xref: /linux/fs/btrfs/ctree.c (revision 3da3cc1b5f47115b16b5ffeeb4bf09ec331b0164)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17 
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 		      *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
22 		      int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24 			  struct extent_buffer *dst,
25 			  struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27 			      struct extent_buffer *dst_buf,
28 			      struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 		    int level, int slot);
31 
32 static const struct btrfs_csums {
33 	u16		size;
34 	const char	name[10];
35 	const char	driver[12];
36 } btrfs_csums[] = {
37 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
41 				     .driver = "blake2b-256" },
42 };
43 
44 int btrfs_super_csum_size(const struct btrfs_super_block *s)
45 {
46 	u16 t = btrfs_super_csum_type(s);
47 	/*
48 	 * csum type is validated at mount time
49 	 */
50 	return btrfs_csums[t].size;
51 }
52 
53 const char *btrfs_super_csum_name(u16 csum_type)
54 {
55 	/* csum type is validated at mount time */
56 	return btrfs_csums[csum_type].name;
57 }
58 
59 /*
60  * Return driver name if defined, otherwise the name that's also a valid driver
61  * name
62  */
63 const char *btrfs_super_csum_driver(u16 csum_type)
64 {
65 	/* csum type is validated at mount time */
66 	return btrfs_csums[csum_type].driver[0] ?
67 		btrfs_csums[csum_type].driver :
68 		btrfs_csums[csum_type].name;
69 }
70 
71 size_t __attribute_const__ btrfs_get_num_csums(void)
72 {
73 	return ARRAY_SIZE(btrfs_csums);
74 }
75 
76 struct btrfs_path *btrfs_alloc_path(void)
77 {
78 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
79 }
80 
81 /* this also releases the path */
82 void btrfs_free_path(struct btrfs_path *p)
83 {
84 	if (!p)
85 		return;
86 	btrfs_release_path(p);
87 	kmem_cache_free(btrfs_path_cachep, p);
88 }
89 
90 /*
91  * path release drops references on the extent buffers in the path
92  * and it drops any locks held by this path
93  *
94  * It is safe to call this on paths that no locks or extent buffers held.
95  */
96 noinline void btrfs_release_path(struct btrfs_path *p)
97 {
98 	int i;
99 
100 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
101 		p->slots[i] = 0;
102 		if (!p->nodes[i])
103 			continue;
104 		if (p->locks[i]) {
105 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
106 			p->locks[i] = 0;
107 		}
108 		free_extent_buffer(p->nodes[i]);
109 		p->nodes[i] = NULL;
110 	}
111 }
112 
113 /*
114  * safely gets a reference on the root node of a tree.  A lock
115  * is not taken, so a concurrent writer may put a different node
116  * at the root of the tree.  See btrfs_lock_root_node for the
117  * looping required.
118  *
119  * The extent buffer returned by this has a reference taken, so
120  * it won't disappear.  It may stop being the root of the tree
121  * at any time because there are no locks held.
122  */
123 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
124 {
125 	struct extent_buffer *eb;
126 
127 	while (1) {
128 		rcu_read_lock();
129 		eb = rcu_dereference(root->node);
130 
131 		/*
132 		 * RCU really hurts here, we could free up the root node because
133 		 * it was COWed but we may not get the new root node yet so do
134 		 * the inc_not_zero dance and if it doesn't work then
135 		 * synchronize_rcu and try again.
136 		 */
137 		if (atomic_inc_not_zero(&eb->refs)) {
138 			rcu_read_unlock();
139 			break;
140 		}
141 		rcu_read_unlock();
142 		synchronize_rcu();
143 	}
144 	return eb;
145 }
146 
147 /*
148  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
149  * just get put onto a simple dirty list.  Transaction walks this list to make
150  * sure they get properly updated on disk.
151  */
152 static void add_root_to_dirty_list(struct btrfs_root *root)
153 {
154 	struct btrfs_fs_info *fs_info = root->fs_info;
155 
156 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
157 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
158 		return;
159 
160 	spin_lock(&fs_info->trans_lock);
161 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
162 		/* Want the extent tree to be the last on the list */
163 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
164 			list_move_tail(&root->dirty_list,
165 				       &fs_info->dirty_cowonly_roots);
166 		else
167 			list_move(&root->dirty_list,
168 				  &fs_info->dirty_cowonly_roots);
169 	}
170 	spin_unlock(&fs_info->trans_lock);
171 }
172 
173 /*
174  * used by snapshot creation to make a copy of a root for a tree with
175  * a given objectid.  The buffer with the new root node is returned in
176  * cow_ret, and this func returns zero on success or a negative error code.
177  */
178 int btrfs_copy_root(struct btrfs_trans_handle *trans,
179 		      struct btrfs_root *root,
180 		      struct extent_buffer *buf,
181 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
182 {
183 	struct btrfs_fs_info *fs_info = root->fs_info;
184 	struct extent_buffer *cow;
185 	int ret = 0;
186 	int level;
187 	struct btrfs_disk_key disk_key;
188 
189 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
190 		trans->transid != fs_info->running_transaction->transid);
191 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192 		trans->transid != root->last_trans);
193 
194 	level = btrfs_header_level(buf);
195 	if (level == 0)
196 		btrfs_item_key(buf, &disk_key, 0);
197 	else
198 		btrfs_node_key(buf, &disk_key, 0);
199 
200 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
201 				     &disk_key, level, buf->start, 0,
202 				     BTRFS_NESTING_NEW_ROOT);
203 	if (IS_ERR(cow))
204 		return PTR_ERR(cow);
205 
206 	copy_extent_buffer_full(cow, buf);
207 	btrfs_set_header_bytenr(cow, cow->start);
208 	btrfs_set_header_generation(cow, trans->transid);
209 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
210 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
211 				     BTRFS_HEADER_FLAG_RELOC);
212 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
213 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
214 	else
215 		btrfs_set_header_owner(cow, new_root_objectid);
216 
217 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
218 
219 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
220 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
221 		ret = btrfs_inc_ref(trans, root, cow, 1);
222 	else
223 		ret = btrfs_inc_ref(trans, root, cow, 0);
224 
225 	if (ret)
226 		return ret;
227 
228 	btrfs_mark_buffer_dirty(cow);
229 	*cow_ret = cow;
230 	return 0;
231 }
232 
233 enum mod_log_op {
234 	MOD_LOG_KEY_REPLACE,
235 	MOD_LOG_KEY_ADD,
236 	MOD_LOG_KEY_REMOVE,
237 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
238 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
239 	MOD_LOG_MOVE_KEYS,
240 	MOD_LOG_ROOT_REPLACE,
241 };
242 
243 struct tree_mod_root {
244 	u64 logical;
245 	u8 level;
246 };
247 
248 struct tree_mod_elem {
249 	struct rb_node node;
250 	u64 logical;
251 	u64 seq;
252 	enum mod_log_op op;
253 
254 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
255 	int slot;
256 
257 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
258 	u64 generation;
259 
260 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
261 	struct btrfs_disk_key key;
262 	u64 blockptr;
263 
264 	/* this is used for op == MOD_LOG_MOVE_KEYS */
265 	struct {
266 		int dst_slot;
267 		int nr_items;
268 	} move;
269 
270 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
271 	struct tree_mod_root old_root;
272 };
273 
274 /*
275  * Pull a new tree mod seq number for our operation.
276  */
277 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
278 {
279 	return atomic64_inc_return(&fs_info->tree_mod_seq);
280 }
281 
282 /*
283  * This adds a new blocker to the tree mod log's blocker list if the @elem
284  * passed does not already have a sequence number set. So when a caller expects
285  * to record tree modifications, it should ensure to set elem->seq to zero
286  * before calling btrfs_get_tree_mod_seq.
287  * Returns a fresh, unused tree log modification sequence number, even if no new
288  * blocker was added.
289  */
290 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
291 			   struct seq_list *elem)
292 {
293 	write_lock(&fs_info->tree_mod_log_lock);
294 	if (!elem->seq) {
295 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
296 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
297 	}
298 	write_unlock(&fs_info->tree_mod_log_lock);
299 
300 	return elem->seq;
301 }
302 
303 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
304 			    struct seq_list *elem)
305 {
306 	struct rb_root *tm_root;
307 	struct rb_node *node;
308 	struct rb_node *next;
309 	struct tree_mod_elem *tm;
310 	u64 min_seq = (u64)-1;
311 	u64 seq_putting = elem->seq;
312 
313 	if (!seq_putting)
314 		return;
315 
316 	write_lock(&fs_info->tree_mod_log_lock);
317 	list_del(&elem->list);
318 	elem->seq = 0;
319 
320 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
321 		struct seq_list *first;
322 
323 		first = list_first_entry(&fs_info->tree_mod_seq_list,
324 					 struct seq_list, list);
325 		if (seq_putting > first->seq) {
326 			/*
327 			 * Blocker with lower sequence number exists, we
328 			 * cannot remove anything from the log.
329 			 */
330 			write_unlock(&fs_info->tree_mod_log_lock);
331 			return;
332 		}
333 		min_seq = first->seq;
334 	}
335 
336 	/*
337 	 * anything that's lower than the lowest existing (read: blocked)
338 	 * sequence number can be removed from the tree.
339 	 */
340 	tm_root = &fs_info->tree_mod_log;
341 	for (node = rb_first(tm_root); node; node = next) {
342 		next = rb_next(node);
343 		tm = rb_entry(node, struct tree_mod_elem, node);
344 		if (tm->seq >= min_seq)
345 			continue;
346 		rb_erase(node, tm_root);
347 		kfree(tm);
348 	}
349 	write_unlock(&fs_info->tree_mod_log_lock);
350 }
351 
352 /*
353  * key order of the log:
354  *       node/leaf start address -> sequence
355  *
356  * The 'start address' is the logical address of the *new* root node
357  * for root replace operations, or the logical address of the affected
358  * block for all other operations.
359  */
360 static noinline int
361 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
362 {
363 	struct rb_root *tm_root;
364 	struct rb_node **new;
365 	struct rb_node *parent = NULL;
366 	struct tree_mod_elem *cur;
367 
368 	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
369 
370 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
371 
372 	tm_root = &fs_info->tree_mod_log;
373 	new = &tm_root->rb_node;
374 	while (*new) {
375 		cur = rb_entry(*new, struct tree_mod_elem, node);
376 		parent = *new;
377 		if (cur->logical < tm->logical)
378 			new = &((*new)->rb_left);
379 		else if (cur->logical > tm->logical)
380 			new = &((*new)->rb_right);
381 		else if (cur->seq < tm->seq)
382 			new = &((*new)->rb_left);
383 		else if (cur->seq > tm->seq)
384 			new = &((*new)->rb_right);
385 		else
386 			return -EEXIST;
387 	}
388 
389 	rb_link_node(&tm->node, parent, new);
390 	rb_insert_color(&tm->node, tm_root);
391 	return 0;
392 }
393 
394 /*
395  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
396  * returns zero with the tree_mod_log_lock acquired. The caller must hold
397  * this until all tree mod log insertions are recorded in the rb tree and then
398  * write unlock fs_info::tree_mod_log_lock.
399  */
400 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
401 				    struct extent_buffer *eb) {
402 	smp_mb();
403 	if (list_empty(&(fs_info)->tree_mod_seq_list))
404 		return 1;
405 	if (eb && btrfs_header_level(eb) == 0)
406 		return 1;
407 
408 	write_lock(&fs_info->tree_mod_log_lock);
409 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
410 		write_unlock(&fs_info->tree_mod_log_lock);
411 		return 1;
412 	}
413 
414 	return 0;
415 }
416 
417 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
418 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
419 				    struct extent_buffer *eb)
420 {
421 	smp_mb();
422 	if (list_empty(&(fs_info)->tree_mod_seq_list))
423 		return 0;
424 	if (eb && btrfs_header_level(eb) == 0)
425 		return 0;
426 
427 	return 1;
428 }
429 
430 static struct tree_mod_elem *
431 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
432 		    enum mod_log_op op, gfp_t flags)
433 {
434 	struct tree_mod_elem *tm;
435 
436 	tm = kzalloc(sizeof(*tm), flags);
437 	if (!tm)
438 		return NULL;
439 
440 	tm->logical = eb->start;
441 	if (op != MOD_LOG_KEY_ADD) {
442 		btrfs_node_key(eb, &tm->key, slot);
443 		tm->blockptr = btrfs_node_blockptr(eb, slot);
444 	}
445 	tm->op = op;
446 	tm->slot = slot;
447 	tm->generation = btrfs_node_ptr_generation(eb, slot);
448 	RB_CLEAR_NODE(&tm->node);
449 
450 	return tm;
451 }
452 
453 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
454 		enum mod_log_op op, gfp_t flags)
455 {
456 	struct tree_mod_elem *tm;
457 	int ret;
458 
459 	if (!tree_mod_need_log(eb->fs_info, eb))
460 		return 0;
461 
462 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
463 	if (!tm)
464 		return -ENOMEM;
465 
466 	if (tree_mod_dont_log(eb->fs_info, eb)) {
467 		kfree(tm);
468 		return 0;
469 	}
470 
471 	ret = __tree_mod_log_insert(eb->fs_info, tm);
472 	write_unlock(&eb->fs_info->tree_mod_log_lock);
473 	if (ret)
474 		kfree(tm);
475 
476 	return ret;
477 }
478 
479 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
480 		int dst_slot, int src_slot, int nr_items)
481 {
482 	struct tree_mod_elem *tm = NULL;
483 	struct tree_mod_elem **tm_list = NULL;
484 	int ret = 0;
485 	int i;
486 	int locked = 0;
487 
488 	if (!tree_mod_need_log(eb->fs_info, eb))
489 		return 0;
490 
491 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
492 	if (!tm_list)
493 		return -ENOMEM;
494 
495 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
496 	if (!tm) {
497 		ret = -ENOMEM;
498 		goto free_tms;
499 	}
500 
501 	tm->logical = eb->start;
502 	tm->slot = src_slot;
503 	tm->move.dst_slot = dst_slot;
504 	tm->move.nr_items = nr_items;
505 	tm->op = MOD_LOG_MOVE_KEYS;
506 
507 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
508 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
509 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
510 		if (!tm_list[i]) {
511 			ret = -ENOMEM;
512 			goto free_tms;
513 		}
514 	}
515 
516 	if (tree_mod_dont_log(eb->fs_info, eb))
517 		goto free_tms;
518 	locked = 1;
519 
520 	/*
521 	 * When we override something during the move, we log these removals.
522 	 * This can only happen when we move towards the beginning of the
523 	 * buffer, i.e. dst_slot < src_slot.
524 	 */
525 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
526 		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
527 		if (ret)
528 			goto free_tms;
529 	}
530 
531 	ret = __tree_mod_log_insert(eb->fs_info, tm);
532 	if (ret)
533 		goto free_tms;
534 	write_unlock(&eb->fs_info->tree_mod_log_lock);
535 	kfree(tm_list);
536 
537 	return 0;
538 free_tms:
539 	for (i = 0; i < nr_items; i++) {
540 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
541 			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
542 		kfree(tm_list[i]);
543 	}
544 	if (locked)
545 		write_unlock(&eb->fs_info->tree_mod_log_lock);
546 	kfree(tm_list);
547 	kfree(tm);
548 
549 	return ret;
550 }
551 
552 static inline int
553 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
554 		       struct tree_mod_elem **tm_list,
555 		       int nritems)
556 {
557 	int i, j;
558 	int ret;
559 
560 	for (i = nritems - 1; i >= 0; i--) {
561 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
562 		if (ret) {
563 			for (j = nritems - 1; j > i; j--)
564 				rb_erase(&tm_list[j]->node,
565 					 &fs_info->tree_mod_log);
566 			return ret;
567 		}
568 	}
569 
570 	return 0;
571 }
572 
573 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
574 			 struct extent_buffer *new_root, int log_removal)
575 {
576 	struct btrfs_fs_info *fs_info = old_root->fs_info;
577 	struct tree_mod_elem *tm = NULL;
578 	struct tree_mod_elem **tm_list = NULL;
579 	int nritems = 0;
580 	int ret = 0;
581 	int i;
582 
583 	if (!tree_mod_need_log(fs_info, NULL))
584 		return 0;
585 
586 	if (log_removal && btrfs_header_level(old_root) > 0) {
587 		nritems = btrfs_header_nritems(old_root);
588 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
589 				  GFP_NOFS);
590 		if (!tm_list) {
591 			ret = -ENOMEM;
592 			goto free_tms;
593 		}
594 		for (i = 0; i < nritems; i++) {
595 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
596 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
597 			if (!tm_list[i]) {
598 				ret = -ENOMEM;
599 				goto free_tms;
600 			}
601 		}
602 	}
603 
604 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
605 	if (!tm) {
606 		ret = -ENOMEM;
607 		goto free_tms;
608 	}
609 
610 	tm->logical = new_root->start;
611 	tm->old_root.logical = old_root->start;
612 	tm->old_root.level = btrfs_header_level(old_root);
613 	tm->generation = btrfs_header_generation(old_root);
614 	tm->op = MOD_LOG_ROOT_REPLACE;
615 
616 	if (tree_mod_dont_log(fs_info, NULL))
617 		goto free_tms;
618 
619 	if (tm_list)
620 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
621 	if (!ret)
622 		ret = __tree_mod_log_insert(fs_info, tm);
623 
624 	write_unlock(&fs_info->tree_mod_log_lock);
625 	if (ret)
626 		goto free_tms;
627 	kfree(tm_list);
628 
629 	return ret;
630 
631 free_tms:
632 	if (tm_list) {
633 		for (i = 0; i < nritems; i++)
634 			kfree(tm_list[i]);
635 		kfree(tm_list);
636 	}
637 	kfree(tm);
638 
639 	return ret;
640 }
641 
642 static struct tree_mod_elem *
643 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
644 		      int smallest)
645 {
646 	struct rb_root *tm_root;
647 	struct rb_node *node;
648 	struct tree_mod_elem *cur = NULL;
649 	struct tree_mod_elem *found = NULL;
650 
651 	read_lock(&fs_info->tree_mod_log_lock);
652 	tm_root = &fs_info->tree_mod_log;
653 	node = tm_root->rb_node;
654 	while (node) {
655 		cur = rb_entry(node, struct tree_mod_elem, node);
656 		if (cur->logical < start) {
657 			node = node->rb_left;
658 		} else if (cur->logical > start) {
659 			node = node->rb_right;
660 		} else if (cur->seq < min_seq) {
661 			node = node->rb_left;
662 		} else if (!smallest) {
663 			/* we want the node with the highest seq */
664 			if (found)
665 				BUG_ON(found->seq > cur->seq);
666 			found = cur;
667 			node = node->rb_left;
668 		} else if (cur->seq > min_seq) {
669 			/* we want the node with the smallest seq */
670 			if (found)
671 				BUG_ON(found->seq < cur->seq);
672 			found = cur;
673 			node = node->rb_right;
674 		} else {
675 			found = cur;
676 			break;
677 		}
678 	}
679 	read_unlock(&fs_info->tree_mod_log_lock);
680 
681 	return found;
682 }
683 
684 /*
685  * this returns the element from the log with the smallest time sequence
686  * value that's in the log (the oldest log item). any element with a time
687  * sequence lower than min_seq will be ignored.
688  */
689 static struct tree_mod_elem *
690 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
691 			   u64 min_seq)
692 {
693 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
694 }
695 
696 /*
697  * this returns the element from the log with the largest time sequence
698  * value that's in the log (the most recent log item). any element with
699  * a time sequence lower than min_seq will be ignored.
700  */
701 static struct tree_mod_elem *
702 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
703 {
704 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
705 }
706 
707 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
708 		     struct extent_buffer *src, unsigned long dst_offset,
709 		     unsigned long src_offset, int nr_items)
710 {
711 	struct btrfs_fs_info *fs_info = dst->fs_info;
712 	int ret = 0;
713 	struct tree_mod_elem **tm_list = NULL;
714 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
715 	int i;
716 	int locked = 0;
717 
718 	if (!tree_mod_need_log(fs_info, NULL))
719 		return 0;
720 
721 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
722 		return 0;
723 
724 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
725 			  GFP_NOFS);
726 	if (!tm_list)
727 		return -ENOMEM;
728 
729 	tm_list_add = tm_list;
730 	tm_list_rem = tm_list + nr_items;
731 	for (i = 0; i < nr_items; i++) {
732 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
733 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
734 		if (!tm_list_rem[i]) {
735 			ret = -ENOMEM;
736 			goto free_tms;
737 		}
738 
739 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
740 		    MOD_LOG_KEY_ADD, GFP_NOFS);
741 		if (!tm_list_add[i]) {
742 			ret = -ENOMEM;
743 			goto free_tms;
744 		}
745 	}
746 
747 	if (tree_mod_dont_log(fs_info, NULL))
748 		goto free_tms;
749 	locked = 1;
750 
751 	for (i = 0; i < nr_items; i++) {
752 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
753 		if (ret)
754 			goto free_tms;
755 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
756 		if (ret)
757 			goto free_tms;
758 	}
759 
760 	write_unlock(&fs_info->tree_mod_log_lock);
761 	kfree(tm_list);
762 
763 	return 0;
764 
765 free_tms:
766 	for (i = 0; i < nr_items * 2; i++) {
767 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
768 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
769 		kfree(tm_list[i]);
770 	}
771 	if (locked)
772 		write_unlock(&fs_info->tree_mod_log_lock);
773 	kfree(tm_list);
774 
775 	return ret;
776 }
777 
778 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
779 {
780 	struct tree_mod_elem **tm_list = NULL;
781 	int nritems = 0;
782 	int i;
783 	int ret = 0;
784 
785 	if (btrfs_header_level(eb) == 0)
786 		return 0;
787 
788 	if (!tree_mod_need_log(eb->fs_info, NULL))
789 		return 0;
790 
791 	nritems = btrfs_header_nritems(eb);
792 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
793 	if (!tm_list)
794 		return -ENOMEM;
795 
796 	for (i = 0; i < nritems; i++) {
797 		tm_list[i] = alloc_tree_mod_elem(eb, i,
798 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
799 		if (!tm_list[i]) {
800 			ret = -ENOMEM;
801 			goto free_tms;
802 		}
803 	}
804 
805 	if (tree_mod_dont_log(eb->fs_info, eb))
806 		goto free_tms;
807 
808 	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
809 	write_unlock(&eb->fs_info->tree_mod_log_lock);
810 	if (ret)
811 		goto free_tms;
812 	kfree(tm_list);
813 
814 	return 0;
815 
816 free_tms:
817 	for (i = 0; i < nritems; i++)
818 		kfree(tm_list[i]);
819 	kfree(tm_list);
820 
821 	return ret;
822 }
823 
824 /*
825  * check if the tree block can be shared by multiple trees
826  */
827 int btrfs_block_can_be_shared(struct btrfs_root *root,
828 			      struct extent_buffer *buf)
829 {
830 	/*
831 	 * Tree blocks not in shareable trees and tree roots are never shared.
832 	 * If a block was allocated after the last snapshot and the block was
833 	 * not allocated by tree relocation, we know the block is not shared.
834 	 */
835 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
836 	    buf != root->node && buf != root->commit_root &&
837 	    (btrfs_header_generation(buf) <=
838 	     btrfs_root_last_snapshot(&root->root_item) ||
839 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
840 		return 1;
841 
842 	return 0;
843 }
844 
845 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
846 				       struct btrfs_root *root,
847 				       struct extent_buffer *buf,
848 				       struct extent_buffer *cow,
849 				       int *last_ref)
850 {
851 	struct btrfs_fs_info *fs_info = root->fs_info;
852 	u64 refs;
853 	u64 owner;
854 	u64 flags;
855 	u64 new_flags = 0;
856 	int ret;
857 
858 	/*
859 	 * Backrefs update rules:
860 	 *
861 	 * Always use full backrefs for extent pointers in tree block
862 	 * allocated by tree relocation.
863 	 *
864 	 * If a shared tree block is no longer referenced by its owner
865 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
866 	 * use full backrefs for extent pointers in tree block.
867 	 *
868 	 * If a tree block is been relocating
869 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
870 	 * use full backrefs for extent pointers in tree block.
871 	 * The reason for this is some operations (such as drop tree)
872 	 * are only allowed for blocks use full backrefs.
873 	 */
874 
875 	if (btrfs_block_can_be_shared(root, buf)) {
876 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
877 					       btrfs_header_level(buf), 1,
878 					       &refs, &flags);
879 		if (ret)
880 			return ret;
881 		if (refs == 0) {
882 			ret = -EROFS;
883 			btrfs_handle_fs_error(fs_info, ret, NULL);
884 			return ret;
885 		}
886 	} else {
887 		refs = 1;
888 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
889 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
890 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
891 		else
892 			flags = 0;
893 	}
894 
895 	owner = btrfs_header_owner(buf);
896 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
897 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
898 
899 	if (refs > 1) {
900 		if ((owner == root->root_key.objectid ||
901 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
902 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
903 			ret = btrfs_inc_ref(trans, root, buf, 1);
904 			if (ret)
905 				return ret;
906 
907 			if (root->root_key.objectid ==
908 			    BTRFS_TREE_RELOC_OBJECTID) {
909 				ret = btrfs_dec_ref(trans, root, buf, 0);
910 				if (ret)
911 					return ret;
912 				ret = btrfs_inc_ref(trans, root, cow, 1);
913 				if (ret)
914 					return ret;
915 			}
916 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
917 		} else {
918 
919 			if (root->root_key.objectid ==
920 			    BTRFS_TREE_RELOC_OBJECTID)
921 				ret = btrfs_inc_ref(trans, root, cow, 1);
922 			else
923 				ret = btrfs_inc_ref(trans, root, cow, 0);
924 			if (ret)
925 				return ret;
926 		}
927 		if (new_flags != 0) {
928 			int level = btrfs_header_level(buf);
929 
930 			ret = btrfs_set_disk_extent_flags(trans, buf,
931 							  new_flags, level, 0);
932 			if (ret)
933 				return ret;
934 		}
935 	} else {
936 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
937 			if (root->root_key.objectid ==
938 			    BTRFS_TREE_RELOC_OBJECTID)
939 				ret = btrfs_inc_ref(trans, root, cow, 1);
940 			else
941 				ret = btrfs_inc_ref(trans, root, cow, 0);
942 			if (ret)
943 				return ret;
944 			ret = btrfs_dec_ref(trans, root, buf, 1);
945 			if (ret)
946 				return ret;
947 		}
948 		btrfs_clean_tree_block(buf);
949 		*last_ref = 1;
950 	}
951 	return 0;
952 }
953 
954 static struct extent_buffer *alloc_tree_block_no_bg_flush(
955 					  struct btrfs_trans_handle *trans,
956 					  struct btrfs_root *root,
957 					  u64 parent_start,
958 					  const struct btrfs_disk_key *disk_key,
959 					  int level,
960 					  u64 hint,
961 					  u64 empty_size,
962 					  enum btrfs_lock_nesting nest)
963 {
964 	struct btrfs_fs_info *fs_info = root->fs_info;
965 	struct extent_buffer *ret;
966 
967 	/*
968 	 * If we are COWing a node/leaf from the extent, chunk, device or free
969 	 * space trees, make sure that we do not finish block group creation of
970 	 * pending block groups. We do this to avoid a deadlock.
971 	 * COWing can result in allocation of a new chunk, and flushing pending
972 	 * block groups (btrfs_create_pending_block_groups()) can be triggered
973 	 * when finishing allocation of a new chunk. Creation of a pending block
974 	 * group modifies the extent, chunk, device and free space trees,
975 	 * therefore we could deadlock with ourselves since we are holding a
976 	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
977 	 * try to COW later.
978 	 * For similar reasons, we also need to delay flushing pending block
979 	 * groups when splitting a leaf or node, from one of those trees, since
980 	 * we are holding a write lock on it and its parent or when inserting a
981 	 * new root node for one of those trees.
982 	 */
983 	if (root == fs_info->extent_root ||
984 	    root == fs_info->chunk_root ||
985 	    root == fs_info->dev_root ||
986 	    root == fs_info->free_space_root)
987 		trans->can_flush_pending_bgs = false;
988 
989 	ret = btrfs_alloc_tree_block(trans, root, parent_start,
990 				     root->root_key.objectid, disk_key, level,
991 				     hint, empty_size, nest);
992 	trans->can_flush_pending_bgs = true;
993 
994 	return ret;
995 }
996 
997 /*
998  * does the dirty work in cow of a single block.  The parent block (if
999  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1000  * dirty and returned locked.  If you modify the block it needs to be marked
1001  * dirty again.
1002  *
1003  * search_start -- an allocation hint for the new block
1004  *
1005  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1006  * bytes the allocator should try to find free next to the block it returns.
1007  * This is just a hint and may be ignored by the allocator.
1008  */
1009 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1010 			     struct btrfs_root *root,
1011 			     struct extent_buffer *buf,
1012 			     struct extent_buffer *parent, int parent_slot,
1013 			     struct extent_buffer **cow_ret,
1014 			     u64 search_start, u64 empty_size,
1015 			     enum btrfs_lock_nesting nest)
1016 {
1017 	struct btrfs_fs_info *fs_info = root->fs_info;
1018 	struct btrfs_disk_key disk_key;
1019 	struct extent_buffer *cow;
1020 	int level, ret;
1021 	int last_ref = 0;
1022 	int unlock_orig = 0;
1023 	u64 parent_start = 0;
1024 
1025 	if (*cow_ret == buf)
1026 		unlock_orig = 1;
1027 
1028 	btrfs_assert_tree_locked(buf);
1029 
1030 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1031 		trans->transid != fs_info->running_transaction->transid);
1032 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1033 		trans->transid != root->last_trans);
1034 
1035 	level = btrfs_header_level(buf);
1036 
1037 	if (level == 0)
1038 		btrfs_item_key(buf, &disk_key, 0);
1039 	else
1040 		btrfs_node_key(buf, &disk_key, 0);
1041 
1042 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1043 		parent_start = parent->start;
1044 
1045 	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1046 					   level, search_start, empty_size, nest);
1047 	if (IS_ERR(cow))
1048 		return PTR_ERR(cow);
1049 
1050 	/* cow is set to blocking by btrfs_init_new_buffer */
1051 
1052 	copy_extent_buffer_full(cow, buf);
1053 	btrfs_set_header_bytenr(cow, cow->start);
1054 	btrfs_set_header_generation(cow, trans->transid);
1055 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1056 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1057 				     BTRFS_HEADER_FLAG_RELOC);
1058 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1059 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1060 	else
1061 		btrfs_set_header_owner(cow, root->root_key.objectid);
1062 
1063 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1064 
1065 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1066 	if (ret) {
1067 		btrfs_tree_unlock(cow);
1068 		free_extent_buffer(cow);
1069 		btrfs_abort_transaction(trans, ret);
1070 		return ret;
1071 	}
1072 
1073 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
1074 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1075 		if (ret) {
1076 			btrfs_tree_unlock(cow);
1077 			free_extent_buffer(cow);
1078 			btrfs_abort_transaction(trans, ret);
1079 			return ret;
1080 		}
1081 	}
1082 
1083 	if (buf == root->node) {
1084 		WARN_ON(parent && parent != buf);
1085 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1086 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1087 			parent_start = buf->start;
1088 
1089 		atomic_inc(&cow->refs);
1090 		ret = tree_mod_log_insert_root(root->node, cow, 1);
1091 		BUG_ON(ret < 0);
1092 		rcu_assign_pointer(root->node, cow);
1093 
1094 		btrfs_free_tree_block(trans, root, buf, parent_start,
1095 				      last_ref);
1096 		free_extent_buffer(buf);
1097 		add_root_to_dirty_list(root);
1098 	} else {
1099 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1100 		tree_mod_log_insert_key(parent, parent_slot,
1101 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1102 		btrfs_set_node_blockptr(parent, parent_slot,
1103 					cow->start);
1104 		btrfs_set_node_ptr_generation(parent, parent_slot,
1105 					      trans->transid);
1106 		btrfs_mark_buffer_dirty(parent);
1107 		if (last_ref) {
1108 			ret = tree_mod_log_free_eb(buf);
1109 			if (ret) {
1110 				btrfs_tree_unlock(cow);
1111 				free_extent_buffer(cow);
1112 				btrfs_abort_transaction(trans, ret);
1113 				return ret;
1114 			}
1115 		}
1116 		btrfs_free_tree_block(trans, root, buf, parent_start,
1117 				      last_ref);
1118 	}
1119 	if (unlock_orig)
1120 		btrfs_tree_unlock(buf);
1121 	free_extent_buffer_stale(buf);
1122 	btrfs_mark_buffer_dirty(cow);
1123 	*cow_ret = cow;
1124 	return 0;
1125 }
1126 
1127 /*
1128  * returns the logical address of the oldest predecessor of the given root.
1129  * entries older than time_seq are ignored.
1130  */
1131 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1132 		struct extent_buffer *eb_root, u64 time_seq)
1133 {
1134 	struct tree_mod_elem *tm;
1135 	struct tree_mod_elem *found = NULL;
1136 	u64 root_logical = eb_root->start;
1137 	int looped = 0;
1138 
1139 	if (!time_seq)
1140 		return NULL;
1141 
1142 	/*
1143 	 * the very last operation that's logged for a root is the
1144 	 * replacement operation (if it is replaced at all). this has
1145 	 * the logical address of the *new* root, making it the very
1146 	 * first operation that's logged for this root.
1147 	 */
1148 	while (1) {
1149 		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1150 						time_seq);
1151 		if (!looped && !tm)
1152 			return NULL;
1153 		/*
1154 		 * if there are no tree operation for the oldest root, we simply
1155 		 * return it. this should only happen if that (old) root is at
1156 		 * level 0.
1157 		 */
1158 		if (!tm)
1159 			break;
1160 
1161 		/*
1162 		 * if there's an operation that's not a root replacement, we
1163 		 * found the oldest version of our root. normally, we'll find a
1164 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1165 		 */
1166 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1167 			break;
1168 
1169 		found = tm;
1170 		root_logical = tm->old_root.logical;
1171 		looped = 1;
1172 	}
1173 
1174 	/* if there's no old root to return, return what we found instead */
1175 	if (!found)
1176 		found = tm;
1177 
1178 	return found;
1179 }
1180 
1181 /*
1182  * tm is a pointer to the first operation to rewind within eb. then, all
1183  * previous operations will be rewound (until we reach something older than
1184  * time_seq).
1185  */
1186 static void
1187 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1188 		      u64 time_seq, struct tree_mod_elem *first_tm)
1189 {
1190 	u32 n;
1191 	struct rb_node *next;
1192 	struct tree_mod_elem *tm = first_tm;
1193 	unsigned long o_dst;
1194 	unsigned long o_src;
1195 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1196 
1197 	n = btrfs_header_nritems(eb);
1198 	read_lock(&fs_info->tree_mod_log_lock);
1199 	while (tm && tm->seq >= time_seq) {
1200 		/*
1201 		 * all the operations are recorded with the operator used for
1202 		 * the modification. as we're going backwards, we do the
1203 		 * opposite of each operation here.
1204 		 */
1205 		switch (tm->op) {
1206 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1207 			BUG_ON(tm->slot < n);
1208 			fallthrough;
1209 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1210 		case MOD_LOG_KEY_REMOVE:
1211 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1212 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1213 			btrfs_set_node_ptr_generation(eb, tm->slot,
1214 						      tm->generation);
1215 			n++;
1216 			break;
1217 		case MOD_LOG_KEY_REPLACE:
1218 			BUG_ON(tm->slot >= n);
1219 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1220 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1221 			btrfs_set_node_ptr_generation(eb, tm->slot,
1222 						      tm->generation);
1223 			break;
1224 		case MOD_LOG_KEY_ADD:
1225 			/* if a move operation is needed it's in the log */
1226 			n--;
1227 			break;
1228 		case MOD_LOG_MOVE_KEYS:
1229 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1230 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1231 			memmove_extent_buffer(eb, o_dst, o_src,
1232 					      tm->move.nr_items * p_size);
1233 			break;
1234 		case MOD_LOG_ROOT_REPLACE:
1235 			/*
1236 			 * this operation is special. for roots, this must be
1237 			 * handled explicitly before rewinding.
1238 			 * for non-roots, this operation may exist if the node
1239 			 * was a root: root A -> child B; then A gets empty and
1240 			 * B is promoted to the new root. in the mod log, we'll
1241 			 * have a root-replace operation for B, a tree block
1242 			 * that is no root. we simply ignore that operation.
1243 			 */
1244 			break;
1245 		}
1246 		next = rb_next(&tm->node);
1247 		if (!next)
1248 			break;
1249 		tm = rb_entry(next, struct tree_mod_elem, node);
1250 		if (tm->logical != first_tm->logical)
1251 			break;
1252 	}
1253 	read_unlock(&fs_info->tree_mod_log_lock);
1254 	btrfs_set_header_nritems(eb, n);
1255 }
1256 
1257 /*
1258  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1259  * is returned. If rewind operations happen, a fresh buffer is returned. The
1260  * returned buffer is always read-locked. If the returned buffer is not the
1261  * input buffer, the lock on the input buffer is released and the input buffer
1262  * is freed (its refcount is decremented).
1263  */
1264 static struct extent_buffer *
1265 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1266 		    struct extent_buffer *eb, u64 time_seq)
1267 {
1268 	struct extent_buffer *eb_rewin;
1269 	struct tree_mod_elem *tm;
1270 
1271 	if (!time_seq)
1272 		return eb;
1273 
1274 	if (btrfs_header_level(eb) == 0)
1275 		return eb;
1276 
1277 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1278 	if (!tm)
1279 		return eb;
1280 
1281 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1282 		BUG_ON(tm->slot != 0);
1283 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1284 		if (!eb_rewin) {
1285 			btrfs_tree_read_unlock(eb);
1286 			free_extent_buffer(eb);
1287 			return NULL;
1288 		}
1289 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1290 		btrfs_set_header_backref_rev(eb_rewin,
1291 					     btrfs_header_backref_rev(eb));
1292 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1293 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1294 	} else {
1295 		eb_rewin = btrfs_clone_extent_buffer(eb);
1296 		if (!eb_rewin) {
1297 			btrfs_tree_read_unlock(eb);
1298 			free_extent_buffer(eb);
1299 			return NULL;
1300 		}
1301 	}
1302 
1303 	btrfs_tree_read_unlock(eb);
1304 	free_extent_buffer(eb);
1305 
1306 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
1307 				       eb_rewin, btrfs_header_level(eb_rewin));
1308 	btrfs_tree_read_lock(eb_rewin);
1309 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1310 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1311 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1312 
1313 	return eb_rewin;
1314 }
1315 
1316 /*
1317  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1318  * value. If there are no changes, the current root->root_node is returned. If
1319  * anything changed in between, there's a fresh buffer allocated on which the
1320  * rewind operations are done. In any case, the returned buffer is read locked.
1321  * Returns NULL on error (with no locks held).
1322  */
1323 static inline struct extent_buffer *
1324 get_old_root(struct btrfs_root *root, u64 time_seq)
1325 {
1326 	struct btrfs_fs_info *fs_info = root->fs_info;
1327 	struct tree_mod_elem *tm;
1328 	struct extent_buffer *eb = NULL;
1329 	struct extent_buffer *eb_root;
1330 	u64 eb_root_owner = 0;
1331 	struct extent_buffer *old;
1332 	struct tree_mod_root *old_root = NULL;
1333 	u64 old_generation = 0;
1334 	u64 logical;
1335 	int level;
1336 
1337 	eb_root = btrfs_read_lock_root_node(root);
1338 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1339 	if (!tm)
1340 		return eb_root;
1341 
1342 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1343 		old_root = &tm->old_root;
1344 		old_generation = tm->generation;
1345 		logical = old_root->logical;
1346 		level = old_root->level;
1347 	} else {
1348 		logical = eb_root->start;
1349 		level = btrfs_header_level(eb_root);
1350 	}
1351 
1352 	tm = tree_mod_log_search(fs_info, logical, time_seq);
1353 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1354 		btrfs_tree_read_unlock(eb_root);
1355 		free_extent_buffer(eb_root);
1356 		old = read_tree_block(fs_info, logical, root->root_key.objectid,
1357 				      0, level, NULL);
1358 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1359 			if (!IS_ERR(old))
1360 				free_extent_buffer(old);
1361 			btrfs_warn(fs_info,
1362 				   "failed to read tree block %llu from get_old_root",
1363 				   logical);
1364 		} else {
1365 			eb = btrfs_clone_extent_buffer(old);
1366 			free_extent_buffer(old);
1367 		}
1368 	} else if (old_root) {
1369 		eb_root_owner = btrfs_header_owner(eb_root);
1370 		btrfs_tree_read_unlock(eb_root);
1371 		free_extent_buffer(eb_root);
1372 		eb = alloc_dummy_extent_buffer(fs_info, logical);
1373 	} else {
1374 		eb = btrfs_clone_extent_buffer(eb_root);
1375 		btrfs_tree_read_unlock(eb_root);
1376 		free_extent_buffer(eb_root);
1377 	}
1378 
1379 	if (!eb)
1380 		return NULL;
1381 	if (old_root) {
1382 		btrfs_set_header_bytenr(eb, eb->start);
1383 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1384 		btrfs_set_header_owner(eb, eb_root_owner);
1385 		btrfs_set_header_level(eb, old_root->level);
1386 		btrfs_set_header_generation(eb, old_generation);
1387 	}
1388 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1389 				       btrfs_header_level(eb));
1390 	btrfs_tree_read_lock(eb);
1391 	if (tm)
1392 		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1393 	else
1394 		WARN_ON(btrfs_header_level(eb) != 0);
1395 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1396 
1397 	return eb;
1398 }
1399 
1400 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1401 {
1402 	struct tree_mod_elem *tm;
1403 	int level;
1404 	struct extent_buffer *eb_root = btrfs_root_node(root);
1405 
1406 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1407 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1408 		level = tm->old_root.level;
1409 	} else {
1410 		level = btrfs_header_level(eb_root);
1411 	}
1412 	free_extent_buffer(eb_root);
1413 
1414 	return level;
1415 }
1416 
1417 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1418 				   struct btrfs_root *root,
1419 				   struct extent_buffer *buf)
1420 {
1421 	if (btrfs_is_testing(root->fs_info))
1422 		return 0;
1423 
1424 	/* Ensure we can see the FORCE_COW bit */
1425 	smp_mb__before_atomic();
1426 
1427 	/*
1428 	 * We do not need to cow a block if
1429 	 * 1) this block is not created or changed in this transaction;
1430 	 * 2) this block does not belong to TREE_RELOC tree;
1431 	 * 3) the root is not forced COW.
1432 	 *
1433 	 * What is forced COW:
1434 	 *    when we create snapshot during committing the transaction,
1435 	 *    after we've finished copying src root, we must COW the shared
1436 	 *    block to ensure the metadata consistency.
1437 	 */
1438 	if (btrfs_header_generation(buf) == trans->transid &&
1439 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1440 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1441 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1442 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1443 		return 0;
1444 	return 1;
1445 }
1446 
1447 /*
1448  * cows a single block, see __btrfs_cow_block for the real work.
1449  * This version of it has extra checks so that a block isn't COWed more than
1450  * once per transaction, as long as it hasn't been written yet
1451  */
1452 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1453 		    struct btrfs_root *root, struct extent_buffer *buf,
1454 		    struct extent_buffer *parent, int parent_slot,
1455 		    struct extent_buffer **cow_ret,
1456 		    enum btrfs_lock_nesting nest)
1457 {
1458 	struct btrfs_fs_info *fs_info = root->fs_info;
1459 	u64 search_start;
1460 	int ret;
1461 
1462 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1463 		btrfs_err(fs_info,
1464 			"COW'ing blocks on a fs root that's being dropped");
1465 
1466 	if (trans->transaction != fs_info->running_transaction)
1467 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1468 		       trans->transid,
1469 		       fs_info->running_transaction->transid);
1470 
1471 	if (trans->transid != fs_info->generation)
1472 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1473 		       trans->transid, fs_info->generation);
1474 
1475 	if (!should_cow_block(trans, root, buf)) {
1476 		trans->dirty = true;
1477 		*cow_ret = buf;
1478 		return 0;
1479 	}
1480 
1481 	search_start = buf->start & ~((u64)SZ_1G - 1);
1482 
1483 	/*
1484 	 * Before CoWing this block for later modification, check if it's
1485 	 * the subtree root and do the delayed subtree trace if needed.
1486 	 *
1487 	 * Also We don't care about the error, as it's handled internally.
1488 	 */
1489 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1490 	ret = __btrfs_cow_block(trans, root, buf, parent,
1491 				 parent_slot, cow_ret, search_start, 0, nest);
1492 
1493 	trace_btrfs_cow_block(root, buf, *cow_ret);
1494 
1495 	return ret;
1496 }
1497 
1498 /*
1499  * helper function for defrag to decide if two blocks pointed to by a
1500  * node are actually close by
1501  */
1502 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1503 {
1504 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1505 		return 1;
1506 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1507 		return 1;
1508 	return 0;
1509 }
1510 
1511 #ifdef __LITTLE_ENDIAN
1512 
1513 /*
1514  * Compare two keys, on little-endian the disk order is same as CPU order and
1515  * we can avoid the conversion.
1516  */
1517 static int comp_keys(const struct btrfs_disk_key *disk_key,
1518 		     const struct btrfs_key *k2)
1519 {
1520 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
1521 
1522 	return btrfs_comp_cpu_keys(k1, k2);
1523 }
1524 
1525 #else
1526 
1527 /*
1528  * compare two keys in a memcmp fashion
1529  */
1530 static int comp_keys(const struct btrfs_disk_key *disk,
1531 		     const struct btrfs_key *k2)
1532 {
1533 	struct btrfs_key k1;
1534 
1535 	btrfs_disk_key_to_cpu(&k1, disk);
1536 
1537 	return btrfs_comp_cpu_keys(&k1, k2);
1538 }
1539 #endif
1540 
1541 /*
1542  * same as comp_keys only with two btrfs_key's
1543  */
1544 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1545 {
1546 	if (k1->objectid > k2->objectid)
1547 		return 1;
1548 	if (k1->objectid < k2->objectid)
1549 		return -1;
1550 	if (k1->type > k2->type)
1551 		return 1;
1552 	if (k1->type < k2->type)
1553 		return -1;
1554 	if (k1->offset > k2->offset)
1555 		return 1;
1556 	if (k1->offset < k2->offset)
1557 		return -1;
1558 	return 0;
1559 }
1560 
1561 /*
1562  * this is used by the defrag code to go through all the
1563  * leaves pointed to by a node and reallocate them so that
1564  * disk order is close to key order
1565  */
1566 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1567 		       struct btrfs_root *root, struct extent_buffer *parent,
1568 		       int start_slot, u64 *last_ret,
1569 		       struct btrfs_key *progress)
1570 {
1571 	struct btrfs_fs_info *fs_info = root->fs_info;
1572 	struct extent_buffer *cur;
1573 	u64 blocknr;
1574 	u64 search_start = *last_ret;
1575 	u64 last_block = 0;
1576 	u64 other;
1577 	u32 parent_nritems;
1578 	int end_slot;
1579 	int i;
1580 	int err = 0;
1581 	u32 blocksize;
1582 	int progress_passed = 0;
1583 	struct btrfs_disk_key disk_key;
1584 
1585 	WARN_ON(trans->transaction != fs_info->running_transaction);
1586 	WARN_ON(trans->transid != fs_info->generation);
1587 
1588 	parent_nritems = btrfs_header_nritems(parent);
1589 	blocksize = fs_info->nodesize;
1590 	end_slot = parent_nritems - 1;
1591 
1592 	if (parent_nritems <= 1)
1593 		return 0;
1594 
1595 	for (i = start_slot; i <= end_slot; i++) {
1596 		int close = 1;
1597 
1598 		btrfs_node_key(parent, &disk_key, i);
1599 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1600 			continue;
1601 
1602 		progress_passed = 1;
1603 		blocknr = btrfs_node_blockptr(parent, i);
1604 		if (last_block == 0)
1605 			last_block = blocknr;
1606 
1607 		if (i > 0) {
1608 			other = btrfs_node_blockptr(parent, i - 1);
1609 			close = close_blocks(blocknr, other, blocksize);
1610 		}
1611 		if (!close && i < end_slot) {
1612 			other = btrfs_node_blockptr(parent, i + 1);
1613 			close = close_blocks(blocknr, other, blocksize);
1614 		}
1615 		if (close) {
1616 			last_block = blocknr;
1617 			continue;
1618 		}
1619 
1620 		cur = btrfs_read_node_slot(parent, i);
1621 		if (IS_ERR(cur))
1622 			return PTR_ERR(cur);
1623 		if (search_start == 0)
1624 			search_start = last_block;
1625 
1626 		btrfs_tree_lock(cur);
1627 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1628 					&cur, search_start,
1629 					min(16 * blocksize,
1630 					    (end_slot - i) * blocksize),
1631 					BTRFS_NESTING_COW);
1632 		if (err) {
1633 			btrfs_tree_unlock(cur);
1634 			free_extent_buffer(cur);
1635 			break;
1636 		}
1637 		search_start = cur->start;
1638 		last_block = cur->start;
1639 		*last_ret = search_start;
1640 		btrfs_tree_unlock(cur);
1641 		free_extent_buffer(cur);
1642 	}
1643 	return err;
1644 }
1645 
1646 /*
1647  * search for key in the extent_buffer.  The items start at offset p,
1648  * and they are item_size apart.  There are 'max' items in p.
1649  *
1650  * the slot in the array is returned via slot, and it points to
1651  * the place where you would insert key if it is not found in
1652  * the array.
1653  *
1654  * slot may point to max if the key is bigger than all of the keys
1655  */
1656 static noinline int generic_bin_search(struct extent_buffer *eb,
1657 				       unsigned long p, int item_size,
1658 				       const struct btrfs_key *key,
1659 				       int max, int *slot)
1660 {
1661 	int low = 0;
1662 	int high = max;
1663 	int ret;
1664 	const int key_size = sizeof(struct btrfs_disk_key);
1665 
1666 	if (low > high) {
1667 		btrfs_err(eb->fs_info,
1668 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1669 			  __func__, low, high, eb->start,
1670 			  btrfs_header_owner(eb), btrfs_header_level(eb));
1671 		return -EINVAL;
1672 	}
1673 
1674 	while (low < high) {
1675 		unsigned long oip;
1676 		unsigned long offset;
1677 		struct btrfs_disk_key *tmp;
1678 		struct btrfs_disk_key unaligned;
1679 		int mid;
1680 
1681 		mid = (low + high) / 2;
1682 		offset = p + mid * item_size;
1683 		oip = offset_in_page(offset);
1684 
1685 		if (oip + key_size <= PAGE_SIZE) {
1686 			const unsigned long idx = get_eb_page_index(offset);
1687 			char *kaddr = page_address(eb->pages[idx]);
1688 
1689 			oip = get_eb_offset_in_page(eb, offset);
1690 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
1691 		} else {
1692 			read_extent_buffer(eb, &unaligned, offset, key_size);
1693 			tmp = &unaligned;
1694 		}
1695 
1696 		ret = comp_keys(tmp, key);
1697 
1698 		if (ret < 0)
1699 			low = mid + 1;
1700 		else if (ret > 0)
1701 			high = mid;
1702 		else {
1703 			*slot = mid;
1704 			return 0;
1705 		}
1706 	}
1707 	*slot = low;
1708 	return 1;
1709 }
1710 
1711 /*
1712  * simple bin_search frontend that does the right thing for
1713  * leaves vs nodes
1714  */
1715 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1716 		     int *slot)
1717 {
1718 	if (btrfs_header_level(eb) == 0)
1719 		return generic_bin_search(eb,
1720 					  offsetof(struct btrfs_leaf, items),
1721 					  sizeof(struct btrfs_item),
1722 					  key, btrfs_header_nritems(eb),
1723 					  slot);
1724 	else
1725 		return generic_bin_search(eb,
1726 					  offsetof(struct btrfs_node, ptrs),
1727 					  sizeof(struct btrfs_key_ptr),
1728 					  key, btrfs_header_nritems(eb),
1729 					  slot);
1730 }
1731 
1732 static void root_add_used(struct btrfs_root *root, u32 size)
1733 {
1734 	spin_lock(&root->accounting_lock);
1735 	btrfs_set_root_used(&root->root_item,
1736 			    btrfs_root_used(&root->root_item) + size);
1737 	spin_unlock(&root->accounting_lock);
1738 }
1739 
1740 static void root_sub_used(struct btrfs_root *root, u32 size)
1741 {
1742 	spin_lock(&root->accounting_lock);
1743 	btrfs_set_root_used(&root->root_item,
1744 			    btrfs_root_used(&root->root_item) - size);
1745 	spin_unlock(&root->accounting_lock);
1746 }
1747 
1748 /* given a node and slot number, this reads the blocks it points to.  The
1749  * extent buffer is returned with a reference taken (but unlocked).
1750  */
1751 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1752 					   int slot)
1753 {
1754 	int level = btrfs_header_level(parent);
1755 	struct extent_buffer *eb;
1756 	struct btrfs_key first_key;
1757 
1758 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1759 		return ERR_PTR(-ENOENT);
1760 
1761 	BUG_ON(level == 0);
1762 
1763 	btrfs_node_key_to_cpu(parent, &first_key, slot);
1764 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1765 			     btrfs_header_owner(parent),
1766 			     btrfs_node_ptr_generation(parent, slot),
1767 			     level - 1, &first_key);
1768 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1769 		free_extent_buffer(eb);
1770 		eb = ERR_PTR(-EIO);
1771 	}
1772 
1773 	return eb;
1774 }
1775 
1776 /*
1777  * node level balancing, used to make sure nodes are in proper order for
1778  * item deletion.  We balance from the top down, so we have to make sure
1779  * that a deletion won't leave an node completely empty later on.
1780  */
1781 static noinline int balance_level(struct btrfs_trans_handle *trans,
1782 			 struct btrfs_root *root,
1783 			 struct btrfs_path *path, int level)
1784 {
1785 	struct btrfs_fs_info *fs_info = root->fs_info;
1786 	struct extent_buffer *right = NULL;
1787 	struct extent_buffer *mid;
1788 	struct extent_buffer *left = NULL;
1789 	struct extent_buffer *parent = NULL;
1790 	int ret = 0;
1791 	int wret;
1792 	int pslot;
1793 	int orig_slot = path->slots[level];
1794 	u64 orig_ptr;
1795 
1796 	ASSERT(level > 0);
1797 
1798 	mid = path->nodes[level];
1799 
1800 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1801 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1802 
1803 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1804 
1805 	if (level < BTRFS_MAX_LEVEL - 1) {
1806 		parent = path->nodes[level + 1];
1807 		pslot = path->slots[level + 1];
1808 	}
1809 
1810 	/*
1811 	 * deal with the case where there is only one pointer in the root
1812 	 * by promoting the node below to a root
1813 	 */
1814 	if (!parent) {
1815 		struct extent_buffer *child;
1816 
1817 		if (btrfs_header_nritems(mid) != 1)
1818 			return 0;
1819 
1820 		/* promote the child to a root */
1821 		child = btrfs_read_node_slot(mid, 0);
1822 		if (IS_ERR(child)) {
1823 			ret = PTR_ERR(child);
1824 			btrfs_handle_fs_error(fs_info, ret, NULL);
1825 			goto enospc;
1826 		}
1827 
1828 		btrfs_tree_lock(child);
1829 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1830 				      BTRFS_NESTING_COW);
1831 		if (ret) {
1832 			btrfs_tree_unlock(child);
1833 			free_extent_buffer(child);
1834 			goto enospc;
1835 		}
1836 
1837 		ret = tree_mod_log_insert_root(root->node, child, 1);
1838 		BUG_ON(ret < 0);
1839 		rcu_assign_pointer(root->node, child);
1840 
1841 		add_root_to_dirty_list(root);
1842 		btrfs_tree_unlock(child);
1843 
1844 		path->locks[level] = 0;
1845 		path->nodes[level] = NULL;
1846 		btrfs_clean_tree_block(mid);
1847 		btrfs_tree_unlock(mid);
1848 		/* once for the path */
1849 		free_extent_buffer(mid);
1850 
1851 		root_sub_used(root, mid->len);
1852 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1853 		/* once for the root ptr */
1854 		free_extent_buffer_stale(mid);
1855 		return 0;
1856 	}
1857 	if (btrfs_header_nritems(mid) >
1858 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1859 		return 0;
1860 
1861 	left = btrfs_read_node_slot(parent, pslot - 1);
1862 	if (IS_ERR(left))
1863 		left = NULL;
1864 
1865 	if (left) {
1866 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1867 		wret = btrfs_cow_block(trans, root, left,
1868 				       parent, pslot - 1, &left,
1869 				       BTRFS_NESTING_LEFT_COW);
1870 		if (wret) {
1871 			ret = wret;
1872 			goto enospc;
1873 		}
1874 	}
1875 
1876 	right = btrfs_read_node_slot(parent, pslot + 1);
1877 	if (IS_ERR(right))
1878 		right = NULL;
1879 
1880 	if (right) {
1881 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1882 		wret = btrfs_cow_block(trans, root, right,
1883 				       parent, pslot + 1, &right,
1884 				       BTRFS_NESTING_RIGHT_COW);
1885 		if (wret) {
1886 			ret = wret;
1887 			goto enospc;
1888 		}
1889 	}
1890 
1891 	/* first, try to make some room in the middle buffer */
1892 	if (left) {
1893 		orig_slot += btrfs_header_nritems(left);
1894 		wret = push_node_left(trans, left, mid, 1);
1895 		if (wret < 0)
1896 			ret = wret;
1897 	}
1898 
1899 	/*
1900 	 * then try to empty the right most buffer into the middle
1901 	 */
1902 	if (right) {
1903 		wret = push_node_left(trans, mid, right, 1);
1904 		if (wret < 0 && wret != -ENOSPC)
1905 			ret = wret;
1906 		if (btrfs_header_nritems(right) == 0) {
1907 			btrfs_clean_tree_block(right);
1908 			btrfs_tree_unlock(right);
1909 			del_ptr(root, path, level + 1, pslot + 1);
1910 			root_sub_used(root, right->len);
1911 			btrfs_free_tree_block(trans, root, right, 0, 1);
1912 			free_extent_buffer_stale(right);
1913 			right = NULL;
1914 		} else {
1915 			struct btrfs_disk_key right_key;
1916 			btrfs_node_key(right, &right_key, 0);
1917 			ret = tree_mod_log_insert_key(parent, pslot + 1,
1918 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1919 			BUG_ON(ret < 0);
1920 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1921 			btrfs_mark_buffer_dirty(parent);
1922 		}
1923 	}
1924 	if (btrfs_header_nritems(mid) == 1) {
1925 		/*
1926 		 * we're not allowed to leave a node with one item in the
1927 		 * tree during a delete.  A deletion from lower in the tree
1928 		 * could try to delete the only pointer in this node.
1929 		 * So, pull some keys from the left.
1930 		 * There has to be a left pointer at this point because
1931 		 * otherwise we would have pulled some pointers from the
1932 		 * right
1933 		 */
1934 		if (!left) {
1935 			ret = -EROFS;
1936 			btrfs_handle_fs_error(fs_info, ret, NULL);
1937 			goto enospc;
1938 		}
1939 		wret = balance_node_right(trans, mid, left);
1940 		if (wret < 0) {
1941 			ret = wret;
1942 			goto enospc;
1943 		}
1944 		if (wret == 1) {
1945 			wret = push_node_left(trans, left, mid, 1);
1946 			if (wret < 0)
1947 				ret = wret;
1948 		}
1949 		BUG_ON(wret == 1);
1950 	}
1951 	if (btrfs_header_nritems(mid) == 0) {
1952 		btrfs_clean_tree_block(mid);
1953 		btrfs_tree_unlock(mid);
1954 		del_ptr(root, path, level + 1, pslot);
1955 		root_sub_used(root, mid->len);
1956 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1957 		free_extent_buffer_stale(mid);
1958 		mid = NULL;
1959 	} else {
1960 		/* update the parent key to reflect our changes */
1961 		struct btrfs_disk_key mid_key;
1962 		btrfs_node_key(mid, &mid_key, 0);
1963 		ret = tree_mod_log_insert_key(parent, pslot,
1964 				MOD_LOG_KEY_REPLACE, GFP_NOFS);
1965 		BUG_ON(ret < 0);
1966 		btrfs_set_node_key(parent, &mid_key, pslot);
1967 		btrfs_mark_buffer_dirty(parent);
1968 	}
1969 
1970 	/* update the path */
1971 	if (left) {
1972 		if (btrfs_header_nritems(left) > orig_slot) {
1973 			atomic_inc(&left->refs);
1974 			/* left was locked after cow */
1975 			path->nodes[level] = left;
1976 			path->slots[level + 1] -= 1;
1977 			path->slots[level] = orig_slot;
1978 			if (mid) {
1979 				btrfs_tree_unlock(mid);
1980 				free_extent_buffer(mid);
1981 			}
1982 		} else {
1983 			orig_slot -= btrfs_header_nritems(left);
1984 			path->slots[level] = orig_slot;
1985 		}
1986 	}
1987 	/* double check we haven't messed things up */
1988 	if (orig_ptr !=
1989 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1990 		BUG();
1991 enospc:
1992 	if (right) {
1993 		btrfs_tree_unlock(right);
1994 		free_extent_buffer(right);
1995 	}
1996 	if (left) {
1997 		if (path->nodes[level] != left)
1998 			btrfs_tree_unlock(left);
1999 		free_extent_buffer(left);
2000 	}
2001 	return ret;
2002 }
2003 
2004 /* Node balancing for insertion.  Here we only split or push nodes around
2005  * when they are completely full.  This is also done top down, so we
2006  * have to be pessimistic.
2007  */
2008 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2009 					  struct btrfs_root *root,
2010 					  struct btrfs_path *path, int level)
2011 {
2012 	struct btrfs_fs_info *fs_info = root->fs_info;
2013 	struct extent_buffer *right = NULL;
2014 	struct extent_buffer *mid;
2015 	struct extent_buffer *left = NULL;
2016 	struct extent_buffer *parent = NULL;
2017 	int ret = 0;
2018 	int wret;
2019 	int pslot;
2020 	int orig_slot = path->slots[level];
2021 
2022 	if (level == 0)
2023 		return 1;
2024 
2025 	mid = path->nodes[level];
2026 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2027 
2028 	if (level < BTRFS_MAX_LEVEL - 1) {
2029 		parent = path->nodes[level + 1];
2030 		pslot = path->slots[level + 1];
2031 	}
2032 
2033 	if (!parent)
2034 		return 1;
2035 
2036 	left = btrfs_read_node_slot(parent, pslot - 1);
2037 	if (IS_ERR(left))
2038 		left = NULL;
2039 
2040 	/* first, try to make some room in the middle buffer */
2041 	if (left) {
2042 		u32 left_nr;
2043 
2044 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
2045 
2046 		left_nr = btrfs_header_nritems(left);
2047 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2048 			wret = 1;
2049 		} else {
2050 			ret = btrfs_cow_block(trans, root, left, parent,
2051 					      pslot - 1, &left,
2052 					      BTRFS_NESTING_LEFT_COW);
2053 			if (ret)
2054 				wret = 1;
2055 			else {
2056 				wret = push_node_left(trans, left, mid, 0);
2057 			}
2058 		}
2059 		if (wret < 0)
2060 			ret = wret;
2061 		if (wret == 0) {
2062 			struct btrfs_disk_key disk_key;
2063 			orig_slot += left_nr;
2064 			btrfs_node_key(mid, &disk_key, 0);
2065 			ret = tree_mod_log_insert_key(parent, pslot,
2066 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2067 			BUG_ON(ret < 0);
2068 			btrfs_set_node_key(parent, &disk_key, pslot);
2069 			btrfs_mark_buffer_dirty(parent);
2070 			if (btrfs_header_nritems(left) > orig_slot) {
2071 				path->nodes[level] = left;
2072 				path->slots[level + 1] -= 1;
2073 				path->slots[level] = orig_slot;
2074 				btrfs_tree_unlock(mid);
2075 				free_extent_buffer(mid);
2076 			} else {
2077 				orig_slot -=
2078 					btrfs_header_nritems(left);
2079 				path->slots[level] = orig_slot;
2080 				btrfs_tree_unlock(left);
2081 				free_extent_buffer(left);
2082 			}
2083 			return 0;
2084 		}
2085 		btrfs_tree_unlock(left);
2086 		free_extent_buffer(left);
2087 	}
2088 	right = btrfs_read_node_slot(parent, pslot + 1);
2089 	if (IS_ERR(right))
2090 		right = NULL;
2091 
2092 	/*
2093 	 * then try to empty the right most buffer into the middle
2094 	 */
2095 	if (right) {
2096 		u32 right_nr;
2097 
2098 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2099 
2100 		right_nr = btrfs_header_nritems(right);
2101 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2102 			wret = 1;
2103 		} else {
2104 			ret = btrfs_cow_block(trans, root, right,
2105 					      parent, pslot + 1,
2106 					      &right, BTRFS_NESTING_RIGHT_COW);
2107 			if (ret)
2108 				wret = 1;
2109 			else {
2110 				wret = balance_node_right(trans, right, mid);
2111 			}
2112 		}
2113 		if (wret < 0)
2114 			ret = wret;
2115 		if (wret == 0) {
2116 			struct btrfs_disk_key disk_key;
2117 
2118 			btrfs_node_key(right, &disk_key, 0);
2119 			ret = tree_mod_log_insert_key(parent, pslot + 1,
2120 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2121 			BUG_ON(ret < 0);
2122 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2123 			btrfs_mark_buffer_dirty(parent);
2124 
2125 			if (btrfs_header_nritems(mid) <= orig_slot) {
2126 				path->nodes[level] = right;
2127 				path->slots[level + 1] += 1;
2128 				path->slots[level] = orig_slot -
2129 					btrfs_header_nritems(mid);
2130 				btrfs_tree_unlock(mid);
2131 				free_extent_buffer(mid);
2132 			} else {
2133 				btrfs_tree_unlock(right);
2134 				free_extent_buffer(right);
2135 			}
2136 			return 0;
2137 		}
2138 		btrfs_tree_unlock(right);
2139 		free_extent_buffer(right);
2140 	}
2141 	return 1;
2142 }
2143 
2144 /*
2145  * readahead one full node of leaves, finding things that are close
2146  * to the block in 'slot', and triggering ra on them.
2147  */
2148 static void reada_for_search(struct btrfs_fs_info *fs_info,
2149 			     struct btrfs_path *path,
2150 			     int level, int slot, u64 objectid)
2151 {
2152 	struct extent_buffer *node;
2153 	struct btrfs_disk_key disk_key;
2154 	u32 nritems;
2155 	u64 search;
2156 	u64 target;
2157 	u64 nread = 0;
2158 	struct extent_buffer *eb;
2159 	u32 nr;
2160 	u32 blocksize;
2161 	u32 nscan = 0;
2162 
2163 	if (level != 1)
2164 		return;
2165 
2166 	if (!path->nodes[level])
2167 		return;
2168 
2169 	node = path->nodes[level];
2170 
2171 	search = btrfs_node_blockptr(node, slot);
2172 	blocksize = fs_info->nodesize;
2173 	eb = find_extent_buffer(fs_info, search);
2174 	if (eb) {
2175 		free_extent_buffer(eb);
2176 		return;
2177 	}
2178 
2179 	target = search;
2180 
2181 	nritems = btrfs_header_nritems(node);
2182 	nr = slot;
2183 
2184 	while (1) {
2185 		if (path->reada == READA_BACK) {
2186 			if (nr == 0)
2187 				break;
2188 			nr--;
2189 		} else if (path->reada == READA_FORWARD) {
2190 			nr++;
2191 			if (nr >= nritems)
2192 				break;
2193 		}
2194 		if (path->reada == READA_BACK && objectid) {
2195 			btrfs_node_key(node, &disk_key, nr);
2196 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2197 				break;
2198 		}
2199 		search = btrfs_node_blockptr(node, nr);
2200 		if ((search <= target && target - search <= 65536) ||
2201 		    (search > target && search - target <= 65536)) {
2202 			btrfs_readahead_node_child(node, nr);
2203 			nread += blocksize;
2204 		}
2205 		nscan++;
2206 		if ((nread > 65536 || nscan > 32))
2207 			break;
2208 	}
2209 }
2210 
2211 static noinline void reada_for_balance(struct btrfs_path *path, int level)
2212 {
2213 	struct extent_buffer *parent;
2214 	int slot;
2215 	int nritems;
2216 
2217 	parent = path->nodes[level + 1];
2218 	if (!parent)
2219 		return;
2220 
2221 	nritems = btrfs_header_nritems(parent);
2222 	slot = path->slots[level + 1];
2223 
2224 	if (slot > 0)
2225 		btrfs_readahead_node_child(parent, slot - 1);
2226 	if (slot + 1 < nritems)
2227 		btrfs_readahead_node_child(parent, slot + 1);
2228 }
2229 
2230 
2231 /*
2232  * when we walk down the tree, it is usually safe to unlock the higher layers
2233  * in the tree.  The exceptions are when our path goes through slot 0, because
2234  * operations on the tree might require changing key pointers higher up in the
2235  * tree.
2236  *
2237  * callers might also have set path->keep_locks, which tells this code to keep
2238  * the lock if the path points to the last slot in the block.  This is part of
2239  * walking through the tree, and selecting the next slot in the higher block.
2240  *
2241  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2242  * if lowest_unlock is 1, level 0 won't be unlocked
2243  */
2244 static noinline void unlock_up(struct btrfs_path *path, int level,
2245 			       int lowest_unlock, int min_write_lock_level,
2246 			       int *write_lock_level)
2247 {
2248 	int i;
2249 	int skip_level = level;
2250 	int no_skips = 0;
2251 	struct extent_buffer *t;
2252 
2253 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2254 		if (!path->nodes[i])
2255 			break;
2256 		if (!path->locks[i])
2257 			break;
2258 		if (!no_skips && path->slots[i] == 0) {
2259 			skip_level = i + 1;
2260 			continue;
2261 		}
2262 		if (!no_skips && path->keep_locks) {
2263 			u32 nritems;
2264 			t = path->nodes[i];
2265 			nritems = btrfs_header_nritems(t);
2266 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2267 				skip_level = i + 1;
2268 				continue;
2269 			}
2270 		}
2271 		if (skip_level < i && i >= lowest_unlock)
2272 			no_skips = 1;
2273 
2274 		t = path->nodes[i];
2275 		if (i >= lowest_unlock && i > skip_level) {
2276 			btrfs_tree_unlock_rw(t, path->locks[i]);
2277 			path->locks[i] = 0;
2278 			if (write_lock_level &&
2279 			    i > min_write_lock_level &&
2280 			    i <= *write_lock_level) {
2281 				*write_lock_level = i - 1;
2282 			}
2283 		}
2284 	}
2285 }
2286 
2287 /*
2288  * helper function for btrfs_search_slot.  The goal is to find a block
2289  * in cache without setting the path to blocking.  If we find the block
2290  * we return zero and the path is unchanged.
2291  *
2292  * If we can't find the block, we set the path blocking and do some
2293  * reada.  -EAGAIN is returned and the search must be repeated.
2294  */
2295 static int
2296 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2297 		      struct extent_buffer **eb_ret, int level, int slot,
2298 		      const struct btrfs_key *key)
2299 {
2300 	struct btrfs_fs_info *fs_info = root->fs_info;
2301 	u64 blocknr;
2302 	u64 gen;
2303 	struct extent_buffer *tmp;
2304 	struct btrfs_key first_key;
2305 	int ret;
2306 	int parent_level;
2307 
2308 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
2309 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
2310 	parent_level = btrfs_header_level(*eb_ret);
2311 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
2312 
2313 	tmp = find_extent_buffer(fs_info, blocknr);
2314 	if (tmp) {
2315 		/* first we do an atomic uptodate check */
2316 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2317 			/*
2318 			 * Do extra check for first_key, eb can be stale due to
2319 			 * being cached, read from scrub, or have multiple
2320 			 * parents (shared tree blocks).
2321 			 */
2322 			if (btrfs_verify_level_key(tmp,
2323 					parent_level - 1, &first_key, gen)) {
2324 				free_extent_buffer(tmp);
2325 				return -EUCLEAN;
2326 			}
2327 			*eb_ret = tmp;
2328 			return 0;
2329 		}
2330 
2331 		/* now we're allowed to do a blocking uptodate check */
2332 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2333 		if (!ret) {
2334 			*eb_ret = tmp;
2335 			return 0;
2336 		}
2337 		free_extent_buffer(tmp);
2338 		btrfs_release_path(p);
2339 		return -EIO;
2340 	}
2341 
2342 	/*
2343 	 * reduce lock contention at high levels
2344 	 * of the btree by dropping locks before
2345 	 * we read.  Don't release the lock on the current
2346 	 * level because we need to walk this node to figure
2347 	 * out which blocks to read.
2348 	 */
2349 	btrfs_unlock_up_safe(p, level + 1);
2350 
2351 	if (p->reada != READA_NONE)
2352 		reada_for_search(fs_info, p, level, slot, key->objectid);
2353 
2354 	ret = -EAGAIN;
2355 	tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
2356 			      gen, parent_level - 1, &first_key);
2357 	if (!IS_ERR(tmp)) {
2358 		/*
2359 		 * If the read above didn't mark this buffer up to date,
2360 		 * it will never end up being up to date.  Set ret to EIO now
2361 		 * and give up so that our caller doesn't loop forever
2362 		 * on our EAGAINs.
2363 		 */
2364 		if (!extent_buffer_uptodate(tmp))
2365 			ret = -EIO;
2366 		free_extent_buffer(tmp);
2367 	} else {
2368 		ret = PTR_ERR(tmp);
2369 	}
2370 
2371 	btrfs_release_path(p);
2372 	return ret;
2373 }
2374 
2375 /*
2376  * helper function for btrfs_search_slot.  This does all of the checks
2377  * for node-level blocks and does any balancing required based on
2378  * the ins_len.
2379  *
2380  * If no extra work was required, zero is returned.  If we had to
2381  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2382  * start over
2383  */
2384 static int
2385 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2386 		       struct btrfs_root *root, struct btrfs_path *p,
2387 		       struct extent_buffer *b, int level, int ins_len,
2388 		       int *write_lock_level)
2389 {
2390 	struct btrfs_fs_info *fs_info = root->fs_info;
2391 	int ret = 0;
2392 
2393 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2394 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2395 
2396 		if (*write_lock_level < level + 1) {
2397 			*write_lock_level = level + 1;
2398 			btrfs_release_path(p);
2399 			return -EAGAIN;
2400 		}
2401 
2402 		reada_for_balance(p, level);
2403 		ret = split_node(trans, root, p, level);
2404 
2405 		b = p->nodes[level];
2406 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2407 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2408 
2409 		if (*write_lock_level < level + 1) {
2410 			*write_lock_level = level + 1;
2411 			btrfs_release_path(p);
2412 			return -EAGAIN;
2413 		}
2414 
2415 		reada_for_balance(p, level);
2416 		ret = balance_level(trans, root, p, level);
2417 		if (ret)
2418 			return ret;
2419 
2420 		b = p->nodes[level];
2421 		if (!b) {
2422 			btrfs_release_path(p);
2423 			return -EAGAIN;
2424 		}
2425 		BUG_ON(btrfs_header_nritems(b) == 1);
2426 	}
2427 	return ret;
2428 }
2429 
2430 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2431 		u64 iobjectid, u64 ioff, u8 key_type,
2432 		struct btrfs_key *found_key)
2433 {
2434 	int ret;
2435 	struct btrfs_key key;
2436 	struct extent_buffer *eb;
2437 
2438 	ASSERT(path);
2439 	ASSERT(found_key);
2440 
2441 	key.type = key_type;
2442 	key.objectid = iobjectid;
2443 	key.offset = ioff;
2444 
2445 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2446 	if (ret < 0)
2447 		return ret;
2448 
2449 	eb = path->nodes[0];
2450 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2451 		ret = btrfs_next_leaf(fs_root, path);
2452 		if (ret)
2453 			return ret;
2454 		eb = path->nodes[0];
2455 	}
2456 
2457 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2458 	if (found_key->type != key.type ||
2459 			found_key->objectid != key.objectid)
2460 		return 1;
2461 
2462 	return 0;
2463 }
2464 
2465 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2466 							struct btrfs_path *p,
2467 							int write_lock_level)
2468 {
2469 	struct btrfs_fs_info *fs_info = root->fs_info;
2470 	struct extent_buffer *b;
2471 	int root_lock;
2472 	int level = 0;
2473 
2474 	/* We try very hard to do read locks on the root */
2475 	root_lock = BTRFS_READ_LOCK;
2476 
2477 	if (p->search_commit_root) {
2478 		/*
2479 		 * The commit roots are read only so we always do read locks,
2480 		 * and we always must hold the commit_root_sem when doing
2481 		 * searches on them, the only exception is send where we don't
2482 		 * want to block transaction commits for a long time, so
2483 		 * we need to clone the commit root in order to avoid races
2484 		 * with transaction commits that create a snapshot of one of
2485 		 * the roots used by a send operation.
2486 		 */
2487 		if (p->need_commit_sem) {
2488 			down_read(&fs_info->commit_root_sem);
2489 			b = btrfs_clone_extent_buffer(root->commit_root);
2490 			up_read(&fs_info->commit_root_sem);
2491 			if (!b)
2492 				return ERR_PTR(-ENOMEM);
2493 
2494 		} else {
2495 			b = root->commit_root;
2496 			atomic_inc(&b->refs);
2497 		}
2498 		level = btrfs_header_level(b);
2499 		/*
2500 		 * Ensure that all callers have set skip_locking when
2501 		 * p->search_commit_root = 1.
2502 		 */
2503 		ASSERT(p->skip_locking == 1);
2504 
2505 		goto out;
2506 	}
2507 
2508 	if (p->skip_locking) {
2509 		b = btrfs_root_node(root);
2510 		level = btrfs_header_level(b);
2511 		goto out;
2512 	}
2513 
2514 	/*
2515 	 * If the level is set to maximum, we can skip trying to get the read
2516 	 * lock.
2517 	 */
2518 	if (write_lock_level < BTRFS_MAX_LEVEL) {
2519 		/*
2520 		 * We don't know the level of the root node until we actually
2521 		 * have it read locked
2522 		 */
2523 		b = btrfs_read_lock_root_node(root);
2524 		level = btrfs_header_level(b);
2525 		if (level > write_lock_level)
2526 			goto out;
2527 
2528 		/* Whoops, must trade for write lock */
2529 		btrfs_tree_read_unlock(b);
2530 		free_extent_buffer(b);
2531 	}
2532 
2533 	b = btrfs_lock_root_node(root);
2534 	root_lock = BTRFS_WRITE_LOCK;
2535 
2536 	/* The level might have changed, check again */
2537 	level = btrfs_header_level(b);
2538 
2539 out:
2540 	p->nodes[level] = b;
2541 	if (!p->skip_locking)
2542 		p->locks[level] = root_lock;
2543 	/*
2544 	 * Callers are responsible for dropping b's references.
2545 	 */
2546 	return b;
2547 }
2548 
2549 
2550 /*
2551  * btrfs_search_slot - look for a key in a tree and perform necessary
2552  * modifications to preserve tree invariants.
2553  *
2554  * @trans:	Handle of transaction, used when modifying the tree
2555  * @p:		Holds all btree nodes along the search path
2556  * @root:	The root node of the tree
2557  * @key:	The key we are looking for
2558  * @ins_len:	Indicates purpose of search:
2559  *              >0  for inserts it's size of item inserted (*)
2560  *              <0  for deletions
2561  *               0  for plain searches, not modifying the tree
2562  *
2563  *              (*) If size of item inserted doesn't include
2564  *              sizeof(struct btrfs_item), then p->search_for_extension must
2565  *              be set.
2566  * @cow:	boolean should CoW operations be performed. Must always be 1
2567  *		when modifying the tree.
2568  *
2569  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2570  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2571  *
2572  * If @key is found, 0 is returned and you can find the item in the leaf level
2573  * of the path (level 0)
2574  *
2575  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2576  * points to the slot where it should be inserted
2577  *
2578  * If an error is encountered while searching the tree a negative error number
2579  * is returned
2580  */
2581 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2582 		      const struct btrfs_key *key, struct btrfs_path *p,
2583 		      int ins_len, int cow)
2584 {
2585 	struct extent_buffer *b;
2586 	int slot;
2587 	int ret;
2588 	int err;
2589 	int level;
2590 	int lowest_unlock = 1;
2591 	/* everything at write_lock_level or lower must be write locked */
2592 	int write_lock_level = 0;
2593 	u8 lowest_level = 0;
2594 	int min_write_lock_level;
2595 	int prev_cmp;
2596 
2597 	lowest_level = p->lowest_level;
2598 	WARN_ON(lowest_level && ins_len > 0);
2599 	WARN_ON(p->nodes[0] != NULL);
2600 	BUG_ON(!cow && ins_len);
2601 
2602 	if (ins_len < 0) {
2603 		lowest_unlock = 2;
2604 
2605 		/* when we are removing items, we might have to go up to level
2606 		 * two as we update tree pointers  Make sure we keep write
2607 		 * for those levels as well
2608 		 */
2609 		write_lock_level = 2;
2610 	} else if (ins_len > 0) {
2611 		/*
2612 		 * for inserting items, make sure we have a write lock on
2613 		 * level 1 so we can update keys
2614 		 */
2615 		write_lock_level = 1;
2616 	}
2617 
2618 	if (!cow)
2619 		write_lock_level = -1;
2620 
2621 	if (cow && (p->keep_locks || p->lowest_level))
2622 		write_lock_level = BTRFS_MAX_LEVEL;
2623 
2624 	min_write_lock_level = write_lock_level;
2625 
2626 again:
2627 	prev_cmp = -1;
2628 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2629 	if (IS_ERR(b)) {
2630 		ret = PTR_ERR(b);
2631 		goto done;
2632 	}
2633 
2634 	while (b) {
2635 		int dec = 0;
2636 
2637 		level = btrfs_header_level(b);
2638 
2639 		if (cow) {
2640 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2641 
2642 			/*
2643 			 * if we don't really need to cow this block
2644 			 * then we don't want to set the path blocking,
2645 			 * so we test it here
2646 			 */
2647 			if (!should_cow_block(trans, root, b)) {
2648 				trans->dirty = true;
2649 				goto cow_done;
2650 			}
2651 
2652 			/*
2653 			 * must have write locks on this node and the
2654 			 * parent
2655 			 */
2656 			if (level > write_lock_level ||
2657 			    (level + 1 > write_lock_level &&
2658 			    level + 1 < BTRFS_MAX_LEVEL &&
2659 			    p->nodes[level + 1])) {
2660 				write_lock_level = level + 1;
2661 				btrfs_release_path(p);
2662 				goto again;
2663 			}
2664 
2665 			if (last_level)
2666 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2667 						      &b,
2668 						      BTRFS_NESTING_COW);
2669 			else
2670 				err = btrfs_cow_block(trans, root, b,
2671 						      p->nodes[level + 1],
2672 						      p->slots[level + 1], &b,
2673 						      BTRFS_NESTING_COW);
2674 			if (err) {
2675 				ret = err;
2676 				goto done;
2677 			}
2678 		}
2679 cow_done:
2680 		p->nodes[level] = b;
2681 		/*
2682 		 * Leave path with blocking locks to avoid massive
2683 		 * lock context switch, this is made on purpose.
2684 		 */
2685 
2686 		/*
2687 		 * we have a lock on b and as long as we aren't changing
2688 		 * the tree, there is no way to for the items in b to change.
2689 		 * It is safe to drop the lock on our parent before we
2690 		 * go through the expensive btree search on b.
2691 		 *
2692 		 * If we're inserting or deleting (ins_len != 0), then we might
2693 		 * be changing slot zero, which may require changing the parent.
2694 		 * So, we can't drop the lock until after we know which slot
2695 		 * we're operating on.
2696 		 */
2697 		if (!ins_len && !p->keep_locks) {
2698 			int u = level + 1;
2699 
2700 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2701 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2702 				p->locks[u] = 0;
2703 			}
2704 		}
2705 
2706 		/*
2707 		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
2708 		 * we can safely assume the target key will always be in slot 0
2709 		 * on lower levels due to the invariants BTRFS' btree provides,
2710 		 * namely that a btrfs_key_ptr entry always points to the
2711 		 * lowest key in the child node, thus we can skip searching
2712 		 * lower levels
2713 		 */
2714 		if (prev_cmp == 0) {
2715 			slot = 0;
2716 			ret = 0;
2717 		} else {
2718 			ret = btrfs_bin_search(b, key, &slot);
2719 			prev_cmp = ret;
2720 			if (ret < 0)
2721 				goto done;
2722 		}
2723 
2724 		if (level == 0) {
2725 			p->slots[level] = slot;
2726 			/*
2727 			 * Item key already exists. In this case, if we are
2728 			 * allowed to insert the item (for example, in dir_item
2729 			 * case, item key collision is allowed), it will be
2730 			 * merged with the original item. Only the item size
2731 			 * grows, no new btrfs item will be added. If
2732 			 * search_for_extension is not set, ins_len already
2733 			 * accounts the size btrfs_item, deduct it here so leaf
2734 			 * space check will be correct.
2735 			 */
2736 			if (ret == 0 && ins_len > 0 && !p->search_for_extension) {
2737 				ASSERT(ins_len >= sizeof(struct btrfs_item));
2738 				ins_len -= sizeof(struct btrfs_item);
2739 			}
2740 			if (ins_len > 0 &&
2741 			    btrfs_leaf_free_space(b) < ins_len) {
2742 				if (write_lock_level < 1) {
2743 					write_lock_level = 1;
2744 					btrfs_release_path(p);
2745 					goto again;
2746 				}
2747 
2748 				err = split_leaf(trans, root, key,
2749 						 p, ins_len, ret == 0);
2750 
2751 				BUG_ON(err > 0);
2752 				if (err) {
2753 					ret = err;
2754 					goto done;
2755 				}
2756 			}
2757 			if (!p->search_for_split)
2758 				unlock_up(p, level, lowest_unlock,
2759 					  min_write_lock_level, NULL);
2760 			goto done;
2761 		}
2762 		if (ret && slot > 0) {
2763 			dec = 1;
2764 			slot--;
2765 		}
2766 		p->slots[level] = slot;
2767 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2768 					     &write_lock_level);
2769 		if (err == -EAGAIN)
2770 			goto again;
2771 		if (err) {
2772 			ret = err;
2773 			goto done;
2774 		}
2775 		b = p->nodes[level];
2776 		slot = p->slots[level];
2777 
2778 		/*
2779 		 * Slot 0 is special, if we change the key we have to update
2780 		 * the parent pointer which means we must have a write lock on
2781 		 * the parent
2782 		 */
2783 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2784 			write_lock_level = level + 1;
2785 			btrfs_release_path(p);
2786 			goto again;
2787 		}
2788 
2789 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2790 			  &write_lock_level);
2791 
2792 		if (level == lowest_level) {
2793 			if (dec)
2794 				p->slots[level]++;
2795 			goto done;
2796 		}
2797 
2798 		err = read_block_for_search(root, p, &b, level, slot, key);
2799 		if (err == -EAGAIN)
2800 			goto again;
2801 		if (err) {
2802 			ret = err;
2803 			goto done;
2804 		}
2805 
2806 		if (!p->skip_locking) {
2807 			level = btrfs_header_level(b);
2808 			if (level <= write_lock_level) {
2809 				btrfs_tree_lock(b);
2810 				p->locks[level] = BTRFS_WRITE_LOCK;
2811 			} else {
2812 				btrfs_tree_read_lock(b);
2813 				p->locks[level] = BTRFS_READ_LOCK;
2814 			}
2815 			p->nodes[level] = b;
2816 		}
2817 	}
2818 	ret = 1;
2819 done:
2820 	if (ret < 0 && !p->skip_release_on_error)
2821 		btrfs_release_path(p);
2822 	return ret;
2823 }
2824 
2825 /*
2826  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2827  * current state of the tree together with the operations recorded in the tree
2828  * modification log to search for the key in a previous version of this tree, as
2829  * denoted by the time_seq parameter.
2830  *
2831  * Naturally, there is no support for insert, delete or cow operations.
2832  *
2833  * The resulting path and return value will be set up as if we called
2834  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2835  */
2836 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2837 			  struct btrfs_path *p, u64 time_seq)
2838 {
2839 	struct btrfs_fs_info *fs_info = root->fs_info;
2840 	struct extent_buffer *b;
2841 	int slot;
2842 	int ret;
2843 	int err;
2844 	int level;
2845 	int lowest_unlock = 1;
2846 	u8 lowest_level = 0;
2847 
2848 	lowest_level = p->lowest_level;
2849 	WARN_ON(p->nodes[0] != NULL);
2850 
2851 	if (p->search_commit_root) {
2852 		BUG_ON(time_seq);
2853 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2854 	}
2855 
2856 again:
2857 	b = get_old_root(root, time_seq);
2858 	if (!b) {
2859 		ret = -EIO;
2860 		goto done;
2861 	}
2862 	level = btrfs_header_level(b);
2863 	p->locks[level] = BTRFS_READ_LOCK;
2864 
2865 	while (b) {
2866 		int dec = 0;
2867 
2868 		level = btrfs_header_level(b);
2869 		p->nodes[level] = b;
2870 
2871 		/*
2872 		 * we have a lock on b and as long as we aren't changing
2873 		 * the tree, there is no way to for the items in b to change.
2874 		 * It is safe to drop the lock on our parent before we
2875 		 * go through the expensive btree search on b.
2876 		 */
2877 		btrfs_unlock_up_safe(p, level + 1);
2878 
2879 		ret = btrfs_bin_search(b, key, &slot);
2880 		if (ret < 0)
2881 			goto done;
2882 
2883 		if (level == 0) {
2884 			p->slots[level] = slot;
2885 			unlock_up(p, level, lowest_unlock, 0, NULL);
2886 			goto done;
2887 		}
2888 
2889 		if (ret && slot > 0) {
2890 			dec = 1;
2891 			slot--;
2892 		}
2893 		p->slots[level] = slot;
2894 		unlock_up(p, level, lowest_unlock, 0, NULL);
2895 
2896 		if (level == lowest_level) {
2897 			if (dec)
2898 				p->slots[level]++;
2899 			goto done;
2900 		}
2901 
2902 		err = read_block_for_search(root, p, &b, level, slot, key);
2903 		if (err == -EAGAIN)
2904 			goto again;
2905 		if (err) {
2906 			ret = err;
2907 			goto done;
2908 		}
2909 
2910 		level = btrfs_header_level(b);
2911 		btrfs_tree_read_lock(b);
2912 		b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2913 		if (!b) {
2914 			ret = -ENOMEM;
2915 			goto done;
2916 		}
2917 		p->locks[level] = BTRFS_READ_LOCK;
2918 		p->nodes[level] = b;
2919 	}
2920 	ret = 1;
2921 done:
2922 	if (ret < 0)
2923 		btrfs_release_path(p);
2924 
2925 	return ret;
2926 }
2927 
2928 /*
2929  * helper to use instead of search slot if no exact match is needed but
2930  * instead the next or previous item should be returned.
2931  * When find_higher is true, the next higher item is returned, the next lower
2932  * otherwise.
2933  * When return_any and find_higher are both true, and no higher item is found,
2934  * return the next lower instead.
2935  * When return_any is true and find_higher is false, and no lower item is found,
2936  * return the next higher instead.
2937  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2938  * < 0 on error
2939  */
2940 int btrfs_search_slot_for_read(struct btrfs_root *root,
2941 			       const struct btrfs_key *key,
2942 			       struct btrfs_path *p, int find_higher,
2943 			       int return_any)
2944 {
2945 	int ret;
2946 	struct extent_buffer *leaf;
2947 
2948 again:
2949 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2950 	if (ret <= 0)
2951 		return ret;
2952 	/*
2953 	 * a return value of 1 means the path is at the position where the
2954 	 * item should be inserted. Normally this is the next bigger item,
2955 	 * but in case the previous item is the last in a leaf, path points
2956 	 * to the first free slot in the previous leaf, i.e. at an invalid
2957 	 * item.
2958 	 */
2959 	leaf = p->nodes[0];
2960 
2961 	if (find_higher) {
2962 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2963 			ret = btrfs_next_leaf(root, p);
2964 			if (ret <= 0)
2965 				return ret;
2966 			if (!return_any)
2967 				return 1;
2968 			/*
2969 			 * no higher item found, return the next
2970 			 * lower instead
2971 			 */
2972 			return_any = 0;
2973 			find_higher = 0;
2974 			btrfs_release_path(p);
2975 			goto again;
2976 		}
2977 	} else {
2978 		if (p->slots[0] == 0) {
2979 			ret = btrfs_prev_leaf(root, p);
2980 			if (ret < 0)
2981 				return ret;
2982 			if (!ret) {
2983 				leaf = p->nodes[0];
2984 				if (p->slots[0] == btrfs_header_nritems(leaf))
2985 					p->slots[0]--;
2986 				return 0;
2987 			}
2988 			if (!return_any)
2989 				return 1;
2990 			/*
2991 			 * no lower item found, return the next
2992 			 * higher instead
2993 			 */
2994 			return_any = 0;
2995 			find_higher = 1;
2996 			btrfs_release_path(p);
2997 			goto again;
2998 		} else {
2999 			--p->slots[0];
3000 		}
3001 	}
3002 	return 0;
3003 }
3004 
3005 /*
3006  * adjust the pointers going up the tree, starting at level
3007  * making sure the right key of each node is points to 'key'.
3008  * This is used after shifting pointers to the left, so it stops
3009  * fixing up pointers when a given leaf/node is not in slot 0 of the
3010  * higher levels
3011  *
3012  */
3013 static void fixup_low_keys(struct btrfs_path *path,
3014 			   struct btrfs_disk_key *key, int level)
3015 {
3016 	int i;
3017 	struct extent_buffer *t;
3018 	int ret;
3019 
3020 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3021 		int tslot = path->slots[i];
3022 
3023 		if (!path->nodes[i])
3024 			break;
3025 		t = path->nodes[i];
3026 		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3027 				GFP_ATOMIC);
3028 		BUG_ON(ret < 0);
3029 		btrfs_set_node_key(t, key, tslot);
3030 		btrfs_mark_buffer_dirty(path->nodes[i]);
3031 		if (tslot != 0)
3032 			break;
3033 	}
3034 }
3035 
3036 /*
3037  * update item key.
3038  *
3039  * This function isn't completely safe. It's the caller's responsibility
3040  * that the new key won't break the order
3041  */
3042 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3043 			     struct btrfs_path *path,
3044 			     const struct btrfs_key *new_key)
3045 {
3046 	struct btrfs_disk_key disk_key;
3047 	struct extent_buffer *eb;
3048 	int slot;
3049 
3050 	eb = path->nodes[0];
3051 	slot = path->slots[0];
3052 	if (slot > 0) {
3053 		btrfs_item_key(eb, &disk_key, slot - 1);
3054 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3055 			btrfs_crit(fs_info,
3056 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3057 				   slot, btrfs_disk_key_objectid(&disk_key),
3058 				   btrfs_disk_key_type(&disk_key),
3059 				   btrfs_disk_key_offset(&disk_key),
3060 				   new_key->objectid, new_key->type,
3061 				   new_key->offset);
3062 			btrfs_print_leaf(eb);
3063 			BUG();
3064 		}
3065 	}
3066 	if (slot < btrfs_header_nritems(eb) - 1) {
3067 		btrfs_item_key(eb, &disk_key, slot + 1);
3068 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3069 			btrfs_crit(fs_info,
3070 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3071 				   slot, btrfs_disk_key_objectid(&disk_key),
3072 				   btrfs_disk_key_type(&disk_key),
3073 				   btrfs_disk_key_offset(&disk_key),
3074 				   new_key->objectid, new_key->type,
3075 				   new_key->offset);
3076 			btrfs_print_leaf(eb);
3077 			BUG();
3078 		}
3079 	}
3080 
3081 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3082 	btrfs_set_item_key(eb, &disk_key, slot);
3083 	btrfs_mark_buffer_dirty(eb);
3084 	if (slot == 0)
3085 		fixup_low_keys(path, &disk_key, 1);
3086 }
3087 
3088 /*
3089  * Check key order of two sibling extent buffers.
3090  *
3091  * Return true if something is wrong.
3092  * Return false if everything is fine.
3093  *
3094  * Tree-checker only works inside one tree block, thus the following
3095  * corruption can not be detected by tree-checker:
3096  *
3097  * Leaf @left			| Leaf @right
3098  * --------------------------------------------------------------
3099  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
3100  *
3101  * Key f6 in leaf @left itself is valid, but not valid when the next
3102  * key in leaf @right is 7.
3103  * This can only be checked at tree block merge time.
3104  * And since tree checker has ensured all key order in each tree block
3105  * is correct, we only need to bother the last key of @left and the first
3106  * key of @right.
3107  */
3108 static bool check_sibling_keys(struct extent_buffer *left,
3109 			       struct extent_buffer *right)
3110 {
3111 	struct btrfs_key left_last;
3112 	struct btrfs_key right_first;
3113 	int level = btrfs_header_level(left);
3114 	int nr_left = btrfs_header_nritems(left);
3115 	int nr_right = btrfs_header_nritems(right);
3116 
3117 	/* No key to check in one of the tree blocks */
3118 	if (!nr_left || !nr_right)
3119 		return false;
3120 
3121 	if (level) {
3122 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
3123 		btrfs_node_key_to_cpu(right, &right_first, 0);
3124 	} else {
3125 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
3126 		btrfs_item_key_to_cpu(right, &right_first, 0);
3127 	}
3128 
3129 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
3130 		btrfs_crit(left->fs_info,
3131 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
3132 			   left_last.objectid, left_last.type,
3133 			   left_last.offset, right_first.objectid,
3134 			   right_first.type, right_first.offset);
3135 		return true;
3136 	}
3137 	return false;
3138 }
3139 
3140 /*
3141  * try to push data from one node into the next node left in the
3142  * tree.
3143  *
3144  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3145  * error, and > 0 if there was no room in the left hand block.
3146  */
3147 static int push_node_left(struct btrfs_trans_handle *trans,
3148 			  struct extent_buffer *dst,
3149 			  struct extent_buffer *src, int empty)
3150 {
3151 	struct btrfs_fs_info *fs_info = trans->fs_info;
3152 	int push_items = 0;
3153 	int src_nritems;
3154 	int dst_nritems;
3155 	int ret = 0;
3156 
3157 	src_nritems = btrfs_header_nritems(src);
3158 	dst_nritems = btrfs_header_nritems(dst);
3159 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3160 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3161 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3162 
3163 	if (!empty && src_nritems <= 8)
3164 		return 1;
3165 
3166 	if (push_items <= 0)
3167 		return 1;
3168 
3169 	if (empty) {
3170 		push_items = min(src_nritems, push_items);
3171 		if (push_items < src_nritems) {
3172 			/* leave at least 8 pointers in the node if
3173 			 * we aren't going to empty it
3174 			 */
3175 			if (src_nritems - push_items < 8) {
3176 				if (push_items <= 8)
3177 					return 1;
3178 				push_items -= 8;
3179 			}
3180 		}
3181 	} else
3182 		push_items = min(src_nritems - 8, push_items);
3183 
3184 	/* dst is the left eb, src is the middle eb */
3185 	if (check_sibling_keys(dst, src)) {
3186 		ret = -EUCLEAN;
3187 		btrfs_abort_transaction(trans, ret);
3188 		return ret;
3189 	}
3190 	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3191 	if (ret) {
3192 		btrfs_abort_transaction(trans, ret);
3193 		return ret;
3194 	}
3195 	copy_extent_buffer(dst, src,
3196 			   btrfs_node_key_ptr_offset(dst_nritems),
3197 			   btrfs_node_key_ptr_offset(0),
3198 			   push_items * sizeof(struct btrfs_key_ptr));
3199 
3200 	if (push_items < src_nritems) {
3201 		/*
3202 		 * Don't call tree_mod_log_insert_move here, key removal was
3203 		 * already fully logged by tree_mod_log_eb_copy above.
3204 		 */
3205 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3206 				      btrfs_node_key_ptr_offset(push_items),
3207 				      (src_nritems - push_items) *
3208 				      sizeof(struct btrfs_key_ptr));
3209 	}
3210 	btrfs_set_header_nritems(src, src_nritems - push_items);
3211 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3212 	btrfs_mark_buffer_dirty(src);
3213 	btrfs_mark_buffer_dirty(dst);
3214 
3215 	return ret;
3216 }
3217 
3218 /*
3219  * try to push data from one node into the next node right in the
3220  * tree.
3221  *
3222  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3223  * error, and > 0 if there was no room in the right hand block.
3224  *
3225  * this will  only push up to 1/2 the contents of the left node over
3226  */
3227 static int balance_node_right(struct btrfs_trans_handle *trans,
3228 			      struct extent_buffer *dst,
3229 			      struct extent_buffer *src)
3230 {
3231 	struct btrfs_fs_info *fs_info = trans->fs_info;
3232 	int push_items = 0;
3233 	int max_push;
3234 	int src_nritems;
3235 	int dst_nritems;
3236 	int ret = 0;
3237 
3238 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3239 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3240 
3241 	src_nritems = btrfs_header_nritems(src);
3242 	dst_nritems = btrfs_header_nritems(dst);
3243 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3244 	if (push_items <= 0)
3245 		return 1;
3246 
3247 	if (src_nritems < 4)
3248 		return 1;
3249 
3250 	max_push = src_nritems / 2 + 1;
3251 	/* don't try to empty the node */
3252 	if (max_push >= src_nritems)
3253 		return 1;
3254 
3255 	if (max_push < push_items)
3256 		push_items = max_push;
3257 
3258 	/* dst is the right eb, src is the middle eb */
3259 	if (check_sibling_keys(src, dst)) {
3260 		ret = -EUCLEAN;
3261 		btrfs_abort_transaction(trans, ret);
3262 		return ret;
3263 	}
3264 	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3265 	BUG_ON(ret < 0);
3266 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3267 				      btrfs_node_key_ptr_offset(0),
3268 				      (dst_nritems) *
3269 				      sizeof(struct btrfs_key_ptr));
3270 
3271 	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3272 				   push_items);
3273 	if (ret) {
3274 		btrfs_abort_transaction(trans, ret);
3275 		return ret;
3276 	}
3277 	copy_extent_buffer(dst, src,
3278 			   btrfs_node_key_ptr_offset(0),
3279 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3280 			   push_items * sizeof(struct btrfs_key_ptr));
3281 
3282 	btrfs_set_header_nritems(src, src_nritems - push_items);
3283 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3284 
3285 	btrfs_mark_buffer_dirty(src);
3286 	btrfs_mark_buffer_dirty(dst);
3287 
3288 	return ret;
3289 }
3290 
3291 /*
3292  * helper function to insert a new root level in the tree.
3293  * A new node is allocated, and a single item is inserted to
3294  * point to the existing root
3295  *
3296  * returns zero on success or < 0 on failure.
3297  */
3298 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3299 			   struct btrfs_root *root,
3300 			   struct btrfs_path *path, int level)
3301 {
3302 	struct btrfs_fs_info *fs_info = root->fs_info;
3303 	u64 lower_gen;
3304 	struct extent_buffer *lower;
3305 	struct extent_buffer *c;
3306 	struct extent_buffer *old;
3307 	struct btrfs_disk_key lower_key;
3308 	int ret;
3309 
3310 	BUG_ON(path->nodes[level]);
3311 	BUG_ON(path->nodes[level-1] != root->node);
3312 
3313 	lower = path->nodes[level-1];
3314 	if (level == 1)
3315 		btrfs_item_key(lower, &lower_key, 0);
3316 	else
3317 		btrfs_node_key(lower, &lower_key, 0);
3318 
3319 	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3320 					 root->node->start, 0,
3321 					 BTRFS_NESTING_NEW_ROOT);
3322 	if (IS_ERR(c))
3323 		return PTR_ERR(c);
3324 
3325 	root_add_used(root, fs_info->nodesize);
3326 
3327 	btrfs_set_header_nritems(c, 1);
3328 	btrfs_set_node_key(c, &lower_key, 0);
3329 	btrfs_set_node_blockptr(c, 0, lower->start);
3330 	lower_gen = btrfs_header_generation(lower);
3331 	WARN_ON(lower_gen != trans->transid);
3332 
3333 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3334 
3335 	btrfs_mark_buffer_dirty(c);
3336 
3337 	old = root->node;
3338 	ret = tree_mod_log_insert_root(root->node, c, 0);
3339 	BUG_ON(ret < 0);
3340 	rcu_assign_pointer(root->node, c);
3341 
3342 	/* the super has an extra ref to root->node */
3343 	free_extent_buffer(old);
3344 
3345 	add_root_to_dirty_list(root);
3346 	atomic_inc(&c->refs);
3347 	path->nodes[level] = c;
3348 	path->locks[level] = BTRFS_WRITE_LOCK;
3349 	path->slots[level] = 0;
3350 	return 0;
3351 }
3352 
3353 /*
3354  * worker function to insert a single pointer in a node.
3355  * the node should have enough room for the pointer already
3356  *
3357  * slot and level indicate where you want the key to go, and
3358  * blocknr is the block the key points to.
3359  */
3360 static void insert_ptr(struct btrfs_trans_handle *trans,
3361 		       struct btrfs_path *path,
3362 		       struct btrfs_disk_key *key, u64 bytenr,
3363 		       int slot, int level)
3364 {
3365 	struct extent_buffer *lower;
3366 	int nritems;
3367 	int ret;
3368 
3369 	BUG_ON(!path->nodes[level]);
3370 	btrfs_assert_tree_locked(path->nodes[level]);
3371 	lower = path->nodes[level];
3372 	nritems = btrfs_header_nritems(lower);
3373 	BUG_ON(slot > nritems);
3374 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3375 	if (slot != nritems) {
3376 		if (level) {
3377 			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3378 					nritems - slot);
3379 			BUG_ON(ret < 0);
3380 		}
3381 		memmove_extent_buffer(lower,
3382 			      btrfs_node_key_ptr_offset(slot + 1),
3383 			      btrfs_node_key_ptr_offset(slot),
3384 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3385 	}
3386 	if (level) {
3387 		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3388 				GFP_NOFS);
3389 		BUG_ON(ret < 0);
3390 	}
3391 	btrfs_set_node_key(lower, key, slot);
3392 	btrfs_set_node_blockptr(lower, slot, bytenr);
3393 	WARN_ON(trans->transid == 0);
3394 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3395 	btrfs_set_header_nritems(lower, nritems + 1);
3396 	btrfs_mark_buffer_dirty(lower);
3397 }
3398 
3399 /*
3400  * split the node at the specified level in path in two.
3401  * The path is corrected to point to the appropriate node after the split
3402  *
3403  * Before splitting this tries to make some room in the node by pushing
3404  * left and right, if either one works, it returns right away.
3405  *
3406  * returns 0 on success and < 0 on failure
3407  */
3408 static noinline int split_node(struct btrfs_trans_handle *trans,
3409 			       struct btrfs_root *root,
3410 			       struct btrfs_path *path, int level)
3411 {
3412 	struct btrfs_fs_info *fs_info = root->fs_info;
3413 	struct extent_buffer *c;
3414 	struct extent_buffer *split;
3415 	struct btrfs_disk_key disk_key;
3416 	int mid;
3417 	int ret;
3418 	u32 c_nritems;
3419 
3420 	c = path->nodes[level];
3421 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3422 	if (c == root->node) {
3423 		/*
3424 		 * trying to split the root, lets make a new one
3425 		 *
3426 		 * tree mod log: We don't log_removal old root in
3427 		 * insert_new_root, because that root buffer will be kept as a
3428 		 * normal node. We are going to log removal of half of the
3429 		 * elements below with tree_mod_log_eb_copy. We're holding a
3430 		 * tree lock on the buffer, which is why we cannot race with
3431 		 * other tree_mod_log users.
3432 		 */
3433 		ret = insert_new_root(trans, root, path, level + 1);
3434 		if (ret)
3435 			return ret;
3436 	} else {
3437 		ret = push_nodes_for_insert(trans, root, path, level);
3438 		c = path->nodes[level];
3439 		if (!ret && btrfs_header_nritems(c) <
3440 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3441 			return 0;
3442 		if (ret < 0)
3443 			return ret;
3444 	}
3445 
3446 	c_nritems = btrfs_header_nritems(c);
3447 	mid = (c_nritems + 1) / 2;
3448 	btrfs_node_key(c, &disk_key, mid);
3449 
3450 	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3451 					     c->start, 0, BTRFS_NESTING_SPLIT);
3452 	if (IS_ERR(split))
3453 		return PTR_ERR(split);
3454 
3455 	root_add_used(root, fs_info->nodesize);
3456 	ASSERT(btrfs_header_level(c) == level);
3457 
3458 	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3459 	if (ret) {
3460 		btrfs_abort_transaction(trans, ret);
3461 		return ret;
3462 	}
3463 	copy_extent_buffer(split, c,
3464 			   btrfs_node_key_ptr_offset(0),
3465 			   btrfs_node_key_ptr_offset(mid),
3466 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3467 	btrfs_set_header_nritems(split, c_nritems - mid);
3468 	btrfs_set_header_nritems(c, mid);
3469 
3470 	btrfs_mark_buffer_dirty(c);
3471 	btrfs_mark_buffer_dirty(split);
3472 
3473 	insert_ptr(trans, path, &disk_key, split->start,
3474 		   path->slots[level + 1] + 1, level + 1);
3475 
3476 	if (path->slots[level] >= mid) {
3477 		path->slots[level] -= mid;
3478 		btrfs_tree_unlock(c);
3479 		free_extent_buffer(c);
3480 		path->nodes[level] = split;
3481 		path->slots[level + 1] += 1;
3482 	} else {
3483 		btrfs_tree_unlock(split);
3484 		free_extent_buffer(split);
3485 	}
3486 	return 0;
3487 }
3488 
3489 /*
3490  * how many bytes are required to store the items in a leaf.  start
3491  * and nr indicate which items in the leaf to check.  This totals up the
3492  * space used both by the item structs and the item data
3493  */
3494 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3495 {
3496 	struct btrfs_item *start_item;
3497 	struct btrfs_item *end_item;
3498 	int data_len;
3499 	int nritems = btrfs_header_nritems(l);
3500 	int end = min(nritems, start + nr) - 1;
3501 
3502 	if (!nr)
3503 		return 0;
3504 	start_item = btrfs_item_nr(start);
3505 	end_item = btrfs_item_nr(end);
3506 	data_len = btrfs_item_offset(l, start_item) +
3507 		   btrfs_item_size(l, start_item);
3508 	data_len = data_len - btrfs_item_offset(l, end_item);
3509 	data_len += sizeof(struct btrfs_item) * nr;
3510 	WARN_ON(data_len < 0);
3511 	return data_len;
3512 }
3513 
3514 /*
3515  * The space between the end of the leaf items and
3516  * the start of the leaf data.  IOW, how much room
3517  * the leaf has left for both items and data
3518  */
3519 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3520 {
3521 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3522 	int nritems = btrfs_header_nritems(leaf);
3523 	int ret;
3524 
3525 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3526 	if (ret < 0) {
3527 		btrfs_crit(fs_info,
3528 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3529 			   ret,
3530 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3531 			   leaf_space_used(leaf, 0, nritems), nritems);
3532 	}
3533 	return ret;
3534 }
3535 
3536 /*
3537  * min slot controls the lowest index we're willing to push to the
3538  * right.  We'll push up to and including min_slot, but no lower
3539  */
3540 static noinline int __push_leaf_right(struct btrfs_path *path,
3541 				      int data_size, int empty,
3542 				      struct extent_buffer *right,
3543 				      int free_space, u32 left_nritems,
3544 				      u32 min_slot)
3545 {
3546 	struct btrfs_fs_info *fs_info = right->fs_info;
3547 	struct extent_buffer *left = path->nodes[0];
3548 	struct extent_buffer *upper = path->nodes[1];
3549 	struct btrfs_map_token token;
3550 	struct btrfs_disk_key disk_key;
3551 	int slot;
3552 	u32 i;
3553 	int push_space = 0;
3554 	int push_items = 0;
3555 	struct btrfs_item *item;
3556 	u32 nr;
3557 	u32 right_nritems;
3558 	u32 data_end;
3559 	u32 this_item_size;
3560 
3561 	if (empty)
3562 		nr = 0;
3563 	else
3564 		nr = max_t(u32, 1, min_slot);
3565 
3566 	if (path->slots[0] >= left_nritems)
3567 		push_space += data_size;
3568 
3569 	slot = path->slots[1];
3570 	i = left_nritems - 1;
3571 	while (i >= nr) {
3572 		item = btrfs_item_nr(i);
3573 
3574 		if (!empty && push_items > 0) {
3575 			if (path->slots[0] > i)
3576 				break;
3577 			if (path->slots[0] == i) {
3578 				int space = btrfs_leaf_free_space(left);
3579 
3580 				if (space + push_space * 2 > free_space)
3581 					break;
3582 			}
3583 		}
3584 
3585 		if (path->slots[0] == i)
3586 			push_space += data_size;
3587 
3588 		this_item_size = btrfs_item_size(left, item);
3589 		if (this_item_size + sizeof(*item) + push_space > free_space)
3590 			break;
3591 
3592 		push_items++;
3593 		push_space += this_item_size + sizeof(*item);
3594 		if (i == 0)
3595 			break;
3596 		i--;
3597 	}
3598 
3599 	if (push_items == 0)
3600 		goto out_unlock;
3601 
3602 	WARN_ON(!empty && push_items == left_nritems);
3603 
3604 	/* push left to right */
3605 	right_nritems = btrfs_header_nritems(right);
3606 
3607 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3608 	push_space -= leaf_data_end(left);
3609 
3610 	/* make room in the right data area */
3611 	data_end = leaf_data_end(right);
3612 	memmove_extent_buffer(right,
3613 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3614 			      BTRFS_LEAF_DATA_OFFSET + data_end,
3615 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3616 
3617 	/* copy from the left data area */
3618 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3619 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3620 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3621 		     push_space);
3622 
3623 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3624 			      btrfs_item_nr_offset(0),
3625 			      right_nritems * sizeof(struct btrfs_item));
3626 
3627 	/* copy the items from left to right */
3628 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3629 		   btrfs_item_nr_offset(left_nritems - push_items),
3630 		   push_items * sizeof(struct btrfs_item));
3631 
3632 	/* update the item pointers */
3633 	btrfs_init_map_token(&token, right);
3634 	right_nritems += push_items;
3635 	btrfs_set_header_nritems(right, right_nritems);
3636 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3637 	for (i = 0; i < right_nritems; i++) {
3638 		item = btrfs_item_nr(i);
3639 		push_space -= btrfs_token_item_size(&token, item);
3640 		btrfs_set_token_item_offset(&token, item, push_space);
3641 	}
3642 
3643 	left_nritems -= push_items;
3644 	btrfs_set_header_nritems(left, left_nritems);
3645 
3646 	if (left_nritems)
3647 		btrfs_mark_buffer_dirty(left);
3648 	else
3649 		btrfs_clean_tree_block(left);
3650 
3651 	btrfs_mark_buffer_dirty(right);
3652 
3653 	btrfs_item_key(right, &disk_key, 0);
3654 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3655 	btrfs_mark_buffer_dirty(upper);
3656 
3657 	/* then fixup the leaf pointer in the path */
3658 	if (path->slots[0] >= left_nritems) {
3659 		path->slots[0] -= left_nritems;
3660 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3661 			btrfs_clean_tree_block(path->nodes[0]);
3662 		btrfs_tree_unlock(path->nodes[0]);
3663 		free_extent_buffer(path->nodes[0]);
3664 		path->nodes[0] = right;
3665 		path->slots[1] += 1;
3666 	} else {
3667 		btrfs_tree_unlock(right);
3668 		free_extent_buffer(right);
3669 	}
3670 	return 0;
3671 
3672 out_unlock:
3673 	btrfs_tree_unlock(right);
3674 	free_extent_buffer(right);
3675 	return 1;
3676 }
3677 
3678 /*
3679  * push some data in the path leaf to the right, trying to free up at
3680  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3681  *
3682  * returns 1 if the push failed because the other node didn't have enough
3683  * room, 0 if everything worked out and < 0 if there were major errors.
3684  *
3685  * this will push starting from min_slot to the end of the leaf.  It won't
3686  * push any slot lower than min_slot
3687  */
3688 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3689 			   *root, struct btrfs_path *path,
3690 			   int min_data_size, int data_size,
3691 			   int empty, u32 min_slot)
3692 {
3693 	struct extent_buffer *left = path->nodes[0];
3694 	struct extent_buffer *right;
3695 	struct extent_buffer *upper;
3696 	int slot;
3697 	int free_space;
3698 	u32 left_nritems;
3699 	int ret;
3700 
3701 	if (!path->nodes[1])
3702 		return 1;
3703 
3704 	slot = path->slots[1];
3705 	upper = path->nodes[1];
3706 	if (slot >= btrfs_header_nritems(upper) - 1)
3707 		return 1;
3708 
3709 	btrfs_assert_tree_locked(path->nodes[1]);
3710 
3711 	right = btrfs_read_node_slot(upper, slot + 1);
3712 	/*
3713 	 * slot + 1 is not valid or we fail to read the right node,
3714 	 * no big deal, just return.
3715 	 */
3716 	if (IS_ERR(right))
3717 		return 1;
3718 
3719 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3720 
3721 	free_space = btrfs_leaf_free_space(right);
3722 	if (free_space < data_size)
3723 		goto out_unlock;
3724 
3725 	/* cow and double check */
3726 	ret = btrfs_cow_block(trans, root, right, upper,
3727 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3728 	if (ret)
3729 		goto out_unlock;
3730 
3731 	free_space = btrfs_leaf_free_space(right);
3732 	if (free_space < data_size)
3733 		goto out_unlock;
3734 
3735 	left_nritems = btrfs_header_nritems(left);
3736 	if (left_nritems == 0)
3737 		goto out_unlock;
3738 
3739 	if (check_sibling_keys(left, right)) {
3740 		ret = -EUCLEAN;
3741 		btrfs_tree_unlock(right);
3742 		free_extent_buffer(right);
3743 		return ret;
3744 	}
3745 	if (path->slots[0] == left_nritems && !empty) {
3746 		/* Key greater than all keys in the leaf, right neighbor has
3747 		 * enough room for it and we're not emptying our leaf to delete
3748 		 * it, therefore use right neighbor to insert the new item and
3749 		 * no need to touch/dirty our left leaf. */
3750 		btrfs_tree_unlock(left);
3751 		free_extent_buffer(left);
3752 		path->nodes[0] = right;
3753 		path->slots[0] = 0;
3754 		path->slots[1]++;
3755 		return 0;
3756 	}
3757 
3758 	return __push_leaf_right(path, min_data_size, empty,
3759 				right, free_space, left_nritems, min_slot);
3760 out_unlock:
3761 	btrfs_tree_unlock(right);
3762 	free_extent_buffer(right);
3763 	return 1;
3764 }
3765 
3766 /*
3767  * push some data in the path leaf to the left, trying to free up at
3768  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3769  *
3770  * max_slot can put a limit on how far into the leaf we'll push items.  The
3771  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3772  * items
3773  */
3774 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3775 				     int empty, struct extent_buffer *left,
3776 				     int free_space, u32 right_nritems,
3777 				     u32 max_slot)
3778 {
3779 	struct btrfs_fs_info *fs_info = left->fs_info;
3780 	struct btrfs_disk_key disk_key;
3781 	struct extent_buffer *right = path->nodes[0];
3782 	int i;
3783 	int push_space = 0;
3784 	int push_items = 0;
3785 	struct btrfs_item *item;
3786 	u32 old_left_nritems;
3787 	u32 nr;
3788 	int ret = 0;
3789 	u32 this_item_size;
3790 	u32 old_left_item_size;
3791 	struct btrfs_map_token token;
3792 
3793 	if (empty)
3794 		nr = min(right_nritems, max_slot);
3795 	else
3796 		nr = min(right_nritems - 1, max_slot);
3797 
3798 	for (i = 0; i < nr; i++) {
3799 		item = btrfs_item_nr(i);
3800 
3801 		if (!empty && push_items > 0) {
3802 			if (path->slots[0] < i)
3803 				break;
3804 			if (path->slots[0] == i) {
3805 				int space = btrfs_leaf_free_space(right);
3806 
3807 				if (space + push_space * 2 > free_space)
3808 					break;
3809 			}
3810 		}
3811 
3812 		if (path->slots[0] == i)
3813 			push_space += data_size;
3814 
3815 		this_item_size = btrfs_item_size(right, item);
3816 		if (this_item_size + sizeof(*item) + push_space > free_space)
3817 			break;
3818 
3819 		push_items++;
3820 		push_space += this_item_size + sizeof(*item);
3821 	}
3822 
3823 	if (push_items == 0) {
3824 		ret = 1;
3825 		goto out;
3826 	}
3827 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3828 
3829 	/* push data from right to left */
3830 	copy_extent_buffer(left, right,
3831 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3832 			   btrfs_item_nr_offset(0),
3833 			   push_items * sizeof(struct btrfs_item));
3834 
3835 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3836 		     btrfs_item_offset_nr(right, push_items - 1);
3837 
3838 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3839 		     leaf_data_end(left) - push_space,
3840 		     BTRFS_LEAF_DATA_OFFSET +
3841 		     btrfs_item_offset_nr(right, push_items - 1),
3842 		     push_space);
3843 	old_left_nritems = btrfs_header_nritems(left);
3844 	BUG_ON(old_left_nritems <= 0);
3845 
3846 	btrfs_init_map_token(&token, left);
3847 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3848 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3849 		u32 ioff;
3850 
3851 		item = btrfs_item_nr(i);
3852 
3853 		ioff = btrfs_token_item_offset(&token, item);
3854 		btrfs_set_token_item_offset(&token, item,
3855 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3856 	}
3857 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3858 
3859 	/* fixup right node */
3860 	if (push_items > right_nritems)
3861 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3862 		       right_nritems);
3863 
3864 	if (push_items < right_nritems) {
3865 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3866 						  leaf_data_end(right);
3867 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3868 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3869 				      BTRFS_LEAF_DATA_OFFSET +
3870 				      leaf_data_end(right), push_space);
3871 
3872 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3873 			      btrfs_item_nr_offset(push_items),
3874 			     (btrfs_header_nritems(right) - push_items) *
3875 			     sizeof(struct btrfs_item));
3876 	}
3877 
3878 	btrfs_init_map_token(&token, right);
3879 	right_nritems -= push_items;
3880 	btrfs_set_header_nritems(right, right_nritems);
3881 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3882 	for (i = 0; i < right_nritems; i++) {
3883 		item = btrfs_item_nr(i);
3884 
3885 		push_space = push_space - btrfs_token_item_size(&token, item);
3886 		btrfs_set_token_item_offset(&token, item, push_space);
3887 	}
3888 
3889 	btrfs_mark_buffer_dirty(left);
3890 	if (right_nritems)
3891 		btrfs_mark_buffer_dirty(right);
3892 	else
3893 		btrfs_clean_tree_block(right);
3894 
3895 	btrfs_item_key(right, &disk_key, 0);
3896 	fixup_low_keys(path, &disk_key, 1);
3897 
3898 	/* then fixup the leaf pointer in the path */
3899 	if (path->slots[0] < push_items) {
3900 		path->slots[0] += old_left_nritems;
3901 		btrfs_tree_unlock(path->nodes[0]);
3902 		free_extent_buffer(path->nodes[0]);
3903 		path->nodes[0] = left;
3904 		path->slots[1] -= 1;
3905 	} else {
3906 		btrfs_tree_unlock(left);
3907 		free_extent_buffer(left);
3908 		path->slots[0] -= push_items;
3909 	}
3910 	BUG_ON(path->slots[0] < 0);
3911 	return ret;
3912 out:
3913 	btrfs_tree_unlock(left);
3914 	free_extent_buffer(left);
3915 	return ret;
3916 }
3917 
3918 /*
3919  * push some data in the path leaf to the left, trying to free up at
3920  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3921  *
3922  * max_slot can put a limit on how far into the leaf we'll push items.  The
3923  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3924  * items
3925  */
3926 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3927 			  *root, struct btrfs_path *path, int min_data_size,
3928 			  int data_size, int empty, u32 max_slot)
3929 {
3930 	struct extent_buffer *right = path->nodes[0];
3931 	struct extent_buffer *left;
3932 	int slot;
3933 	int free_space;
3934 	u32 right_nritems;
3935 	int ret = 0;
3936 
3937 	slot = path->slots[1];
3938 	if (slot == 0)
3939 		return 1;
3940 	if (!path->nodes[1])
3941 		return 1;
3942 
3943 	right_nritems = btrfs_header_nritems(right);
3944 	if (right_nritems == 0)
3945 		return 1;
3946 
3947 	btrfs_assert_tree_locked(path->nodes[1]);
3948 
3949 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3950 	/*
3951 	 * slot - 1 is not valid or we fail to read the left node,
3952 	 * no big deal, just return.
3953 	 */
3954 	if (IS_ERR(left))
3955 		return 1;
3956 
3957 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3958 
3959 	free_space = btrfs_leaf_free_space(left);
3960 	if (free_space < data_size) {
3961 		ret = 1;
3962 		goto out;
3963 	}
3964 
3965 	/* cow and double check */
3966 	ret = btrfs_cow_block(trans, root, left,
3967 			      path->nodes[1], slot - 1, &left,
3968 			      BTRFS_NESTING_LEFT_COW);
3969 	if (ret) {
3970 		/* we hit -ENOSPC, but it isn't fatal here */
3971 		if (ret == -ENOSPC)
3972 			ret = 1;
3973 		goto out;
3974 	}
3975 
3976 	free_space = btrfs_leaf_free_space(left);
3977 	if (free_space < data_size) {
3978 		ret = 1;
3979 		goto out;
3980 	}
3981 
3982 	if (check_sibling_keys(left, right)) {
3983 		ret = -EUCLEAN;
3984 		goto out;
3985 	}
3986 	return __push_leaf_left(path, min_data_size,
3987 			       empty, left, free_space, right_nritems,
3988 			       max_slot);
3989 out:
3990 	btrfs_tree_unlock(left);
3991 	free_extent_buffer(left);
3992 	return ret;
3993 }
3994 
3995 /*
3996  * split the path's leaf in two, making sure there is at least data_size
3997  * available for the resulting leaf level of the path.
3998  */
3999 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4000 				    struct btrfs_path *path,
4001 				    struct extent_buffer *l,
4002 				    struct extent_buffer *right,
4003 				    int slot, int mid, int nritems)
4004 {
4005 	struct btrfs_fs_info *fs_info = trans->fs_info;
4006 	int data_copy_size;
4007 	int rt_data_off;
4008 	int i;
4009 	struct btrfs_disk_key disk_key;
4010 	struct btrfs_map_token token;
4011 
4012 	nritems = nritems - mid;
4013 	btrfs_set_header_nritems(right, nritems);
4014 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4015 
4016 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4017 			   btrfs_item_nr_offset(mid),
4018 			   nritems * sizeof(struct btrfs_item));
4019 
4020 	copy_extent_buffer(right, l,
4021 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4022 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4023 		     leaf_data_end(l), data_copy_size);
4024 
4025 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4026 
4027 	btrfs_init_map_token(&token, right);
4028 	for (i = 0; i < nritems; i++) {
4029 		struct btrfs_item *item = btrfs_item_nr(i);
4030 		u32 ioff;
4031 
4032 		ioff = btrfs_token_item_offset(&token, item);
4033 		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
4034 	}
4035 
4036 	btrfs_set_header_nritems(l, mid);
4037 	btrfs_item_key(right, &disk_key, 0);
4038 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4039 
4040 	btrfs_mark_buffer_dirty(right);
4041 	btrfs_mark_buffer_dirty(l);
4042 	BUG_ON(path->slots[0] != slot);
4043 
4044 	if (mid <= slot) {
4045 		btrfs_tree_unlock(path->nodes[0]);
4046 		free_extent_buffer(path->nodes[0]);
4047 		path->nodes[0] = right;
4048 		path->slots[0] -= mid;
4049 		path->slots[1] += 1;
4050 	} else {
4051 		btrfs_tree_unlock(right);
4052 		free_extent_buffer(right);
4053 	}
4054 
4055 	BUG_ON(path->slots[0] < 0);
4056 }
4057 
4058 /*
4059  * double splits happen when we need to insert a big item in the middle
4060  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4061  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4062  *          A                 B                 C
4063  *
4064  * We avoid this by trying to push the items on either side of our target
4065  * into the adjacent leaves.  If all goes well we can avoid the double split
4066  * completely.
4067  */
4068 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4069 					  struct btrfs_root *root,
4070 					  struct btrfs_path *path,
4071 					  int data_size)
4072 {
4073 	int ret;
4074 	int progress = 0;
4075 	int slot;
4076 	u32 nritems;
4077 	int space_needed = data_size;
4078 
4079 	slot = path->slots[0];
4080 	if (slot < btrfs_header_nritems(path->nodes[0]))
4081 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4082 
4083 	/*
4084 	 * try to push all the items after our slot into the
4085 	 * right leaf
4086 	 */
4087 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4088 	if (ret < 0)
4089 		return ret;
4090 
4091 	if (ret == 0)
4092 		progress++;
4093 
4094 	nritems = btrfs_header_nritems(path->nodes[0]);
4095 	/*
4096 	 * our goal is to get our slot at the start or end of a leaf.  If
4097 	 * we've done so we're done
4098 	 */
4099 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4100 		return 0;
4101 
4102 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4103 		return 0;
4104 
4105 	/* try to push all the items before our slot into the next leaf */
4106 	slot = path->slots[0];
4107 	space_needed = data_size;
4108 	if (slot > 0)
4109 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4110 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4111 	if (ret < 0)
4112 		return ret;
4113 
4114 	if (ret == 0)
4115 		progress++;
4116 
4117 	if (progress)
4118 		return 0;
4119 	return 1;
4120 }
4121 
4122 /*
4123  * split the path's leaf in two, making sure there is at least data_size
4124  * available for the resulting leaf level of the path.
4125  *
4126  * returns 0 if all went well and < 0 on failure.
4127  */
4128 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4129 			       struct btrfs_root *root,
4130 			       const struct btrfs_key *ins_key,
4131 			       struct btrfs_path *path, int data_size,
4132 			       int extend)
4133 {
4134 	struct btrfs_disk_key disk_key;
4135 	struct extent_buffer *l;
4136 	u32 nritems;
4137 	int mid;
4138 	int slot;
4139 	struct extent_buffer *right;
4140 	struct btrfs_fs_info *fs_info = root->fs_info;
4141 	int ret = 0;
4142 	int wret;
4143 	int split;
4144 	int num_doubles = 0;
4145 	int tried_avoid_double = 0;
4146 
4147 	l = path->nodes[0];
4148 	slot = path->slots[0];
4149 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4150 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4151 		return -EOVERFLOW;
4152 
4153 	/* first try to make some room by pushing left and right */
4154 	if (data_size && path->nodes[1]) {
4155 		int space_needed = data_size;
4156 
4157 		if (slot < btrfs_header_nritems(l))
4158 			space_needed -= btrfs_leaf_free_space(l);
4159 
4160 		wret = push_leaf_right(trans, root, path, space_needed,
4161 				       space_needed, 0, 0);
4162 		if (wret < 0)
4163 			return wret;
4164 		if (wret) {
4165 			space_needed = data_size;
4166 			if (slot > 0)
4167 				space_needed -= btrfs_leaf_free_space(l);
4168 			wret = push_leaf_left(trans, root, path, space_needed,
4169 					      space_needed, 0, (u32)-1);
4170 			if (wret < 0)
4171 				return wret;
4172 		}
4173 		l = path->nodes[0];
4174 
4175 		/* did the pushes work? */
4176 		if (btrfs_leaf_free_space(l) >= data_size)
4177 			return 0;
4178 	}
4179 
4180 	if (!path->nodes[1]) {
4181 		ret = insert_new_root(trans, root, path, 1);
4182 		if (ret)
4183 			return ret;
4184 	}
4185 again:
4186 	split = 1;
4187 	l = path->nodes[0];
4188 	slot = path->slots[0];
4189 	nritems = btrfs_header_nritems(l);
4190 	mid = (nritems + 1) / 2;
4191 
4192 	if (mid <= slot) {
4193 		if (nritems == 1 ||
4194 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4195 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4196 			if (slot >= nritems) {
4197 				split = 0;
4198 			} else {
4199 				mid = slot;
4200 				if (mid != nritems &&
4201 				    leaf_space_used(l, mid, nritems - mid) +
4202 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4203 					if (data_size && !tried_avoid_double)
4204 						goto push_for_double;
4205 					split = 2;
4206 				}
4207 			}
4208 		}
4209 	} else {
4210 		if (leaf_space_used(l, 0, mid) + data_size >
4211 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4212 			if (!extend && data_size && slot == 0) {
4213 				split = 0;
4214 			} else if ((extend || !data_size) && slot == 0) {
4215 				mid = 1;
4216 			} else {
4217 				mid = slot;
4218 				if (mid != nritems &&
4219 				    leaf_space_used(l, mid, nritems - mid) +
4220 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4221 					if (data_size && !tried_avoid_double)
4222 						goto push_for_double;
4223 					split = 2;
4224 				}
4225 			}
4226 		}
4227 	}
4228 
4229 	if (split == 0)
4230 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4231 	else
4232 		btrfs_item_key(l, &disk_key, mid);
4233 
4234 	/*
4235 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
4236 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
4237 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
4238 	 * out.  In the future we could add a
4239 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
4240 	 * use BTRFS_NESTING_NEW_ROOT.
4241 	 */
4242 	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4243 					     l->start, 0, num_doubles ?
4244 					     BTRFS_NESTING_NEW_ROOT :
4245 					     BTRFS_NESTING_SPLIT);
4246 	if (IS_ERR(right))
4247 		return PTR_ERR(right);
4248 
4249 	root_add_used(root, fs_info->nodesize);
4250 
4251 	if (split == 0) {
4252 		if (mid <= slot) {
4253 			btrfs_set_header_nritems(right, 0);
4254 			insert_ptr(trans, path, &disk_key,
4255 				   right->start, path->slots[1] + 1, 1);
4256 			btrfs_tree_unlock(path->nodes[0]);
4257 			free_extent_buffer(path->nodes[0]);
4258 			path->nodes[0] = right;
4259 			path->slots[0] = 0;
4260 			path->slots[1] += 1;
4261 		} else {
4262 			btrfs_set_header_nritems(right, 0);
4263 			insert_ptr(trans, path, &disk_key,
4264 				   right->start, path->slots[1], 1);
4265 			btrfs_tree_unlock(path->nodes[0]);
4266 			free_extent_buffer(path->nodes[0]);
4267 			path->nodes[0] = right;
4268 			path->slots[0] = 0;
4269 			if (path->slots[1] == 0)
4270 				fixup_low_keys(path, &disk_key, 1);
4271 		}
4272 		/*
4273 		 * We create a new leaf 'right' for the required ins_len and
4274 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4275 		 * the content of ins_len to 'right'.
4276 		 */
4277 		return ret;
4278 	}
4279 
4280 	copy_for_split(trans, path, l, right, slot, mid, nritems);
4281 
4282 	if (split == 2) {
4283 		BUG_ON(num_doubles != 0);
4284 		num_doubles++;
4285 		goto again;
4286 	}
4287 
4288 	return 0;
4289 
4290 push_for_double:
4291 	push_for_double_split(trans, root, path, data_size);
4292 	tried_avoid_double = 1;
4293 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4294 		return 0;
4295 	goto again;
4296 }
4297 
4298 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4299 					 struct btrfs_root *root,
4300 					 struct btrfs_path *path, int ins_len)
4301 {
4302 	struct btrfs_key key;
4303 	struct extent_buffer *leaf;
4304 	struct btrfs_file_extent_item *fi;
4305 	u64 extent_len = 0;
4306 	u32 item_size;
4307 	int ret;
4308 
4309 	leaf = path->nodes[0];
4310 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4311 
4312 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4313 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4314 
4315 	if (btrfs_leaf_free_space(leaf) >= ins_len)
4316 		return 0;
4317 
4318 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4319 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4320 		fi = btrfs_item_ptr(leaf, path->slots[0],
4321 				    struct btrfs_file_extent_item);
4322 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4323 	}
4324 	btrfs_release_path(path);
4325 
4326 	path->keep_locks = 1;
4327 	path->search_for_split = 1;
4328 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4329 	path->search_for_split = 0;
4330 	if (ret > 0)
4331 		ret = -EAGAIN;
4332 	if (ret < 0)
4333 		goto err;
4334 
4335 	ret = -EAGAIN;
4336 	leaf = path->nodes[0];
4337 	/* if our item isn't there, return now */
4338 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4339 		goto err;
4340 
4341 	/* the leaf has  changed, it now has room.  return now */
4342 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4343 		goto err;
4344 
4345 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4346 		fi = btrfs_item_ptr(leaf, path->slots[0],
4347 				    struct btrfs_file_extent_item);
4348 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4349 			goto err;
4350 	}
4351 
4352 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4353 	if (ret)
4354 		goto err;
4355 
4356 	path->keep_locks = 0;
4357 	btrfs_unlock_up_safe(path, 1);
4358 	return 0;
4359 err:
4360 	path->keep_locks = 0;
4361 	return ret;
4362 }
4363 
4364 static noinline int split_item(struct btrfs_path *path,
4365 			       const struct btrfs_key *new_key,
4366 			       unsigned long split_offset)
4367 {
4368 	struct extent_buffer *leaf;
4369 	struct btrfs_item *item;
4370 	struct btrfs_item *new_item;
4371 	int slot;
4372 	char *buf;
4373 	u32 nritems;
4374 	u32 item_size;
4375 	u32 orig_offset;
4376 	struct btrfs_disk_key disk_key;
4377 
4378 	leaf = path->nodes[0];
4379 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4380 
4381 	item = btrfs_item_nr(path->slots[0]);
4382 	orig_offset = btrfs_item_offset(leaf, item);
4383 	item_size = btrfs_item_size(leaf, item);
4384 
4385 	buf = kmalloc(item_size, GFP_NOFS);
4386 	if (!buf)
4387 		return -ENOMEM;
4388 
4389 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4390 			    path->slots[0]), item_size);
4391 
4392 	slot = path->slots[0] + 1;
4393 	nritems = btrfs_header_nritems(leaf);
4394 	if (slot != nritems) {
4395 		/* shift the items */
4396 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4397 				btrfs_item_nr_offset(slot),
4398 				(nritems - slot) * sizeof(struct btrfs_item));
4399 	}
4400 
4401 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4402 	btrfs_set_item_key(leaf, &disk_key, slot);
4403 
4404 	new_item = btrfs_item_nr(slot);
4405 
4406 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4407 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4408 
4409 	btrfs_set_item_offset(leaf, item,
4410 			      orig_offset + item_size - split_offset);
4411 	btrfs_set_item_size(leaf, item, split_offset);
4412 
4413 	btrfs_set_header_nritems(leaf, nritems + 1);
4414 
4415 	/* write the data for the start of the original item */
4416 	write_extent_buffer(leaf, buf,
4417 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4418 			    split_offset);
4419 
4420 	/* write the data for the new item */
4421 	write_extent_buffer(leaf, buf + split_offset,
4422 			    btrfs_item_ptr_offset(leaf, slot),
4423 			    item_size - split_offset);
4424 	btrfs_mark_buffer_dirty(leaf);
4425 
4426 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4427 	kfree(buf);
4428 	return 0;
4429 }
4430 
4431 /*
4432  * This function splits a single item into two items,
4433  * giving 'new_key' to the new item and splitting the
4434  * old one at split_offset (from the start of the item).
4435  *
4436  * The path may be released by this operation.  After
4437  * the split, the path is pointing to the old item.  The
4438  * new item is going to be in the same node as the old one.
4439  *
4440  * Note, the item being split must be smaller enough to live alone on
4441  * a tree block with room for one extra struct btrfs_item
4442  *
4443  * This allows us to split the item in place, keeping a lock on the
4444  * leaf the entire time.
4445  */
4446 int btrfs_split_item(struct btrfs_trans_handle *trans,
4447 		     struct btrfs_root *root,
4448 		     struct btrfs_path *path,
4449 		     const struct btrfs_key *new_key,
4450 		     unsigned long split_offset)
4451 {
4452 	int ret;
4453 	ret = setup_leaf_for_split(trans, root, path,
4454 				   sizeof(struct btrfs_item));
4455 	if (ret)
4456 		return ret;
4457 
4458 	ret = split_item(path, new_key, split_offset);
4459 	return ret;
4460 }
4461 
4462 /*
4463  * This function duplicate a item, giving 'new_key' to the new item.
4464  * It guarantees both items live in the same tree leaf and the new item
4465  * is contiguous with the original item.
4466  *
4467  * This allows us to split file extent in place, keeping a lock on the
4468  * leaf the entire time.
4469  */
4470 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4471 			 struct btrfs_root *root,
4472 			 struct btrfs_path *path,
4473 			 const struct btrfs_key *new_key)
4474 {
4475 	struct extent_buffer *leaf;
4476 	int ret;
4477 	u32 item_size;
4478 
4479 	leaf = path->nodes[0];
4480 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4481 	ret = setup_leaf_for_split(trans, root, path,
4482 				   item_size + sizeof(struct btrfs_item));
4483 	if (ret)
4484 		return ret;
4485 
4486 	path->slots[0]++;
4487 	setup_items_for_insert(root, path, new_key, &item_size, 1);
4488 	leaf = path->nodes[0];
4489 	memcpy_extent_buffer(leaf,
4490 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4491 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4492 			     item_size);
4493 	return 0;
4494 }
4495 
4496 /*
4497  * make the item pointed to by the path smaller.  new_size indicates
4498  * how small to make it, and from_end tells us if we just chop bytes
4499  * off the end of the item or if we shift the item to chop bytes off
4500  * the front.
4501  */
4502 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4503 {
4504 	int slot;
4505 	struct extent_buffer *leaf;
4506 	struct btrfs_item *item;
4507 	u32 nritems;
4508 	unsigned int data_end;
4509 	unsigned int old_data_start;
4510 	unsigned int old_size;
4511 	unsigned int size_diff;
4512 	int i;
4513 	struct btrfs_map_token token;
4514 
4515 	leaf = path->nodes[0];
4516 	slot = path->slots[0];
4517 
4518 	old_size = btrfs_item_size_nr(leaf, slot);
4519 	if (old_size == new_size)
4520 		return;
4521 
4522 	nritems = btrfs_header_nritems(leaf);
4523 	data_end = leaf_data_end(leaf);
4524 
4525 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4526 
4527 	size_diff = old_size - new_size;
4528 
4529 	BUG_ON(slot < 0);
4530 	BUG_ON(slot >= nritems);
4531 
4532 	/*
4533 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4534 	 */
4535 	/* first correct the data pointers */
4536 	btrfs_init_map_token(&token, leaf);
4537 	for (i = slot; i < nritems; i++) {
4538 		u32 ioff;
4539 		item = btrfs_item_nr(i);
4540 
4541 		ioff = btrfs_token_item_offset(&token, item);
4542 		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
4543 	}
4544 
4545 	/* shift the data */
4546 	if (from_end) {
4547 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4548 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4549 			      data_end, old_data_start + new_size - data_end);
4550 	} else {
4551 		struct btrfs_disk_key disk_key;
4552 		u64 offset;
4553 
4554 		btrfs_item_key(leaf, &disk_key, slot);
4555 
4556 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4557 			unsigned long ptr;
4558 			struct btrfs_file_extent_item *fi;
4559 
4560 			fi = btrfs_item_ptr(leaf, slot,
4561 					    struct btrfs_file_extent_item);
4562 			fi = (struct btrfs_file_extent_item *)(
4563 			     (unsigned long)fi - size_diff);
4564 
4565 			if (btrfs_file_extent_type(leaf, fi) ==
4566 			    BTRFS_FILE_EXTENT_INLINE) {
4567 				ptr = btrfs_item_ptr_offset(leaf, slot);
4568 				memmove_extent_buffer(leaf, ptr,
4569 				      (unsigned long)fi,
4570 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4571 			}
4572 		}
4573 
4574 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4575 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4576 			      data_end, old_data_start - data_end);
4577 
4578 		offset = btrfs_disk_key_offset(&disk_key);
4579 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4580 		btrfs_set_item_key(leaf, &disk_key, slot);
4581 		if (slot == 0)
4582 			fixup_low_keys(path, &disk_key, 1);
4583 	}
4584 
4585 	item = btrfs_item_nr(slot);
4586 	btrfs_set_item_size(leaf, item, new_size);
4587 	btrfs_mark_buffer_dirty(leaf);
4588 
4589 	if (btrfs_leaf_free_space(leaf) < 0) {
4590 		btrfs_print_leaf(leaf);
4591 		BUG();
4592 	}
4593 }
4594 
4595 /*
4596  * make the item pointed to by the path bigger, data_size is the added size.
4597  */
4598 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4599 {
4600 	int slot;
4601 	struct extent_buffer *leaf;
4602 	struct btrfs_item *item;
4603 	u32 nritems;
4604 	unsigned int data_end;
4605 	unsigned int old_data;
4606 	unsigned int old_size;
4607 	int i;
4608 	struct btrfs_map_token token;
4609 
4610 	leaf = path->nodes[0];
4611 
4612 	nritems = btrfs_header_nritems(leaf);
4613 	data_end = leaf_data_end(leaf);
4614 
4615 	if (btrfs_leaf_free_space(leaf) < data_size) {
4616 		btrfs_print_leaf(leaf);
4617 		BUG();
4618 	}
4619 	slot = path->slots[0];
4620 	old_data = btrfs_item_end_nr(leaf, slot);
4621 
4622 	BUG_ON(slot < 0);
4623 	if (slot >= nritems) {
4624 		btrfs_print_leaf(leaf);
4625 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4626 			   slot, nritems);
4627 		BUG();
4628 	}
4629 
4630 	/*
4631 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4632 	 */
4633 	/* first correct the data pointers */
4634 	btrfs_init_map_token(&token, leaf);
4635 	for (i = slot; i < nritems; i++) {
4636 		u32 ioff;
4637 		item = btrfs_item_nr(i);
4638 
4639 		ioff = btrfs_token_item_offset(&token, item);
4640 		btrfs_set_token_item_offset(&token, item, ioff - data_size);
4641 	}
4642 
4643 	/* shift the data */
4644 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4645 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4646 		      data_end, old_data - data_end);
4647 
4648 	data_end = old_data;
4649 	old_size = btrfs_item_size_nr(leaf, slot);
4650 	item = btrfs_item_nr(slot);
4651 	btrfs_set_item_size(leaf, item, old_size + data_size);
4652 	btrfs_mark_buffer_dirty(leaf);
4653 
4654 	if (btrfs_leaf_free_space(leaf) < 0) {
4655 		btrfs_print_leaf(leaf);
4656 		BUG();
4657 	}
4658 }
4659 
4660 /**
4661  * setup_items_for_insert - Helper called before inserting one or more items
4662  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
4663  * in a function that doesn't call btrfs_search_slot
4664  *
4665  * @root:	root we are inserting items to
4666  * @path:	points to the leaf/slot where we are going to insert new items
4667  * @cpu_key:	array of keys for items to be inserted
4668  * @data_size:	size of the body of each item we are going to insert
4669  * @nr:		size of @cpu_key/@data_size arrays
4670  */
4671 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4672 			    const struct btrfs_key *cpu_key, u32 *data_size,
4673 			    int nr)
4674 {
4675 	struct btrfs_fs_info *fs_info = root->fs_info;
4676 	struct btrfs_item *item;
4677 	int i;
4678 	u32 nritems;
4679 	unsigned int data_end;
4680 	struct btrfs_disk_key disk_key;
4681 	struct extent_buffer *leaf;
4682 	int slot;
4683 	struct btrfs_map_token token;
4684 	u32 total_size;
4685 	u32 total_data = 0;
4686 
4687 	for (i = 0; i < nr; i++)
4688 		total_data += data_size[i];
4689 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4690 
4691 	if (path->slots[0] == 0) {
4692 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4693 		fixup_low_keys(path, &disk_key, 1);
4694 	}
4695 	btrfs_unlock_up_safe(path, 1);
4696 
4697 	leaf = path->nodes[0];
4698 	slot = path->slots[0];
4699 
4700 	nritems = btrfs_header_nritems(leaf);
4701 	data_end = leaf_data_end(leaf);
4702 
4703 	if (btrfs_leaf_free_space(leaf) < total_size) {
4704 		btrfs_print_leaf(leaf);
4705 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4706 			   total_size, btrfs_leaf_free_space(leaf));
4707 		BUG();
4708 	}
4709 
4710 	btrfs_init_map_token(&token, leaf);
4711 	if (slot != nritems) {
4712 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4713 
4714 		if (old_data < data_end) {
4715 			btrfs_print_leaf(leaf);
4716 			btrfs_crit(fs_info,
4717 		"item at slot %d with data offset %u beyond data end of leaf %u",
4718 				   slot, old_data, data_end);
4719 			BUG();
4720 		}
4721 		/*
4722 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4723 		 */
4724 		/* first correct the data pointers */
4725 		for (i = slot; i < nritems; i++) {
4726 			u32 ioff;
4727 
4728 			item = btrfs_item_nr(i);
4729 			ioff = btrfs_token_item_offset(&token, item);
4730 			btrfs_set_token_item_offset(&token, item,
4731 						    ioff - total_data);
4732 		}
4733 		/* shift the items */
4734 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4735 			      btrfs_item_nr_offset(slot),
4736 			      (nritems - slot) * sizeof(struct btrfs_item));
4737 
4738 		/* shift the data */
4739 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4740 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4741 			      data_end, old_data - data_end);
4742 		data_end = old_data;
4743 	}
4744 
4745 	/* setup the item for the new data */
4746 	for (i = 0; i < nr; i++) {
4747 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4748 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4749 		item = btrfs_item_nr(slot + i);
4750 		data_end -= data_size[i];
4751 		btrfs_set_token_item_offset(&token, item, data_end);
4752 		btrfs_set_token_item_size(&token, item, data_size[i]);
4753 	}
4754 
4755 	btrfs_set_header_nritems(leaf, nritems + nr);
4756 	btrfs_mark_buffer_dirty(leaf);
4757 
4758 	if (btrfs_leaf_free_space(leaf) < 0) {
4759 		btrfs_print_leaf(leaf);
4760 		BUG();
4761 	}
4762 }
4763 
4764 /*
4765  * Given a key and some data, insert items into the tree.
4766  * This does all the path init required, making room in the tree if needed.
4767  */
4768 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4769 			    struct btrfs_root *root,
4770 			    struct btrfs_path *path,
4771 			    const struct btrfs_key *cpu_key, u32 *data_size,
4772 			    int nr)
4773 {
4774 	int ret = 0;
4775 	int slot;
4776 	int i;
4777 	u32 total_size = 0;
4778 	u32 total_data = 0;
4779 
4780 	for (i = 0; i < nr; i++)
4781 		total_data += data_size[i];
4782 
4783 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4784 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4785 	if (ret == 0)
4786 		return -EEXIST;
4787 	if (ret < 0)
4788 		return ret;
4789 
4790 	slot = path->slots[0];
4791 	BUG_ON(slot < 0);
4792 
4793 	setup_items_for_insert(root, path, cpu_key, data_size, nr);
4794 	return 0;
4795 }
4796 
4797 /*
4798  * Given a key and some data, insert an item into the tree.
4799  * This does all the path init required, making room in the tree if needed.
4800  */
4801 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4802 		      const struct btrfs_key *cpu_key, void *data,
4803 		      u32 data_size)
4804 {
4805 	int ret = 0;
4806 	struct btrfs_path *path;
4807 	struct extent_buffer *leaf;
4808 	unsigned long ptr;
4809 
4810 	path = btrfs_alloc_path();
4811 	if (!path)
4812 		return -ENOMEM;
4813 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4814 	if (!ret) {
4815 		leaf = path->nodes[0];
4816 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4817 		write_extent_buffer(leaf, data, ptr, data_size);
4818 		btrfs_mark_buffer_dirty(leaf);
4819 	}
4820 	btrfs_free_path(path);
4821 	return ret;
4822 }
4823 
4824 /*
4825  * delete the pointer from a given node.
4826  *
4827  * the tree should have been previously balanced so the deletion does not
4828  * empty a node.
4829  */
4830 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4831 		    int level, int slot)
4832 {
4833 	struct extent_buffer *parent = path->nodes[level];
4834 	u32 nritems;
4835 	int ret;
4836 
4837 	nritems = btrfs_header_nritems(parent);
4838 	if (slot != nritems - 1) {
4839 		if (level) {
4840 			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4841 					nritems - slot - 1);
4842 			BUG_ON(ret < 0);
4843 		}
4844 		memmove_extent_buffer(parent,
4845 			      btrfs_node_key_ptr_offset(slot),
4846 			      btrfs_node_key_ptr_offset(slot + 1),
4847 			      sizeof(struct btrfs_key_ptr) *
4848 			      (nritems - slot - 1));
4849 	} else if (level) {
4850 		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4851 				GFP_NOFS);
4852 		BUG_ON(ret < 0);
4853 	}
4854 
4855 	nritems--;
4856 	btrfs_set_header_nritems(parent, nritems);
4857 	if (nritems == 0 && parent == root->node) {
4858 		BUG_ON(btrfs_header_level(root->node) != 1);
4859 		/* just turn the root into a leaf and break */
4860 		btrfs_set_header_level(root->node, 0);
4861 	} else if (slot == 0) {
4862 		struct btrfs_disk_key disk_key;
4863 
4864 		btrfs_node_key(parent, &disk_key, 0);
4865 		fixup_low_keys(path, &disk_key, level + 1);
4866 	}
4867 	btrfs_mark_buffer_dirty(parent);
4868 }
4869 
4870 /*
4871  * a helper function to delete the leaf pointed to by path->slots[1] and
4872  * path->nodes[1].
4873  *
4874  * This deletes the pointer in path->nodes[1] and frees the leaf
4875  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4876  *
4877  * The path must have already been setup for deleting the leaf, including
4878  * all the proper balancing.  path->nodes[1] must be locked.
4879  */
4880 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4881 				    struct btrfs_root *root,
4882 				    struct btrfs_path *path,
4883 				    struct extent_buffer *leaf)
4884 {
4885 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4886 	del_ptr(root, path, 1, path->slots[1]);
4887 
4888 	/*
4889 	 * btrfs_free_extent is expensive, we want to make sure we
4890 	 * aren't holding any locks when we call it
4891 	 */
4892 	btrfs_unlock_up_safe(path, 0);
4893 
4894 	root_sub_used(root, leaf->len);
4895 
4896 	atomic_inc(&leaf->refs);
4897 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4898 	free_extent_buffer_stale(leaf);
4899 }
4900 /*
4901  * delete the item at the leaf level in path.  If that empties
4902  * the leaf, remove it from the tree
4903  */
4904 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4905 		    struct btrfs_path *path, int slot, int nr)
4906 {
4907 	struct btrfs_fs_info *fs_info = root->fs_info;
4908 	struct extent_buffer *leaf;
4909 	struct btrfs_item *item;
4910 	u32 last_off;
4911 	u32 dsize = 0;
4912 	int ret = 0;
4913 	int wret;
4914 	int i;
4915 	u32 nritems;
4916 
4917 	leaf = path->nodes[0];
4918 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4919 
4920 	for (i = 0; i < nr; i++)
4921 		dsize += btrfs_item_size_nr(leaf, slot + i);
4922 
4923 	nritems = btrfs_header_nritems(leaf);
4924 
4925 	if (slot + nr != nritems) {
4926 		int data_end = leaf_data_end(leaf);
4927 		struct btrfs_map_token token;
4928 
4929 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4930 			      data_end + dsize,
4931 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4932 			      last_off - data_end);
4933 
4934 		btrfs_init_map_token(&token, leaf);
4935 		for (i = slot + nr; i < nritems; i++) {
4936 			u32 ioff;
4937 
4938 			item = btrfs_item_nr(i);
4939 			ioff = btrfs_token_item_offset(&token, item);
4940 			btrfs_set_token_item_offset(&token, item, ioff + dsize);
4941 		}
4942 
4943 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4944 			      btrfs_item_nr_offset(slot + nr),
4945 			      sizeof(struct btrfs_item) *
4946 			      (nritems - slot - nr));
4947 	}
4948 	btrfs_set_header_nritems(leaf, nritems - nr);
4949 	nritems -= nr;
4950 
4951 	/* delete the leaf if we've emptied it */
4952 	if (nritems == 0) {
4953 		if (leaf == root->node) {
4954 			btrfs_set_header_level(leaf, 0);
4955 		} else {
4956 			btrfs_clean_tree_block(leaf);
4957 			btrfs_del_leaf(trans, root, path, leaf);
4958 		}
4959 	} else {
4960 		int used = leaf_space_used(leaf, 0, nritems);
4961 		if (slot == 0) {
4962 			struct btrfs_disk_key disk_key;
4963 
4964 			btrfs_item_key(leaf, &disk_key, 0);
4965 			fixup_low_keys(path, &disk_key, 1);
4966 		}
4967 
4968 		/* delete the leaf if it is mostly empty */
4969 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4970 			/* push_leaf_left fixes the path.
4971 			 * make sure the path still points to our leaf
4972 			 * for possible call to del_ptr below
4973 			 */
4974 			slot = path->slots[1];
4975 			atomic_inc(&leaf->refs);
4976 
4977 			wret = push_leaf_left(trans, root, path, 1, 1,
4978 					      1, (u32)-1);
4979 			if (wret < 0 && wret != -ENOSPC)
4980 				ret = wret;
4981 
4982 			if (path->nodes[0] == leaf &&
4983 			    btrfs_header_nritems(leaf)) {
4984 				wret = push_leaf_right(trans, root, path, 1,
4985 						       1, 1, 0);
4986 				if (wret < 0 && wret != -ENOSPC)
4987 					ret = wret;
4988 			}
4989 
4990 			if (btrfs_header_nritems(leaf) == 0) {
4991 				path->slots[1] = slot;
4992 				btrfs_del_leaf(trans, root, path, leaf);
4993 				free_extent_buffer(leaf);
4994 				ret = 0;
4995 			} else {
4996 				/* if we're still in the path, make sure
4997 				 * we're dirty.  Otherwise, one of the
4998 				 * push_leaf functions must have already
4999 				 * dirtied this buffer
5000 				 */
5001 				if (path->nodes[0] == leaf)
5002 					btrfs_mark_buffer_dirty(leaf);
5003 				free_extent_buffer(leaf);
5004 			}
5005 		} else {
5006 			btrfs_mark_buffer_dirty(leaf);
5007 		}
5008 	}
5009 	return ret;
5010 }
5011 
5012 /*
5013  * search the tree again to find a leaf with lesser keys
5014  * returns 0 if it found something or 1 if there are no lesser leaves.
5015  * returns < 0 on io errors.
5016  *
5017  * This may release the path, and so you may lose any locks held at the
5018  * time you call it.
5019  */
5020 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5021 {
5022 	struct btrfs_key key;
5023 	struct btrfs_disk_key found_key;
5024 	int ret;
5025 
5026 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5027 
5028 	if (key.offset > 0) {
5029 		key.offset--;
5030 	} else if (key.type > 0) {
5031 		key.type--;
5032 		key.offset = (u64)-1;
5033 	} else if (key.objectid > 0) {
5034 		key.objectid--;
5035 		key.type = (u8)-1;
5036 		key.offset = (u64)-1;
5037 	} else {
5038 		return 1;
5039 	}
5040 
5041 	btrfs_release_path(path);
5042 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5043 	if (ret < 0)
5044 		return ret;
5045 	btrfs_item_key(path->nodes[0], &found_key, 0);
5046 	ret = comp_keys(&found_key, &key);
5047 	/*
5048 	 * We might have had an item with the previous key in the tree right
5049 	 * before we released our path. And after we released our path, that
5050 	 * item might have been pushed to the first slot (0) of the leaf we
5051 	 * were holding due to a tree balance. Alternatively, an item with the
5052 	 * previous key can exist as the only element of a leaf (big fat item).
5053 	 * Therefore account for these 2 cases, so that our callers (like
5054 	 * btrfs_previous_item) don't miss an existing item with a key matching
5055 	 * the previous key we computed above.
5056 	 */
5057 	if (ret <= 0)
5058 		return 0;
5059 	return 1;
5060 }
5061 
5062 /*
5063  * A helper function to walk down the tree starting at min_key, and looking
5064  * for nodes or leaves that are have a minimum transaction id.
5065  * This is used by the btree defrag code, and tree logging
5066  *
5067  * This does not cow, but it does stuff the starting key it finds back
5068  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5069  * key and get a writable path.
5070  *
5071  * This honors path->lowest_level to prevent descent past a given level
5072  * of the tree.
5073  *
5074  * min_trans indicates the oldest transaction that you are interested
5075  * in walking through.  Any nodes or leaves older than min_trans are
5076  * skipped over (without reading them).
5077  *
5078  * returns zero if something useful was found, < 0 on error and 1 if there
5079  * was nothing in the tree that matched the search criteria.
5080  */
5081 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5082 			 struct btrfs_path *path,
5083 			 u64 min_trans)
5084 {
5085 	struct extent_buffer *cur;
5086 	struct btrfs_key found_key;
5087 	int slot;
5088 	int sret;
5089 	u32 nritems;
5090 	int level;
5091 	int ret = 1;
5092 	int keep_locks = path->keep_locks;
5093 
5094 	path->keep_locks = 1;
5095 again:
5096 	cur = btrfs_read_lock_root_node(root);
5097 	level = btrfs_header_level(cur);
5098 	WARN_ON(path->nodes[level]);
5099 	path->nodes[level] = cur;
5100 	path->locks[level] = BTRFS_READ_LOCK;
5101 
5102 	if (btrfs_header_generation(cur) < min_trans) {
5103 		ret = 1;
5104 		goto out;
5105 	}
5106 	while (1) {
5107 		nritems = btrfs_header_nritems(cur);
5108 		level = btrfs_header_level(cur);
5109 		sret = btrfs_bin_search(cur, min_key, &slot);
5110 		if (sret < 0) {
5111 			ret = sret;
5112 			goto out;
5113 		}
5114 
5115 		/* at the lowest level, we're done, setup the path and exit */
5116 		if (level == path->lowest_level) {
5117 			if (slot >= nritems)
5118 				goto find_next_key;
5119 			ret = 0;
5120 			path->slots[level] = slot;
5121 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5122 			goto out;
5123 		}
5124 		if (sret && slot > 0)
5125 			slot--;
5126 		/*
5127 		 * check this node pointer against the min_trans parameters.
5128 		 * If it is too old, skip to the next one.
5129 		 */
5130 		while (slot < nritems) {
5131 			u64 gen;
5132 
5133 			gen = btrfs_node_ptr_generation(cur, slot);
5134 			if (gen < min_trans) {
5135 				slot++;
5136 				continue;
5137 			}
5138 			break;
5139 		}
5140 find_next_key:
5141 		/*
5142 		 * we didn't find a candidate key in this node, walk forward
5143 		 * and find another one
5144 		 */
5145 		if (slot >= nritems) {
5146 			path->slots[level] = slot;
5147 			sret = btrfs_find_next_key(root, path, min_key, level,
5148 						  min_trans);
5149 			if (sret == 0) {
5150 				btrfs_release_path(path);
5151 				goto again;
5152 			} else {
5153 				goto out;
5154 			}
5155 		}
5156 		/* save our key for returning back */
5157 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5158 		path->slots[level] = slot;
5159 		if (level == path->lowest_level) {
5160 			ret = 0;
5161 			goto out;
5162 		}
5163 		cur = btrfs_read_node_slot(cur, slot);
5164 		if (IS_ERR(cur)) {
5165 			ret = PTR_ERR(cur);
5166 			goto out;
5167 		}
5168 
5169 		btrfs_tree_read_lock(cur);
5170 
5171 		path->locks[level - 1] = BTRFS_READ_LOCK;
5172 		path->nodes[level - 1] = cur;
5173 		unlock_up(path, level, 1, 0, NULL);
5174 	}
5175 out:
5176 	path->keep_locks = keep_locks;
5177 	if (ret == 0) {
5178 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5179 		memcpy(min_key, &found_key, sizeof(found_key));
5180 	}
5181 	return ret;
5182 }
5183 
5184 /*
5185  * this is similar to btrfs_next_leaf, but does not try to preserve
5186  * and fixup the path.  It looks for and returns the next key in the
5187  * tree based on the current path and the min_trans parameters.
5188  *
5189  * 0 is returned if another key is found, < 0 if there are any errors
5190  * and 1 is returned if there are no higher keys in the tree
5191  *
5192  * path->keep_locks should be set to 1 on the search made before
5193  * calling this function.
5194  */
5195 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5196 			struct btrfs_key *key, int level, u64 min_trans)
5197 {
5198 	int slot;
5199 	struct extent_buffer *c;
5200 
5201 	WARN_ON(!path->keep_locks && !path->skip_locking);
5202 	while (level < BTRFS_MAX_LEVEL) {
5203 		if (!path->nodes[level])
5204 			return 1;
5205 
5206 		slot = path->slots[level] + 1;
5207 		c = path->nodes[level];
5208 next:
5209 		if (slot >= btrfs_header_nritems(c)) {
5210 			int ret;
5211 			int orig_lowest;
5212 			struct btrfs_key cur_key;
5213 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5214 			    !path->nodes[level + 1])
5215 				return 1;
5216 
5217 			if (path->locks[level + 1] || path->skip_locking) {
5218 				level++;
5219 				continue;
5220 			}
5221 
5222 			slot = btrfs_header_nritems(c) - 1;
5223 			if (level == 0)
5224 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5225 			else
5226 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5227 
5228 			orig_lowest = path->lowest_level;
5229 			btrfs_release_path(path);
5230 			path->lowest_level = level;
5231 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5232 						0, 0);
5233 			path->lowest_level = orig_lowest;
5234 			if (ret < 0)
5235 				return ret;
5236 
5237 			c = path->nodes[level];
5238 			slot = path->slots[level];
5239 			if (ret == 0)
5240 				slot++;
5241 			goto next;
5242 		}
5243 
5244 		if (level == 0)
5245 			btrfs_item_key_to_cpu(c, key, slot);
5246 		else {
5247 			u64 gen = btrfs_node_ptr_generation(c, slot);
5248 
5249 			if (gen < min_trans) {
5250 				slot++;
5251 				goto next;
5252 			}
5253 			btrfs_node_key_to_cpu(c, key, slot);
5254 		}
5255 		return 0;
5256 	}
5257 	return 1;
5258 }
5259 
5260 /*
5261  * search the tree again to find a leaf with greater keys
5262  * returns 0 if it found something or 1 if there are no greater leaves.
5263  * returns < 0 on io errors.
5264  */
5265 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5266 {
5267 	return btrfs_next_old_leaf(root, path, 0);
5268 }
5269 
5270 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5271 			u64 time_seq)
5272 {
5273 	int slot;
5274 	int level;
5275 	struct extent_buffer *c;
5276 	struct extent_buffer *next;
5277 	struct btrfs_key key;
5278 	u32 nritems;
5279 	int ret;
5280 	int i;
5281 
5282 	nritems = btrfs_header_nritems(path->nodes[0]);
5283 	if (nritems == 0)
5284 		return 1;
5285 
5286 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5287 again:
5288 	level = 1;
5289 	next = NULL;
5290 	btrfs_release_path(path);
5291 
5292 	path->keep_locks = 1;
5293 
5294 	if (time_seq)
5295 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5296 	else
5297 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5298 	path->keep_locks = 0;
5299 
5300 	if (ret < 0)
5301 		return ret;
5302 
5303 	nritems = btrfs_header_nritems(path->nodes[0]);
5304 	/*
5305 	 * by releasing the path above we dropped all our locks.  A balance
5306 	 * could have added more items next to the key that used to be
5307 	 * at the very end of the block.  So, check again here and
5308 	 * advance the path if there are now more items available.
5309 	 */
5310 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5311 		if (ret == 0)
5312 			path->slots[0]++;
5313 		ret = 0;
5314 		goto done;
5315 	}
5316 	/*
5317 	 * So the above check misses one case:
5318 	 * - after releasing the path above, someone has removed the item that
5319 	 *   used to be at the very end of the block, and balance between leafs
5320 	 *   gets another one with bigger key.offset to replace it.
5321 	 *
5322 	 * This one should be returned as well, or we can get leaf corruption
5323 	 * later(esp. in __btrfs_drop_extents()).
5324 	 *
5325 	 * And a bit more explanation about this check,
5326 	 * with ret > 0, the key isn't found, the path points to the slot
5327 	 * where it should be inserted, so the path->slots[0] item must be the
5328 	 * bigger one.
5329 	 */
5330 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5331 		ret = 0;
5332 		goto done;
5333 	}
5334 
5335 	while (level < BTRFS_MAX_LEVEL) {
5336 		if (!path->nodes[level]) {
5337 			ret = 1;
5338 			goto done;
5339 		}
5340 
5341 		slot = path->slots[level] + 1;
5342 		c = path->nodes[level];
5343 		if (slot >= btrfs_header_nritems(c)) {
5344 			level++;
5345 			if (level == BTRFS_MAX_LEVEL) {
5346 				ret = 1;
5347 				goto done;
5348 			}
5349 			continue;
5350 		}
5351 
5352 
5353 		/*
5354 		 * Our current level is where we're going to start from, and to
5355 		 * make sure lockdep doesn't complain we need to drop our locks
5356 		 * and nodes from 0 to our current level.
5357 		 */
5358 		for (i = 0; i < level; i++) {
5359 			if (path->locks[level]) {
5360 				btrfs_tree_read_unlock(path->nodes[i]);
5361 				path->locks[i] = 0;
5362 			}
5363 			free_extent_buffer(path->nodes[i]);
5364 			path->nodes[i] = NULL;
5365 		}
5366 
5367 		next = c;
5368 		ret = read_block_for_search(root, path, &next, level,
5369 					    slot, &key);
5370 		if (ret == -EAGAIN)
5371 			goto again;
5372 
5373 		if (ret < 0) {
5374 			btrfs_release_path(path);
5375 			goto done;
5376 		}
5377 
5378 		if (!path->skip_locking) {
5379 			ret = btrfs_try_tree_read_lock(next);
5380 			if (!ret && time_seq) {
5381 				/*
5382 				 * If we don't get the lock, we may be racing
5383 				 * with push_leaf_left, holding that lock while
5384 				 * itself waiting for the leaf we've currently
5385 				 * locked. To solve this situation, we give up
5386 				 * on our lock and cycle.
5387 				 */
5388 				free_extent_buffer(next);
5389 				btrfs_release_path(path);
5390 				cond_resched();
5391 				goto again;
5392 			}
5393 			if (!ret)
5394 				btrfs_tree_read_lock(next);
5395 		}
5396 		break;
5397 	}
5398 	path->slots[level] = slot;
5399 	while (1) {
5400 		level--;
5401 		path->nodes[level] = next;
5402 		path->slots[level] = 0;
5403 		if (!path->skip_locking)
5404 			path->locks[level] = BTRFS_READ_LOCK;
5405 		if (!level)
5406 			break;
5407 
5408 		ret = read_block_for_search(root, path, &next, level,
5409 					    0, &key);
5410 		if (ret == -EAGAIN)
5411 			goto again;
5412 
5413 		if (ret < 0) {
5414 			btrfs_release_path(path);
5415 			goto done;
5416 		}
5417 
5418 		if (!path->skip_locking)
5419 			btrfs_tree_read_lock(next);
5420 	}
5421 	ret = 0;
5422 done:
5423 	unlock_up(path, 0, 1, 0, NULL);
5424 
5425 	return ret;
5426 }
5427 
5428 /*
5429  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5430  * searching until it gets past min_objectid or finds an item of 'type'
5431  *
5432  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5433  */
5434 int btrfs_previous_item(struct btrfs_root *root,
5435 			struct btrfs_path *path, u64 min_objectid,
5436 			int type)
5437 {
5438 	struct btrfs_key found_key;
5439 	struct extent_buffer *leaf;
5440 	u32 nritems;
5441 	int ret;
5442 
5443 	while (1) {
5444 		if (path->slots[0] == 0) {
5445 			ret = btrfs_prev_leaf(root, path);
5446 			if (ret != 0)
5447 				return ret;
5448 		} else {
5449 			path->slots[0]--;
5450 		}
5451 		leaf = path->nodes[0];
5452 		nritems = btrfs_header_nritems(leaf);
5453 		if (nritems == 0)
5454 			return 1;
5455 		if (path->slots[0] == nritems)
5456 			path->slots[0]--;
5457 
5458 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5459 		if (found_key.objectid < min_objectid)
5460 			break;
5461 		if (found_key.type == type)
5462 			return 0;
5463 		if (found_key.objectid == min_objectid &&
5464 		    found_key.type < type)
5465 			break;
5466 	}
5467 	return 1;
5468 }
5469 
5470 /*
5471  * search in extent tree to find a previous Metadata/Data extent item with
5472  * min objecitd.
5473  *
5474  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5475  */
5476 int btrfs_previous_extent_item(struct btrfs_root *root,
5477 			struct btrfs_path *path, u64 min_objectid)
5478 {
5479 	struct btrfs_key found_key;
5480 	struct extent_buffer *leaf;
5481 	u32 nritems;
5482 	int ret;
5483 
5484 	while (1) {
5485 		if (path->slots[0] == 0) {
5486 			ret = btrfs_prev_leaf(root, path);
5487 			if (ret != 0)
5488 				return ret;
5489 		} else {
5490 			path->slots[0]--;
5491 		}
5492 		leaf = path->nodes[0];
5493 		nritems = btrfs_header_nritems(leaf);
5494 		if (nritems == 0)
5495 			return 1;
5496 		if (path->slots[0] == nritems)
5497 			path->slots[0]--;
5498 
5499 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5500 		if (found_key.objectid < min_objectid)
5501 			break;
5502 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5503 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5504 			return 0;
5505 		if (found_key.objectid == min_objectid &&
5506 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5507 			break;
5508 	}
5509 	return 1;
5510 }
5511