1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "print-tree.h" 25 #include "locking.h" 26 27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 28 *root, struct btrfs_path *path, int level); 29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_key *ins_key, 31 struct btrfs_path *path, int data_size, int extend); 32 static int push_node_left(struct btrfs_trans_handle *trans, 33 struct btrfs_root *root, struct extent_buffer *dst, 34 struct extent_buffer *src, int empty); 35 static int balance_node_right(struct btrfs_trans_handle *trans, 36 struct btrfs_root *root, 37 struct extent_buffer *dst_buf, 38 struct extent_buffer *src_buf); 39 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 40 struct btrfs_path *path, int level, int slot); 41 42 struct btrfs_path *btrfs_alloc_path(void) 43 { 44 struct btrfs_path *path; 45 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 46 return path; 47 } 48 49 /* 50 * set all locked nodes in the path to blocking locks. This should 51 * be done before scheduling 52 */ 53 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 54 { 55 int i; 56 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 57 if (!p->nodes[i] || !p->locks[i]) 58 continue; 59 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 60 if (p->locks[i] == BTRFS_READ_LOCK) 61 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 62 else if (p->locks[i] == BTRFS_WRITE_LOCK) 63 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 64 } 65 } 66 67 /* 68 * reset all the locked nodes in the patch to spinning locks. 69 * 70 * held is used to keep lockdep happy, when lockdep is enabled 71 * we set held to a blocking lock before we go around and 72 * retake all the spinlocks in the path. You can safely use NULL 73 * for held 74 */ 75 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 76 struct extent_buffer *held, int held_rw) 77 { 78 int i; 79 80 #ifdef CONFIG_DEBUG_LOCK_ALLOC 81 /* lockdep really cares that we take all of these spinlocks 82 * in the right order. If any of the locks in the path are not 83 * currently blocking, it is going to complain. So, make really 84 * really sure by forcing the path to blocking before we clear 85 * the path blocking. 86 */ 87 if (held) { 88 btrfs_set_lock_blocking_rw(held, held_rw); 89 if (held_rw == BTRFS_WRITE_LOCK) 90 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 91 else if (held_rw == BTRFS_READ_LOCK) 92 held_rw = BTRFS_READ_LOCK_BLOCKING; 93 } 94 btrfs_set_path_blocking(p); 95 #endif 96 97 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 98 if (p->nodes[i] && p->locks[i]) { 99 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 100 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 101 p->locks[i] = BTRFS_WRITE_LOCK; 102 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 103 p->locks[i] = BTRFS_READ_LOCK; 104 } 105 } 106 107 #ifdef CONFIG_DEBUG_LOCK_ALLOC 108 if (held) 109 btrfs_clear_lock_blocking_rw(held, held_rw); 110 #endif 111 } 112 113 /* this also releases the path */ 114 void btrfs_free_path(struct btrfs_path *p) 115 { 116 if (!p) 117 return; 118 btrfs_release_path(p); 119 kmem_cache_free(btrfs_path_cachep, p); 120 } 121 122 /* 123 * path release drops references on the extent buffers in the path 124 * and it drops any locks held by this path 125 * 126 * It is safe to call this on paths that no locks or extent buffers held. 127 */ 128 noinline void btrfs_release_path(struct btrfs_path *p) 129 { 130 int i; 131 132 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 133 p->slots[i] = 0; 134 if (!p->nodes[i]) 135 continue; 136 if (p->locks[i]) { 137 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 138 p->locks[i] = 0; 139 } 140 free_extent_buffer(p->nodes[i]); 141 p->nodes[i] = NULL; 142 } 143 } 144 145 /* 146 * safely gets a reference on the root node of a tree. A lock 147 * is not taken, so a concurrent writer may put a different node 148 * at the root of the tree. See btrfs_lock_root_node for the 149 * looping required. 150 * 151 * The extent buffer returned by this has a reference taken, so 152 * it won't disappear. It may stop being the root of the tree 153 * at any time because there are no locks held. 154 */ 155 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 156 { 157 struct extent_buffer *eb; 158 159 while (1) { 160 rcu_read_lock(); 161 eb = rcu_dereference(root->node); 162 163 /* 164 * RCU really hurts here, we could free up the root node because 165 * it was cow'ed but we may not get the new root node yet so do 166 * the inc_not_zero dance and if it doesn't work then 167 * synchronize_rcu and try again. 168 */ 169 if (atomic_inc_not_zero(&eb->refs)) { 170 rcu_read_unlock(); 171 break; 172 } 173 rcu_read_unlock(); 174 synchronize_rcu(); 175 } 176 return eb; 177 } 178 179 /* loop around taking references on and locking the root node of the 180 * tree until you end up with a lock on the root. A locked buffer 181 * is returned, with a reference held. 182 */ 183 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 184 { 185 struct extent_buffer *eb; 186 187 while (1) { 188 eb = btrfs_root_node(root); 189 btrfs_tree_lock(eb); 190 if (eb == root->node) 191 break; 192 btrfs_tree_unlock(eb); 193 free_extent_buffer(eb); 194 } 195 return eb; 196 } 197 198 /* loop around taking references on and locking the root node of the 199 * tree until you end up with a lock on the root. A locked buffer 200 * is returned, with a reference held. 201 */ 202 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 203 { 204 struct extent_buffer *eb; 205 206 while (1) { 207 eb = btrfs_root_node(root); 208 btrfs_tree_read_lock(eb); 209 if (eb == root->node) 210 break; 211 btrfs_tree_read_unlock(eb); 212 free_extent_buffer(eb); 213 } 214 return eb; 215 } 216 217 /* cowonly root (everything not a reference counted cow subvolume), just get 218 * put onto a simple dirty list. transaction.c walks this to make sure they 219 * get properly updated on disk. 220 */ 221 static void add_root_to_dirty_list(struct btrfs_root *root) 222 { 223 if (root->track_dirty && list_empty(&root->dirty_list)) { 224 list_add(&root->dirty_list, 225 &root->fs_info->dirty_cowonly_roots); 226 } 227 } 228 229 /* 230 * used by snapshot creation to make a copy of a root for a tree with 231 * a given objectid. The buffer with the new root node is returned in 232 * cow_ret, and this func returns zero on success or a negative error code. 233 */ 234 int btrfs_copy_root(struct btrfs_trans_handle *trans, 235 struct btrfs_root *root, 236 struct extent_buffer *buf, 237 struct extent_buffer **cow_ret, u64 new_root_objectid) 238 { 239 struct extent_buffer *cow; 240 int ret = 0; 241 int level; 242 struct btrfs_disk_key disk_key; 243 244 WARN_ON(root->ref_cows && trans->transid != 245 root->fs_info->running_transaction->transid); 246 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 247 248 level = btrfs_header_level(buf); 249 if (level == 0) 250 btrfs_item_key(buf, &disk_key, 0); 251 else 252 btrfs_node_key(buf, &disk_key, 0); 253 254 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 255 new_root_objectid, &disk_key, level, 256 buf->start, 0, 1); 257 if (IS_ERR(cow)) 258 return PTR_ERR(cow); 259 260 copy_extent_buffer(cow, buf, 0, 0, cow->len); 261 btrfs_set_header_bytenr(cow, cow->start); 262 btrfs_set_header_generation(cow, trans->transid); 263 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 264 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 265 BTRFS_HEADER_FLAG_RELOC); 266 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 267 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 268 else 269 btrfs_set_header_owner(cow, new_root_objectid); 270 271 write_extent_buffer(cow, root->fs_info->fsid, 272 (unsigned long)btrfs_header_fsid(cow), 273 BTRFS_FSID_SIZE); 274 275 WARN_ON(btrfs_header_generation(buf) > trans->transid); 276 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 277 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 278 else 279 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 280 281 if (ret) 282 return ret; 283 284 btrfs_mark_buffer_dirty(cow); 285 *cow_ret = cow; 286 return 0; 287 } 288 289 /* 290 * check if the tree block can be shared by multiple trees 291 */ 292 int btrfs_block_can_be_shared(struct btrfs_root *root, 293 struct extent_buffer *buf) 294 { 295 /* 296 * Tree blocks not in refernece counted trees and tree roots 297 * are never shared. If a block was allocated after the last 298 * snapshot and the block was not allocated by tree relocation, 299 * we know the block is not shared. 300 */ 301 if (root->ref_cows && 302 buf != root->node && buf != root->commit_root && 303 (btrfs_header_generation(buf) <= 304 btrfs_root_last_snapshot(&root->root_item) || 305 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 306 return 1; 307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 308 if (root->ref_cows && 309 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 310 return 1; 311 #endif 312 return 0; 313 } 314 315 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 316 struct btrfs_root *root, 317 struct extent_buffer *buf, 318 struct extent_buffer *cow, 319 int *last_ref) 320 { 321 u64 refs; 322 u64 owner; 323 u64 flags; 324 u64 new_flags = 0; 325 int ret; 326 327 /* 328 * Backrefs update rules: 329 * 330 * Always use full backrefs for extent pointers in tree block 331 * allocated by tree relocation. 332 * 333 * If a shared tree block is no longer referenced by its owner 334 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 335 * use full backrefs for extent pointers in tree block. 336 * 337 * If a tree block is been relocating 338 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 339 * use full backrefs for extent pointers in tree block. 340 * The reason for this is some operations (such as drop tree) 341 * are only allowed for blocks use full backrefs. 342 */ 343 344 if (btrfs_block_can_be_shared(root, buf)) { 345 ret = btrfs_lookup_extent_info(trans, root, buf->start, 346 buf->len, &refs, &flags); 347 if (ret) 348 return ret; 349 if (refs == 0) { 350 ret = -EROFS; 351 btrfs_std_error(root->fs_info, ret); 352 return ret; 353 } 354 } else { 355 refs = 1; 356 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 357 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 358 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 359 else 360 flags = 0; 361 } 362 363 owner = btrfs_header_owner(buf); 364 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 365 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 366 367 if (refs > 1) { 368 if ((owner == root->root_key.objectid || 369 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 370 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 371 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 372 BUG_ON(ret); /* -ENOMEM */ 373 374 if (root->root_key.objectid == 375 BTRFS_TREE_RELOC_OBJECTID) { 376 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 377 BUG_ON(ret); /* -ENOMEM */ 378 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 379 BUG_ON(ret); /* -ENOMEM */ 380 } 381 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 382 } else { 383 384 if (root->root_key.objectid == 385 BTRFS_TREE_RELOC_OBJECTID) 386 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 387 else 388 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 389 BUG_ON(ret); /* -ENOMEM */ 390 } 391 if (new_flags != 0) { 392 ret = btrfs_set_disk_extent_flags(trans, root, 393 buf->start, 394 buf->len, 395 new_flags, 0); 396 if (ret) 397 return ret; 398 } 399 } else { 400 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 401 if (root->root_key.objectid == 402 BTRFS_TREE_RELOC_OBJECTID) 403 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 404 else 405 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 406 BUG_ON(ret); /* -ENOMEM */ 407 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 408 BUG_ON(ret); /* -ENOMEM */ 409 } 410 clean_tree_block(trans, root, buf); 411 *last_ref = 1; 412 } 413 return 0; 414 } 415 416 /* 417 * does the dirty work in cow of a single block. The parent block (if 418 * supplied) is updated to point to the new cow copy. The new buffer is marked 419 * dirty and returned locked. If you modify the block it needs to be marked 420 * dirty again. 421 * 422 * search_start -- an allocation hint for the new block 423 * 424 * empty_size -- a hint that you plan on doing more cow. This is the size in 425 * bytes the allocator should try to find free next to the block it returns. 426 * This is just a hint and may be ignored by the allocator. 427 */ 428 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 429 struct btrfs_root *root, 430 struct extent_buffer *buf, 431 struct extent_buffer *parent, int parent_slot, 432 struct extent_buffer **cow_ret, 433 u64 search_start, u64 empty_size) 434 { 435 struct btrfs_disk_key disk_key; 436 struct extent_buffer *cow; 437 int level, ret; 438 int last_ref = 0; 439 int unlock_orig = 0; 440 u64 parent_start; 441 442 if (*cow_ret == buf) 443 unlock_orig = 1; 444 445 btrfs_assert_tree_locked(buf); 446 447 WARN_ON(root->ref_cows && trans->transid != 448 root->fs_info->running_transaction->transid); 449 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 450 451 level = btrfs_header_level(buf); 452 453 if (level == 0) 454 btrfs_item_key(buf, &disk_key, 0); 455 else 456 btrfs_node_key(buf, &disk_key, 0); 457 458 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 459 if (parent) 460 parent_start = parent->start; 461 else 462 parent_start = 0; 463 } else 464 parent_start = 0; 465 466 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 467 root->root_key.objectid, &disk_key, 468 level, search_start, empty_size, 1); 469 if (IS_ERR(cow)) 470 return PTR_ERR(cow); 471 472 /* cow is set to blocking by btrfs_init_new_buffer */ 473 474 copy_extent_buffer(cow, buf, 0, 0, cow->len); 475 btrfs_set_header_bytenr(cow, cow->start); 476 btrfs_set_header_generation(cow, trans->transid); 477 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 478 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 479 BTRFS_HEADER_FLAG_RELOC); 480 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 481 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 482 else 483 btrfs_set_header_owner(cow, root->root_key.objectid); 484 485 write_extent_buffer(cow, root->fs_info->fsid, 486 (unsigned long)btrfs_header_fsid(cow), 487 BTRFS_FSID_SIZE); 488 489 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 490 if (ret) { 491 btrfs_abort_transaction(trans, root, ret); 492 return ret; 493 } 494 495 if (root->ref_cows) 496 btrfs_reloc_cow_block(trans, root, buf, cow); 497 498 if (buf == root->node) { 499 WARN_ON(parent && parent != buf); 500 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 501 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 502 parent_start = buf->start; 503 else 504 parent_start = 0; 505 506 extent_buffer_get(cow); 507 rcu_assign_pointer(root->node, cow); 508 509 btrfs_free_tree_block(trans, root, buf, parent_start, 510 last_ref, 1); 511 free_extent_buffer(buf); 512 add_root_to_dirty_list(root); 513 } else { 514 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 515 parent_start = parent->start; 516 else 517 parent_start = 0; 518 519 WARN_ON(trans->transid != btrfs_header_generation(parent)); 520 btrfs_set_node_blockptr(parent, parent_slot, 521 cow->start); 522 btrfs_set_node_ptr_generation(parent, parent_slot, 523 trans->transid); 524 btrfs_mark_buffer_dirty(parent); 525 btrfs_free_tree_block(trans, root, buf, parent_start, 526 last_ref, 1); 527 } 528 if (unlock_orig) 529 btrfs_tree_unlock(buf); 530 free_extent_buffer_stale(buf); 531 btrfs_mark_buffer_dirty(cow); 532 *cow_ret = cow; 533 return 0; 534 } 535 536 static inline int should_cow_block(struct btrfs_trans_handle *trans, 537 struct btrfs_root *root, 538 struct extent_buffer *buf) 539 { 540 /* ensure we can see the force_cow */ 541 smp_rmb(); 542 543 /* 544 * We do not need to cow a block if 545 * 1) this block is not created or changed in this transaction; 546 * 2) this block does not belong to TREE_RELOC tree; 547 * 3) the root is not forced COW. 548 * 549 * What is forced COW: 550 * when we create snapshot during commiting the transaction, 551 * after we've finished coping src root, we must COW the shared 552 * block to ensure the metadata consistency. 553 */ 554 if (btrfs_header_generation(buf) == trans->transid && 555 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 556 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 557 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 558 !root->force_cow) 559 return 0; 560 return 1; 561 } 562 563 /* 564 * cows a single block, see __btrfs_cow_block for the real work. 565 * This version of it has extra checks so that a block isn't cow'd more than 566 * once per transaction, as long as it hasn't been written yet 567 */ 568 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 569 struct btrfs_root *root, struct extent_buffer *buf, 570 struct extent_buffer *parent, int parent_slot, 571 struct extent_buffer **cow_ret) 572 { 573 u64 search_start; 574 int ret; 575 576 if (trans->transaction != root->fs_info->running_transaction) { 577 printk(KERN_CRIT "trans %llu running %llu\n", 578 (unsigned long long)trans->transid, 579 (unsigned long long) 580 root->fs_info->running_transaction->transid); 581 WARN_ON(1); 582 } 583 if (trans->transid != root->fs_info->generation) { 584 printk(KERN_CRIT "trans %llu running %llu\n", 585 (unsigned long long)trans->transid, 586 (unsigned long long)root->fs_info->generation); 587 WARN_ON(1); 588 } 589 590 if (!should_cow_block(trans, root, buf)) { 591 *cow_ret = buf; 592 return 0; 593 } 594 595 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 596 597 if (parent) 598 btrfs_set_lock_blocking(parent); 599 btrfs_set_lock_blocking(buf); 600 601 ret = __btrfs_cow_block(trans, root, buf, parent, 602 parent_slot, cow_ret, search_start, 0); 603 604 trace_btrfs_cow_block(root, buf, *cow_ret); 605 606 return ret; 607 } 608 609 /* 610 * helper function for defrag to decide if two blocks pointed to by a 611 * node are actually close by 612 */ 613 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 614 { 615 if (blocknr < other && other - (blocknr + blocksize) < 32768) 616 return 1; 617 if (blocknr > other && blocknr - (other + blocksize) < 32768) 618 return 1; 619 return 0; 620 } 621 622 /* 623 * compare two keys in a memcmp fashion 624 */ 625 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 626 { 627 struct btrfs_key k1; 628 629 btrfs_disk_key_to_cpu(&k1, disk); 630 631 return btrfs_comp_cpu_keys(&k1, k2); 632 } 633 634 /* 635 * same as comp_keys only with two btrfs_key's 636 */ 637 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 638 { 639 if (k1->objectid > k2->objectid) 640 return 1; 641 if (k1->objectid < k2->objectid) 642 return -1; 643 if (k1->type > k2->type) 644 return 1; 645 if (k1->type < k2->type) 646 return -1; 647 if (k1->offset > k2->offset) 648 return 1; 649 if (k1->offset < k2->offset) 650 return -1; 651 return 0; 652 } 653 654 /* 655 * this is used by the defrag code to go through all the 656 * leaves pointed to by a node and reallocate them so that 657 * disk order is close to key order 658 */ 659 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 660 struct btrfs_root *root, struct extent_buffer *parent, 661 int start_slot, int cache_only, u64 *last_ret, 662 struct btrfs_key *progress) 663 { 664 struct extent_buffer *cur; 665 u64 blocknr; 666 u64 gen; 667 u64 search_start = *last_ret; 668 u64 last_block = 0; 669 u64 other; 670 u32 parent_nritems; 671 int end_slot; 672 int i; 673 int err = 0; 674 int parent_level; 675 int uptodate; 676 u32 blocksize; 677 int progress_passed = 0; 678 struct btrfs_disk_key disk_key; 679 680 parent_level = btrfs_header_level(parent); 681 if (cache_only && parent_level != 1) 682 return 0; 683 684 if (trans->transaction != root->fs_info->running_transaction) 685 WARN_ON(1); 686 if (trans->transid != root->fs_info->generation) 687 WARN_ON(1); 688 689 parent_nritems = btrfs_header_nritems(parent); 690 blocksize = btrfs_level_size(root, parent_level - 1); 691 end_slot = parent_nritems; 692 693 if (parent_nritems == 1) 694 return 0; 695 696 btrfs_set_lock_blocking(parent); 697 698 for (i = start_slot; i < end_slot; i++) { 699 int close = 1; 700 701 btrfs_node_key(parent, &disk_key, i); 702 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 703 continue; 704 705 progress_passed = 1; 706 blocknr = btrfs_node_blockptr(parent, i); 707 gen = btrfs_node_ptr_generation(parent, i); 708 if (last_block == 0) 709 last_block = blocknr; 710 711 if (i > 0) { 712 other = btrfs_node_blockptr(parent, i - 1); 713 close = close_blocks(blocknr, other, blocksize); 714 } 715 if (!close && i < end_slot - 2) { 716 other = btrfs_node_blockptr(parent, i + 1); 717 close = close_blocks(blocknr, other, blocksize); 718 } 719 if (close) { 720 last_block = blocknr; 721 continue; 722 } 723 724 cur = btrfs_find_tree_block(root, blocknr, blocksize); 725 if (cur) 726 uptodate = btrfs_buffer_uptodate(cur, gen); 727 else 728 uptodate = 0; 729 if (!cur || !uptodate) { 730 if (cache_only) { 731 free_extent_buffer(cur); 732 continue; 733 } 734 if (!cur) { 735 cur = read_tree_block(root, blocknr, 736 blocksize, gen); 737 if (!cur) 738 return -EIO; 739 } else if (!uptodate) { 740 btrfs_read_buffer(cur, gen); 741 } 742 } 743 if (search_start == 0) 744 search_start = last_block; 745 746 btrfs_tree_lock(cur); 747 btrfs_set_lock_blocking(cur); 748 err = __btrfs_cow_block(trans, root, cur, parent, i, 749 &cur, search_start, 750 min(16 * blocksize, 751 (end_slot - i) * blocksize)); 752 if (err) { 753 btrfs_tree_unlock(cur); 754 free_extent_buffer(cur); 755 break; 756 } 757 search_start = cur->start; 758 last_block = cur->start; 759 *last_ret = search_start; 760 btrfs_tree_unlock(cur); 761 free_extent_buffer(cur); 762 } 763 return err; 764 } 765 766 /* 767 * The leaf data grows from end-to-front in the node. 768 * this returns the address of the start of the last item, 769 * which is the stop of the leaf data stack 770 */ 771 static inline unsigned int leaf_data_end(struct btrfs_root *root, 772 struct extent_buffer *leaf) 773 { 774 u32 nr = btrfs_header_nritems(leaf); 775 if (nr == 0) 776 return BTRFS_LEAF_DATA_SIZE(root); 777 return btrfs_item_offset_nr(leaf, nr - 1); 778 } 779 780 781 /* 782 * search for key in the extent_buffer. The items start at offset p, 783 * and they are item_size apart. There are 'max' items in p. 784 * 785 * the slot in the array is returned via slot, and it points to 786 * the place where you would insert key if it is not found in 787 * the array. 788 * 789 * slot may point to max if the key is bigger than all of the keys 790 */ 791 static noinline int generic_bin_search(struct extent_buffer *eb, 792 unsigned long p, 793 int item_size, struct btrfs_key *key, 794 int max, int *slot) 795 { 796 int low = 0; 797 int high = max; 798 int mid; 799 int ret; 800 struct btrfs_disk_key *tmp = NULL; 801 struct btrfs_disk_key unaligned; 802 unsigned long offset; 803 char *kaddr = NULL; 804 unsigned long map_start = 0; 805 unsigned long map_len = 0; 806 int err; 807 808 while (low < high) { 809 mid = (low + high) / 2; 810 offset = p + mid * item_size; 811 812 if (!kaddr || offset < map_start || 813 (offset + sizeof(struct btrfs_disk_key)) > 814 map_start + map_len) { 815 816 err = map_private_extent_buffer(eb, offset, 817 sizeof(struct btrfs_disk_key), 818 &kaddr, &map_start, &map_len); 819 820 if (!err) { 821 tmp = (struct btrfs_disk_key *)(kaddr + offset - 822 map_start); 823 } else { 824 read_extent_buffer(eb, &unaligned, 825 offset, sizeof(unaligned)); 826 tmp = &unaligned; 827 } 828 829 } else { 830 tmp = (struct btrfs_disk_key *)(kaddr + offset - 831 map_start); 832 } 833 ret = comp_keys(tmp, key); 834 835 if (ret < 0) 836 low = mid + 1; 837 else if (ret > 0) 838 high = mid; 839 else { 840 *slot = mid; 841 return 0; 842 } 843 } 844 *slot = low; 845 return 1; 846 } 847 848 /* 849 * simple bin_search frontend that does the right thing for 850 * leaves vs nodes 851 */ 852 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 853 int level, int *slot) 854 { 855 if (level == 0) { 856 return generic_bin_search(eb, 857 offsetof(struct btrfs_leaf, items), 858 sizeof(struct btrfs_item), 859 key, btrfs_header_nritems(eb), 860 slot); 861 } else { 862 return generic_bin_search(eb, 863 offsetof(struct btrfs_node, ptrs), 864 sizeof(struct btrfs_key_ptr), 865 key, btrfs_header_nritems(eb), 866 slot); 867 } 868 return -1; 869 } 870 871 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 872 int level, int *slot) 873 { 874 return bin_search(eb, key, level, slot); 875 } 876 877 static void root_add_used(struct btrfs_root *root, u32 size) 878 { 879 spin_lock(&root->accounting_lock); 880 btrfs_set_root_used(&root->root_item, 881 btrfs_root_used(&root->root_item) + size); 882 spin_unlock(&root->accounting_lock); 883 } 884 885 static void root_sub_used(struct btrfs_root *root, u32 size) 886 { 887 spin_lock(&root->accounting_lock); 888 btrfs_set_root_used(&root->root_item, 889 btrfs_root_used(&root->root_item) - size); 890 spin_unlock(&root->accounting_lock); 891 } 892 893 /* given a node and slot number, this reads the blocks it points to. The 894 * extent buffer is returned with a reference taken (but unlocked). 895 * NULL is returned on error. 896 */ 897 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 898 struct extent_buffer *parent, int slot) 899 { 900 int level = btrfs_header_level(parent); 901 if (slot < 0) 902 return NULL; 903 if (slot >= btrfs_header_nritems(parent)) 904 return NULL; 905 906 BUG_ON(level == 0); 907 908 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 909 btrfs_level_size(root, level - 1), 910 btrfs_node_ptr_generation(parent, slot)); 911 } 912 913 /* 914 * node level balancing, used to make sure nodes are in proper order for 915 * item deletion. We balance from the top down, so we have to make sure 916 * that a deletion won't leave an node completely empty later on. 917 */ 918 static noinline int balance_level(struct btrfs_trans_handle *trans, 919 struct btrfs_root *root, 920 struct btrfs_path *path, int level) 921 { 922 struct extent_buffer *right = NULL; 923 struct extent_buffer *mid; 924 struct extent_buffer *left = NULL; 925 struct extent_buffer *parent = NULL; 926 int ret = 0; 927 int wret; 928 int pslot; 929 int orig_slot = path->slots[level]; 930 u64 orig_ptr; 931 932 if (level == 0) 933 return 0; 934 935 mid = path->nodes[level]; 936 937 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 938 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 939 WARN_ON(btrfs_header_generation(mid) != trans->transid); 940 941 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 942 943 if (level < BTRFS_MAX_LEVEL - 1) { 944 parent = path->nodes[level + 1]; 945 pslot = path->slots[level + 1]; 946 } 947 948 /* 949 * deal with the case where there is only one pointer in the root 950 * by promoting the node below to a root 951 */ 952 if (!parent) { 953 struct extent_buffer *child; 954 955 if (btrfs_header_nritems(mid) != 1) 956 return 0; 957 958 /* promote the child to a root */ 959 child = read_node_slot(root, mid, 0); 960 if (!child) { 961 ret = -EROFS; 962 btrfs_std_error(root->fs_info, ret); 963 goto enospc; 964 } 965 966 btrfs_tree_lock(child); 967 btrfs_set_lock_blocking(child); 968 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 969 if (ret) { 970 btrfs_tree_unlock(child); 971 free_extent_buffer(child); 972 goto enospc; 973 } 974 975 rcu_assign_pointer(root->node, child); 976 977 add_root_to_dirty_list(root); 978 btrfs_tree_unlock(child); 979 980 path->locks[level] = 0; 981 path->nodes[level] = NULL; 982 clean_tree_block(trans, root, mid); 983 btrfs_tree_unlock(mid); 984 /* once for the path */ 985 free_extent_buffer(mid); 986 987 root_sub_used(root, mid->len); 988 btrfs_free_tree_block(trans, root, mid, 0, 1, 0); 989 /* once for the root ptr */ 990 free_extent_buffer_stale(mid); 991 return 0; 992 } 993 if (btrfs_header_nritems(mid) > 994 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 995 return 0; 996 997 btrfs_header_nritems(mid); 998 999 left = read_node_slot(root, parent, pslot - 1); 1000 if (left) { 1001 btrfs_tree_lock(left); 1002 btrfs_set_lock_blocking(left); 1003 wret = btrfs_cow_block(trans, root, left, 1004 parent, pslot - 1, &left); 1005 if (wret) { 1006 ret = wret; 1007 goto enospc; 1008 } 1009 } 1010 right = read_node_slot(root, parent, pslot + 1); 1011 if (right) { 1012 btrfs_tree_lock(right); 1013 btrfs_set_lock_blocking(right); 1014 wret = btrfs_cow_block(trans, root, right, 1015 parent, pslot + 1, &right); 1016 if (wret) { 1017 ret = wret; 1018 goto enospc; 1019 } 1020 } 1021 1022 /* first, try to make some room in the middle buffer */ 1023 if (left) { 1024 orig_slot += btrfs_header_nritems(left); 1025 wret = push_node_left(trans, root, left, mid, 1); 1026 if (wret < 0) 1027 ret = wret; 1028 btrfs_header_nritems(mid); 1029 } 1030 1031 /* 1032 * then try to empty the right most buffer into the middle 1033 */ 1034 if (right) { 1035 wret = push_node_left(trans, root, mid, right, 1); 1036 if (wret < 0 && wret != -ENOSPC) 1037 ret = wret; 1038 if (btrfs_header_nritems(right) == 0) { 1039 clean_tree_block(trans, root, right); 1040 btrfs_tree_unlock(right); 1041 del_ptr(trans, root, path, level + 1, pslot + 1); 1042 root_sub_used(root, right->len); 1043 btrfs_free_tree_block(trans, root, right, 0, 1, 0); 1044 free_extent_buffer_stale(right); 1045 right = NULL; 1046 } else { 1047 struct btrfs_disk_key right_key; 1048 btrfs_node_key(right, &right_key, 0); 1049 btrfs_set_node_key(parent, &right_key, pslot + 1); 1050 btrfs_mark_buffer_dirty(parent); 1051 } 1052 } 1053 if (btrfs_header_nritems(mid) == 1) { 1054 /* 1055 * we're not allowed to leave a node with one item in the 1056 * tree during a delete. A deletion from lower in the tree 1057 * could try to delete the only pointer in this node. 1058 * So, pull some keys from the left. 1059 * There has to be a left pointer at this point because 1060 * otherwise we would have pulled some pointers from the 1061 * right 1062 */ 1063 if (!left) { 1064 ret = -EROFS; 1065 btrfs_std_error(root->fs_info, ret); 1066 goto enospc; 1067 } 1068 wret = balance_node_right(trans, root, mid, left); 1069 if (wret < 0) { 1070 ret = wret; 1071 goto enospc; 1072 } 1073 if (wret == 1) { 1074 wret = push_node_left(trans, root, left, mid, 1); 1075 if (wret < 0) 1076 ret = wret; 1077 } 1078 BUG_ON(wret == 1); 1079 } 1080 if (btrfs_header_nritems(mid) == 0) { 1081 clean_tree_block(trans, root, mid); 1082 btrfs_tree_unlock(mid); 1083 del_ptr(trans, root, path, level + 1, pslot); 1084 root_sub_used(root, mid->len); 1085 btrfs_free_tree_block(trans, root, mid, 0, 1, 0); 1086 free_extent_buffer_stale(mid); 1087 mid = NULL; 1088 } else { 1089 /* update the parent key to reflect our changes */ 1090 struct btrfs_disk_key mid_key; 1091 btrfs_node_key(mid, &mid_key, 0); 1092 btrfs_set_node_key(parent, &mid_key, pslot); 1093 btrfs_mark_buffer_dirty(parent); 1094 } 1095 1096 /* update the path */ 1097 if (left) { 1098 if (btrfs_header_nritems(left) > orig_slot) { 1099 extent_buffer_get(left); 1100 /* left was locked after cow */ 1101 path->nodes[level] = left; 1102 path->slots[level + 1] -= 1; 1103 path->slots[level] = orig_slot; 1104 if (mid) { 1105 btrfs_tree_unlock(mid); 1106 free_extent_buffer(mid); 1107 } 1108 } else { 1109 orig_slot -= btrfs_header_nritems(left); 1110 path->slots[level] = orig_slot; 1111 } 1112 } 1113 /* double check we haven't messed things up */ 1114 if (orig_ptr != 1115 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1116 BUG(); 1117 enospc: 1118 if (right) { 1119 btrfs_tree_unlock(right); 1120 free_extent_buffer(right); 1121 } 1122 if (left) { 1123 if (path->nodes[level] != left) 1124 btrfs_tree_unlock(left); 1125 free_extent_buffer(left); 1126 } 1127 return ret; 1128 } 1129 1130 /* Node balancing for insertion. Here we only split or push nodes around 1131 * when they are completely full. This is also done top down, so we 1132 * have to be pessimistic. 1133 */ 1134 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1135 struct btrfs_root *root, 1136 struct btrfs_path *path, int level) 1137 { 1138 struct extent_buffer *right = NULL; 1139 struct extent_buffer *mid; 1140 struct extent_buffer *left = NULL; 1141 struct extent_buffer *parent = NULL; 1142 int ret = 0; 1143 int wret; 1144 int pslot; 1145 int orig_slot = path->slots[level]; 1146 1147 if (level == 0) 1148 return 1; 1149 1150 mid = path->nodes[level]; 1151 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1152 1153 if (level < BTRFS_MAX_LEVEL - 1) { 1154 parent = path->nodes[level + 1]; 1155 pslot = path->slots[level + 1]; 1156 } 1157 1158 if (!parent) 1159 return 1; 1160 1161 left = read_node_slot(root, parent, pslot - 1); 1162 1163 /* first, try to make some room in the middle buffer */ 1164 if (left) { 1165 u32 left_nr; 1166 1167 btrfs_tree_lock(left); 1168 btrfs_set_lock_blocking(left); 1169 1170 left_nr = btrfs_header_nritems(left); 1171 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1172 wret = 1; 1173 } else { 1174 ret = btrfs_cow_block(trans, root, left, parent, 1175 pslot - 1, &left); 1176 if (ret) 1177 wret = 1; 1178 else { 1179 wret = push_node_left(trans, root, 1180 left, mid, 0); 1181 } 1182 } 1183 if (wret < 0) 1184 ret = wret; 1185 if (wret == 0) { 1186 struct btrfs_disk_key disk_key; 1187 orig_slot += left_nr; 1188 btrfs_node_key(mid, &disk_key, 0); 1189 btrfs_set_node_key(parent, &disk_key, pslot); 1190 btrfs_mark_buffer_dirty(parent); 1191 if (btrfs_header_nritems(left) > orig_slot) { 1192 path->nodes[level] = left; 1193 path->slots[level + 1] -= 1; 1194 path->slots[level] = orig_slot; 1195 btrfs_tree_unlock(mid); 1196 free_extent_buffer(mid); 1197 } else { 1198 orig_slot -= 1199 btrfs_header_nritems(left); 1200 path->slots[level] = orig_slot; 1201 btrfs_tree_unlock(left); 1202 free_extent_buffer(left); 1203 } 1204 return 0; 1205 } 1206 btrfs_tree_unlock(left); 1207 free_extent_buffer(left); 1208 } 1209 right = read_node_slot(root, parent, pslot + 1); 1210 1211 /* 1212 * then try to empty the right most buffer into the middle 1213 */ 1214 if (right) { 1215 u32 right_nr; 1216 1217 btrfs_tree_lock(right); 1218 btrfs_set_lock_blocking(right); 1219 1220 right_nr = btrfs_header_nritems(right); 1221 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1222 wret = 1; 1223 } else { 1224 ret = btrfs_cow_block(trans, root, right, 1225 parent, pslot + 1, 1226 &right); 1227 if (ret) 1228 wret = 1; 1229 else { 1230 wret = balance_node_right(trans, root, 1231 right, mid); 1232 } 1233 } 1234 if (wret < 0) 1235 ret = wret; 1236 if (wret == 0) { 1237 struct btrfs_disk_key disk_key; 1238 1239 btrfs_node_key(right, &disk_key, 0); 1240 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1241 btrfs_mark_buffer_dirty(parent); 1242 1243 if (btrfs_header_nritems(mid) <= orig_slot) { 1244 path->nodes[level] = right; 1245 path->slots[level + 1] += 1; 1246 path->slots[level] = orig_slot - 1247 btrfs_header_nritems(mid); 1248 btrfs_tree_unlock(mid); 1249 free_extent_buffer(mid); 1250 } else { 1251 btrfs_tree_unlock(right); 1252 free_extent_buffer(right); 1253 } 1254 return 0; 1255 } 1256 btrfs_tree_unlock(right); 1257 free_extent_buffer(right); 1258 } 1259 return 1; 1260 } 1261 1262 /* 1263 * readahead one full node of leaves, finding things that are close 1264 * to the block in 'slot', and triggering ra on them. 1265 */ 1266 static void reada_for_search(struct btrfs_root *root, 1267 struct btrfs_path *path, 1268 int level, int slot, u64 objectid) 1269 { 1270 struct extent_buffer *node; 1271 struct btrfs_disk_key disk_key; 1272 u32 nritems; 1273 u64 search; 1274 u64 target; 1275 u64 nread = 0; 1276 u64 gen; 1277 int direction = path->reada; 1278 struct extent_buffer *eb; 1279 u32 nr; 1280 u32 blocksize; 1281 u32 nscan = 0; 1282 1283 if (level != 1) 1284 return; 1285 1286 if (!path->nodes[level]) 1287 return; 1288 1289 node = path->nodes[level]; 1290 1291 search = btrfs_node_blockptr(node, slot); 1292 blocksize = btrfs_level_size(root, level - 1); 1293 eb = btrfs_find_tree_block(root, search, blocksize); 1294 if (eb) { 1295 free_extent_buffer(eb); 1296 return; 1297 } 1298 1299 target = search; 1300 1301 nritems = btrfs_header_nritems(node); 1302 nr = slot; 1303 1304 while (1) { 1305 if (direction < 0) { 1306 if (nr == 0) 1307 break; 1308 nr--; 1309 } else if (direction > 0) { 1310 nr++; 1311 if (nr >= nritems) 1312 break; 1313 } 1314 if (path->reada < 0 && objectid) { 1315 btrfs_node_key(node, &disk_key, nr); 1316 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1317 break; 1318 } 1319 search = btrfs_node_blockptr(node, nr); 1320 if ((search <= target && target - search <= 65536) || 1321 (search > target && search - target <= 65536)) { 1322 gen = btrfs_node_ptr_generation(node, nr); 1323 readahead_tree_block(root, search, blocksize, gen); 1324 nread += blocksize; 1325 } 1326 nscan++; 1327 if ((nread > 65536 || nscan > 32)) 1328 break; 1329 } 1330 } 1331 1332 /* 1333 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1334 * cache 1335 */ 1336 static noinline int reada_for_balance(struct btrfs_root *root, 1337 struct btrfs_path *path, int level) 1338 { 1339 int slot; 1340 int nritems; 1341 struct extent_buffer *parent; 1342 struct extent_buffer *eb; 1343 u64 gen; 1344 u64 block1 = 0; 1345 u64 block2 = 0; 1346 int ret = 0; 1347 int blocksize; 1348 1349 parent = path->nodes[level + 1]; 1350 if (!parent) 1351 return 0; 1352 1353 nritems = btrfs_header_nritems(parent); 1354 slot = path->slots[level + 1]; 1355 blocksize = btrfs_level_size(root, level); 1356 1357 if (slot > 0) { 1358 block1 = btrfs_node_blockptr(parent, slot - 1); 1359 gen = btrfs_node_ptr_generation(parent, slot - 1); 1360 eb = btrfs_find_tree_block(root, block1, blocksize); 1361 if (eb && btrfs_buffer_uptodate(eb, gen)) 1362 block1 = 0; 1363 free_extent_buffer(eb); 1364 } 1365 if (slot + 1 < nritems) { 1366 block2 = btrfs_node_blockptr(parent, slot + 1); 1367 gen = btrfs_node_ptr_generation(parent, slot + 1); 1368 eb = btrfs_find_tree_block(root, block2, blocksize); 1369 if (eb && btrfs_buffer_uptodate(eb, gen)) 1370 block2 = 0; 1371 free_extent_buffer(eb); 1372 } 1373 if (block1 || block2) { 1374 ret = -EAGAIN; 1375 1376 /* release the whole path */ 1377 btrfs_release_path(path); 1378 1379 /* read the blocks */ 1380 if (block1) 1381 readahead_tree_block(root, block1, blocksize, 0); 1382 if (block2) 1383 readahead_tree_block(root, block2, blocksize, 0); 1384 1385 if (block1) { 1386 eb = read_tree_block(root, block1, blocksize, 0); 1387 free_extent_buffer(eb); 1388 } 1389 if (block2) { 1390 eb = read_tree_block(root, block2, blocksize, 0); 1391 free_extent_buffer(eb); 1392 } 1393 } 1394 return ret; 1395 } 1396 1397 1398 /* 1399 * when we walk down the tree, it is usually safe to unlock the higher layers 1400 * in the tree. The exceptions are when our path goes through slot 0, because 1401 * operations on the tree might require changing key pointers higher up in the 1402 * tree. 1403 * 1404 * callers might also have set path->keep_locks, which tells this code to keep 1405 * the lock if the path points to the last slot in the block. This is part of 1406 * walking through the tree, and selecting the next slot in the higher block. 1407 * 1408 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1409 * if lowest_unlock is 1, level 0 won't be unlocked 1410 */ 1411 static noinline void unlock_up(struct btrfs_path *path, int level, 1412 int lowest_unlock, int min_write_lock_level, 1413 int *write_lock_level) 1414 { 1415 int i; 1416 int skip_level = level; 1417 int no_skips = 0; 1418 struct extent_buffer *t; 1419 1420 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1421 if (!path->nodes[i]) 1422 break; 1423 if (!path->locks[i]) 1424 break; 1425 if (!no_skips && path->slots[i] == 0) { 1426 skip_level = i + 1; 1427 continue; 1428 } 1429 if (!no_skips && path->keep_locks) { 1430 u32 nritems; 1431 t = path->nodes[i]; 1432 nritems = btrfs_header_nritems(t); 1433 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1434 skip_level = i + 1; 1435 continue; 1436 } 1437 } 1438 if (skip_level < i && i >= lowest_unlock) 1439 no_skips = 1; 1440 1441 t = path->nodes[i]; 1442 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 1443 btrfs_tree_unlock_rw(t, path->locks[i]); 1444 path->locks[i] = 0; 1445 if (write_lock_level && 1446 i > min_write_lock_level && 1447 i <= *write_lock_level) { 1448 *write_lock_level = i - 1; 1449 } 1450 } 1451 } 1452 } 1453 1454 /* 1455 * This releases any locks held in the path starting at level and 1456 * going all the way up to the root. 1457 * 1458 * btrfs_search_slot will keep the lock held on higher nodes in a few 1459 * corner cases, such as COW of the block at slot zero in the node. This 1460 * ignores those rules, and it should only be called when there are no 1461 * more updates to be done higher up in the tree. 1462 */ 1463 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 1464 { 1465 int i; 1466 1467 if (path->keep_locks) 1468 return; 1469 1470 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1471 if (!path->nodes[i]) 1472 continue; 1473 if (!path->locks[i]) 1474 continue; 1475 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 1476 path->locks[i] = 0; 1477 } 1478 } 1479 1480 /* 1481 * helper function for btrfs_search_slot. The goal is to find a block 1482 * in cache without setting the path to blocking. If we find the block 1483 * we return zero and the path is unchanged. 1484 * 1485 * If we can't find the block, we set the path blocking and do some 1486 * reada. -EAGAIN is returned and the search must be repeated. 1487 */ 1488 static int 1489 read_block_for_search(struct btrfs_trans_handle *trans, 1490 struct btrfs_root *root, struct btrfs_path *p, 1491 struct extent_buffer **eb_ret, int level, int slot, 1492 struct btrfs_key *key) 1493 { 1494 u64 blocknr; 1495 u64 gen; 1496 u32 blocksize; 1497 struct extent_buffer *b = *eb_ret; 1498 struct extent_buffer *tmp; 1499 int ret; 1500 1501 blocknr = btrfs_node_blockptr(b, slot); 1502 gen = btrfs_node_ptr_generation(b, slot); 1503 blocksize = btrfs_level_size(root, level - 1); 1504 1505 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 1506 if (tmp) { 1507 if (btrfs_buffer_uptodate(tmp, 0)) { 1508 if (btrfs_buffer_uptodate(tmp, gen)) { 1509 /* 1510 * we found an up to date block without 1511 * sleeping, return 1512 * right away 1513 */ 1514 *eb_ret = tmp; 1515 return 0; 1516 } 1517 /* the pages were up to date, but we failed 1518 * the generation number check. Do a full 1519 * read for the generation number that is correct. 1520 * We must do this without dropping locks so 1521 * we can trust our generation number 1522 */ 1523 free_extent_buffer(tmp); 1524 btrfs_set_path_blocking(p); 1525 1526 tmp = read_tree_block(root, blocknr, blocksize, gen); 1527 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 1528 *eb_ret = tmp; 1529 return 0; 1530 } 1531 free_extent_buffer(tmp); 1532 btrfs_release_path(p); 1533 return -EIO; 1534 } 1535 } 1536 1537 /* 1538 * reduce lock contention at high levels 1539 * of the btree by dropping locks before 1540 * we read. Don't release the lock on the current 1541 * level because we need to walk this node to figure 1542 * out which blocks to read. 1543 */ 1544 btrfs_unlock_up_safe(p, level + 1); 1545 btrfs_set_path_blocking(p); 1546 1547 free_extent_buffer(tmp); 1548 if (p->reada) 1549 reada_for_search(root, p, level, slot, key->objectid); 1550 1551 btrfs_release_path(p); 1552 1553 ret = -EAGAIN; 1554 tmp = read_tree_block(root, blocknr, blocksize, 0); 1555 if (tmp) { 1556 /* 1557 * If the read above didn't mark this buffer up to date, 1558 * it will never end up being up to date. Set ret to EIO now 1559 * and give up so that our caller doesn't loop forever 1560 * on our EAGAINs. 1561 */ 1562 if (!btrfs_buffer_uptodate(tmp, 0)) 1563 ret = -EIO; 1564 free_extent_buffer(tmp); 1565 } 1566 return ret; 1567 } 1568 1569 /* 1570 * helper function for btrfs_search_slot. This does all of the checks 1571 * for node-level blocks and does any balancing required based on 1572 * the ins_len. 1573 * 1574 * If no extra work was required, zero is returned. If we had to 1575 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1576 * start over 1577 */ 1578 static int 1579 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1580 struct btrfs_root *root, struct btrfs_path *p, 1581 struct extent_buffer *b, int level, int ins_len, 1582 int *write_lock_level) 1583 { 1584 int ret; 1585 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1586 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 1587 int sret; 1588 1589 if (*write_lock_level < level + 1) { 1590 *write_lock_level = level + 1; 1591 btrfs_release_path(p); 1592 goto again; 1593 } 1594 1595 sret = reada_for_balance(root, p, level); 1596 if (sret) 1597 goto again; 1598 1599 btrfs_set_path_blocking(p); 1600 sret = split_node(trans, root, p, level); 1601 btrfs_clear_path_blocking(p, NULL, 0); 1602 1603 BUG_ON(sret > 0); 1604 if (sret) { 1605 ret = sret; 1606 goto done; 1607 } 1608 b = p->nodes[level]; 1609 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1610 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 1611 int sret; 1612 1613 if (*write_lock_level < level + 1) { 1614 *write_lock_level = level + 1; 1615 btrfs_release_path(p); 1616 goto again; 1617 } 1618 1619 sret = reada_for_balance(root, p, level); 1620 if (sret) 1621 goto again; 1622 1623 btrfs_set_path_blocking(p); 1624 sret = balance_level(trans, root, p, level); 1625 btrfs_clear_path_blocking(p, NULL, 0); 1626 1627 if (sret) { 1628 ret = sret; 1629 goto done; 1630 } 1631 b = p->nodes[level]; 1632 if (!b) { 1633 btrfs_release_path(p); 1634 goto again; 1635 } 1636 BUG_ON(btrfs_header_nritems(b) == 1); 1637 } 1638 return 0; 1639 1640 again: 1641 ret = -EAGAIN; 1642 done: 1643 return ret; 1644 } 1645 1646 /* 1647 * look for key in the tree. path is filled in with nodes along the way 1648 * if key is found, we return zero and you can find the item in the leaf 1649 * level of the path (level 0) 1650 * 1651 * If the key isn't found, the path points to the slot where it should 1652 * be inserted, and 1 is returned. If there are other errors during the 1653 * search a negative error number is returned. 1654 * 1655 * if ins_len > 0, nodes and leaves will be split as we walk down the 1656 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 1657 * possible) 1658 */ 1659 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 1660 *root, struct btrfs_key *key, struct btrfs_path *p, int 1661 ins_len, int cow) 1662 { 1663 struct extent_buffer *b; 1664 int slot; 1665 int ret; 1666 int err; 1667 int level; 1668 int lowest_unlock = 1; 1669 int root_lock; 1670 /* everything at write_lock_level or lower must be write locked */ 1671 int write_lock_level = 0; 1672 u8 lowest_level = 0; 1673 int min_write_lock_level; 1674 1675 lowest_level = p->lowest_level; 1676 WARN_ON(lowest_level && ins_len > 0); 1677 WARN_ON(p->nodes[0] != NULL); 1678 1679 if (ins_len < 0) { 1680 lowest_unlock = 2; 1681 1682 /* when we are removing items, we might have to go up to level 1683 * two as we update tree pointers Make sure we keep write 1684 * for those levels as well 1685 */ 1686 write_lock_level = 2; 1687 } else if (ins_len > 0) { 1688 /* 1689 * for inserting items, make sure we have a write lock on 1690 * level 1 so we can update keys 1691 */ 1692 write_lock_level = 1; 1693 } 1694 1695 if (!cow) 1696 write_lock_level = -1; 1697 1698 if (cow && (p->keep_locks || p->lowest_level)) 1699 write_lock_level = BTRFS_MAX_LEVEL; 1700 1701 min_write_lock_level = write_lock_level; 1702 1703 again: 1704 /* 1705 * we try very hard to do read locks on the root 1706 */ 1707 root_lock = BTRFS_READ_LOCK; 1708 level = 0; 1709 if (p->search_commit_root) { 1710 /* 1711 * the commit roots are read only 1712 * so we always do read locks 1713 */ 1714 b = root->commit_root; 1715 extent_buffer_get(b); 1716 level = btrfs_header_level(b); 1717 if (!p->skip_locking) 1718 btrfs_tree_read_lock(b); 1719 } else { 1720 if (p->skip_locking) { 1721 b = btrfs_root_node(root); 1722 level = btrfs_header_level(b); 1723 } else { 1724 /* we don't know the level of the root node 1725 * until we actually have it read locked 1726 */ 1727 b = btrfs_read_lock_root_node(root); 1728 level = btrfs_header_level(b); 1729 if (level <= write_lock_level) { 1730 /* whoops, must trade for write lock */ 1731 btrfs_tree_read_unlock(b); 1732 free_extent_buffer(b); 1733 b = btrfs_lock_root_node(root); 1734 root_lock = BTRFS_WRITE_LOCK; 1735 1736 /* the level might have changed, check again */ 1737 level = btrfs_header_level(b); 1738 } 1739 } 1740 } 1741 p->nodes[level] = b; 1742 if (!p->skip_locking) 1743 p->locks[level] = root_lock; 1744 1745 while (b) { 1746 level = btrfs_header_level(b); 1747 1748 /* 1749 * setup the path here so we can release it under lock 1750 * contention with the cow code 1751 */ 1752 if (cow) { 1753 /* 1754 * if we don't really need to cow this block 1755 * then we don't want to set the path blocking, 1756 * so we test it here 1757 */ 1758 if (!should_cow_block(trans, root, b)) 1759 goto cow_done; 1760 1761 btrfs_set_path_blocking(p); 1762 1763 /* 1764 * must have write locks on this node and the 1765 * parent 1766 */ 1767 if (level + 1 > write_lock_level) { 1768 write_lock_level = level + 1; 1769 btrfs_release_path(p); 1770 goto again; 1771 } 1772 1773 err = btrfs_cow_block(trans, root, b, 1774 p->nodes[level + 1], 1775 p->slots[level + 1], &b); 1776 if (err) { 1777 ret = err; 1778 goto done; 1779 } 1780 } 1781 cow_done: 1782 BUG_ON(!cow && ins_len); 1783 1784 p->nodes[level] = b; 1785 btrfs_clear_path_blocking(p, NULL, 0); 1786 1787 /* 1788 * we have a lock on b and as long as we aren't changing 1789 * the tree, there is no way to for the items in b to change. 1790 * It is safe to drop the lock on our parent before we 1791 * go through the expensive btree search on b. 1792 * 1793 * If cow is true, then we might be changing slot zero, 1794 * which may require changing the parent. So, we can't 1795 * drop the lock until after we know which slot we're 1796 * operating on. 1797 */ 1798 if (!cow) 1799 btrfs_unlock_up_safe(p, level + 1); 1800 1801 ret = bin_search(b, key, level, &slot); 1802 1803 if (level != 0) { 1804 int dec = 0; 1805 if (ret && slot > 0) { 1806 dec = 1; 1807 slot -= 1; 1808 } 1809 p->slots[level] = slot; 1810 err = setup_nodes_for_search(trans, root, p, b, level, 1811 ins_len, &write_lock_level); 1812 if (err == -EAGAIN) 1813 goto again; 1814 if (err) { 1815 ret = err; 1816 goto done; 1817 } 1818 b = p->nodes[level]; 1819 slot = p->slots[level]; 1820 1821 /* 1822 * slot 0 is special, if we change the key 1823 * we have to update the parent pointer 1824 * which means we must have a write lock 1825 * on the parent 1826 */ 1827 if (slot == 0 && cow && 1828 write_lock_level < level + 1) { 1829 write_lock_level = level + 1; 1830 btrfs_release_path(p); 1831 goto again; 1832 } 1833 1834 unlock_up(p, level, lowest_unlock, 1835 min_write_lock_level, &write_lock_level); 1836 1837 if (level == lowest_level) { 1838 if (dec) 1839 p->slots[level]++; 1840 goto done; 1841 } 1842 1843 err = read_block_for_search(trans, root, p, 1844 &b, level, slot, key); 1845 if (err == -EAGAIN) 1846 goto again; 1847 if (err) { 1848 ret = err; 1849 goto done; 1850 } 1851 1852 if (!p->skip_locking) { 1853 level = btrfs_header_level(b); 1854 if (level <= write_lock_level) { 1855 err = btrfs_try_tree_write_lock(b); 1856 if (!err) { 1857 btrfs_set_path_blocking(p); 1858 btrfs_tree_lock(b); 1859 btrfs_clear_path_blocking(p, b, 1860 BTRFS_WRITE_LOCK); 1861 } 1862 p->locks[level] = BTRFS_WRITE_LOCK; 1863 } else { 1864 err = btrfs_try_tree_read_lock(b); 1865 if (!err) { 1866 btrfs_set_path_blocking(p); 1867 btrfs_tree_read_lock(b); 1868 btrfs_clear_path_blocking(p, b, 1869 BTRFS_READ_LOCK); 1870 } 1871 p->locks[level] = BTRFS_READ_LOCK; 1872 } 1873 p->nodes[level] = b; 1874 } 1875 } else { 1876 p->slots[level] = slot; 1877 if (ins_len > 0 && 1878 btrfs_leaf_free_space(root, b) < ins_len) { 1879 if (write_lock_level < 1) { 1880 write_lock_level = 1; 1881 btrfs_release_path(p); 1882 goto again; 1883 } 1884 1885 btrfs_set_path_blocking(p); 1886 err = split_leaf(trans, root, key, 1887 p, ins_len, ret == 0); 1888 btrfs_clear_path_blocking(p, NULL, 0); 1889 1890 BUG_ON(err > 0); 1891 if (err) { 1892 ret = err; 1893 goto done; 1894 } 1895 } 1896 if (!p->search_for_split) 1897 unlock_up(p, level, lowest_unlock, 1898 min_write_lock_level, &write_lock_level); 1899 goto done; 1900 } 1901 } 1902 ret = 1; 1903 done: 1904 /* 1905 * we don't really know what they plan on doing with the path 1906 * from here on, so for now just mark it as blocking 1907 */ 1908 if (!p->leave_spinning) 1909 btrfs_set_path_blocking(p); 1910 if (ret < 0) 1911 btrfs_release_path(p); 1912 return ret; 1913 } 1914 1915 /* 1916 * adjust the pointers going up the tree, starting at level 1917 * making sure the right key of each node is points to 'key'. 1918 * This is used after shifting pointers to the left, so it stops 1919 * fixing up pointers when a given leaf/node is not in slot 0 of the 1920 * higher levels 1921 * 1922 */ 1923 static void fixup_low_keys(struct btrfs_trans_handle *trans, 1924 struct btrfs_root *root, struct btrfs_path *path, 1925 struct btrfs_disk_key *key, int level) 1926 { 1927 int i; 1928 struct extent_buffer *t; 1929 1930 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1931 int tslot = path->slots[i]; 1932 if (!path->nodes[i]) 1933 break; 1934 t = path->nodes[i]; 1935 btrfs_set_node_key(t, key, tslot); 1936 btrfs_mark_buffer_dirty(path->nodes[i]); 1937 if (tslot != 0) 1938 break; 1939 } 1940 } 1941 1942 /* 1943 * update item key. 1944 * 1945 * This function isn't completely safe. It's the caller's responsibility 1946 * that the new key won't break the order 1947 */ 1948 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 1949 struct btrfs_root *root, struct btrfs_path *path, 1950 struct btrfs_key *new_key) 1951 { 1952 struct btrfs_disk_key disk_key; 1953 struct extent_buffer *eb; 1954 int slot; 1955 1956 eb = path->nodes[0]; 1957 slot = path->slots[0]; 1958 if (slot > 0) { 1959 btrfs_item_key(eb, &disk_key, slot - 1); 1960 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 1961 } 1962 if (slot < btrfs_header_nritems(eb) - 1) { 1963 btrfs_item_key(eb, &disk_key, slot + 1); 1964 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 1965 } 1966 1967 btrfs_cpu_key_to_disk(&disk_key, new_key); 1968 btrfs_set_item_key(eb, &disk_key, slot); 1969 btrfs_mark_buffer_dirty(eb); 1970 if (slot == 0) 1971 fixup_low_keys(trans, root, path, &disk_key, 1); 1972 } 1973 1974 /* 1975 * try to push data from one node into the next node left in the 1976 * tree. 1977 * 1978 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 1979 * error, and > 0 if there was no room in the left hand block. 1980 */ 1981 static int push_node_left(struct btrfs_trans_handle *trans, 1982 struct btrfs_root *root, struct extent_buffer *dst, 1983 struct extent_buffer *src, int empty) 1984 { 1985 int push_items = 0; 1986 int src_nritems; 1987 int dst_nritems; 1988 int ret = 0; 1989 1990 src_nritems = btrfs_header_nritems(src); 1991 dst_nritems = btrfs_header_nritems(dst); 1992 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 1993 WARN_ON(btrfs_header_generation(src) != trans->transid); 1994 WARN_ON(btrfs_header_generation(dst) != trans->transid); 1995 1996 if (!empty && src_nritems <= 8) 1997 return 1; 1998 1999 if (push_items <= 0) 2000 return 1; 2001 2002 if (empty) { 2003 push_items = min(src_nritems, push_items); 2004 if (push_items < src_nritems) { 2005 /* leave at least 8 pointers in the node if 2006 * we aren't going to empty it 2007 */ 2008 if (src_nritems - push_items < 8) { 2009 if (push_items <= 8) 2010 return 1; 2011 push_items -= 8; 2012 } 2013 } 2014 } else 2015 push_items = min(src_nritems - 8, push_items); 2016 2017 copy_extent_buffer(dst, src, 2018 btrfs_node_key_ptr_offset(dst_nritems), 2019 btrfs_node_key_ptr_offset(0), 2020 push_items * sizeof(struct btrfs_key_ptr)); 2021 2022 if (push_items < src_nritems) { 2023 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2024 btrfs_node_key_ptr_offset(push_items), 2025 (src_nritems - push_items) * 2026 sizeof(struct btrfs_key_ptr)); 2027 } 2028 btrfs_set_header_nritems(src, src_nritems - push_items); 2029 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2030 btrfs_mark_buffer_dirty(src); 2031 btrfs_mark_buffer_dirty(dst); 2032 2033 return ret; 2034 } 2035 2036 /* 2037 * try to push data from one node into the next node right in the 2038 * tree. 2039 * 2040 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2041 * error, and > 0 if there was no room in the right hand block. 2042 * 2043 * this will only push up to 1/2 the contents of the left node over 2044 */ 2045 static int balance_node_right(struct btrfs_trans_handle *trans, 2046 struct btrfs_root *root, 2047 struct extent_buffer *dst, 2048 struct extent_buffer *src) 2049 { 2050 int push_items = 0; 2051 int max_push; 2052 int src_nritems; 2053 int dst_nritems; 2054 int ret = 0; 2055 2056 WARN_ON(btrfs_header_generation(src) != trans->transid); 2057 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2058 2059 src_nritems = btrfs_header_nritems(src); 2060 dst_nritems = btrfs_header_nritems(dst); 2061 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2062 if (push_items <= 0) 2063 return 1; 2064 2065 if (src_nritems < 4) 2066 return 1; 2067 2068 max_push = src_nritems / 2 + 1; 2069 /* don't try to empty the node */ 2070 if (max_push >= src_nritems) 2071 return 1; 2072 2073 if (max_push < push_items) 2074 push_items = max_push; 2075 2076 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2077 btrfs_node_key_ptr_offset(0), 2078 (dst_nritems) * 2079 sizeof(struct btrfs_key_ptr)); 2080 2081 copy_extent_buffer(dst, src, 2082 btrfs_node_key_ptr_offset(0), 2083 btrfs_node_key_ptr_offset(src_nritems - push_items), 2084 push_items * sizeof(struct btrfs_key_ptr)); 2085 2086 btrfs_set_header_nritems(src, src_nritems - push_items); 2087 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2088 2089 btrfs_mark_buffer_dirty(src); 2090 btrfs_mark_buffer_dirty(dst); 2091 2092 return ret; 2093 } 2094 2095 /* 2096 * helper function to insert a new root level in the tree. 2097 * A new node is allocated, and a single item is inserted to 2098 * point to the existing root 2099 * 2100 * returns zero on success or < 0 on failure. 2101 */ 2102 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2103 struct btrfs_root *root, 2104 struct btrfs_path *path, int level) 2105 { 2106 u64 lower_gen; 2107 struct extent_buffer *lower; 2108 struct extent_buffer *c; 2109 struct extent_buffer *old; 2110 struct btrfs_disk_key lower_key; 2111 2112 BUG_ON(path->nodes[level]); 2113 BUG_ON(path->nodes[level-1] != root->node); 2114 2115 lower = path->nodes[level-1]; 2116 if (level == 1) 2117 btrfs_item_key(lower, &lower_key, 0); 2118 else 2119 btrfs_node_key(lower, &lower_key, 0); 2120 2121 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2122 root->root_key.objectid, &lower_key, 2123 level, root->node->start, 0, 0); 2124 if (IS_ERR(c)) 2125 return PTR_ERR(c); 2126 2127 root_add_used(root, root->nodesize); 2128 2129 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 2130 btrfs_set_header_nritems(c, 1); 2131 btrfs_set_header_level(c, level); 2132 btrfs_set_header_bytenr(c, c->start); 2133 btrfs_set_header_generation(c, trans->transid); 2134 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 2135 btrfs_set_header_owner(c, root->root_key.objectid); 2136 2137 write_extent_buffer(c, root->fs_info->fsid, 2138 (unsigned long)btrfs_header_fsid(c), 2139 BTRFS_FSID_SIZE); 2140 2141 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2142 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2143 BTRFS_UUID_SIZE); 2144 2145 btrfs_set_node_key(c, &lower_key, 0); 2146 btrfs_set_node_blockptr(c, 0, lower->start); 2147 lower_gen = btrfs_header_generation(lower); 2148 WARN_ON(lower_gen != trans->transid); 2149 2150 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2151 2152 btrfs_mark_buffer_dirty(c); 2153 2154 old = root->node; 2155 rcu_assign_pointer(root->node, c); 2156 2157 /* the super has an extra ref to root->node */ 2158 free_extent_buffer(old); 2159 2160 add_root_to_dirty_list(root); 2161 extent_buffer_get(c); 2162 path->nodes[level] = c; 2163 path->locks[level] = BTRFS_WRITE_LOCK; 2164 path->slots[level] = 0; 2165 return 0; 2166 } 2167 2168 /* 2169 * worker function to insert a single pointer in a node. 2170 * the node should have enough room for the pointer already 2171 * 2172 * slot and level indicate where you want the key to go, and 2173 * blocknr is the block the key points to. 2174 */ 2175 static void insert_ptr(struct btrfs_trans_handle *trans, 2176 struct btrfs_root *root, struct btrfs_path *path, 2177 struct btrfs_disk_key *key, u64 bytenr, 2178 int slot, int level) 2179 { 2180 struct extent_buffer *lower; 2181 int nritems; 2182 2183 BUG_ON(!path->nodes[level]); 2184 btrfs_assert_tree_locked(path->nodes[level]); 2185 lower = path->nodes[level]; 2186 nritems = btrfs_header_nritems(lower); 2187 BUG_ON(slot > nritems); 2188 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 2189 if (slot != nritems) { 2190 memmove_extent_buffer(lower, 2191 btrfs_node_key_ptr_offset(slot + 1), 2192 btrfs_node_key_ptr_offset(slot), 2193 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2194 } 2195 btrfs_set_node_key(lower, key, slot); 2196 btrfs_set_node_blockptr(lower, slot, bytenr); 2197 WARN_ON(trans->transid == 0); 2198 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2199 btrfs_set_header_nritems(lower, nritems + 1); 2200 btrfs_mark_buffer_dirty(lower); 2201 } 2202 2203 /* 2204 * split the node at the specified level in path in two. 2205 * The path is corrected to point to the appropriate node after the split 2206 * 2207 * Before splitting this tries to make some room in the node by pushing 2208 * left and right, if either one works, it returns right away. 2209 * 2210 * returns 0 on success and < 0 on failure 2211 */ 2212 static noinline int split_node(struct btrfs_trans_handle *trans, 2213 struct btrfs_root *root, 2214 struct btrfs_path *path, int level) 2215 { 2216 struct extent_buffer *c; 2217 struct extent_buffer *split; 2218 struct btrfs_disk_key disk_key; 2219 int mid; 2220 int ret; 2221 u32 c_nritems; 2222 2223 c = path->nodes[level]; 2224 WARN_ON(btrfs_header_generation(c) != trans->transid); 2225 if (c == root->node) { 2226 /* trying to split the root, lets make a new one */ 2227 ret = insert_new_root(trans, root, path, level + 1); 2228 if (ret) 2229 return ret; 2230 } else { 2231 ret = push_nodes_for_insert(trans, root, path, level); 2232 c = path->nodes[level]; 2233 if (!ret && btrfs_header_nritems(c) < 2234 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 2235 return 0; 2236 if (ret < 0) 2237 return ret; 2238 } 2239 2240 c_nritems = btrfs_header_nritems(c); 2241 mid = (c_nritems + 1) / 2; 2242 btrfs_node_key(c, &disk_key, mid); 2243 2244 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2245 root->root_key.objectid, 2246 &disk_key, level, c->start, 0, 0); 2247 if (IS_ERR(split)) 2248 return PTR_ERR(split); 2249 2250 root_add_used(root, root->nodesize); 2251 2252 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 2253 btrfs_set_header_level(split, btrfs_header_level(c)); 2254 btrfs_set_header_bytenr(split, split->start); 2255 btrfs_set_header_generation(split, trans->transid); 2256 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 2257 btrfs_set_header_owner(split, root->root_key.objectid); 2258 write_extent_buffer(split, root->fs_info->fsid, 2259 (unsigned long)btrfs_header_fsid(split), 2260 BTRFS_FSID_SIZE); 2261 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 2262 (unsigned long)btrfs_header_chunk_tree_uuid(split), 2263 BTRFS_UUID_SIZE); 2264 2265 2266 copy_extent_buffer(split, c, 2267 btrfs_node_key_ptr_offset(0), 2268 btrfs_node_key_ptr_offset(mid), 2269 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2270 btrfs_set_header_nritems(split, c_nritems - mid); 2271 btrfs_set_header_nritems(c, mid); 2272 ret = 0; 2273 2274 btrfs_mark_buffer_dirty(c); 2275 btrfs_mark_buffer_dirty(split); 2276 2277 insert_ptr(trans, root, path, &disk_key, split->start, 2278 path->slots[level + 1] + 1, level + 1); 2279 2280 if (path->slots[level] >= mid) { 2281 path->slots[level] -= mid; 2282 btrfs_tree_unlock(c); 2283 free_extent_buffer(c); 2284 path->nodes[level] = split; 2285 path->slots[level + 1] += 1; 2286 } else { 2287 btrfs_tree_unlock(split); 2288 free_extent_buffer(split); 2289 } 2290 return ret; 2291 } 2292 2293 /* 2294 * how many bytes are required to store the items in a leaf. start 2295 * and nr indicate which items in the leaf to check. This totals up the 2296 * space used both by the item structs and the item data 2297 */ 2298 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2299 { 2300 int data_len; 2301 int nritems = btrfs_header_nritems(l); 2302 int end = min(nritems, start + nr) - 1; 2303 2304 if (!nr) 2305 return 0; 2306 data_len = btrfs_item_end_nr(l, start); 2307 data_len = data_len - btrfs_item_offset_nr(l, end); 2308 data_len += sizeof(struct btrfs_item) * nr; 2309 WARN_ON(data_len < 0); 2310 return data_len; 2311 } 2312 2313 /* 2314 * The space between the end of the leaf items and 2315 * the start of the leaf data. IOW, how much room 2316 * the leaf has left for both items and data 2317 */ 2318 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 2319 struct extent_buffer *leaf) 2320 { 2321 int nritems = btrfs_header_nritems(leaf); 2322 int ret; 2323 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 2324 if (ret < 0) { 2325 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 2326 "used %d nritems %d\n", 2327 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 2328 leaf_space_used(leaf, 0, nritems), nritems); 2329 } 2330 return ret; 2331 } 2332 2333 /* 2334 * min slot controls the lowest index we're willing to push to the 2335 * right. We'll push up to and including min_slot, but no lower 2336 */ 2337 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 2338 struct btrfs_root *root, 2339 struct btrfs_path *path, 2340 int data_size, int empty, 2341 struct extent_buffer *right, 2342 int free_space, u32 left_nritems, 2343 u32 min_slot) 2344 { 2345 struct extent_buffer *left = path->nodes[0]; 2346 struct extent_buffer *upper = path->nodes[1]; 2347 struct btrfs_map_token token; 2348 struct btrfs_disk_key disk_key; 2349 int slot; 2350 u32 i; 2351 int push_space = 0; 2352 int push_items = 0; 2353 struct btrfs_item *item; 2354 u32 nr; 2355 u32 right_nritems; 2356 u32 data_end; 2357 u32 this_item_size; 2358 2359 btrfs_init_map_token(&token); 2360 2361 if (empty) 2362 nr = 0; 2363 else 2364 nr = max_t(u32, 1, min_slot); 2365 2366 if (path->slots[0] >= left_nritems) 2367 push_space += data_size; 2368 2369 slot = path->slots[1]; 2370 i = left_nritems - 1; 2371 while (i >= nr) { 2372 item = btrfs_item_nr(left, i); 2373 2374 if (!empty && push_items > 0) { 2375 if (path->slots[0] > i) 2376 break; 2377 if (path->slots[0] == i) { 2378 int space = btrfs_leaf_free_space(root, left); 2379 if (space + push_space * 2 > free_space) 2380 break; 2381 } 2382 } 2383 2384 if (path->slots[0] == i) 2385 push_space += data_size; 2386 2387 this_item_size = btrfs_item_size(left, item); 2388 if (this_item_size + sizeof(*item) + push_space > free_space) 2389 break; 2390 2391 push_items++; 2392 push_space += this_item_size + sizeof(*item); 2393 if (i == 0) 2394 break; 2395 i--; 2396 } 2397 2398 if (push_items == 0) 2399 goto out_unlock; 2400 2401 if (!empty && push_items == left_nritems) 2402 WARN_ON(1); 2403 2404 /* push left to right */ 2405 right_nritems = btrfs_header_nritems(right); 2406 2407 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2408 push_space -= leaf_data_end(root, left); 2409 2410 /* make room in the right data area */ 2411 data_end = leaf_data_end(root, right); 2412 memmove_extent_buffer(right, 2413 btrfs_leaf_data(right) + data_end - push_space, 2414 btrfs_leaf_data(right) + data_end, 2415 BTRFS_LEAF_DATA_SIZE(root) - data_end); 2416 2417 /* copy from the left data area */ 2418 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 2419 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2420 btrfs_leaf_data(left) + leaf_data_end(root, left), 2421 push_space); 2422 2423 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2424 btrfs_item_nr_offset(0), 2425 right_nritems * sizeof(struct btrfs_item)); 2426 2427 /* copy the items from left to right */ 2428 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2429 btrfs_item_nr_offset(left_nritems - push_items), 2430 push_items * sizeof(struct btrfs_item)); 2431 2432 /* update the item pointers */ 2433 right_nritems += push_items; 2434 btrfs_set_header_nritems(right, right_nritems); 2435 push_space = BTRFS_LEAF_DATA_SIZE(root); 2436 for (i = 0; i < right_nritems; i++) { 2437 item = btrfs_item_nr(right, i); 2438 push_space -= btrfs_token_item_size(right, item, &token); 2439 btrfs_set_token_item_offset(right, item, push_space, &token); 2440 } 2441 2442 left_nritems -= push_items; 2443 btrfs_set_header_nritems(left, left_nritems); 2444 2445 if (left_nritems) 2446 btrfs_mark_buffer_dirty(left); 2447 else 2448 clean_tree_block(trans, root, left); 2449 2450 btrfs_mark_buffer_dirty(right); 2451 2452 btrfs_item_key(right, &disk_key, 0); 2453 btrfs_set_node_key(upper, &disk_key, slot + 1); 2454 btrfs_mark_buffer_dirty(upper); 2455 2456 /* then fixup the leaf pointer in the path */ 2457 if (path->slots[0] >= left_nritems) { 2458 path->slots[0] -= left_nritems; 2459 if (btrfs_header_nritems(path->nodes[0]) == 0) 2460 clean_tree_block(trans, root, path->nodes[0]); 2461 btrfs_tree_unlock(path->nodes[0]); 2462 free_extent_buffer(path->nodes[0]); 2463 path->nodes[0] = right; 2464 path->slots[1] += 1; 2465 } else { 2466 btrfs_tree_unlock(right); 2467 free_extent_buffer(right); 2468 } 2469 return 0; 2470 2471 out_unlock: 2472 btrfs_tree_unlock(right); 2473 free_extent_buffer(right); 2474 return 1; 2475 } 2476 2477 /* 2478 * push some data in the path leaf to the right, trying to free up at 2479 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2480 * 2481 * returns 1 if the push failed because the other node didn't have enough 2482 * room, 0 if everything worked out and < 0 if there were major errors. 2483 * 2484 * this will push starting from min_slot to the end of the leaf. It won't 2485 * push any slot lower than min_slot 2486 */ 2487 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2488 *root, struct btrfs_path *path, 2489 int min_data_size, int data_size, 2490 int empty, u32 min_slot) 2491 { 2492 struct extent_buffer *left = path->nodes[0]; 2493 struct extent_buffer *right; 2494 struct extent_buffer *upper; 2495 int slot; 2496 int free_space; 2497 u32 left_nritems; 2498 int ret; 2499 2500 if (!path->nodes[1]) 2501 return 1; 2502 2503 slot = path->slots[1]; 2504 upper = path->nodes[1]; 2505 if (slot >= btrfs_header_nritems(upper) - 1) 2506 return 1; 2507 2508 btrfs_assert_tree_locked(path->nodes[1]); 2509 2510 right = read_node_slot(root, upper, slot + 1); 2511 if (right == NULL) 2512 return 1; 2513 2514 btrfs_tree_lock(right); 2515 btrfs_set_lock_blocking(right); 2516 2517 free_space = btrfs_leaf_free_space(root, right); 2518 if (free_space < data_size) 2519 goto out_unlock; 2520 2521 /* cow and double check */ 2522 ret = btrfs_cow_block(trans, root, right, upper, 2523 slot + 1, &right); 2524 if (ret) 2525 goto out_unlock; 2526 2527 free_space = btrfs_leaf_free_space(root, right); 2528 if (free_space < data_size) 2529 goto out_unlock; 2530 2531 left_nritems = btrfs_header_nritems(left); 2532 if (left_nritems == 0) 2533 goto out_unlock; 2534 2535 return __push_leaf_right(trans, root, path, min_data_size, empty, 2536 right, free_space, left_nritems, min_slot); 2537 out_unlock: 2538 btrfs_tree_unlock(right); 2539 free_extent_buffer(right); 2540 return 1; 2541 } 2542 2543 /* 2544 * push some data in the path leaf to the left, trying to free up at 2545 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2546 * 2547 * max_slot can put a limit on how far into the leaf we'll push items. The 2548 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 2549 * items 2550 */ 2551 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 2552 struct btrfs_root *root, 2553 struct btrfs_path *path, int data_size, 2554 int empty, struct extent_buffer *left, 2555 int free_space, u32 right_nritems, 2556 u32 max_slot) 2557 { 2558 struct btrfs_disk_key disk_key; 2559 struct extent_buffer *right = path->nodes[0]; 2560 int i; 2561 int push_space = 0; 2562 int push_items = 0; 2563 struct btrfs_item *item; 2564 u32 old_left_nritems; 2565 u32 nr; 2566 int ret = 0; 2567 u32 this_item_size; 2568 u32 old_left_item_size; 2569 struct btrfs_map_token token; 2570 2571 btrfs_init_map_token(&token); 2572 2573 if (empty) 2574 nr = min(right_nritems, max_slot); 2575 else 2576 nr = min(right_nritems - 1, max_slot); 2577 2578 for (i = 0; i < nr; i++) { 2579 item = btrfs_item_nr(right, i); 2580 2581 if (!empty && push_items > 0) { 2582 if (path->slots[0] < i) 2583 break; 2584 if (path->slots[0] == i) { 2585 int space = btrfs_leaf_free_space(root, right); 2586 if (space + push_space * 2 > free_space) 2587 break; 2588 } 2589 } 2590 2591 if (path->slots[0] == i) 2592 push_space += data_size; 2593 2594 this_item_size = btrfs_item_size(right, item); 2595 if (this_item_size + sizeof(*item) + push_space > free_space) 2596 break; 2597 2598 push_items++; 2599 push_space += this_item_size + sizeof(*item); 2600 } 2601 2602 if (push_items == 0) { 2603 ret = 1; 2604 goto out; 2605 } 2606 if (!empty && push_items == btrfs_header_nritems(right)) 2607 WARN_ON(1); 2608 2609 /* push data from right to left */ 2610 copy_extent_buffer(left, right, 2611 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2612 btrfs_item_nr_offset(0), 2613 push_items * sizeof(struct btrfs_item)); 2614 2615 push_space = BTRFS_LEAF_DATA_SIZE(root) - 2616 btrfs_item_offset_nr(right, push_items - 1); 2617 2618 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 2619 leaf_data_end(root, left) - push_space, 2620 btrfs_leaf_data(right) + 2621 btrfs_item_offset_nr(right, push_items - 1), 2622 push_space); 2623 old_left_nritems = btrfs_header_nritems(left); 2624 BUG_ON(old_left_nritems <= 0); 2625 2626 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2627 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2628 u32 ioff; 2629 2630 item = btrfs_item_nr(left, i); 2631 2632 ioff = btrfs_token_item_offset(left, item, &token); 2633 btrfs_set_token_item_offset(left, item, 2634 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 2635 &token); 2636 } 2637 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2638 2639 /* fixup right node */ 2640 if (push_items > right_nritems) { 2641 printk(KERN_CRIT "push items %d nr %u\n", push_items, 2642 right_nritems); 2643 WARN_ON(1); 2644 } 2645 2646 if (push_items < right_nritems) { 2647 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2648 leaf_data_end(root, right); 2649 memmove_extent_buffer(right, btrfs_leaf_data(right) + 2650 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2651 btrfs_leaf_data(right) + 2652 leaf_data_end(root, right), push_space); 2653 2654 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2655 btrfs_item_nr_offset(push_items), 2656 (btrfs_header_nritems(right) - push_items) * 2657 sizeof(struct btrfs_item)); 2658 } 2659 right_nritems -= push_items; 2660 btrfs_set_header_nritems(right, right_nritems); 2661 push_space = BTRFS_LEAF_DATA_SIZE(root); 2662 for (i = 0; i < right_nritems; i++) { 2663 item = btrfs_item_nr(right, i); 2664 2665 push_space = push_space - btrfs_token_item_size(right, 2666 item, &token); 2667 btrfs_set_token_item_offset(right, item, push_space, &token); 2668 } 2669 2670 btrfs_mark_buffer_dirty(left); 2671 if (right_nritems) 2672 btrfs_mark_buffer_dirty(right); 2673 else 2674 clean_tree_block(trans, root, right); 2675 2676 btrfs_item_key(right, &disk_key, 0); 2677 fixup_low_keys(trans, root, path, &disk_key, 1); 2678 2679 /* then fixup the leaf pointer in the path */ 2680 if (path->slots[0] < push_items) { 2681 path->slots[0] += old_left_nritems; 2682 btrfs_tree_unlock(path->nodes[0]); 2683 free_extent_buffer(path->nodes[0]); 2684 path->nodes[0] = left; 2685 path->slots[1] -= 1; 2686 } else { 2687 btrfs_tree_unlock(left); 2688 free_extent_buffer(left); 2689 path->slots[0] -= push_items; 2690 } 2691 BUG_ON(path->slots[0] < 0); 2692 return ret; 2693 out: 2694 btrfs_tree_unlock(left); 2695 free_extent_buffer(left); 2696 return ret; 2697 } 2698 2699 /* 2700 * push some data in the path leaf to the left, trying to free up at 2701 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2702 * 2703 * max_slot can put a limit on how far into the leaf we'll push items. The 2704 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 2705 * items 2706 */ 2707 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 2708 *root, struct btrfs_path *path, int min_data_size, 2709 int data_size, int empty, u32 max_slot) 2710 { 2711 struct extent_buffer *right = path->nodes[0]; 2712 struct extent_buffer *left; 2713 int slot; 2714 int free_space; 2715 u32 right_nritems; 2716 int ret = 0; 2717 2718 slot = path->slots[1]; 2719 if (slot == 0) 2720 return 1; 2721 if (!path->nodes[1]) 2722 return 1; 2723 2724 right_nritems = btrfs_header_nritems(right); 2725 if (right_nritems == 0) 2726 return 1; 2727 2728 btrfs_assert_tree_locked(path->nodes[1]); 2729 2730 left = read_node_slot(root, path->nodes[1], slot - 1); 2731 if (left == NULL) 2732 return 1; 2733 2734 btrfs_tree_lock(left); 2735 btrfs_set_lock_blocking(left); 2736 2737 free_space = btrfs_leaf_free_space(root, left); 2738 if (free_space < data_size) { 2739 ret = 1; 2740 goto out; 2741 } 2742 2743 /* cow and double check */ 2744 ret = btrfs_cow_block(trans, root, left, 2745 path->nodes[1], slot - 1, &left); 2746 if (ret) { 2747 /* we hit -ENOSPC, but it isn't fatal here */ 2748 if (ret == -ENOSPC) 2749 ret = 1; 2750 goto out; 2751 } 2752 2753 free_space = btrfs_leaf_free_space(root, left); 2754 if (free_space < data_size) { 2755 ret = 1; 2756 goto out; 2757 } 2758 2759 return __push_leaf_left(trans, root, path, min_data_size, 2760 empty, left, free_space, right_nritems, 2761 max_slot); 2762 out: 2763 btrfs_tree_unlock(left); 2764 free_extent_buffer(left); 2765 return ret; 2766 } 2767 2768 /* 2769 * split the path's leaf in two, making sure there is at least data_size 2770 * available for the resulting leaf level of the path. 2771 */ 2772 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 2773 struct btrfs_root *root, 2774 struct btrfs_path *path, 2775 struct extent_buffer *l, 2776 struct extent_buffer *right, 2777 int slot, int mid, int nritems) 2778 { 2779 int data_copy_size; 2780 int rt_data_off; 2781 int i; 2782 struct btrfs_disk_key disk_key; 2783 struct btrfs_map_token token; 2784 2785 btrfs_init_map_token(&token); 2786 2787 nritems = nritems - mid; 2788 btrfs_set_header_nritems(right, nritems); 2789 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 2790 2791 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 2792 btrfs_item_nr_offset(mid), 2793 nritems * sizeof(struct btrfs_item)); 2794 2795 copy_extent_buffer(right, l, 2796 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 2797 data_copy_size, btrfs_leaf_data(l) + 2798 leaf_data_end(root, l), data_copy_size); 2799 2800 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 2801 btrfs_item_end_nr(l, mid); 2802 2803 for (i = 0; i < nritems; i++) { 2804 struct btrfs_item *item = btrfs_item_nr(right, i); 2805 u32 ioff; 2806 2807 ioff = btrfs_token_item_offset(right, item, &token); 2808 btrfs_set_token_item_offset(right, item, 2809 ioff + rt_data_off, &token); 2810 } 2811 2812 btrfs_set_header_nritems(l, mid); 2813 btrfs_item_key(right, &disk_key, 0); 2814 insert_ptr(trans, root, path, &disk_key, right->start, 2815 path->slots[1] + 1, 1); 2816 2817 btrfs_mark_buffer_dirty(right); 2818 btrfs_mark_buffer_dirty(l); 2819 BUG_ON(path->slots[0] != slot); 2820 2821 if (mid <= slot) { 2822 btrfs_tree_unlock(path->nodes[0]); 2823 free_extent_buffer(path->nodes[0]); 2824 path->nodes[0] = right; 2825 path->slots[0] -= mid; 2826 path->slots[1] += 1; 2827 } else { 2828 btrfs_tree_unlock(right); 2829 free_extent_buffer(right); 2830 } 2831 2832 BUG_ON(path->slots[0] < 0); 2833 } 2834 2835 /* 2836 * double splits happen when we need to insert a big item in the middle 2837 * of a leaf. A double split can leave us with 3 mostly empty leaves: 2838 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 2839 * A B C 2840 * 2841 * We avoid this by trying to push the items on either side of our target 2842 * into the adjacent leaves. If all goes well we can avoid the double split 2843 * completely. 2844 */ 2845 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 2846 struct btrfs_root *root, 2847 struct btrfs_path *path, 2848 int data_size) 2849 { 2850 int ret; 2851 int progress = 0; 2852 int slot; 2853 u32 nritems; 2854 2855 slot = path->slots[0]; 2856 2857 /* 2858 * try to push all the items after our slot into the 2859 * right leaf 2860 */ 2861 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 2862 if (ret < 0) 2863 return ret; 2864 2865 if (ret == 0) 2866 progress++; 2867 2868 nritems = btrfs_header_nritems(path->nodes[0]); 2869 /* 2870 * our goal is to get our slot at the start or end of a leaf. If 2871 * we've done so we're done 2872 */ 2873 if (path->slots[0] == 0 || path->slots[0] == nritems) 2874 return 0; 2875 2876 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 2877 return 0; 2878 2879 /* try to push all the items before our slot into the next leaf */ 2880 slot = path->slots[0]; 2881 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 2882 if (ret < 0) 2883 return ret; 2884 2885 if (ret == 0) 2886 progress++; 2887 2888 if (progress) 2889 return 0; 2890 return 1; 2891 } 2892 2893 /* 2894 * split the path's leaf in two, making sure there is at least data_size 2895 * available for the resulting leaf level of the path. 2896 * 2897 * returns 0 if all went well and < 0 on failure. 2898 */ 2899 static noinline int split_leaf(struct btrfs_trans_handle *trans, 2900 struct btrfs_root *root, 2901 struct btrfs_key *ins_key, 2902 struct btrfs_path *path, int data_size, 2903 int extend) 2904 { 2905 struct btrfs_disk_key disk_key; 2906 struct extent_buffer *l; 2907 u32 nritems; 2908 int mid; 2909 int slot; 2910 struct extent_buffer *right; 2911 int ret = 0; 2912 int wret; 2913 int split; 2914 int num_doubles = 0; 2915 int tried_avoid_double = 0; 2916 2917 l = path->nodes[0]; 2918 slot = path->slots[0]; 2919 if (extend && data_size + btrfs_item_size_nr(l, slot) + 2920 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 2921 return -EOVERFLOW; 2922 2923 /* first try to make some room by pushing left and right */ 2924 if (data_size) { 2925 wret = push_leaf_right(trans, root, path, data_size, 2926 data_size, 0, 0); 2927 if (wret < 0) 2928 return wret; 2929 if (wret) { 2930 wret = push_leaf_left(trans, root, path, data_size, 2931 data_size, 0, (u32)-1); 2932 if (wret < 0) 2933 return wret; 2934 } 2935 l = path->nodes[0]; 2936 2937 /* did the pushes work? */ 2938 if (btrfs_leaf_free_space(root, l) >= data_size) 2939 return 0; 2940 } 2941 2942 if (!path->nodes[1]) { 2943 ret = insert_new_root(trans, root, path, 1); 2944 if (ret) 2945 return ret; 2946 } 2947 again: 2948 split = 1; 2949 l = path->nodes[0]; 2950 slot = path->slots[0]; 2951 nritems = btrfs_header_nritems(l); 2952 mid = (nritems + 1) / 2; 2953 2954 if (mid <= slot) { 2955 if (nritems == 1 || 2956 leaf_space_used(l, mid, nritems - mid) + data_size > 2957 BTRFS_LEAF_DATA_SIZE(root)) { 2958 if (slot >= nritems) { 2959 split = 0; 2960 } else { 2961 mid = slot; 2962 if (mid != nritems && 2963 leaf_space_used(l, mid, nritems - mid) + 2964 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2965 if (data_size && !tried_avoid_double) 2966 goto push_for_double; 2967 split = 2; 2968 } 2969 } 2970 } 2971 } else { 2972 if (leaf_space_used(l, 0, mid) + data_size > 2973 BTRFS_LEAF_DATA_SIZE(root)) { 2974 if (!extend && data_size && slot == 0) { 2975 split = 0; 2976 } else if ((extend || !data_size) && slot == 0) { 2977 mid = 1; 2978 } else { 2979 mid = slot; 2980 if (mid != nritems && 2981 leaf_space_used(l, mid, nritems - mid) + 2982 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2983 if (data_size && !tried_avoid_double) 2984 goto push_for_double; 2985 split = 2 ; 2986 } 2987 } 2988 } 2989 } 2990 2991 if (split == 0) 2992 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2993 else 2994 btrfs_item_key(l, &disk_key, mid); 2995 2996 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 2997 root->root_key.objectid, 2998 &disk_key, 0, l->start, 0, 0); 2999 if (IS_ERR(right)) 3000 return PTR_ERR(right); 3001 3002 root_add_used(root, root->leafsize); 3003 3004 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 3005 btrfs_set_header_bytenr(right, right->start); 3006 btrfs_set_header_generation(right, trans->transid); 3007 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 3008 btrfs_set_header_owner(right, root->root_key.objectid); 3009 btrfs_set_header_level(right, 0); 3010 write_extent_buffer(right, root->fs_info->fsid, 3011 (unsigned long)btrfs_header_fsid(right), 3012 BTRFS_FSID_SIZE); 3013 3014 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 3015 (unsigned long)btrfs_header_chunk_tree_uuid(right), 3016 BTRFS_UUID_SIZE); 3017 3018 if (split == 0) { 3019 if (mid <= slot) { 3020 btrfs_set_header_nritems(right, 0); 3021 insert_ptr(trans, root, path, &disk_key, right->start, 3022 path->slots[1] + 1, 1); 3023 btrfs_tree_unlock(path->nodes[0]); 3024 free_extent_buffer(path->nodes[0]); 3025 path->nodes[0] = right; 3026 path->slots[0] = 0; 3027 path->slots[1] += 1; 3028 } else { 3029 btrfs_set_header_nritems(right, 0); 3030 insert_ptr(trans, root, path, &disk_key, right->start, 3031 path->slots[1], 1); 3032 btrfs_tree_unlock(path->nodes[0]); 3033 free_extent_buffer(path->nodes[0]); 3034 path->nodes[0] = right; 3035 path->slots[0] = 0; 3036 if (path->slots[1] == 0) 3037 fixup_low_keys(trans, root, path, 3038 &disk_key, 1); 3039 } 3040 btrfs_mark_buffer_dirty(right); 3041 return ret; 3042 } 3043 3044 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 3045 3046 if (split == 2) { 3047 BUG_ON(num_doubles != 0); 3048 num_doubles++; 3049 goto again; 3050 } 3051 3052 return 0; 3053 3054 push_for_double: 3055 push_for_double_split(trans, root, path, data_size); 3056 tried_avoid_double = 1; 3057 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3058 return 0; 3059 goto again; 3060 } 3061 3062 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3063 struct btrfs_root *root, 3064 struct btrfs_path *path, int ins_len) 3065 { 3066 struct btrfs_key key; 3067 struct extent_buffer *leaf; 3068 struct btrfs_file_extent_item *fi; 3069 u64 extent_len = 0; 3070 u32 item_size; 3071 int ret; 3072 3073 leaf = path->nodes[0]; 3074 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3075 3076 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3077 key.type != BTRFS_EXTENT_CSUM_KEY); 3078 3079 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 3080 return 0; 3081 3082 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3083 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3084 fi = btrfs_item_ptr(leaf, path->slots[0], 3085 struct btrfs_file_extent_item); 3086 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3087 } 3088 btrfs_release_path(path); 3089 3090 path->keep_locks = 1; 3091 path->search_for_split = 1; 3092 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3093 path->search_for_split = 0; 3094 if (ret < 0) 3095 goto err; 3096 3097 ret = -EAGAIN; 3098 leaf = path->nodes[0]; 3099 /* if our item isn't there or got smaller, return now */ 3100 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 3101 goto err; 3102 3103 /* the leaf has changed, it now has room. return now */ 3104 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 3105 goto err; 3106 3107 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3108 fi = btrfs_item_ptr(leaf, path->slots[0], 3109 struct btrfs_file_extent_item); 3110 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3111 goto err; 3112 } 3113 3114 btrfs_set_path_blocking(path); 3115 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3116 if (ret) 3117 goto err; 3118 3119 path->keep_locks = 0; 3120 btrfs_unlock_up_safe(path, 1); 3121 return 0; 3122 err: 3123 path->keep_locks = 0; 3124 return ret; 3125 } 3126 3127 static noinline int split_item(struct btrfs_trans_handle *trans, 3128 struct btrfs_root *root, 3129 struct btrfs_path *path, 3130 struct btrfs_key *new_key, 3131 unsigned long split_offset) 3132 { 3133 struct extent_buffer *leaf; 3134 struct btrfs_item *item; 3135 struct btrfs_item *new_item; 3136 int slot; 3137 char *buf; 3138 u32 nritems; 3139 u32 item_size; 3140 u32 orig_offset; 3141 struct btrfs_disk_key disk_key; 3142 3143 leaf = path->nodes[0]; 3144 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3145 3146 btrfs_set_path_blocking(path); 3147 3148 item = btrfs_item_nr(leaf, path->slots[0]); 3149 orig_offset = btrfs_item_offset(leaf, item); 3150 item_size = btrfs_item_size(leaf, item); 3151 3152 buf = kmalloc(item_size, GFP_NOFS); 3153 if (!buf) 3154 return -ENOMEM; 3155 3156 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3157 path->slots[0]), item_size); 3158 3159 slot = path->slots[0] + 1; 3160 nritems = btrfs_header_nritems(leaf); 3161 if (slot != nritems) { 3162 /* shift the items */ 3163 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3164 btrfs_item_nr_offset(slot), 3165 (nritems - slot) * sizeof(struct btrfs_item)); 3166 } 3167 3168 btrfs_cpu_key_to_disk(&disk_key, new_key); 3169 btrfs_set_item_key(leaf, &disk_key, slot); 3170 3171 new_item = btrfs_item_nr(leaf, slot); 3172 3173 btrfs_set_item_offset(leaf, new_item, orig_offset); 3174 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3175 3176 btrfs_set_item_offset(leaf, item, 3177 orig_offset + item_size - split_offset); 3178 btrfs_set_item_size(leaf, item, split_offset); 3179 3180 btrfs_set_header_nritems(leaf, nritems + 1); 3181 3182 /* write the data for the start of the original item */ 3183 write_extent_buffer(leaf, buf, 3184 btrfs_item_ptr_offset(leaf, path->slots[0]), 3185 split_offset); 3186 3187 /* write the data for the new item */ 3188 write_extent_buffer(leaf, buf + split_offset, 3189 btrfs_item_ptr_offset(leaf, slot), 3190 item_size - split_offset); 3191 btrfs_mark_buffer_dirty(leaf); 3192 3193 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 3194 kfree(buf); 3195 return 0; 3196 } 3197 3198 /* 3199 * This function splits a single item into two items, 3200 * giving 'new_key' to the new item and splitting the 3201 * old one at split_offset (from the start of the item). 3202 * 3203 * The path may be released by this operation. After 3204 * the split, the path is pointing to the old item. The 3205 * new item is going to be in the same node as the old one. 3206 * 3207 * Note, the item being split must be smaller enough to live alone on 3208 * a tree block with room for one extra struct btrfs_item 3209 * 3210 * This allows us to split the item in place, keeping a lock on the 3211 * leaf the entire time. 3212 */ 3213 int btrfs_split_item(struct btrfs_trans_handle *trans, 3214 struct btrfs_root *root, 3215 struct btrfs_path *path, 3216 struct btrfs_key *new_key, 3217 unsigned long split_offset) 3218 { 3219 int ret; 3220 ret = setup_leaf_for_split(trans, root, path, 3221 sizeof(struct btrfs_item)); 3222 if (ret) 3223 return ret; 3224 3225 ret = split_item(trans, root, path, new_key, split_offset); 3226 return ret; 3227 } 3228 3229 /* 3230 * This function duplicate a item, giving 'new_key' to the new item. 3231 * It guarantees both items live in the same tree leaf and the new item 3232 * is contiguous with the original item. 3233 * 3234 * This allows us to split file extent in place, keeping a lock on the 3235 * leaf the entire time. 3236 */ 3237 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 3238 struct btrfs_root *root, 3239 struct btrfs_path *path, 3240 struct btrfs_key *new_key) 3241 { 3242 struct extent_buffer *leaf; 3243 int ret; 3244 u32 item_size; 3245 3246 leaf = path->nodes[0]; 3247 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3248 ret = setup_leaf_for_split(trans, root, path, 3249 item_size + sizeof(struct btrfs_item)); 3250 if (ret) 3251 return ret; 3252 3253 path->slots[0]++; 3254 setup_items_for_insert(trans, root, path, new_key, &item_size, 3255 item_size, item_size + 3256 sizeof(struct btrfs_item), 1); 3257 leaf = path->nodes[0]; 3258 memcpy_extent_buffer(leaf, 3259 btrfs_item_ptr_offset(leaf, path->slots[0]), 3260 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 3261 item_size); 3262 return 0; 3263 } 3264 3265 /* 3266 * make the item pointed to by the path smaller. new_size indicates 3267 * how small to make it, and from_end tells us if we just chop bytes 3268 * off the end of the item or if we shift the item to chop bytes off 3269 * the front. 3270 */ 3271 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 3272 struct btrfs_root *root, 3273 struct btrfs_path *path, 3274 u32 new_size, int from_end) 3275 { 3276 int slot; 3277 struct extent_buffer *leaf; 3278 struct btrfs_item *item; 3279 u32 nritems; 3280 unsigned int data_end; 3281 unsigned int old_data_start; 3282 unsigned int old_size; 3283 unsigned int size_diff; 3284 int i; 3285 struct btrfs_map_token token; 3286 3287 btrfs_init_map_token(&token); 3288 3289 leaf = path->nodes[0]; 3290 slot = path->slots[0]; 3291 3292 old_size = btrfs_item_size_nr(leaf, slot); 3293 if (old_size == new_size) 3294 return; 3295 3296 nritems = btrfs_header_nritems(leaf); 3297 data_end = leaf_data_end(root, leaf); 3298 3299 old_data_start = btrfs_item_offset_nr(leaf, slot); 3300 3301 size_diff = old_size - new_size; 3302 3303 BUG_ON(slot < 0); 3304 BUG_ON(slot >= nritems); 3305 3306 /* 3307 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3308 */ 3309 /* first correct the data pointers */ 3310 for (i = slot; i < nritems; i++) { 3311 u32 ioff; 3312 item = btrfs_item_nr(leaf, i); 3313 3314 ioff = btrfs_token_item_offset(leaf, item, &token); 3315 btrfs_set_token_item_offset(leaf, item, 3316 ioff + size_diff, &token); 3317 } 3318 3319 /* shift the data */ 3320 if (from_end) { 3321 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3322 data_end + size_diff, btrfs_leaf_data(leaf) + 3323 data_end, old_data_start + new_size - data_end); 3324 } else { 3325 struct btrfs_disk_key disk_key; 3326 u64 offset; 3327 3328 btrfs_item_key(leaf, &disk_key, slot); 3329 3330 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3331 unsigned long ptr; 3332 struct btrfs_file_extent_item *fi; 3333 3334 fi = btrfs_item_ptr(leaf, slot, 3335 struct btrfs_file_extent_item); 3336 fi = (struct btrfs_file_extent_item *)( 3337 (unsigned long)fi - size_diff); 3338 3339 if (btrfs_file_extent_type(leaf, fi) == 3340 BTRFS_FILE_EXTENT_INLINE) { 3341 ptr = btrfs_item_ptr_offset(leaf, slot); 3342 memmove_extent_buffer(leaf, ptr, 3343 (unsigned long)fi, 3344 offsetof(struct btrfs_file_extent_item, 3345 disk_bytenr)); 3346 } 3347 } 3348 3349 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3350 data_end + size_diff, btrfs_leaf_data(leaf) + 3351 data_end, old_data_start - data_end); 3352 3353 offset = btrfs_disk_key_offset(&disk_key); 3354 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3355 btrfs_set_item_key(leaf, &disk_key, slot); 3356 if (slot == 0) 3357 fixup_low_keys(trans, root, path, &disk_key, 1); 3358 } 3359 3360 item = btrfs_item_nr(leaf, slot); 3361 btrfs_set_item_size(leaf, item, new_size); 3362 btrfs_mark_buffer_dirty(leaf); 3363 3364 if (btrfs_leaf_free_space(root, leaf) < 0) { 3365 btrfs_print_leaf(root, leaf); 3366 BUG(); 3367 } 3368 } 3369 3370 /* 3371 * make the item pointed to by the path bigger, data_size is the new size. 3372 */ 3373 void btrfs_extend_item(struct btrfs_trans_handle *trans, 3374 struct btrfs_root *root, struct btrfs_path *path, 3375 u32 data_size) 3376 { 3377 int slot; 3378 struct extent_buffer *leaf; 3379 struct btrfs_item *item; 3380 u32 nritems; 3381 unsigned int data_end; 3382 unsigned int old_data; 3383 unsigned int old_size; 3384 int i; 3385 struct btrfs_map_token token; 3386 3387 btrfs_init_map_token(&token); 3388 3389 leaf = path->nodes[0]; 3390 3391 nritems = btrfs_header_nritems(leaf); 3392 data_end = leaf_data_end(root, leaf); 3393 3394 if (btrfs_leaf_free_space(root, leaf) < data_size) { 3395 btrfs_print_leaf(root, leaf); 3396 BUG(); 3397 } 3398 slot = path->slots[0]; 3399 old_data = btrfs_item_end_nr(leaf, slot); 3400 3401 BUG_ON(slot < 0); 3402 if (slot >= nritems) { 3403 btrfs_print_leaf(root, leaf); 3404 printk(KERN_CRIT "slot %d too large, nritems %d\n", 3405 slot, nritems); 3406 BUG_ON(1); 3407 } 3408 3409 /* 3410 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3411 */ 3412 /* first correct the data pointers */ 3413 for (i = slot; i < nritems; i++) { 3414 u32 ioff; 3415 item = btrfs_item_nr(leaf, i); 3416 3417 ioff = btrfs_token_item_offset(leaf, item, &token); 3418 btrfs_set_token_item_offset(leaf, item, 3419 ioff - data_size, &token); 3420 } 3421 3422 /* shift the data */ 3423 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3424 data_end - data_size, btrfs_leaf_data(leaf) + 3425 data_end, old_data - data_end); 3426 3427 data_end = old_data; 3428 old_size = btrfs_item_size_nr(leaf, slot); 3429 item = btrfs_item_nr(leaf, slot); 3430 btrfs_set_item_size(leaf, item, old_size + data_size); 3431 btrfs_mark_buffer_dirty(leaf); 3432 3433 if (btrfs_leaf_free_space(root, leaf) < 0) { 3434 btrfs_print_leaf(root, leaf); 3435 BUG(); 3436 } 3437 } 3438 3439 /* 3440 * Given a key and some data, insert items into the tree. 3441 * This does all the path init required, making room in the tree if needed. 3442 * Returns the number of keys that were inserted. 3443 */ 3444 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 3445 struct btrfs_root *root, 3446 struct btrfs_path *path, 3447 struct btrfs_key *cpu_key, u32 *data_size, 3448 int nr) 3449 { 3450 struct extent_buffer *leaf; 3451 struct btrfs_item *item; 3452 int ret = 0; 3453 int slot; 3454 int i; 3455 u32 nritems; 3456 u32 total_data = 0; 3457 u32 total_size = 0; 3458 unsigned int data_end; 3459 struct btrfs_disk_key disk_key; 3460 struct btrfs_key found_key; 3461 struct btrfs_map_token token; 3462 3463 btrfs_init_map_token(&token); 3464 3465 for (i = 0; i < nr; i++) { 3466 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 3467 BTRFS_LEAF_DATA_SIZE(root)) { 3468 break; 3469 nr = i; 3470 } 3471 total_data += data_size[i]; 3472 total_size += data_size[i] + sizeof(struct btrfs_item); 3473 } 3474 BUG_ON(nr == 0); 3475 3476 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3477 if (ret == 0) 3478 return -EEXIST; 3479 if (ret < 0) 3480 goto out; 3481 3482 leaf = path->nodes[0]; 3483 3484 nritems = btrfs_header_nritems(leaf); 3485 data_end = leaf_data_end(root, leaf); 3486 3487 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3488 for (i = nr; i >= 0; i--) { 3489 total_data -= data_size[i]; 3490 total_size -= data_size[i] + sizeof(struct btrfs_item); 3491 if (total_size < btrfs_leaf_free_space(root, leaf)) 3492 break; 3493 } 3494 nr = i; 3495 } 3496 3497 slot = path->slots[0]; 3498 BUG_ON(slot < 0); 3499 3500 if (slot != nritems) { 3501 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3502 3503 item = btrfs_item_nr(leaf, slot); 3504 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3505 3506 /* figure out how many keys we can insert in here */ 3507 total_data = data_size[0]; 3508 for (i = 1; i < nr; i++) { 3509 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0) 3510 break; 3511 total_data += data_size[i]; 3512 } 3513 nr = i; 3514 3515 if (old_data < data_end) { 3516 btrfs_print_leaf(root, leaf); 3517 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3518 slot, old_data, data_end); 3519 BUG_ON(1); 3520 } 3521 /* 3522 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3523 */ 3524 /* first correct the data pointers */ 3525 for (i = slot; i < nritems; i++) { 3526 u32 ioff; 3527 3528 item = btrfs_item_nr(leaf, i); 3529 ioff = btrfs_token_item_offset(leaf, item, &token); 3530 btrfs_set_token_item_offset(leaf, item, 3531 ioff - total_data, &token); 3532 } 3533 /* shift the items */ 3534 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3535 btrfs_item_nr_offset(slot), 3536 (nritems - slot) * sizeof(struct btrfs_item)); 3537 3538 /* shift the data */ 3539 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3540 data_end - total_data, btrfs_leaf_data(leaf) + 3541 data_end, old_data - data_end); 3542 data_end = old_data; 3543 } else { 3544 /* 3545 * this sucks but it has to be done, if we are inserting at 3546 * the end of the leaf only insert 1 of the items, since we 3547 * have no way of knowing whats on the next leaf and we'd have 3548 * to drop our current locks to figure it out 3549 */ 3550 nr = 1; 3551 } 3552 3553 /* setup the item for the new data */ 3554 for (i = 0; i < nr; i++) { 3555 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3556 btrfs_set_item_key(leaf, &disk_key, slot + i); 3557 item = btrfs_item_nr(leaf, slot + i); 3558 btrfs_set_token_item_offset(leaf, item, 3559 data_end - data_size[i], &token); 3560 data_end -= data_size[i]; 3561 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 3562 } 3563 btrfs_set_header_nritems(leaf, nritems + nr); 3564 btrfs_mark_buffer_dirty(leaf); 3565 3566 ret = 0; 3567 if (slot == 0) { 3568 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3569 fixup_low_keys(trans, root, path, &disk_key, 1); 3570 } 3571 3572 if (btrfs_leaf_free_space(root, leaf) < 0) { 3573 btrfs_print_leaf(root, leaf); 3574 BUG(); 3575 } 3576 out: 3577 if (!ret) 3578 ret = nr; 3579 return ret; 3580 } 3581 3582 /* 3583 * this is a helper for btrfs_insert_empty_items, the main goal here is 3584 * to save stack depth by doing the bulk of the work in a function 3585 * that doesn't call btrfs_search_slot 3586 */ 3587 void setup_items_for_insert(struct btrfs_trans_handle *trans, 3588 struct btrfs_root *root, struct btrfs_path *path, 3589 struct btrfs_key *cpu_key, u32 *data_size, 3590 u32 total_data, u32 total_size, int nr) 3591 { 3592 struct btrfs_item *item; 3593 int i; 3594 u32 nritems; 3595 unsigned int data_end; 3596 struct btrfs_disk_key disk_key; 3597 struct extent_buffer *leaf; 3598 int slot; 3599 struct btrfs_map_token token; 3600 3601 btrfs_init_map_token(&token); 3602 3603 leaf = path->nodes[0]; 3604 slot = path->slots[0]; 3605 3606 nritems = btrfs_header_nritems(leaf); 3607 data_end = leaf_data_end(root, leaf); 3608 3609 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3610 btrfs_print_leaf(root, leaf); 3611 printk(KERN_CRIT "not enough freespace need %u have %d\n", 3612 total_size, btrfs_leaf_free_space(root, leaf)); 3613 BUG(); 3614 } 3615 3616 if (slot != nritems) { 3617 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3618 3619 if (old_data < data_end) { 3620 btrfs_print_leaf(root, leaf); 3621 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3622 slot, old_data, data_end); 3623 BUG_ON(1); 3624 } 3625 /* 3626 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3627 */ 3628 /* first correct the data pointers */ 3629 for (i = slot; i < nritems; i++) { 3630 u32 ioff; 3631 3632 item = btrfs_item_nr(leaf, i); 3633 ioff = btrfs_token_item_offset(leaf, item, &token); 3634 btrfs_set_token_item_offset(leaf, item, 3635 ioff - total_data, &token); 3636 } 3637 /* shift the items */ 3638 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3639 btrfs_item_nr_offset(slot), 3640 (nritems - slot) * sizeof(struct btrfs_item)); 3641 3642 /* shift the data */ 3643 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3644 data_end - total_data, btrfs_leaf_data(leaf) + 3645 data_end, old_data - data_end); 3646 data_end = old_data; 3647 } 3648 3649 /* setup the item for the new data */ 3650 for (i = 0; i < nr; i++) { 3651 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3652 btrfs_set_item_key(leaf, &disk_key, slot + i); 3653 item = btrfs_item_nr(leaf, slot + i); 3654 btrfs_set_token_item_offset(leaf, item, 3655 data_end - data_size[i], &token); 3656 data_end -= data_size[i]; 3657 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 3658 } 3659 3660 btrfs_set_header_nritems(leaf, nritems + nr); 3661 3662 if (slot == 0) { 3663 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3664 fixup_low_keys(trans, root, path, &disk_key, 1); 3665 } 3666 btrfs_unlock_up_safe(path, 1); 3667 btrfs_mark_buffer_dirty(leaf); 3668 3669 if (btrfs_leaf_free_space(root, leaf) < 0) { 3670 btrfs_print_leaf(root, leaf); 3671 BUG(); 3672 } 3673 } 3674 3675 /* 3676 * Given a key and some data, insert items into the tree. 3677 * This does all the path init required, making room in the tree if needed. 3678 */ 3679 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3680 struct btrfs_root *root, 3681 struct btrfs_path *path, 3682 struct btrfs_key *cpu_key, u32 *data_size, 3683 int nr) 3684 { 3685 int ret = 0; 3686 int slot; 3687 int i; 3688 u32 total_size = 0; 3689 u32 total_data = 0; 3690 3691 for (i = 0; i < nr; i++) 3692 total_data += data_size[i]; 3693 3694 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3695 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3696 if (ret == 0) 3697 return -EEXIST; 3698 if (ret < 0) 3699 return ret; 3700 3701 slot = path->slots[0]; 3702 BUG_ON(slot < 0); 3703 3704 setup_items_for_insert(trans, root, path, cpu_key, data_size, 3705 total_data, total_size, nr); 3706 return 0; 3707 } 3708 3709 /* 3710 * Given a key and some data, insert an item into the tree. 3711 * This does all the path init required, making room in the tree if needed. 3712 */ 3713 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3714 *root, struct btrfs_key *cpu_key, void *data, u32 3715 data_size) 3716 { 3717 int ret = 0; 3718 struct btrfs_path *path; 3719 struct extent_buffer *leaf; 3720 unsigned long ptr; 3721 3722 path = btrfs_alloc_path(); 3723 if (!path) 3724 return -ENOMEM; 3725 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3726 if (!ret) { 3727 leaf = path->nodes[0]; 3728 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3729 write_extent_buffer(leaf, data, ptr, data_size); 3730 btrfs_mark_buffer_dirty(leaf); 3731 } 3732 btrfs_free_path(path); 3733 return ret; 3734 } 3735 3736 /* 3737 * delete the pointer from a given node. 3738 * 3739 * the tree should have been previously balanced so the deletion does not 3740 * empty a node. 3741 */ 3742 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3743 struct btrfs_path *path, int level, int slot) 3744 { 3745 struct extent_buffer *parent = path->nodes[level]; 3746 u32 nritems; 3747 3748 nritems = btrfs_header_nritems(parent); 3749 if (slot != nritems - 1) { 3750 memmove_extent_buffer(parent, 3751 btrfs_node_key_ptr_offset(slot), 3752 btrfs_node_key_ptr_offset(slot + 1), 3753 sizeof(struct btrfs_key_ptr) * 3754 (nritems - slot - 1)); 3755 } 3756 nritems--; 3757 btrfs_set_header_nritems(parent, nritems); 3758 if (nritems == 0 && parent == root->node) { 3759 BUG_ON(btrfs_header_level(root->node) != 1); 3760 /* just turn the root into a leaf and break */ 3761 btrfs_set_header_level(root->node, 0); 3762 } else if (slot == 0) { 3763 struct btrfs_disk_key disk_key; 3764 3765 btrfs_node_key(parent, &disk_key, 0); 3766 fixup_low_keys(trans, root, path, &disk_key, level + 1); 3767 } 3768 btrfs_mark_buffer_dirty(parent); 3769 } 3770 3771 /* 3772 * a helper function to delete the leaf pointed to by path->slots[1] and 3773 * path->nodes[1]. 3774 * 3775 * This deletes the pointer in path->nodes[1] and frees the leaf 3776 * block extent. zero is returned if it all worked out, < 0 otherwise. 3777 * 3778 * The path must have already been setup for deleting the leaf, including 3779 * all the proper balancing. path->nodes[1] must be locked. 3780 */ 3781 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 3782 struct btrfs_root *root, 3783 struct btrfs_path *path, 3784 struct extent_buffer *leaf) 3785 { 3786 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 3787 del_ptr(trans, root, path, 1, path->slots[1]); 3788 3789 /* 3790 * btrfs_free_extent is expensive, we want to make sure we 3791 * aren't holding any locks when we call it 3792 */ 3793 btrfs_unlock_up_safe(path, 0); 3794 3795 root_sub_used(root, leaf->len); 3796 3797 extent_buffer_get(leaf); 3798 btrfs_free_tree_block(trans, root, leaf, 0, 1, 0); 3799 free_extent_buffer_stale(leaf); 3800 } 3801 /* 3802 * delete the item at the leaf level in path. If that empties 3803 * the leaf, remove it from the tree 3804 */ 3805 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3806 struct btrfs_path *path, int slot, int nr) 3807 { 3808 struct extent_buffer *leaf; 3809 struct btrfs_item *item; 3810 int last_off; 3811 int dsize = 0; 3812 int ret = 0; 3813 int wret; 3814 int i; 3815 u32 nritems; 3816 struct btrfs_map_token token; 3817 3818 btrfs_init_map_token(&token); 3819 3820 leaf = path->nodes[0]; 3821 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 3822 3823 for (i = 0; i < nr; i++) 3824 dsize += btrfs_item_size_nr(leaf, slot + i); 3825 3826 nritems = btrfs_header_nritems(leaf); 3827 3828 if (slot + nr != nritems) { 3829 int data_end = leaf_data_end(root, leaf); 3830 3831 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3832 data_end + dsize, 3833 btrfs_leaf_data(leaf) + data_end, 3834 last_off - data_end); 3835 3836 for (i = slot + nr; i < nritems; i++) { 3837 u32 ioff; 3838 3839 item = btrfs_item_nr(leaf, i); 3840 ioff = btrfs_token_item_offset(leaf, item, &token); 3841 btrfs_set_token_item_offset(leaf, item, 3842 ioff + dsize, &token); 3843 } 3844 3845 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 3846 btrfs_item_nr_offset(slot + nr), 3847 sizeof(struct btrfs_item) * 3848 (nritems - slot - nr)); 3849 } 3850 btrfs_set_header_nritems(leaf, nritems - nr); 3851 nritems -= nr; 3852 3853 /* delete the leaf if we've emptied it */ 3854 if (nritems == 0) { 3855 if (leaf == root->node) { 3856 btrfs_set_header_level(leaf, 0); 3857 } else { 3858 btrfs_set_path_blocking(path); 3859 clean_tree_block(trans, root, leaf); 3860 btrfs_del_leaf(trans, root, path, leaf); 3861 } 3862 } else { 3863 int used = leaf_space_used(leaf, 0, nritems); 3864 if (slot == 0) { 3865 struct btrfs_disk_key disk_key; 3866 3867 btrfs_item_key(leaf, &disk_key, 0); 3868 fixup_low_keys(trans, root, path, &disk_key, 1); 3869 } 3870 3871 /* delete the leaf if it is mostly empty */ 3872 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 3873 /* push_leaf_left fixes the path. 3874 * make sure the path still points to our leaf 3875 * for possible call to del_ptr below 3876 */ 3877 slot = path->slots[1]; 3878 extent_buffer_get(leaf); 3879 3880 btrfs_set_path_blocking(path); 3881 wret = push_leaf_left(trans, root, path, 1, 1, 3882 1, (u32)-1); 3883 if (wret < 0 && wret != -ENOSPC) 3884 ret = wret; 3885 3886 if (path->nodes[0] == leaf && 3887 btrfs_header_nritems(leaf)) { 3888 wret = push_leaf_right(trans, root, path, 1, 3889 1, 1, 0); 3890 if (wret < 0 && wret != -ENOSPC) 3891 ret = wret; 3892 } 3893 3894 if (btrfs_header_nritems(leaf) == 0) { 3895 path->slots[1] = slot; 3896 btrfs_del_leaf(trans, root, path, leaf); 3897 free_extent_buffer(leaf); 3898 ret = 0; 3899 } else { 3900 /* if we're still in the path, make sure 3901 * we're dirty. Otherwise, one of the 3902 * push_leaf functions must have already 3903 * dirtied this buffer 3904 */ 3905 if (path->nodes[0] == leaf) 3906 btrfs_mark_buffer_dirty(leaf); 3907 free_extent_buffer(leaf); 3908 } 3909 } else { 3910 btrfs_mark_buffer_dirty(leaf); 3911 } 3912 } 3913 return ret; 3914 } 3915 3916 /* 3917 * search the tree again to find a leaf with lesser keys 3918 * returns 0 if it found something or 1 if there are no lesser leaves. 3919 * returns < 0 on io errors. 3920 * 3921 * This may release the path, and so you may lose any locks held at the 3922 * time you call it. 3923 */ 3924 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 3925 { 3926 struct btrfs_key key; 3927 struct btrfs_disk_key found_key; 3928 int ret; 3929 3930 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 3931 3932 if (key.offset > 0) 3933 key.offset--; 3934 else if (key.type > 0) 3935 key.type--; 3936 else if (key.objectid > 0) 3937 key.objectid--; 3938 else 3939 return 1; 3940 3941 btrfs_release_path(path); 3942 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3943 if (ret < 0) 3944 return ret; 3945 btrfs_item_key(path->nodes[0], &found_key, 0); 3946 ret = comp_keys(&found_key, &key); 3947 if (ret < 0) 3948 return 0; 3949 return 1; 3950 } 3951 3952 /* 3953 * A helper function to walk down the tree starting at min_key, and looking 3954 * for nodes or leaves that are either in cache or have a minimum 3955 * transaction id. This is used by the btree defrag code, and tree logging 3956 * 3957 * This does not cow, but it does stuff the starting key it finds back 3958 * into min_key, so you can call btrfs_search_slot with cow=1 on the 3959 * key and get a writable path. 3960 * 3961 * This does lock as it descends, and path->keep_locks should be set 3962 * to 1 by the caller. 3963 * 3964 * This honors path->lowest_level to prevent descent past a given level 3965 * of the tree. 3966 * 3967 * min_trans indicates the oldest transaction that you are interested 3968 * in walking through. Any nodes or leaves older than min_trans are 3969 * skipped over (without reading them). 3970 * 3971 * returns zero if something useful was found, < 0 on error and 1 if there 3972 * was nothing in the tree that matched the search criteria. 3973 */ 3974 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3975 struct btrfs_key *max_key, 3976 struct btrfs_path *path, int cache_only, 3977 u64 min_trans) 3978 { 3979 struct extent_buffer *cur; 3980 struct btrfs_key found_key; 3981 int slot; 3982 int sret; 3983 u32 nritems; 3984 int level; 3985 int ret = 1; 3986 3987 WARN_ON(!path->keep_locks); 3988 again: 3989 cur = btrfs_read_lock_root_node(root); 3990 level = btrfs_header_level(cur); 3991 WARN_ON(path->nodes[level]); 3992 path->nodes[level] = cur; 3993 path->locks[level] = BTRFS_READ_LOCK; 3994 3995 if (btrfs_header_generation(cur) < min_trans) { 3996 ret = 1; 3997 goto out; 3998 } 3999 while (1) { 4000 nritems = btrfs_header_nritems(cur); 4001 level = btrfs_header_level(cur); 4002 sret = bin_search(cur, min_key, level, &slot); 4003 4004 /* at the lowest level, we're done, setup the path and exit */ 4005 if (level == path->lowest_level) { 4006 if (slot >= nritems) 4007 goto find_next_key; 4008 ret = 0; 4009 path->slots[level] = slot; 4010 btrfs_item_key_to_cpu(cur, &found_key, slot); 4011 goto out; 4012 } 4013 if (sret && slot > 0) 4014 slot--; 4015 /* 4016 * check this node pointer against the cache_only and 4017 * min_trans parameters. If it isn't in cache or is too 4018 * old, skip to the next one. 4019 */ 4020 while (slot < nritems) { 4021 u64 blockptr; 4022 u64 gen; 4023 struct extent_buffer *tmp; 4024 struct btrfs_disk_key disk_key; 4025 4026 blockptr = btrfs_node_blockptr(cur, slot); 4027 gen = btrfs_node_ptr_generation(cur, slot); 4028 if (gen < min_trans) { 4029 slot++; 4030 continue; 4031 } 4032 if (!cache_only) 4033 break; 4034 4035 if (max_key) { 4036 btrfs_node_key(cur, &disk_key, slot); 4037 if (comp_keys(&disk_key, max_key) >= 0) { 4038 ret = 1; 4039 goto out; 4040 } 4041 } 4042 4043 tmp = btrfs_find_tree_block(root, blockptr, 4044 btrfs_level_size(root, level - 1)); 4045 4046 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 4047 free_extent_buffer(tmp); 4048 break; 4049 } 4050 if (tmp) 4051 free_extent_buffer(tmp); 4052 slot++; 4053 } 4054 find_next_key: 4055 /* 4056 * we didn't find a candidate key in this node, walk forward 4057 * and find another one 4058 */ 4059 if (slot >= nritems) { 4060 path->slots[level] = slot; 4061 btrfs_set_path_blocking(path); 4062 sret = btrfs_find_next_key(root, path, min_key, level, 4063 cache_only, min_trans); 4064 if (sret == 0) { 4065 btrfs_release_path(path); 4066 goto again; 4067 } else { 4068 goto out; 4069 } 4070 } 4071 /* save our key for returning back */ 4072 btrfs_node_key_to_cpu(cur, &found_key, slot); 4073 path->slots[level] = slot; 4074 if (level == path->lowest_level) { 4075 ret = 0; 4076 unlock_up(path, level, 1, 0, NULL); 4077 goto out; 4078 } 4079 btrfs_set_path_blocking(path); 4080 cur = read_node_slot(root, cur, slot); 4081 BUG_ON(!cur); /* -ENOMEM */ 4082 4083 btrfs_tree_read_lock(cur); 4084 4085 path->locks[level - 1] = BTRFS_READ_LOCK; 4086 path->nodes[level - 1] = cur; 4087 unlock_up(path, level, 1, 0, NULL); 4088 btrfs_clear_path_blocking(path, NULL, 0); 4089 } 4090 out: 4091 if (ret == 0) 4092 memcpy(min_key, &found_key, sizeof(found_key)); 4093 btrfs_set_path_blocking(path); 4094 return ret; 4095 } 4096 4097 /* 4098 * this is similar to btrfs_next_leaf, but does not try to preserve 4099 * and fixup the path. It looks for and returns the next key in the 4100 * tree based on the current path and the cache_only and min_trans 4101 * parameters. 4102 * 4103 * 0 is returned if another key is found, < 0 if there are any errors 4104 * and 1 is returned if there are no higher keys in the tree 4105 * 4106 * path->keep_locks should be set to 1 on the search made before 4107 * calling this function. 4108 */ 4109 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4110 struct btrfs_key *key, int level, 4111 int cache_only, u64 min_trans) 4112 { 4113 int slot; 4114 struct extent_buffer *c; 4115 4116 WARN_ON(!path->keep_locks); 4117 while (level < BTRFS_MAX_LEVEL) { 4118 if (!path->nodes[level]) 4119 return 1; 4120 4121 slot = path->slots[level] + 1; 4122 c = path->nodes[level]; 4123 next: 4124 if (slot >= btrfs_header_nritems(c)) { 4125 int ret; 4126 int orig_lowest; 4127 struct btrfs_key cur_key; 4128 if (level + 1 >= BTRFS_MAX_LEVEL || 4129 !path->nodes[level + 1]) 4130 return 1; 4131 4132 if (path->locks[level + 1]) { 4133 level++; 4134 continue; 4135 } 4136 4137 slot = btrfs_header_nritems(c) - 1; 4138 if (level == 0) 4139 btrfs_item_key_to_cpu(c, &cur_key, slot); 4140 else 4141 btrfs_node_key_to_cpu(c, &cur_key, slot); 4142 4143 orig_lowest = path->lowest_level; 4144 btrfs_release_path(path); 4145 path->lowest_level = level; 4146 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4147 0, 0); 4148 path->lowest_level = orig_lowest; 4149 if (ret < 0) 4150 return ret; 4151 4152 c = path->nodes[level]; 4153 slot = path->slots[level]; 4154 if (ret == 0) 4155 slot++; 4156 goto next; 4157 } 4158 4159 if (level == 0) 4160 btrfs_item_key_to_cpu(c, key, slot); 4161 else { 4162 u64 blockptr = btrfs_node_blockptr(c, slot); 4163 u64 gen = btrfs_node_ptr_generation(c, slot); 4164 4165 if (cache_only) { 4166 struct extent_buffer *cur; 4167 cur = btrfs_find_tree_block(root, blockptr, 4168 btrfs_level_size(root, level - 1)); 4169 if (!cur || !btrfs_buffer_uptodate(cur, gen)) { 4170 slot++; 4171 if (cur) 4172 free_extent_buffer(cur); 4173 goto next; 4174 } 4175 free_extent_buffer(cur); 4176 } 4177 if (gen < min_trans) { 4178 slot++; 4179 goto next; 4180 } 4181 btrfs_node_key_to_cpu(c, key, slot); 4182 } 4183 return 0; 4184 } 4185 return 1; 4186 } 4187 4188 /* 4189 * search the tree again to find a leaf with greater keys 4190 * returns 0 if it found something or 1 if there are no greater leaves. 4191 * returns < 0 on io errors. 4192 */ 4193 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4194 { 4195 int slot; 4196 int level; 4197 struct extent_buffer *c; 4198 struct extent_buffer *next; 4199 struct btrfs_key key; 4200 u32 nritems; 4201 int ret; 4202 int old_spinning = path->leave_spinning; 4203 int next_rw_lock = 0; 4204 4205 nritems = btrfs_header_nritems(path->nodes[0]); 4206 if (nritems == 0) 4207 return 1; 4208 4209 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4210 again: 4211 level = 1; 4212 next = NULL; 4213 next_rw_lock = 0; 4214 btrfs_release_path(path); 4215 4216 path->keep_locks = 1; 4217 path->leave_spinning = 1; 4218 4219 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4220 path->keep_locks = 0; 4221 4222 if (ret < 0) 4223 return ret; 4224 4225 nritems = btrfs_header_nritems(path->nodes[0]); 4226 /* 4227 * by releasing the path above we dropped all our locks. A balance 4228 * could have added more items next to the key that used to be 4229 * at the very end of the block. So, check again here and 4230 * advance the path if there are now more items available. 4231 */ 4232 if (nritems > 0 && path->slots[0] < nritems - 1) { 4233 if (ret == 0) 4234 path->slots[0]++; 4235 ret = 0; 4236 goto done; 4237 } 4238 4239 while (level < BTRFS_MAX_LEVEL) { 4240 if (!path->nodes[level]) { 4241 ret = 1; 4242 goto done; 4243 } 4244 4245 slot = path->slots[level] + 1; 4246 c = path->nodes[level]; 4247 if (slot >= btrfs_header_nritems(c)) { 4248 level++; 4249 if (level == BTRFS_MAX_LEVEL) { 4250 ret = 1; 4251 goto done; 4252 } 4253 continue; 4254 } 4255 4256 if (next) { 4257 btrfs_tree_unlock_rw(next, next_rw_lock); 4258 free_extent_buffer(next); 4259 } 4260 4261 next = c; 4262 next_rw_lock = path->locks[level]; 4263 ret = read_block_for_search(NULL, root, path, &next, level, 4264 slot, &key); 4265 if (ret == -EAGAIN) 4266 goto again; 4267 4268 if (ret < 0) { 4269 btrfs_release_path(path); 4270 goto done; 4271 } 4272 4273 if (!path->skip_locking) { 4274 ret = btrfs_try_tree_read_lock(next); 4275 if (!ret) { 4276 btrfs_set_path_blocking(path); 4277 btrfs_tree_read_lock(next); 4278 btrfs_clear_path_blocking(path, next, 4279 BTRFS_READ_LOCK); 4280 } 4281 next_rw_lock = BTRFS_READ_LOCK; 4282 } 4283 break; 4284 } 4285 path->slots[level] = slot; 4286 while (1) { 4287 level--; 4288 c = path->nodes[level]; 4289 if (path->locks[level]) 4290 btrfs_tree_unlock_rw(c, path->locks[level]); 4291 4292 free_extent_buffer(c); 4293 path->nodes[level] = next; 4294 path->slots[level] = 0; 4295 if (!path->skip_locking) 4296 path->locks[level] = next_rw_lock; 4297 if (!level) 4298 break; 4299 4300 ret = read_block_for_search(NULL, root, path, &next, level, 4301 0, &key); 4302 if (ret == -EAGAIN) 4303 goto again; 4304 4305 if (ret < 0) { 4306 btrfs_release_path(path); 4307 goto done; 4308 } 4309 4310 if (!path->skip_locking) { 4311 ret = btrfs_try_tree_read_lock(next); 4312 if (!ret) { 4313 btrfs_set_path_blocking(path); 4314 btrfs_tree_read_lock(next); 4315 btrfs_clear_path_blocking(path, next, 4316 BTRFS_READ_LOCK); 4317 } 4318 next_rw_lock = BTRFS_READ_LOCK; 4319 } 4320 } 4321 ret = 0; 4322 done: 4323 unlock_up(path, 0, 1, 0, NULL); 4324 path->leave_spinning = old_spinning; 4325 if (!old_spinning) 4326 btrfs_set_path_blocking(path); 4327 4328 return ret; 4329 } 4330 4331 /* 4332 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4333 * searching until it gets past min_objectid or finds an item of 'type' 4334 * 4335 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4336 */ 4337 int btrfs_previous_item(struct btrfs_root *root, 4338 struct btrfs_path *path, u64 min_objectid, 4339 int type) 4340 { 4341 struct btrfs_key found_key; 4342 struct extent_buffer *leaf; 4343 u32 nritems; 4344 int ret; 4345 4346 while (1) { 4347 if (path->slots[0] == 0) { 4348 btrfs_set_path_blocking(path); 4349 ret = btrfs_prev_leaf(root, path); 4350 if (ret != 0) 4351 return ret; 4352 } else { 4353 path->slots[0]--; 4354 } 4355 leaf = path->nodes[0]; 4356 nritems = btrfs_header_nritems(leaf); 4357 if (nritems == 0) 4358 return 1; 4359 if (path->slots[0] == nritems) 4360 path->slots[0]--; 4361 4362 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4363 if (found_key.objectid < min_objectid) 4364 break; 4365 if (found_key.type == type) 4366 return 0; 4367 if (found_key.objectid == min_objectid && 4368 found_key.type < type) 4369 break; 4370 } 4371 return 1; 4372 } 4373