1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include <linux/error-injection.h> 11 #include "ctree.h" 12 #include "disk-io.h" 13 #include "transaction.h" 14 #include "print-tree.h" 15 #include "locking.h" 16 #include "volumes.h" 17 #include "qgroup.h" 18 #include "tree-mod-log.h" 19 20 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 21 *root, struct btrfs_path *path, int level); 22 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 23 const struct btrfs_key *ins_key, struct btrfs_path *path, 24 int data_size, int extend); 25 static int push_node_left(struct btrfs_trans_handle *trans, 26 struct extent_buffer *dst, 27 struct extent_buffer *src, int empty); 28 static int balance_node_right(struct btrfs_trans_handle *trans, 29 struct extent_buffer *dst_buf, 30 struct extent_buffer *src_buf); 31 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 32 int level, int slot); 33 34 static const struct btrfs_csums { 35 u16 size; 36 const char name[10]; 37 const char driver[12]; 38 } btrfs_csums[] = { 39 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 40 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 41 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 42 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 43 .driver = "blake2b-256" }, 44 }; 45 46 int btrfs_super_csum_size(const struct btrfs_super_block *s) 47 { 48 u16 t = btrfs_super_csum_type(s); 49 /* 50 * csum type is validated at mount time 51 */ 52 return btrfs_csums[t].size; 53 } 54 55 const char *btrfs_super_csum_name(u16 csum_type) 56 { 57 /* csum type is validated at mount time */ 58 return btrfs_csums[csum_type].name; 59 } 60 61 /* 62 * Return driver name if defined, otherwise the name that's also a valid driver 63 * name 64 */ 65 const char *btrfs_super_csum_driver(u16 csum_type) 66 { 67 /* csum type is validated at mount time */ 68 return btrfs_csums[csum_type].driver[0] ? 69 btrfs_csums[csum_type].driver : 70 btrfs_csums[csum_type].name; 71 } 72 73 size_t __attribute_const__ btrfs_get_num_csums(void) 74 { 75 return ARRAY_SIZE(btrfs_csums); 76 } 77 78 struct btrfs_path *btrfs_alloc_path(void) 79 { 80 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 81 } 82 83 /* this also releases the path */ 84 void btrfs_free_path(struct btrfs_path *p) 85 { 86 if (!p) 87 return; 88 btrfs_release_path(p); 89 kmem_cache_free(btrfs_path_cachep, p); 90 } 91 92 /* 93 * path release drops references on the extent buffers in the path 94 * and it drops any locks held by this path 95 * 96 * It is safe to call this on paths that no locks or extent buffers held. 97 */ 98 noinline void btrfs_release_path(struct btrfs_path *p) 99 { 100 int i; 101 102 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 103 p->slots[i] = 0; 104 if (!p->nodes[i]) 105 continue; 106 if (p->locks[i]) { 107 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 108 p->locks[i] = 0; 109 } 110 free_extent_buffer(p->nodes[i]); 111 p->nodes[i] = NULL; 112 } 113 } 114 115 /* 116 * safely gets a reference on the root node of a tree. A lock 117 * is not taken, so a concurrent writer may put a different node 118 * at the root of the tree. See btrfs_lock_root_node for the 119 * looping required. 120 * 121 * The extent buffer returned by this has a reference taken, so 122 * it won't disappear. It may stop being the root of the tree 123 * at any time because there are no locks held. 124 */ 125 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 126 { 127 struct extent_buffer *eb; 128 129 while (1) { 130 rcu_read_lock(); 131 eb = rcu_dereference(root->node); 132 133 /* 134 * RCU really hurts here, we could free up the root node because 135 * it was COWed but we may not get the new root node yet so do 136 * the inc_not_zero dance and if it doesn't work then 137 * synchronize_rcu and try again. 138 */ 139 if (atomic_inc_not_zero(&eb->refs)) { 140 rcu_read_unlock(); 141 break; 142 } 143 rcu_read_unlock(); 144 synchronize_rcu(); 145 } 146 return eb; 147 } 148 149 /* 150 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 151 * just get put onto a simple dirty list. Transaction walks this list to make 152 * sure they get properly updated on disk. 153 */ 154 static void add_root_to_dirty_list(struct btrfs_root *root) 155 { 156 struct btrfs_fs_info *fs_info = root->fs_info; 157 158 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 159 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 160 return; 161 162 spin_lock(&fs_info->trans_lock); 163 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 164 /* Want the extent tree to be the last on the list */ 165 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 166 list_move_tail(&root->dirty_list, 167 &fs_info->dirty_cowonly_roots); 168 else 169 list_move(&root->dirty_list, 170 &fs_info->dirty_cowonly_roots); 171 } 172 spin_unlock(&fs_info->trans_lock); 173 } 174 175 /* 176 * used by snapshot creation to make a copy of a root for a tree with 177 * a given objectid. The buffer with the new root node is returned in 178 * cow_ret, and this func returns zero on success or a negative error code. 179 */ 180 int btrfs_copy_root(struct btrfs_trans_handle *trans, 181 struct btrfs_root *root, 182 struct extent_buffer *buf, 183 struct extent_buffer **cow_ret, u64 new_root_objectid) 184 { 185 struct btrfs_fs_info *fs_info = root->fs_info; 186 struct extent_buffer *cow; 187 int ret = 0; 188 int level; 189 struct btrfs_disk_key disk_key; 190 191 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 192 trans->transid != fs_info->running_transaction->transid); 193 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 194 trans->transid != root->last_trans); 195 196 level = btrfs_header_level(buf); 197 if (level == 0) 198 btrfs_item_key(buf, &disk_key, 0); 199 else 200 btrfs_node_key(buf, &disk_key, 0); 201 202 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 203 &disk_key, level, buf->start, 0, 204 BTRFS_NESTING_NEW_ROOT); 205 if (IS_ERR(cow)) 206 return PTR_ERR(cow); 207 208 copy_extent_buffer_full(cow, buf); 209 btrfs_set_header_bytenr(cow, cow->start); 210 btrfs_set_header_generation(cow, trans->transid); 211 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 212 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 213 BTRFS_HEADER_FLAG_RELOC); 214 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 215 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 216 else 217 btrfs_set_header_owner(cow, new_root_objectid); 218 219 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 220 221 WARN_ON(btrfs_header_generation(buf) > trans->transid); 222 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 223 ret = btrfs_inc_ref(trans, root, cow, 1); 224 else 225 ret = btrfs_inc_ref(trans, root, cow, 0); 226 if (ret) { 227 btrfs_tree_unlock(cow); 228 free_extent_buffer(cow); 229 btrfs_abort_transaction(trans, ret); 230 return ret; 231 } 232 233 btrfs_mark_buffer_dirty(cow); 234 *cow_ret = cow; 235 return 0; 236 } 237 238 /* 239 * check if the tree block can be shared by multiple trees 240 */ 241 int btrfs_block_can_be_shared(struct btrfs_root *root, 242 struct extent_buffer *buf) 243 { 244 /* 245 * Tree blocks not in shareable trees and tree roots are never shared. 246 * If a block was allocated after the last snapshot and the block was 247 * not allocated by tree relocation, we know the block is not shared. 248 */ 249 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 250 buf != root->node && buf != root->commit_root && 251 (btrfs_header_generation(buf) <= 252 btrfs_root_last_snapshot(&root->root_item) || 253 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 254 return 1; 255 256 return 0; 257 } 258 259 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 260 struct btrfs_root *root, 261 struct extent_buffer *buf, 262 struct extent_buffer *cow, 263 int *last_ref) 264 { 265 struct btrfs_fs_info *fs_info = root->fs_info; 266 u64 refs; 267 u64 owner; 268 u64 flags; 269 u64 new_flags = 0; 270 int ret; 271 272 /* 273 * Backrefs update rules: 274 * 275 * Always use full backrefs for extent pointers in tree block 276 * allocated by tree relocation. 277 * 278 * If a shared tree block is no longer referenced by its owner 279 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 280 * use full backrefs for extent pointers in tree block. 281 * 282 * If a tree block is been relocating 283 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 284 * use full backrefs for extent pointers in tree block. 285 * The reason for this is some operations (such as drop tree) 286 * are only allowed for blocks use full backrefs. 287 */ 288 289 if (btrfs_block_can_be_shared(root, buf)) { 290 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 291 btrfs_header_level(buf), 1, 292 &refs, &flags); 293 if (ret) 294 return ret; 295 if (refs == 0) { 296 ret = -EROFS; 297 btrfs_handle_fs_error(fs_info, ret, NULL); 298 return ret; 299 } 300 } else { 301 refs = 1; 302 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 303 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 304 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 305 else 306 flags = 0; 307 } 308 309 owner = btrfs_header_owner(buf); 310 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 311 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 312 313 if (refs > 1) { 314 if ((owner == root->root_key.objectid || 315 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 316 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 317 ret = btrfs_inc_ref(trans, root, buf, 1); 318 if (ret) 319 return ret; 320 321 if (root->root_key.objectid == 322 BTRFS_TREE_RELOC_OBJECTID) { 323 ret = btrfs_dec_ref(trans, root, buf, 0); 324 if (ret) 325 return ret; 326 ret = btrfs_inc_ref(trans, root, cow, 1); 327 if (ret) 328 return ret; 329 } 330 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 331 } else { 332 333 if (root->root_key.objectid == 334 BTRFS_TREE_RELOC_OBJECTID) 335 ret = btrfs_inc_ref(trans, root, cow, 1); 336 else 337 ret = btrfs_inc_ref(trans, root, cow, 0); 338 if (ret) 339 return ret; 340 } 341 if (new_flags != 0) { 342 int level = btrfs_header_level(buf); 343 344 ret = btrfs_set_disk_extent_flags(trans, buf, 345 new_flags, level, 0); 346 if (ret) 347 return ret; 348 } 349 } else { 350 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 351 if (root->root_key.objectid == 352 BTRFS_TREE_RELOC_OBJECTID) 353 ret = btrfs_inc_ref(trans, root, cow, 1); 354 else 355 ret = btrfs_inc_ref(trans, root, cow, 0); 356 if (ret) 357 return ret; 358 ret = btrfs_dec_ref(trans, root, buf, 1); 359 if (ret) 360 return ret; 361 } 362 btrfs_clean_tree_block(buf); 363 *last_ref = 1; 364 } 365 return 0; 366 } 367 368 /* 369 * does the dirty work in cow of a single block. The parent block (if 370 * supplied) is updated to point to the new cow copy. The new buffer is marked 371 * dirty and returned locked. If you modify the block it needs to be marked 372 * dirty again. 373 * 374 * search_start -- an allocation hint for the new block 375 * 376 * empty_size -- a hint that you plan on doing more cow. This is the size in 377 * bytes the allocator should try to find free next to the block it returns. 378 * This is just a hint and may be ignored by the allocator. 379 */ 380 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 381 struct btrfs_root *root, 382 struct extent_buffer *buf, 383 struct extent_buffer *parent, int parent_slot, 384 struct extent_buffer **cow_ret, 385 u64 search_start, u64 empty_size, 386 enum btrfs_lock_nesting nest) 387 { 388 struct btrfs_fs_info *fs_info = root->fs_info; 389 struct btrfs_disk_key disk_key; 390 struct extent_buffer *cow; 391 int level, ret; 392 int last_ref = 0; 393 int unlock_orig = 0; 394 u64 parent_start = 0; 395 396 if (*cow_ret == buf) 397 unlock_orig = 1; 398 399 btrfs_assert_tree_write_locked(buf); 400 401 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 402 trans->transid != fs_info->running_transaction->transid); 403 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 404 trans->transid != root->last_trans); 405 406 level = btrfs_header_level(buf); 407 408 if (level == 0) 409 btrfs_item_key(buf, &disk_key, 0); 410 else 411 btrfs_node_key(buf, &disk_key, 0); 412 413 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 414 parent_start = parent->start; 415 416 cow = btrfs_alloc_tree_block(trans, root, parent_start, 417 root->root_key.objectid, &disk_key, level, 418 search_start, empty_size, nest); 419 if (IS_ERR(cow)) 420 return PTR_ERR(cow); 421 422 /* cow is set to blocking by btrfs_init_new_buffer */ 423 424 copy_extent_buffer_full(cow, buf); 425 btrfs_set_header_bytenr(cow, cow->start); 426 btrfs_set_header_generation(cow, trans->transid); 427 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 428 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 429 BTRFS_HEADER_FLAG_RELOC); 430 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 431 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 432 else 433 btrfs_set_header_owner(cow, root->root_key.objectid); 434 435 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 436 437 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 438 if (ret) { 439 btrfs_tree_unlock(cow); 440 free_extent_buffer(cow); 441 btrfs_abort_transaction(trans, ret); 442 return ret; 443 } 444 445 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 446 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 447 if (ret) { 448 btrfs_tree_unlock(cow); 449 free_extent_buffer(cow); 450 btrfs_abort_transaction(trans, ret); 451 return ret; 452 } 453 } 454 455 if (buf == root->node) { 456 WARN_ON(parent && parent != buf); 457 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 458 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 459 parent_start = buf->start; 460 461 atomic_inc(&cow->refs); 462 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true); 463 BUG_ON(ret < 0); 464 rcu_assign_pointer(root->node, cow); 465 466 btrfs_free_tree_block(trans, btrfs_root_id(root), buf, 467 parent_start, last_ref); 468 free_extent_buffer(buf); 469 add_root_to_dirty_list(root); 470 } else { 471 WARN_ON(trans->transid != btrfs_header_generation(parent)); 472 btrfs_tree_mod_log_insert_key(parent, parent_slot, 473 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 474 btrfs_set_node_blockptr(parent, parent_slot, 475 cow->start); 476 btrfs_set_node_ptr_generation(parent, parent_slot, 477 trans->transid); 478 btrfs_mark_buffer_dirty(parent); 479 if (last_ref) { 480 ret = btrfs_tree_mod_log_free_eb(buf); 481 if (ret) { 482 btrfs_tree_unlock(cow); 483 free_extent_buffer(cow); 484 btrfs_abort_transaction(trans, ret); 485 return ret; 486 } 487 } 488 btrfs_free_tree_block(trans, btrfs_root_id(root), buf, 489 parent_start, last_ref); 490 } 491 if (unlock_orig) 492 btrfs_tree_unlock(buf); 493 free_extent_buffer_stale(buf); 494 btrfs_mark_buffer_dirty(cow); 495 *cow_ret = cow; 496 return 0; 497 } 498 499 static inline int should_cow_block(struct btrfs_trans_handle *trans, 500 struct btrfs_root *root, 501 struct extent_buffer *buf) 502 { 503 if (btrfs_is_testing(root->fs_info)) 504 return 0; 505 506 /* Ensure we can see the FORCE_COW bit */ 507 smp_mb__before_atomic(); 508 509 /* 510 * We do not need to cow a block if 511 * 1) this block is not created or changed in this transaction; 512 * 2) this block does not belong to TREE_RELOC tree; 513 * 3) the root is not forced COW. 514 * 515 * What is forced COW: 516 * when we create snapshot during committing the transaction, 517 * after we've finished copying src root, we must COW the shared 518 * block to ensure the metadata consistency. 519 */ 520 if (btrfs_header_generation(buf) == trans->transid && 521 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 522 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 523 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 524 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 525 return 0; 526 return 1; 527 } 528 529 /* 530 * cows a single block, see __btrfs_cow_block for the real work. 531 * This version of it has extra checks so that a block isn't COWed more than 532 * once per transaction, as long as it hasn't been written yet 533 */ 534 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 535 struct btrfs_root *root, struct extent_buffer *buf, 536 struct extent_buffer *parent, int parent_slot, 537 struct extent_buffer **cow_ret, 538 enum btrfs_lock_nesting nest) 539 { 540 struct btrfs_fs_info *fs_info = root->fs_info; 541 u64 search_start; 542 int ret; 543 544 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 545 btrfs_err(fs_info, 546 "COW'ing blocks on a fs root that's being dropped"); 547 548 if (trans->transaction != fs_info->running_transaction) 549 WARN(1, KERN_CRIT "trans %llu running %llu\n", 550 trans->transid, 551 fs_info->running_transaction->transid); 552 553 if (trans->transid != fs_info->generation) 554 WARN(1, KERN_CRIT "trans %llu running %llu\n", 555 trans->transid, fs_info->generation); 556 557 if (!should_cow_block(trans, root, buf)) { 558 *cow_ret = buf; 559 return 0; 560 } 561 562 search_start = buf->start & ~((u64)SZ_1G - 1); 563 564 /* 565 * Before CoWing this block for later modification, check if it's 566 * the subtree root and do the delayed subtree trace if needed. 567 * 568 * Also We don't care about the error, as it's handled internally. 569 */ 570 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 571 ret = __btrfs_cow_block(trans, root, buf, parent, 572 parent_slot, cow_ret, search_start, 0, nest); 573 574 trace_btrfs_cow_block(root, buf, *cow_ret); 575 576 return ret; 577 } 578 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO); 579 580 /* 581 * helper function for defrag to decide if two blocks pointed to by a 582 * node are actually close by 583 */ 584 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 585 { 586 if (blocknr < other && other - (blocknr + blocksize) < 32768) 587 return 1; 588 if (blocknr > other && blocknr - (other + blocksize) < 32768) 589 return 1; 590 return 0; 591 } 592 593 #ifdef __LITTLE_ENDIAN 594 595 /* 596 * Compare two keys, on little-endian the disk order is same as CPU order and 597 * we can avoid the conversion. 598 */ 599 static int comp_keys(const struct btrfs_disk_key *disk_key, 600 const struct btrfs_key *k2) 601 { 602 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 603 604 return btrfs_comp_cpu_keys(k1, k2); 605 } 606 607 #else 608 609 /* 610 * compare two keys in a memcmp fashion 611 */ 612 static int comp_keys(const struct btrfs_disk_key *disk, 613 const struct btrfs_key *k2) 614 { 615 struct btrfs_key k1; 616 617 btrfs_disk_key_to_cpu(&k1, disk); 618 619 return btrfs_comp_cpu_keys(&k1, k2); 620 } 621 #endif 622 623 /* 624 * same as comp_keys only with two btrfs_key's 625 */ 626 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 627 { 628 if (k1->objectid > k2->objectid) 629 return 1; 630 if (k1->objectid < k2->objectid) 631 return -1; 632 if (k1->type > k2->type) 633 return 1; 634 if (k1->type < k2->type) 635 return -1; 636 if (k1->offset > k2->offset) 637 return 1; 638 if (k1->offset < k2->offset) 639 return -1; 640 return 0; 641 } 642 643 /* 644 * this is used by the defrag code to go through all the 645 * leaves pointed to by a node and reallocate them so that 646 * disk order is close to key order 647 */ 648 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 649 struct btrfs_root *root, struct extent_buffer *parent, 650 int start_slot, u64 *last_ret, 651 struct btrfs_key *progress) 652 { 653 struct btrfs_fs_info *fs_info = root->fs_info; 654 struct extent_buffer *cur; 655 u64 blocknr; 656 u64 search_start = *last_ret; 657 u64 last_block = 0; 658 u64 other; 659 u32 parent_nritems; 660 int end_slot; 661 int i; 662 int err = 0; 663 u32 blocksize; 664 int progress_passed = 0; 665 struct btrfs_disk_key disk_key; 666 667 WARN_ON(trans->transaction != fs_info->running_transaction); 668 WARN_ON(trans->transid != fs_info->generation); 669 670 parent_nritems = btrfs_header_nritems(parent); 671 blocksize = fs_info->nodesize; 672 end_slot = parent_nritems - 1; 673 674 if (parent_nritems <= 1) 675 return 0; 676 677 for (i = start_slot; i <= end_slot; i++) { 678 int close = 1; 679 680 btrfs_node_key(parent, &disk_key, i); 681 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 682 continue; 683 684 progress_passed = 1; 685 blocknr = btrfs_node_blockptr(parent, i); 686 if (last_block == 0) 687 last_block = blocknr; 688 689 if (i > 0) { 690 other = btrfs_node_blockptr(parent, i - 1); 691 close = close_blocks(blocknr, other, blocksize); 692 } 693 if (!close && i < end_slot) { 694 other = btrfs_node_blockptr(parent, i + 1); 695 close = close_blocks(blocknr, other, blocksize); 696 } 697 if (close) { 698 last_block = blocknr; 699 continue; 700 } 701 702 cur = btrfs_read_node_slot(parent, i); 703 if (IS_ERR(cur)) 704 return PTR_ERR(cur); 705 if (search_start == 0) 706 search_start = last_block; 707 708 btrfs_tree_lock(cur); 709 err = __btrfs_cow_block(trans, root, cur, parent, i, 710 &cur, search_start, 711 min(16 * blocksize, 712 (end_slot - i) * blocksize), 713 BTRFS_NESTING_COW); 714 if (err) { 715 btrfs_tree_unlock(cur); 716 free_extent_buffer(cur); 717 break; 718 } 719 search_start = cur->start; 720 last_block = cur->start; 721 *last_ret = search_start; 722 btrfs_tree_unlock(cur); 723 free_extent_buffer(cur); 724 } 725 return err; 726 } 727 728 /* 729 * Search for a key in the given extent_buffer. 730 * 731 * The lower boundary for the search is specified by the slot number @low. Use a 732 * value of 0 to search over the whole extent buffer. 733 * 734 * The slot in the extent buffer is returned via @slot. If the key exists in the 735 * extent buffer, then @slot will point to the slot where the key is, otherwise 736 * it points to the slot where you would insert the key. 737 * 738 * Slot may point to the total number of items (i.e. one position beyond the last 739 * key) if the key is bigger than the last key in the extent buffer. 740 */ 741 static noinline int generic_bin_search(struct extent_buffer *eb, int low, 742 const struct btrfs_key *key, int *slot) 743 { 744 unsigned long p; 745 int item_size; 746 int high = btrfs_header_nritems(eb); 747 int ret; 748 const int key_size = sizeof(struct btrfs_disk_key); 749 750 if (low > high) { 751 btrfs_err(eb->fs_info, 752 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 753 __func__, low, high, eb->start, 754 btrfs_header_owner(eb), btrfs_header_level(eb)); 755 return -EINVAL; 756 } 757 758 if (btrfs_header_level(eb) == 0) { 759 p = offsetof(struct btrfs_leaf, items); 760 item_size = sizeof(struct btrfs_item); 761 } else { 762 p = offsetof(struct btrfs_node, ptrs); 763 item_size = sizeof(struct btrfs_key_ptr); 764 } 765 766 while (low < high) { 767 unsigned long oip; 768 unsigned long offset; 769 struct btrfs_disk_key *tmp; 770 struct btrfs_disk_key unaligned; 771 int mid; 772 773 mid = (low + high) / 2; 774 offset = p + mid * item_size; 775 oip = offset_in_page(offset); 776 777 if (oip + key_size <= PAGE_SIZE) { 778 const unsigned long idx = get_eb_page_index(offset); 779 char *kaddr = page_address(eb->pages[idx]); 780 781 oip = get_eb_offset_in_page(eb, offset); 782 tmp = (struct btrfs_disk_key *)(kaddr + oip); 783 } else { 784 read_extent_buffer(eb, &unaligned, offset, key_size); 785 tmp = &unaligned; 786 } 787 788 ret = comp_keys(tmp, key); 789 790 if (ret < 0) 791 low = mid + 1; 792 else if (ret > 0) 793 high = mid; 794 else { 795 *slot = mid; 796 return 0; 797 } 798 } 799 *slot = low; 800 return 1; 801 } 802 803 /* 804 * Simple binary search on an extent buffer. Works for both leaves and nodes, and 805 * always searches over the whole range of keys (slot 0 to slot 'nritems - 1'). 806 */ 807 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 808 int *slot) 809 { 810 return generic_bin_search(eb, 0, key, slot); 811 } 812 813 static void root_add_used(struct btrfs_root *root, u32 size) 814 { 815 spin_lock(&root->accounting_lock); 816 btrfs_set_root_used(&root->root_item, 817 btrfs_root_used(&root->root_item) + size); 818 spin_unlock(&root->accounting_lock); 819 } 820 821 static void root_sub_used(struct btrfs_root *root, u32 size) 822 { 823 spin_lock(&root->accounting_lock); 824 btrfs_set_root_used(&root->root_item, 825 btrfs_root_used(&root->root_item) - size); 826 spin_unlock(&root->accounting_lock); 827 } 828 829 /* given a node and slot number, this reads the blocks it points to. The 830 * extent buffer is returned with a reference taken (but unlocked). 831 */ 832 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 833 int slot) 834 { 835 int level = btrfs_header_level(parent); 836 struct extent_buffer *eb; 837 struct btrfs_key first_key; 838 839 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 840 return ERR_PTR(-ENOENT); 841 842 BUG_ON(level == 0); 843 844 btrfs_node_key_to_cpu(parent, &first_key, slot); 845 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 846 btrfs_header_owner(parent), 847 btrfs_node_ptr_generation(parent, slot), 848 level - 1, &first_key); 849 if (IS_ERR(eb)) 850 return eb; 851 if (!extent_buffer_uptodate(eb)) { 852 free_extent_buffer(eb); 853 return ERR_PTR(-EIO); 854 } 855 856 return eb; 857 } 858 859 /* 860 * node level balancing, used to make sure nodes are in proper order for 861 * item deletion. We balance from the top down, so we have to make sure 862 * that a deletion won't leave an node completely empty later on. 863 */ 864 static noinline int balance_level(struct btrfs_trans_handle *trans, 865 struct btrfs_root *root, 866 struct btrfs_path *path, int level) 867 { 868 struct btrfs_fs_info *fs_info = root->fs_info; 869 struct extent_buffer *right = NULL; 870 struct extent_buffer *mid; 871 struct extent_buffer *left = NULL; 872 struct extent_buffer *parent = NULL; 873 int ret = 0; 874 int wret; 875 int pslot; 876 int orig_slot = path->slots[level]; 877 u64 orig_ptr; 878 879 ASSERT(level > 0); 880 881 mid = path->nodes[level]; 882 883 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK); 884 WARN_ON(btrfs_header_generation(mid) != trans->transid); 885 886 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 887 888 if (level < BTRFS_MAX_LEVEL - 1) { 889 parent = path->nodes[level + 1]; 890 pslot = path->slots[level + 1]; 891 } 892 893 /* 894 * deal with the case where there is only one pointer in the root 895 * by promoting the node below to a root 896 */ 897 if (!parent) { 898 struct extent_buffer *child; 899 900 if (btrfs_header_nritems(mid) != 1) 901 return 0; 902 903 /* promote the child to a root */ 904 child = btrfs_read_node_slot(mid, 0); 905 if (IS_ERR(child)) { 906 ret = PTR_ERR(child); 907 btrfs_handle_fs_error(fs_info, ret, NULL); 908 goto enospc; 909 } 910 911 btrfs_tree_lock(child); 912 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 913 BTRFS_NESTING_COW); 914 if (ret) { 915 btrfs_tree_unlock(child); 916 free_extent_buffer(child); 917 goto enospc; 918 } 919 920 ret = btrfs_tree_mod_log_insert_root(root->node, child, true); 921 BUG_ON(ret < 0); 922 rcu_assign_pointer(root->node, child); 923 924 add_root_to_dirty_list(root); 925 btrfs_tree_unlock(child); 926 927 path->locks[level] = 0; 928 path->nodes[level] = NULL; 929 btrfs_clean_tree_block(mid); 930 btrfs_tree_unlock(mid); 931 /* once for the path */ 932 free_extent_buffer(mid); 933 934 root_sub_used(root, mid->len); 935 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); 936 /* once for the root ptr */ 937 free_extent_buffer_stale(mid); 938 return 0; 939 } 940 if (btrfs_header_nritems(mid) > 941 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 942 return 0; 943 944 left = btrfs_read_node_slot(parent, pslot - 1); 945 if (IS_ERR(left)) 946 left = NULL; 947 948 if (left) { 949 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 950 wret = btrfs_cow_block(trans, root, left, 951 parent, pslot - 1, &left, 952 BTRFS_NESTING_LEFT_COW); 953 if (wret) { 954 ret = wret; 955 goto enospc; 956 } 957 } 958 959 right = btrfs_read_node_slot(parent, pslot + 1); 960 if (IS_ERR(right)) 961 right = NULL; 962 963 if (right) { 964 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 965 wret = btrfs_cow_block(trans, root, right, 966 parent, pslot + 1, &right, 967 BTRFS_NESTING_RIGHT_COW); 968 if (wret) { 969 ret = wret; 970 goto enospc; 971 } 972 } 973 974 /* first, try to make some room in the middle buffer */ 975 if (left) { 976 orig_slot += btrfs_header_nritems(left); 977 wret = push_node_left(trans, left, mid, 1); 978 if (wret < 0) 979 ret = wret; 980 } 981 982 /* 983 * then try to empty the right most buffer into the middle 984 */ 985 if (right) { 986 wret = push_node_left(trans, mid, right, 1); 987 if (wret < 0 && wret != -ENOSPC) 988 ret = wret; 989 if (btrfs_header_nritems(right) == 0) { 990 btrfs_clean_tree_block(right); 991 btrfs_tree_unlock(right); 992 del_ptr(root, path, level + 1, pslot + 1); 993 root_sub_used(root, right->len); 994 btrfs_free_tree_block(trans, btrfs_root_id(root), right, 995 0, 1); 996 free_extent_buffer_stale(right); 997 right = NULL; 998 } else { 999 struct btrfs_disk_key right_key; 1000 btrfs_node_key(right, &right_key, 0); 1001 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1002 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1003 BUG_ON(ret < 0); 1004 btrfs_set_node_key(parent, &right_key, pslot + 1); 1005 btrfs_mark_buffer_dirty(parent); 1006 } 1007 } 1008 if (btrfs_header_nritems(mid) == 1) { 1009 /* 1010 * we're not allowed to leave a node with one item in the 1011 * tree during a delete. A deletion from lower in the tree 1012 * could try to delete the only pointer in this node. 1013 * So, pull some keys from the left. 1014 * There has to be a left pointer at this point because 1015 * otherwise we would have pulled some pointers from the 1016 * right 1017 */ 1018 if (!left) { 1019 ret = -EROFS; 1020 btrfs_handle_fs_error(fs_info, ret, NULL); 1021 goto enospc; 1022 } 1023 wret = balance_node_right(trans, mid, left); 1024 if (wret < 0) { 1025 ret = wret; 1026 goto enospc; 1027 } 1028 if (wret == 1) { 1029 wret = push_node_left(trans, left, mid, 1); 1030 if (wret < 0) 1031 ret = wret; 1032 } 1033 BUG_ON(wret == 1); 1034 } 1035 if (btrfs_header_nritems(mid) == 0) { 1036 btrfs_clean_tree_block(mid); 1037 btrfs_tree_unlock(mid); 1038 del_ptr(root, path, level + 1, pslot); 1039 root_sub_used(root, mid->len); 1040 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); 1041 free_extent_buffer_stale(mid); 1042 mid = NULL; 1043 } else { 1044 /* update the parent key to reflect our changes */ 1045 struct btrfs_disk_key mid_key; 1046 btrfs_node_key(mid, &mid_key, 0); 1047 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1048 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1049 BUG_ON(ret < 0); 1050 btrfs_set_node_key(parent, &mid_key, pslot); 1051 btrfs_mark_buffer_dirty(parent); 1052 } 1053 1054 /* update the path */ 1055 if (left) { 1056 if (btrfs_header_nritems(left) > orig_slot) { 1057 atomic_inc(&left->refs); 1058 /* left was locked after cow */ 1059 path->nodes[level] = left; 1060 path->slots[level + 1] -= 1; 1061 path->slots[level] = orig_slot; 1062 if (mid) { 1063 btrfs_tree_unlock(mid); 1064 free_extent_buffer(mid); 1065 } 1066 } else { 1067 orig_slot -= btrfs_header_nritems(left); 1068 path->slots[level] = orig_slot; 1069 } 1070 } 1071 /* double check we haven't messed things up */ 1072 if (orig_ptr != 1073 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1074 BUG(); 1075 enospc: 1076 if (right) { 1077 btrfs_tree_unlock(right); 1078 free_extent_buffer(right); 1079 } 1080 if (left) { 1081 if (path->nodes[level] != left) 1082 btrfs_tree_unlock(left); 1083 free_extent_buffer(left); 1084 } 1085 return ret; 1086 } 1087 1088 /* Node balancing for insertion. Here we only split or push nodes around 1089 * when they are completely full. This is also done top down, so we 1090 * have to be pessimistic. 1091 */ 1092 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1093 struct btrfs_root *root, 1094 struct btrfs_path *path, int level) 1095 { 1096 struct btrfs_fs_info *fs_info = root->fs_info; 1097 struct extent_buffer *right = NULL; 1098 struct extent_buffer *mid; 1099 struct extent_buffer *left = NULL; 1100 struct extent_buffer *parent = NULL; 1101 int ret = 0; 1102 int wret; 1103 int pslot; 1104 int orig_slot = path->slots[level]; 1105 1106 if (level == 0) 1107 return 1; 1108 1109 mid = path->nodes[level]; 1110 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1111 1112 if (level < BTRFS_MAX_LEVEL - 1) { 1113 parent = path->nodes[level + 1]; 1114 pslot = path->slots[level + 1]; 1115 } 1116 1117 if (!parent) 1118 return 1; 1119 1120 left = btrfs_read_node_slot(parent, pslot - 1); 1121 if (IS_ERR(left)) 1122 left = NULL; 1123 1124 /* first, try to make some room in the middle buffer */ 1125 if (left) { 1126 u32 left_nr; 1127 1128 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 1129 1130 left_nr = btrfs_header_nritems(left); 1131 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1132 wret = 1; 1133 } else { 1134 ret = btrfs_cow_block(trans, root, left, parent, 1135 pslot - 1, &left, 1136 BTRFS_NESTING_LEFT_COW); 1137 if (ret) 1138 wret = 1; 1139 else { 1140 wret = push_node_left(trans, left, mid, 0); 1141 } 1142 } 1143 if (wret < 0) 1144 ret = wret; 1145 if (wret == 0) { 1146 struct btrfs_disk_key disk_key; 1147 orig_slot += left_nr; 1148 btrfs_node_key(mid, &disk_key, 0); 1149 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1150 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1151 BUG_ON(ret < 0); 1152 btrfs_set_node_key(parent, &disk_key, pslot); 1153 btrfs_mark_buffer_dirty(parent); 1154 if (btrfs_header_nritems(left) > orig_slot) { 1155 path->nodes[level] = left; 1156 path->slots[level + 1] -= 1; 1157 path->slots[level] = orig_slot; 1158 btrfs_tree_unlock(mid); 1159 free_extent_buffer(mid); 1160 } else { 1161 orig_slot -= 1162 btrfs_header_nritems(left); 1163 path->slots[level] = orig_slot; 1164 btrfs_tree_unlock(left); 1165 free_extent_buffer(left); 1166 } 1167 return 0; 1168 } 1169 btrfs_tree_unlock(left); 1170 free_extent_buffer(left); 1171 } 1172 right = btrfs_read_node_slot(parent, pslot + 1); 1173 if (IS_ERR(right)) 1174 right = NULL; 1175 1176 /* 1177 * then try to empty the right most buffer into the middle 1178 */ 1179 if (right) { 1180 u32 right_nr; 1181 1182 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 1183 1184 right_nr = btrfs_header_nritems(right); 1185 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1186 wret = 1; 1187 } else { 1188 ret = btrfs_cow_block(trans, root, right, 1189 parent, pslot + 1, 1190 &right, BTRFS_NESTING_RIGHT_COW); 1191 if (ret) 1192 wret = 1; 1193 else { 1194 wret = balance_node_right(trans, right, mid); 1195 } 1196 } 1197 if (wret < 0) 1198 ret = wret; 1199 if (wret == 0) { 1200 struct btrfs_disk_key disk_key; 1201 1202 btrfs_node_key(right, &disk_key, 0); 1203 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1204 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1205 BUG_ON(ret < 0); 1206 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1207 btrfs_mark_buffer_dirty(parent); 1208 1209 if (btrfs_header_nritems(mid) <= orig_slot) { 1210 path->nodes[level] = right; 1211 path->slots[level + 1] += 1; 1212 path->slots[level] = orig_slot - 1213 btrfs_header_nritems(mid); 1214 btrfs_tree_unlock(mid); 1215 free_extent_buffer(mid); 1216 } else { 1217 btrfs_tree_unlock(right); 1218 free_extent_buffer(right); 1219 } 1220 return 0; 1221 } 1222 btrfs_tree_unlock(right); 1223 free_extent_buffer(right); 1224 } 1225 return 1; 1226 } 1227 1228 /* 1229 * readahead one full node of leaves, finding things that are close 1230 * to the block in 'slot', and triggering ra on them. 1231 */ 1232 static void reada_for_search(struct btrfs_fs_info *fs_info, 1233 struct btrfs_path *path, 1234 int level, int slot, u64 objectid) 1235 { 1236 struct extent_buffer *node; 1237 struct btrfs_disk_key disk_key; 1238 u32 nritems; 1239 u64 search; 1240 u64 target; 1241 u64 nread = 0; 1242 u64 nread_max; 1243 u32 nr; 1244 u32 blocksize; 1245 u32 nscan = 0; 1246 1247 if (level != 1 && path->reada != READA_FORWARD_ALWAYS) 1248 return; 1249 1250 if (!path->nodes[level]) 1251 return; 1252 1253 node = path->nodes[level]; 1254 1255 /* 1256 * Since the time between visiting leaves is much shorter than the time 1257 * between visiting nodes, limit read ahead of nodes to 1, to avoid too 1258 * much IO at once (possibly random). 1259 */ 1260 if (path->reada == READA_FORWARD_ALWAYS) { 1261 if (level > 1) 1262 nread_max = node->fs_info->nodesize; 1263 else 1264 nread_max = SZ_128K; 1265 } else { 1266 nread_max = SZ_64K; 1267 } 1268 1269 search = btrfs_node_blockptr(node, slot); 1270 blocksize = fs_info->nodesize; 1271 if (path->reada != READA_FORWARD_ALWAYS) { 1272 struct extent_buffer *eb; 1273 1274 eb = find_extent_buffer(fs_info, search); 1275 if (eb) { 1276 free_extent_buffer(eb); 1277 return; 1278 } 1279 } 1280 1281 target = search; 1282 1283 nritems = btrfs_header_nritems(node); 1284 nr = slot; 1285 1286 while (1) { 1287 if (path->reada == READA_BACK) { 1288 if (nr == 0) 1289 break; 1290 nr--; 1291 } else if (path->reada == READA_FORWARD || 1292 path->reada == READA_FORWARD_ALWAYS) { 1293 nr++; 1294 if (nr >= nritems) 1295 break; 1296 } 1297 if (path->reada == READA_BACK && objectid) { 1298 btrfs_node_key(node, &disk_key, nr); 1299 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1300 break; 1301 } 1302 search = btrfs_node_blockptr(node, nr); 1303 if (path->reada == READA_FORWARD_ALWAYS || 1304 (search <= target && target - search <= 65536) || 1305 (search > target && search - target <= 65536)) { 1306 btrfs_readahead_node_child(node, nr); 1307 nread += blocksize; 1308 } 1309 nscan++; 1310 if (nread > nread_max || nscan > 32) 1311 break; 1312 } 1313 } 1314 1315 static noinline void reada_for_balance(struct btrfs_path *path, int level) 1316 { 1317 struct extent_buffer *parent; 1318 int slot; 1319 int nritems; 1320 1321 parent = path->nodes[level + 1]; 1322 if (!parent) 1323 return; 1324 1325 nritems = btrfs_header_nritems(parent); 1326 slot = path->slots[level + 1]; 1327 1328 if (slot > 0) 1329 btrfs_readahead_node_child(parent, slot - 1); 1330 if (slot + 1 < nritems) 1331 btrfs_readahead_node_child(parent, slot + 1); 1332 } 1333 1334 1335 /* 1336 * when we walk down the tree, it is usually safe to unlock the higher layers 1337 * in the tree. The exceptions are when our path goes through slot 0, because 1338 * operations on the tree might require changing key pointers higher up in the 1339 * tree. 1340 * 1341 * callers might also have set path->keep_locks, which tells this code to keep 1342 * the lock if the path points to the last slot in the block. This is part of 1343 * walking through the tree, and selecting the next slot in the higher block. 1344 * 1345 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1346 * if lowest_unlock is 1, level 0 won't be unlocked 1347 */ 1348 static noinline void unlock_up(struct btrfs_path *path, int level, 1349 int lowest_unlock, int min_write_lock_level, 1350 int *write_lock_level) 1351 { 1352 int i; 1353 int skip_level = level; 1354 bool check_skip = true; 1355 1356 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1357 if (!path->nodes[i]) 1358 break; 1359 if (!path->locks[i]) 1360 break; 1361 1362 if (check_skip) { 1363 if (path->slots[i] == 0) { 1364 skip_level = i + 1; 1365 continue; 1366 } 1367 1368 if (path->keep_locks) { 1369 u32 nritems; 1370 1371 nritems = btrfs_header_nritems(path->nodes[i]); 1372 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1373 skip_level = i + 1; 1374 continue; 1375 } 1376 } 1377 } 1378 1379 if (i >= lowest_unlock && i > skip_level) { 1380 check_skip = false; 1381 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 1382 path->locks[i] = 0; 1383 if (write_lock_level && 1384 i > min_write_lock_level && 1385 i <= *write_lock_level) { 1386 *write_lock_level = i - 1; 1387 } 1388 } 1389 } 1390 } 1391 1392 /* 1393 * helper function for btrfs_search_slot. The goal is to find a block 1394 * in cache without setting the path to blocking. If we find the block 1395 * we return zero and the path is unchanged. 1396 * 1397 * If we can't find the block, we set the path blocking and do some 1398 * reada. -EAGAIN is returned and the search must be repeated. 1399 */ 1400 static int 1401 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 1402 struct extent_buffer **eb_ret, int level, int slot, 1403 const struct btrfs_key *key) 1404 { 1405 struct btrfs_fs_info *fs_info = root->fs_info; 1406 u64 blocknr; 1407 u64 gen; 1408 struct extent_buffer *tmp; 1409 struct btrfs_key first_key; 1410 int ret; 1411 int parent_level; 1412 1413 blocknr = btrfs_node_blockptr(*eb_ret, slot); 1414 gen = btrfs_node_ptr_generation(*eb_ret, slot); 1415 parent_level = btrfs_header_level(*eb_ret); 1416 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot); 1417 1418 tmp = find_extent_buffer(fs_info, blocknr); 1419 if (tmp) { 1420 if (p->reada == READA_FORWARD_ALWAYS) 1421 reada_for_search(fs_info, p, level, slot, key->objectid); 1422 1423 /* first we do an atomic uptodate check */ 1424 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 1425 /* 1426 * Do extra check for first_key, eb can be stale due to 1427 * being cached, read from scrub, or have multiple 1428 * parents (shared tree blocks). 1429 */ 1430 if (btrfs_verify_level_key(tmp, 1431 parent_level - 1, &first_key, gen)) { 1432 free_extent_buffer(tmp); 1433 return -EUCLEAN; 1434 } 1435 *eb_ret = tmp; 1436 return 0; 1437 } 1438 1439 /* now we're allowed to do a blocking uptodate check */ 1440 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 1441 if (ret) { 1442 free_extent_buffer(tmp); 1443 btrfs_release_path(p); 1444 return -EIO; 1445 } 1446 *eb_ret = tmp; 1447 return 0; 1448 } 1449 1450 /* 1451 * reduce lock contention at high levels 1452 * of the btree by dropping locks before 1453 * we read. Don't release the lock on the current 1454 * level because we need to walk this node to figure 1455 * out which blocks to read. 1456 */ 1457 btrfs_unlock_up_safe(p, level + 1); 1458 1459 if (p->reada != READA_NONE) 1460 reada_for_search(fs_info, p, level, slot, key->objectid); 1461 1462 ret = -EAGAIN; 1463 tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid, 1464 gen, parent_level - 1, &first_key); 1465 if (IS_ERR(tmp)) { 1466 btrfs_release_path(p); 1467 return PTR_ERR(tmp); 1468 } 1469 /* 1470 * If the read above didn't mark this buffer up to date, 1471 * it will never end up being up to date. Set ret to EIO now 1472 * and give up so that our caller doesn't loop forever 1473 * on our EAGAINs. 1474 */ 1475 if (!extent_buffer_uptodate(tmp)) 1476 ret = -EIO; 1477 free_extent_buffer(tmp); 1478 1479 btrfs_release_path(p); 1480 return ret; 1481 } 1482 1483 /* 1484 * helper function for btrfs_search_slot. This does all of the checks 1485 * for node-level blocks and does any balancing required based on 1486 * the ins_len. 1487 * 1488 * If no extra work was required, zero is returned. If we had to 1489 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1490 * start over 1491 */ 1492 static int 1493 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1494 struct btrfs_root *root, struct btrfs_path *p, 1495 struct extent_buffer *b, int level, int ins_len, 1496 int *write_lock_level) 1497 { 1498 struct btrfs_fs_info *fs_info = root->fs_info; 1499 int ret = 0; 1500 1501 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1502 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 1503 1504 if (*write_lock_level < level + 1) { 1505 *write_lock_level = level + 1; 1506 btrfs_release_path(p); 1507 return -EAGAIN; 1508 } 1509 1510 reada_for_balance(p, level); 1511 ret = split_node(trans, root, p, level); 1512 1513 b = p->nodes[level]; 1514 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1515 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 1516 1517 if (*write_lock_level < level + 1) { 1518 *write_lock_level = level + 1; 1519 btrfs_release_path(p); 1520 return -EAGAIN; 1521 } 1522 1523 reada_for_balance(p, level); 1524 ret = balance_level(trans, root, p, level); 1525 if (ret) 1526 return ret; 1527 1528 b = p->nodes[level]; 1529 if (!b) { 1530 btrfs_release_path(p); 1531 return -EAGAIN; 1532 } 1533 BUG_ON(btrfs_header_nritems(b) == 1); 1534 } 1535 return ret; 1536 } 1537 1538 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 1539 u64 iobjectid, u64 ioff, u8 key_type, 1540 struct btrfs_key *found_key) 1541 { 1542 int ret; 1543 struct btrfs_key key; 1544 struct extent_buffer *eb; 1545 1546 ASSERT(path); 1547 ASSERT(found_key); 1548 1549 key.type = key_type; 1550 key.objectid = iobjectid; 1551 key.offset = ioff; 1552 1553 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1554 if (ret < 0) 1555 return ret; 1556 1557 eb = path->nodes[0]; 1558 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1559 ret = btrfs_next_leaf(fs_root, path); 1560 if (ret) 1561 return ret; 1562 eb = path->nodes[0]; 1563 } 1564 1565 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1566 if (found_key->type != key.type || 1567 found_key->objectid != key.objectid) 1568 return 1; 1569 1570 return 0; 1571 } 1572 1573 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 1574 struct btrfs_path *p, 1575 int write_lock_level) 1576 { 1577 struct extent_buffer *b; 1578 int root_lock = 0; 1579 int level = 0; 1580 1581 if (p->search_commit_root) { 1582 b = root->commit_root; 1583 atomic_inc(&b->refs); 1584 level = btrfs_header_level(b); 1585 /* 1586 * Ensure that all callers have set skip_locking when 1587 * p->search_commit_root = 1. 1588 */ 1589 ASSERT(p->skip_locking == 1); 1590 1591 goto out; 1592 } 1593 1594 if (p->skip_locking) { 1595 b = btrfs_root_node(root); 1596 level = btrfs_header_level(b); 1597 goto out; 1598 } 1599 1600 /* We try very hard to do read locks on the root */ 1601 root_lock = BTRFS_READ_LOCK; 1602 1603 /* 1604 * If the level is set to maximum, we can skip trying to get the read 1605 * lock. 1606 */ 1607 if (write_lock_level < BTRFS_MAX_LEVEL) { 1608 /* 1609 * We don't know the level of the root node until we actually 1610 * have it read locked 1611 */ 1612 b = btrfs_read_lock_root_node(root); 1613 level = btrfs_header_level(b); 1614 if (level > write_lock_level) 1615 goto out; 1616 1617 /* Whoops, must trade for write lock */ 1618 btrfs_tree_read_unlock(b); 1619 free_extent_buffer(b); 1620 } 1621 1622 b = btrfs_lock_root_node(root); 1623 root_lock = BTRFS_WRITE_LOCK; 1624 1625 /* The level might have changed, check again */ 1626 level = btrfs_header_level(b); 1627 1628 out: 1629 /* 1630 * The root may have failed to write out at some point, and thus is no 1631 * longer valid, return an error in this case. 1632 */ 1633 if (!extent_buffer_uptodate(b)) { 1634 if (root_lock) 1635 btrfs_tree_unlock_rw(b, root_lock); 1636 free_extent_buffer(b); 1637 return ERR_PTR(-EIO); 1638 } 1639 1640 p->nodes[level] = b; 1641 if (!p->skip_locking) 1642 p->locks[level] = root_lock; 1643 /* 1644 * Callers are responsible for dropping b's references. 1645 */ 1646 return b; 1647 } 1648 1649 /* 1650 * Replace the extent buffer at the lowest level of the path with a cloned 1651 * version. The purpose is to be able to use it safely, after releasing the 1652 * commit root semaphore, even if relocation is happening in parallel, the 1653 * transaction used for relocation is committed and the extent buffer is 1654 * reallocated in the next transaction. 1655 * 1656 * This is used in a context where the caller does not prevent transaction 1657 * commits from happening, either by holding a transaction handle or holding 1658 * some lock, while it's doing searches through a commit root. 1659 * At the moment it's only used for send operations. 1660 */ 1661 static int finish_need_commit_sem_search(struct btrfs_path *path) 1662 { 1663 const int i = path->lowest_level; 1664 const int slot = path->slots[i]; 1665 struct extent_buffer *lowest = path->nodes[i]; 1666 struct extent_buffer *clone; 1667 1668 ASSERT(path->need_commit_sem); 1669 1670 if (!lowest) 1671 return 0; 1672 1673 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem); 1674 1675 clone = btrfs_clone_extent_buffer(lowest); 1676 if (!clone) 1677 return -ENOMEM; 1678 1679 btrfs_release_path(path); 1680 path->nodes[i] = clone; 1681 path->slots[i] = slot; 1682 1683 return 0; 1684 } 1685 1686 static inline int search_for_key_slot(struct extent_buffer *eb, 1687 int search_low_slot, 1688 const struct btrfs_key *key, 1689 int prev_cmp, 1690 int *slot) 1691 { 1692 /* 1693 * If a previous call to btrfs_bin_search() on a parent node returned an 1694 * exact match (prev_cmp == 0), we can safely assume the target key will 1695 * always be at slot 0 on lower levels, since each key pointer 1696 * (struct btrfs_key_ptr) refers to the lowest key accessible from the 1697 * subtree it points to. Thus we can skip searching lower levels. 1698 */ 1699 if (prev_cmp == 0) { 1700 *slot = 0; 1701 return 0; 1702 } 1703 1704 return generic_bin_search(eb, search_low_slot, key, slot); 1705 } 1706 1707 static int search_leaf(struct btrfs_trans_handle *trans, 1708 struct btrfs_root *root, 1709 const struct btrfs_key *key, 1710 struct btrfs_path *path, 1711 int ins_len, 1712 int prev_cmp) 1713 { 1714 struct extent_buffer *leaf = path->nodes[0]; 1715 int leaf_free_space = -1; 1716 int search_low_slot = 0; 1717 int ret; 1718 bool do_bin_search = true; 1719 1720 /* 1721 * If we are doing an insertion, the leaf has enough free space and the 1722 * destination slot for the key is not slot 0, then we can unlock our 1723 * write lock on the parent, and any other upper nodes, before doing the 1724 * binary search on the leaf (with search_for_key_slot()), allowing other 1725 * tasks to lock the parent and any other upper nodes. 1726 */ 1727 if (ins_len > 0) { 1728 /* 1729 * Cache the leaf free space, since we will need it later and it 1730 * will not change until then. 1731 */ 1732 leaf_free_space = btrfs_leaf_free_space(leaf); 1733 1734 /* 1735 * !path->locks[1] means we have a single node tree, the leaf is 1736 * the root of the tree. 1737 */ 1738 if (path->locks[1] && leaf_free_space >= ins_len) { 1739 struct btrfs_disk_key first_key; 1740 1741 ASSERT(btrfs_header_nritems(leaf) > 0); 1742 btrfs_item_key(leaf, &first_key, 0); 1743 1744 /* 1745 * Doing the extra comparison with the first key is cheap, 1746 * taking into account that the first key is very likely 1747 * already in a cache line because it immediately follows 1748 * the extent buffer's header and we have recently accessed 1749 * the header's level field. 1750 */ 1751 ret = comp_keys(&first_key, key); 1752 if (ret < 0) { 1753 /* 1754 * The first key is smaller than the key we want 1755 * to insert, so we are safe to unlock all upper 1756 * nodes and we have to do the binary search. 1757 * 1758 * We do use btrfs_unlock_up_safe() and not 1759 * unlock_up() because the later does not unlock 1760 * nodes with a slot of 0 - we can safely unlock 1761 * any node even if its slot is 0 since in this 1762 * case the key does not end up at slot 0 of the 1763 * leaf and there's no need to split the leaf. 1764 */ 1765 btrfs_unlock_up_safe(path, 1); 1766 search_low_slot = 1; 1767 } else { 1768 /* 1769 * The first key is >= then the key we want to 1770 * insert, so we can skip the binary search as 1771 * the target key will be at slot 0. 1772 * 1773 * We can not unlock upper nodes when the key is 1774 * less than the first key, because we will need 1775 * to update the key at slot 0 of the parent node 1776 * and possibly of other upper nodes too. 1777 * If the key matches the first key, then we can 1778 * unlock all the upper nodes, using 1779 * btrfs_unlock_up_safe() instead of unlock_up() 1780 * as stated above. 1781 */ 1782 if (ret == 0) 1783 btrfs_unlock_up_safe(path, 1); 1784 /* 1785 * ret is already 0 or 1, matching the result of 1786 * a btrfs_bin_search() call, so there is no need 1787 * to adjust it. 1788 */ 1789 do_bin_search = false; 1790 path->slots[0] = 0; 1791 } 1792 } 1793 } 1794 1795 if (do_bin_search) { 1796 ret = search_for_key_slot(leaf, search_low_slot, key, 1797 prev_cmp, &path->slots[0]); 1798 if (ret < 0) 1799 return ret; 1800 } 1801 1802 if (ins_len > 0) { 1803 /* 1804 * Item key already exists. In this case, if we are allowed to 1805 * insert the item (for example, in dir_item case, item key 1806 * collision is allowed), it will be merged with the original 1807 * item. Only the item size grows, no new btrfs item will be 1808 * added. If search_for_extension is not set, ins_len already 1809 * accounts the size btrfs_item, deduct it here so leaf space 1810 * check will be correct. 1811 */ 1812 if (ret == 0 && !path->search_for_extension) { 1813 ASSERT(ins_len >= sizeof(struct btrfs_item)); 1814 ins_len -= sizeof(struct btrfs_item); 1815 } 1816 1817 ASSERT(leaf_free_space >= 0); 1818 1819 if (leaf_free_space < ins_len) { 1820 int err; 1821 1822 err = split_leaf(trans, root, key, path, ins_len, 1823 (ret == 0)); 1824 ASSERT(err <= 0); 1825 if (WARN_ON(err > 0)) 1826 err = -EUCLEAN; 1827 if (err) 1828 ret = err; 1829 } 1830 } 1831 1832 return ret; 1833 } 1834 1835 /* 1836 * btrfs_search_slot - look for a key in a tree and perform necessary 1837 * modifications to preserve tree invariants. 1838 * 1839 * @trans: Handle of transaction, used when modifying the tree 1840 * @p: Holds all btree nodes along the search path 1841 * @root: The root node of the tree 1842 * @key: The key we are looking for 1843 * @ins_len: Indicates purpose of search: 1844 * >0 for inserts it's size of item inserted (*) 1845 * <0 for deletions 1846 * 0 for plain searches, not modifying the tree 1847 * 1848 * (*) If size of item inserted doesn't include 1849 * sizeof(struct btrfs_item), then p->search_for_extension must 1850 * be set. 1851 * @cow: boolean should CoW operations be performed. Must always be 1 1852 * when modifying the tree. 1853 * 1854 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 1855 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 1856 * 1857 * If @key is found, 0 is returned and you can find the item in the leaf level 1858 * of the path (level 0) 1859 * 1860 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 1861 * points to the slot where it should be inserted 1862 * 1863 * If an error is encountered while searching the tree a negative error number 1864 * is returned 1865 */ 1866 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1867 const struct btrfs_key *key, struct btrfs_path *p, 1868 int ins_len, int cow) 1869 { 1870 struct btrfs_fs_info *fs_info = root->fs_info; 1871 struct extent_buffer *b; 1872 int slot; 1873 int ret; 1874 int err; 1875 int level; 1876 int lowest_unlock = 1; 1877 /* everything at write_lock_level or lower must be write locked */ 1878 int write_lock_level = 0; 1879 u8 lowest_level = 0; 1880 int min_write_lock_level; 1881 int prev_cmp; 1882 1883 lowest_level = p->lowest_level; 1884 WARN_ON(lowest_level && ins_len > 0); 1885 WARN_ON(p->nodes[0] != NULL); 1886 BUG_ON(!cow && ins_len); 1887 1888 if (ins_len < 0) { 1889 lowest_unlock = 2; 1890 1891 /* when we are removing items, we might have to go up to level 1892 * two as we update tree pointers Make sure we keep write 1893 * for those levels as well 1894 */ 1895 write_lock_level = 2; 1896 } else if (ins_len > 0) { 1897 /* 1898 * for inserting items, make sure we have a write lock on 1899 * level 1 so we can update keys 1900 */ 1901 write_lock_level = 1; 1902 } 1903 1904 if (!cow) 1905 write_lock_level = -1; 1906 1907 if (cow && (p->keep_locks || p->lowest_level)) 1908 write_lock_level = BTRFS_MAX_LEVEL; 1909 1910 min_write_lock_level = write_lock_level; 1911 1912 if (p->need_commit_sem) { 1913 ASSERT(p->search_commit_root); 1914 down_read(&fs_info->commit_root_sem); 1915 } 1916 1917 again: 1918 prev_cmp = -1; 1919 b = btrfs_search_slot_get_root(root, p, write_lock_level); 1920 if (IS_ERR(b)) { 1921 ret = PTR_ERR(b); 1922 goto done; 1923 } 1924 1925 while (b) { 1926 int dec = 0; 1927 1928 level = btrfs_header_level(b); 1929 1930 if (cow) { 1931 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 1932 1933 /* 1934 * if we don't really need to cow this block 1935 * then we don't want to set the path blocking, 1936 * so we test it here 1937 */ 1938 if (!should_cow_block(trans, root, b)) 1939 goto cow_done; 1940 1941 /* 1942 * must have write locks on this node and the 1943 * parent 1944 */ 1945 if (level > write_lock_level || 1946 (level + 1 > write_lock_level && 1947 level + 1 < BTRFS_MAX_LEVEL && 1948 p->nodes[level + 1])) { 1949 write_lock_level = level + 1; 1950 btrfs_release_path(p); 1951 goto again; 1952 } 1953 1954 if (last_level) 1955 err = btrfs_cow_block(trans, root, b, NULL, 0, 1956 &b, 1957 BTRFS_NESTING_COW); 1958 else 1959 err = btrfs_cow_block(trans, root, b, 1960 p->nodes[level + 1], 1961 p->slots[level + 1], &b, 1962 BTRFS_NESTING_COW); 1963 if (err) { 1964 ret = err; 1965 goto done; 1966 } 1967 } 1968 cow_done: 1969 p->nodes[level] = b; 1970 1971 /* 1972 * we have a lock on b and as long as we aren't changing 1973 * the tree, there is no way to for the items in b to change. 1974 * It is safe to drop the lock on our parent before we 1975 * go through the expensive btree search on b. 1976 * 1977 * If we're inserting or deleting (ins_len != 0), then we might 1978 * be changing slot zero, which may require changing the parent. 1979 * So, we can't drop the lock until after we know which slot 1980 * we're operating on. 1981 */ 1982 if (!ins_len && !p->keep_locks) { 1983 int u = level + 1; 1984 1985 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 1986 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 1987 p->locks[u] = 0; 1988 } 1989 } 1990 1991 if (level == 0) { 1992 if (ins_len > 0) 1993 ASSERT(write_lock_level >= 1); 1994 1995 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp); 1996 if (!p->search_for_split) 1997 unlock_up(p, level, lowest_unlock, 1998 min_write_lock_level, NULL); 1999 goto done; 2000 } 2001 2002 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot); 2003 if (ret < 0) 2004 goto done; 2005 prev_cmp = ret; 2006 2007 if (ret && slot > 0) { 2008 dec = 1; 2009 slot--; 2010 } 2011 p->slots[level] = slot; 2012 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2013 &write_lock_level); 2014 if (err == -EAGAIN) 2015 goto again; 2016 if (err) { 2017 ret = err; 2018 goto done; 2019 } 2020 b = p->nodes[level]; 2021 slot = p->slots[level]; 2022 2023 /* 2024 * Slot 0 is special, if we change the key we have to update 2025 * the parent pointer which means we must have a write lock on 2026 * the parent 2027 */ 2028 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2029 write_lock_level = level + 1; 2030 btrfs_release_path(p); 2031 goto again; 2032 } 2033 2034 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2035 &write_lock_level); 2036 2037 if (level == lowest_level) { 2038 if (dec) 2039 p->slots[level]++; 2040 goto done; 2041 } 2042 2043 err = read_block_for_search(root, p, &b, level, slot, key); 2044 if (err == -EAGAIN) 2045 goto again; 2046 if (err) { 2047 ret = err; 2048 goto done; 2049 } 2050 2051 if (!p->skip_locking) { 2052 level = btrfs_header_level(b); 2053 if (level <= write_lock_level) { 2054 btrfs_tree_lock(b); 2055 p->locks[level] = BTRFS_WRITE_LOCK; 2056 } else { 2057 btrfs_tree_read_lock(b); 2058 p->locks[level] = BTRFS_READ_LOCK; 2059 } 2060 p->nodes[level] = b; 2061 } 2062 } 2063 ret = 1; 2064 done: 2065 if (ret < 0 && !p->skip_release_on_error) 2066 btrfs_release_path(p); 2067 2068 if (p->need_commit_sem) { 2069 int ret2; 2070 2071 ret2 = finish_need_commit_sem_search(p); 2072 up_read(&fs_info->commit_root_sem); 2073 if (ret2) 2074 ret = ret2; 2075 } 2076 2077 return ret; 2078 } 2079 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO); 2080 2081 /* 2082 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2083 * current state of the tree together with the operations recorded in the tree 2084 * modification log to search for the key in a previous version of this tree, as 2085 * denoted by the time_seq parameter. 2086 * 2087 * Naturally, there is no support for insert, delete or cow operations. 2088 * 2089 * The resulting path and return value will be set up as if we called 2090 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2091 */ 2092 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2093 struct btrfs_path *p, u64 time_seq) 2094 { 2095 struct btrfs_fs_info *fs_info = root->fs_info; 2096 struct extent_buffer *b; 2097 int slot; 2098 int ret; 2099 int err; 2100 int level; 2101 int lowest_unlock = 1; 2102 u8 lowest_level = 0; 2103 2104 lowest_level = p->lowest_level; 2105 WARN_ON(p->nodes[0] != NULL); 2106 2107 if (p->search_commit_root) { 2108 BUG_ON(time_seq); 2109 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2110 } 2111 2112 again: 2113 b = btrfs_get_old_root(root, time_seq); 2114 if (!b) { 2115 ret = -EIO; 2116 goto done; 2117 } 2118 level = btrfs_header_level(b); 2119 p->locks[level] = BTRFS_READ_LOCK; 2120 2121 while (b) { 2122 int dec = 0; 2123 2124 level = btrfs_header_level(b); 2125 p->nodes[level] = b; 2126 2127 /* 2128 * we have a lock on b and as long as we aren't changing 2129 * the tree, there is no way to for the items in b to change. 2130 * It is safe to drop the lock on our parent before we 2131 * go through the expensive btree search on b. 2132 */ 2133 btrfs_unlock_up_safe(p, level + 1); 2134 2135 ret = btrfs_bin_search(b, key, &slot); 2136 if (ret < 0) 2137 goto done; 2138 2139 if (level == 0) { 2140 p->slots[level] = slot; 2141 unlock_up(p, level, lowest_unlock, 0, NULL); 2142 goto done; 2143 } 2144 2145 if (ret && slot > 0) { 2146 dec = 1; 2147 slot--; 2148 } 2149 p->slots[level] = slot; 2150 unlock_up(p, level, lowest_unlock, 0, NULL); 2151 2152 if (level == lowest_level) { 2153 if (dec) 2154 p->slots[level]++; 2155 goto done; 2156 } 2157 2158 err = read_block_for_search(root, p, &b, level, slot, key); 2159 if (err == -EAGAIN) 2160 goto again; 2161 if (err) { 2162 ret = err; 2163 goto done; 2164 } 2165 2166 level = btrfs_header_level(b); 2167 btrfs_tree_read_lock(b); 2168 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq); 2169 if (!b) { 2170 ret = -ENOMEM; 2171 goto done; 2172 } 2173 p->locks[level] = BTRFS_READ_LOCK; 2174 p->nodes[level] = b; 2175 } 2176 ret = 1; 2177 done: 2178 if (ret < 0) 2179 btrfs_release_path(p); 2180 2181 return ret; 2182 } 2183 2184 /* 2185 * helper to use instead of search slot if no exact match is needed but 2186 * instead the next or previous item should be returned. 2187 * When find_higher is true, the next higher item is returned, the next lower 2188 * otherwise. 2189 * When return_any and find_higher are both true, and no higher item is found, 2190 * return the next lower instead. 2191 * When return_any is true and find_higher is false, and no lower item is found, 2192 * return the next higher instead. 2193 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2194 * < 0 on error 2195 */ 2196 int btrfs_search_slot_for_read(struct btrfs_root *root, 2197 const struct btrfs_key *key, 2198 struct btrfs_path *p, int find_higher, 2199 int return_any) 2200 { 2201 int ret; 2202 struct extent_buffer *leaf; 2203 2204 again: 2205 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2206 if (ret <= 0) 2207 return ret; 2208 /* 2209 * a return value of 1 means the path is at the position where the 2210 * item should be inserted. Normally this is the next bigger item, 2211 * but in case the previous item is the last in a leaf, path points 2212 * to the first free slot in the previous leaf, i.e. at an invalid 2213 * item. 2214 */ 2215 leaf = p->nodes[0]; 2216 2217 if (find_higher) { 2218 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2219 ret = btrfs_next_leaf(root, p); 2220 if (ret <= 0) 2221 return ret; 2222 if (!return_any) 2223 return 1; 2224 /* 2225 * no higher item found, return the next 2226 * lower instead 2227 */ 2228 return_any = 0; 2229 find_higher = 0; 2230 btrfs_release_path(p); 2231 goto again; 2232 } 2233 } else { 2234 if (p->slots[0] == 0) { 2235 ret = btrfs_prev_leaf(root, p); 2236 if (ret < 0) 2237 return ret; 2238 if (!ret) { 2239 leaf = p->nodes[0]; 2240 if (p->slots[0] == btrfs_header_nritems(leaf)) 2241 p->slots[0]--; 2242 return 0; 2243 } 2244 if (!return_any) 2245 return 1; 2246 /* 2247 * no lower item found, return the next 2248 * higher instead 2249 */ 2250 return_any = 0; 2251 find_higher = 1; 2252 btrfs_release_path(p); 2253 goto again; 2254 } else { 2255 --p->slots[0]; 2256 } 2257 } 2258 return 0; 2259 } 2260 2261 /* 2262 * Execute search and call btrfs_previous_item to traverse backwards if the item 2263 * was not found. 2264 * 2265 * Return 0 if found, 1 if not found and < 0 if error. 2266 */ 2267 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 2268 struct btrfs_path *path) 2269 { 2270 int ret; 2271 2272 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 2273 if (ret > 0) 2274 ret = btrfs_previous_item(root, path, key->objectid, key->type); 2275 2276 if (ret == 0) 2277 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); 2278 2279 return ret; 2280 } 2281 2282 /* 2283 * adjust the pointers going up the tree, starting at level 2284 * making sure the right key of each node is points to 'key'. 2285 * This is used after shifting pointers to the left, so it stops 2286 * fixing up pointers when a given leaf/node is not in slot 0 of the 2287 * higher levels 2288 * 2289 */ 2290 static void fixup_low_keys(struct btrfs_path *path, 2291 struct btrfs_disk_key *key, int level) 2292 { 2293 int i; 2294 struct extent_buffer *t; 2295 int ret; 2296 2297 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2298 int tslot = path->slots[i]; 2299 2300 if (!path->nodes[i]) 2301 break; 2302 t = path->nodes[i]; 2303 ret = btrfs_tree_mod_log_insert_key(t, tslot, 2304 BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC); 2305 BUG_ON(ret < 0); 2306 btrfs_set_node_key(t, key, tslot); 2307 btrfs_mark_buffer_dirty(path->nodes[i]); 2308 if (tslot != 0) 2309 break; 2310 } 2311 } 2312 2313 /* 2314 * update item key. 2315 * 2316 * This function isn't completely safe. It's the caller's responsibility 2317 * that the new key won't break the order 2318 */ 2319 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2320 struct btrfs_path *path, 2321 const struct btrfs_key *new_key) 2322 { 2323 struct btrfs_disk_key disk_key; 2324 struct extent_buffer *eb; 2325 int slot; 2326 2327 eb = path->nodes[0]; 2328 slot = path->slots[0]; 2329 if (slot > 0) { 2330 btrfs_item_key(eb, &disk_key, slot - 1); 2331 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 2332 btrfs_crit(fs_info, 2333 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2334 slot, btrfs_disk_key_objectid(&disk_key), 2335 btrfs_disk_key_type(&disk_key), 2336 btrfs_disk_key_offset(&disk_key), 2337 new_key->objectid, new_key->type, 2338 new_key->offset); 2339 btrfs_print_leaf(eb); 2340 BUG(); 2341 } 2342 } 2343 if (slot < btrfs_header_nritems(eb) - 1) { 2344 btrfs_item_key(eb, &disk_key, slot + 1); 2345 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 2346 btrfs_crit(fs_info, 2347 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2348 slot, btrfs_disk_key_objectid(&disk_key), 2349 btrfs_disk_key_type(&disk_key), 2350 btrfs_disk_key_offset(&disk_key), 2351 new_key->objectid, new_key->type, 2352 new_key->offset); 2353 btrfs_print_leaf(eb); 2354 BUG(); 2355 } 2356 } 2357 2358 btrfs_cpu_key_to_disk(&disk_key, new_key); 2359 btrfs_set_item_key(eb, &disk_key, slot); 2360 btrfs_mark_buffer_dirty(eb); 2361 if (slot == 0) 2362 fixup_low_keys(path, &disk_key, 1); 2363 } 2364 2365 /* 2366 * Check key order of two sibling extent buffers. 2367 * 2368 * Return true if something is wrong. 2369 * Return false if everything is fine. 2370 * 2371 * Tree-checker only works inside one tree block, thus the following 2372 * corruption can not be detected by tree-checker: 2373 * 2374 * Leaf @left | Leaf @right 2375 * -------------------------------------------------------------- 2376 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | 2377 * 2378 * Key f6 in leaf @left itself is valid, but not valid when the next 2379 * key in leaf @right is 7. 2380 * This can only be checked at tree block merge time. 2381 * And since tree checker has ensured all key order in each tree block 2382 * is correct, we only need to bother the last key of @left and the first 2383 * key of @right. 2384 */ 2385 static bool check_sibling_keys(struct extent_buffer *left, 2386 struct extent_buffer *right) 2387 { 2388 struct btrfs_key left_last; 2389 struct btrfs_key right_first; 2390 int level = btrfs_header_level(left); 2391 int nr_left = btrfs_header_nritems(left); 2392 int nr_right = btrfs_header_nritems(right); 2393 2394 /* No key to check in one of the tree blocks */ 2395 if (!nr_left || !nr_right) 2396 return false; 2397 2398 if (level) { 2399 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); 2400 btrfs_node_key_to_cpu(right, &right_first, 0); 2401 } else { 2402 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); 2403 btrfs_item_key_to_cpu(right, &right_first, 0); 2404 } 2405 2406 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) { 2407 btrfs_crit(left->fs_info, 2408 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", 2409 left_last.objectid, left_last.type, 2410 left_last.offset, right_first.objectid, 2411 right_first.type, right_first.offset); 2412 return true; 2413 } 2414 return false; 2415 } 2416 2417 /* 2418 * try to push data from one node into the next node left in the 2419 * tree. 2420 * 2421 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2422 * error, and > 0 if there was no room in the left hand block. 2423 */ 2424 static int push_node_left(struct btrfs_trans_handle *trans, 2425 struct extent_buffer *dst, 2426 struct extent_buffer *src, int empty) 2427 { 2428 struct btrfs_fs_info *fs_info = trans->fs_info; 2429 int push_items = 0; 2430 int src_nritems; 2431 int dst_nritems; 2432 int ret = 0; 2433 2434 src_nritems = btrfs_header_nritems(src); 2435 dst_nritems = btrfs_header_nritems(dst); 2436 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2437 WARN_ON(btrfs_header_generation(src) != trans->transid); 2438 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2439 2440 if (!empty && src_nritems <= 8) 2441 return 1; 2442 2443 if (push_items <= 0) 2444 return 1; 2445 2446 if (empty) { 2447 push_items = min(src_nritems, push_items); 2448 if (push_items < src_nritems) { 2449 /* leave at least 8 pointers in the node if 2450 * we aren't going to empty it 2451 */ 2452 if (src_nritems - push_items < 8) { 2453 if (push_items <= 8) 2454 return 1; 2455 push_items -= 8; 2456 } 2457 } 2458 } else 2459 push_items = min(src_nritems - 8, push_items); 2460 2461 /* dst is the left eb, src is the middle eb */ 2462 if (check_sibling_keys(dst, src)) { 2463 ret = -EUCLEAN; 2464 btrfs_abort_transaction(trans, ret); 2465 return ret; 2466 } 2467 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 2468 if (ret) { 2469 btrfs_abort_transaction(trans, ret); 2470 return ret; 2471 } 2472 copy_extent_buffer(dst, src, 2473 btrfs_node_key_ptr_offset(dst_nritems), 2474 btrfs_node_key_ptr_offset(0), 2475 push_items * sizeof(struct btrfs_key_ptr)); 2476 2477 if (push_items < src_nritems) { 2478 /* 2479 * Don't call btrfs_tree_mod_log_insert_move() here, key removal 2480 * was already fully logged by btrfs_tree_mod_log_eb_copy() above. 2481 */ 2482 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2483 btrfs_node_key_ptr_offset(push_items), 2484 (src_nritems - push_items) * 2485 sizeof(struct btrfs_key_ptr)); 2486 } 2487 btrfs_set_header_nritems(src, src_nritems - push_items); 2488 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2489 btrfs_mark_buffer_dirty(src); 2490 btrfs_mark_buffer_dirty(dst); 2491 2492 return ret; 2493 } 2494 2495 /* 2496 * try to push data from one node into the next node right in the 2497 * tree. 2498 * 2499 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2500 * error, and > 0 if there was no room in the right hand block. 2501 * 2502 * this will only push up to 1/2 the contents of the left node over 2503 */ 2504 static int balance_node_right(struct btrfs_trans_handle *trans, 2505 struct extent_buffer *dst, 2506 struct extent_buffer *src) 2507 { 2508 struct btrfs_fs_info *fs_info = trans->fs_info; 2509 int push_items = 0; 2510 int max_push; 2511 int src_nritems; 2512 int dst_nritems; 2513 int ret = 0; 2514 2515 WARN_ON(btrfs_header_generation(src) != trans->transid); 2516 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2517 2518 src_nritems = btrfs_header_nritems(src); 2519 dst_nritems = btrfs_header_nritems(dst); 2520 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2521 if (push_items <= 0) 2522 return 1; 2523 2524 if (src_nritems < 4) 2525 return 1; 2526 2527 max_push = src_nritems / 2 + 1; 2528 /* don't try to empty the node */ 2529 if (max_push >= src_nritems) 2530 return 1; 2531 2532 if (max_push < push_items) 2533 push_items = max_push; 2534 2535 /* dst is the right eb, src is the middle eb */ 2536 if (check_sibling_keys(src, dst)) { 2537 ret = -EUCLEAN; 2538 btrfs_abort_transaction(trans, ret); 2539 return ret; 2540 } 2541 ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 2542 BUG_ON(ret < 0); 2543 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2544 btrfs_node_key_ptr_offset(0), 2545 (dst_nritems) * 2546 sizeof(struct btrfs_key_ptr)); 2547 2548 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 2549 push_items); 2550 if (ret) { 2551 btrfs_abort_transaction(trans, ret); 2552 return ret; 2553 } 2554 copy_extent_buffer(dst, src, 2555 btrfs_node_key_ptr_offset(0), 2556 btrfs_node_key_ptr_offset(src_nritems - push_items), 2557 push_items * sizeof(struct btrfs_key_ptr)); 2558 2559 btrfs_set_header_nritems(src, src_nritems - push_items); 2560 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2561 2562 btrfs_mark_buffer_dirty(src); 2563 btrfs_mark_buffer_dirty(dst); 2564 2565 return ret; 2566 } 2567 2568 /* 2569 * helper function to insert a new root level in the tree. 2570 * A new node is allocated, and a single item is inserted to 2571 * point to the existing root 2572 * 2573 * returns zero on success or < 0 on failure. 2574 */ 2575 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2576 struct btrfs_root *root, 2577 struct btrfs_path *path, int level) 2578 { 2579 struct btrfs_fs_info *fs_info = root->fs_info; 2580 u64 lower_gen; 2581 struct extent_buffer *lower; 2582 struct extent_buffer *c; 2583 struct extent_buffer *old; 2584 struct btrfs_disk_key lower_key; 2585 int ret; 2586 2587 BUG_ON(path->nodes[level]); 2588 BUG_ON(path->nodes[level-1] != root->node); 2589 2590 lower = path->nodes[level-1]; 2591 if (level == 1) 2592 btrfs_item_key(lower, &lower_key, 0); 2593 else 2594 btrfs_node_key(lower, &lower_key, 0); 2595 2596 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 2597 &lower_key, level, root->node->start, 0, 2598 BTRFS_NESTING_NEW_ROOT); 2599 if (IS_ERR(c)) 2600 return PTR_ERR(c); 2601 2602 root_add_used(root, fs_info->nodesize); 2603 2604 btrfs_set_header_nritems(c, 1); 2605 btrfs_set_node_key(c, &lower_key, 0); 2606 btrfs_set_node_blockptr(c, 0, lower->start); 2607 lower_gen = btrfs_header_generation(lower); 2608 WARN_ON(lower_gen != trans->transid); 2609 2610 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2611 2612 btrfs_mark_buffer_dirty(c); 2613 2614 old = root->node; 2615 ret = btrfs_tree_mod_log_insert_root(root->node, c, false); 2616 BUG_ON(ret < 0); 2617 rcu_assign_pointer(root->node, c); 2618 2619 /* the super has an extra ref to root->node */ 2620 free_extent_buffer(old); 2621 2622 add_root_to_dirty_list(root); 2623 atomic_inc(&c->refs); 2624 path->nodes[level] = c; 2625 path->locks[level] = BTRFS_WRITE_LOCK; 2626 path->slots[level] = 0; 2627 return 0; 2628 } 2629 2630 /* 2631 * worker function to insert a single pointer in a node. 2632 * the node should have enough room for the pointer already 2633 * 2634 * slot and level indicate where you want the key to go, and 2635 * blocknr is the block the key points to. 2636 */ 2637 static void insert_ptr(struct btrfs_trans_handle *trans, 2638 struct btrfs_path *path, 2639 struct btrfs_disk_key *key, u64 bytenr, 2640 int slot, int level) 2641 { 2642 struct extent_buffer *lower; 2643 int nritems; 2644 int ret; 2645 2646 BUG_ON(!path->nodes[level]); 2647 btrfs_assert_tree_write_locked(path->nodes[level]); 2648 lower = path->nodes[level]; 2649 nritems = btrfs_header_nritems(lower); 2650 BUG_ON(slot > nritems); 2651 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 2652 if (slot != nritems) { 2653 if (level) { 2654 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1, 2655 slot, nritems - slot); 2656 BUG_ON(ret < 0); 2657 } 2658 memmove_extent_buffer(lower, 2659 btrfs_node_key_ptr_offset(slot + 1), 2660 btrfs_node_key_ptr_offset(slot), 2661 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2662 } 2663 if (level) { 2664 ret = btrfs_tree_mod_log_insert_key(lower, slot, 2665 BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS); 2666 BUG_ON(ret < 0); 2667 } 2668 btrfs_set_node_key(lower, key, slot); 2669 btrfs_set_node_blockptr(lower, slot, bytenr); 2670 WARN_ON(trans->transid == 0); 2671 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2672 btrfs_set_header_nritems(lower, nritems + 1); 2673 btrfs_mark_buffer_dirty(lower); 2674 } 2675 2676 /* 2677 * split the node at the specified level in path in two. 2678 * The path is corrected to point to the appropriate node after the split 2679 * 2680 * Before splitting this tries to make some room in the node by pushing 2681 * left and right, if either one works, it returns right away. 2682 * 2683 * returns 0 on success and < 0 on failure 2684 */ 2685 static noinline int split_node(struct btrfs_trans_handle *trans, 2686 struct btrfs_root *root, 2687 struct btrfs_path *path, int level) 2688 { 2689 struct btrfs_fs_info *fs_info = root->fs_info; 2690 struct extent_buffer *c; 2691 struct extent_buffer *split; 2692 struct btrfs_disk_key disk_key; 2693 int mid; 2694 int ret; 2695 u32 c_nritems; 2696 2697 c = path->nodes[level]; 2698 WARN_ON(btrfs_header_generation(c) != trans->transid); 2699 if (c == root->node) { 2700 /* 2701 * trying to split the root, lets make a new one 2702 * 2703 * tree mod log: We don't log_removal old root in 2704 * insert_new_root, because that root buffer will be kept as a 2705 * normal node. We are going to log removal of half of the 2706 * elements below with btrfs_tree_mod_log_eb_copy(). We're 2707 * holding a tree lock on the buffer, which is why we cannot 2708 * race with other tree_mod_log users. 2709 */ 2710 ret = insert_new_root(trans, root, path, level + 1); 2711 if (ret) 2712 return ret; 2713 } else { 2714 ret = push_nodes_for_insert(trans, root, path, level); 2715 c = path->nodes[level]; 2716 if (!ret && btrfs_header_nritems(c) < 2717 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 2718 return 0; 2719 if (ret < 0) 2720 return ret; 2721 } 2722 2723 c_nritems = btrfs_header_nritems(c); 2724 mid = (c_nritems + 1) / 2; 2725 btrfs_node_key(c, &disk_key, mid); 2726 2727 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 2728 &disk_key, level, c->start, 0, 2729 BTRFS_NESTING_SPLIT); 2730 if (IS_ERR(split)) 2731 return PTR_ERR(split); 2732 2733 root_add_used(root, fs_info->nodesize); 2734 ASSERT(btrfs_header_level(c) == level); 2735 2736 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 2737 if (ret) { 2738 btrfs_abort_transaction(trans, ret); 2739 return ret; 2740 } 2741 copy_extent_buffer(split, c, 2742 btrfs_node_key_ptr_offset(0), 2743 btrfs_node_key_ptr_offset(mid), 2744 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2745 btrfs_set_header_nritems(split, c_nritems - mid); 2746 btrfs_set_header_nritems(c, mid); 2747 2748 btrfs_mark_buffer_dirty(c); 2749 btrfs_mark_buffer_dirty(split); 2750 2751 insert_ptr(trans, path, &disk_key, split->start, 2752 path->slots[level + 1] + 1, level + 1); 2753 2754 if (path->slots[level] >= mid) { 2755 path->slots[level] -= mid; 2756 btrfs_tree_unlock(c); 2757 free_extent_buffer(c); 2758 path->nodes[level] = split; 2759 path->slots[level + 1] += 1; 2760 } else { 2761 btrfs_tree_unlock(split); 2762 free_extent_buffer(split); 2763 } 2764 return 0; 2765 } 2766 2767 /* 2768 * how many bytes are required to store the items in a leaf. start 2769 * and nr indicate which items in the leaf to check. This totals up the 2770 * space used both by the item structs and the item data 2771 */ 2772 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2773 { 2774 int data_len; 2775 int nritems = btrfs_header_nritems(l); 2776 int end = min(nritems, start + nr) - 1; 2777 2778 if (!nr) 2779 return 0; 2780 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start); 2781 data_len = data_len - btrfs_item_offset(l, end); 2782 data_len += sizeof(struct btrfs_item) * nr; 2783 WARN_ON(data_len < 0); 2784 return data_len; 2785 } 2786 2787 /* 2788 * The space between the end of the leaf items and 2789 * the start of the leaf data. IOW, how much room 2790 * the leaf has left for both items and data 2791 */ 2792 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 2793 { 2794 struct btrfs_fs_info *fs_info = leaf->fs_info; 2795 int nritems = btrfs_header_nritems(leaf); 2796 int ret; 2797 2798 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 2799 if (ret < 0) { 2800 btrfs_crit(fs_info, 2801 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 2802 ret, 2803 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 2804 leaf_space_used(leaf, 0, nritems), nritems); 2805 } 2806 return ret; 2807 } 2808 2809 /* 2810 * min slot controls the lowest index we're willing to push to the 2811 * right. We'll push up to and including min_slot, but no lower 2812 */ 2813 static noinline int __push_leaf_right(struct btrfs_path *path, 2814 int data_size, int empty, 2815 struct extent_buffer *right, 2816 int free_space, u32 left_nritems, 2817 u32 min_slot) 2818 { 2819 struct btrfs_fs_info *fs_info = right->fs_info; 2820 struct extent_buffer *left = path->nodes[0]; 2821 struct extent_buffer *upper = path->nodes[1]; 2822 struct btrfs_map_token token; 2823 struct btrfs_disk_key disk_key; 2824 int slot; 2825 u32 i; 2826 int push_space = 0; 2827 int push_items = 0; 2828 u32 nr; 2829 u32 right_nritems; 2830 u32 data_end; 2831 u32 this_item_size; 2832 2833 if (empty) 2834 nr = 0; 2835 else 2836 nr = max_t(u32, 1, min_slot); 2837 2838 if (path->slots[0] >= left_nritems) 2839 push_space += data_size; 2840 2841 slot = path->slots[1]; 2842 i = left_nritems - 1; 2843 while (i >= nr) { 2844 if (!empty && push_items > 0) { 2845 if (path->slots[0] > i) 2846 break; 2847 if (path->slots[0] == i) { 2848 int space = btrfs_leaf_free_space(left); 2849 2850 if (space + push_space * 2 > free_space) 2851 break; 2852 } 2853 } 2854 2855 if (path->slots[0] == i) 2856 push_space += data_size; 2857 2858 this_item_size = btrfs_item_size(left, i); 2859 if (this_item_size + sizeof(struct btrfs_item) + 2860 push_space > free_space) 2861 break; 2862 2863 push_items++; 2864 push_space += this_item_size + sizeof(struct btrfs_item); 2865 if (i == 0) 2866 break; 2867 i--; 2868 } 2869 2870 if (push_items == 0) 2871 goto out_unlock; 2872 2873 WARN_ON(!empty && push_items == left_nritems); 2874 2875 /* push left to right */ 2876 right_nritems = btrfs_header_nritems(right); 2877 2878 push_space = btrfs_item_data_end(left, left_nritems - push_items); 2879 push_space -= leaf_data_end(left); 2880 2881 /* make room in the right data area */ 2882 data_end = leaf_data_end(right); 2883 memmove_extent_buffer(right, 2884 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 2885 BTRFS_LEAF_DATA_OFFSET + data_end, 2886 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 2887 2888 /* copy from the left data area */ 2889 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 2890 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 2891 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 2892 push_space); 2893 2894 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2895 btrfs_item_nr_offset(0), 2896 right_nritems * sizeof(struct btrfs_item)); 2897 2898 /* copy the items from left to right */ 2899 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2900 btrfs_item_nr_offset(left_nritems - push_items), 2901 push_items * sizeof(struct btrfs_item)); 2902 2903 /* update the item pointers */ 2904 btrfs_init_map_token(&token, right); 2905 right_nritems += push_items; 2906 btrfs_set_header_nritems(right, right_nritems); 2907 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 2908 for (i = 0; i < right_nritems; i++) { 2909 push_space -= btrfs_token_item_size(&token, i); 2910 btrfs_set_token_item_offset(&token, i, push_space); 2911 } 2912 2913 left_nritems -= push_items; 2914 btrfs_set_header_nritems(left, left_nritems); 2915 2916 if (left_nritems) 2917 btrfs_mark_buffer_dirty(left); 2918 else 2919 btrfs_clean_tree_block(left); 2920 2921 btrfs_mark_buffer_dirty(right); 2922 2923 btrfs_item_key(right, &disk_key, 0); 2924 btrfs_set_node_key(upper, &disk_key, slot + 1); 2925 btrfs_mark_buffer_dirty(upper); 2926 2927 /* then fixup the leaf pointer in the path */ 2928 if (path->slots[0] >= left_nritems) { 2929 path->slots[0] -= left_nritems; 2930 if (btrfs_header_nritems(path->nodes[0]) == 0) 2931 btrfs_clean_tree_block(path->nodes[0]); 2932 btrfs_tree_unlock(path->nodes[0]); 2933 free_extent_buffer(path->nodes[0]); 2934 path->nodes[0] = right; 2935 path->slots[1] += 1; 2936 } else { 2937 btrfs_tree_unlock(right); 2938 free_extent_buffer(right); 2939 } 2940 return 0; 2941 2942 out_unlock: 2943 btrfs_tree_unlock(right); 2944 free_extent_buffer(right); 2945 return 1; 2946 } 2947 2948 /* 2949 * push some data in the path leaf to the right, trying to free up at 2950 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2951 * 2952 * returns 1 if the push failed because the other node didn't have enough 2953 * room, 0 if everything worked out and < 0 if there were major errors. 2954 * 2955 * this will push starting from min_slot to the end of the leaf. It won't 2956 * push any slot lower than min_slot 2957 */ 2958 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2959 *root, struct btrfs_path *path, 2960 int min_data_size, int data_size, 2961 int empty, u32 min_slot) 2962 { 2963 struct extent_buffer *left = path->nodes[0]; 2964 struct extent_buffer *right; 2965 struct extent_buffer *upper; 2966 int slot; 2967 int free_space; 2968 u32 left_nritems; 2969 int ret; 2970 2971 if (!path->nodes[1]) 2972 return 1; 2973 2974 slot = path->slots[1]; 2975 upper = path->nodes[1]; 2976 if (slot >= btrfs_header_nritems(upper) - 1) 2977 return 1; 2978 2979 btrfs_assert_tree_write_locked(path->nodes[1]); 2980 2981 right = btrfs_read_node_slot(upper, slot + 1); 2982 /* 2983 * slot + 1 is not valid or we fail to read the right node, 2984 * no big deal, just return. 2985 */ 2986 if (IS_ERR(right)) 2987 return 1; 2988 2989 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 2990 2991 free_space = btrfs_leaf_free_space(right); 2992 if (free_space < data_size) 2993 goto out_unlock; 2994 2995 ret = btrfs_cow_block(trans, root, right, upper, 2996 slot + 1, &right, BTRFS_NESTING_RIGHT_COW); 2997 if (ret) 2998 goto out_unlock; 2999 3000 left_nritems = btrfs_header_nritems(left); 3001 if (left_nritems == 0) 3002 goto out_unlock; 3003 3004 if (check_sibling_keys(left, right)) { 3005 ret = -EUCLEAN; 3006 btrfs_tree_unlock(right); 3007 free_extent_buffer(right); 3008 return ret; 3009 } 3010 if (path->slots[0] == left_nritems && !empty) { 3011 /* Key greater than all keys in the leaf, right neighbor has 3012 * enough room for it and we're not emptying our leaf to delete 3013 * it, therefore use right neighbor to insert the new item and 3014 * no need to touch/dirty our left leaf. */ 3015 btrfs_tree_unlock(left); 3016 free_extent_buffer(left); 3017 path->nodes[0] = right; 3018 path->slots[0] = 0; 3019 path->slots[1]++; 3020 return 0; 3021 } 3022 3023 return __push_leaf_right(path, min_data_size, empty, 3024 right, free_space, left_nritems, min_slot); 3025 out_unlock: 3026 btrfs_tree_unlock(right); 3027 free_extent_buffer(right); 3028 return 1; 3029 } 3030 3031 /* 3032 * push some data in the path leaf to the left, trying to free up at 3033 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3034 * 3035 * max_slot can put a limit on how far into the leaf we'll push items. The 3036 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3037 * items 3038 */ 3039 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 3040 int empty, struct extent_buffer *left, 3041 int free_space, u32 right_nritems, 3042 u32 max_slot) 3043 { 3044 struct btrfs_fs_info *fs_info = left->fs_info; 3045 struct btrfs_disk_key disk_key; 3046 struct extent_buffer *right = path->nodes[0]; 3047 int i; 3048 int push_space = 0; 3049 int push_items = 0; 3050 u32 old_left_nritems; 3051 u32 nr; 3052 int ret = 0; 3053 u32 this_item_size; 3054 u32 old_left_item_size; 3055 struct btrfs_map_token token; 3056 3057 if (empty) 3058 nr = min(right_nritems, max_slot); 3059 else 3060 nr = min(right_nritems - 1, max_slot); 3061 3062 for (i = 0; i < nr; i++) { 3063 if (!empty && push_items > 0) { 3064 if (path->slots[0] < i) 3065 break; 3066 if (path->slots[0] == i) { 3067 int space = btrfs_leaf_free_space(right); 3068 3069 if (space + push_space * 2 > free_space) 3070 break; 3071 } 3072 } 3073 3074 if (path->slots[0] == i) 3075 push_space += data_size; 3076 3077 this_item_size = btrfs_item_size(right, i); 3078 if (this_item_size + sizeof(struct btrfs_item) + push_space > 3079 free_space) 3080 break; 3081 3082 push_items++; 3083 push_space += this_item_size + sizeof(struct btrfs_item); 3084 } 3085 3086 if (push_items == 0) { 3087 ret = 1; 3088 goto out; 3089 } 3090 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3091 3092 /* push data from right to left */ 3093 copy_extent_buffer(left, right, 3094 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3095 btrfs_item_nr_offset(0), 3096 push_items * sizeof(struct btrfs_item)); 3097 3098 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3099 btrfs_item_offset(right, push_items - 1); 3100 3101 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3102 leaf_data_end(left) - push_space, 3103 BTRFS_LEAF_DATA_OFFSET + 3104 btrfs_item_offset(right, push_items - 1), 3105 push_space); 3106 old_left_nritems = btrfs_header_nritems(left); 3107 BUG_ON(old_left_nritems <= 0); 3108 3109 btrfs_init_map_token(&token, left); 3110 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1); 3111 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3112 u32 ioff; 3113 3114 ioff = btrfs_token_item_offset(&token, i); 3115 btrfs_set_token_item_offset(&token, i, 3116 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 3117 } 3118 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3119 3120 /* fixup right node */ 3121 if (push_items > right_nritems) 3122 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3123 right_nritems); 3124 3125 if (push_items < right_nritems) { 3126 push_space = btrfs_item_offset(right, push_items - 1) - 3127 leaf_data_end(right); 3128 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3129 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3130 BTRFS_LEAF_DATA_OFFSET + 3131 leaf_data_end(right), push_space); 3132 3133 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3134 btrfs_item_nr_offset(push_items), 3135 (btrfs_header_nritems(right) - push_items) * 3136 sizeof(struct btrfs_item)); 3137 } 3138 3139 btrfs_init_map_token(&token, right); 3140 right_nritems -= push_items; 3141 btrfs_set_header_nritems(right, right_nritems); 3142 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3143 for (i = 0; i < right_nritems; i++) { 3144 push_space = push_space - btrfs_token_item_size(&token, i); 3145 btrfs_set_token_item_offset(&token, i, push_space); 3146 } 3147 3148 btrfs_mark_buffer_dirty(left); 3149 if (right_nritems) 3150 btrfs_mark_buffer_dirty(right); 3151 else 3152 btrfs_clean_tree_block(right); 3153 3154 btrfs_item_key(right, &disk_key, 0); 3155 fixup_low_keys(path, &disk_key, 1); 3156 3157 /* then fixup the leaf pointer in the path */ 3158 if (path->slots[0] < push_items) { 3159 path->slots[0] += old_left_nritems; 3160 btrfs_tree_unlock(path->nodes[0]); 3161 free_extent_buffer(path->nodes[0]); 3162 path->nodes[0] = left; 3163 path->slots[1] -= 1; 3164 } else { 3165 btrfs_tree_unlock(left); 3166 free_extent_buffer(left); 3167 path->slots[0] -= push_items; 3168 } 3169 BUG_ON(path->slots[0] < 0); 3170 return ret; 3171 out: 3172 btrfs_tree_unlock(left); 3173 free_extent_buffer(left); 3174 return ret; 3175 } 3176 3177 /* 3178 * push some data in the path leaf to the left, trying to free up at 3179 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3180 * 3181 * max_slot can put a limit on how far into the leaf we'll push items. The 3182 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3183 * items 3184 */ 3185 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3186 *root, struct btrfs_path *path, int min_data_size, 3187 int data_size, int empty, u32 max_slot) 3188 { 3189 struct extent_buffer *right = path->nodes[0]; 3190 struct extent_buffer *left; 3191 int slot; 3192 int free_space; 3193 u32 right_nritems; 3194 int ret = 0; 3195 3196 slot = path->slots[1]; 3197 if (slot == 0) 3198 return 1; 3199 if (!path->nodes[1]) 3200 return 1; 3201 3202 right_nritems = btrfs_header_nritems(right); 3203 if (right_nritems == 0) 3204 return 1; 3205 3206 btrfs_assert_tree_write_locked(path->nodes[1]); 3207 3208 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3209 /* 3210 * slot - 1 is not valid or we fail to read the left node, 3211 * no big deal, just return. 3212 */ 3213 if (IS_ERR(left)) 3214 return 1; 3215 3216 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 3217 3218 free_space = btrfs_leaf_free_space(left); 3219 if (free_space < data_size) { 3220 ret = 1; 3221 goto out; 3222 } 3223 3224 ret = btrfs_cow_block(trans, root, left, 3225 path->nodes[1], slot - 1, &left, 3226 BTRFS_NESTING_LEFT_COW); 3227 if (ret) { 3228 /* we hit -ENOSPC, but it isn't fatal here */ 3229 if (ret == -ENOSPC) 3230 ret = 1; 3231 goto out; 3232 } 3233 3234 if (check_sibling_keys(left, right)) { 3235 ret = -EUCLEAN; 3236 goto out; 3237 } 3238 return __push_leaf_left(path, min_data_size, 3239 empty, left, free_space, right_nritems, 3240 max_slot); 3241 out: 3242 btrfs_tree_unlock(left); 3243 free_extent_buffer(left); 3244 return ret; 3245 } 3246 3247 /* 3248 * split the path's leaf in two, making sure there is at least data_size 3249 * available for the resulting leaf level of the path. 3250 */ 3251 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3252 struct btrfs_path *path, 3253 struct extent_buffer *l, 3254 struct extent_buffer *right, 3255 int slot, int mid, int nritems) 3256 { 3257 struct btrfs_fs_info *fs_info = trans->fs_info; 3258 int data_copy_size; 3259 int rt_data_off; 3260 int i; 3261 struct btrfs_disk_key disk_key; 3262 struct btrfs_map_token token; 3263 3264 nritems = nritems - mid; 3265 btrfs_set_header_nritems(right, nritems); 3266 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l); 3267 3268 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3269 btrfs_item_nr_offset(mid), 3270 nritems * sizeof(struct btrfs_item)); 3271 3272 copy_extent_buffer(right, l, 3273 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 3274 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 3275 leaf_data_end(l), data_copy_size); 3276 3277 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid); 3278 3279 btrfs_init_map_token(&token, right); 3280 for (i = 0; i < nritems; i++) { 3281 u32 ioff; 3282 3283 ioff = btrfs_token_item_offset(&token, i); 3284 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off); 3285 } 3286 3287 btrfs_set_header_nritems(l, mid); 3288 btrfs_item_key(right, &disk_key, 0); 3289 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 3290 3291 btrfs_mark_buffer_dirty(right); 3292 btrfs_mark_buffer_dirty(l); 3293 BUG_ON(path->slots[0] != slot); 3294 3295 if (mid <= slot) { 3296 btrfs_tree_unlock(path->nodes[0]); 3297 free_extent_buffer(path->nodes[0]); 3298 path->nodes[0] = right; 3299 path->slots[0] -= mid; 3300 path->slots[1] += 1; 3301 } else { 3302 btrfs_tree_unlock(right); 3303 free_extent_buffer(right); 3304 } 3305 3306 BUG_ON(path->slots[0] < 0); 3307 } 3308 3309 /* 3310 * double splits happen when we need to insert a big item in the middle 3311 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3312 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3313 * A B C 3314 * 3315 * We avoid this by trying to push the items on either side of our target 3316 * into the adjacent leaves. If all goes well we can avoid the double split 3317 * completely. 3318 */ 3319 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3320 struct btrfs_root *root, 3321 struct btrfs_path *path, 3322 int data_size) 3323 { 3324 int ret; 3325 int progress = 0; 3326 int slot; 3327 u32 nritems; 3328 int space_needed = data_size; 3329 3330 slot = path->slots[0]; 3331 if (slot < btrfs_header_nritems(path->nodes[0])) 3332 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3333 3334 /* 3335 * try to push all the items after our slot into the 3336 * right leaf 3337 */ 3338 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 3339 if (ret < 0) 3340 return ret; 3341 3342 if (ret == 0) 3343 progress++; 3344 3345 nritems = btrfs_header_nritems(path->nodes[0]); 3346 /* 3347 * our goal is to get our slot at the start or end of a leaf. If 3348 * we've done so we're done 3349 */ 3350 if (path->slots[0] == 0 || path->slots[0] == nritems) 3351 return 0; 3352 3353 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3354 return 0; 3355 3356 /* try to push all the items before our slot into the next leaf */ 3357 slot = path->slots[0]; 3358 space_needed = data_size; 3359 if (slot > 0) 3360 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3361 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 3362 if (ret < 0) 3363 return ret; 3364 3365 if (ret == 0) 3366 progress++; 3367 3368 if (progress) 3369 return 0; 3370 return 1; 3371 } 3372 3373 /* 3374 * split the path's leaf in two, making sure there is at least data_size 3375 * available for the resulting leaf level of the path. 3376 * 3377 * returns 0 if all went well and < 0 on failure. 3378 */ 3379 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3380 struct btrfs_root *root, 3381 const struct btrfs_key *ins_key, 3382 struct btrfs_path *path, int data_size, 3383 int extend) 3384 { 3385 struct btrfs_disk_key disk_key; 3386 struct extent_buffer *l; 3387 u32 nritems; 3388 int mid; 3389 int slot; 3390 struct extent_buffer *right; 3391 struct btrfs_fs_info *fs_info = root->fs_info; 3392 int ret = 0; 3393 int wret; 3394 int split; 3395 int num_doubles = 0; 3396 int tried_avoid_double = 0; 3397 3398 l = path->nodes[0]; 3399 slot = path->slots[0]; 3400 if (extend && data_size + btrfs_item_size(l, slot) + 3401 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 3402 return -EOVERFLOW; 3403 3404 /* first try to make some room by pushing left and right */ 3405 if (data_size && path->nodes[1]) { 3406 int space_needed = data_size; 3407 3408 if (slot < btrfs_header_nritems(l)) 3409 space_needed -= btrfs_leaf_free_space(l); 3410 3411 wret = push_leaf_right(trans, root, path, space_needed, 3412 space_needed, 0, 0); 3413 if (wret < 0) 3414 return wret; 3415 if (wret) { 3416 space_needed = data_size; 3417 if (slot > 0) 3418 space_needed -= btrfs_leaf_free_space(l); 3419 wret = push_leaf_left(trans, root, path, space_needed, 3420 space_needed, 0, (u32)-1); 3421 if (wret < 0) 3422 return wret; 3423 } 3424 l = path->nodes[0]; 3425 3426 /* did the pushes work? */ 3427 if (btrfs_leaf_free_space(l) >= data_size) 3428 return 0; 3429 } 3430 3431 if (!path->nodes[1]) { 3432 ret = insert_new_root(trans, root, path, 1); 3433 if (ret) 3434 return ret; 3435 } 3436 again: 3437 split = 1; 3438 l = path->nodes[0]; 3439 slot = path->slots[0]; 3440 nritems = btrfs_header_nritems(l); 3441 mid = (nritems + 1) / 2; 3442 3443 if (mid <= slot) { 3444 if (nritems == 1 || 3445 leaf_space_used(l, mid, nritems - mid) + data_size > 3446 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3447 if (slot >= nritems) { 3448 split = 0; 3449 } else { 3450 mid = slot; 3451 if (mid != nritems && 3452 leaf_space_used(l, mid, nritems - mid) + 3453 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3454 if (data_size && !tried_avoid_double) 3455 goto push_for_double; 3456 split = 2; 3457 } 3458 } 3459 } 3460 } else { 3461 if (leaf_space_used(l, 0, mid) + data_size > 3462 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3463 if (!extend && data_size && slot == 0) { 3464 split = 0; 3465 } else if ((extend || !data_size) && slot == 0) { 3466 mid = 1; 3467 } else { 3468 mid = slot; 3469 if (mid != nritems && 3470 leaf_space_used(l, mid, nritems - mid) + 3471 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3472 if (data_size && !tried_avoid_double) 3473 goto push_for_double; 3474 split = 2; 3475 } 3476 } 3477 } 3478 } 3479 3480 if (split == 0) 3481 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3482 else 3483 btrfs_item_key(l, &disk_key, mid); 3484 3485 /* 3486 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double 3487 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES 3488 * subclasses, which is 8 at the time of this patch, and we've maxed it 3489 * out. In the future we could add a 3490 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just 3491 * use BTRFS_NESTING_NEW_ROOT. 3492 */ 3493 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3494 &disk_key, 0, l->start, 0, 3495 num_doubles ? BTRFS_NESTING_NEW_ROOT : 3496 BTRFS_NESTING_SPLIT); 3497 if (IS_ERR(right)) 3498 return PTR_ERR(right); 3499 3500 root_add_used(root, fs_info->nodesize); 3501 3502 if (split == 0) { 3503 if (mid <= slot) { 3504 btrfs_set_header_nritems(right, 0); 3505 insert_ptr(trans, path, &disk_key, 3506 right->start, path->slots[1] + 1, 1); 3507 btrfs_tree_unlock(path->nodes[0]); 3508 free_extent_buffer(path->nodes[0]); 3509 path->nodes[0] = right; 3510 path->slots[0] = 0; 3511 path->slots[1] += 1; 3512 } else { 3513 btrfs_set_header_nritems(right, 0); 3514 insert_ptr(trans, path, &disk_key, 3515 right->start, path->slots[1], 1); 3516 btrfs_tree_unlock(path->nodes[0]); 3517 free_extent_buffer(path->nodes[0]); 3518 path->nodes[0] = right; 3519 path->slots[0] = 0; 3520 if (path->slots[1] == 0) 3521 fixup_low_keys(path, &disk_key, 1); 3522 } 3523 /* 3524 * We create a new leaf 'right' for the required ins_len and 3525 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 3526 * the content of ins_len to 'right'. 3527 */ 3528 return ret; 3529 } 3530 3531 copy_for_split(trans, path, l, right, slot, mid, nritems); 3532 3533 if (split == 2) { 3534 BUG_ON(num_doubles != 0); 3535 num_doubles++; 3536 goto again; 3537 } 3538 3539 return 0; 3540 3541 push_for_double: 3542 push_for_double_split(trans, root, path, data_size); 3543 tried_avoid_double = 1; 3544 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3545 return 0; 3546 goto again; 3547 } 3548 3549 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3550 struct btrfs_root *root, 3551 struct btrfs_path *path, int ins_len) 3552 { 3553 struct btrfs_key key; 3554 struct extent_buffer *leaf; 3555 struct btrfs_file_extent_item *fi; 3556 u64 extent_len = 0; 3557 u32 item_size; 3558 int ret; 3559 3560 leaf = path->nodes[0]; 3561 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3562 3563 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3564 key.type != BTRFS_EXTENT_CSUM_KEY); 3565 3566 if (btrfs_leaf_free_space(leaf) >= ins_len) 3567 return 0; 3568 3569 item_size = btrfs_item_size(leaf, path->slots[0]); 3570 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3571 fi = btrfs_item_ptr(leaf, path->slots[0], 3572 struct btrfs_file_extent_item); 3573 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3574 } 3575 btrfs_release_path(path); 3576 3577 path->keep_locks = 1; 3578 path->search_for_split = 1; 3579 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3580 path->search_for_split = 0; 3581 if (ret > 0) 3582 ret = -EAGAIN; 3583 if (ret < 0) 3584 goto err; 3585 3586 ret = -EAGAIN; 3587 leaf = path->nodes[0]; 3588 /* if our item isn't there, return now */ 3589 if (item_size != btrfs_item_size(leaf, path->slots[0])) 3590 goto err; 3591 3592 /* the leaf has changed, it now has room. return now */ 3593 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 3594 goto err; 3595 3596 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3597 fi = btrfs_item_ptr(leaf, path->slots[0], 3598 struct btrfs_file_extent_item); 3599 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3600 goto err; 3601 } 3602 3603 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3604 if (ret) 3605 goto err; 3606 3607 path->keep_locks = 0; 3608 btrfs_unlock_up_safe(path, 1); 3609 return 0; 3610 err: 3611 path->keep_locks = 0; 3612 return ret; 3613 } 3614 3615 static noinline int split_item(struct btrfs_path *path, 3616 const struct btrfs_key *new_key, 3617 unsigned long split_offset) 3618 { 3619 struct extent_buffer *leaf; 3620 int orig_slot, slot; 3621 char *buf; 3622 u32 nritems; 3623 u32 item_size; 3624 u32 orig_offset; 3625 struct btrfs_disk_key disk_key; 3626 3627 leaf = path->nodes[0]; 3628 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 3629 3630 orig_slot = path->slots[0]; 3631 orig_offset = btrfs_item_offset(leaf, path->slots[0]); 3632 item_size = btrfs_item_size(leaf, path->slots[0]); 3633 3634 buf = kmalloc(item_size, GFP_NOFS); 3635 if (!buf) 3636 return -ENOMEM; 3637 3638 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3639 path->slots[0]), item_size); 3640 3641 slot = path->slots[0] + 1; 3642 nritems = btrfs_header_nritems(leaf); 3643 if (slot != nritems) { 3644 /* shift the items */ 3645 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3646 btrfs_item_nr_offset(slot), 3647 (nritems - slot) * sizeof(struct btrfs_item)); 3648 } 3649 3650 btrfs_cpu_key_to_disk(&disk_key, new_key); 3651 btrfs_set_item_key(leaf, &disk_key, slot); 3652 3653 btrfs_set_item_offset(leaf, slot, orig_offset); 3654 btrfs_set_item_size(leaf, slot, item_size - split_offset); 3655 3656 btrfs_set_item_offset(leaf, orig_slot, 3657 orig_offset + item_size - split_offset); 3658 btrfs_set_item_size(leaf, orig_slot, split_offset); 3659 3660 btrfs_set_header_nritems(leaf, nritems + 1); 3661 3662 /* write the data for the start of the original item */ 3663 write_extent_buffer(leaf, buf, 3664 btrfs_item_ptr_offset(leaf, path->slots[0]), 3665 split_offset); 3666 3667 /* write the data for the new item */ 3668 write_extent_buffer(leaf, buf + split_offset, 3669 btrfs_item_ptr_offset(leaf, slot), 3670 item_size - split_offset); 3671 btrfs_mark_buffer_dirty(leaf); 3672 3673 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 3674 kfree(buf); 3675 return 0; 3676 } 3677 3678 /* 3679 * This function splits a single item into two items, 3680 * giving 'new_key' to the new item and splitting the 3681 * old one at split_offset (from the start of the item). 3682 * 3683 * The path may be released by this operation. After 3684 * the split, the path is pointing to the old item. The 3685 * new item is going to be in the same node as the old one. 3686 * 3687 * Note, the item being split must be smaller enough to live alone on 3688 * a tree block with room for one extra struct btrfs_item 3689 * 3690 * This allows us to split the item in place, keeping a lock on the 3691 * leaf the entire time. 3692 */ 3693 int btrfs_split_item(struct btrfs_trans_handle *trans, 3694 struct btrfs_root *root, 3695 struct btrfs_path *path, 3696 const struct btrfs_key *new_key, 3697 unsigned long split_offset) 3698 { 3699 int ret; 3700 ret = setup_leaf_for_split(trans, root, path, 3701 sizeof(struct btrfs_item)); 3702 if (ret) 3703 return ret; 3704 3705 ret = split_item(path, new_key, split_offset); 3706 return ret; 3707 } 3708 3709 /* 3710 * make the item pointed to by the path smaller. new_size indicates 3711 * how small to make it, and from_end tells us if we just chop bytes 3712 * off the end of the item or if we shift the item to chop bytes off 3713 * the front. 3714 */ 3715 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 3716 { 3717 int slot; 3718 struct extent_buffer *leaf; 3719 u32 nritems; 3720 unsigned int data_end; 3721 unsigned int old_data_start; 3722 unsigned int old_size; 3723 unsigned int size_diff; 3724 int i; 3725 struct btrfs_map_token token; 3726 3727 leaf = path->nodes[0]; 3728 slot = path->slots[0]; 3729 3730 old_size = btrfs_item_size(leaf, slot); 3731 if (old_size == new_size) 3732 return; 3733 3734 nritems = btrfs_header_nritems(leaf); 3735 data_end = leaf_data_end(leaf); 3736 3737 old_data_start = btrfs_item_offset(leaf, slot); 3738 3739 size_diff = old_size - new_size; 3740 3741 BUG_ON(slot < 0); 3742 BUG_ON(slot >= nritems); 3743 3744 /* 3745 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3746 */ 3747 /* first correct the data pointers */ 3748 btrfs_init_map_token(&token, leaf); 3749 for (i = slot; i < nritems; i++) { 3750 u32 ioff; 3751 3752 ioff = btrfs_token_item_offset(&token, i); 3753 btrfs_set_token_item_offset(&token, i, ioff + size_diff); 3754 } 3755 3756 /* shift the data */ 3757 if (from_end) { 3758 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3759 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 3760 data_end, old_data_start + new_size - data_end); 3761 } else { 3762 struct btrfs_disk_key disk_key; 3763 u64 offset; 3764 3765 btrfs_item_key(leaf, &disk_key, slot); 3766 3767 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3768 unsigned long ptr; 3769 struct btrfs_file_extent_item *fi; 3770 3771 fi = btrfs_item_ptr(leaf, slot, 3772 struct btrfs_file_extent_item); 3773 fi = (struct btrfs_file_extent_item *)( 3774 (unsigned long)fi - size_diff); 3775 3776 if (btrfs_file_extent_type(leaf, fi) == 3777 BTRFS_FILE_EXTENT_INLINE) { 3778 ptr = btrfs_item_ptr_offset(leaf, slot); 3779 memmove_extent_buffer(leaf, ptr, 3780 (unsigned long)fi, 3781 BTRFS_FILE_EXTENT_INLINE_DATA_START); 3782 } 3783 } 3784 3785 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3786 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 3787 data_end, old_data_start - data_end); 3788 3789 offset = btrfs_disk_key_offset(&disk_key); 3790 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3791 btrfs_set_item_key(leaf, &disk_key, slot); 3792 if (slot == 0) 3793 fixup_low_keys(path, &disk_key, 1); 3794 } 3795 3796 btrfs_set_item_size(leaf, slot, new_size); 3797 btrfs_mark_buffer_dirty(leaf); 3798 3799 if (btrfs_leaf_free_space(leaf) < 0) { 3800 btrfs_print_leaf(leaf); 3801 BUG(); 3802 } 3803 } 3804 3805 /* 3806 * make the item pointed to by the path bigger, data_size is the added size. 3807 */ 3808 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 3809 { 3810 int slot; 3811 struct extent_buffer *leaf; 3812 u32 nritems; 3813 unsigned int data_end; 3814 unsigned int old_data; 3815 unsigned int old_size; 3816 int i; 3817 struct btrfs_map_token token; 3818 3819 leaf = path->nodes[0]; 3820 3821 nritems = btrfs_header_nritems(leaf); 3822 data_end = leaf_data_end(leaf); 3823 3824 if (btrfs_leaf_free_space(leaf) < data_size) { 3825 btrfs_print_leaf(leaf); 3826 BUG(); 3827 } 3828 slot = path->slots[0]; 3829 old_data = btrfs_item_data_end(leaf, slot); 3830 3831 BUG_ON(slot < 0); 3832 if (slot >= nritems) { 3833 btrfs_print_leaf(leaf); 3834 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 3835 slot, nritems); 3836 BUG(); 3837 } 3838 3839 /* 3840 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3841 */ 3842 /* first correct the data pointers */ 3843 btrfs_init_map_token(&token, leaf); 3844 for (i = slot; i < nritems; i++) { 3845 u32 ioff; 3846 3847 ioff = btrfs_token_item_offset(&token, i); 3848 btrfs_set_token_item_offset(&token, i, ioff - data_size); 3849 } 3850 3851 /* shift the data */ 3852 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3853 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 3854 data_end, old_data - data_end); 3855 3856 data_end = old_data; 3857 old_size = btrfs_item_size(leaf, slot); 3858 btrfs_set_item_size(leaf, slot, old_size + data_size); 3859 btrfs_mark_buffer_dirty(leaf); 3860 3861 if (btrfs_leaf_free_space(leaf) < 0) { 3862 btrfs_print_leaf(leaf); 3863 BUG(); 3864 } 3865 } 3866 3867 /** 3868 * setup_items_for_insert - Helper called before inserting one or more items 3869 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work 3870 * in a function that doesn't call btrfs_search_slot 3871 * 3872 * @root: root we are inserting items to 3873 * @path: points to the leaf/slot where we are going to insert new items 3874 * @batch: information about the batch of items to insert 3875 */ 3876 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 3877 const struct btrfs_item_batch *batch) 3878 { 3879 struct btrfs_fs_info *fs_info = root->fs_info; 3880 int i; 3881 u32 nritems; 3882 unsigned int data_end; 3883 struct btrfs_disk_key disk_key; 3884 struct extent_buffer *leaf; 3885 int slot; 3886 struct btrfs_map_token token; 3887 u32 total_size; 3888 3889 /* 3890 * Before anything else, update keys in the parent and other ancestors 3891 * if needed, then release the write locks on them, so that other tasks 3892 * can use them while we modify the leaf. 3893 */ 3894 if (path->slots[0] == 0) { 3895 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]); 3896 fixup_low_keys(path, &disk_key, 1); 3897 } 3898 btrfs_unlock_up_safe(path, 1); 3899 3900 leaf = path->nodes[0]; 3901 slot = path->slots[0]; 3902 3903 nritems = btrfs_header_nritems(leaf); 3904 data_end = leaf_data_end(leaf); 3905 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); 3906 3907 if (btrfs_leaf_free_space(leaf) < total_size) { 3908 btrfs_print_leaf(leaf); 3909 btrfs_crit(fs_info, "not enough freespace need %u have %d", 3910 total_size, btrfs_leaf_free_space(leaf)); 3911 BUG(); 3912 } 3913 3914 btrfs_init_map_token(&token, leaf); 3915 if (slot != nritems) { 3916 unsigned int old_data = btrfs_item_data_end(leaf, slot); 3917 3918 if (old_data < data_end) { 3919 btrfs_print_leaf(leaf); 3920 btrfs_crit(fs_info, 3921 "item at slot %d with data offset %u beyond data end of leaf %u", 3922 slot, old_data, data_end); 3923 BUG(); 3924 } 3925 /* 3926 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3927 */ 3928 /* first correct the data pointers */ 3929 for (i = slot; i < nritems; i++) { 3930 u32 ioff; 3931 3932 ioff = btrfs_token_item_offset(&token, i); 3933 btrfs_set_token_item_offset(&token, i, 3934 ioff - batch->total_data_size); 3935 } 3936 /* shift the items */ 3937 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr), 3938 btrfs_item_nr_offset(slot), 3939 (nritems - slot) * sizeof(struct btrfs_item)); 3940 3941 /* shift the data */ 3942 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3943 data_end - batch->total_data_size, 3944 BTRFS_LEAF_DATA_OFFSET + data_end, 3945 old_data - data_end); 3946 data_end = old_data; 3947 } 3948 3949 /* setup the item for the new data */ 3950 for (i = 0; i < batch->nr; i++) { 3951 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]); 3952 btrfs_set_item_key(leaf, &disk_key, slot + i); 3953 data_end -= batch->data_sizes[i]; 3954 btrfs_set_token_item_offset(&token, slot + i, data_end); 3955 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]); 3956 } 3957 3958 btrfs_set_header_nritems(leaf, nritems + batch->nr); 3959 btrfs_mark_buffer_dirty(leaf); 3960 3961 if (btrfs_leaf_free_space(leaf) < 0) { 3962 btrfs_print_leaf(leaf); 3963 BUG(); 3964 } 3965 } 3966 3967 /* 3968 * Insert a new item into a leaf. 3969 * 3970 * @root: The root of the btree. 3971 * @path: A path pointing to the target leaf and slot. 3972 * @key: The key of the new item. 3973 * @data_size: The size of the data associated with the new key. 3974 */ 3975 void btrfs_setup_item_for_insert(struct btrfs_root *root, 3976 struct btrfs_path *path, 3977 const struct btrfs_key *key, 3978 u32 data_size) 3979 { 3980 struct btrfs_item_batch batch; 3981 3982 batch.keys = key; 3983 batch.data_sizes = &data_size; 3984 batch.total_data_size = data_size; 3985 batch.nr = 1; 3986 3987 setup_items_for_insert(root, path, &batch); 3988 } 3989 3990 /* 3991 * Given a key and some data, insert items into the tree. 3992 * This does all the path init required, making room in the tree if needed. 3993 */ 3994 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3995 struct btrfs_root *root, 3996 struct btrfs_path *path, 3997 const struct btrfs_item_batch *batch) 3998 { 3999 int ret = 0; 4000 int slot; 4001 u32 total_size; 4002 4003 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); 4004 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1); 4005 if (ret == 0) 4006 return -EEXIST; 4007 if (ret < 0) 4008 return ret; 4009 4010 slot = path->slots[0]; 4011 BUG_ON(slot < 0); 4012 4013 setup_items_for_insert(root, path, batch); 4014 return 0; 4015 } 4016 4017 /* 4018 * Given a key and some data, insert an item into the tree. 4019 * This does all the path init required, making room in the tree if needed. 4020 */ 4021 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4022 const struct btrfs_key *cpu_key, void *data, 4023 u32 data_size) 4024 { 4025 int ret = 0; 4026 struct btrfs_path *path; 4027 struct extent_buffer *leaf; 4028 unsigned long ptr; 4029 4030 path = btrfs_alloc_path(); 4031 if (!path) 4032 return -ENOMEM; 4033 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4034 if (!ret) { 4035 leaf = path->nodes[0]; 4036 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4037 write_extent_buffer(leaf, data, ptr, data_size); 4038 btrfs_mark_buffer_dirty(leaf); 4039 } 4040 btrfs_free_path(path); 4041 return ret; 4042 } 4043 4044 /* 4045 * This function duplicates an item, giving 'new_key' to the new item. 4046 * It guarantees both items live in the same tree leaf and the new item is 4047 * contiguous with the original item. 4048 * 4049 * This allows us to split a file extent in place, keeping a lock on the leaf 4050 * the entire time. 4051 */ 4052 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4053 struct btrfs_root *root, 4054 struct btrfs_path *path, 4055 const struct btrfs_key *new_key) 4056 { 4057 struct extent_buffer *leaf; 4058 int ret; 4059 u32 item_size; 4060 4061 leaf = path->nodes[0]; 4062 item_size = btrfs_item_size(leaf, path->slots[0]); 4063 ret = setup_leaf_for_split(trans, root, path, 4064 item_size + sizeof(struct btrfs_item)); 4065 if (ret) 4066 return ret; 4067 4068 path->slots[0]++; 4069 btrfs_setup_item_for_insert(root, path, new_key, item_size); 4070 leaf = path->nodes[0]; 4071 memcpy_extent_buffer(leaf, 4072 btrfs_item_ptr_offset(leaf, path->slots[0]), 4073 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4074 item_size); 4075 return 0; 4076 } 4077 4078 /* 4079 * delete the pointer from a given node. 4080 * 4081 * the tree should have been previously balanced so the deletion does not 4082 * empty a node. 4083 */ 4084 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4085 int level, int slot) 4086 { 4087 struct extent_buffer *parent = path->nodes[level]; 4088 u32 nritems; 4089 int ret; 4090 4091 nritems = btrfs_header_nritems(parent); 4092 if (slot != nritems - 1) { 4093 if (level) { 4094 ret = btrfs_tree_mod_log_insert_move(parent, slot, 4095 slot + 1, nritems - slot - 1); 4096 BUG_ON(ret < 0); 4097 } 4098 memmove_extent_buffer(parent, 4099 btrfs_node_key_ptr_offset(slot), 4100 btrfs_node_key_ptr_offset(slot + 1), 4101 sizeof(struct btrfs_key_ptr) * 4102 (nritems - slot - 1)); 4103 } else if (level) { 4104 ret = btrfs_tree_mod_log_insert_key(parent, slot, 4105 BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS); 4106 BUG_ON(ret < 0); 4107 } 4108 4109 nritems--; 4110 btrfs_set_header_nritems(parent, nritems); 4111 if (nritems == 0 && parent == root->node) { 4112 BUG_ON(btrfs_header_level(root->node) != 1); 4113 /* just turn the root into a leaf and break */ 4114 btrfs_set_header_level(root->node, 0); 4115 } else if (slot == 0) { 4116 struct btrfs_disk_key disk_key; 4117 4118 btrfs_node_key(parent, &disk_key, 0); 4119 fixup_low_keys(path, &disk_key, level + 1); 4120 } 4121 btrfs_mark_buffer_dirty(parent); 4122 } 4123 4124 /* 4125 * a helper function to delete the leaf pointed to by path->slots[1] and 4126 * path->nodes[1]. 4127 * 4128 * This deletes the pointer in path->nodes[1] and frees the leaf 4129 * block extent. zero is returned if it all worked out, < 0 otherwise. 4130 * 4131 * The path must have already been setup for deleting the leaf, including 4132 * all the proper balancing. path->nodes[1] must be locked. 4133 */ 4134 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4135 struct btrfs_root *root, 4136 struct btrfs_path *path, 4137 struct extent_buffer *leaf) 4138 { 4139 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4140 del_ptr(root, path, 1, path->slots[1]); 4141 4142 /* 4143 * btrfs_free_extent is expensive, we want to make sure we 4144 * aren't holding any locks when we call it 4145 */ 4146 btrfs_unlock_up_safe(path, 0); 4147 4148 root_sub_used(root, leaf->len); 4149 4150 atomic_inc(&leaf->refs); 4151 btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1); 4152 free_extent_buffer_stale(leaf); 4153 } 4154 /* 4155 * delete the item at the leaf level in path. If that empties 4156 * the leaf, remove it from the tree 4157 */ 4158 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4159 struct btrfs_path *path, int slot, int nr) 4160 { 4161 struct btrfs_fs_info *fs_info = root->fs_info; 4162 struct extent_buffer *leaf; 4163 int ret = 0; 4164 int wret; 4165 u32 nritems; 4166 4167 leaf = path->nodes[0]; 4168 nritems = btrfs_header_nritems(leaf); 4169 4170 if (slot + nr != nritems) { 4171 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1); 4172 const int data_end = leaf_data_end(leaf); 4173 struct btrfs_map_token token; 4174 u32 dsize = 0; 4175 int i; 4176 4177 for (i = 0; i < nr; i++) 4178 dsize += btrfs_item_size(leaf, slot + i); 4179 4180 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4181 data_end + dsize, 4182 BTRFS_LEAF_DATA_OFFSET + data_end, 4183 last_off - data_end); 4184 4185 btrfs_init_map_token(&token, leaf); 4186 for (i = slot + nr; i < nritems; i++) { 4187 u32 ioff; 4188 4189 ioff = btrfs_token_item_offset(&token, i); 4190 btrfs_set_token_item_offset(&token, i, ioff + dsize); 4191 } 4192 4193 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4194 btrfs_item_nr_offset(slot + nr), 4195 sizeof(struct btrfs_item) * 4196 (nritems - slot - nr)); 4197 } 4198 btrfs_set_header_nritems(leaf, nritems - nr); 4199 nritems -= nr; 4200 4201 /* delete the leaf if we've emptied it */ 4202 if (nritems == 0) { 4203 if (leaf == root->node) { 4204 btrfs_set_header_level(leaf, 0); 4205 } else { 4206 btrfs_clean_tree_block(leaf); 4207 btrfs_del_leaf(trans, root, path, leaf); 4208 } 4209 } else { 4210 int used = leaf_space_used(leaf, 0, nritems); 4211 if (slot == 0) { 4212 struct btrfs_disk_key disk_key; 4213 4214 btrfs_item_key(leaf, &disk_key, 0); 4215 fixup_low_keys(path, &disk_key, 1); 4216 } 4217 4218 /* 4219 * Try to delete the leaf if it is mostly empty. We do this by 4220 * trying to move all its items into its left and right neighbours. 4221 * If we can't move all the items, then we don't delete it - it's 4222 * not ideal, but future insertions might fill the leaf with more 4223 * items, or items from other leaves might be moved later into our 4224 * leaf due to deletions on those leaves. 4225 */ 4226 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4227 u32 min_push_space; 4228 4229 /* push_leaf_left fixes the path. 4230 * make sure the path still points to our leaf 4231 * for possible call to del_ptr below 4232 */ 4233 slot = path->slots[1]; 4234 atomic_inc(&leaf->refs); 4235 /* 4236 * We want to be able to at least push one item to the 4237 * left neighbour leaf, and that's the first item. 4238 */ 4239 min_push_space = sizeof(struct btrfs_item) + 4240 btrfs_item_size(leaf, 0); 4241 wret = push_leaf_left(trans, root, path, 0, 4242 min_push_space, 1, (u32)-1); 4243 if (wret < 0 && wret != -ENOSPC) 4244 ret = wret; 4245 4246 if (path->nodes[0] == leaf && 4247 btrfs_header_nritems(leaf)) { 4248 /* 4249 * If we were not able to push all items from our 4250 * leaf to its left neighbour, then attempt to 4251 * either push all the remaining items to the 4252 * right neighbour or none. There's no advantage 4253 * in pushing only some items, instead of all, as 4254 * it's pointless to end up with a leaf having 4255 * too few items while the neighbours can be full 4256 * or nearly full. 4257 */ 4258 nritems = btrfs_header_nritems(leaf); 4259 min_push_space = leaf_space_used(leaf, 0, nritems); 4260 wret = push_leaf_right(trans, root, path, 0, 4261 min_push_space, 1, 0); 4262 if (wret < 0 && wret != -ENOSPC) 4263 ret = wret; 4264 } 4265 4266 if (btrfs_header_nritems(leaf) == 0) { 4267 path->slots[1] = slot; 4268 btrfs_del_leaf(trans, root, path, leaf); 4269 free_extent_buffer(leaf); 4270 ret = 0; 4271 } else { 4272 /* if we're still in the path, make sure 4273 * we're dirty. Otherwise, one of the 4274 * push_leaf functions must have already 4275 * dirtied this buffer 4276 */ 4277 if (path->nodes[0] == leaf) 4278 btrfs_mark_buffer_dirty(leaf); 4279 free_extent_buffer(leaf); 4280 } 4281 } else { 4282 btrfs_mark_buffer_dirty(leaf); 4283 } 4284 } 4285 return ret; 4286 } 4287 4288 /* 4289 * search the tree again to find a leaf with lesser keys 4290 * returns 0 if it found something or 1 if there are no lesser leaves. 4291 * returns < 0 on io errors. 4292 * 4293 * This may release the path, and so you may lose any locks held at the 4294 * time you call it. 4295 */ 4296 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4297 { 4298 struct btrfs_key key; 4299 struct btrfs_disk_key found_key; 4300 int ret; 4301 4302 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4303 4304 if (key.offset > 0) { 4305 key.offset--; 4306 } else if (key.type > 0) { 4307 key.type--; 4308 key.offset = (u64)-1; 4309 } else if (key.objectid > 0) { 4310 key.objectid--; 4311 key.type = (u8)-1; 4312 key.offset = (u64)-1; 4313 } else { 4314 return 1; 4315 } 4316 4317 btrfs_release_path(path); 4318 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4319 if (ret < 0) 4320 return ret; 4321 btrfs_item_key(path->nodes[0], &found_key, 0); 4322 ret = comp_keys(&found_key, &key); 4323 /* 4324 * We might have had an item with the previous key in the tree right 4325 * before we released our path. And after we released our path, that 4326 * item might have been pushed to the first slot (0) of the leaf we 4327 * were holding due to a tree balance. Alternatively, an item with the 4328 * previous key can exist as the only element of a leaf (big fat item). 4329 * Therefore account for these 2 cases, so that our callers (like 4330 * btrfs_previous_item) don't miss an existing item with a key matching 4331 * the previous key we computed above. 4332 */ 4333 if (ret <= 0) 4334 return 0; 4335 return 1; 4336 } 4337 4338 /* 4339 * A helper function to walk down the tree starting at min_key, and looking 4340 * for nodes or leaves that are have a minimum transaction id. 4341 * This is used by the btree defrag code, and tree logging 4342 * 4343 * This does not cow, but it does stuff the starting key it finds back 4344 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4345 * key and get a writable path. 4346 * 4347 * This honors path->lowest_level to prevent descent past a given level 4348 * of the tree. 4349 * 4350 * min_trans indicates the oldest transaction that you are interested 4351 * in walking through. Any nodes or leaves older than min_trans are 4352 * skipped over (without reading them). 4353 * 4354 * returns zero if something useful was found, < 0 on error and 1 if there 4355 * was nothing in the tree that matched the search criteria. 4356 */ 4357 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4358 struct btrfs_path *path, 4359 u64 min_trans) 4360 { 4361 struct extent_buffer *cur; 4362 struct btrfs_key found_key; 4363 int slot; 4364 int sret; 4365 u32 nritems; 4366 int level; 4367 int ret = 1; 4368 int keep_locks = path->keep_locks; 4369 4370 path->keep_locks = 1; 4371 again: 4372 cur = btrfs_read_lock_root_node(root); 4373 level = btrfs_header_level(cur); 4374 WARN_ON(path->nodes[level]); 4375 path->nodes[level] = cur; 4376 path->locks[level] = BTRFS_READ_LOCK; 4377 4378 if (btrfs_header_generation(cur) < min_trans) { 4379 ret = 1; 4380 goto out; 4381 } 4382 while (1) { 4383 nritems = btrfs_header_nritems(cur); 4384 level = btrfs_header_level(cur); 4385 sret = btrfs_bin_search(cur, min_key, &slot); 4386 if (sret < 0) { 4387 ret = sret; 4388 goto out; 4389 } 4390 4391 /* at the lowest level, we're done, setup the path and exit */ 4392 if (level == path->lowest_level) { 4393 if (slot >= nritems) 4394 goto find_next_key; 4395 ret = 0; 4396 path->slots[level] = slot; 4397 btrfs_item_key_to_cpu(cur, &found_key, slot); 4398 goto out; 4399 } 4400 if (sret && slot > 0) 4401 slot--; 4402 /* 4403 * check this node pointer against the min_trans parameters. 4404 * If it is too old, skip to the next one. 4405 */ 4406 while (slot < nritems) { 4407 u64 gen; 4408 4409 gen = btrfs_node_ptr_generation(cur, slot); 4410 if (gen < min_trans) { 4411 slot++; 4412 continue; 4413 } 4414 break; 4415 } 4416 find_next_key: 4417 /* 4418 * we didn't find a candidate key in this node, walk forward 4419 * and find another one 4420 */ 4421 if (slot >= nritems) { 4422 path->slots[level] = slot; 4423 sret = btrfs_find_next_key(root, path, min_key, level, 4424 min_trans); 4425 if (sret == 0) { 4426 btrfs_release_path(path); 4427 goto again; 4428 } else { 4429 goto out; 4430 } 4431 } 4432 /* save our key for returning back */ 4433 btrfs_node_key_to_cpu(cur, &found_key, slot); 4434 path->slots[level] = slot; 4435 if (level == path->lowest_level) { 4436 ret = 0; 4437 goto out; 4438 } 4439 cur = btrfs_read_node_slot(cur, slot); 4440 if (IS_ERR(cur)) { 4441 ret = PTR_ERR(cur); 4442 goto out; 4443 } 4444 4445 btrfs_tree_read_lock(cur); 4446 4447 path->locks[level - 1] = BTRFS_READ_LOCK; 4448 path->nodes[level - 1] = cur; 4449 unlock_up(path, level, 1, 0, NULL); 4450 } 4451 out: 4452 path->keep_locks = keep_locks; 4453 if (ret == 0) { 4454 btrfs_unlock_up_safe(path, path->lowest_level + 1); 4455 memcpy(min_key, &found_key, sizeof(found_key)); 4456 } 4457 return ret; 4458 } 4459 4460 /* 4461 * this is similar to btrfs_next_leaf, but does not try to preserve 4462 * and fixup the path. It looks for and returns the next key in the 4463 * tree based on the current path and the min_trans parameters. 4464 * 4465 * 0 is returned if another key is found, < 0 if there are any errors 4466 * and 1 is returned if there are no higher keys in the tree 4467 * 4468 * path->keep_locks should be set to 1 on the search made before 4469 * calling this function. 4470 */ 4471 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4472 struct btrfs_key *key, int level, u64 min_trans) 4473 { 4474 int slot; 4475 struct extent_buffer *c; 4476 4477 WARN_ON(!path->keep_locks && !path->skip_locking); 4478 while (level < BTRFS_MAX_LEVEL) { 4479 if (!path->nodes[level]) 4480 return 1; 4481 4482 slot = path->slots[level] + 1; 4483 c = path->nodes[level]; 4484 next: 4485 if (slot >= btrfs_header_nritems(c)) { 4486 int ret; 4487 int orig_lowest; 4488 struct btrfs_key cur_key; 4489 if (level + 1 >= BTRFS_MAX_LEVEL || 4490 !path->nodes[level + 1]) 4491 return 1; 4492 4493 if (path->locks[level + 1] || path->skip_locking) { 4494 level++; 4495 continue; 4496 } 4497 4498 slot = btrfs_header_nritems(c) - 1; 4499 if (level == 0) 4500 btrfs_item_key_to_cpu(c, &cur_key, slot); 4501 else 4502 btrfs_node_key_to_cpu(c, &cur_key, slot); 4503 4504 orig_lowest = path->lowest_level; 4505 btrfs_release_path(path); 4506 path->lowest_level = level; 4507 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4508 0, 0); 4509 path->lowest_level = orig_lowest; 4510 if (ret < 0) 4511 return ret; 4512 4513 c = path->nodes[level]; 4514 slot = path->slots[level]; 4515 if (ret == 0) 4516 slot++; 4517 goto next; 4518 } 4519 4520 if (level == 0) 4521 btrfs_item_key_to_cpu(c, key, slot); 4522 else { 4523 u64 gen = btrfs_node_ptr_generation(c, slot); 4524 4525 if (gen < min_trans) { 4526 slot++; 4527 goto next; 4528 } 4529 btrfs_node_key_to_cpu(c, key, slot); 4530 } 4531 return 0; 4532 } 4533 return 1; 4534 } 4535 4536 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 4537 u64 time_seq) 4538 { 4539 int slot; 4540 int level; 4541 struct extent_buffer *c; 4542 struct extent_buffer *next; 4543 struct btrfs_fs_info *fs_info = root->fs_info; 4544 struct btrfs_key key; 4545 bool need_commit_sem = false; 4546 u32 nritems; 4547 int ret; 4548 int i; 4549 4550 nritems = btrfs_header_nritems(path->nodes[0]); 4551 if (nritems == 0) 4552 return 1; 4553 4554 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4555 again: 4556 level = 1; 4557 next = NULL; 4558 btrfs_release_path(path); 4559 4560 path->keep_locks = 1; 4561 4562 if (time_seq) { 4563 ret = btrfs_search_old_slot(root, &key, path, time_seq); 4564 } else { 4565 if (path->need_commit_sem) { 4566 path->need_commit_sem = 0; 4567 need_commit_sem = true; 4568 down_read(&fs_info->commit_root_sem); 4569 } 4570 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4571 } 4572 path->keep_locks = 0; 4573 4574 if (ret < 0) 4575 goto done; 4576 4577 nritems = btrfs_header_nritems(path->nodes[0]); 4578 /* 4579 * by releasing the path above we dropped all our locks. A balance 4580 * could have added more items next to the key that used to be 4581 * at the very end of the block. So, check again here and 4582 * advance the path if there are now more items available. 4583 */ 4584 if (nritems > 0 && path->slots[0] < nritems - 1) { 4585 if (ret == 0) 4586 path->slots[0]++; 4587 ret = 0; 4588 goto done; 4589 } 4590 /* 4591 * So the above check misses one case: 4592 * - after releasing the path above, someone has removed the item that 4593 * used to be at the very end of the block, and balance between leafs 4594 * gets another one with bigger key.offset to replace it. 4595 * 4596 * This one should be returned as well, or we can get leaf corruption 4597 * later(esp. in __btrfs_drop_extents()). 4598 * 4599 * And a bit more explanation about this check, 4600 * with ret > 0, the key isn't found, the path points to the slot 4601 * where it should be inserted, so the path->slots[0] item must be the 4602 * bigger one. 4603 */ 4604 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 4605 ret = 0; 4606 goto done; 4607 } 4608 4609 while (level < BTRFS_MAX_LEVEL) { 4610 if (!path->nodes[level]) { 4611 ret = 1; 4612 goto done; 4613 } 4614 4615 slot = path->slots[level] + 1; 4616 c = path->nodes[level]; 4617 if (slot >= btrfs_header_nritems(c)) { 4618 level++; 4619 if (level == BTRFS_MAX_LEVEL) { 4620 ret = 1; 4621 goto done; 4622 } 4623 continue; 4624 } 4625 4626 4627 /* 4628 * Our current level is where we're going to start from, and to 4629 * make sure lockdep doesn't complain we need to drop our locks 4630 * and nodes from 0 to our current level. 4631 */ 4632 for (i = 0; i < level; i++) { 4633 if (path->locks[level]) { 4634 btrfs_tree_read_unlock(path->nodes[i]); 4635 path->locks[i] = 0; 4636 } 4637 free_extent_buffer(path->nodes[i]); 4638 path->nodes[i] = NULL; 4639 } 4640 4641 next = c; 4642 ret = read_block_for_search(root, path, &next, level, 4643 slot, &key); 4644 if (ret == -EAGAIN) 4645 goto again; 4646 4647 if (ret < 0) { 4648 btrfs_release_path(path); 4649 goto done; 4650 } 4651 4652 if (!path->skip_locking) { 4653 ret = btrfs_try_tree_read_lock(next); 4654 if (!ret && time_seq) { 4655 /* 4656 * If we don't get the lock, we may be racing 4657 * with push_leaf_left, holding that lock while 4658 * itself waiting for the leaf we've currently 4659 * locked. To solve this situation, we give up 4660 * on our lock and cycle. 4661 */ 4662 free_extent_buffer(next); 4663 btrfs_release_path(path); 4664 cond_resched(); 4665 goto again; 4666 } 4667 if (!ret) 4668 btrfs_tree_read_lock(next); 4669 } 4670 break; 4671 } 4672 path->slots[level] = slot; 4673 while (1) { 4674 level--; 4675 path->nodes[level] = next; 4676 path->slots[level] = 0; 4677 if (!path->skip_locking) 4678 path->locks[level] = BTRFS_READ_LOCK; 4679 if (!level) 4680 break; 4681 4682 ret = read_block_for_search(root, path, &next, level, 4683 0, &key); 4684 if (ret == -EAGAIN) 4685 goto again; 4686 4687 if (ret < 0) { 4688 btrfs_release_path(path); 4689 goto done; 4690 } 4691 4692 if (!path->skip_locking) 4693 btrfs_tree_read_lock(next); 4694 } 4695 ret = 0; 4696 done: 4697 unlock_up(path, 0, 1, 0, NULL); 4698 if (need_commit_sem) { 4699 int ret2; 4700 4701 path->need_commit_sem = 1; 4702 ret2 = finish_need_commit_sem_search(path); 4703 up_read(&fs_info->commit_root_sem); 4704 if (ret2) 4705 ret = ret2; 4706 } 4707 4708 return ret; 4709 } 4710 4711 /* 4712 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4713 * searching until it gets past min_objectid or finds an item of 'type' 4714 * 4715 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4716 */ 4717 int btrfs_previous_item(struct btrfs_root *root, 4718 struct btrfs_path *path, u64 min_objectid, 4719 int type) 4720 { 4721 struct btrfs_key found_key; 4722 struct extent_buffer *leaf; 4723 u32 nritems; 4724 int ret; 4725 4726 while (1) { 4727 if (path->slots[0] == 0) { 4728 ret = btrfs_prev_leaf(root, path); 4729 if (ret != 0) 4730 return ret; 4731 } else { 4732 path->slots[0]--; 4733 } 4734 leaf = path->nodes[0]; 4735 nritems = btrfs_header_nritems(leaf); 4736 if (nritems == 0) 4737 return 1; 4738 if (path->slots[0] == nritems) 4739 path->slots[0]--; 4740 4741 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4742 if (found_key.objectid < min_objectid) 4743 break; 4744 if (found_key.type == type) 4745 return 0; 4746 if (found_key.objectid == min_objectid && 4747 found_key.type < type) 4748 break; 4749 } 4750 return 1; 4751 } 4752 4753 /* 4754 * search in extent tree to find a previous Metadata/Data extent item with 4755 * min objecitd. 4756 * 4757 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4758 */ 4759 int btrfs_previous_extent_item(struct btrfs_root *root, 4760 struct btrfs_path *path, u64 min_objectid) 4761 { 4762 struct btrfs_key found_key; 4763 struct extent_buffer *leaf; 4764 u32 nritems; 4765 int ret; 4766 4767 while (1) { 4768 if (path->slots[0] == 0) { 4769 ret = btrfs_prev_leaf(root, path); 4770 if (ret != 0) 4771 return ret; 4772 } else { 4773 path->slots[0]--; 4774 } 4775 leaf = path->nodes[0]; 4776 nritems = btrfs_header_nritems(leaf); 4777 if (nritems == 0) 4778 return 1; 4779 if (path->slots[0] == nritems) 4780 path->slots[0]--; 4781 4782 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4783 if (found_key.objectid < min_objectid) 4784 break; 4785 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 4786 found_key.type == BTRFS_METADATA_ITEM_KEY) 4787 return 0; 4788 if (found_key.objectid == min_objectid && 4789 found_key.type < BTRFS_EXTENT_ITEM_KEY) 4790 break; 4791 } 4792 return 1; 4793 } 4794