long split_offset)
4493 {
4494 	int ret;
4495 	ret = setup_leaf_for_split(trans, root, path,
4496 				   sizeof(struct btrfs_item));
4497 	if (ret)
4498 		return ret;
4499 
4500 	ret = split_item(root->fs_info, path, new_key, split_offset);
4501 	return ret;
4502 }
4503 
4504 /*
4505  * This function duplicate a item, giving 'new_key' to the new item.
4506  * It guarantees both items live in the same tree leaf and the new item
4507  * is contiguous with the original item.
4508  *
4509  * This allows us to split file extent in place, keeping a lock on the
4510  * leaf the entire time.
4511  */
4512 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4513 			 struct btrfs_root *root,
4514 			 struct btrfs_path *path,
4515 			 const struct btrfs_key *new_key)
4516 {
4517 	struct extent_buffer *leaf;
4518 	int ret;
4519 	u32 item_size;
4520 
4521 	leaf = path->nodes[0];
4522 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4523 	ret = setup_leaf_for_split(trans, root, path,
4524 				   item_size + sizeof(struct btrfs_item));
4525 	if (ret)
4526 		return ret;
4527 
4528 	path->slots[0]++;
4529 	setup_items_for_insert(root, path, new_key, &item_size,
4530 			       item_size, item_size +
4531 			       sizeof(struct btrfs_item), 1);
4532 	leaf = path->nodes[0];
4533 	memcpy_extent_buffer(leaf,
4534 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4535 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4536 			     item_size);
4537 	return 0;
4538 }
4539 
4540 /*
4541  * make the item pointed to by the path smaller.  new_size indicates
4542  * how small to make it, and from_end tells us if we just chop bytes
4543  * off the end of the item or if we shift the item to chop bytes off
4544  * the front.
4545  */
4546 void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4547 			 struct btrfs_path *path, u32 new_size, int from_end)
4548 {
4549 	int slot;
4550 	struct extent_buffer *leaf;
4551 	struct btrfs_item *item;
4552 	u32 nritems;
4553 	unsigned int data_end;
4554 	unsigned int old_data_start;
4555 	unsigned int old_size;
4556 	unsigned int size_diff;
4557 	int i;
4558 	struct btrfs_map_token token;
4559 
4560 	btrfs_init_map_token(&token);
4561 
4562 	leaf = path->nodes[0];
4563 	slot = path->slots[0];
4564 
4565 	old_size = btrfs_item_size_nr(leaf, slot);
4566 	if (old_size == new_size)
4567 		return;
4568 
4569 	nritems = btrfs_header_nritems(leaf);
4570 	data_end = leaf_data_end(fs_info, leaf);
4571 
4572 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4573 
4574 	size_diff = old_size - new_size;
4575 
4576 	BUG_ON(slot < 0);
4577 	BUG_ON(slot >= nritems);
4578 
4579 	/*
4580 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4581 	 */
4582 	/* first correct the data pointers */
4583 	for (i = slot; i < nritems; i++) {
4584 		u32 ioff;
4585 		item = btrfs_item_nr(i);
4586 
4587 		ioff = btrfs_token_item_offset(leaf, item, &token);
4588 		btrfs_set_token_item_offset(leaf, item,
4589 					    ioff + size_diff, &token);
4590 	}
4591 
4592 	/* shift the data */
4593 	if (from_end) {
4594 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4595 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4596 			      data_end, old_data_start + new_size - data_end);
4597 	} else {
4598 		struct btrfs_disk_key disk_key;
4599 		u64 offset;
4600 
4601 		btrfs_item_key(leaf, &disk_key, slot);
4602 
4603 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4604 			unsigned long ptr;
4605 			struct btrfs_file_extent_item *fi;
4606 
4607 			fi = btrfs_item_ptr(leaf, slot,
4608 					    struct btrfs_file_extent_item);
4609 			fi = (struct btrfs_file_extent_item *)(
4610 			     (unsigned long)fi - size_diff);
4611 
4612 			if (btrfs_file_extent_type(leaf, fi) ==
4613 			    BTRFS_FILE_EXTENT_INLINE) {
4614 				ptr = btrfs_item_ptr_offset(leaf, slot);
4615 				memmove_extent_buffer(leaf, ptr,
4616 				      (unsigned long)fi,
4617 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4618 			}
4619 		}
4620 
4621 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4622 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4623 			      data_end, old_data_start - data_end);
4624 
4625 		offset = btrfs_disk_key_offset(&disk_key);
4626 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4627 		btrfs_set_item_key(leaf, &disk_key, slot);
4628 		if (slot == 0)
4629 			fixup_low_keys(path, &disk_key, 1);
4630 	}
4631 
4632 	item = btrfs_item_nr(slot);
4633 	btrfs_set_item_size(leaf, item, new_size);
4634 	btrfs_mark_buffer_dirty(leaf);
4635 
4636 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4637 		btrfs_print_leaf(leaf);
4638 		BUG();
4639 	}
4640 }
4641 
4642 /*
4643  * make the item pointed to by the path bigger, data_size is the added size.
4644  */
4645 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4646 		       u32 data_size)
4647 {
4648 	int slot;
4649 	struct extent_buffer *leaf;
4650 	struct btrfs_item *item;
4651 	u32 nritems;
4652 	unsigned int data_end;
4653 	unsigned int old_data;
4654 	unsigned int old_size;
4655 	int i;
4656 	struct btrfs_map_token token;
4657 
4658 	btrfs_init_map_token(&token);
4659 
4660 	leaf = path->nodes[0];
4661 
4662 	nritems = btrfs_header_nritems(leaf);
4663 	data_end = leaf_data_end(fs_info, leaf);
4664 
4665 	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4666 		btrfs_print_leaf(leaf);
4667 		BUG();
4668 	}
4669 	slot = path->slots[0];
4670 	old_data = btrfs_item_end_nr(leaf, slot);
4671 
4672 	BUG_ON(slot < 0);
4673 	if (slot >= nritems) {
4674 		btrfs_print_leaf(leaf);
4675 		btrfs_crit(fs_info, "slot %d too large, nritems %d",
4676 			   slot, nritems);
4677 		BUG_ON(1);
4678 	}
4679 
4680 	/*
4681 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4682 	 */
4683 	/* first correct the data pointers */
4684 	for (i = slot; i < nritems; i++) {
4685 		u32 ioff;
4686 		item = btrfs_item_nr(i);
4687 
4688 		ioff = btrfs_token_item_offset(leaf, item, &token);
4689 		btrfs_set_token_item_offset(leaf, item,
4690 					    ioff - data_size, &token);
4691 	}
4692 
4693 	/* shift the data */
4694 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4695 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4696 		      data_end, old_data - data_end);
4697 
4698 	data_end = old_data;
4699 	old_size = btrfs_item_size_nr(leaf, slot);
4700 	item = btrfs_item_nr(slot);
4701 	btrfs_set_item_size(leaf, item, old_size + data_size);
4702 	btrfs_mark_buffer_dirty(leaf);
4703 
4704 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4705 		btrfs_print_leaf(leaf);
4706 		BUG();
4707 	}
4708 }
4709 
4710 /*
4711  * this is a helper for btrfs_insert_empty_items, the main goal here is
4712  * to save stack depth by doing the bulk of the work in a function
4713  * that doesn't call btrfs_search_slot
4714  */
4715 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4716 			    const struct btrfs_key *cpu_key, u32 *data_size,
4717 			    u32 total_data, u32 total_size, int nr)
4718 {
4719 	struct btrfs_fs_info *fs_info = root->fs_info;
4720 	struct btrfs_item *item;
4721 	int i;
4722 	u32 nritems;
4723 	unsigned int data_end;
4724 	struct btrfs_disk_key disk_key;
4725 	struct extent_buffer *leaf;
4726 	int slot;
4727 	struct btrfs_map_token token;
4728 
4729 	if (path->slots[0] == 0) {
4730 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4731 		fixup_low_keys(path, &disk_key, 1);
4732 	}
4733 	btrfs_unlock_up_safe(path, 1);
4734 
4735 	btrfs_init_map_token(&token);
4736 
4737 	leaf = path->nodes[0];
4738 	slot = path->slots[0];
4739 
4740 	nritems = btrfs_header_nritems(leaf);
4741 	data_end = leaf_data_end(fs_info, leaf);
4742 
4743 	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4744 		btrfs_print_leaf(leaf);
4745 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4746 			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4747 		BUG();
4748 	}
4749 
4750 	if (slot != nritems) {
4751 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4752 
4753 		if (old_data < data_end) {
4754 			btrfs_print_leaf(leaf);
4755 			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4756 				   slot, old_data, data_end);
4757 			BUG_ON(1);
4758 		}
4759 		/*
4760 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4761 		 */
4762 		/* first correct the data pointers */
4763 		for (i = slot; i < nritems; i++) {
4764 			u32 ioff;
4765 
4766 			item = btrfs_item_nr(i);
4767 			ioff = btrfs_token_item_offset(leaf, item, &token);
4768 			btrfs_set_token_item_offset(leaf, item,
4769 						    ioff - total_data, &token);
4770 		}
4771 		/* shift the items */
4772 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4773 			      btrfs_item_nr_offset(slot),
4774 			      (nritems - slot) * sizeof(struct btrfs_item));
4775 
4776 		/* shift the data */
4777 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4778 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4779 			      data_end, old_data - data_end);
4780 		data_end = old_data;
4781 	}
4782 
4783 	/* setup the item for the new data */
4784 	for (i = 0; i < nr; i++) {
4785 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4786 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4787 		item = btrfs_item_nr(slot + i);
4788 		btrfs_set_token_item_offset(leaf, item,
4789 					    data_end - data_size[i], &token);
4790 		data_end -= data_size[i];
4791 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4792 	}
4793 
4794 	btrfs_set_header_nritems(leaf, nritems + nr);
4795 	btrfs_mark_buffer_dirty(leaf);
4796 
4797 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4798 		btrfs_print_leaf(leaf);
4799 		BUG();
4800 	}
4801 }
4802 
4803 /*
4804  * Given a key and some data, insert items into the tree.
4805  * This does all the path init required, making room in the tree if needed.
4806  */
4807 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4808 			    struct btrfs_root *root,
4809 			    struct btrfs_path *path,
4810 			    const struct btrfs_key *cpu_key, u32 *data_size,
4811 			    int nr)
4812 {
4813 	int ret = 0;
4814 	int slot;
4815 	int i;
4816 	u32 total_size = 0;
4817 	u32 total_data = 0;
4818 
4819 	for (i = 0; i < nr; i++)
4820 		total_data += data_size[i];
4821 
4822 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4823 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4824 	if (ret == 0)
4825 		return -EEXIST;
4826 	if (ret < 0)
4827 		return ret;
4828 
4829 	slot = path->slots[0];
4830 	BUG_ON(slot < 0);
4831 
4832 	setup_items_for_insert(root, path, cpu_key, data_size,
4833 			       total_data, total_size, nr);
4834 	return 0;
4835 }
4836 
4837 /*
4838  * Given a key and some data, insert an item into the tree.
4839  * This does all the path init required, making room in the tree if needed.
4840  */
4841 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4842 		      const struct btrfs_key *cpu_key, void *data,
4843 		      u32 data_size)
4844 {
4845 	int ret = 0;
4846 	struct btrfs_path *path;
4847 	struct extent_buffer *leaf;
4848 	unsigned long ptr;
4849 
4850 	path = btrfs_alloc_path();
4851 	if (!path)
4852 		return -ENOMEM;
4853 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4854 	if (!ret) {
4855 		leaf = path->nodes[0];
4856 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4857 		write_extent_buffer(leaf, data, ptr, data_size);
4858 		btrfs_mark_buffer_dirty(leaf);
4859 	}
4860 	btrfs_free_path(path);
4861 	return ret;
4862 }
4863 
4864 /*
4865  * delete the pointer from a given node.
4866  *
4867  * the tree should have been previously balanced so the deletion does not
4868  * empty a node.
4869  */
4870 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4871 		    int level, int slot)
4872 {
4873 	struct extent_buffer *parent = path->nodes[level];
4874 	u32 nritems;
4875 	int ret;
4876 
4877 	nritems = btrfs_header_nritems(parent);
4878 	if (slot != nritems - 1) {
4879 		if (level) {
4880 			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4881 					nritems - slot - 1);
4882 			BUG_ON(ret < 0);
4883 		}
4884 		memmove_extent_buffer(parent,
4885 			      btrfs_node_key_ptr_offset(slot),
4886 			      btrfs_node_key_ptr_offset(slot + 1),
4887 			      sizeof(struct btrfs_key_ptr) *
4888 			      (nritems - slot - 1));
4889 	} else if (level) {
4890 		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4891 				GFP_NOFS);
4892 		BUG_ON(ret < 0);
4893 	}
4894 
4895 	nritems--;
4896 	btrfs_set_header_nritems(parent, nritems);
4897 	if (nritems == 0 && parent == root->node) {
4898 		BUG_ON(btrfs_header_level(root->node) != 1);
4899 		/* just turn the root into a leaf and break */
4900 		btrfs_set_header_level(root->node, 0);
4901 	} else if (slot == 0) {
4902 		struct btrfs_disk_key disk_key;
4903 
4904 		btrfs_node_key(parent, &disk_key, 0);
4905 		fixup_low_keys(path, &disk_key, level + 1);
4906 	}
4907 	btrfs_mark_buffer_dirty(parent);
4908 }
4909 
4910 /*
4911  * a helper function to delete the leaf pointed to by path->slots[1] and
4912  * path->nodes[1].
4913  *
4914  * This deletes the pointer in path->nodes[1] and frees the leaf
4915  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4916  *
4917  * The path must have already been setup for deleting the leaf, including
4918  * all the proper balancing.  path->nodes[1] must be locked.
4919  */
4920 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4921 				    struct btrfs_root *root,
4922 				    struct btrfs_path *path,
4923 				    struct extent_buffer *leaf)
4924 {
4925 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4926 	del_ptr(root, path, 1, path->slots[1]);
4927 
4928 	/*
4929 	 * btrfs_free_extent is expensive, we want to make sure we
4930 	 * aren't holding any locks when we call it
4931 	 */
4932 	btrfs_unlock_up_safe(path, 0);
4933 
4934 	root_sub_used(root, leaf->len);
4935 
4936 	extent_buffer_get(leaf);
4937 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4938 	free_extent_buffer_stale(leaf);
4939 }
4940 /*
4941  * delete the item at the leaf level in path.  If that empties
4942  * the leaf, remove it from the tree
4943  */
4944 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4945 		    struct btrfs_path *path, int slot, int nr)
4946 {
4947 	struct btrfs_fs_info *fs_info = root->fs_info;
4948 	struct extent_buffer *leaf;
4949 	struct btrfs_item *item;
4950 	u32 last_off;
4951 	u32 dsize = 0;
4952 	int ret = 0;
4953 	int wret;
4954 	int i;
4955 	u32 nritems;
4956 	struct btrfs_map_token token;
4957 
4958 	btrfs_init_map_token(&token);
4959 
4960 	leaf = path->nodes[0];
4961 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4962 
4963 	for (i = 0; i < nr; i++)
4964 		dsize += btrfs_item_size_nr(leaf, slot + i);
4965 
4966 	nritems = btrfs_header_nritems(leaf);
4967 
4968 	if (slot + nr != nritems) {
4969 		int data_end = leaf_data_end(fs_info, leaf);
4970 
4971 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4972 			      data_end + dsize,
4973 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4974 			      last_off - data_end);
4975 
4976 		for (i = slot + nr; i < nritems; i++) {
4977 			u32 ioff;
4978 
4979 			item = btrfs_item_nr(i);
4980 			ioff = btrfs_token_item_offset(leaf, item, &token);
4981 			btrfs_set_token_item_offset(leaf, item,
4982 						    ioff + dsize, &token);
4983 		}
4984 
4985 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4986 			      btrfs_item_nr_offset(slot + nr),
4987 			      sizeof(struct btrfs_item) *
4988 			      (nritems - slot - nr));
4989 	}
4990 	btrfs_set_header_nritems(leaf, nritems - nr);
4991 	nritems -= nr;
4992 
4993 	/* delete the leaf if we've emptied it */
4994 	if (nritems == 0) {
4995 		if (leaf == root->node) {
4996 			btrfs_set_header_level(leaf, 0);
4997 		} else {
4998 			btrfs_set_path_blocking(path);
4999 			clean_tree_block(fs_info, leaf);
5000 			btrfs_del_leaf(trans, root, path, leaf);
5001 		}
5002 	} else {
5003 		int used = leaf_space_used(leaf, 0, nritems);
5004 		if (slot == 0) {
5005 			struct btrfs_disk_key disk_key;
5006 
5007 			btrfs_item_key(leaf, &disk_key, 0);
5008 			fixup_low_keys(path, &disk_key, 1);
5009 		}
5010 
5011 		/* delete the leaf if it is mostly empty */
5012 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5013 			/* push_leaf_left fixes the path.
5014 			 * make sure the path still points to our leaf
5015 			 * for possible call to del_ptr below
5016 			 */
5017 			slot = path->slots[1];
5018 			extent_buffer_get(leaf);
5019 
5020 			btrfs_set_path_blocking(path);
5021 			wret = push_leaf_left(trans, root, path, 1, 1,
5022 					      1, (u32)-1);
5023 			if (wret < 0 && wret != -ENOSPC)
5024 				ret = wret;
5025 
5026 			if (path->nodes[0] == leaf &&
5027 			    btrfs_header_nritems(leaf)) {
5028 				wret = push_leaf_right(trans, root, path, 1,
5029 						       1, 1, 0);
5030 				if (wret < 0 && wret != -ENOSPC)
5031 					ret = wret;
5032 			}
5033 
5034 			if (btrfs_header_nritems(leaf) == 0) {
5035 				path->slots[1] = slot;
5036 				btrfs_del_leaf(trans, root, path, leaf);
5037 				free_extent_buffer(leaf);
5038 				ret = 0;
5039 			} else {
5040 				/* if we're still in the path, make sure
5041 				 * we're dirty.  Otherwise, one of the
5042 				 * push_leaf functions must have already
5043 				 * dirtied this buffer
5044 				 */
5045 				if (path->nodes[0] == leaf)
5046 					btrfs_mark_buffer_dirty(leaf);
5047 				free_extent_buffer(leaf);
5048 			}
5049 		} else {
5050 			btrfs_mark_buffer_dirty(leaf);
5051 		}
5052 	}
5053 	return ret;
5054 }
5055 
5056 /*
5057  * search the tree again to find a leaf with lesser keys
5058  * returns 0 if it found something or 1 if there are no lesser leaves.
5059  * returns < 0 on io errors.
5060  *
5061  * This may release the path, and so you may lose any locks held at the
5062  * time you call it.
5063  */
5064 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5065 {
5066 	struct btrfs_key key;
5067 	struct btrfs_disk_key found_key;
5068 	int ret;
5069 
5070 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5071 
5072 	if (key.offset > 0) {
5073 		key.offset--;
5074 	} else if (key.type > 0) {
5075 		key.type--;
5076 		key.offset = (u64)-1;
5077 	} else if (key.objectid > 0) {
5078 		key.objectid--;
5079 		key.type = (u8)-1;
5080 		key.offset = (u64)-1;
5081 	} else {
5082 		return 1;
5083 	}
5084 
5085 	btrfs_release_path(path);
5086 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5087 	if (ret < 0)
5088 		return ret;
5089 	btrfs_item_key(path->nodes[0], &found_key, 0);
5090 	ret = comp_keys(&found_key, &key);
5091 	/*
5092 	 * We might have had an item with the previous key in the tree right
5093 	 * before we released our path. And after we released our path, that
5094 	 * item might have been pushed to the first slot (0) of the leaf we
5095 	 * were holding due to a tree balance. Alternatively, an item with the
5096 	 * previous key can exist as the only element of a leaf (big fat item).
5097 	 * Therefore account for these 2 cases, so that our callers (like
5098 	 * btrfs_previous_item) don't miss an existing item with a key matching
5099 	 * the previous key we computed above.
5100 	 */
5101 	if (ret <= 0)
5102 		return 0;
5103 	return 1;
5104 }
5105 
5106 /*
5107  * A helper function to walk down the tree starting at min_key, and looking
5108  * for nodes or leaves that are have a minimum transaction id.
5109  * This is used by the btree defrag code, and tree logging
5110  *
5111  * This does not cow, but it does stuff the starting key it finds back
5112  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5113  * key and get a writable path.
5114  *
5115  * This honors path->lowest_level to prevent descent past a given level
5116  * of the tree.
5117  *
5118  * min_trans indicates the oldest transaction that you are interested
5119  * in walking through.  Any nodes or leaves older than min_trans are
5120  * skipped over (without reading them).
5121  *
5122  * returns zero if something useful was found, < 0 on error and 1 if there
5123  * was nothing in the tree that matched the search criteria.
5124  */
5125 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5126 			 struct btrfs_path *path,
5127 			 u64 min_trans)
5128 {
5129 	struct btrfs_fs_info *fs_info = root->fs_info;
5130 	struct extent_buffer *cur;
5131 	struct btrfs_key found_key;
5132 	int slot;
5133 	int sret;
5134 	u32 nritems;
5135 	int level;
5136 	int ret = 1;
5137 	int keep_locks = path->keep_locks;
5138 
5139 	path->keep_locks = 1;
5140 again:
5141 	cur = btrfs_read_lock_root_node(root);
5142 	level = btrfs_header_level(cur);
5143 	WARN_ON(path->nodes[level]);
5144 	path->nodes[level] = cur;
5145 	path->locks[level] = BTRFS_READ_LOCK;
5146 
5147 	if (btrfs_header_generation(cur) < min_trans) {
5148 		ret = 1;
5149 		goto out;
5150 	}
5151 	while (1) {
5152 		nritems = btrfs_header_nritems(cur);
5153 		level = btrfs_header_level(cur);
5154 		sret = btrfs_bin_search(cur, min_key, level, &slot);
5155 		if (sret < 0) {
5156 			ret = sret;
5157 			goto out;
5158 		}
5159 
5160 		/* at the lowest level, we're done, setup the path and exit */
5161 		if (level == path->lowest_level) {
5162 			if (slot >= nritems)
5163 				goto find_next_key;
5164 			ret = 0;
5165 			path->slots[level] = slot;
5166 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5167 			goto out;
5168 		}
5169 		if (sret && slot > 0)
5170 			slot--;
5171 		/*
5172 		 * check this node pointer against the min_trans parameters.
5173 		 * If it is too old, old, skip to the next one.
5174 		 */
5175 		while (slot < nritems) {
5176 			u64 gen;
5177 
5178 			gen = btrfs_node_ptr_generation(cur, slot);
5179 			if (gen < min_trans) {
5180 				slot++;
5181 				continue;
5182 			}
5183 			break;
5184 		}
5185 find_next_key:
5186 		/*
5187 		 * we didn't find a candidate key in this node, walk forward
5188 		 * and find another one
5189 		 */
5190 		if (slot >= nritems) {
5191 			path->slots[level] = slot;
5192 			btrfs_set_path_blocking(path);
5193 			sret = btrfs_find_next_key(root, path, min_key, level,
5194 						  min_trans);
5195 			if (sret == 0) {
5196 				btrfs_release_path(path);
5197 				goto again;
5198 			} else {
5199 				goto out;
5200 			}
5201 		}
5202 		/* save our key for returning back */
5203 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5204 		path->slots[level] = slot;
5205 		if (level == path->lowest_level) {
5206 			ret = 0;
5207 			goto out;
5208 		}
5209 		btrfs_set_path_blocking(path);
5210 		cur = read_node_slot(fs_info, cur, slot);
5211 		if (IS_ERR(cur)) {
5212 			ret = PTR_ERR(cur);
5213 			goto out;
5214 		}
5215 
5216 		btrfs_tree_read_lock(cur);
5217 
5218 		path->locks[level - 1] = BTRFS_READ_LOCK;
5219 		path->nodes[level - 1] = cur;
5220 		unlock_up(path, level, 1, 0, NULL);
5221 	}
5222 out:
5223 	path->keep_locks = keep_locks;
5224 	if (ret == 0) {
5225 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5226 		btrfs_set_path_blocking(path);
5227 		memcpy(min_key, &found_key, sizeof(found_key));
5228 	}
5229 	return ret;
5230 }
5231 
5232 static int tree_move_down(struct btrfs_fs_info *fs_info,
5233 			   struct btrfs_path *path,
5234 			   int *level)
5235 {
5236 	struct extent_buffer *eb;
5237 
5238 	BUG_ON(*level == 0);
5239 	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5240 	if (IS_ERR(eb))
5241 		return PTR_ERR(eb);
5242 
5243 	path->nodes[*level - 1] = eb;
5244 	path->slots[*level - 1] = 0;
5245 	(*level)--;
5246 	return 0;
5247 }
5248 
5249 static int tree_move_next_or_upnext(struct btrfs_path *path,
5250 				    int *level, int root_level)
5251 {
5252 	int ret = 0;
5253 	int nritems;
5254 	nritems = btrfs_header_nritems(path->nodes[*level]);
5255 
5256 	path->slots[*level]++;
5257 
5258 	while (path->slots[*level] >= nritems) {
5259 		if (*level == root_level)
5260 			return -1;
5261 
5262 		/* move upnext */
5263 		path->slots[*level] = 0;
5264 		free_extent_buffer(path->nodes[*level]);
5265 		path->nodes[*level] = NULL;
5266 		(*level)++;
5267 		path->slots[*level]++;
5268 
5269 		nritems = btrfs_header_nritems(path->nodes[*level]);
5270 		ret = 1;
5271 	}
5272 	return ret;
5273 }
5274 
5275 /*
5276  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5277  * or down.
5278  */
5279 static int tree_advance(struct btrfs_fs_info *fs_info,
5280 			struct btrfs_path *path,
5281 			int *level, int root_level,
5282 			int allow_down,
5283 			struct btrfs_key *key)
5284 {
5285 	int ret;
5286 
5287 	if (*level == 0 || !allow_down) {
5288 		ret = tree_move_next_or_upnext(path, level, root_level);
5289 	} else {
5290 		ret = tree_move_down(fs_info, path, level);
5291 	}
5292 	if (ret >= 0) {
5293 		if (*level == 0)
5294 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5295 					path->slots[*level]);
5296 		else
5297 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5298 					path->slots[*level]);
5299 	}
5300 	return ret;
5301 }
5302 
5303 static int tree_compare_item(struct btrfs_path *left_path,
5304 			     struct btrfs_path *right_path,
5305 			     char *tmp_buf)
5306 {
5307 	int cmp;
5308 	int len1, len2;
5309 	unsigned long off1, off2;
5310 
5311 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5312 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5313 	if (len1 != len2)
5314 		return 1;
5315 
5316 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5317 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5318 				right_path->slots[0]);
5319 
5320 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5321 
5322 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5323 	if (cmp)
5324 		return 1;
5325 	return 0;
5326 }
5327 
5328 #define ADVANCE 1
5329 #define ADVANCE_ONLY_NEXT -1
5330 
5331 /*
5332  * This function compares two trees and calls the provided callback for
5333  * every changed/new/deleted item it finds.
5334  * If shared tree blocks are encountered, whole subtrees are skipped, making
5335  * the compare pretty fast on snapshotted subvolumes.
5336  *
5337  * This currently works on commit roots only. As commit roots are read only,
5338  * we don't do any locking. The commit roots are protected with transactions.
5339  * Transactions are ended and rejoined when a commit is tried in between.
5340  *
5341  * This function checks for modifications done to the trees while comparing.
5342  * If it detects a change, it aborts immediately.
5343  */
5344 int btrfs_compare_trees(struct btrfs_root *left_root,
5345 			struct btrfs_root *right_root,
5346 			btrfs_changed_cb_t changed_cb, void *ctx)
5347 {
5348 	struct btrfs_fs_info *fs_info = left_root->fs_info;
5349 	int ret;
5350 	int cmp;
5351 	struct btrfs_path *left_path = NULL;
5352 	struct btrfs_path *right_path = NULL;
5353 	struct btrfs_key left_key;
5354 	struct btrfs_key right_key;
5355 	char *tmp_buf = NULL;
5356 	int left_root_level;
5357 	int right_root_level;
5358 	int left_level;
5359 	int right_level;
5360 	int left_end_reached;
5361 	int right_end_reached;
5362 	int advance_left;
5363 	int advance_right;
5364 	u64 left_blockptr;
5365 	u64 right_blockptr;
5366 	u64 left_gen;
5367 	u64 right_gen;
5368 
5369 	left_path = btrfs_alloc_path();
5370 	if (!left_path) {
5371 		ret = -ENOMEM;
5372 		goto out;
5373 	}
5374 	right_path = btrfs_alloc_path();
5375 	if (!right_path) {
5376 		ret = -ENOMEM;
5377 		goto out;
5378 	}
5379 
5380 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5381 	if (!tmp_buf) {
5382 		ret = -ENOMEM;
5383 		goto out;
5384 	}
5385 
5386 	left_path->search_commit_root = 1;
5387 	left_path->skip_locking = 1;
5388 	right_path->search_commit_root = 1;
5389 	right_path->skip_locking = 1;
5390 
5391 	/*
5392 	 * Strategy: Go to the first items of both trees. Then do
5393 	 *
5394 	 * If both trees are at level 0
5395 	 *   Compare keys of current items
5396 	 *     If left < right treat left item as new, advance left tree
5397 	 *       and repeat
5398 	 *     If left > right treat right item as deleted, advance right tree
5399 	 *       and repeat
5400 	 *     If left == right do deep compare of items, treat as changed if
5401 	 *       needed, advance both trees and repeat
5402 	 * If both trees are at the same level but not at level 0
5403 	 *   Compare keys of current nodes/leafs
5404 	 *     If left < right advance left tree and repeat
5405 	 *     If left > right advance right tree and repeat
5406 	 *     If left == right compare blockptrs of the next nodes/leafs
5407 	 *       If they match advance both trees but stay at the same level
5408 	 *         and repeat
5409 	 *       If they don't match advance both trees while allowing to go
5410 	 *         deeper and repeat
5411 	 * If tree levels are different
5412 	 *   Advance the tree that needs it and repeat
5413 	 *
5414 	 * Advancing a tree means:
5415 	 *   If we are at level 0, try to go to the next slot. If that's not
5416 	 *   possible, go one level up and repeat. Stop when we found a level
5417 	 *   where we could go to the next slot. We may at this point be on a
5418 	 *   node or a leaf.
5419 	 *
5420 	 *   If we are not at level 0 and not on shared tree blocks, go one
5421 	 *   level deeper.
5422 	 *
5423 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5424 	 *   the right if possible or go up and right.
5425 	 */
5426 
5427 	down_read(&fs_info->commit_root_sem);
5428 	left_level = btrfs_header_level(left_root->commit_root);
5429 	left_root_level = left_level;
5430 	left_path->nodes[left_level] =
5431 			btrfs_clone_extent_buffer(left_root->commit_root);
5432 	if (!left_path->nodes[left_level]) {
5433 		up_read(&fs_info->commit_root_sem);
5434 		ret = -ENOMEM;
5435 		goto out;
5436 	}
5437 
5438 	right_level = btrfs_header_level(right_root->commit_root);
5439 	right_root_level = right_level;
5440 	right_path->nodes[right_level] =
5441 			btrfs_clone_extent_buffer(right_root->commit_root);
5442 	if (!right_path->nodes[right_level]) {
5443 		up_read(&fs_info->commit_root_sem);
5444 		ret = -ENOMEM;
5445 		goto out;
5446 	}
5447 	up_read(&fs_info->commit_root_sem);
5448 
5449 	if (left_level == 0)
5450 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5451 				&left_key, left_path->slots[left_level]);
5452 	else
5453 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5454 				&left_key, left_path->slots[left_level]);
5455 	if (right_level == 0)
5456 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5457 				&right_key, right_path->slots[right_level]);
5458 	else
5459 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5460 				&right_key, right_path->slots[right_level]);
5461 
5462 	left_end_reached = right_end_reached = 0;
5463 	advance_left = advance_right = 0;
5464 
5465 	while (1) {
5466 		if (advance_left && !left_end_reached) {
5467 			ret = tree_advance(fs_info, left_path, &left_level,
5468 					left_root_level,
5469 					advance_left != ADVANCE_ONLY_NEXT,
5470 					&left_key);
5471 			if (ret == -1)
5472 				left_end_reached = ADVANCE;
5473 			else if (ret < 0)
5474 				goto out;
5475 			advance_left = 0;
5476 		}
5477 		if (advance_right && !right_end_reached) {
5478 			ret = tree_advance(fs_info, right_path, &right_level,
5479 					right_root_level,
5480 					advance_right != ADVANCE_ONLY_NEXT,
5481 					&right_key);
5482 			if (ret == -1)
5483 				right_end_reached = ADVANCE;
5484 			else if (ret < 0)
5485 				goto out;
5486 			advance_right = 0;
5487 		}
5488 
5489 		if (left_end_reached && right_end_reached) {
5490 			ret = 0;
5491 			goto out;
5492 		} else if (left_end_reached) {
5493 			if (right_level == 0) {
5494 				ret = changed_cb(left_path, right_path,
5495 						&right_key,
5496 						BTRFS_COMPARE_TREE_DELETED,
5497 						ctx);
5498 				if (ret < 0)
5499 					goto out;
5500 			}
5501 			advance_right = ADVANCE;
5502 			continue;
5503 		} else if (right_end_reached) {
5504 			if (left_level == 0) {
5505 				ret = changed_cb(left_path, right_path,
5506 						&left_key,
5507 						BTRFS_COMPARE_TREE_NEW,
5508 						ctx);
5509 				if (ret < 0)
5510 					goto out;
5511 			}
5512 			advance_left = ADVANCE;
5513 			continue;
5514 		}
5515 
5516 		if (left_level == 0 && right_level == 0) {
5517 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5518 			if (cmp < 0) {
5519 				ret = changed_cb(left_path, right_path,
5520 						&left_key,
5521 						BTRFS_COMPARE_TREE_NEW,
5522 						ctx);
5523 				if (ret < 0)
5524 					goto out;
5525 				advance_left = ADVANCE;
5526 			} else if (cmp > 0) {
5527 				ret = changed_cb(left_path, right_path,
5528 						&right_key,
5529 						BTRFS_COMPARE_TREE_DELETED,
5530 						ctx);
5531 				if (ret < 0)
5532 					goto out;
5533 				advance_right = ADVANCE;
5534 			} else {
5535 				enum btrfs_compare_tree_result result;
5536 
5537 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5538 				ret = tree_compare_item(left_path, right_path,
5539 							tmp_buf);
5540 				if (ret)
5541 					result = BTRFS_COMPARE_TREE_CHANGED;
5542 				else
5543 					result = BTRFS_COMPARE_TREE_SAME;
5544 				ret = changed_cb(left_path, right_path,
5545 						 &left_key, result, ctx);
5546 				if (ret < 0)
5547 					goto out;
5548 				advance_left = ADVANCE;
5549 				advance_right = ADVANCE;
5550 			}
5551 		} else if (left_level == right_level) {
5552 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5553 			if (cmp < 0) {
5554 				advance_left = ADVANCE;
5555 			} else if (cmp > 0) {
5556 				advance_right = ADVANCE;
5557 			} else {
5558 				left_blockptr = btrfs_node_blockptr(
5559 						left_path->nodes[left_level],
5560 						left_path->slots[left_level]);
5561 				right_blockptr = btrfs_node_blockptr(
5562 						right_path->nodes[right_level],
5563 						right_path->slots[right_level]);
5564 				left_gen = btrfs_node_ptr_generation(
5565 						left_path->nodes[left_level],
5566 						left_path->slots[left_level]);
5567 				right_gen = btrfs_node_ptr_generation(
5568 						right_path->nodes[right_level],
5569 						right_path->slots[right_level]);
5570 				if (left_blockptr == right_blockptr &&
5571 				    left_gen == right_gen) {
5572 					/*
5573 					 * As we're on a shared block, don't
5574 					 * allow to go deeper.
5575 					 */
5576 					advance_left = ADVANCE_ONLY_NEXT;
5577 					advance_right = ADVANCE_ONLY_NEXT;
5578 				} else {
5579 					advance_left = ADVANCE;
5580 					advance_right = ADVANCE;
5581 				}
5582 			}
5583 		} else if (left_level < right_level) {
5584 			advance_right = ADVANCE;
5585 		} else {
5586 			advance_left = ADVANCE;
5587 		}
5588 	}
5589 
5590 out:
5591 	btrfs_free_path(left_path);
5592 	btrfs_free_path(right_path);
5593 	kvfree(tmp_buf);
5594 	return ret;
5595 }
5596 
5597 /*
5598  * this is similar to btrfs_next_leaf, but does not try to preserve
5599  * and fixup the path.  It looks for and returns the next key in the
5600  * tree based on the current path and the min_trans parameters.
5601  *
5602  * 0 is returned if another key is found, < 0 if there are any errors
5603  * and 1 is returned if there are no higher keys in the tree
5604  *
5605  * path->keep_locks should be set to 1 on the search made before
5606  * calling this function.
5607  */
5608 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5609 			struct btrfs_key *key, int level, u64 min_trans)
5610 {
5611 	int slot;
5612 	struct extent_buffer *c;
5613 
5614 	WARN_ON(!path->keep_locks);
5615 	while (level < BTRFS_MAX_LEVEL) {
5616 		if (!path->nodes[level])
5617 			return 1;
5618 
5619 		slot = path->slots[level] + 1;
5620 		c = path->nodes[level];
5621 next:
5622 		if (slot >= btrfs_header_nritems(c)) {
5623 			int ret;
5624 			int orig_lowest;
5625 			struct btrfs_key cur_key;
5626 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5627 			    !path->nodes[level + 1])
5628 				return 1;
5629 
5630 			if (path->locks[level + 1]) {
5631 				level++;
5632 				continue;
5633 			}
5634 
5635 			slot = btrfs_header_nritems(c) - 1;
5636 			if (level == 0)
5637 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5638 			else
5639 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5640 
5641 			orig_lowest = path->lowest_level;
5642 			btrfs_release_path(path);
5643 			path->lowest_level = level;
5644 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5645 						0, 0);
5646 			path->lowest_level = orig_lowest;
5647 			if (ret < 0)
5648 				return ret;
5649 
5650 			c = path->nodes[level];
5651 			slot = path->slots[level];
5652 			if (ret == 0)
5653 				slot++;
5654 			goto next;
5655 		}
5656 
5657 		if (level == 0)
5658 			btrfs_item_key_to_cpu(c, key, slot);
5659 		else {
5660 			u64 gen = btrfs_node_ptr_generation(c, slot);
5661 
5662 			if (gen < min_trans) {
5663 				slot++;
5664 				goto next;
5665 			}
5666 			btrfs_node_key_to_cpu(c, key, slot);
5667 		}
5668 		return 0;
5669 	}
5670 	return 1;
5671 }
5672 
5673 /*
5674  * search the tree again to find a leaf with greater keys
5675  * returns 0 if it found something or 1 if there are no greater leaves.
5676  * returns < 0 on io errors.
5677  */
5678 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5679 {
5680 	return btrfs_next_old_leaf(root, path, 0);
5681 }
5682 
5683 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5684 			u64 time_seq)
5685 {
5686 	int slot;
5687 	int level;
5688 	struct extent_buffer *c;
5689 	struct extent_buffer *next;
5690 	struct btrfs_key key;
5691 	u32 nritems;
5692 	int ret;
5693 	int old_spinning = path->leave_spinning;
5694 	int next_rw_lock = 0;
5695 
5696 	nritems = btrfs_header_nritems(path->nodes[0]);
5697 	if (nritems == 0)
5698 		return 1;
5699 
5700 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5701 again:
5702 	level = 1;
5703 	next = NULL;
5704 	next_rw_lock = 0;
5705 	btrfs_release_path(path);
5706 
5707 	path->keep_locks = 1;
5708 	path->leave_spinning = 1;
5709 
5710 	if (time_seq)
5711 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5712 	else
5713 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5714 	path->keep_locks = 0;
5715 
5716 	if (ret < 0)
5717 		return ret;
5718 
5719 	nritems = btrfs_header_nritems(path->nodes[0]);
5720 	/*
5721 	 * by releasing the path above we dropped all our locks.  A balance
5722 	 * could have added more items next to the key that used to be
5723 	 * at the very end of the block.  So, check again here and
5724 	 * advance the path if there are now more items available.
5725 	 */
5726 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5727 		if (ret == 0)
5728 			path->slots[0]++;
5729 		ret = 0;
5730 		goto done;
5731 	}
5732 	/*
5733 	 * So the above check misses one case:
5734 	 * - after releasing the path above, someone has removed the item that
5735 	 *   used to be at the very end of the block, and balance between leafs
5736 	 *   gets another one with bigger key.offset to replace it.
5737 	 *
5738 	 * This one should be returned as well, or we can get leaf corruption
5739 	 * later(esp. in __btrfs_drop_extents()).
5740 	 *
5741 	 * And a bit more explanation about this check,
5742 	 * with ret > 0, the key isn't found, the path points to the slot
5743 	 * where it should be inserted, so the path->slots[0] item must be the
5744 	 * bigger one.
5745 	 */
5746 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5747 		ret = 0;
5748 		goto done;
5749 	}
5750 
5751 	while (level < BTRFS_MAX_LEVEL) {
5752 		if (!path->nodes[level]) {
5753 			ret = 1;
5754 			goto done;
5755 		}
5756 
5757 		slot = path->slots[level] + 1;
5758 		c = path->nodes[level];
5759 		if (slot >= btrfs_header_nritems(c)) {
5760 			level++;
5761 			if (level == BTRFS_MAX_LEVEL) {
5762 				ret = 1;
5763 				goto done;
5764 			}
5765 			continue;
5766 		}
5767 
5768 		if (next) {
5769 			btrfs_tree_unlock_rw(next, next_rw_lock);
5770 			free_extent_buffer(next);
5771 		}
5772 
5773 		next = c;
5774 		next_rw_lock = path->locks[level];
5775 		ret = read_block_for_search(root, path, &next, level,
5776 					    slot, &key);
5777 		if (ret == -EAGAIN)
5778 			goto again;
5779 
5780 		if (ret < 0) {
5781 			btrfs_release_path(path);
5782 			goto done;
5783 		}
5784 
5785 		if (!path->skip_locking) {
5786 			ret = btrfs_try_tree_read_lock(next);
5787 			if (!ret && time_seq) {
5788 				/*
5789 				 * If we don't get the lock, we may be racing
5790 				 * with push_leaf_left, holding that lock while
5791 				 * itself waiting for the leaf we've currently
5792 				 * locked. To solve this situation, we give up
5793 				 * on our lock and cycle.
5794 				 */
5795 				free_extent_buffer(next);
5796 				btrfs_release_path(path);
5797 				cond_resched();
5798 				goto again;
5799 			}
5800 			if (!ret) {
5801 				btrfs_set_path_blocking(path);
5802 				btrfs_tree_read_lock(next);
5803 			}
5804 			next_rw_lock = BTRFS_READ_LOCK;
5805 		}
5806 		break;
5807 	}
5808 	path->slots[level] = slot;
5809 	while (1) {
5810 		level--;
5811 		c = path->nodes[level];
5812 		if (path->locks[level])
5813 			btrfs_tree_unlock_rw(c, path->locks[level]);
5814 
5815 		free_extent_buffer(c);
5816 		path->nodes[level] = next;
5817 		path->slots[level] = 0;
5818 		if (!path->skip_locking)
5819 			path->locks[level] = next_rw_lock;
5820 		if (!level)
5821 			break;
5822 
5823 		ret = read_block_for_search(root, path, &next, level,
5824 					    0, &key);
5825 		if (ret == -EAGAIN)
5826 			goto again;
5827 
5828 		if (ret < 0) {
5829 			btrfs_release_path(path);
5830 			goto done;
5831 		}
5832 
5833 		if (!path->skip_locking) {
5834 			ret = btrfs_try_tree_read_lock(next);
5835 			if (!ret) {
5836 				btrfs_set_path_blocking(path);
5837 				btrfs_tree_read_lock(next);
5838 			}
5839 			next_rw_lock = BTRFS_READ_LOCK;
5840 		}
5841 	}
5842 	ret = 0;
5843 done:
5844 	unlock_up(path, 0, 1, 0, NULL);
5845 	path->leave_spinning = old_spinning;
5846 	if (!old_spinning)
5847 		btrfs_set_path_blocking(path);
5848 
5849 	return ret;
5850 }
5851 
5852 /*
5853  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5854  * searching until it gets past min_objectid or finds an item of 'type'
5855  *
5856  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5857  */
5858 int btrfs_previous_item(struct btrfs_root *root,
5859 			struct btrfs_path *path, u64 min_objectid,
5860 			int type)
5861 {
5862 	struct btrfs_key found_key;
5863 	struct extent_buffer *leaf;
5864 	u32 nritems;
5865 	int ret;
5866 
5867 	while (1) {
5868 		if (path->slots[0] == 0) {
5869 			btrfs_set_path_blocking(path);
5870 			ret = btrfs_prev_leaf(root, path);
5871 			if (ret != 0)
5872 				return ret;
5873 		} else {
5874 			path->slots[0]--;
5875 		}
5876 		leaf = path->nodes[0];
5877 		nritems = btrfs_header_nritems(leaf);
5878 		if (nritems == 0)
5879 			return 1;
5880 		if (path->slots[0] == nritems)
5881 			path->slots[0]--;
5882 
5883 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5884 		if (found_key.objectid < min_objectid)
5885 			break;
5886 		if (found_key.type == type)
5887 			return 0;
5888 		if (found_key.objectid == min_objectid &&
5889 		    found_key.type < type)
5890 			break;
5891 	}
5892 	return 1;
5893 }
5894 
5895 /*
5896  * search in extent tree to find a previous Metadata/Data extent item with
5897  * min objecitd.
5898  *
5899  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5900  */
5901 int btrfs_previous_extent_item(struct btrfs_root *root,
5902 			struct btrfs_path *path, u64 min_objectid)
5903 {
5904 	struct btrfs_key found_key;
5905 	struct extent_buffer *leaf;
5906 	u32 nritems;
5907 	int ret;
5908 
5909 	while (1) {
5910 		if (path->slots[0] == 0) {
5911 			btrfs_set_path_blocking(path);
5912 			ret = btrfs_prev_leaf(root, path);
5913 			if (ret != 0)
5914 				return ret;
5915 		} else {
5916 			path->slots[0]--;
5917 		}
5918 		leaf = path->nodes[0];
5919 		nritems = btrfs_header_nritems(leaf);
5920 		if (nritems == 0)
5921 			return 1;
5922 		if (path->slots[0] == nritems)
5923 			path->slots[0]--;
5924 
5925 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5926 		if (found_key.objectid < min_objectid)
5927 			break;
5928 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5929 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5930 			return 0;
5931 		if (found_key.objectid == min_objectid &&
5932 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5933 			break;
5934 	}
5935 	return 1;
5936 }
5937