1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 41 struct btrfs_path *path, int level, int slot, 42 int tree_mod_log); 43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 44 struct extent_buffer *eb); 45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr, 46 u32 blocksize, u64 parent_transid, 47 u64 time_seq); 48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root, 49 u64 bytenr, u32 blocksize, 50 u64 time_seq); 51 52 struct btrfs_path *btrfs_alloc_path(void) 53 { 54 struct btrfs_path *path; 55 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 56 return path; 57 } 58 59 /* 60 * set all locked nodes in the path to blocking locks. This should 61 * be done before scheduling 62 */ 63 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 64 { 65 int i; 66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 67 if (!p->nodes[i] || !p->locks[i]) 68 continue; 69 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 70 if (p->locks[i] == BTRFS_READ_LOCK) 71 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 72 else if (p->locks[i] == BTRFS_WRITE_LOCK) 73 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 74 } 75 } 76 77 /* 78 * reset all the locked nodes in the patch to spinning locks. 79 * 80 * held is used to keep lockdep happy, when lockdep is enabled 81 * we set held to a blocking lock before we go around and 82 * retake all the spinlocks in the path. You can safely use NULL 83 * for held 84 */ 85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 86 struct extent_buffer *held, int held_rw) 87 { 88 int i; 89 90 #ifdef CONFIG_DEBUG_LOCK_ALLOC 91 /* lockdep really cares that we take all of these spinlocks 92 * in the right order. If any of the locks in the path are not 93 * currently blocking, it is going to complain. So, make really 94 * really sure by forcing the path to blocking before we clear 95 * the path blocking. 96 */ 97 if (held) { 98 btrfs_set_lock_blocking_rw(held, held_rw); 99 if (held_rw == BTRFS_WRITE_LOCK) 100 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 101 else if (held_rw == BTRFS_READ_LOCK) 102 held_rw = BTRFS_READ_LOCK_BLOCKING; 103 } 104 btrfs_set_path_blocking(p); 105 #endif 106 107 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 108 if (p->nodes[i] && p->locks[i]) { 109 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 110 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 111 p->locks[i] = BTRFS_WRITE_LOCK; 112 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 113 p->locks[i] = BTRFS_READ_LOCK; 114 } 115 } 116 117 #ifdef CONFIG_DEBUG_LOCK_ALLOC 118 if (held) 119 btrfs_clear_lock_blocking_rw(held, held_rw); 120 #endif 121 } 122 123 /* this also releases the path */ 124 void btrfs_free_path(struct btrfs_path *p) 125 { 126 if (!p) 127 return; 128 btrfs_release_path(p); 129 kmem_cache_free(btrfs_path_cachep, p); 130 } 131 132 /* 133 * path release drops references on the extent buffers in the path 134 * and it drops any locks held by this path 135 * 136 * It is safe to call this on paths that no locks or extent buffers held. 137 */ 138 noinline void btrfs_release_path(struct btrfs_path *p) 139 { 140 int i; 141 142 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 143 p->slots[i] = 0; 144 if (!p->nodes[i]) 145 continue; 146 if (p->locks[i]) { 147 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 148 p->locks[i] = 0; 149 } 150 free_extent_buffer(p->nodes[i]); 151 p->nodes[i] = NULL; 152 } 153 } 154 155 /* 156 * safely gets a reference on the root node of a tree. A lock 157 * is not taken, so a concurrent writer may put a different node 158 * at the root of the tree. See btrfs_lock_root_node for the 159 * looping required. 160 * 161 * The extent buffer returned by this has a reference taken, so 162 * it won't disappear. It may stop being the root of the tree 163 * at any time because there are no locks held. 164 */ 165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 166 { 167 struct extent_buffer *eb; 168 169 while (1) { 170 rcu_read_lock(); 171 eb = rcu_dereference(root->node); 172 173 /* 174 * RCU really hurts here, we could free up the root node because 175 * it was cow'ed but we may not get the new root node yet so do 176 * the inc_not_zero dance and if it doesn't work then 177 * synchronize_rcu and try again. 178 */ 179 if (atomic_inc_not_zero(&eb->refs)) { 180 rcu_read_unlock(); 181 break; 182 } 183 rcu_read_unlock(); 184 synchronize_rcu(); 185 } 186 return eb; 187 } 188 189 /* loop around taking references on and locking the root node of the 190 * tree until you end up with a lock on the root. A locked buffer 191 * is returned, with a reference held. 192 */ 193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 194 { 195 struct extent_buffer *eb; 196 197 while (1) { 198 eb = btrfs_root_node(root); 199 btrfs_tree_lock(eb); 200 if (eb == root->node) 201 break; 202 btrfs_tree_unlock(eb); 203 free_extent_buffer(eb); 204 } 205 return eb; 206 } 207 208 /* loop around taking references on and locking the root node of the 209 * tree until you end up with a lock on the root. A locked buffer 210 * is returned, with a reference held. 211 */ 212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 213 { 214 struct extent_buffer *eb; 215 216 while (1) { 217 eb = btrfs_root_node(root); 218 btrfs_tree_read_lock(eb); 219 if (eb == root->node) 220 break; 221 btrfs_tree_read_unlock(eb); 222 free_extent_buffer(eb); 223 } 224 return eb; 225 } 226 227 /* cowonly root (everything not a reference counted cow subvolume), just get 228 * put onto a simple dirty list. transaction.c walks this to make sure they 229 * get properly updated on disk. 230 */ 231 static void add_root_to_dirty_list(struct btrfs_root *root) 232 { 233 spin_lock(&root->fs_info->trans_lock); 234 if (root->track_dirty && list_empty(&root->dirty_list)) { 235 list_add(&root->dirty_list, 236 &root->fs_info->dirty_cowonly_roots); 237 } 238 spin_unlock(&root->fs_info->trans_lock); 239 } 240 241 /* 242 * used by snapshot creation to make a copy of a root for a tree with 243 * a given objectid. The buffer with the new root node is returned in 244 * cow_ret, and this func returns zero on success or a negative error code. 245 */ 246 int btrfs_copy_root(struct btrfs_trans_handle *trans, 247 struct btrfs_root *root, 248 struct extent_buffer *buf, 249 struct extent_buffer **cow_ret, u64 new_root_objectid) 250 { 251 struct extent_buffer *cow; 252 int ret = 0; 253 int level; 254 struct btrfs_disk_key disk_key; 255 256 WARN_ON(root->ref_cows && trans->transid != 257 root->fs_info->running_transaction->transid); 258 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 259 260 level = btrfs_header_level(buf); 261 if (level == 0) 262 btrfs_item_key(buf, &disk_key, 0); 263 else 264 btrfs_node_key(buf, &disk_key, 0); 265 266 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 267 new_root_objectid, &disk_key, level, 268 buf->start, 0); 269 if (IS_ERR(cow)) 270 return PTR_ERR(cow); 271 272 copy_extent_buffer(cow, buf, 0, 0, cow->len); 273 btrfs_set_header_bytenr(cow, cow->start); 274 btrfs_set_header_generation(cow, trans->transid); 275 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 276 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 277 BTRFS_HEADER_FLAG_RELOC); 278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 279 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 280 else 281 btrfs_set_header_owner(cow, new_root_objectid); 282 283 write_extent_buffer(cow, root->fs_info->fsid, 284 (unsigned long)btrfs_header_fsid(cow), 285 BTRFS_FSID_SIZE); 286 287 WARN_ON(btrfs_header_generation(buf) > trans->transid); 288 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 289 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 290 else 291 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 292 293 if (ret) 294 return ret; 295 296 btrfs_mark_buffer_dirty(cow); 297 *cow_ret = cow; 298 return 0; 299 } 300 301 enum mod_log_op { 302 MOD_LOG_KEY_REPLACE, 303 MOD_LOG_KEY_ADD, 304 MOD_LOG_KEY_REMOVE, 305 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 306 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 307 MOD_LOG_MOVE_KEYS, 308 MOD_LOG_ROOT_REPLACE, 309 }; 310 311 struct tree_mod_move { 312 int dst_slot; 313 int nr_items; 314 }; 315 316 struct tree_mod_root { 317 u64 logical; 318 u8 level; 319 }; 320 321 struct tree_mod_elem { 322 struct rb_node node; 323 u64 index; /* shifted logical */ 324 u64 seq; 325 enum mod_log_op op; 326 327 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 328 int slot; 329 330 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 331 u64 generation; 332 333 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 334 struct btrfs_disk_key key; 335 u64 blockptr; 336 337 /* this is used for op == MOD_LOG_MOVE_KEYS */ 338 struct tree_mod_move move; 339 340 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 341 struct tree_mod_root old_root; 342 }; 343 344 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 345 { 346 read_lock(&fs_info->tree_mod_log_lock); 347 } 348 349 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 350 { 351 read_unlock(&fs_info->tree_mod_log_lock); 352 } 353 354 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 355 { 356 write_lock(&fs_info->tree_mod_log_lock); 357 } 358 359 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 360 { 361 write_unlock(&fs_info->tree_mod_log_lock); 362 } 363 364 /* 365 * This adds a new blocker to the tree mod log's blocker list if the @elem 366 * passed does not already have a sequence number set. So when a caller expects 367 * to record tree modifications, it should ensure to set elem->seq to zero 368 * before calling btrfs_get_tree_mod_seq. 369 * Returns a fresh, unused tree log modification sequence number, even if no new 370 * blocker was added. 371 */ 372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 373 struct seq_list *elem) 374 { 375 u64 seq; 376 377 tree_mod_log_write_lock(fs_info); 378 spin_lock(&fs_info->tree_mod_seq_lock); 379 if (!elem->seq) { 380 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 381 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 382 } 383 seq = btrfs_inc_tree_mod_seq(fs_info); 384 spin_unlock(&fs_info->tree_mod_seq_lock); 385 tree_mod_log_write_unlock(fs_info); 386 387 return seq; 388 } 389 390 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 391 struct seq_list *elem) 392 { 393 struct rb_root *tm_root; 394 struct rb_node *node; 395 struct rb_node *next; 396 struct seq_list *cur_elem; 397 struct tree_mod_elem *tm; 398 u64 min_seq = (u64)-1; 399 u64 seq_putting = elem->seq; 400 401 if (!seq_putting) 402 return; 403 404 spin_lock(&fs_info->tree_mod_seq_lock); 405 list_del(&elem->list); 406 elem->seq = 0; 407 408 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 409 if (cur_elem->seq < min_seq) { 410 if (seq_putting > cur_elem->seq) { 411 /* 412 * blocker with lower sequence number exists, we 413 * cannot remove anything from the log 414 */ 415 spin_unlock(&fs_info->tree_mod_seq_lock); 416 return; 417 } 418 min_seq = cur_elem->seq; 419 } 420 } 421 spin_unlock(&fs_info->tree_mod_seq_lock); 422 423 /* 424 * anything that's lower than the lowest existing (read: blocked) 425 * sequence number can be removed from the tree. 426 */ 427 tree_mod_log_write_lock(fs_info); 428 tm_root = &fs_info->tree_mod_log; 429 for (node = rb_first(tm_root); node; node = next) { 430 next = rb_next(node); 431 tm = container_of(node, struct tree_mod_elem, node); 432 if (tm->seq > min_seq) 433 continue; 434 rb_erase(node, tm_root); 435 kfree(tm); 436 } 437 tree_mod_log_write_unlock(fs_info); 438 } 439 440 /* 441 * key order of the log: 442 * index -> sequence 443 * 444 * the index is the shifted logical of the *new* root node for root replace 445 * operations, or the shifted logical of the affected block for all other 446 * operations. 447 */ 448 static noinline int 449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 450 { 451 struct rb_root *tm_root; 452 struct rb_node **new; 453 struct rb_node *parent = NULL; 454 struct tree_mod_elem *cur; 455 456 BUG_ON(!tm || !tm->seq); 457 458 tm_root = &fs_info->tree_mod_log; 459 new = &tm_root->rb_node; 460 while (*new) { 461 cur = container_of(*new, struct tree_mod_elem, node); 462 parent = *new; 463 if (cur->index < tm->index) 464 new = &((*new)->rb_left); 465 else if (cur->index > tm->index) 466 new = &((*new)->rb_right); 467 else if (cur->seq < tm->seq) 468 new = &((*new)->rb_left); 469 else if (cur->seq > tm->seq) 470 new = &((*new)->rb_right); 471 else { 472 kfree(tm); 473 return -EEXIST; 474 } 475 } 476 477 rb_link_node(&tm->node, parent, new); 478 rb_insert_color(&tm->node, tm_root); 479 return 0; 480 } 481 482 /* 483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 484 * returns zero with the tree_mod_log_lock acquired. The caller must hold 485 * this until all tree mod log insertions are recorded in the rb tree and then 486 * call tree_mod_log_write_unlock() to release. 487 */ 488 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 489 struct extent_buffer *eb) { 490 smp_mb(); 491 if (list_empty(&(fs_info)->tree_mod_seq_list)) 492 return 1; 493 if (eb && btrfs_header_level(eb) == 0) 494 return 1; 495 496 tree_mod_log_write_lock(fs_info); 497 if (list_empty(&fs_info->tree_mod_seq_list)) { 498 /* 499 * someone emptied the list while we were waiting for the lock. 500 * we must not add to the list when no blocker exists. 501 */ 502 tree_mod_log_write_unlock(fs_info); 503 return 1; 504 } 505 506 return 0; 507 } 508 509 /* 510 * This allocates memory and gets a tree modification sequence number. 511 * 512 * Returns <0 on error. 513 * Returns >0 (the added sequence number) on success. 514 */ 515 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags, 516 struct tree_mod_elem **tm_ret) 517 { 518 struct tree_mod_elem *tm; 519 520 /* 521 * once we switch from spin locks to something different, we should 522 * honor the flags parameter here. 523 */ 524 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC); 525 if (!tm) 526 return -ENOMEM; 527 528 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 529 return tm->seq; 530 } 531 532 static inline int 533 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 534 struct extent_buffer *eb, int slot, 535 enum mod_log_op op, gfp_t flags) 536 { 537 int ret; 538 struct tree_mod_elem *tm; 539 540 ret = tree_mod_alloc(fs_info, flags, &tm); 541 if (ret < 0) 542 return ret; 543 544 tm->index = eb->start >> PAGE_CACHE_SHIFT; 545 if (op != MOD_LOG_KEY_ADD) { 546 btrfs_node_key(eb, &tm->key, slot); 547 tm->blockptr = btrfs_node_blockptr(eb, slot); 548 } 549 tm->op = op; 550 tm->slot = slot; 551 tm->generation = btrfs_node_ptr_generation(eb, slot); 552 553 return __tree_mod_log_insert(fs_info, tm); 554 } 555 556 static noinline int 557 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info, 558 struct extent_buffer *eb, int slot, 559 enum mod_log_op op, gfp_t flags) 560 { 561 int ret; 562 563 if (tree_mod_dont_log(fs_info, eb)) 564 return 0; 565 566 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags); 567 568 tree_mod_log_write_unlock(fs_info); 569 return ret; 570 } 571 572 static noinline int 573 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 574 int slot, enum mod_log_op op) 575 { 576 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS); 577 } 578 579 static noinline int 580 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info, 581 struct extent_buffer *eb, int slot, 582 enum mod_log_op op) 583 { 584 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS); 585 } 586 587 static noinline int 588 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 589 struct extent_buffer *eb, int dst_slot, int src_slot, 590 int nr_items, gfp_t flags) 591 { 592 struct tree_mod_elem *tm; 593 int ret; 594 int i; 595 596 if (tree_mod_dont_log(fs_info, eb)) 597 return 0; 598 599 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 600 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot, 601 MOD_LOG_KEY_REMOVE_WHILE_MOVING); 602 BUG_ON(ret < 0); 603 } 604 605 ret = tree_mod_alloc(fs_info, flags, &tm); 606 if (ret < 0) 607 goto out; 608 609 tm->index = eb->start >> PAGE_CACHE_SHIFT; 610 tm->slot = src_slot; 611 tm->move.dst_slot = dst_slot; 612 tm->move.nr_items = nr_items; 613 tm->op = MOD_LOG_MOVE_KEYS; 614 615 ret = __tree_mod_log_insert(fs_info, tm); 616 out: 617 tree_mod_log_write_unlock(fs_info); 618 return ret; 619 } 620 621 static inline void 622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 623 { 624 int i; 625 u32 nritems; 626 int ret; 627 628 if (btrfs_header_level(eb) == 0) 629 return; 630 631 nritems = btrfs_header_nritems(eb); 632 for (i = nritems - 1; i >= 0; i--) { 633 ret = tree_mod_log_insert_key_locked(fs_info, eb, i, 634 MOD_LOG_KEY_REMOVE_WHILE_FREEING); 635 BUG_ON(ret < 0); 636 } 637 } 638 639 static noinline int 640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 641 struct extent_buffer *old_root, 642 struct extent_buffer *new_root, gfp_t flags) 643 { 644 struct tree_mod_elem *tm; 645 int ret; 646 647 if (tree_mod_dont_log(fs_info, NULL)) 648 return 0; 649 650 __tree_mod_log_free_eb(fs_info, old_root); 651 652 ret = tree_mod_alloc(fs_info, flags, &tm); 653 if (ret < 0) 654 goto out; 655 656 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 657 tm->old_root.logical = old_root->start; 658 tm->old_root.level = btrfs_header_level(old_root); 659 tm->generation = btrfs_header_generation(old_root); 660 tm->op = MOD_LOG_ROOT_REPLACE; 661 662 ret = __tree_mod_log_insert(fs_info, tm); 663 out: 664 tree_mod_log_write_unlock(fs_info); 665 return ret; 666 } 667 668 static struct tree_mod_elem * 669 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 670 int smallest) 671 { 672 struct rb_root *tm_root; 673 struct rb_node *node; 674 struct tree_mod_elem *cur = NULL; 675 struct tree_mod_elem *found = NULL; 676 u64 index = start >> PAGE_CACHE_SHIFT; 677 678 tree_mod_log_read_lock(fs_info); 679 tm_root = &fs_info->tree_mod_log; 680 node = tm_root->rb_node; 681 while (node) { 682 cur = container_of(node, struct tree_mod_elem, node); 683 if (cur->index < index) { 684 node = node->rb_left; 685 } else if (cur->index > index) { 686 node = node->rb_right; 687 } else if (cur->seq < min_seq) { 688 node = node->rb_left; 689 } else if (!smallest) { 690 /* we want the node with the highest seq */ 691 if (found) 692 BUG_ON(found->seq > cur->seq); 693 found = cur; 694 node = node->rb_left; 695 } else if (cur->seq > min_seq) { 696 /* we want the node with the smallest seq */ 697 if (found) 698 BUG_ON(found->seq < cur->seq); 699 found = cur; 700 node = node->rb_right; 701 } else { 702 found = cur; 703 break; 704 } 705 } 706 tree_mod_log_read_unlock(fs_info); 707 708 return found; 709 } 710 711 /* 712 * this returns the element from the log with the smallest time sequence 713 * value that's in the log (the oldest log item). any element with a time 714 * sequence lower than min_seq will be ignored. 715 */ 716 static struct tree_mod_elem * 717 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 718 u64 min_seq) 719 { 720 return __tree_mod_log_search(fs_info, start, min_seq, 1); 721 } 722 723 /* 724 * this returns the element from the log with the largest time sequence 725 * value that's in the log (the most recent log item). any element with 726 * a time sequence lower than min_seq will be ignored. 727 */ 728 static struct tree_mod_elem * 729 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 730 { 731 return __tree_mod_log_search(fs_info, start, min_seq, 0); 732 } 733 734 static noinline void 735 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 736 struct extent_buffer *src, unsigned long dst_offset, 737 unsigned long src_offset, int nr_items) 738 { 739 int ret; 740 int i; 741 742 if (tree_mod_dont_log(fs_info, NULL)) 743 return; 744 745 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) { 746 tree_mod_log_write_unlock(fs_info); 747 return; 748 } 749 750 for (i = 0; i < nr_items; i++) { 751 ret = tree_mod_log_insert_key_locked(fs_info, src, 752 i + src_offset, 753 MOD_LOG_KEY_REMOVE); 754 BUG_ON(ret < 0); 755 ret = tree_mod_log_insert_key_locked(fs_info, dst, 756 i + dst_offset, 757 MOD_LOG_KEY_ADD); 758 BUG_ON(ret < 0); 759 } 760 761 tree_mod_log_write_unlock(fs_info); 762 } 763 764 static inline void 765 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 766 int dst_offset, int src_offset, int nr_items) 767 { 768 int ret; 769 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 770 nr_items, GFP_NOFS); 771 BUG_ON(ret < 0); 772 } 773 774 static noinline void 775 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 776 struct extent_buffer *eb, 777 struct btrfs_disk_key *disk_key, int slot, int atomic) 778 { 779 int ret; 780 781 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot, 782 MOD_LOG_KEY_REPLACE, 783 atomic ? GFP_ATOMIC : GFP_NOFS); 784 BUG_ON(ret < 0); 785 } 786 787 static noinline void 788 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 789 { 790 if (tree_mod_dont_log(fs_info, eb)) 791 return; 792 793 __tree_mod_log_free_eb(fs_info, eb); 794 795 tree_mod_log_write_unlock(fs_info); 796 } 797 798 static noinline void 799 tree_mod_log_set_root_pointer(struct btrfs_root *root, 800 struct extent_buffer *new_root_node) 801 { 802 int ret; 803 ret = tree_mod_log_insert_root(root->fs_info, root->node, 804 new_root_node, GFP_NOFS); 805 BUG_ON(ret < 0); 806 } 807 808 /* 809 * check if the tree block can be shared by multiple trees 810 */ 811 int btrfs_block_can_be_shared(struct btrfs_root *root, 812 struct extent_buffer *buf) 813 { 814 /* 815 * Tree blocks not in refernece counted trees and tree roots 816 * are never shared. If a block was allocated after the last 817 * snapshot and the block was not allocated by tree relocation, 818 * we know the block is not shared. 819 */ 820 if (root->ref_cows && 821 buf != root->node && buf != root->commit_root && 822 (btrfs_header_generation(buf) <= 823 btrfs_root_last_snapshot(&root->root_item) || 824 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 825 return 1; 826 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 827 if (root->ref_cows && 828 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 829 return 1; 830 #endif 831 return 0; 832 } 833 834 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 835 struct btrfs_root *root, 836 struct extent_buffer *buf, 837 struct extent_buffer *cow, 838 int *last_ref) 839 { 840 u64 refs; 841 u64 owner; 842 u64 flags; 843 u64 new_flags = 0; 844 int ret; 845 846 /* 847 * Backrefs update rules: 848 * 849 * Always use full backrefs for extent pointers in tree block 850 * allocated by tree relocation. 851 * 852 * If a shared tree block is no longer referenced by its owner 853 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 854 * use full backrefs for extent pointers in tree block. 855 * 856 * If a tree block is been relocating 857 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 858 * use full backrefs for extent pointers in tree block. 859 * The reason for this is some operations (such as drop tree) 860 * are only allowed for blocks use full backrefs. 861 */ 862 863 if (btrfs_block_can_be_shared(root, buf)) { 864 ret = btrfs_lookup_extent_info(trans, root, buf->start, 865 buf->len, &refs, &flags); 866 if (ret) 867 return ret; 868 if (refs == 0) { 869 ret = -EROFS; 870 btrfs_std_error(root->fs_info, ret); 871 return ret; 872 } 873 } else { 874 refs = 1; 875 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 876 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 877 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 878 else 879 flags = 0; 880 } 881 882 owner = btrfs_header_owner(buf); 883 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 884 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 885 886 if (refs > 1) { 887 if ((owner == root->root_key.objectid || 888 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 889 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 890 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 891 BUG_ON(ret); /* -ENOMEM */ 892 893 if (root->root_key.objectid == 894 BTRFS_TREE_RELOC_OBJECTID) { 895 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 896 BUG_ON(ret); /* -ENOMEM */ 897 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 898 BUG_ON(ret); /* -ENOMEM */ 899 } 900 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 901 } else { 902 903 if (root->root_key.objectid == 904 BTRFS_TREE_RELOC_OBJECTID) 905 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 906 else 907 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 908 BUG_ON(ret); /* -ENOMEM */ 909 } 910 if (new_flags != 0) { 911 ret = btrfs_set_disk_extent_flags(trans, root, 912 buf->start, 913 buf->len, 914 new_flags, 0); 915 if (ret) 916 return ret; 917 } 918 } else { 919 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 920 if (root->root_key.objectid == 921 BTRFS_TREE_RELOC_OBJECTID) 922 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 923 else 924 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 925 BUG_ON(ret); /* -ENOMEM */ 926 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 927 BUG_ON(ret); /* -ENOMEM */ 928 } 929 /* 930 * don't log freeing in case we're freeing the root node, this 931 * is done by tree_mod_log_set_root_pointer later 932 */ 933 if (buf != root->node && btrfs_header_level(buf) != 0) 934 tree_mod_log_free_eb(root->fs_info, buf); 935 clean_tree_block(trans, root, buf); 936 *last_ref = 1; 937 } 938 return 0; 939 } 940 941 /* 942 * does the dirty work in cow of a single block. The parent block (if 943 * supplied) is updated to point to the new cow copy. The new buffer is marked 944 * dirty and returned locked. If you modify the block it needs to be marked 945 * dirty again. 946 * 947 * search_start -- an allocation hint for the new block 948 * 949 * empty_size -- a hint that you plan on doing more cow. This is the size in 950 * bytes the allocator should try to find free next to the block it returns. 951 * This is just a hint and may be ignored by the allocator. 952 */ 953 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 954 struct btrfs_root *root, 955 struct extent_buffer *buf, 956 struct extent_buffer *parent, int parent_slot, 957 struct extent_buffer **cow_ret, 958 u64 search_start, u64 empty_size) 959 { 960 struct btrfs_disk_key disk_key; 961 struct extent_buffer *cow; 962 int level, ret; 963 int last_ref = 0; 964 int unlock_orig = 0; 965 u64 parent_start; 966 967 if (*cow_ret == buf) 968 unlock_orig = 1; 969 970 btrfs_assert_tree_locked(buf); 971 972 WARN_ON(root->ref_cows && trans->transid != 973 root->fs_info->running_transaction->transid); 974 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 975 976 level = btrfs_header_level(buf); 977 978 if (level == 0) 979 btrfs_item_key(buf, &disk_key, 0); 980 else 981 btrfs_node_key(buf, &disk_key, 0); 982 983 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 984 if (parent) 985 parent_start = parent->start; 986 else 987 parent_start = 0; 988 } else 989 parent_start = 0; 990 991 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 992 root->root_key.objectid, &disk_key, 993 level, search_start, empty_size); 994 if (IS_ERR(cow)) 995 return PTR_ERR(cow); 996 997 /* cow is set to blocking by btrfs_init_new_buffer */ 998 999 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1000 btrfs_set_header_bytenr(cow, cow->start); 1001 btrfs_set_header_generation(cow, trans->transid); 1002 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1003 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1004 BTRFS_HEADER_FLAG_RELOC); 1005 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1006 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1007 else 1008 btrfs_set_header_owner(cow, root->root_key.objectid); 1009 1010 write_extent_buffer(cow, root->fs_info->fsid, 1011 (unsigned long)btrfs_header_fsid(cow), 1012 BTRFS_FSID_SIZE); 1013 1014 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1015 if (ret) { 1016 btrfs_abort_transaction(trans, root, ret); 1017 return ret; 1018 } 1019 1020 if (root->ref_cows) 1021 btrfs_reloc_cow_block(trans, root, buf, cow); 1022 1023 if (buf == root->node) { 1024 WARN_ON(parent && parent != buf); 1025 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1026 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1027 parent_start = buf->start; 1028 else 1029 parent_start = 0; 1030 1031 extent_buffer_get(cow); 1032 tree_mod_log_set_root_pointer(root, cow); 1033 rcu_assign_pointer(root->node, cow); 1034 1035 btrfs_free_tree_block(trans, root, buf, parent_start, 1036 last_ref); 1037 free_extent_buffer(buf); 1038 add_root_to_dirty_list(root); 1039 } else { 1040 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1041 parent_start = parent->start; 1042 else 1043 parent_start = 0; 1044 1045 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1046 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1047 MOD_LOG_KEY_REPLACE); 1048 btrfs_set_node_blockptr(parent, parent_slot, 1049 cow->start); 1050 btrfs_set_node_ptr_generation(parent, parent_slot, 1051 trans->transid); 1052 btrfs_mark_buffer_dirty(parent); 1053 btrfs_free_tree_block(trans, root, buf, parent_start, 1054 last_ref); 1055 } 1056 if (unlock_orig) 1057 btrfs_tree_unlock(buf); 1058 free_extent_buffer_stale(buf); 1059 btrfs_mark_buffer_dirty(cow); 1060 *cow_ret = cow; 1061 return 0; 1062 } 1063 1064 /* 1065 * returns the logical address of the oldest predecessor of the given root. 1066 * entries older than time_seq are ignored. 1067 */ 1068 static struct tree_mod_elem * 1069 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1070 struct btrfs_root *root, u64 time_seq) 1071 { 1072 struct tree_mod_elem *tm; 1073 struct tree_mod_elem *found = NULL; 1074 u64 root_logical = root->node->start; 1075 int looped = 0; 1076 1077 if (!time_seq) 1078 return 0; 1079 1080 /* 1081 * the very last operation that's logged for a root is the replacement 1082 * operation (if it is replaced at all). this has the index of the *new* 1083 * root, making it the very first operation that's logged for this root. 1084 */ 1085 while (1) { 1086 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1087 time_seq); 1088 if (!looped && !tm) 1089 return 0; 1090 /* 1091 * if there are no tree operation for the oldest root, we simply 1092 * return it. this should only happen if that (old) root is at 1093 * level 0. 1094 */ 1095 if (!tm) 1096 break; 1097 1098 /* 1099 * if there's an operation that's not a root replacement, we 1100 * found the oldest version of our root. normally, we'll find a 1101 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1102 */ 1103 if (tm->op != MOD_LOG_ROOT_REPLACE) 1104 break; 1105 1106 found = tm; 1107 root_logical = tm->old_root.logical; 1108 BUG_ON(root_logical == root->node->start); 1109 looped = 1; 1110 } 1111 1112 /* if there's no old root to return, return what we found instead */ 1113 if (!found) 1114 found = tm; 1115 1116 return found; 1117 } 1118 1119 /* 1120 * tm is a pointer to the first operation to rewind within eb. then, all 1121 * previous operations will be rewinded (until we reach something older than 1122 * time_seq). 1123 */ 1124 static void 1125 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq, 1126 struct tree_mod_elem *first_tm) 1127 { 1128 u32 n; 1129 struct rb_node *next; 1130 struct tree_mod_elem *tm = first_tm; 1131 unsigned long o_dst; 1132 unsigned long o_src; 1133 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1134 1135 n = btrfs_header_nritems(eb); 1136 while (tm && tm->seq >= time_seq) { 1137 /* 1138 * all the operations are recorded with the operator used for 1139 * the modification. as we're going backwards, we do the 1140 * opposite of each operation here. 1141 */ 1142 switch (tm->op) { 1143 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1144 BUG_ON(tm->slot < n); 1145 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1146 case MOD_LOG_KEY_REMOVE: 1147 btrfs_set_node_key(eb, &tm->key, tm->slot); 1148 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1149 btrfs_set_node_ptr_generation(eb, tm->slot, 1150 tm->generation); 1151 n++; 1152 break; 1153 case MOD_LOG_KEY_REPLACE: 1154 BUG_ON(tm->slot >= n); 1155 btrfs_set_node_key(eb, &tm->key, tm->slot); 1156 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1157 btrfs_set_node_ptr_generation(eb, tm->slot, 1158 tm->generation); 1159 break; 1160 case MOD_LOG_KEY_ADD: 1161 /* if a move operation is needed it's in the log */ 1162 n--; 1163 break; 1164 case MOD_LOG_MOVE_KEYS: 1165 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1166 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1167 memmove_extent_buffer(eb, o_dst, o_src, 1168 tm->move.nr_items * p_size); 1169 break; 1170 case MOD_LOG_ROOT_REPLACE: 1171 /* 1172 * this operation is special. for roots, this must be 1173 * handled explicitly before rewinding. 1174 * for non-roots, this operation may exist if the node 1175 * was a root: root A -> child B; then A gets empty and 1176 * B is promoted to the new root. in the mod log, we'll 1177 * have a root-replace operation for B, a tree block 1178 * that is no root. we simply ignore that operation. 1179 */ 1180 break; 1181 } 1182 next = rb_next(&tm->node); 1183 if (!next) 1184 break; 1185 tm = container_of(next, struct tree_mod_elem, node); 1186 if (tm->index != first_tm->index) 1187 break; 1188 } 1189 btrfs_set_header_nritems(eb, n); 1190 } 1191 1192 static struct extent_buffer * 1193 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1194 u64 time_seq) 1195 { 1196 struct extent_buffer *eb_rewin; 1197 struct tree_mod_elem *tm; 1198 1199 if (!time_seq) 1200 return eb; 1201 1202 if (btrfs_header_level(eb) == 0) 1203 return eb; 1204 1205 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1206 if (!tm) 1207 return eb; 1208 1209 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1210 BUG_ON(tm->slot != 0); 1211 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1212 fs_info->tree_root->nodesize); 1213 BUG_ON(!eb_rewin); 1214 btrfs_set_header_bytenr(eb_rewin, eb->start); 1215 btrfs_set_header_backref_rev(eb_rewin, 1216 btrfs_header_backref_rev(eb)); 1217 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1218 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1219 } else { 1220 eb_rewin = btrfs_clone_extent_buffer(eb); 1221 BUG_ON(!eb_rewin); 1222 } 1223 1224 extent_buffer_get(eb_rewin); 1225 free_extent_buffer(eb); 1226 1227 __tree_mod_log_rewind(eb_rewin, time_seq, tm); 1228 1229 return eb_rewin; 1230 } 1231 1232 /* 1233 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1234 * value. If there are no changes, the current root->root_node is returned. If 1235 * anything changed in between, there's a fresh buffer allocated on which the 1236 * rewind operations are done. In any case, the returned buffer is read locked. 1237 * Returns NULL on error (with no locks held). 1238 */ 1239 static inline struct extent_buffer * 1240 get_old_root(struct btrfs_root *root, u64 time_seq) 1241 { 1242 struct tree_mod_elem *tm; 1243 struct extent_buffer *eb; 1244 struct tree_mod_root *old_root = NULL; 1245 u64 old_generation = 0; 1246 u64 logical; 1247 1248 eb = btrfs_read_lock_root_node(root); 1249 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq); 1250 if (!tm) 1251 return root->node; 1252 1253 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1254 old_root = &tm->old_root; 1255 old_generation = tm->generation; 1256 logical = old_root->logical; 1257 } else { 1258 logical = root->node->start; 1259 } 1260 1261 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1262 if (old_root) 1263 eb = alloc_dummy_extent_buffer(logical, root->nodesize); 1264 else 1265 eb = btrfs_clone_extent_buffer(root->node); 1266 btrfs_tree_read_unlock(root->node); 1267 free_extent_buffer(root->node); 1268 if (!eb) 1269 return NULL; 1270 btrfs_tree_read_lock(eb); 1271 if (old_root) { 1272 btrfs_set_header_bytenr(eb, eb->start); 1273 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1274 btrfs_set_header_owner(eb, root->root_key.objectid); 1275 btrfs_set_header_level(eb, old_root->level); 1276 btrfs_set_header_generation(eb, old_generation); 1277 } 1278 if (tm) 1279 __tree_mod_log_rewind(eb, time_seq, tm); 1280 else 1281 WARN_ON(btrfs_header_level(eb) != 0); 1282 extent_buffer_get(eb); 1283 1284 return eb; 1285 } 1286 1287 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1288 struct btrfs_root *root, 1289 struct extent_buffer *buf) 1290 { 1291 /* ensure we can see the force_cow */ 1292 smp_rmb(); 1293 1294 /* 1295 * We do not need to cow a block if 1296 * 1) this block is not created or changed in this transaction; 1297 * 2) this block does not belong to TREE_RELOC tree; 1298 * 3) the root is not forced COW. 1299 * 1300 * What is forced COW: 1301 * when we create snapshot during commiting the transaction, 1302 * after we've finished coping src root, we must COW the shared 1303 * block to ensure the metadata consistency. 1304 */ 1305 if (btrfs_header_generation(buf) == trans->transid && 1306 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1307 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1308 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1309 !root->force_cow) 1310 return 0; 1311 return 1; 1312 } 1313 1314 /* 1315 * cows a single block, see __btrfs_cow_block for the real work. 1316 * This version of it has extra checks so that a block isn't cow'd more than 1317 * once per transaction, as long as it hasn't been written yet 1318 */ 1319 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1320 struct btrfs_root *root, struct extent_buffer *buf, 1321 struct extent_buffer *parent, int parent_slot, 1322 struct extent_buffer **cow_ret) 1323 { 1324 u64 search_start; 1325 int ret; 1326 1327 if (trans->transaction != root->fs_info->running_transaction) { 1328 printk(KERN_CRIT "trans %llu running %llu\n", 1329 (unsigned long long)trans->transid, 1330 (unsigned long long) 1331 root->fs_info->running_transaction->transid); 1332 WARN_ON(1); 1333 } 1334 if (trans->transid != root->fs_info->generation) { 1335 printk(KERN_CRIT "trans %llu running %llu\n", 1336 (unsigned long long)trans->transid, 1337 (unsigned long long)root->fs_info->generation); 1338 WARN_ON(1); 1339 } 1340 1341 if (!should_cow_block(trans, root, buf)) { 1342 *cow_ret = buf; 1343 return 0; 1344 } 1345 1346 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1347 1348 if (parent) 1349 btrfs_set_lock_blocking(parent); 1350 btrfs_set_lock_blocking(buf); 1351 1352 ret = __btrfs_cow_block(trans, root, buf, parent, 1353 parent_slot, cow_ret, search_start, 0); 1354 1355 trace_btrfs_cow_block(root, buf, *cow_ret); 1356 1357 return ret; 1358 } 1359 1360 /* 1361 * helper function for defrag to decide if two blocks pointed to by a 1362 * node are actually close by 1363 */ 1364 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1365 { 1366 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1367 return 1; 1368 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1369 return 1; 1370 return 0; 1371 } 1372 1373 /* 1374 * compare two keys in a memcmp fashion 1375 */ 1376 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1377 { 1378 struct btrfs_key k1; 1379 1380 btrfs_disk_key_to_cpu(&k1, disk); 1381 1382 return btrfs_comp_cpu_keys(&k1, k2); 1383 } 1384 1385 /* 1386 * same as comp_keys only with two btrfs_key's 1387 */ 1388 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1389 { 1390 if (k1->objectid > k2->objectid) 1391 return 1; 1392 if (k1->objectid < k2->objectid) 1393 return -1; 1394 if (k1->type > k2->type) 1395 return 1; 1396 if (k1->type < k2->type) 1397 return -1; 1398 if (k1->offset > k2->offset) 1399 return 1; 1400 if (k1->offset < k2->offset) 1401 return -1; 1402 return 0; 1403 } 1404 1405 /* 1406 * this is used by the defrag code to go through all the 1407 * leaves pointed to by a node and reallocate them so that 1408 * disk order is close to key order 1409 */ 1410 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1411 struct btrfs_root *root, struct extent_buffer *parent, 1412 int start_slot, int cache_only, u64 *last_ret, 1413 struct btrfs_key *progress) 1414 { 1415 struct extent_buffer *cur; 1416 u64 blocknr; 1417 u64 gen; 1418 u64 search_start = *last_ret; 1419 u64 last_block = 0; 1420 u64 other; 1421 u32 parent_nritems; 1422 int end_slot; 1423 int i; 1424 int err = 0; 1425 int parent_level; 1426 int uptodate; 1427 u32 blocksize; 1428 int progress_passed = 0; 1429 struct btrfs_disk_key disk_key; 1430 1431 parent_level = btrfs_header_level(parent); 1432 if (cache_only && parent_level != 1) 1433 return 0; 1434 1435 if (trans->transaction != root->fs_info->running_transaction) 1436 WARN_ON(1); 1437 if (trans->transid != root->fs_info->generation) 1438 WARN_ON(1); 1439 1440 parent_nritems = btrfs_header_nritems(parent); 1441 blocksize = btrfs_level_size(root, parent_level - 1); 1442 end_slot = parent_nritems; 1443 1444 if (parent_nritems == 1) 1445 return 0; 1446 1447 btrfs_set_lock_blocking(parent); 1448 1449 for (i = start_slot; i < end_slot; i++) { 1450 int close = 1; 1451 1452 btrfs_node_key(parent, &disk_key, i); 1453 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1454 continue; 1455 1456 progress_passed = 1; 1457 blocknr = btrfs_node_blockptr(parent, i); 1458 gen = btrfs_node_ptr_generation(parent, i); 1459 if (last_block == 0) 1460 last_block = blocknr; 1461 1462 if (i > 0) { 1463 other = btrfs_node_blockptr(parent, i - 1); 1464 close = close_blocks(blocknr, other, blocksize); 1465 } 1466 if (!close && i < end_slot - 2) { 1467 other = btrfs_node_blockptr(parent, i + 1); 1468 close = close_blocks(blocknr, other, blocksize); 1469 } 1470 if (close) { 1471 last_block = blocknr; 1472 continue; 1473 } 1474 1475 cur = btrfs_find_tree_block(root, blocknr, blocksize); 1476 if (cur) 1477 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1478 else 1479 uptodate = 0; 1480 if (!cur || !uptodate) { 1481 if (cache_only) { 1482 free_extent_buffer(cur); 1483 continue; 1484 } 1485 if (!cur) { 1486 cur = read_tree_block(root, blocknr, 1487 blocksize, gen); 1488 if (!cur) 1489 return -EIO; 1490 } else if (!uptodate) { 1491 err = btrfs_read_buffer(cur, gen); 1492 if (err) { 1493 free_extent_buffer(cur); 1494 return err; 1495 } 1496 } 1497 } 1498 if (search_start == 0) 1499 search_start = last_block; 1500 1501 btrfs_tree_lock(cur); 1502 btrfs_set_lock_blocking(cur); 1503 err = __btrfs_cow_block(trans, root, cur, parent, i, 1504 &cur, search_start, 1505 min(16 * blocksize, 1506 (end_slot - i) * blocksize)); 1507 if (err) { 1508 btrfs_tree_unlock(cur); 1509 free_extent_buffer(cur); 1510 break; 1511 } 1512 search_start = cur->start; 1513 last_block = cur->start; 1514 *last_ret = search_start; 1515 btrfs_tree_unlock(cur); 1516 free_extent_buffer(cur); 1517 } 1518 return err; 1519 } 1520 1521 /* 1522 * The leaf data grows from end-to-front in the node. 1523 * this returns the address of the start of the last item, 1524 * which is the stop of the leaf data stack 1525 */ 1526 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1527 struct extent_buffer *leaf) 1528 { 1529 u32 nr = btrfs_header_nritems(leaf); 1530 if (nr == 0) 1531 return BTRFS_LEAF_DATA_SIZE(root); 1532 return btrfs_item_offset_nr(leaf, nr - 1); 1533 } 1534 1535 1536 /* 1537 * search for key in the extent_buffer. The items start at offset p, 1538 * and they are item_size apart. There are 'max' items in p. 1539 * 1540 * the slot in the array is returned via slot, and it points to 1541 * the place where you would insert key if it is not found in 1542 * the array. 1543 * 1544 * slot may point to max if the key is bigger than all of the keys 1545 */ 1546 static noinline int generic_bin_search(struct extent_buffer *eb, 1547 unsigned long p, 1548 int item_size, struct btrfs_key *key, 1549 int max, int *slot) 1550 { 1551 int low = 0; 1552 int high = max; 1553 int mid; 1554 int ret; 1555 struct btrfs_disk_key *tmp = NULL; 1556 struct btrfs_disk_key unaligned; 1557 unsigned long offset; 1558 char *kaddr = NULL; 1559 unsigned long map_start = 0; 1560 unsigned long map_len = 0; 1561 int err; 1562 1563 while (low < high) { 1564 mid = (low + high) / 2; 1565 offset = p + mid * item_size; 1566 1567 if (!kaddr || offset < map_start || 1568 (offset + sizeof(struct btrfs_disk_key)) > 1569 map_start + map_len) { 1570 1571 err = map_private_extent_buffer(eb, offset, 1572 sizeof(struct btrfs_disk_key), 1573 &kaddr, &map_start, &map_len); 1574 1575 if (!err) { 1576 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1577 map_start); 1578 } else { 1579 read_extent_buffer(eb, &unaligned, 1580 offset, sizeof(unaligned)); 1581 tmp = &unaligned; 1582 } 1583 1584 } else { 1585 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1586 map_start); 1587 } 1588 ret = comp_keys(tmp, key); 1589 1590 if (ret < 0) 1591 low = mid + 1; 1592 else if (ret > 0) 1593 high = mid; 1594 else { 1595 *slot = mid; 1596 return 0; 1597 } 1598 } 1599 *slot = low; 1600 return 1; 1601 } 1602 1603 /* 1604 * simple bin_search frontend that does the right thing for 1605 * leaves vs nodes 1606 */ 1607 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1608 int level, int *slot) 1609 { 1610 if (level == 0) 1611 return generic_bin_search(eb, 1612 offsetof(struct btrfs_leaf, items), 1613 sizeof(struct btrfs_item), 1614 key, btrfs_header_nritems(eb), 1615 slot); 1616 else 1617 return generic_bin_search(eb, 1618 offsetof(struct btrfs_node, ptrs), 1619 sizeof(struct btrfs_key_ptr), 1620 key, btrfs_header_nritems(eb), 1621 slot); 1622 } 1623 1624 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1625 int level, int *slot) 1626 { 1627 return bin_search(eb, key, level, slot); 1628 } 1629 1630 static void root_add_used(struct btrfs_root *root, u32 size) 1631 { 1632 spin_lock(&root->accounting_lock); 1633 btrfs_set_root_used(&root->root_item, 1634 btrfs_root_used(&root->root_item) + size); 1635 spin_unlock(&root->accounting_lock); 1636 } 1637 1638 static void root_sub_used(struct btrfs_root *root, u32 size) 1639 { 1640 spin_lock(&root->accounting_lock); 1641 btrfs_set_root_used(&root->root_item, 1642 btrfs_root_used(&root->root_item) - size); 1643 spin_unlock(&root->accounting_lock); 1644 } 1645 1646 /* given a node and slot number, this reads the blocks it points to. The 1647 * extent buffer is returned with a reference taken (but unlocked). 1648 * NULL is returned on error. 1649 */ 1650 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1651 struct extent_buffer *parent, int slot) 1652 { 1653 int level = btrfs_header_level(parent); 1654 if (slot < 0) 1655 return NULL; 1656 if (slot >= btrfs_header_nritems(parent)) 1657 return NULL; 1658 1659 BUG_ON(level == 0); 1660 1661 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 1662 btrfs_level_size(root, level - 1), 1663 btrfs_node_ptr_generation(parent, slot)); 1664 } 1665 1666 /* 1667 * node level balancing, used to make sure nodes are in proper order for 1668 * item deletion. We balance from the top down, so we have to make sure 1669 * that a deletion won't leave an node completely empty later on. 1670 */ 1671 static noinline int balance_level(struct btrfs_trans_handle *trans, 1672 struct btrfs_root *root, 1673 struct btrfs_path *path, int level) 1674 { 1675 struct extent_buffer *right = NULL; 1676 struct extent_buffer *mid; 1677 struct extent_buffer *left = NULL; 1678 struct extent_buffer *parent = NULL; 1679 int ret = 0; 1680 int wret; 1681 int pslot; 1682 int orig_slot = path->slots[level]; 1683 u64 orig_ptr; 1684 1685 if (level == 0) 1686 return 0; 1687 1688 mid = path->nodes[level]; 1689 1690 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1691 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1692 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1693 1694 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1695 1696 if (level < BTRFS_MAX_LEVEL - 1) { 1697 parent = path->nodes[level + 1]; 1698 pslot = path->slots[level + 1]; 1699 } 1700 1701 /* 1702 * deal with the case where there is only one pointer in the root 1703 * by promoting the node below to a root 1704 */ 1705 if (!parent) { 1706 struct extent_buffer *child; 1707 1708 if (btrfs_header_nritems(mid) != 1) 1709 return 0; 1710 1711 /* promote the child to a root */ 1712 child = read_node_slot(root, mid, 0); 1713 if (!child) { 1714 ret = -EROFS; 1715 btrfs_std_error(root->fs_info, ret); 1716 goto enospc; 1717 } 1718 1719 btrfs_tree_lock(child); 1720 btrfs_set_lock_blocking(child); 1721 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1722 if (ret) { 1723 btrfs_tree_unlock(child); 1724 free_extent_buffer(child); 1725 goto enospc; 1726 } 1727 1728 tree_mod_log_set_root_pointer(root, child); 1729 rcu_assign_pointer(root->node, child); 1730 1731 add_root_to_dirty_list(root); 1732 btrfs_tree_unlock(child); 1733 1734 path->locks[level] = 0; 1735 path->nodes[level] = NULL; 1736 clean_tree_block(trans, root, mid); 1737 btrfs_tree_unlock(mid); 1738 /* once for the path */ 1739 free_extent_buffer(mid); 1740 1741 root_sub_used(root, mid->len); 1742 btrfs_free_tree_block(trans, root, mid, 0, 1); 1743 /* once for the root ptr */ 1744 free_extent_buffer_stale(mid); 1745 return 0; 1746 } 1747 if (btrfs_header_nritems(mid) > 1748 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1749 return 0; 1750 1751 left = read_node_slot(root, parent, pslot - 1); 1752 if (left) { 1753 btrfs_tree_lock(left); 1754 btrfs_set_lock_blocking(left); 1755 wret = btrfs_cow_block(trans, root, left, 1756 parent, pslot - 1, &left); 1757 if (wret) { 1758 ret = wret; 1759 goto enospc; 1760 } 1761 } 1762 right = read_node_slot(root, parent, pslot + 1); 1763 if (right) { 1764 btrfs_tree_lock(right); 1765 btrfs_set_lock_blocking(right); 1766 wret = btrfs_cow_block(trans, root, right, 1767 parent, pslot + 1, &right); 1768 if (wret) { 1769 ret = wret; 1770 goto enospc; 1771 } 1772 } 1773 1774 /* first, try to make some room in the middle buffer */ 1775 if (left) { 1776 orig_slot += btrfs_header_nritems(left); 1777 wret = push_node_left(trans, root, left, mid, 1); 1778 if (wret < 0) 1779 ret = wret; 1780 } 1781 1782 /* 1783 * then try to empty the right most buffer into the middle 1784 */ 1785 if (right) { 1786 wret = push_node_left(trans, root, mid, right, 1); 1787 if (wret < 0 && wret != -ENOSPC) 1788 ret = wret; 1789 if (btrfs_header_nritems(right) == 0) { 1790 clean_tree_block(trans, root, right); 1791 btrfs_tree_unlock(right); 1792 del_ptr(trans, root, path, level + 1, pslot + 1, 1); 1793 root_sub_used(root, right->len); 1794 btrfs_free_tree_block(trans, root, right, 0, 1); 1795 free_extent_buffer_stale(right); 1796 right = NULL; 1797 } else { 1798 struct btrfs_disk_key right_key; 1799 btrfs_node_key(right, &right_key, 0); 1800 tree_mod_log_set_node_key(root->fs_info, parent, 1801 &right_key, pslot + 1, 0); 1802 btrfs_set_node_key(parent, &right_key, pslot + 1); 1803 btrfs_mark_buffer_dirty(parent); 1804 } 1805 } 1806 if (btrfs_header_nritems(mid) == 1) { 1807 /* 1808 * we're not allowed to leave a node with one item in the 1809 * tree during a delete. A deletion from lower in the tree 1810 * could try to delete the only pointer in this node. 1811 * So, pull some keys from the left. 1812 * There has to be a left pointer at this point because 1813 * otherwise we would have pulled some pointers from the 1814 * right 1815 */ 1816 if (!left) { 1817 ret = -EROFS; 1818 btrfs_std_error(root->fs_info, ret); 1819 goto enospc; 1820 } 1821 wret = balance_node_right(trans, root, mid, left); 1822 if (wret < 0) { 1823 ret = wret; 1824 goto enospc; 1825 } 1826 if (wret == 1) { 1827 wret = push_node_left(trans, root, left, mid, 1); 1828 if (wret < 0) 1829 ret = wret; 1830 } 1831 BUG_ON(wret == 1); 1832 } 1833 if (btrfs_header_nritems(mid) == 0) { 1834 clean_tree_block(trans, root, mid); 1835 btrfs_tree_unlock(mid); 1836 del_ptr(trans, root, path, level + 1, pslot, 1); 1837 root_sub_used(root, mid->len); 1838 btrfs_free_tree_block(trans, root, mid, 0, 1); 1839 free_extent_buffer_stale(mid); 1840 mid = NULL; 1841 } else { 1842 /* update the parent key to reflect our changes */ 1843 struct btrfs_disk_key mid_key; 1844 btrfs_node_key(mid, &mid_key, 0); 1845 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key, 1846 pslot, 0); 1847 btrfs_set_node_key(parent, &mid_key, pslot); 1848 btrfs_mark_buffer_dirty(parent); 1849 } 1850 1851 /* update the path */ 1852 if (left) { 1853 if (btrfs_header_nritems(left) > orig_slot) { 1854 extent_buffer_get(left); 1855 /* left was locked after cow */ 1856 path->nodes[level] = left; 1857 path->slots[level + 1] -= 1; 1858 path->slots[level] = orig_slot; 1859 if (mid) { 1860 btrfs_tree_unlock(mid); 1861 free_extent_buffer(mid); 1862 } 1863 } else { 1864 orig_slot -= btrfs_header_nritems(left); 1865 path->slots[level] = orig_slot; 1866 } 1867 } 1868 /* double check we haven't messed things up */ 1869 if (orig_ptr != 1870 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1871 BUG(); 1872 enospc: 1873 if (right) { 1874 btrfs_tree_unlock(right); 1875 free_extent_buffer(right); 1876 } 1877 if (left) { 1878 if (path->nodes[level] != left) 1879 btrfs_tree_unlock(left); 1880 free_extent_buffer(left); 1881 } 1882 return ret; 1883 } 1884 1885 /* Node balancing for insertion. Here we only split or push nodes around 1886 * when they are completely full. This is also done top down, so we 1887 * have to be pessimistic. 1888 */ 1889 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1890 struct btrfs_root *root, 1891 struct btrfs_path *path, int level) 1892 { 1893 struct extent_buffer *right = NULL; 1894 struct extent_buffer *mid; 1895 struct extent_buffer *left = NULL; 1896 struct extent_buffer *parent = NULL; 1897 int ret = 0; 1898 int wret; 1899 int pslot; 1900 int orig_slot = path->slots[level]; 1901 1902 if (level == 0) 1903 return 1; 1904 1905 mid = path->nodes[level]; 1906 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1907 1908 if (level < BTRFS_MAX_LEVEL - 1) { 1909 parent = path->nodes[level + 1]; 1910 pslot = path->slots[level + 1]; 1911 } 1912 1913 if (!parent) 1914 return 1; 1915 1916 left = read_node_slot(root, parent, pslot - 1); 1917 1918 /* first, try to make some room in the middle buffer */ 1919 if (left) { 1920 u32 left_nr; 1921 1922 btrfs_tree_lock(left); 1923 btrfs_set_lock_blocking(left); 1924 1925 left_nr = btrfs_header_nritems(left); 1926 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1927 wret = 1; 1928 } else { 1929 ret = btrfs_cow_block(trans, root, left, parent, 1930 pslot - 1, &left); 1931 if (ret) 1932 wret = 1; 1933 else { 1934 wret = push_node_left(trans, root, 1935 left, mid, 0); 1936 } 1937 } 1938 if (wret < 0) 1939 ret = wret; 1940 if (wret == 0) { 1941 struct btrfs_disk_key disk_key; 1942 orig_slot += left_nr; 1943 btrfs_node_key(mid, &disk_key, 0); 1944 tree_mod_log_set_node_key(root->fs_info, parent, 1945 &disk_key, pslot, 0); 1946 btrfs_set_node_key(parent, &disk_key, pslot); 1947 btrfs_mark_buffer_dirty(parent); 1948 if (btrfs_header_nritems(left) > orig_slot) { 1949 path->nodes[level] = left; 1950 path->slots[level + 1] -= 1; 1951 path->slots[level] = orig_slot; 1952 btrfs_tree_unlock(mid); 1953 free_extent_buffer(mid); 1954 } else { 1955 orig_slot -= 1956 btrfs_header_nritems(left); 1957 path->slots[level] = orig_slot; 1958 btrfs_tree_unlock(left); 1959 free_extent_buffer(left); 1960 } 1961 return 0; 1962 } 1963 btrfs_tree_unlock(left); 1964 free_extent_buffer(left); 1965 } 1966 right = read_node_slot(root, parent, pslot + 1); 1967 1968 /* 1969 * then try to empty the right most buffer into the middle 1970 */ 1971 if (right) { 1972 u32 right_nr; 1973 1974 btrfs_tree_lock(right); 1975 btrfs_set_lock_blocking(right); 1976 1977 right_nr = btrfs_header_nritems(right); 1978 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1979 wret = 1; 1980 } else { 1981 ret = btrfs_cow_block(trans, root, right, 1982 parent, pslot + 1, 1983 &right); 1984 if (ret) 1985 wret = 1; 1986 else { 1987 wret = balance_node_right(trans, root, 1988 right, mid); 1989 } 1990 } 1991 if (wret < 0) 1992 ret = wret; 1993 if (wret == 0) { 1994 struct btrfs_disk_key disk_key; 1995 1996 btrfs_node_key(right, &disk_key, 0); 1997 tree_mod_log_set_node_key(root->fs_info, parent, 1998 &disk_key, pslot + 1, 0); 1999 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2000 btrfs_mark_buffer_dirty(parent); 2001 2002 if (btrfs_header_nritems(mid) <= orig_slot) { 2003 path->nodes[level] = right; 2004 path->slots[level + 1] += 1; 2005 path->slots[level] = orig_slot - 2006 btrfs_header_nritems(mid); 2007 btrfs_tree_unlock(mid); 2008 free_extent_buffer(mid); 2009 } else { 2010 btrfs_tree_unlock(right); 2011 free_extent_buffer(right); 2012 } 2013 return 0; 2014 } 2015 btrfs_tree_unlock(right); 2016 free_extent_buffer(right); 2017 } 2018 return 1; 2019 } 2020 2021 /* 2022 * readahead one full node of leaves, finding things that are close 2023 * to the block in 'slot', and triggering ra on them. 2024 */ 2025 static void reada_for_search(struct btrfs_root *root, 2026 struct btrfs_path *path, 2027 int level, int slot, u64 objectid) 2028 { 2029 struct extent_buffer *node; 2030 struct btrfs_disk_key disk_key; 2031 u32 nritems; 2032 u64 search; 2033 u64 target; 2034 u64 nread = 0; 2035 u64 gen; 2036 int direction = path->reada; 2037 struct extent_buffer *eb; 2038 u32 nr; 2039 u32 blocksize; 2040 u32 nscan = 0; 2041 2042 if (level != 1) 2043 return; 2044 2045 if (!path->nodes[level]) 2046 return; 2047 2048 node = path->nodes[level]; 2049 2050 search = btrfs_node_blockptr(node, slot); 2051 blocksize = btrfs_level_size(root, level - 1); 2052 eb = btrfs_find_tree_block(root, search, blocksize); 2053 if (eb) { 2054 free_extent_buffer(eb); 2055 return; 2056 } 2057 2058 target = search; 2059 2060 nritems = btrfs_header_nritems(node); 2061 nr = slot; 2062 2063 while (1) { 2064 if (direction < 0) { 2065 if (nr == 0) 2066 break; 2067 nr--; 2068 } else if (direction > 0) { 2069 nr++; 2070 if (nr >= nritems) 2071 break; 2072 } 2073 if (path->reada < 0 && objectid) { 2074 btrfs_node_key(node, &disk_key, nr); 2075 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2076 break; 2077 } 2078 search = btrfs_node_blockptr(node, nr); 2079 if ((search <= target && target - search <= 65536) || 2080 (search > target && search - target <= 65536)) { 2081 gen = btrfs_node_ptr_generation(node, nr); 2082 readahead_tree_block(root, search, blocksize, gen); 2083 nread += blocksize; 2084 } 2085 nscan++; 2086 if ((nread > 65536 || nscan > 32)) 2087 break; 2088 } 2089 } 2090 2091 /* 2092 * returns -EAGAIN if it had to drop the path, or zero if everything was in 2093 * cache 2094 */ 2095 static noinline int reada_for_balance(struct btrfs_root *root, 2096 struct btrfs_path *path, int level) 2097 { 2098 int slot; 2099 int nritems; 2100 struct extent_buffer *parent; 2101 struct extent_buffer *eb; 2102 u64 gen; 2103 u64 block1 = 0; 2104 u64 block2 = 0; 2105 int ret = 0; 2106 int blocksize; 2107 2108 parent = path->nodes[level + 1]; 2109 if (!parent) 2110 return 0; 2111 2112 nritems = btrfs_header_nritems(parent); 2113 slot = path->slots[level + 1]; 2114 blocksize = btrfs_level_size(root, level); 2115 2116 if (slot > 0) { 2117 block1 = btrfs_node_blockptr(parent, slot - 1); 2118 gen = btrfs_node_ptr_generation(parent, slot - 1); 2119 eb = btrfs_find_tree_block(root, block1, blocksize); 2120 /* 2121 * if we get -eagain from btrfs_buffer_uptodate, we 2122 * don't want to return eagain here. That will loop 2123 * forever 2124 */ 2125 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2126 block1 = 0; 2127 free_extent_buffer(eb); 2128 } 2129 if (slot + 1 < nritems) { 2130 block2 = btrfs_node_blockptr(parent, slot + 1); 2131 gen = btrfs_node_ptr_generation(parent, slot + 1); 2132 eb = btrfs_find_tree_block(root, block2, blocksize); 2133 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2134 block2 = 0; 2135 free_extent_buffer(eb); 2136 } 2137 if (block1 || block2) { 2138 ret = -EAGAIN; 2139 2140 /* release the whole path */ 2141 btrfs_release_path(path); 2142 2143 /* read the blocks */ 2144 if (block1) 2145 readahead_tree_block(root, block1, blocksize, 0); 2146 if (block2) 2147 readahead_tree_block(root, block2, blocksize, 0); 2148 2149 if (block1) { 2150 eb = read_tree_block(root, block1, blocksize, 0); 2151 free_extent_buffer(eb); 2152 } 2153 if (block2) { 2154 eb = read_tree_block(root, block2, blocksize, 0); 2155 free_extent_buffer(eb); 2156 } 2157 } 2158 return ret; 2159 } 2160 2161 2162 /* 2163 * when we walk down the tree, it is usually safe to unlock the higher layers 2164 * in the tree. The exceptions are when our path goes through slot 0, because 2165 * operations on the tree might require changing key pointers higher up in the 2166 * tree. 2167 * 2168 * callers might also have set path->keep_locks, which tells this code to keep 2169 * the lock if the path points to the last slot in the block. This is part of 2170 * walking through the tree, and selecting the next slot in the higher block. 2171 * 2172 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2173 * if lowest_unlock is 1, level 0 won't be unlocked 2174 */ 2175 static noinline void unlock_up(struct btrfs_path *path, int level, 2176 int lowest_unlock, int min_write_lock_level, 2177 int *write_lock_level) 2178 { 2179 int i; 2180 int skip_level = level; 2181 int no_skips = 0; 2182 struct extent_buffer *t; 2183 2184 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2185 if (!path->nodes[i]) 2186 break; 2187 if (!path->locks[i]) 2188 break; 2189 if (!no_skips && path->slots[i] == 0) { 2190 skip_level = i + 1; 2191 continue; 2192 } 2193 if (!no_skips && path->keep_locks) { 2194 u32 nritems; 2195 t = path->nodes[i]; 2196 nritems = btrfs_header_nritems(t); 2197 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2198 skip_level = i + 1; 2199 continue; 2200 } 2201 } 2202 if (skip_level < i && i >= lowest_unlock) 2203 no_skips = 1; 2204 2205 t = path->nodes[i]; 2206 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2207 btrfs_tree_unlock_rw(t, path->locks[i]); 2208 path->locks[i] = 0; 2209 if (write_lock_level && 2210 i > min_write_lock_level && 2211 i <= *write_lock_level) { 2212 *write_lock_level = i - 1; 2213 } 2214 } 2215 } 2216 } 2217 2218 /* 2219 * This releases any locks held in the path starting at level and 2220 * going all the way up to the root. 2221 * 2222 * btrfs_search_slot will keep the lock held on higher nodes in a few 2223 * corner cases, such as COW of the block at slot zero in the node. This 2224 * ignores those rules, and it should only be called when there are no 2225 * more updates to be done higher up in the tree. 2226 */ 2227 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2228 { 2229 int i; 2230 2231 if (path->keep_locks) 2232 return; 2233 2234 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2235 if (!path->nodes[i]) 2236 continue; 2237 if (!path->locks[i]) 2238 continue; 2239 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2240 path->locks[i] = 0; 2241 } 2242 } 2243 2244 /* 2245 * helper function for btrfs_search_slot. The goal is to find a block 2246 * in cache without setting the path to blocking. If we find the block 2247 * we return zero and the path is unchanged. 2248 * 2249 * If we can't find the block, we set the path blocking and do some 2250 * reada. -EAGAIN is returned and the search must be repeated. 2251 */ 2252 static int 2253 read_block_for_search(struct btrfs_trans_handle *trans, 2254 struct btrfs_root *root, struct btrfs_path *p, 2255 struct extent_buffer **eb_ret, int level, int slot, 2256 struct btrfs_key *key, u64 time_seq) 2257 { 2258 u64 blocknr; 2259 u64 gen; 2260 u32 blocksize; 2261 struct extent_buffer *b = *eb_ret; 2262 struct extent_buffer *tmp; 2263 int ret; 2264 2265 blocknr = btrfs_node_blockptr(b, slot); 2266 gen = btrfs_node_ptr_generation(b, slot); 2267 blocksize = btrfs_level_size(root, level - 1); 2268 2269 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 2270 if (tmp) { 2271 /* first we do an atomic uptodate check */ 2272 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) { 2273 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2274 /* 2275 * we found an up to date block without 2276 * sleeping, return 2277 * right away 2278 */ 2279 *eb_ret = tmp; 2280 return 0; 2281 } 2282 /* the pages were up to date, but we failed 2283 * the generation number check. Do a full 2284 * read for the generation number that is correct. 2285 * We must do this without dropping locks so 2286 * we can trust our generation number 2287 */ 2288 free_extent_buffer(tmp); 2289 btrfs_set_path_blocking(p); 2290 2291 /* now we're allowed to do a blocking uptodate check */ 2292 tmp = read_tree_block(root, blocknr, blocksize, gen); 2293 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) { 2294 *eb_ret = tmp; 2295 return 0; 2296 } 2297 free_extent_buffer(tmp); 2298 btrfs_release_path(p); 2299 return -EIO; 2300 } 2301 } 2302 2303 /* 2304 * reduce lock contention at high levels 2305 * of the btree by dropping locks before 2306 * we read. Don't release the lock on the current 2307 * level because we need to walk this node to figure 2308 * out which blocks to read. 2309 */ 2310 btrfs_unlock_up_safe(p, level + 1); 2311 btrfs_set_path_blocking(p); 2312 2313 free_extent_buffer(tmp); 2314 if (p->reada) 2315 reada_for_search(root, p, level, slot, key->objectid); 2316 2317 btrfs_release_path(p); 2318 2319 ret = -EAGAIN; 2320 tmp = read_tree_block(root, blocknr, blocksize, 0); 2321 if (tmp) { 2322 /* 2323 * If the read above didn't mark this buffer up to date, 2324 * it will never end up being up to date. Set ret to EIO now 2325 * and give up so that our caller doesn't loop forever 2326 * on our EAGAINs. 2327 */ 2328 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2329 ret = -EIO; 2330 free_extent_buffer(tmp); 2331 } 2332 return ret; 2333 } 2334 2335 /* 2336 * helper function for btrfs_search_slot. This does all of the checks 2337 * for node-level blocks and does any balancing required based on 2338 * the ins_len. 2339 * 2340 * If no extra work was required, zero is returned. If we had to 2341 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2342 * start over 2343 */ 2344 static int 2345 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2346 struct btrfs_root *root, struct btrfs_path *p, 2347 struct extent_buffer *b, int level, int ins_len, 2348 int *write_lock_level) 2349 { 2350 int ret; 2351 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2352 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2353 int sret; 2354 2355 if (*write_lock_level < level + 1) { 2356 *write_lock_level = level + 1; 2357 btrfs_release_path(p); 2358 goto again; 2359 } 2360 2361 sret = reada_for_balance(root, p, level); 2362 if (sret) 2363 goto again; 2364 2365 btrfs_set_path_blocking(p); 2366 sret = split_node(trans, root, p, level); 2367 btrfs_clear_path_blocking(p, NULL, 0); 2368 2369 BUG_ON(sret > 0); 2370 if (sret) { 2371 ret = sret; 2372 goto done; 2373 } 2374 b = p->nodes[level]; 2375 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2376 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2377 int sret; 2378 2379 if (*write_lock_level < level + 1) { 2380 *write_lock_level = level + 1; 2381 btrfs_release_path(p); 2382 goto again; 2383 } 2384 2385 sret = reada_for_balance(root, p, level); 2386 if (sret) 2387 goto again; 2388 2389 btrfs_set_path_blocking(p); 2390 sret = balance_level(trans, root, p, level); 2391 btrfs_clear_path_blocking(p, NULL, 0); 2392 2393 if (sret) { 2394 ret = sret; 2395 goto done; 2396 } 2397 b = p->nodes[level]; 2398 if (!b) { 2399 btrfs_release_path(p); 2400 goto again; 2401 } 2402 BUG_ON(btrfs_header_nritems(b) == 1); 2403 } 2404 return 0; 2405 2406 again: 2407 ret = -EAGAIN; 2408 done: 2409 return ret; 2410 } 2411 2412 /* 2413 * look for key in the tree. path is filled in with nodes along the way 2414 * if key is found, we return zero and you can find the item in the leaf 2415 * level of the path (level 0) 2416 * 2417 * If the key isn't found, the path points to the slot where it should 2418 * be inserted, and 1 is returned. If there are other errors during the 2419 * search a negative error number is returned. 2420 * 2421 * if ins_len > 0, nodes and leaves will be split as we walk down the 2422 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2423 * possible) 2424 */ 2425 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2426 *root, struct btrfs_key *key, struct btrfs_path *p, int 2427 ins_len, int cow) 2428 { 2429 struct extent_buffer *b; 2430 int slot; 2431 int ret; 2432 int err; 2433 int level; 2434 int lowest_unlock = 1; 2435 int root_lock; 2436 /* everything at write_lock_level or lower must be write locked */ 2437 int write_lock_level = 0; 2438 u8 lowest_level = 0; 2439 int min_write_lock_level; 2440 2441 lowest_level = p->lowest_level; 2442 WARN_ON(lowest_level && ins_len > 0); 2443 WARN_ON(p->nodes[0] != NULL); 2444 2445 if (ins_len < 0) { 2446 lowest_unlock = 2; 2447 2448 /* when we are removing items, we might have to go up to level 2449 * two as we update tree pointers Make sure we keep write 2450 * for those levels as well 2451 */ 2452 write_lock_level = 2; 2453 } else if (ins_len > 0) { 2454 /* 2455 * for inserting items, make sure we have a write lock on 2456 * level 1 so we can update keys 2457 */ 2458 write_lock_level = 1; 2459 } 2460 2461 if (!cow) 2462 write_lock_level = -1; 2463 2464 if (cow && (p->keep_locks || p->lowest_level)) 2465 write_lock_level = BTRFS_MAX_LEVEL; 2466 2467 min_write_lock_level = write_lock_level; 2468 2469 again: 2470 /* 2471 * we try very hard to do read locks on the root 2472 */ 2473 root_lock = BTRFS_READ_LOCK; 2474 level = 0; 2475 if (p->search_commit_root) { 2476 /* 2477 * the commit roots are read only 2478 * so we always do read locks 2479 */ 2480 b = root->commit_root; 2481 extent_buffer_get(b); 2482 level = btrfs_header_level(b); 2483 if (!p->skip_locking) 2484 btrfs_tree_read_lock(b); 2485 } else { 2486 if (p->skip_locking) { 2487 b = btrfs_root_node(root); 2488 level = btrfs_header_level(b); 2489 } else { 2490 /* we don't know the level of the root node 2491 * until we actually have it read locked 2492 */ 2493 b = btrfs_read_lock_root_node(root); 2494 level = btrfs_header_level(b); 2495 if (level <= write_lock_level) { 2496 /* whoops, must trade for write lock */ 2497 btrfs_tree_read_unlock(b); 2498 free_extent_buffer(b); 2499 b = btrfs_lock_root_node(root); 2500 root_lock = BTRFS_WRITE_LOCK; 2501 2502 /* the level might have changed, check again */ 2503 level = btrfs_header_level(b); 2504 } 2505 } 2506 } 2507 p->nodes[level] = b; 2508 if (!p->skip_locking) 2509 p->locks[level] = root_lock; 2510 2511 while (b) { 2512 level = btrfs_header_level(b); 2513 2514 /* 2515 * setup the path here so we can release it under lock 2516 * contention with the cow code 2517 */ 2518 if (cow) { 2519 /* 2520 * if we don't really need to cow this block 2521 * then we don't want to set the path blocking, 2522 * so we test it here 2523 */ 2524 if (!should_cow_block(trans, root, b)) 2525 goto cow_done; 2526 2527 btrfs_set_path_blocking(p); 2528 2529 /* 2530 * must have write locks on this node and the 2531 * parent 2532 */ 2533 if (level + 1 > write_lock_level) { 2534 write_lock_level = level + 1; 2535 btrfs_release_path(p); 2536 goto again; 2537 } 2538 2539 err = btrfs_cow_block(trans, root, b, 2540 p->nodes[level + 1], 2541 p->slots[level + 1], &b); 2542 if (err) { 2543 ret = err; 2544 goto done; 2545 } 2546 } 2547 cow_done: 2548 BUG_ON(!cow && ins_len); 2549 2550 p->nodes[level] = b; 2551 btrfs_clear_path_blocking(p, NULL, 0); 2552 2553 /* 2554 * we have a lock on b and as long as we aren't changing 2555 * the tree, there is no way to for the items in b to change. 2556 * It is safe to drop the lock on our parent before we 2557 * go through the expensive btree search on b. 2558 * 2559 * If cow is true, then we might be changing slot zero, 2560 * which may require changing the parent. So, we can't 2561 * drop the lock until after we know which slot we're 2562 * operating on. 2563 */ 2564 if (!cow) 2565 btrfs_unlock_up_safe(p, level + 1); 2566 2567 ret = bin_search(b, key, level, &slot); 2568 2569 if (level != 0) { 2570 int dec = 0; 2571 if (ret && slot > 0) { 2572 dec = 1; 2573 slot -= 1; 2574 } 2575 p->slots[level] = slot; 2576 err = setup_nodes_for_search(trans, root, p, b, level, 2577 ins_len, &write_lock_level); 2578 if (err == -EAGAIN) 2579 goto again; 2580 if (err) { 2581 ret = err; 2582 goto done; 2583 } 2584 b = p->nodes[level]; 2585 slot = p->slots[level]; 2586 2587 /* 2588 * slot 0 is special, if we change the key 2589 * we have to update the parent pointer 2590 * which means we must have a write lock 2591 * on the parent 2592 */ 2593 if (slot == 0 && cow && 2594 write_lock_level < level + 1) { 2595 write_lock_level = level + 1; 2596 btrfs_release_path(p); 2597 goto again; 2598 } 2599 2600 unlock_up(p, level, lowest_unlock, 2601 min_write_lock_level, &write_lock_level); 2602 2603 if (level == lowest_level) { 2604 if (dec) 2605 p->slots[level]++; 2606 goto done; 2607 } 2608 2609 err = read_block_for_search(trans, root, p, 2610 &b, level, slot, key, 0); 2611 if (err == -EAGAIN) 2612 goto again; 2613 if (err) { 2614 ret = err; 2615 goto done; 2616 } 2617 2618 if (!p->skip_locking) { 2619 level = btrfs_header_level(b); 2620 if (level <= write_lock_level) { 2621 err = btrfs_try_tree_write_lock(b); 2622 if (!err) { 2623 btrfs_set_path_blocking(p); 2624 btrfs_tree_lock(b); 2625 btrfs_clear_path_blocking(p, b, 2626 BTRFS_WRITE_LOCK); 2627 } 2628 p->locks[level] = BTRFS_WRITE_LOCK; 2629 } else { 2630 err = btrfs_try_tree_read_lock(b); 2631 if (!err) { 2632 btrfs_set_path_blocking(p); 2633 btrfs_tree_read_lock(b); 2634 btrfs_clear_path_blocking(p, b, 2635 BTRFS_READ_LOCK); 2636 } 2637 p->locks[level] = BTRFS_READ_LOCK; 2638 } 2639 p->nodes[level] = b; 2640 } 2641 } else { 2642 p->slots[level] = slot; 2643 if (ins_len > 0 && 2644 btrfs_leaf_free_space(root, b) < ins_len) { 2645 if (write_lock_level < 1) { 2646 write_lock_level = 1; 2647 btrfs_release_path(p); 2648 goto again; 2649 } 2650 2651 btrfs_set_path_blocking(p); 2652 err = split_leaf(trans, root, key, 2653 p, ins_len, ret == 0); 2654 btrfs_clear_path_blocking(p, NULL, 0); 2655 2656 BUG_ON(err > 0); 2657 if (err) { 2658 ret = err; 2659 goto done; 2660 } 2661 } 2662 if (!p->search_for_split) 2663 unlock_up(p, level, lowest_unlock, 2664 min_write_lock_level, &write_lock_level); 2665 goto done; 2666 } 2667 } 2668 ret = 1; 2669 done: 2670 /* 2671 * we don't really know what they plan on doing with the path 2672 * from here on, so for now just mark it as blocking 2673 */ 2674 if (!p->leave_spinning) 2675 btrfs_set_path_blocking(p); 2676 if (ret < 0) 2677 btrfs_release_path(p); 2678 return ret; 2679 } 2680 2681 /* 2682 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2683 * current state of the tree together with the operations recorded in the tree 2684 * modification log to search for the key in a previous version of this tree, as 2685 * denoted by the time_seq parameter. 2686 * 2687 * Naturally, there is no support for insert, delete or cow operations. 2688 * 2689 * The resulting path and return value will be set up as if we called 2690 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2691 */ 2692 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2693 struct btrfs_path *p, u64 time_seq) 2694 { 2695 struct extent_buffer *b; 2696 int slot; 2697 int ret; 2698 int err; 2699 int level; 2700 int lowest_unlock = 1; 2701 u8 lowest_level = 0; 2702 2703 lowest_level = p->lowest_level; 2704 WARN_ON(p->nodes[0] != NULL); 2705 2706 if (p->search_commit_root) { 2707 BUG_ON(time_seq); 2708 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2709 } 2710 2711 again: 2712 b = get_old_root(root, time_seq); 2713 level = btrfs_header_level(b); 2714 p->locks[level] = BTRFS_READ_LOCK; 2715 2716 while (b) { 2717 level = btrfs_header_level(b); 2718 p->nodes[level] = b; 2719 btrfs_clear_path_blocking(p, NULL, 0); 2720 2721 /* 2722 * we have a lock on b and as long as we aren't changing 2723 * the tree, there is no way to for the items in b to change. 2724 * It is safe to drop the lock on our parent before we 2725 * go through the expensive btree search on b. 2726 */ 2727 btrfs_unlock_up_safe(p, level + 1); 2728 2729 ret = bin_search(b, key, level, &slot); 2730 2731 if (level != 0) { 2732 int dec = 0; 2733 if (ret && slot > 0) { 2734 dec = 1; 2735 slot -= 1; 2736 } 2737 p->slots[level] = slot; 2738 unlock_up(p, level, lowest_unlock, 0, NULL); 2739 2740 if (level == lowest_level) { 2741 if (dec) 2742 p->slots[level]++; 2743 goto done; 2744 } 2745 2746 err = read_block_for_search(NULL, root, p, &b, level, 2747 slot, key, time_seq); 2748 if (err == -EAGAIN) 2749 goto again; 2750 if (err) { 2751 ret = err; 2752 goto done; 2753 } 2754 2755 level = btrfs_header_level(b); 2756 err = btrfs_try_tree_read_lock(b); 2757 if (!err) { 2758 btrfs_set_path_blocking(p); 2759 btrfs_tree_read_lock(b); 2760 btrfs_clear_path_blocking(p, b, 2761 BTRFS_READ_LOCK); 2762 } 2763 p->locks[level] = BTRFS_READ_LOCK; 2764 p->nodes[level] = b; 2765 b = tree_mod_log_rewind(root->fs_info, b, time_seq); 2766 if (b != p->nodes[level]) { 2767 btrfs_tree_unlock_rw(p->nodes[level], 2768 p->locks[level]); 2769 p->locks[level] = 0; 2770 p->nodes[level] = b; 2771 } 2772 } else { 2773 p->slots[level] = slot; 2774 unlock_up(p, level, lowest_unlock, 0, NULL); 2775 goto done; 2776 } 2777 } 2778 ret = 1; 2779 done: 2780 if (!p->leave_spinning) 2781 btrfs_set_path_blocking(p); 2782 if (ret < 0) 2783 btrfs_release_path(p); 2784 2785 return ret; 2786 } 2787 2788 /* 2789 * helper to use instead of search slot if no exact match is needed but 2790 * instead the next or previous item should be returned. 2791 * When find_higher is true, the next higher item is returned, the next lower 2792 * otherwise. 2793 * When return_any and find_higher are both true, and no higher item is found, 2794 * return the next lower instead. 2795 * When return_any is true and find_higher is false, and no lower item is found, 2796 * return the next higher instead. 2797 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2798 * < 0 on error 2799 */ 2800 int btrfs_search_slot_for_read(struct btrfs_root *root, 2801 struct btrfs_key *key, struct btrfs_path *p, 2802 int find_higher, int return_any) 2803 { 2804 int ret; 2805 struct extent_buffer *leaf; 2806 2807 again: 2808 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2809 if (ret <= 0) 2810 return ret; 2811 /* 2812 * a return value of 1 means the path is at the position where the 2813 * item should be inserted. Normally this is the next bigger item, 2814 * but in case the previous item is the last in a leaf, path points 2815 * to the first free slot in the previous leaf, i.e. at an invalid 2816 * item. 2817 */ 2818 leaf = p->nodes[0]; 2819 2820 if (find_higher) { 2821 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2822 ret = btrfs_next_leaf(root, p); 2823 if (ret <= 0) 2824 return ret; 2825 if (!return_any) 2826 return 1; 2827 /* 2828 * no higher item found, return the next 2829 * lower instead 2830 */ 2831 return_any = 0; 2832 find_higher = 0; 2833 btrfs_release_path(p); 2834 goto again; 2835 } 2836 } else { 2837 if (p->slots[0] == 0) { 2838 ret = btrfs_prev_leaf(root, p); 2839 if (ret < 0) 2840 return ret; 2841 if (!ret) { 2842 p->slots[0] = btrfs_header_nritems(leaf) - 1; 2843 return 0; 2844 } 2845 if (!return_any) 2846 return 1; 2847 /* 2848 * no lower item found, return the next 2849 * higher instead 2850 */ 2851 return_any = 0; 2852 find_higher = 1; 2853 btrfs_release_path(p); 2854 goto again; 2855 } else { 2856 --p->slots[0]; 2857 } 2858 } 2859 return 0; 2860 } 2861 2862 /* 2863 * adjust the pointers going up the tree, starting at level 2864 * making sure the right key of each node is points to 'key'. 2865 * This is used after shifting pointers to the left, so it stops 2866 * fixing up pointers when a given leaf/node is not in slot 0 of the 2867 * higher levels 2868 * 2869 */ 2870 static void fixup_low_keys(struct btrfs_trans_handle *trans, 2871 struct btrfs_root *root, struct btrfs_path *path, 2872 struct btrfs_disk_key *key, int level) 2873 { 2874 int i; 2875 struct extent_buffer *t; 2876 2877 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2878 int tslot = path->slots[i]; 2879 if (!path->nodes[i]) 2880 break; 2881 t = path->nodes[i]; 2882 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1); 2883 btrfs_set_node_key(t, key, tslot); 2884 btrfs_mark_buffer_dirty(path->nodes[i]); 2885 if (tslot != 0) 2886 break; 2887 } 2888 } 2889 2890 /* 2891 * update item key. 2892 * 2893 * This function isn't completely safe. It's the caller's responsibility 2894 * that the new key won't break the order 2895 */ 2896 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 2897 struct btrfs_root *root, struct btrfs_path *path, 2898 struct btrfs_key *new_key) 2899 { 2900 struct btrfs_disk_key disk_key; 2901 struct extent_buffer *eb; 2902 int slot; 2903 2904 eb = path->nodes[0]; 2905 slot = path->slots[0]; 2906 if (slot > 0) { 2907 btrfs_item_key(eb, &disk_key, slot - 1); 2908 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 2909 } 2910 if (slot < btrfs_header_nritems(eb) - 1) { 2911 btrfs_item_key(eb, &disk_key, slot + 1); 2912 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 2913 } 2914 2915 btrfs_cpu_key_to_disk(&disk_key, new_key); 2916 btrfs_set_item_key(eb, &disk_key, slot); 2917 btrfs_mark_buffer_dirty(eb); 2918 if (slot == 0) 2919 fixup_low_keys(trans, root, path, &disk_key, 1); 2920 } 2921 2922 /* 2923 * try to push data from one node into the next node left in the 2924 * tree. 2925 * 2926 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2927 * error, and > 0 if there was no room in the left hand block. 2928 */ 2929 static int push_node_left(struct btrfs_trans_handle *trans, 2930 struct btrfs_root *root, struct extent_buffer *dst, 2931 struct extent_buffer *src, int empty) 2932 { 2933 int push_items = 0; 2934 int src_nritems; 2935 int dst_nritems; 2936 int ret = 0; 2937 2938 src_nritems = btrfs_header_nritems(src); 2939 dst_nritems = btrfs_header_nritems(dst); 2940 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2941 WARN_ON(btrfs_header_generation(src) != trans->transid); 2942 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2943 2944 if (!empty && src_nritems <= 8) 2945 return 1; 2946 2947 if (push_items <= 0) 2948 return 1; 2949 2950 if (empty) { 2951 push_items = min(src_nritems, push_items); 2952 if (push_items < src_nritems) { 2953 /* leave at least 8 pointers in the node if 2954 * we aren't going to empty it 2955 */ 2956 if (src_nritems - push_items < 8) { 2957 if (push_items <= 8) 2958 return 1; 2959 push_items -= 8; 2960 } 2961 } 2962 } else 2963 push_items = min(src_nritems - 8, push_items); 2964 2965 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 2966 push_items); 2967 copy_extent_buffer(dst, src, 2968 btrfs_node_key_ptr_offset(dst_nritems), 2969 btrfs_node_key_ptr_offset(0), 2970 push_items * sizeof(struct btrfs_key_ptr)); 2971 2972 if (push_items < src_nritems) { 2973 tree_mod_log_eb_move(root->fs_info, src, 0, push_items, 2974 src_nritems - push_items); 2975 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2976 btrfs_node_key_ptr_offset(push_items), 2977 (src_nritems - push_items) * 2978 sizeof(struct btrfs_key_ptr)); 2979 } 2980 btrfs_set_header_nritems(src, src_nritems - push_items); 2981 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2982 btrfs_mark_buffer_dirty(src); 2983 btrfs_mark_buffer_dirty(dst); 2984 2985 return ret; 2986 } 2987 2988 /* 2989 * try to push data from one node into the next node right in the 2990 * tree. 2991 * 2992 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2993 * error, and > 0 if there was no room in the right hand block. 2994 * 2995 * this will only push up to 1/2 the contents of the left node over 2996 */ 2997 static int balance_node_right(struct btrfs_trans_handle *trans, 2998 struct btrfs_root *root, 2999 struct extent_buffer *dst, 3000 struct extent_buffer *src) 3001 { 3002 int push_items = 0; 3003 int max_push; 3004 int src_nritems; 3005 int dst_nritems; 3006 int ret = 0; 3007 3008 WARN_ON(btrfs_header_generation(src) != trans->transid); 3009 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3010 3011 src_nritems = btrfs_header_nritems(src); 3012 dst_nritems = btrfs_header_nritems(dst); 3013 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3014 if (push_items <= 0) 3015 return 1; 3016 3017 if (src_nritems < 4) 3018 return 1; 3019 3020 max_push = src_nritems / 2 + 1; 3021 /* don't try to empty the node */ 3022 if (max_push >= src_nritems) 3023 return 1; 3024 3025 if (max_push < push_items) 3026 push_items = max_push; 3027 3028 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3029 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3030 btrfs_node_key_ptr_offset(0), 3031 (dst_nritems) * 3032 sizeof(struct btrfs_key_ptr)); 3033 3034 tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3035 src_nritems - push_items, push_items); 3036 copy_extent_buffer(dst, src, 3037 btrfs_node_key_ptr_offset(0), 3038 btrfs_node_key_ptr_offset(src_nritems - push_items), 3039 push_items * sizeof(struct btrfs_key_ptr)); 3040 3041 btrfs_set_header_nritems(src, src_nritems - push_items); 3042 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3043 3044 btrfs_mark_buffer_dirty(src); 3045 btrfs_mark_buffer_dirty(dst); 3046 3047 return ret; 3048 } 3049 3050 /* 3051 * helper function to insert a new root level in the tree. 3052 * A new node is allocated, and a single item is inserted to 3053 * point to the existing root 3054 * 3055 * returns zero on success or < 0 on failure. 3056 */ 3057 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3058 struct btrfs_root *root, 3059 struct btrfs_path *path, int level) 3060 { 3061 u64 lower_gen; 3062 struct extent_buffer *lower; 3063 struct extent_buffer *c; 3064 struct extent_buffer *old; 3065 struct btrfs_disk_key lower_key; 3066 3067 BUG_ON(path->nodes[level]); 3068 BUG_ON(path->nodes[level-1] != root->node); 3069 3070 lower = path->nodes[level-1]; 3071 if (level == 1) 3072 btrfs_item_key(lower, &lower_key, 0); 3073 else 3074 btrfs_node_key(lower, &lower_key, 0); 3075 3076 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3077 root->root_key.objectid, &lower_key, 3078 level, root->node->start, 0); 3079 if (IS_ERR(c)) 3080 return PTR_ERR(c); 3081 3082 root_add_used(root, root->nodesize); 3083 3084 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3085 btrfs_set_header_nritems(c, 1); 3086 btrfs_set_header_level(c, level); 3087 btrfs_set_header_bytenr(c, c->start); 3088 btrfs_set_header_generation(c, trans->transid); 3089 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3090 btrfs_set_header_owner(c, root->root_key.objectid); 3091 3092 write_extent_buffer(c, root->fs_info->fsid, 3093 (unsigned long)btrfs_header_fsid(c), 3094 BTRFS_FSID_SIZE); 3095 3096 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3097 (unsigned long)btrfs_header_chunk_tree_uuid(c), 3098 BTRFS_UUID_SIZE); 3099 3100 btrfs_set_node_key(c, &lower_key, 0); 3101 btrfs_set_node_blockptr(c, 0, lower->start); 3102 lower_gen = btrfs_header_generation(lower); 3103 WARN_ON(lower_gen != trans->transid); 3104 3105 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3106 3107 btrfs_mark_buffer_dirty(c); 3108 3109 old = root->node; 3110 tree_mod_log_set_root_pointer(root, c); 3111 rcu_assign_pointer(root->node, c); 3112 3113 /* the super has an extra ref to root->node */ 3114 free_extent_buffer(old); 3115 3116 add_root_to_dirty_list(root); 3117 extent_buffer_get(c); 3118 path->nodes[level] = c; 3119 path->locks[level] = BTRFS_WRITE_LOCK; 3120 path->slots[level] = 0; 3121 return 0; 3122 } 3123 3124 /* 3125 * worker function to insert a single pointer in a node. 3126 * the node should have enough room for the pointer already 3127 * 3128 * slot and level indicate where you want the key to go, and 3129 * blocknr is the block the key points to. 3130 */ 3131 static void insert_ptr(struct btrfs_trans_handle *trans, 3132 struct btrfs_root *root, struct btrfs_path *path, 3133 struct btrfs_disk_key *key, u64 bytenr, 3134 int slot, int level) 3135 { 3136 struct extent_buffer *lower; 3137 int nritems; 3138 int ret; 3139 3140 BUG_ON(!path->nodes[level]); 3141 btrfs_assert_tree_locked(path->nodes[level]); 3142 lower = path->nodes[level]; 3143 nritems = btrfs_header_nritems(lower); 3144 BUG_ON(slot > nritems); 3145 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3146 if (slot != nritems) { 3147 if (level) 3148 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3149 slot, nritems - slot); 3150 memmove_extent_buffer(lower, 3151 btrfs_node_key_ptr_offset(slot + 1), 3152 btrfs_node_key_ptr_offset(slot), 3153 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3154 } 3155 if (level) { 3156 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3157 MOD_LOG_KEY_ADD); 3158 BUG_ON(ret < 0); 3159 } 3160 btrfs_set_node_key(lower, key, slot); 3161 btrfs_set_node_blockptr(lower, slot, bytenr); 3162 WARN_ON(trans->transid == 0); 3163 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3164 btrfs_set_header_nritems(lower, nritems + 1); 3165 btrfs_mark_buffer_dirty(lower); 3166 } 3167 3168 /* 3169 * split the node at the specified level in path in two. 3170 * The path is corrected to point to the appropriate node after the split 3171 * 3172 * Before splitting this tries to make some room in the node by pushing 3173 * left and right, if either one works, it returns right away. 3174 * 3175 * returns 0 on success and < 0 on failure 3176 */ 3177 static noinline int split_node(struct btrfs_trans_handle *trans, 3178 struct btrfs_root *root, 3179 struct btrfs_path *path, int level) 3180 { 3181 struct extent_buffer *c; 3182 struct extent_buffer *split; 3183 struct btrfs_disk_key disk_key; 3184 int mid; 3185 int ret; 3186 u32 c_nritems; 3187 3188 c = path->nodes[level]; 3189 WARN_ON(btrfs_header_generation(c) != trans->transid); 3190 if (c == root->node) { 3191 /* trying to split the root, lets make a new one */ 3192 ret = insert_new_root(trans, root, path, level + 1); 3193 if (ret) 3194 return ret; 3195 } else { 3196 ret = push_nodes_for_insert(trans, root, path, level); 3197 c = path->nodes[level]; 3198 if (!ret && btrfs_header_nritems(c) < 3199 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3200 return 0; 3201 if (ret < 0) 3202 return ret; 3203 } 3204 3205 c_nritems = btrfs_header_nritems(c); 3206 mid = (c_nritems + 1) / 2; 3207 btrfs_node_key(c, &disk_key, mid); 3208 3209 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3210 root->root_key.objectid, 3211 &disk_key, level, c->start, 0); 3212 if (IS_ERR(split)) 3213 return PTR_ERR(split); 3214 3215 root_add_used(root, root->nodesize); 3216 3217 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3218 btrfs_set_header_level(split, btrfs_header_level(c)); 3219 btrfs_set_header_bytenr(split, split->start); 3220 btrfs_set_header_generation(split, trans->transid); 3221 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3222 btrfs_set_header_owner(split, root->root_key.objectid); 3223 write_extent_buffer(split, root->fs_info->fsid, 3224 (unsigned long)btrfs_header_fsid(split), 3225 BTRFS_FSID_SIZE); 3226 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3227 (unsigned long)btrfs_header_chunk_tree_uuid(split), 3228 BTRFS_UUID_SIZE); 3229 3230 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid); 3231 copy_extent_buffer(split, c, 3232 btrfs_node_key_ptr_offset(0), 3233 btrfs_node_key_ptr_offset(mid), 3234 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3235 btrfs_set_header_nritems(split, c_nritems - mid); 3236 btrfs_set_header_nritems(c, mid); 3237 ret = 0; 3238 3239 btrfs_mark_buffer_dirty(c); 3240 btrfs_mark_buffer_dirty(split); 3241 3242 insert_ptr(trans, root, path, &disk_key, split->start, 3243 path->slots[level + 1] + 1, level + 1); 3244 3245 if (path->slots[level] >= mid) { 3246 path->slots[level] -= mid; 3247 btrfs_tree_unlock(c); 3248 free_extent_buffer(c); 3249 path->nodes[level] = split; 3250 path->slots[level + 1] += 1; 3251 } else { 3252 btrfs_tree_unlock(split); 3253 free_extent_buffer(split); 3254 } 3255 return ret; 3256 } 3257 3258 /* 3259 * how many bytes are required to store the items in a leaf. start 3260 * and nr indicate which items in the leaf to check. This totals up the 3261 * space used both by the item structs and the item data 3262 */ 3263 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3264 { 3265 int data_len; 3266 int nritems = btrfs_header_nritems(l); 3267 int end = min(nritems, start + nr) - 1; 3268 3269 if (!nr) 3270 return 0; 3271 data_len = btrfs_item_end_nr(l, start); 3272 data_len = data_len - btrfs_item_offset_nr(l, end); 3273 data_len += sizeof(struct btrfs_item) * nr; 3274 WARN_ON(data_len < 0); 3275 return data_len; 3276 } 3277 3278 /* 3279 * The space between the end of the leaf items and 3280 * the start of the leaf data. IOW, how much room 3281 * the leaf has left for both items and data 3282 */ 3283 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3284 struct extent_buffer *leaf) 3285 { 3286 int nritems = btrfs_header_nritems(leaf); 3287 int ret; 3288 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3289 if (ret < 0) { 3290 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 3291 "used %d nritems %d\n", 3292 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3293 leaf_space_used(leaf, 0, nritems), nritems); 3294 } 3295 return ret; 3296 } 3297 3298 /* 3299 * min slot controls the lowest index we're willing to push to the 3300 * right. We'll push up to and including min_slot, but no lower 3301 */ 3302 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3303 struct btrfs_root *root, 3304 struct btrfs_path *path, 3305 int data_size, int empty, 3306 struct extent_buffer *right, 3307 int free_space, u32 left_nritems, 3308 u32 min_slot) 3309 { 3310 struct extent_buffer *left = path->nodes[0]; 3311 struct extent_buffer *upper = path->nodes[1]; 3312 struct btrfs_map_token token; 3313 struct btrfs_disk_key disk_key; 3314 int slot; 3315 u32 i; 3316 int push_space = 0; 3317 int push_items = 0; 3318 struct btrfs_item *item; 3319 u32 nr; 3320 u32 right_nritems; 3321 u32 data_end; 3322 u32 this_item_size; 3323 3324 btrfs_init_map_token(&token); 3325 3326 if (empty) 3327 nr = 0; 3328 else 3329 nr = max_t(u32, 1, min_slot); 3330 3331 if (path->slots[0] >= left_nritems) 3332 push_space += data_size; 3333 3334 slot = path->slots[1]; 3335 i = left_nritems - 1; 3336 while (i >= nr) { 3337 item = btrfs_item_nr(left, i); 3338 3339 if (!empty && push_items > 0) { 3340 if (path->slots[0] > i) 3341 break; 3342 if (path->slots[0] == i) { 3343 int space = btrfs_leaf_free_space(root, left); 3344 if (space + push_space * 2 > free_space) 3345 break; 3346 } 3347 } 3348 3349 if (path->slots[0] == i) 3350 push_space += data_size; 3351 3352 this_item_size = btrfs_item_size(left, item); 3353 if (this_item_size + sizeof(*item) + push_space > free_space) 3354 break; 3355 3356 push_items++; 3357 push_space += this_item_size + sizeof(*item); 3358 if (i == 0) 3359 break; 3360 i--; 3361 } 3362 3363 if (push_items == 0) 3364 goto out_unlock; 3365 3366 if (!empty && push_items == left_nritems) 3367 WARN_ON(1); 3368 3369 /* push left to right */ 3370 right_nritems = btrfs_header_nritems(right); 3371 3372 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3373 push_space -= leaf_data_end(root, left); 3374 3375 /* make room in the right data area */ 3376 data_end = leaf_data_end(root, right); 3377 memmove_extent_buffer(right, 3378 btrfs_leaf_data(right) + data_end - push_space, 3379 btrfs_leaf_data(right) + data_end, 3380 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3381 3382 /* copy from the left data area */ 3383 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3384 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3385 btrfs_leaf_data(left) + leaf_data_end(root, left), 3386 push_space); 3387 3388 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3389 btrfs_item_nr_offset(0), 3390 right_nritems * sizeof(struct btrfs_item)); 3391 3392 /* copy the items from left to right */ 3393 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3394 btrfs_item_nr_offset(left_nritems - push_items), 3395 push_items * sizeof(struct btrfs_item)); 3396 3397 /* update the item pointers */ 3398 right_nritems += push_items; 3399 btrfs_set_header_nritems(right, right_nritems); 3400 push_space = BTRFS_LEAF_DATA_SIZE(root); 3401 for (i = 0; i < right_nritems; i++) { 3402 item = btrfs_item_nr(right, i); 3403 push_space -= btrfs_token_item_size(right, item, &token); 3404 btrfs_set_token_item_offset(right, item, push_space, &token); 3405 } 3406 3407 left_nritems -= push_items; 3408 btrfs_set_header_nritems(left, left_nritems); 3409 3410 if (left_nritems) 3411 btrfs_mark_buffer_dirty(left); 3412 else 3413 clean_tree_block(trans, root, left); 3414 3415 btrfs_mark_buffer_dirty(right); 3416 3417 btrfs_item_key(right, &disk_key, 0); 3418 btrfs_set_node_key(upper, &disk_key, slot + 1); 3419 btrfs_mark_buffer_dirty(upper); 3420 3421 /* then fixup the leaf pointer in the path */ 3422 if (path->slots[0] >= left_nritems) { 3423 path->slots[0] -= left_nritems; 3424 if (btrfs_header_nritems(path->nodes[0]) == 0) 3425 clean_tree_block(trans, root, path->nodes[0]); 3426 btrfs_tree_unlock(path->nodes[0]); 3427 free_extent_buffer(path->nodes[0]); 3428 path->nodes[0] = right; 3429 path->slots[1] += 1; 3430 } else { 3431 btrfs_tree_unlock(right); 3432 free_extent_buffer(right); 3433 } 3434 return 0; 3435 3436 out_unlock: 3437 btrfs_tree_unlock(right); 3438 free_extent_buffer(right); 3439 return 1; 3440 } 3441 3442 /* 3443 * push some data in the path leaf to the right, trying to free up at 3444 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3445 * 3446 * returns 1 if the push failed because the other node didn't have enough 3447 * room, 0 if everything worked out and < 0 if there were major errors. 3448 * 3449 * this will push starting from min_slot to the end of the leaf. It won't 3450 * push any slot lower than min_slot 3451 */ 3452 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3453 *root, struct btrfs_path *path, 3454 int min_data_size, int data_size, 3455 int empty, u32 min_slot) 3456 { 3457 struct extent_buffer *left = path->nodes[0]; 3458 struct extent_buffer *right; 3459 struct extent_buffer *upper; 3460 int slot; 3461 int free_space; 3462 u32 left_nritems; 3463 int ret; 3464 3465 if (!path->nodes[1]) 3466 return 1; 3467 3468 slot = path->slots[1]; 3469 upper = path->nodes[1]; 3470 if (slot >= btrfs_header_nritems(upper) - 1) 3471 return 1; 3472 3473 btrfs_assert_tree_locked(path->nodes[1]); 3474 3475 right = read_node_slot(root, upper, slot + 1); 3476 if (right == NULL) 3477 return 1; 3478 3479 btrfs_tree_lock(right); 3480 btrfs_set_lock_blocking(right); 3481 3482 free_space = btrfs_leaf_free_space(root, right); 3483 if (free_space < data_size) 3484 goto out_unlock; 3485 3486 /* cow and double check */ 3487 ret = btrfs_cow_block(trans, root, right, upper, 3488 slot + 1, &right); 3489 if (ret) 3490 goto out_unlock; 3491 3492 free_space = btrfs_leaf_free_space(root, right); 3493 if (free_space < data_size) 3494 goto out_unlock; 3495 3496 left_nritems = btrfs_header_nritems(left); 3497 if (left_nritems == 0) 3498 goto out_unlock; 3499 3500 return __push_leaf_right(trans, root, path, min_data_size, empty, 3501 right, free_space, left_nritems, min_slot); 3502 out_unlock: 3503 btrfs_tree_unlock(right); 3504 free_extent_buffer(right); 3505 return 1; 3506 } 3507 3508 /* 3509 * push some data in the path leaf to the left, trying to free up at 3510 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3511 * 3512 * max_slot can put a limit on how far into the leaf we'll push items. The 3513 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3514 * items 3515 */ 3516 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3517 struct btrfs_root *root, 3518 struct btrfs_path *path, int data_size, 3519 int empty, struct extent_buffer *left, 3520 int free_space, u32 right_nritems, 3521 u32 max_slot) 3522 { 3523 struct btrfs_disk_key disk_key; 3524 struct extent_buffer *right = path->nodes[0]; 3525 int i; 3526 int push_space = 0; 3527 int push_items = 0; 3528 struct btrfs_item *item; 3529 u32 old_left_nritems; 3530 u32 nr; 3531 int ret = 0; 3532 u32 this_item_size; 3533 u32 old_left_item_size; 3534 struct btrfs_map_token token; 3535 3536 btrfs_init_map_token(&token); 3537 3538 if (empty) 3539 nr = min(right_nritems, max_slot); 3540 else 3541 nr = min(right_nritems - 1, max_slot); 3542 3543 for (i = 0; i < nr; i++) { 3544 item = btrfs_item_nr(right, i); 3545 3546 if (!empty && push_items > 0) { 3547 if (path->slots[0] < i) 3548 break; 3549 if (path->slots[0] == i) { 3550 int space = btrfs_leaf_free_space(root, right); 3551 if (space + push_space * 2 > free_space) 3552 break; 3553 } 3554 } 3555 3556 if (path->slots[0] == i) 3557 push_space += data_size; 3558 3559 this_item_size = btrfs_item_size(right, item); 3560 if (this_item_size + sizeof(*item) + push_space > free_space) 3561 break; 3562 3563 push_items++; 3564 push_space += this_item_size + sizeof(*item); 3565 } 3566 3567 if (push_items == 0) { 3568 ret = 1; 3569 goto out; 3570 } 3571 if (!empty && push_items == btrfs_header_nritems(right)) 3572 WARN_ON(1); 3573 3574 /* push data from right to left */ 3575 copy_extent_buffer(left, right, 3576 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3577 btrfs_item_nr_offset(0), 3578 push_items * sizeof(struct btrfs_item)); 3579 3580 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3581 btrfs_item_offset_nr(right, push_items - 1); 3582 3583 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3584 leaf_data_end(root, left) - push_space, 3585 btrfs_leaf_data(right) + 3586 btrfs_item_offset_nr(right, push_items - 1), 3587 push_space); 3588 old_left_nritems = btrfs_header_nritems(left); 3589 BUG_ON(old_left_nritems <= 0); 3590 3591 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3592 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3593 u32 ioff; 3594 3595 item = btrfs_item_nr(left, i); 3596 3597 ioff = btrfs_token_item_offset(left, item, &token); 3598 btrfs_set_token_item_offset(left, item, 3599 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3600 &token); 3601 } 3602 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3603 3604 /* fixup right node */ 3605 if (push_items > right_nritems) { 3606 printk(KERN_CRIT "push items %d nr %u\n", push_items, 3607 right_nritems); 3608 WARN_ON(1); 3609 } 3610 3611 if (push_items < right_nritems) { 3612 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3613 leaf_data_end(root, right); 3614 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3615 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3616 btrfs_leaf_data(right) + 3617 leaf_data_end(root, right), push_space); 3618 3619 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3620 btrfs_item_nr_offset(push_items), 3621 (btrfs_header_nritems(right) - push_items) * 3622 sizeof(struct btrfs_item)); 3623 } 3624 right_nritems -= push_items; 3625 btrfs_set_header_nritems(right, right_nritems); 3626 push_space = BTRFS_LEAF_DATA_SIZE(root); 3627 for (i = 0; i < right_nritems; i++) { 3628 item = btrfs_item_nr(right, i); 3629 3630 push_space = push_space - btrfs_token_item_size(right, 3631 item, &token); 3632 btrfs_set_token_item_offset(right, item, push_space, &token); 3633 } 3634 3635 btrfs_mark_buffer_dirty(left); 3636 if (right_nritems) 3637 btrfs_mark_buffer_dirty(right); 3638 else 3639 clean_tree_block(trans, root, right); 3640 3641 btrfs_item_key(right, &disk_key, 0); 3642 fixup_low_keys(trans, root, path, &disk_key, 1); 3643 3644 /* then fixup the leaf pointer in the path */ 3645 if (path->slots[0] < push_items) { 3646 path->slots[0] += old_left_nritems; 3647 btrfs_tree_unlock(path->nodes[0]); 3648 free_extent_buffer(path->nodes[0]); 3649 path->nodes[0] = left; 3650 path->slots[1] -= 1; 3651 } else { 3652 btrfs_tree_unlock(left); 3653 free_extent_buffer(left); 3654 path->slots[0] -= push_items; 3655 } 3656 BUG_ON(path->slots[0] < 0); 3657 return ret; 3658 out: 3659 btrfs_tree_unlock(left); 3660 free_extent_buffer(left); 3661 return ret; 3662 } 3663 3664 /* 3665 * push some data in the path leaf to the left, trying to free up at 3666 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3667 * 3668 * max_slot can put a limit on how far into the leaf we'll push items. The 3669 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3670 * items 3671 */ 3672 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3673 *root, struct btrfs_path *path, int min_data_size, 3674 int data_size, int empty, u32 max_slot) 3675 { 3676 struct extent_buffer *right = path->nodes[0]; 3677 struct extent_buffer *left; 3678 int slot; 3679 int free_space; 3680 u32 right_nritems; 3681 int ret = 0; 3682 3683 slot = path->slots[1]; 3684 if (slot == 0) 3685 return 1; 3686 if (!path->nodes[1]) 3687 return 1; 3688 3689 right_nritems = btrfs_header_nritems(right); 3690 if (right_nritems == 0) 3691 return 1; 3692 3693 btrfs_assert_tree_locked(path->nodes[1]); 3694 3695 left = read_node_slot(root, path->nodes[1], slot - 1); 3696 if (left == NULL) 3697 return 1; 3698 3699 btrfs_tree_lock(left); 3700 btrfs_set_lock_blocking(left); 3701 3702 free_space = btrfs_leaf_free_space(root, left); 3703 if (free_space < data_size) { 3704 ret = 1; 3705 goto out; 3706 } 3707 3708 /* cow and double check */ 3709 ret = btrfs_cow_block(trans, root, left, 3710 path->nodes[1], slot - 1, &left); 3711 if (ret) { 3712 /* we hit -ENOSPC, but it isn't fatal here */ 3713 if (ret == -ENOSPC) 3714 ret = 1; 3715 goto out; 3716 } 3717 3718 free_space = btrfs_leaf_free_space(root, left); 3719 if (free_space < data_size) { 3720 ret = 1; 3721 goto out; 3722 } 3723 3724 return __push_leaf_left(trans, root, path, min_data_size, 3725 empty, left, free_space, right_nritems, 3726 max_slot); 3727 out: 3728 btrfs_tree_unlock(left); 3729 free_extent_buffer(left); 3730 return ret; 3731 } 3732 3733 /* 3734 * split the path's leaf in two, making sure there is at least data_size 3735 * available for the resulting leaf level of the path. 3736 */ 3737 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3738 struct btrfs_root *root, 3739 struct btrfs_path *path, 3740 struct extent_buffer *l, 3741 struct extent_buffer *right, 3742 int slot, int mid, int nritems) 3743 { 3744 int data_copy_size; 3745 int rt_data_off; 3746 int i; 3747 struct btrfs_disk_key disk_key; 3748 struct btrfs_map_token token; 3749 3750 btrfs_init_map_token(&token); 3751 3752 nritems = nritems - mid; 3753 btrfs_set_header_nritems(right, nritems); 3754 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 3755 3756 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3757 btrfs_item_nr_offset(mid), 3758 nritems * sizeof(struct btrfs_item)); 3759 3760 copy_extent_buffer(right, l, 3761 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 3762 data_copy_size, btrfs_leaf_data(l) + 3763 leaf_data_end(root, l), data_copy_size); 3764 3765 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 3766 btrfs_item_end_nr(l, mid); 3767 3768 for (i = 0; i < nritems; i++) { 3769 struct btrfs_item *item = btrfs_item_nr(right, i); 3770 u32 ioff; 3771 3772 ioff = btrfs_token_item_offset(right, item, &token); 3773 btrfs_set_token_item_offset(right, item, 3774 ioff + rt_data_off, &token); 3775 } 3776 3777 btrfs_set_header_nritems(l, mid); 3778 btrfs_item_key(right, &disk_key, 0); 3779 insert_ptr(trans, root, path, &disk_key, right->start, 3780 path->slots[1] + 1, 1); 3781 3782 btrfs_mark_buffer_dirty(right); 3783 btrfs_mark_buffer_dirty(l); 3784 BUG_ON(path->slots[0] != slot); 3785 3786 if (mid <= slot) { 3787 btrfs_tree_unlock(path->nodes[0]); 3788 free_extent_buffer(path->nodes[0]); 3789 path->nodes[0] = right; 3790 path->slots[0] -= mid; 3791 path->slots[1] += 1; 3792 } else { 3793 btrfs_tree_unlock(right); 3794 free_extent_buffer(right); 3795 } 3796 3797 BUG_ON(path->slots[0] < 0); 3798 } 3799 3800 /* 3801 * double splits happen when we need to insert a big item in the middle 3802 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3803 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3804 * A B C 3805 * 3806 * We avoid this by trying to push the items on either side of our target 3807 * into the adjacent leaves. If all goes well we can avoid the double split 3808 * completely. 3809 */ 3810 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3811 struct btrfs_root *root, 3812 struct btrfs_path *path, 3813 int data_size) 3814 { 3815 int ret; 3816 int progress = 0; 3817 int slot; 3818 u32 nritems; 3819 3820 slot = path->slots[0]; 3821 3822 /* 3823 * try to push all the items after our slot into the 3824 * right leaf 3825 */ 3826 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 3827 if (ret < 0) 3828 return ret; 3829 3830 if (ret == 0) 3831 progress++; 3832 3833 nritems = btrfs_header_nritems(path->nodes[0]); 3834 /* 3835 * our goal is to get our slot at the start or end of a leaf. If 3836 * we've done so we're done 3837 */ 3838 if (path->slots[0] == 0 || path->slots[0] == nritems) 3839 return 0; 3840 3841 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3842 return 0; 3843 3844 /* try to push all the items before our slot into the next leaf */ 3845 slot = path->slots[0]; 3846 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 3847 if (ret < 0) 3848 return ret; 3849 3850 if (ret == 0) 3851 progress++; 3852 3853 if (progress) 3854 return 0; 3855 return 1; 3856 } 3857 3858 /* 3859 * split the path's leaf in two, making sure there is at least data_size 3860 * available for the resulting leaf level of the path. 3861 * 3862 * returns 0 if all went well and < 0 on failure. 3863 */ 3864 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3865 struct btrfs_root *root, 3866 struct btrfs_key *ins_key, 3867 struct btrfs_path *path, int data_size, 3868 int extend) 3869 { 3870 struct btrfs_disk_key disk_key; 3871 struct extent_buffer *l; 3872 u32 nritems; 3873 int mid; 3874 int slot; 3875 struct extent_buffer *right; 3876 int ret = 0; 3877 int wret; 3878 int split; 3879 int num_doubles = 0; 3880 int tried_avoid_double = 0; 3881 3882 l = path->nodes[0]; 3883 slot = path->slots[0]; 3884 if (extend && data_size + btrfs_item_size_nr(l, slot) + 3885 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 3886 return -EOVERFLOW; 3887 3888 /* first try to make some room by pushing left and right */ 3889 if (data_size) { 3890 wret = push_leaf_right(trans, root, path, data_size, 3891 data_size, 0, 0); 3892 if (wret < 0) 3893 return wret; 3894 if (wret) { 3895 wret = push_leaf_left(trans, root, path, data_size, 3896 data_size, 0, (u32)-1); 3897 if (wret < 0) 3898 return wret; 3899 } 3900 l = path->nodes[0]; 3901 3902 /* did the pushes work? */ 3903 if (btrfs_leaf_free_space(root, l) >= data_size) 3904 return 0; 3905 } 3906 3907 if (!path->nodes[1]) { 3908 ret = insert_new_root(trans, root, path, 1); 3909 if (ret) 3910 return ret; 3911 } 3912 again: 3913 split = 1; 3914 l = path->nodes[0]; 3915 slot = path->slots[0]; 3916 nritems = btrfs_header_nritems(l); 3917 mid = (nritems + 1) / 2; 3918 3919 if (mid <= slot) { 3920 if (nritems == 1 || 3921 leaf_space_used(l, mid, nritems - mid) + data_size > 3922 BTRFS_LEAF_DATA_SIZE(root)) { 3923 if (slot >= nritems) { 3924 split = 0; 3925 } else { 3926 mid = slot; 3927 if (mid != nritems && 3928 leaf_space_used(l, mid, nritems - mid) + 3929 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3930 if (data_size && !tried_avoid_double) 3931 goto push_for_double; 3932 split = 2; 3933 } 3934 } 3935 } 3936 } else { 3937 if (leaf_space_used(l, 0, mid) + data_size > 3938 BTRFS_LEAF_DATA_SIZE(root)) { 3939 if (!extend && data_size && slot == 0) { 3940 split = 0; 3941 } else if ((extend || !data_size) && slot == 0) { 3942 mid = 1; 3943 } else { 3944 mid = slot; 3945 if (mid != nritems && 3946 leaf_space_used(l, mid, nritems - mid) + 3947 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3948 if (data_size && !tried_avoid_double) 3949 goto push_for_double; 3950 split = 2 ; 3951 } 3952 } 3953 } 3954 } 3955 3956 if (split == 0) 3957 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3958 else 3959 btrfs_item_key(l, &disk_key, mid); 3960 3961 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 3962 root->root_key.objectid, 3963 &disk_key, 0, l->start, 0); 3964 if (IS_ERR(right)) 3965 return PTR_ERR(right); 3966 3967 root_add_used(root, root->leafsize); 3968 3969 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 3970 btrfs_set_header_bytenr(right, right->start); 3971 btrfs_set_header_generation(right, trans->transid); 3972 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 3973 btrfs_set_header_owner(right, root->root_key.objectid); 3974 btrfs_set_header_level(right, 0); 3975 write_extent_buffer(right, root->fs_info->fsid, 3976 (unsigned long)btrfs_header_fsid(right), 3977 BTRFS_FSID_SIZE); 3978 3979 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 3980 (unsigned long)btrfs_header_chunk_tree_uuid(right), 3981 BTRFS_UUID_SIZE); 3982 3983 if (split == 0) { 3984 if (mid <= slot) { 3985 btrfs_set_header_nritems(right, 0); 3986 insert_ptr(trans, root, path, &disk_key, right->start, 3987 path->slots[1] + 1, 1); 3988 btrfs_tree_unlock(path->nodes[0]); 3989 free_extent_buffer(path->nodes[0]); 3990 path->nodes[0] = right; 3991 path->slots[0] = 0; 3992 path->slots[1] += 1; 3993 } else { 3994 btrfs_set_header_nritems(right, 0); 3995 insert_ptr(trans, root, path, &disk_key, right->start, 3996 path->slots[1], 1); 3997 btrfs_tree_unlock(path->nodes[0]); 3998 free_extent_buffer(path->nodes[0]); 3999 path->nodes[0] = right; 4000 path->slots[0] = 0; 4001 if (path->slots[1] == 0) 4002 fixup_low_keys(trans, root, path, 4003 &disk_key, 1); 4004 } 4005 btrfs_mark_buffer_dirty(right); 4006 return ret; 4007 } 4008 4009 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4010 4011 if (split == 2) { 4012 BUG_ON(num_doubles != 0); 4013 num_doubles++; 4014 goto again; 4015 } 4016 4017 return 0; 4018 4019 push_for_double: 4020 push_for_double_split(trans, root, path, data_size); 4021 tried_avoid_double = 1; 4022 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4023 return 0; 4024 goto again; 4025 } 4026 4027 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4028 struct btrfs_root *root, 4029 struct btrfs_path *path, int ins_len) 4030 { 4031 struct btrfs_key key; 4032 struct extent_buffer *leaf; 4033 struct btrfs_file_extent_item *fi; 4034 u64 extent_len = 0; 4035 u32 item_size; 4036 int ret; 4037 4038 leaf = path->nodes[0]; 4039 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4040 4041 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4042 key.type != BTRFS_EXTENT_CSUM_KEY); 4043 4044 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4045 return 0; 4046 4047 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4048 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4049 fi = btrfs_item_ptr(leaf, path->slots[0], 4050 struct btrfs_file_extent_item); 4051 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4052 } 4053 btrfs_release_path(path); 4054 4055 path->keep_locks = 1; 4056 path->search_for_split = 1; 4057 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4058 path->search_for_split = 0; 4059 if (ret < 0) 4060 goto err; 4061 4062 ret = -EAGAIN; 4063 leaf = path->nodes[0]; 4064 /* if our item isn't there or got smaller, return now */ 4065 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4066 goto err; 4067 4068 /* the leaf has changed, it now has room. return now */ 4069 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4070 goto err; 4071 4072 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4073 fi = btrfs_item_ptr(leaf, path->slots[0], 4074 struct btrfs_file_extent_item); 4075 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4076 goto err; 4077 } 4078 4079 btrfs_set_path_blocking(path); 4080 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4081 if (ret) 4082 goto err; 4083 4084 path->keep_locks = 0; 4085 btrfs_unlock_up_safe(path, 1); 4086 return 0; 4087 err: 4088 path->keep_locks = 0; 4089 return ret; 4090 } 4091 4092 static noinline int split_item(struct btrfs_trans_handle *trans, 4093 struct btrfs_root *root, 4094 struct btrfs_path *path, 4095 struct btrfs_key *new_key, 4096 unsigned long split_offset) 4097 { 4098 struct extent_buffer *leaf; 4099 struct btrfs_item *item; 4100 struct btrfs_item *new_item; 4101 int slot; 4102 char *buf; 4103 u32 nritems; 4104 u32 item_size; 4105 u32 orig_offset; 4106 struct btrfs_disk_key disk_key; 4107 4108 leaf = path->nodes[0]; 4109 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4110 4111 btrfs_set_path_blocking(path); 4112 4113 item = btrfs_item_nr(leaf, path->slots[0]); 4114 orig_offset = btrfs_item_offset(leaf, item); 4115 item_size = btrfs_item_size(leaf, item); 4116 4117 buf = kmalloc(item_size, GFP_NOFS); 4118 if (!buf) 4119 return -ENOMEM; 4120 4121 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4122 path->slots[0]), item_size); 4123 4124 slot = path->slots[0] + 1; 4125 nritems = btrfs_header_nritems(leaf); 4126 if (slot != nritems) { 4127 /* shift the items */ 4128 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4129 btrfs_item_nr_offset(slot), 4130 (nritems - slot) * sizeof(struct btrfs_item)); 4131 } 4132 4133 btrfs_cpu_key_to_disk(&disk_key, new_key); 4134 btrfs_set_item_key(leaf, &disk_key, slot); 4135 4136 new_item = btrfs_item_nr(leaf, slot); 4137 4138 btrfs_set_item_offset(leaf, new_item, orig_offset); 4139 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4140 4141 btrfs_set_item_offset(leaf, item, 4142 orig_offset + item_size - split_offset); 4143 btrfs_set_item_size(leaf, item, split_offset); 4144 4145 btrfs_set_header_nritems(leaf, nritems + 1); 4146 4147 /* write the data for the start of the original item */ 4148 write_extent_buffer(leaf, buf, 4149 btrfs_item_ptr_offset(leaf, path->slots[0]), 4150 split_offset); 4151 4152 /* write the data for the new item */ 4153 write_extent_buffer(leaf, buf + split_offset, 4154 btrfs_item_ptr_offset(leaf, slot), 4155 item_size - split_offset); 4156 btrfs_mark_buffer_dirty(leaf); 4157 4158 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4159 kfree(buf); 4160 return 0; 4161 } 4162 4163 /* 4164 * This function splits a single item into two items, 4165 * giving 'new_key' to the new item and splitting the 4166 * old one at split_offset (from the start of the item). 4167 * 4168 * The path may be released by this operation. After 4169 * the split, the path is pointing to the old item. The 4170 * new item is going to be in the same node as the old one. 4171 * 4172 * Note, the item being split must be smaller enough to live alone on 4173 * a tree block with room for one extra struct btrfs_item 4174 * 4175 * This allows us to split the item in place, keeping a lock on the 4176 * leaf the entire time. 4177 */ 4178 int btrfs_split_item(struct btrfs_trans_handle *trans, 4179 struct btrfs_root *root, 4180 struct btrfs_path *path, 4181 struct btrfs_key *new_key, 4182 unsigned long split_offset) 4183 { 4184 int ret; 4185 ret = setup_leaf_for_split(trans, root, path, 4186 sizeof(struct btrfs_item)); 4187 if (ret) 4188 return ret; 4189 4190 ret = split_item(trans, root, path, new_key, split_offset); 4191 return ret; 4192 } 4193 4194 /* 4195 * This function duplicate a item, giving 'new_key' to the new item. 4196 * It guarantees both items live in the same tree leaf and the new item 4197 * is contiguous with the original item. 4198 * 4199 * This allows us to split file extent in place, keeping a lock on the 4200 * leaf the entire time. 4201 */ 4202 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4203 struct btrfs_root *root, 4204 struct btrfs_path *path, 4205 struct btrfs_key *new_key) 4206 { 4207 struct extent_buffer *leaf; 4208 int ret; 4209 u32 item_size; 4210 4211 leaf = path->nodes[0]; 4212 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4213 ret = setup_leaf_for_split(trans, root, path, 4214 item_size + sizeof(struct btrfs_item)); 4215 if (ret) 4216 return ret; 4217 4218 path->slots[0]++; 4219 setup_items_for_insert(trans, root, path, new_key, &item_size, 4220 item_size, item_size + 4221 sizeof(struct btrfs_item), 1); 4222 leaf = path->nodes[0]; 4223 memcpy_extent_buffer(leaf, 4224 btrfs_item_ptr_offset(leaf, path->slots[0]), 4225 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4226 item_size); 4227 return 0; 4228 } 4229 4230 /* 4231 * make the item pointed to by the path smaller. new_size indicates 4232 * how small to make it, and from_end tells us if we just chop bytes 4233 * off the end of the item or if we shift the item to chop bytes off 4234 * the front. 4235 */ 4236 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 4237 struct btrfs_root *root, 4238 struct btrfs_path *path, 4239 u32 new_size, int from_end) 4240 { 4241 int slot; 4242 struct extent_buffer *leaf; 4243 struct btrfs_item *item; 4244 u32 nritems; 4245 unsigned int data_end; 4246 unsigned int old_data_start; 4247 unsigned int old_size; 4248 unsigned int size_diff; 4249 int i; 4250 struct btrfs_map_token token; 4251 4252 btrfs_init_map_token(&token); 4253 4254 leaf = path->nodes[0]; 4255 slot = path->slots[0]; 4256 4257 old_size = btrfs_item_size_nr(leaf, slot); 4258 if (old_size == new_size) 4259 return; 4260 4261 nritems = btrfs_header_nritems(leaf); 4262 data_end = leaf_data_end(root, leaf); 4263 4264 old_data_start = btrfs_item_offset_nr(leaf, slot); 4265 4266 size_diff = old_size - new_size; 4267 4268 BUG_ON(slot < 0); 4269 BUG_ON(slot >= nritems); 4270 4271 /* 4272 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4273 */ 4274 /* first correct the data pointers */ 4275 for (i = slot; i < nritems; i++) { 4276 u32 ioff; 4277 item = btrfs_item_nr(leaf, i); 4278 4279 ioff = btrfs_token_item_offset(leaf, item, &token); 4280 btrfs_set_token_item_offset(leaf, item, 4281 ioff + size_diff, &token); 4282 } 4283 4284 /* shift the data */ 4285 if (from_end) { 4286 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4287 data_end + size_diff, btrfs_leaf_data(leaf) + 4288 data_end, old_data_start + new_size - data_end); 4289 } else { 4290 struct btrfs_disk_key disk_key; 4291 u64 offset; 4292 4293 btrfs_item_key(leaf, &disk_key, slot); 4294 4295 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4296 unsigned long ptr; 4297 struct btrfs_file_extent_item *fi; 4298 4299 fi = btrfs_item_ptr(leaf, slot, 4300 struct btrfs_file_extent_item); 4301 fi = (struct btrfs_file_extent_item *)( 4302 (unsigned long)fi - size_diff); 4303 4304 if (btrfs_file_extent_type(leaf, fi) == 4305 BTRFS_FILE_EXTENT_INLINE) { 4306 ptr = btrfs_item_ptr_offset(leaf, slot); 4307 memmove_extent_buffer(leaf, ptr, 4308 (unsigned long)fi, 4309 offsetof(struct btrfs_file_extent_item, 4310 disk_bytenr)); 4311 } 4312 } 4313 4314 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4315 data_end + size_diff, btrfs_leaf_data(leaf) + 4316 data_end, old_data_start - data_end); 4317 4318 offset = btrfs_disk_key_offset(&disk_key); 4319 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4320 btrfs_set_item_key(leaf, &disk_key, slot); 4321 if (slot == 0) 4322 fixup_low_keys(trans, root, path, &disk_key, 1); 4323 } 4324 4325 item = btrfs_item_nr(leaf, slot); 4326 btrfs_set_item_size(leaf, item, new_size); 4327 btrfs_mark_buffer_dirty(leaf); 4328 4329 if (btrfs_leaf_free_space(root, leaf) < 0) { 4330 btrfs_print_leaf(root, leaf); 4331 BUG(); 4332 } 4333 } 4334 4335 /* 4336 * make the item pointed to by the path bigger, data_size is the new size. 4337 */ 4338 void btrfs_extend_item(struct btrfs_trans_handle *trans, 4339 struct btrfs_root *root, struct btrfs_path *path, 4340 u32 data_size) 4341 { 4342 int slot; 4343 struct extent_buffer *leaf; 4344 struct btrfs_item *item; 4345 u32 nritems; 4346 unsigned int data_end; 4347 unsigned int old_data; 4348 unsigned int old_size; 4349 int i; 4350 struct btrfs_map_token token; 4351 4352 btrfs_init_map_token(&token); 4353 4354 leaf = path->nodes[0]; 4355 4356 nritems = btrfs_header_nritems(leaf); 4357 data_end = leaf_data_end(root, leaf); 4358 4359 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4360 btrfs_print_leaf(root, leaf); 4361 BUG(); 4362 } 4363 slot = path->slots[0]; 4364 old_data = btrfs_item_end_nr(leaf, slot); 4365 4366 BUG_ON(slot < 0); 4367 if (slot >= nritems) { 4368 btrfs_print_leaf(root, leaf); 4369 printk(KERN_CRIT "slot %d too large, nritems %d\n", 4370 slot, nritems); 4371 BUG_ON(1); 4372 } 4373 4374 /* 4375 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4376 */ 4377 /* first correct the data pointers */ 4378 for (i = slot; i < nritems; i++) { 4379 u32 ioff; 4380 item = btrfs_item_nr(leaf, i); 4381 4382 ioff = btrfs_token_item_offset(leaf, item, &token); 4383 btrfs_set_token_item_offset(leaf, item, 4384 ioff - data_size, &token); 4385 } 4386 4387 /* shift the data */ 4388 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4389 data_end - data_size, btrfs_leaf_data(leaf) + 4390 data_end, old_data - data_end); 4391 4392 data_end = old_data; 4393 old_size = btrfs_item_size_nr(leaf, slot); 4394 item = btrfs_item_nr(leaf, slot); 4395 btrfs_set_item_size(leaf, item, old_size + data_size); 4396 btrfs_mark_buffer_dirty(leaf); 4397 4398 if (btrfs_leaf_free_space(root, leaf) < 0) { 4399 btrfs_print_leaf(root, leaf); 4400 BUG(); 4401 } 4402 } 4403 4404 /* 4405 * Given a key and some data, insert items into the tree. 4406 * This does all the path init required, making room in the tree if needed. 4407 * Returns the number of keys that were inserted. 4408 */ 4409 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 4410 struct btrfs_root *root, 4411 struct btrfs_path *path, 4412 struct btrfs_key *cpu_key, u32 *data_size, 4413 int nr) 4414 { 4415 struct extent_buffer *leaf; 4416 struct btrfs_item *item; 4417 int ret = 0; 4418 int slot; 4419 int i; 4420 u32 nritems; 4421 u32 total_data = 0; 4422 u32 total_size = 0; 4423 unsigned int data_end; 4424 struct btrfs_disk_key disk_key; 4425 struct btrfs_key found_key; 4426 struct btrfs_map_token token; 4427 4428 btrfs_init_map_token(&token); 4429 4430 for (i = 0; i < nr; i++) { 4431 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 4432 BTRFS_LEAF_DATA_SIZE(root)) { 4433 break; 4434 nr = i; 4435 } 4436 total_data += data_size[i]; 4437 total_size += data_size[i] + sizeof(struct btrfs_item); 4438 } 4439 BUG_ON(nr == 0); 4440 4441 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4442 if (ret == 0) 4443 return -EEXIST; 4444 if (ret < 0) 4445 goto out; 4446 4447 leaf = path->nodes[0]; 4448 4449 nritems = btrfs_header_nritems(leaf); 4450 data_end = leaf_data_end(root, leaf); 4451 4452 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4453 for (i = nr; i >= 0; i--) { 4454 total_data -= data_size[i]; 4455 total_size -= data_size[i] + sizeof(struct btrfs_item); 4456 if (total_size < btrfs_leaf_free_space(root, leaf)) 4457 break; 4458 } 4459 nr = i; 4460 } 4461 4462 slot = path->slots[0]; 4463 BUG_ON(slot < 0); 4464 4465 if (slot != nritems) { 4466 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4467 4468 item = btrfs_item_nr(leaf, slot); 4469 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4470 4471 /* figure out how many keys we can insert in here */ 4472 total_data = data_size[0]; 4473 for (i = 1; i < nr; i++) { 4474 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0) 4475 break; 4476 total_data += data_size[i]; 4477 } 4478 nr = i; 4479 4480 if (old_data < data_end) { 4481 btrfs_print_leaf(root, leaf); 4482 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 4483 slot, old_data, data_end); 4484 BUG_ON(1); 4485 } 4486 /* 4487 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4488 */ 4489 /* first correct the data pointers */ 4490 for (i = slot; i < nritems; i++) { 4491 u32 ioff; 4492 4493 item = btrfs_item_nr(leaf, i); 4494 ioff = btrfs_token_item_offset(leaf, item, &token); 4495 btrfs_set_token_item_offset(leaf, item, 4496 ioff - total_data, &token); 4497 } 4498 /* shift the items */ 4499 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4500 btrfs_item_nr_offset(slot), 4501 (nritems - slot) * sizeof(struct btrfs_item)); 4502 4503 /* shift the data */ 4504 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4505 data_end - total_data, btrfs_leaf_data(leaf) + 4506 data_end, old_data - data_end); 4507 data_end = old_data; 4508 } else { 4509 /* 4510 * this sucks but it has to be done, if we are inserting at 4511 * the end of the leaf only insert 1 of the items, since we 4512 * have no way of knowing whats on the next leaf and we'd have 4513 * to drop our current locks to figure it out 4514 */ 4515 nr = 1; 4516 } 4517 4518 /* setup the item for the new data */ 4519 for (i = 0; i < nr; i++) { 4520 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4521 btrfs_set_item_key(leaf, &disk_key, slot + i); 4522 item = btrfs_item_nr(leaf, slot + i); 4523 btrfs_set_token_item_offset(leaf, item, 4524 data_end - data_size[i], &token); 4525 data_end -= data_size[i]; 4526 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4527 } 4528 btrfs_set_header_nritems(leaf, nritems + nr); 4529 btrfs_mark_buffer_dirty(leaf); 4530 4531 ret = 0; 4532 if (slot == 0) { 4533 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4534 fixup_low_keys(trans, root, path, &disk_key, 1); 4535 } 4536 4537 if (btrfs_leaf_free_space(root, leaf) < 0) { 4538 btrfs_print_leaf(root, leaf); 4539 BUG(); 4540 } 4541 out: 4542 if (!ret) 4543 ret = nr; 4544 return ret; 4545 } 4546 4547 /* 4548 * this is a helper for btrfs_insert_empty_items, the main goal here is 4549 * to save stack depth by doing the bulk of the work in a function 4550 * that doesn't call btrfs_search_slot 4551 */ 4552 void setup_items_for_insert(struct btrfs_trans_handle *trans, 4553 struct btrfs_root *root, struct btrfs_path *path, 4554 struct btrfs_key *cpu_key, u32 *data_size, 4555 u32 total_data, u32 total_size, int nr) 4556 { 4557 struct btrfs_item *item; 4558 int i; 4559 u32 nritems; 4560 unsigned int data_end; 4561 struct btrfs_disk_key disk_key; 4562 struct extent_buffer *leaf; 4563 int slot; 4564 struct btrfs_map_token token; 4565 4566 btrfs_init_map_token(&token); 4567 4568 leaf = path->nodes[0]; 4569 slot = path->slots[0]; 4570 4571 nritems = btrfs_header_nritems(leaf); 4572 data_end = leaf_data_end(root, leaf); 4573 4574 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4575 btrfs_print_leaf(root, leaf); 4576 printk(KERN_CRIT "not enough freespace need %u have %d\n", 4577 total_size, btrfs_leaf_free_space(root, leaf)); 4578 BUG(); 4579 } 4580 4581 if (slot != nritems) { 4582 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4583 4584 if (old_data < data_end) { 4585 btrfs_print_leaf(root, leaf); 4586 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 4587 slot, old_data, data_end); 4588 BUG_ON(1); 4589 } 4590 /* 4591 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4592 */ 4593 /* first correct the data pointers */ 4594 for (i = slot; i < nritems; i++) { 4595 u32 ioff; 4596 4597 item = btrfs_item_nr(leaf, i); 4598 ioff = btrfs_token_item_offset(leaf, item, &token); 4599 btrfs_set_token_item_offset(leaf, item, 4600 ioff - total_data, &token); 4601 } 4602 /* shift the items */ 4603 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4604 btrfs_item_nr_offset(slot), 4605 (nritems - slot) * sizeof(struct btrfs_item)); 4606 4607 /* shift the data */ 4608 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4609 data_end - total_data, btrfs_leaf_data(leaf) + 4610 data_end, old_data - data_end); 4611 data_end = old_data; 4612 } 4613 4614 /* setup the item for the new data */ 4615 for (i = 0; i < nr; i++) { 4616 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4617 btrfs_set_item_key(leaf, &disk_key, slot + i); 4618 item = btrfs_item_nr(leaf, slot + i); 4619 btrfs_set_token_item_offset(leaf, item, 4620 data_end - data_size[i], &token); 4621 data_end -= data_size[i]; 4622 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4623 } 4624 4625 btrfs_set_header_nritems(leaf, nritems + nr); 4626 4627 if (slot == 0) { 4628 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4629 fixup_low_keys(trans, root, path, &disk_key, 1); 4630 } 4631 btrfs_unlock_up_safe(path, 1); 4632 btrfs_mark_buffer_dirty(leaf); 4633 4634 if (btrfs_leaf_free_space(root, leaf) < 0) { 4635 btrfs_print_leaf(root, leaf); 4636 BUG(); 4637 } 4638 } 4639 4640 /* 4641 * Given a key and some data, insert items into the tree. 4642 * This does all the path init required, making room in the tree if needed. 4643 */ 4644 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4645 struct btrfs_root *root, 4646 struct btrfs_path *path, 4647 struct btrfs_key *cpu_key, u32 *data_size, 4648 int nr) 4649 { 4650 int ret = 0; 4651 int slot; 4652 int i; 4653 u32 total_size = 0; 4654 u32 total_data = 0; 4655 4656 for (i = 0; i < nr; i++) 4657 total_data += data_size[i]; 4658 4659 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4660 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4661 if (ret == 0) 4662 return -EEXIST; 4663 if (ret < 0) 4664 return ret; 4665 4666 slot = path->slots[0]; 4667 BUG_ON(slot < 0); 4668 4669 setup_items_for_insert(trans, root, path, cpu_key, data_size, 4670 total_data, total_size, nr); 4671 return 0; 4672 } 4673 4674 /* 4675 * Given a key and some data, insert an item into the tree. 4676 * This does all the path init required, making room in the tree if needed. 4677 */ 4678 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4679 *root, struct btrfs_key *cpu_key, void *data, u32 4680 data_size) 4681 { 4682 int ret = 0; 4683 struct btrfs_path *path; 4684 struct extent_buffer *leaf; 4685 unsigned long ptr; 4686 4687 path = btrfs_alloc_path(); 4688 if (!path) 4689 return -ENOMEM; 4690 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4691 if (!ret) { 4692 leaf = path->nodes[0]; 4693 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4694 write_extent_buffer(leaf, data, ptr, data_size); 4695 btrfs_mark_buffer_dirty(leaf); 4696 } 4697 btrfs_free_path(path); 4698 return ret; 4699 } 4700 4701 /* 4702 * delete the pointer from a given node. 4703 * 4704 * the tree should have been previously balanced so the deletion does not 4705 * empty a node. 4706 */ 4707 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4708 struct btrfs_path *path, int level, int slot, 4709 int tree_mod_log) 4710 { 4711 struct extent_buffer *parent = path->nodes[level]; 4712 u32 nritems; 4713 int ret; 4714 4715 nritems = btrfs_header_nritems(parent); 4716 if (slot != nritems - 1) { 4717 if (tree_mod_log && level) 4718 tree_mod_log_eb_move(root->fs_info, parent, slot, 4719 slot + 1, nritems - slot - 1); 4720 memmove_extent_buffer(parent, 4721 btrfs_node_key_ptr_offset(slot), 4722 btrfs_node_key_ptr_offset(slot + 1), 4723 sizeof(struct btrfs_key_ptr) * 4724 (nritems - slot - 1)); 4725 } else if (tree_mod_log && level) { 4726 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4727 MOD_LOG_KEY_REMOVE); 4728 BUG_ON(ret < 0); 4729 } 4730 4731 nritems--; 4732 btrfs_set_header_nritems(parent, nritems); 4733 if (nritems == 0 && parent == root->node) { 4734 BUG_ON(btrfs_header_level(root->node) != 1); 4735 /* just turn the root into a leaf and break */ 4736 btrfs_set_header_level(root->node, 0); 4737 } else if (slot == 0) { 4738 struct btrfs_disk_key disk_key; 4739 4740 btrfs_node_key(parent, &disk_key, 0); 4741 fixup_low_keys(trans, root, path, &disk_key, level + 1); 4742 } 4743 btrfs_mark_buffer_dirty(parent); 4744 } 4745 4746 /* 4747 * a helper function to delete the leaf pointed to by path->slots[1] and 4748 * path->nodes[1]. 4749 * 4750 * This deletes the pointer in path->nodes[1] and frees the leaf 4751 * block extent. zero is returned if it all worked out, < 0 otherwise. 4752 * 4753 * The path must have already been setup for deleting the leaf, including 4754 * all the proper balancing. path->nodes[1] must be locked. 4755 */ 4756 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4757 struct btrfs_root *root, 4758 struct btrfs_path *path, 4759 struct extent_buffer *leaf) 4760 { 4761 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4762 del_ptr(trans, root, path, 1, path->slots[1], 1); 4763 4764 /* 4765 * btrfs_free_extent is expensive, we want to make sure we 4766 * aren't holding any locks when we call it 4767 */ 4768 btrfs_unlock_up_safe(path, 0); 4769 4770 root_sub_used(root, leaf->len); 4771 4772 extent_buffer_get(leaf); 4773 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4774 free_extent_buffer_stale(leaf); 4775 } 4776 /* 4777 * delete the item at the leaf level in path. If that empties 4778 * the leaf, remove it from the tree 4779 */ 4780 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4781 struct btrfs_path *path, int slot, int nr) 4782 { 4783 struct extent_buffer *leaf; 4784 struct btrfs_item *item; 4785 int last_off; 4786 int dsize = 0; 4787 int ret = 0; 4788 int wret; 4789 int i; 4790 u32 nritems; 4791 struct btrfs_map_token token; 4792 4793 btrfs_init_map_token(&token); 4794 4795 leaf = path->nodes[0]; 4796 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4797 4798 for (i = 0; i < nr; i++) 4799 dsize += btrfs_item_size_nr(leaf, slot + i); 4800 4801 nritems = btrfs_header_nritems(leaf); 4802 4803 if (slot + nr != nritems) { 4804 int data_end = leaf_data_end(root, leaf); 4805 4806 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4807 data_end + dsize, 4808 btrfs_leaf_data(leaf) + data_end, 4809 last_off - data_end); 4810 4811 for (i = slot + nr; i < nritems; i++) { 4812 u32 ioff; 4813 4814 item = btrfs_item_nr(leaf, i); 4815 ioff = btrfs_token_item_offset(leaf, item, &token); 4816 btrfs_set_token_item_offset(leaf, item, 4817 ioff + dsize, &token); 4818 } 4819 4820 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4821 btrfs_item_nr_offset(slot + nr), 4822 sizeof(struct btrfs_item) * 4823 (nritems - slot - nr)); 4824 } 4825 btrfs_set_header_nritems(leaf, nritems - nr); 4826 nritems -= nr; 4827 4828 /* delete the leaf if we've emptied it */ 4829 if (nritems == 0) { 4830 if (leaf == root->node) { 4831 btrfs_set_header_level(leaf, 0); 4832 } else { 4833 btrfs_set_path_blocking(path); 4834 clean_tree_block(trans, root, leaf); 4835 btrfs_del_leaf(trans, root, path, leaf); 4836 } 4837 } else { 4838 int used = leaf_space_used(leaf, 0, nritems); 4839 if (slot == 0) { 4840 struct btrfs_disk_key disk_key; 4841 4842 btrfs_item_key(leaf, &disk_key, 0); 4843 fixup_low_keys(trans, root, path, &disk_key, 1); 4844 } 4845 4846 /* delete the leaf if it is mostly empty */ 4847 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 4848 /* push_leaf_left fixes the path. 4849 * make sure the path still points to our leaf 4850 * for possible call to del_ptr below 4851 */ 4852 slot = path->slots[1]; 4853 extent_buffer_get(leaf); 4854 4855 btrfs_set_path_blocking(path); 4856 wret = push_leaf_left(trans, root, path, 1, 1, 4857 1, (u32)-1); 4858 if (wret < 0 && wret != -ENOSPC) 4859 ret = wret; 4860 4861 if (path->nodes[0] == leaf && 4862 btrfs_header_nritems(leaf)) { 4863 wret = push_leaf_right(trans, root, path, 1, 4864 1, 1, 0); 4865 if (wret < 0 && wret != -ENOSPC) 4866 ret = wret; 4867 } 4868 4869 if (btrfs_header_nritems(leaf) == 0) { 4870 path->slots[1] = slot; 4871 btrfs_del_leaf(trans, root, path, leaf); 4872 free_extent_buffer(leaf); 4873 ret = 0; 4874 } else { 4875 /* if we're still in the path, make sure 4876 * we're dirty. Otherwise, one of the 4877 * push_leaf functions must have already 4878 * dirtied this buffer 4879 */ 4880 if (path->nodes[0] == leaf) 4881 btrfs_mark_buffer_dirty(leaf); 4882 free_extent_buffer(leaf); 4883 } 4884 } else { 4885 btrfs_mark_buffer_dirty(leaf); 4886 } 4887 } 4888 return ret; 4889 } 4890 4891 /* 4892 * search the tree again to find a leaf with lesser keys 4893 * returns 0 if it found something or 1 if there are no lesser leaves. 4894 * returns < 0 on io errors. 4895 * 4896 * This may release the path, and so you may lose any locks held at the 4897 * time you call it. 4898 */ 4899 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4900 { 4901 struct btrfs_key key; 4902 struct btrfs_disk_key found_key; 4903 int ret; 4904 4905 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4906 4907 if (key.offset > 0) 4908 key.offset--; 4909 else if (key.type > 0) 4910 key.type--; 4911 else if (key.objectid > 0) 4912 key.objectid--; 4913 else 4914 return 1; 4915 4916 btrfs_release_path(path); 4917 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4918 if (ret < 0) 4919 return ret; 4920 btrfs_item_key(path->nodes[0], &found_key, 0); 4921 ret = comp_keys(&found_key, &key); 4922 if (ret < 0) 4923 return 0; 4924 return 1; 4925 } 4926 4927 /* 4928 * A helper function to walk down the tree starting at min_key, and looking 4929 * for nodes or leaves that are either in cache or have a minimum 4930 * transaction id. This is used by the btree defrag code, and tree logging 4931 * 4932 * This does not cow, but it does stuff the starting key it finds back 4933 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4934 * key and get a writable path. 4935 * 4936 * This does lock as it descends, and path->keep_locks should be set 4937 * to 1 by the caller. 4938 * 4939 * This honors path->lowest_level to prevent descent past a given level 4940 * of the tree. 4941 * 4942 * min_trans indicates the oldest transaction that you are interested 4943 * in walking through. Any nodes or leaves older than min_trans are 4944 * skipped over (without reading them). 4945 * 4946 * returns zero if something useful was found, < 0 on error and 1 if there 4947 * was nothing in the tree that matched the search criteria. 4948 */ 4949 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4950 struct btrfs_key *max_key, 4951 struct btrfs_path *path, int cache_only, 4952 u64 min_trans) 4953 { 4954 struct extent_buffer *cur; 4955 struct btrfs_key found_key; 4956 int slot; 4957 int sret; 4958 u32 nritems; 4959 int level; 4960 int ret = 1; 4961 4962 WARN_ON(!path->keep_locks); 4963 again: 4964 cur = btrfs_read_lock_root_node(root); 4965 level = btrfs_header_level(cur); 4966 WARN_ON(path->nodes[level]); 4967 path->nodes[level] = cur; 4968 path->locks[level] = BTRFS_READ_LOCK; 4969 4970 if (btrfs_header_generation(cur) < min_trans) { 4971 ret = 1; 4972 goto out; 4973 } 4974 while (1) { 4975 nritems = btrfs_header_nritems(cur); 4976 level = btrfs_header_level(cur); 4977 sret = bin_search(cur, min_key, level, &slot); 4978 4979 /* at the lowest level, we're done, setup the path and exit */ 4980 if (level == path->lowest_level) { 4981 if (slot >= nritems) 4982 goto find_next_key; 4983 ret = 0; 4984 path->slots[level] = slot; 4985 btrfs_item_key_to_cpu(cur, &found_key, slot); 4986 goto out; 4987 } 4988 if (sret && slot > 0) 4989 slot--; 4990 /* 4991 * check this node pointer against the cache_only and 4992 * min_trans parameters. If it isn't in cache or is too 4993 * old, skip to the next one. 4994 */ 4995 while (slot < nritems) { 4996 u64 blockptr; 4997 u64 gen; 4998 struct extent_buffer *tmp; 4999 struct btrfs_disk_key disk_key; 5000 5001 blockptr = btrfs_node_blockptr(cur, slot); 5002 gen = btrfs_node_ptr_generation(cur, slot); 5003 if (gen < min_trans) { 5004 slot++; 5005 continue; 5006 } 5007 if (!cache_only) 5008 break; 5009 5010 if (max_key) { 5011 btrfs_node_key(cur, &disk_key, slot); 5012 if (comp_keys(&disk_key, max_key) >= 0) { 5013 ret = 1; 5014 goto out; 5015 } 5016 } 5017 5018 tmp = btrfs_find_tree_block(root, blockptr, 5019 btrfs_level_size(root, level - 1)); 5020 5021 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 5022 free_extent_buffer(tmp); 5023 break; 5024 } 5025 if (tmp) 5026 free_extent_buffer(tmp); 5027 slot++; 5028 } 5029 find_next_key: 5030 /* 5031 * we didn't find a candidate key in this node, walk forward 5032 * and find another one 5033 */ 5034 if (slot >= nritems) { 5035 path->slots[level] = slot; 5036 btrfs_set_path_blocking(path); 5037 sret = btrfs_find_next_key(root, path, min_key, level, 5038 cache_only, min_trans); 5039 if (sret == 0) { 5040 btrfs_release_path(path); 5041 goto again; 5042 } else { 5043 goto out; 5044 } 5045 } 5046 /* save our key for returning back */ 5047 btrfs_node_key_to_cpu(cur, &found_key, slot); 5048 path->slots[level] = slot; 5049 if (level == path->lowest_level) { 5050 ret = 0; 5051 unlock_up(path, level, 1, 0, NULL); 5052 goto out; 5053 } 5054 btrfs_set_path_blocking(path); 5055 cur = read_node_slot(root, cur, slot); 5056 BUG_ON(!cur); /* -ENOMEM */ 5057 5058 btrfs_tree_read_lock(cur); 5059 5060 path->locks[level - 1] = BTRFS_READ_LOCK; 5061 path->nodes[level - 1] = cur; 5062 unlock_up(path, level, 1, 0, NULL); 5063 btrfs_clear_path_blocking(path, NULL, 0); 5064 } 5065 out: 5066 if (ret == 0) 5067 memcpy(min_key, &found_key, sizeof(found_key)); 5068 btrfs_set_path_blocking(path); 5069 return ret; 5070 } 5071 5072 static void tree_move_down(struct btrfs_root *root, 5073 struct btrfs_path *path, 5074 int *level, int root_level) 5075 { 5076 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 5077 path->slots[*level]); 5078 path->slots[*level - 1] = 0; 5079 (*level)--; 5080 } 5081 5082 static int tree_move_next_or_upnext(struct btrfs_root *root, 5083 struct btrfs_path *path, 5084 int *level, int root_level) 5085 { 5086 int ret = 0; 5087 int nritems; 5088 nritems = btrfs_header_nritems(path->nodes[*level]); 5089 5090 path->slots[*level]++; 5091 5092 while (path->slots[*level] == nritems) { 5093 if (*level == root_level) 5094 return -1; 5095 5096 /* move upnext */ 5097 path->slots[*level] = 0; 5098 free_extent_buffer(path->nodes[*level]); 5099 path->nodes[*level] = NULL; 5100 (*level)++; 5101 path->slots[*level]++; 5102 5103 nritems = btrfs_header_nritems(path->nodes[*level]); 5104 ret = 1; 5105 } 5106 return ret; 5107 } 5108 5109 /* 5110 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5111 * or down. 5112 */ 5113 static int tree_advance(struct btrfs_root *root, 5114 struct btrfs_path *path, 5115 int *level, int root_level, 5116 int allow_down, 5117 struct btrfs_key *key) 5118 { 5119 int ret; 5120 5121 if (*level == 0 || !allow_down) { 5122 ret = tree_move_next_or_upnext(root, path, level, root_level); 5123 } else { 5124 tree_move_down(root, path, level, root_level); 5125 ret = 0; 5126 } 5127 if (ret >= 0) { 5128 if (*level == 0) 5129 btrfs_item_key_to_cpu(path->nodes[*level], key, 5130 path->slots[*level]); 5131 else 5132 btrfs_node_key_to_cpu(path->nodes[*level], key, 5133 path->slots[*level]); 5134 } 5135 return ret; 5136 } 5137 5138 static int tree_compare_item(struct btrfs_root *left_root, 5139 struct btrfs_path *left_path, 5140 struct btrfs_path *right_path, 5141 char *tmp_buf) 5142 { 5143 int cmp; 5144 int len1, len2; 5145 unsigned long off1, off2; 5146 5147 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5148 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5149 if (len1 != len2) 5150 return 1; 5151 5152 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5153 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5154 right_path->slots[0]); 5155 5156 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5157 5158 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5159 if (cmp) 5160 return 1; 5161 return 0; 5162 } 5163 5164 #define ADVANCE 1 5165 #define ADVANCE_ONLY_NEXT -1 5166 5167 /* 5168 * This function compares two trees and calls the provided callback for 5169 * every changed/new/deleted item it finds. 5170 * If shared tree blocks are encountered, whole subtrees are skipped, making 5171 * the compare pretty fast on snapshotted subvolumes. 5172 * 5173 * This currently works on commit roots only. As commit roots are read only, 5174 * we don't do any locking. The commit roots are protected with transactions. 5175 * Transactions are ended and rejoined when a commit is tried in between. 5176 * 5177 * This function checks for modifications done to the trees while comparing. 5178 * If it detects a change, it aborts immediately. 5179 */ 5180 int btrfs_compare_trees(struct btrfs_root *left_root, 5181 struct btrfs_root *right_root, 5182 btrfs_changed_cb_t changed_cb, void *ctx) 5183 { 5184 int ret; 5185 int cmp; 5186 struct btrfs_trans_handle *trans = NULL; 5187 struct btrfs_path *left_path = NULL; 5188 struct btrfs_path *right_path = NULL; 5189 struct btrfs_key left_key; 5190 struct btrfs_key right_key; 5191 char *tmp_buf = NULL; 5192 int left_root_level; 5193 int right_root_level; 5194 int left_level; 5195 int right_level; 5196 int left_end_reached; 5197 int right_end_reached; 5198 int advance_left; 5199 int advance_right; 5200 u64 left_blockptr; 5201 u64 right_blockptr; 5202 u64 left_start_ctransid; 5203 u64 right_start_ctransid; 5204 u64 ctransid; 5205 5206 left_path = btrfs_alloc_path(); 5207 if (!left_path) { 5208 ret = -ENOMEM; 5209 goto out; 5210 } 5211 right_path = btrfs_alloc_path(); 5212 if (!right_path) { 5213 ret = -ENOMEM; 5214 goto out; 5215 } 5216 5217 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS); 5218 if (!tmp_buf) { 5219 ret = -ENOMEM; 5220 goto out; 5221 } 5222 5223 left_path->search_commit_root = 1; 5224 left_path->skip_locking = 1; 5225 right_path->search_commit_root = 1; 5226 right_path->skip_locking = 1; 5227 5228 spin_lock(&left_root->root_times_lock); 5229 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item); 5230 spin_unlock(&left_root->root_times_lock); 5231 5232 spin_lock(&right_root->root_times_lock); 5233 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item); 5234 spin_unlock(&right_root->root_times_lock); 5235 5236 trans = btrfs_join_transaction(left_root); 5237 if (IS_ERR(trans)) { 5238 ret = PTR_ERR(trans); 5239 trans = NULL; 5240 goto out; 5241 } 5242 5243 /* 5244 * Strategy: Go to the first items of both trees. Then do 5245 * 5246 * If both trees are at level 0 5247 * Compare keys of current items 5248 * If left < right treat left item as new, advance left tree 5249 * and repeat 5250 * If left > right treat right item as deleted, advance right tree 5251 * and repeat 5252 * If left == right do deep compare of items, treat as changed if 5253 * needed, advance both trees and repeat 5254 * If both trees are at the same level but not at level 0 5255 * Compare keys of current nodes/leafs 5256 * If left < right advance left tree and repeat 5257 * If left > right advance right tree and repeat 5258 * If left == right compare blockptrs of the next nodes/leafs 5259 * If they match advance both trees but stay at the same level 5260 * and repeat 5261 * If they don't match advance both trees while allowing to go 5262 * deeper and repeat 5263 * If tree levels are different 5264 * Advance the tree that needs it and repeat 5265 * 5266 * Advancing a tree means: 5267 * If we are at level 0, try to go to the next slot. If that's not 5268 * possible, go one level up and repeat. Stop when we found a level 5269 * where we could go to the next slot. We may at this point be on a 5270 * node or a leaf. 5271 * 5272 * If we are not at level 0 and not on shared tree blocks, go one 5273 * level deeper. 5274 * 5275 * If we are not at level 0 and on shared tree blocks, go one slot to 5276 * the right if possible or go up and right. 5277 */ 5278 5279 left_level = btrfs_header_level(left_root->commit_root); 5280 left_root_level = left_level; 5281 left_path->nodes[left_level] = left_root->commit_root; 5282 extent_buffer_get(left_path->nodes[left_level]); 5283 5284 right_level = btrfs_header_level(right_root->commit_root); 5285 right_root_level = right_level; 5286 right_path->nodes[right_level] = right_root->commit_root; 5287 extent_buffer_get(right_path->nodes[right_level]); 5288 5289 if (left_level == 0) 5290 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5291 &left_key, left_path->slots[left_level]); 5292 else 5293 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5294 &left_key, left_path->slots[left_level]); 5295 if (right_level == 0) 5296 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5297 &right_key, right_path->slots[right_level]); 5298 else 5299 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5300 &right_key, right_path->slots[right_level]); 5301 5302 left_end_reached = right_end_reached = 0; 5303 advance_left = advance_right = 0; 5304 5305 while (1) { 5306 /* 5307 * We need to make sure the transaction does not get committed 5308 * while we do anything on commit roots. This means, we need to 5309 * join and leave transactions for every item that we process. 5310 */ 5311 if (trans && btrfs_should_end_transaction(trans, left_root)) { 5312 btrfs_release_path(left_path); 5313 btrfs_release_path(right_path); 5314 5315 ret = btrfs_end_transaction(trans, left_root); 5316 trans = NULL; 5317 if (ret < 0) 5318 goto out; 5319 } 5320 /* now rejoin the transaction */ 5321 if (!trans) { 5322 trans = btrfs_join_transaction(left_root); 5323 if (IS_ERR(trans)) { 5324 ret = PTR_ERR(trans); 5325 trans = NULL; 5326 goto out; 5327 } 5328 5329 spin_lock(&left_root->root_times_lock); 5330 ctransid = btrfs_root_ctransid(&left_root->root_item); 5331 spin_unlock(&left_root->root_times_lock); 5332 if (ctransid != left_start_ctransid) 5333 left_start_ctransid = 0; 5334 5335 spin_lock(&right_root->root_times_lock); 5336 ctransid = btrfs_root_ctransid(&right_root->root_item); 5337 spin_unlock(&right_root->root_times_lock); 5338 if (ctransid != right_start_ctransid) 5339 right_start_ctransid = 0; 5340 5341 if (!left_start_ctransid || !right_start_ctransid) { 5342 WARN(1, KERN_WARNING 5343 "btrfs: btrfs_compare_tree detected " 5344 "a change in one of the trees while " 5345 "iterating. This is probably a " 5346 "bug.\n"); 5347 ret = -EIO; 5348 goto out; 5349 } 5350 5351 /* 5352 * the commit root may have changed, so start again 5353 * where we stopped 5354 */ 5355 left_path->lowest_level = left_level; 5356 right_path->lowest_level = right_level; 5357 ret = btrfs_search_slot(NULL, left_root, 5358 &left_key, left_path, 0, 0); 5359 if (ret < 0) 5360 goto out; 5361 ret = btrfs_search_slot(NULL, right_root, 5362 &right_key, right_path, 0, 0); 5363 if (ret < 0) 5364 goto out; 5365 } 5366 5367 if (advance_left && !left_end_reached) { 5368 ret = tree_advance(left_root, left_path, &left_level, 5369 left_root_level, 5370 advance_left != ADVANCE_ONLY_NEXT, 5371 &left_key); 5372 if (ret < 0) 5373 left_end_reached = ADVANCE; 5374 advance_left = 0; 5375 } 5376 if (advance_right && !right_end_reached) { 5377 ret = tree_advance(right_root, right_path, &right_level, 5378 right_root_level, 5379 advance_right != ADVANCE_ONLY_NEXT, 5380 &right_key); 5381 if (ret < 0) 5382 right_end_reached = ADVANCE; 5383 advance_right = 0; 5384 } 5385 5386 if (left_end_reached && right_end_reached) { 5387 ret = 0; 5388 goto out; 5389 } else if (left_end_reached) { 5390 if (right_level == 0) { 5391 ret = changed_cb(left_root, right_root, 5392 left_path, right_path, 5393 &right_key, 5394 BTRFS_COMPARE_TREE_DELETED, 5395 ctx); 5396 if (ret < 0) 5397 goto out; 5398 } 5399 advance_right = ADVANCE; 5400 continue; 5401 } else if (right_end_reached) { 5402 if (left_level == 0) { 5403 ret = changed_cb(left_root, right_root, 5404 left_path, right_path, 5405 &left_key, 5406 BTRFS_COMPARE_TREE_NEW, 5407 ctx); 5408 if (ret < 0) 5409 goto out; 5410 } 5411 advance_left = ADVANCE; 5412 continue; 5413 } 5414 5415 if (left_level == 0 && right_level == 0) { 5416 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5417 if (cmp < 0) { 5418 ret = changed_cb(left_root, right_root, 5419 left_path, right_path, 5420 &left_key, 5421 BTRFS_COMPARE_TREE_NEW, 5422 ctx); 5423 if (ret < 0) 5424 goto out; 5425 advance_left = ADVANCE; 5426 } else if (cmp > 0) { 5427 ret = changed_cb(left_root, right_root, 5428 left_path, right_path, 5429 &right_key, 5430 BTRFS_COMPARE_TREE_DELETED, 5431 ctx); 5432 if (ret < 0) 5433 goto out; 5434 advance_right = ADVANCE; 5435 } else { 5436 ret = tree_compare_item(left_root, left_path, 5437 right_path, tmp_buf); 5438 if (ret) { 5439 ret = changed_cb(left_root, right_root, 5440 left_path, right_path, 5441 &left_key, 5442 BTRFS_COMPARE_TREE_CHANGED, 5443 ctx); 5444 if (ret < 0) 5445 goto out; 5446 } 5447 advance_left = ADVANCE; 5448 advance_right = ADVANCE; 5449 } 5450 } else if (left_level == right_level) { 5451 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5452 if (cmp < 0) { 5453 advance_left = ADVANCE; 5454 } else if (cmp > 0) { 5455 advance_right = ADVANCE; 5456 } else { 5457 left_blockptr = btrfs_node_blockptr( 5458 left_path->nodes[left_level], 5459 left_path->slots[left_level]); 5460 right_blockptr = btrfs_node_blockptr( 5461 right_path->nodes[right_level], 5462 right_path->slots[right_level]); 5463 if (left_blockptr == right_blockptr) { 5464 /* 5465 * As we're on a shared block, don't 5466 * allow to go deeper. 5467 */ 5468 advance_left = ADVANCE_ONLY_NEXT; 5469 advance_right = ADVANCE_ONLY_NEXT; 5470 } else { 5471 advance_left = ADVANCE; 5472 advance_right = ADVANCE; 5473 } 5474 } 5475 } else if (left_level < right_level) { 5476 advance_right = ADVANCE; 5477 } else { 5478 advance_left = ADVANCE; 5479 } 5480 } 5481 5482 out: 5483 btrfs_free_path(left_path); 5484 btrfs_free_path(right_path); 5485 kfree(tmp_buf); 5486 5487 if (trans) { 5488 if (!ret) 5489 ret = btrfs_end_transaction(trans, left_root); 5490 else 5491 btrfs_end_transaction(trans, left_root); 5492 } 5493 5494 return ret; 5495 } 5496 5497 /* 5498 * this is similar to btrfs_next_leaf, but does not try to preserve 5499 * and fixup the path. It looks for and returns the next key in the 5500 * tree based on the current path and the cache_only and min_trans 5501 * parameters. 5502 * 5503 * 0 is returned if another key is found, < 0 if there are any errors 5504 * and 1 is returned if there are no higher keys in the tree 5505 * 5506 * path->keep_locks should be set to 1 on the search made before 5507 * calling this function. 5508 */ 5509 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5510 struct btrfs_key *key, int level, 5511 int cache_only, u64 min_trans) 5512 { 5513 int slot; 5514 struct extent_buffer *c; 5515 5516 WARN_ON(!path->keep_locks); 5517 while (level < BTRFS_MAX_LEVEL) { 5518 if (!path->nodes[level]) 5519 return 1; 5520 5521 slot = path->slots[level] + 1; 5522 c = path->nodes[level]; 5523 next: 5524 if (slot >= btrfs_header_nritems(c)) { 5525 int ret; 5526 int orig_lowest; 5527 struct btrfs_key cur_key; 5528 if (level + 1 >= BTRFS_MAX_LEVEL || 5529 !path->nodes[level + 1]) 5530 return 1; 5531 5532 if (path->locks[level + 1]) { 5533 level++; 5534 continue; 5535 } 5536 5537 slot = btrfs_header_nritems(c) - 1; 5538 if (level == 0) 5539 btrfs_item_key_to_cpu(c, &cur_key, slot); 5540 else 5541 btrfs_node_key_to_cpu(c, &cur_key, slot); 5542 5543 orig_lowest = path->lowest_level; 5544 btrfs_release_path(path); 5545 path->lowest_level = level; 5546 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5547 0, 0); 5548 path->lowest_level = orig_lowest; 5549 if (ret < 0) 5550 return ret; 5551 5552 c = path->nodes[level]; 5553 slot = path->slots[level]; 5554 if (ret == 0) 5555 slot++; 5556 goto next; 5557 } 5558 5559 if (level == 0) 5560 btrfs_item_key_to_cpu(c, key, slot); 5561 else { 5562 u64 blockptr = btrfs_node_blockptr(c, slot); 5563 u64 gen = btrfs_node_ptr_generation(c, slot); 5564 5565 if (cache_only) { 5566 struct extent_buffer *cur; 5567 cur = btrfs_find_tree_block(root, blockptr, 5568 btrfs_level_size(root, level - 1)); 5569 if (!cur || 5570 btrfs_buffer_uptodate(cur, gen, 1) <= 0) { 5571 slot++; 5572 if (cur) 5573 free_extent_buffer(cur); 5574 goto next; 5575 } 5576 free_extent_buffer(cur); 5577 } 5578 if (gen < min_trans) { 5579 slot++; 5580 goto next; 5581 } 5582 btrfs_node_key_to_cpu(c, key, slot); 5583 } 5584 return 0; 5585 } 5586 return 1; 5587 } 5588 5589 /* 5590 * search the tree again to find a leaf with greater keys 5591 * returns 0 if it found something or 1 if there are no greater leaves. 5592 * returns < 0 on io errors. 5593 */ 5594 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5595 { 5596 return btrfs_next_old_leaf(root, path, 0); 5597 } 5598 5599 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5600 u64 time_seq) 5601 { 5602 int slot; 5603 int level; 5604 struct extent_buffer *c; 5605 struct extent_buffer *next; 5606 struct btrfs_key key; 5607 u32 nritems; 5608 int ret; 5609 int old_spinning = path->leave_spinning; 5610 int next_rw_lock = 0; 5611 5612 nritems = btrfs_header_nritems(path->nodes[0]); 5613 if (nritems == 0) 5614 return 1; 5615 5616 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5617 again: 5618 level = 1; 5619 next = NULL; 5620 next_rw_lock = 0; 5621 btrfs_release_path(path); 5622 5623 path->keep_locks = 1; 5624 path->leave_spinning = 1; 5625 5626 if (time_seq) 5627 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5628 else 5629 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5630 path->keep_locks = 0; 5631 5632 if (ret < 0) 5633 return ret; 5634 5635 nritems = btrfs_header_nritems(path->nodes[0]); 5636 /* 5637 * by releasing the path above we dropped all our locks. A balance 5638 * could have added more items next to the key that used to be 5639 * at the very end of the block. So, check again here and 5640 * advance the path if there are now more items available. 5641 */ 5642 if (nritems > 0 && path->slots[0] < nritems - 1) { 5643 if (ret == 0) 5644 path->slots[0]++; 5645 ret = 0; 5646 goto done; 5647 } 5648 5649 while (level < BTRFS_MAX_LEVEL) { 5650 if (!path->nodes[level]) { 5651 ret = 1; 5652 goto done; 5653 } 5654 5655 slot = path->slots[level] + 1; 5656 c = path->nodes[level]; 5657 if (slot >= btrfs_header_nritems(c)) { 5658 level++; 5659 if (level == BTRFS_MAX_LEVEL) { 5660 ret = 1; 5661 goto done; 5662 } 5663 continue; 5664 } 5665 5666 if (next) { 5667 btrfs_tree_unlock_rw(next, next_rw_lock); 5668 free_extent_buffer(next); 5669 } 5670 5671 next = c; 5672 next_rw_lock = path->locks[level]; 5673 ret = read_block_for_search(NULL, root, path, &next, level, 5674 slot, &key, 0); 5675 if (ret == -EAGAIN) 5676 goto again; 5677 5678 if (ret < 0) { 5679 btrfs_release_path(path); 5680 goto done; 5681 } 5682 5683 if (!path->skip_locking) { 5684 ret = btrfs_try_tree_read_lock(next); 5685 if (!ret && time_seq) { 5686 /* 5687 * If we don't get the lock, we may be racing 5688 * with push_leaf_left, holding that lock while 5689 * itself waiting for the leaf we've currently 5690 * locked. To solve this situation, we give up 5691 * on our lock and cycle. 5692 */ 5693 free_extent_buffer(next); 5694 btrfs_release_path(path); 5695 cond_resched(); 5696 goto again; 5697 } 5698 if (!ret) { 5699 btrfs_set_path_blocking(path); 5700 btrfs_tree_read_lock(next); 5701 btrfs_clear_path_blocking(path, next, 5702 BTRFS_READ_LOCK); 5703 } 5704 next_rw_lock = BTRFS_READ_LOCK; 5705 } 5706 break; 5707 } 5708 path->slots[level] = slot; 5709 while (1) { 5710 level--; 5711 c = path->nodes[level]; 5712 if (path->locks[level]) 5713 btrfs_tree_unlock_rw(c, path->locks[level]); 5714 5715 free_extent_buffer(c); 5716 path->nodes[level] = next; 5717 path->slots[level] = 0; 5718 if (!path->skip_locking) 5719 path->locks[level] = next_rw_lock; 5720 if (!level) 5721 break; 5722 5723 ret = read_block_for_search(NULL, root, path, &next, level, 5724 0, &key, 0); 5725 if (ret == -EAGAIN) 5726 goto again; 5727 5728 if (ret < 0) { 5729 btrfs_release_path(path); 5730 goto done; 5731 } 5732 5733 if (!path->skip_locking) { 5734 ret = btrfs_try_tree_read_lock(next); 5735 if (!ret) { 5736 btrfs_set_path_blocking(path); 5737 btrfs_tree_read_lock(next); 5738 btrfs_clear_path_blocking(path, next, 5739 BTRFS_READ_LOCK); 5740 } 5741 next_rw_lock = BTRFS_READ_LOCK; 5742 } 5743 } 5744 ret = 0; 5745 done: 5746 unlock_up(path, 0, 1, 0, NULL); 5747 path->leave_spinning = old_spinning; 5748 if (!old_spinning) 5749 btrfs_set_path_blocking(path); 5750 5751 return ret; 5752 } 5753 5754 /* 5755 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5756 * searching until it gets past min_objectid or finds an item of 'type' 5757 * 5758 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5759 */ 5760 int btrfs_previous_item(struct btrfs_root *root, 5761 struct btrfs_path *path, u64 min_objectid, 5762 int type) 5763 { 5764 struct btrfs_key found_key; 5765 struct extent_buffer *leaf; 5766 u32 nritems; 5767 int ret; 5768 5769 while (1) { 5770 if (path->slots[0] == 0) { 5771 btrfs_set_path_blocking(path); 5772 ret = btrfs_prev_leaf(root, path); 5773 if (ret != 0) 5774 return ret; 5775 } else { 5776 path->slots[0]--; 5777 } 5778 leaf = path->nodes[0]; 5779 nritems = btrfs_header_nritems(leaf); 5780 if (nritems == 0) 5781 return 1; 5782 if (path->slots[0] == nritems) 5783 path->slots[0]--; 5784 5785 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5786 if (found_key.objectid < min_objectid) 5787 break; 5788 if (found_key.type == type) 5789 return 0; 5790 if (found_key.objectid == min_objectid && 5791 found_key.type < type) 5792 break; 5793 } 5794 return 1; 5795 } 5796