xref: /linux/fs/btrfs/ctree.c (revision 2dbf708448c836754d25fe6108c5bfe1f5697c95)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26 
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28 		      *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_key *ins_key,
31 		      struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33 			  struct btrfs_root *root, struct extent_buffer *dst,
34 			  struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36 			      struct btrfs_root *root,
37 			      struct extent_buffer *dst_buf,
38 			      struct extent_buffer *src_buf);
39 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40 		   struct btrfs_path *path, int level, int slot);
41 
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44 	struct btrfs_path *path;
45 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
46 	return path;
47 }
48 
49 /*
50  * set all locked nodes in the path to blocking locks.  This should
51  * be done before scheduling
52  */
53 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
54 {
55 	int i;
56 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
57 		if (!p->nodes[i] || !p->locks[i])
58 			continue;
59 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
60 		if (p->locks[i] == BTRFS_READ_LOCK)
61 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
62 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
63 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
64 	}
65 }
66 
67 /*
68  * reset all the locked nodes in the patch to spinning locks.
69  *
70  * held is used to keep lockdep happy, when lockdep is enabled
71  * we set held to a blocking lock before we go around and
72  * retake all the spinlocks in the path.  You can safely use NULL
73  * for held
74  */
75 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
76 					struct extent_buffer *held, int held_rw)
77 {
78 	int i;
79 
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81 	/* lockdep really cares that we take all of these spinlocks
82 	 * in the right order.  If any of the locks in the path are not
83 	 * currently blocking, it is going to complain.  So, make really
84 	 * really sure by forcing the path to blocking before we clear
85 	 * the path blocking.
86 	 */
87 	if (held) {
88 		btrfs_set_lock_blocking_rw(held, held_rw);
89 		if (held_rw == BTRFS_WRITE_LOCK)
90 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
91 		else if (held_rw == BTRFS_READ_LOCK)
92 			held_rw = BTRFS_READ_LOCK_BLOCKING;
93 	}
94 	btrfs_set_path_blocking(p);
95 #endif
96 
97 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
98 		if (p->nodes[i] && p->locks[i]) {
99 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
100 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
101 				p->locks[i] = BTRFS_WRITE_LOCK;
102 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
103 				p->locks[i] = BTRFS_READ_LOCK;
104 		}
105 	}
106 
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 	if (held)
109 		btrfs_clear_lock_blocking_rw(held, held_rw);
110 #endif
111 }
112 
113 /* this also releases the path */
114 void btrfs_free_path(struct btrfs_path *p)
115 {
116 	if (!p)
117 		return;
118 	btrfs_release_path(p);
119 	kmem_cache_free(btrfs_path_cachep, p);
120 }
121 
122 /*
123  * path release drops references on the extent buffers in the path
124  * and it drops any locks held by this path
125  *
126  * It is safe to call this on paths that no locks or extent buffers held.
127  */
128 noinline void btrfs_release_path(struct btrfs_path *p)
129 {
130 	int i;
131 
132 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
133 		p->slots[i] = 0;
134 		if (!p->nodes[i])
135 			continue;
136 		if (p->locks[i]) {
137 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
138 			p->locks[i] = 0;
139 		}
140 		free_extent_buffer(p->nodes[i]);
141 		p->nodes[i] = NULL;
142 	}
143 }
144 
145 /*
146  * safely gets a reference on the root node of a tree.  A lock
147  * is not taken, so a concurrent writer may put a different node
148  * at the root of the tree.  See btrfs_lock_root_node for the
149  * looping required.
150  *
151  * The extent buffer returned by this has a reference taken, so
152  * it won't disappear.  It may stop being the root of the tree
153  * at any time because there are no locks held.
154  */
155 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
156 {
157 	struct extent_buffer *eb;
158 
159 	while (1) {
160 		rcu_read_lock();
161 		eb = rcu_dereference(root->node);
162 
163 		/*
164 		 * RCU really hurts here, we could free up the root node because
165 		 * it was cow'ed but we may not get the new root node yet so do
166 		 * the inc_not_zero dance and if it doesn't work then
167 		 * synchronize_rcu and try again.
168 		 */
169 		if (atomic_inc_not_zero(&eb->refs)) {
170 			rcu_read_unlock();
171 			break;
172 		}
173 		rcu_read_unlock();
174 		synchronize_rcu();
175 	}
176 	return eb;
177 }
178 
179 /* loop around taking references on and locking the root node of the
180  * tree until you end up with a lock on the root.  A locked buffer
181  * is returned, with a reference held.
182  */
183 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
184 {
185 	struct extent_buffer *eb;
186 
187 	while (1) {
188 		eb = btrfs_root_node(root);
189 		btrfs_tree_lock(eb);
190 		if (eb == root->node)
191 			break;
192 		btrfs_tree_unlock(eb);
193 		free_extent_buffer(eb);
194 	}
195 	return eb;
196 }
197 
198 /* loop around taking references on and locking the root node of the
199  * tree until you end up with a lock on the root.  A locked buffer
200  * is returned, with a reference held.
201  */
202 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
203 {
204 	struct extent_buffer *eb;
205 
206 	while (1) {
207 		eb = btrfs_root_node(root);
208 		btrfs_tree_read_lock(eb);
209 		if (eb == root->node)
210 			break;
211 		btrfs_tree_read_unlock(eb);
212 		free_extent_buffer(eb);
213 	}
214 	return eb;
215 }
216 
217 /* cowonly root (everything not a reference counted cow subvolume), just get
218  * put onto a simple dirty list.  transaction.c walks this to make sure they
219  * get properly updated on disk.
220  */
221 static void add_root_to_dirty_list(struct btrfs_root *root)
222 {
223 	if (root->track_dirty && list_empty(&root->dirty_list)) {
224 		list_add(&root->dirty_list,
225 			 &root->fs_info->dirty_cowonly_roots);
226 	}
227 }
228 
229 /*
230  * used by snapshot creation to make a copy of a root for a tree with
231  * a given objectid.  The buffer with the new root node is returned in
232  * cow_ret, and this func returns zero on success or a negative error code.
233  */
234 int btrfs_copy_root(struct btrfs_trans_handle *trans,
235 		      struct btrfs_root *root,
236 		      struct extent_buffer *buf,
237 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
238 {
239 	struct extent_buffer *cow;
240 	int ret = 0;
241 	int level;
242 	struct btrfs_disk_key disk_key;
243 
244 	WARN_ON(root->ref_cows && trans->transid !=
245 		root->fs_info->running_transaction->transid);
246 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
247 
248 	level = btrfs_header_level(buf);
249 	if (level == 0)
250 		btrfs_item_key(buf, &disk_key, 0);
251 	else
252 		btrfs_node_key(buf, &disk_key, 0);
253 
254 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
255 				     new_root_objectid, &disk_key, level,
256 				     buf->start, 0, 1);
257 	if (IS_ERR(cow))
258 		return PTR_ERR(cow);
259 
260 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
261 	btrfs_set_header_bytenr(cow, cow->start);
262 	btrfs_set_header_generation(cow, trans->transid);
263 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
264 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
265 				     BTRFS_HEADER_FLAG_RELOC);
266 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
267 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
268 	else
269 		btrfs_set_header_owner(cow, new_root_objectid);
270 
271 	write_extent_buffer(cow, root->fs_info->fsid,
272 			    (unsigned long)btrfs_header_fsid(cow),
273 			    BTRFS_FSID_SIZE);
274 
275 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
276 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
277 		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
278 	else
279 		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
280 
281 	if (ret)
282 		return ret;
283 
284 	btrfs_mark_buffer_dirty(cow);
285 	*cow_ret = cow;
286 	return 0;
287 }
288 
289 /*
290  * check if the tree block can be shared by multiple trees
291  */
292 int btrfs_block_can_be_shared(struct btrfs_root *root,
293 			      struct extent_buffer *buf)
294 {
295 	/*
296 	 * Tree blocks not in refernece counted trees and tree roots
297 	 * are never shared. If a block was allocated after the last
298 	 * snapshot and the block was not allocated by tree relocation,
299 	 * we know the block is not shared.
300 	 */
301 	if (root->ref_cows &&
302 	    buf != root->node && buf != root->commit_root &&
303 	    (btrfs_header_generation(buf) <=
304 	     btrfs_root_last_snapshot(&root->root_item) ||
305 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
306 		return 1;
307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
308 	if (root->ref_cows &&
309 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
310 		return 1;
311 #endif
312 	return 0;
313 }
314 
315 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
316 				       struct btrfs_root *root,
317 				       struct extent_buffer *buf,
318 				       struct extent_buffer *cow,
319 				       int *last_ref)
320 {
321 	u64 refs;
322 	u64 owner;
323 	u64 flags;
324 	u64 new_flags = 0;
325 	int ret;
326 
327 	/*
328 	 * Backrefs update rules:
329 	 *
330 	 * Always use full backrefs for extent pointers in tree block
331 	 * allocated by tree relocation.
332 	 *
333 	 * If a shared tree block is no longer referenced by its owner
334 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
335 	 * use full backrefs for extent pointers in tree block.
336 	 *
337 	 * If a tree block is been relocating
338 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
339 	 * use full backrefs for extent pointers in tree block.
340 	 * The reason for this is some operations (such as drop tree)
341 	 * are only allowed for blocks use full backrefs.
342 	 */
343 
344 	if (btrfs_block_can_be_shared(root, buf)) {
345 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
346 					       buf->len, &refs, &flags);
347 		if (ret)
348 			return ret;
349 		if (refs == 0) {
350 			ret = -EROFS;
351 			btrfs_std_error(root->fs_info, ret);
352 			return ret;
353 		}
354 	} else {
355 		refs = 1;
356 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
357 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
358 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
359 		else
360 			flags = 0;
361 	}
362 
363 	owner = btrfs_header_owner(buf);
364 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
365 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
366 
367 	if (refs > 1) {
368 		if ((owner == root->root_key.objectid ||
369 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
370 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
371 			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
372 			BUG_ON(ret); /* -ENOMEM */
373 
374 			if (root->root_key.objectid ==
375 			    BTRFS_TREE_RELOC_OBJECTID) {
376 				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
377 				BUG_ON(ret); /* -ENOMEM */
378 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
379 				BUG_ON(ret); /* -ENOMEM */
380 			}
381 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
382 		} else {
383 
384 			if (root->root_key.objectid ==
385 			    BTRFS_TREE_RELOC_OBJECTID)
386 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
387 			else
388 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
389 			BUG_ON(ret); /* -ENOMEM */
390 		}
391 		if (new_flags != 0) {
392 			ret = btrfs_set_disk_extent_flags(trans, root,
393 							  buf->start,
394 							  buf->len,
395 							  new_flags, 0);
396 			if (ret)
397 				return ret;
398 		}
399 	} else {
400 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
401 			if (root->root_key.objectid ==
402 			    BTRFS_TREE_RELOC_OBJECTID)
403 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
404 			else
405 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
406 			BUG_ON(ret); /* -ENOMEM */
407 			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
408 			BUG_ON(ret); /* -ENOMEM */
409 		}
410 		clean_tree_block(trans, root, buf);
411 		*last_ref = 1;
412 	}
413 	return 0;
414 }
415 
416 /*
417  * does the dirty work in cow of a single block.  The parent block (if
418  * supplied) is updated to point to the new cow copy.  The new buffer is marked
419  * dirty and returned locked.  If you modify the block it needs to be marked
420  * dirty again.
421  *
422  * search_start -- an allocation hint for the new block
423  *
424  * empty_size -- a hint that you plan on doing more cow.  This is the size in
425  * bytes the allocator should try to find free next to the block it returns.
426  * This is just a hint and may be ignored by the allocator.
427  */
428 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
429 			     struct btrfs_root *root,
430 			     struct extent_buffer *buf,
431 			     struct extent_buffer *parent, int parent_slot,
432 			     struct extent_buffer **cow_ret,
433 			     u64 search_start, u64 empty_size)
434 {
435 	struct btrfs_disk_key disk_key;
436 	struct extent_buffer *cow;
437 	int level, ret;
438 	int last_ref = 0;
439 	int unlock_orig = 0;
440 	u64 parent_start;
441 
442 	if (*cow_ret == buf)
443 		unlock_orig = 1;
444 
445 	btrfs_assert_tree_locked(buf);
446 
447 	WARN_ON(root->ref_cows && trans->transid !=
448 		root->fs_info->running_transaction->transid);
449 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
450 
451 	level = btrfs_header_level(buf);
452 
453 	if (level == 0)
454 		btrfs_item_key(buf, &disk_key, 0);
455 	else
456 		btrfs_node_key(buf, &disk_key, 0);
457 
458 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
459 		if (parent)
460 			parent_start = parent->start;
461 		else
462 			parent_start = 0;
463 	} else
464 		parent_start = 0;
465 
466 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
467 				     root->root_key.objectid, &disk_key,
468 				     level, search_start, empty_size, 1);
469 	if (IS_ERR(cow))
470 		return PTR_ERR(cow);
471 
472 	/* cow is set to blocking by btrfs_init_new_buffer */
473 
474 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
475 	btrfs_set_header_bytenr(cow, cow->start);
476 	btrfs_set_header_generation(cow, trans->transid);
477 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
478 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
479 				     BTRFS_HEADER_FLAG_RELOC);
480 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
481 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
482 	else
483 		btrfs_set_header_owner(cow, root->root_key.objectid);
484 
485 	write_extent_buffer(cow, root->fs_info->fsid,
486 			    (unsigned long)btrfs_header_fsid(cow),
487 			    BTRFS_FSID_SIZE);
488 
489 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
490 	if (ret) {
491 		btrfs_abort_transaction(trans, root, ret);
492 		return ret;
493 	}
494 
495 	if (root->ref_cows)
496 		btrfs_reloc_cow_block(trans, root, buf, cow);
497 
498 	if (buf == root->node) {
499 		WARN_ON(parent && parent != buf);
500 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
501 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
502 			parent_start = buf->start;
503 		else
504 			parent_start = 0;
505 
506 		extent_buffer_get(cow);
507 		rcu_assign_pointer(root->node, cow);
508 
509 		btrfs_free_tree_block(trans, root, buf, parent_start,
510 				      last_ref, 1);
511 		free_extent_buffer(buf);
512 		add_root_to_dirty_list(root);
513 	} else {
514 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
515 			parent_start = parent->start;
516 		else
517 			parent_start = 0;
518 
519 		WARN_ON(trans->transid != btrfs_header_generation(parent));
520 		btrfs_set_node_blockptr(parent, parent_slot,
521 					cow->start);
522 		btrfs_set_node_ptr_generation(parent, parent_slot,
523 					      trans->transid);
524 		btrfs_mark_buffer_dirty(parent);
525 		btrfs_free_tree_block(trans, root, buf, parent_start,
526 				      last_ref, 1);
527 	}
528 	if (unlock_orig)
529 		btrfs_tree_unlock(buf);
530 	free_extent_buffer_stale(buf);
531 	btrfs_mark_buffer_dirty(cow);
532 	*cow_ret = cow;
533 	return 0;
534 }
535 
536 static inline int should_cow_block(struct btrfs_trans_handle *trans,
537 				   struct btrfs_root *root,
538 				   struct extent_buffer *buf)
539 {
540 	/* ensure we can see the force_cow */
541 	smp_rmb();
542 
543 	/*
544 	 * We do not need to cow a block if
545 	 * 1) this block is not created or changed in this transaction;
546 	 * 2) this block does not belong to TREE_RELOC tree;
547 	 * 3) the root is not forced COW.
548 	 *
549 	 * What is forced COW:
550 	 *    when we create snapshot during commiting the transaction,
551 	 *    after we've finished coping src root, we must COW the shared
552 	 *    block to ensure the metadata consistency.
553 	 */
554 	if (btrfs_header_generation(buf) == trans->transid &&
555 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
556 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
557 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
558 	    !root->force_cow)
559 		return 0;
560 	return 1;
561 }
562 
563 /*
564  * cows a single block, see __btrfs_cow_block for the real work.
565  * This version of it has extra checks so that a block isn't cow'd more than
566  * once per transaction, as long as it hasn't been written yet
567  */
568 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
569 		    struct btrfs_root *root, struct extent_buffer *buf,
570 		    struct extent_buffer *parent, int parent_slot,
571 		    struct extent_buffer **cow_ret)
572 {
573 	u64 search_start;
574 	int ret;
575 
576 	if (trans->transaction != root->fs_info->running_transaction) {
577 		printk(KERN_CRIT "trans %llu running %llu\n",
578 		       (unsigned long long)trans->transid,
579 		       (unsigned long long)
580 		       root->fs_info->running_transaction->transid);
581 		WARN_ON(1);
582 	}
583 	if (trans->transid != root->fs_info->generation) {
584 		printk(KERN_CRIT "trans %llu running %llu\n",
585 		       (unsigned long long)trans->transid,
586 		       (unsigned long long)root->fs_info->generation);
587 		WARN_ON(1);
588 	}
589 
590 	if (!should_cow_block(trans, root, buf)) {
591 		*cow_ret = buf;
592 		return 0;
593 	}
594 
595 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
596 
597 	if (parent)
598 		btrfs_set_lock_blocking(parent);
599 	btrfs_set_lock_blocking(buf);
600 
601 	ret = __btrfs_cow_block(trans, root, buf, parent,
602 				 parent_slot, cow_ret, search_start, 0);
603 
604 	trace_btrfs_cow_block(root, buf, *cow_ret);
605 
606 	return ret;
607 }
608 
609 /*
610  * helper function for defrag to decide if two blocks pointed to by a
611  * node are actually close by
612  */
613 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
614 {
615 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
616 		return 1;
617 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
618 		return 1;
619 	return 0;
620 }
621 
622 /*
623  * compare two keys in a memcmp fashion
624  */
625 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
626 {
627 	struct btrfs_key k1;
628 
629 	btrfs_disk_key_to_cpu(&k1, disk);
630 
631 	return btrfs_comp_cpu_keys(&k1, k2);
632 }
633 
634 /*
635  * same as comp_keys only with two btrfs_key's
636  */
637 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
638 {
639 	if (k1->objectid > k2->objectid)
640 		return 1;
641 	if (k1->objectid < k2->objectid)
642 		return -1;
643 	if (k1->type > k2->type)
644 		return 1;
645 	if (k1->type < k2->type)
646 		return -1;
647 	if (k1->offset > k2->offset)
648 		return 1;
649 	if (k1->offset < k2->offset)
650 		return -1;
651 	return 0;
652 }
653 
654 /*
655  * this is used by the defrag code to go through all the
656  * leaves pointed to by a node and reallocate them so that
657  * disk order is close to key order
658  */
659 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
660 		       struct btrfs_root *root, struct extent_buffer *parent,
661 		       int start_slot, int cache_only, u64 *last_ret,
662 		       struct btrfs_key *progress)
663 {
664 	struct extent_buffer *cur;
665 	u64 blocknr;
666 	u64 gen;
667 	u64 search_start = *last_ret;
668 	u64 last_block = 0;
669 	u64 other;
670 	u32 parent_nritems;
671 	int end_slot;
672 	int i;
673 	int err = 0;
674 	int parent_level;
675 	int uptodate;
676 	u32 blocksize;
677 	int progress_passed = 0;
678 	struct btrfs_disk_key disk_key;
679 
680 	parent_level = btrfs_header_level(parent);
681 	if (cache_only && parent_level != 1)
682 		return 0;
683 
684 	if (trans->transaction != root->fs_info->running_transaction)
685 		WARN_ON(1);
686 	if (trans->transid != root->fs_info->generation)
687 		WARN_ON(1);
688 
689 	parent_nritems = btrfs_header_nritems(parent);
690 	blocksize = btrfs_level_size(root, parent_level - 1);
691 	end_slot = parent_nritems;
692 
693 	if (parent_nritems == 1)
694 		return 0;
695 
696 	btrfs_set_lock_blocking(parent);
697 
698 	for (i = start_slot; i < end_slot; i++) {
699 		int close = 1;
700 
701 		btrfs_node_key(parent, &disk_key, i);
702 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
703 			continue;
704 
705 		progress_passed = 1;
706 		blocknr = btrfs_node_blockptr(parent, i);
707 		gen = btrfs_node_ptr_generation(parent, i);
708 		if (last_block == 0)
709 			last_block = blocknr;
710 
711 		if (i > 0) {
712 			other = btrfs_node_blockptr(parent, i - 1);
713 			close = close_blocks(blocknr, other, blocksize);
714 		}
715 		if (!close && i < end_slot - 2) {
716 			other = btrfs_node_blockptr(parent, i + 1);
717 			close = close_blocks(blocknr, other, blocksize);
718 		}
719 		if (close) {
720 			last_block = blocknr;
721 			continue;
722 		}
723 
724 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
725 		if (cur)
726 			uptodate = btrfs_buffer_uptodate(cur, gen);
727 		else
728 			uptodate = 0;
729 		if (!cur || !uptodate) {
730 			if (cache_only) {
731 				free_extent_buffer(cur);
732 				continue;
733 			}
734 			if (!cur) {
735 				cur = read_tree_block(root, blocknr,
736 							 blocksize, gen);
737 				if (!cur)
738 					return -EIO;
739 			} else if (!uptodate) {
740 				btrfs_read_buffer(cur, gen);
741 			}
742 		}
743 		if (search_start == 0)
744 			search_start = last_block;
745 
746 		btrfs_tree_lock(cur);
747 		btrfs_set_lock_blocking(cur);
748 		err = __btrfs_cow_block(trans, root, cur, parent, i,
749 					&cur, search_start,
750 					min(16 * blocksize,
751 					    (end_slot - i) * blocksize));
752 		if (err) {
753 			btrfs_tree_unlock(cur);
754 			free_extent_buffer(cur);
755 			break;
756 		}
757 		search_start = cur->start;
758 		last_block = cur->start;
759 		*last_ret = search_start;
760 		btrfs_tree_unlock(cur);
761 		free_extent_buffer(cur);
762 	}
763 	return err;
764 }
765 
766 /*
767  * The leaf data grows from end-to-front in the node.
768  * this returns the address of the start of the last item,
769  * which is the stop of the leaf data stack
770  */
771 static inline unsigned int leaf_data_end(struct btrfs_root *root,
772 					 struct extent_buffer *leaf)
773 {
774 	u32 nr = btrfs_header_nritems(leaf);
775 	if (nr == 0)
776 		return BTRFS_LEAF_DATA_SIZE(root);
777 	return btrfs_item_offset_nr(leaf, nr - 1);
778 }
779 
780 
781 /*
782  * search for key in the extent_buffer.  The items start at offset p,
783  * and they are item_size apart.  There are 'max' items in p.
784  *
785  * the slot in the array is returned via slot, and it points to
786  * the place where you would insert key if it is not found in
787  * the array.
788  *
789  * slot may point to max if the key is bigger than all of the keys
790  */
791 static noinline int generic_bin_search(struct extent_buffer *eb,
792 				       unsigned long p,
793 				       int item_size, struct btrfs_key *key,
794 				       int max, int *slot)
795 {
796 	int low = 0;
797 	int high = max;
798 	int mid;
799 	int ret;
800 	struct btrfs_disk_key *tmp = NULL;
801 	struct btrfs_disk_key unaligned;
802 	unsigned long offset;
803 	char *kaddr = NULL;
804 	unsigned long map_start = 0;
805 	unsigned long map_len = 0;
806 	int err;
807 
808 	while (low < high) {
809 		mid = (low + high) / 2;
810 		offset = p + mid * item_size;
811 
812 		if (!kaddr || offset < map_start ||
813 		    (offset + sizeof(struct btrfs_disk_key)) >
814 		    map_start + map_len) {
815 
816 			err = map_private_extent_buffer(eb, offset,
817 						sizeof(struct btrfs_disk_key),
818 						&kaddr, &map_start, &map_len);
819 
820 			if (!err) {
821 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
822 							map_start);
823 			} else {
824 				read_extent_buffer(eb, &unaligned,
825 						   offset, sizeof(unaligned));
826 				tmp = &unaligned;
827 			}
828 
829 		} else {
830 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
831 							map_start);
832 		}
833 		ret = comp_keys(tmp, key);
834 
835 		if (ret < 0)
836 			low = mid + 1;
837 		else if (ret > 0)
838 			high = mid;
839 		else {
840 			*slot = mid;
841 			return 0;
842 		}
843 	}
844 	*slot = low;
845 	return 1;
846 }
847 
848 /*
849  * simple bin_search frontend that does the right thing for
850  * leaves vs nodes
851  */
852 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
853 		      int level, int *slot)
854 {
855 	if (level == 0) {
856 		return generic_bin_search(eb,
857 					  offsetof(struct btrfs_leaf, items),
858 					  sizeof(struct btrfs_item),
859 					  key, btrfs_header_nritems(eb),
860 					  slot);
861 	} else {
862 		return generic_bin_search(eb,
863 					  offsetof(struct btrfs_node, ptrs),
864 					  sizeof(struct btrfs_key_ptr),
865 					  key, btrfs_header_nritems(eb),
866 					  slot);
867 	}
868 	return -1;
869 }
870 
871 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
872 		     int level, int *slot)
873 {
874 	return bin_search(eb, key, level, slot);
875 }
876 
877 static void root_add_used(struct btrfs_root *root, u32 size)
878 {
879 	spin_lock(&root->accounting_lock);
880 	btrfs_set_root_used(&root->root_item,
881 			    btrfs_root_used(&root->root_item) + size);
882 	spin_unlock(&root->accounting_lock);
883 }
884 
885 static void root_sub_used(struct btrfs_root *root, u32 size)
886 {
887 	spin_lock(&root->accounting_lock);
888 	btrfs_set_root_used(&root->root_item,
889 			    btrfs_root_used(&root->root_item) - size);
890 	spin_unlock(&root->accounting_lock);
891 }
892 
893 /* given a node and slot number, this reads the blocks it points to.  The
894  * extent buffer is returned with a reference taken (but unlocked).
895  * NULL is returned on error.
896  */
897 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
898 				   struct extent_buffer *parent, int slot)
899 {
900 	int level = btrfs_header_level(parent);
901 	if (slot < 0)
902 		return NULL;
903 	if (slot >= btrfs_header_nritems(parent))
904 		return NULL;
905 
906 	BUG_ON(level == 0);
907 
908 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
909 		       btrfs_level_size(root, level - 1),
910 		       btrfs_node_ptr_generation(parent, slot));
911 }
912 
913 /*
914  * node level balancing, used to make sure nodes are in proper order for
915  * item deletion.  We balance from the top down, so we have to make sure
916  * that a deletion won't leave an node completely empty later on.
917  */
918 static noinline int balance_level(struct btrfs_trans_handle *trans,
919 			 struct btrfs_root *root,
920 			 struct btrfs_path *path, int level)
921 {
922 	struct extent_buffer *right = NULL;
923 	struct extent_buffer *mid;
924 	struct extent_buffer *left = NULL;
925 	struct extent_buffer *parent = NULL;
926 	int ret = 0;
927 	int wret;
928 	int pslot;
929 	int orig_slot = path->slots[level];
930 	u64 orig_ptr;
931 
932 	if (level == 0)
933 		return 0;
934 
935 	mid = path->nodes[level];
936 
937 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
938 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
939 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
940 
941 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
942 
943 	if (level < BTRFS_MAX_LEVEL - 1) {
944 		parent = path->nodes[level + 1];
945 		pslot = path->slots[level + 1];
946 	}
947 
948 	/*
949 	 * deal with the case where there is only one pointer in the root
950 	 * by promoting the node below to a root
951 	 */
952 	if (!parent) {
953 		struct extent_buffer *child;
954 
955 		if (btrfs_header_nritems(mid) != 1)
956 			return 0;
957 
958 		/* promote the child to a root */
959 		child = read_node_slot(root, mid, 0);
960 		if (!child) {
961 			ret = -EROFS;
962 			btrfs_std_error(root->fs_info, ret);
963 			goto enospc;
964 		}
965 
966 		btrfs_tree_lock(child);
967 		btrfs_set_lock_blocking(child);
968 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
969 		if (ret) {
970 			btrfs_tree_unlock(child);
971 			free_extent_buffer(child);
972 			goto enospc;
973 		}
974 
975 		rcu_assign_pointer(root->node, child);
976 
977 		add_root_to_dirty_list(root);
978 		btrfs_tree_unlock(child);
979 
980 		path->locks[level] = 0;
981 		path->nodes[level] = NULL;
982 		clean_tree_block(trans, root, mid);
983 		btrfs_tree_unlock(mid);
984 		/* once for the path */
985 		free_extent_buffer(mid);
986 
987 		root_sub_used(root, mid->len);
988 		btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
989 		/* once for the root ptr */
990 		free_extent_buffer_stale(mid);
991 		return 0;
992 	}
993 	if (btrfs_header_nritems(mid) >
994 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
995 		return 0;
996 
997 	btrfs_header_nritems(mid);
998 
999 	left = read_node_slot(root, parent, pslot - 1);
1000 	if (left) {
1001 		btrfs_tree_lock(left);
1002 		btrfs_set_lock_blocking(left);
1003 		wret = btrfs_cow_block(trans, root, left,
1004 				       parent, pslot - 1, &left);
1005 		if (wret) {
1006 			ret = wret;
1007 			goto enospc;
1008 		}
1009 	}
1010 	right = read_node_slot(root, parent, pslot + 1);
1011 	if (right) {
1012 		btrfs_tree_lock(right);
1013 		btrfs_set_lock_blocking(right);
1014 		wret = btrfs_cow_block(trans, root, right,
1015 				       parent, pslot + 1, &right);
1016 		if (wret) {
1017 			ret = wret;
1018 			goto enospc;
1019 		}
1020 	}
1021 
1022 	/* first, try to make some room in the middle buffer */
1023 	if (left) {
1024 		orig_slot += btrfs_header_nritems(left);
1025 		wret = push_node_left(trans, root, left, mid, 1);
1026 		if (wret < 0)
1027 			ret = wret;
1028 		btrfs_header_nritems(mid);
1029 	}
1030 
1031 	/*
1032 	 * then try to empty the right most buffer into the middle
1033 	 */
1034 	if (right) {
1035 		wret = push_node_left(trans, root, mid, right, 1);
1036 		if (wret < 0 && wret != -ENOSPC)
1037 			ret = wret;
1038 		if (btrfs_header_nritems(right) == 0) {
1039 			clean_tree_block(trans, root, right);
1040 			btrfs_tree_unlock(right);
1041 			del_ptr(trans, root, path, level + 1, pslot + 1);
1042 			root_sub_used(root, right->len);
1043 			btrfs_free_tree_block(trans, root, right, 0, 1, 0);
1044 			free_extent_buffer_stale(right);
1045 			right = NULL;
1046 		} else {
1047 			struct btrfs_disk_key right_key;
1048 			btrfs_node_key(right, &right_key, 0);
1049 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1050 			btrfs_mark_buffer_dirty(parent);
1051 		}
1052 	}
1053 	if (btrfs_header_nritems(mid) == 1) {
1054 		/*
1055 		 * we're not allowed to leave a node with one item in the
1056 		 * tree during a delete.  A deletion from lower in the tree
1057 		 * could try to delete the only pointer in this node.
1058 		 * So, pull some keys from the left.
1059 		 * There has to be a left pointer at this point because
1060 		 * otherwise we would have pulled some pointers from the
1061 		 * right
1062 		 */
1063 		if (!left) {
1064 			ret = -EROFS;
1065 			btrfs_std_error(root->fs_info, ret);
1066 			goto enospc;
1067 		}
1068 		wret = balance_node_right(trans, root, mid, left);
1069 		if (wret < 0) {
1070 			ret = wret;
1071 			goto enospc;
1072 		}
1073 		if (wret == 1) {
1074 			wret = push_node_left(trans, root, left, mid, 1);
1075 			if (wret < 0)
1076 				ret = wret;
1077 		}
1078 		BUG_ON(wret == 1);
1079 	}
1080 	if (btrfs_header_nritems(mid) == 0) {
1081 		clean_tree_block(trans, root, mid);
1082 		btrfs_tree_unlock(mid);
1083 		del_ptr(trans, root, path, level + 1, pslot);
1084 		root_sub_used(root, mid->len);
1085 		btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
1086 		free_extent_buffer_stale(mid);
1087 		mid = NULL;
1088 	} else {
1089 		/* update the parent key to reflect our changes */
1090 		struct btrfs_disk_key mid_key;
1091 		btrfs_node_key(mid, &mid_key, 0);
1092 		btrfs_set_node_key(parent, &mid_key, pslot);
1093 		btrfs_mark_buffer_dirty(parent);
1094 	}
1095 
1096 	/* update the path */
1097 	if (left) {
1098 		if (btrfs_header_nritems(left) > orig_slot) {
1099 			extent_buffer_get(left);
1100 			/* left was locked after cow */
1101 			path->nodes[level] = left;
1102 			path->slots[level + 1] -= 1;
1103 			path->slots[level] = orig_slot;
1104 			if (mid) {
1105 				btrfs_tree_unlock(mid);
1106 				free_extent_buffer(mid);
1107 			}
1108 		} else {
1109 			orig_slot -= btrfs_header_nritems(left);
1110 			path->slots[level] = orig_slot;
1111 		}
1112 	}
1113 	/* double check we haven't messed things up */
1114 	if (orig_ptr !=
1115 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1116 		BUG();
1117 enospc:
1118 	if (right) {
1119 		btrfs_tree_unlock(right);
1120 		free_extent_buffer(right);
1121 	}
1122 	if (left) {
1123 		if (path->nodes[level] != left)
1124 			btrfs_tree_unlock(left);
1125 		free_extent_buffer(left);
1126 	}
1127 	return ret;
1128 }
1129 
1130 /* Node balancing for insertion.  Here we only split or push nodes around
1131  * when they are completely full.  This is also done top down, so we
1132  * have to be pessimistic.
1133  */
1134 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1135 					  struct btrfs_root *root,
1136 					  struct btrfs_path *path, int level)
1137 {
1138 	struct extent_buffer *right = NULL;
1139 	struct extent_buffer *mid;
1140 	struct extent_buffer *left = NULL;
1141 	struct extent_buffer *parent = NULL;
1142 	int ret = 0;
1143 	int wret;
1144 	int pslot;
1145 	int orig_slot = path->slots[level];
1146 
1147 	if (level == 0)
1148 		return 1;
1149 
1150 	mid = path->nodes[level];
1151 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1152 
1153 	if (level < BTRFS_MAX_LEVEL - 1) {
1154 		parent = path->nodes[level + 1];
1155 		pslot = path->slots[level + 1];
1156 	}
1157 
1158 	if (!parent)
1159 		return 1;
1160 
1161 	left = read_node_slot(root, parent, pslot - 1);
1162 
1163 	/* first, try to make some room in the middle buffer */
1164 	if (left) {
1165 		u32 left_nr;
1166 
1167 		btrfs_tree_lock(left);
1168 		btrfs_set_lock_blocking(left);
1169 
1170 		left_nr = btrfs_header_nritems(left);
1171 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1172 			wret = 1;
1173 		} else {
1174 			ret = btrfs_cow_block(trans, root, left, parent,
1175 					      pslot - 1, &left);
1176 			if (ret)
1177 				wret = 1;
1178 			else {
1179 				wret = push_node_left(trans, root,
1180 						      left, mid, 0);
1181 			}
1182 		}
1183 		if (wret < 0)
1184 			ret = wret;
1185 		if (wret == 0) {
1186 			struct btrfs_disk_key disk_key;
1187 			orig_slot += left_nr;
1188 			btrfs_node_key(mid, &disk_key, 0);
1189 			btrfs_set_node_key(parent, &disk_key, pslot);
1190 			btrfs_mark_buffer_dirty(parent);
1191 			if (btrfs_header_nritems(left) > orig_slot) {
1192 				path->nodes[level] = left;
1193 				path->slots[level + 1] -= 1;
1194 				path->slots[level] = orig_slot;
1195 				btrfs_tree_unlock(mid);
1196 				free_extent_buffer(mid);
1197 			} else {
1198 				orig_slot -=
1199 					btrfs_header_nritems(left);
1200 				path->slots[level] = orig_slot;
1201 				btrfs_tree_unlock(left);
1202 				free_extent_buffer(left);
1203 			}
1204 			return 0;
1205 		}
1206 		btrfs_tree_unlock(left);
1207 		free_extent_buffer(left);
1208 	}
1209 	right = read_node_slot(root, parent, pslot + 1);
1210 
1211 	/*
1212 	 * then try to empty the right most buffer into the middle
1213 	 */
1214 	if (right) {
1215 		u32 right_nr;
1216 
1217 		btrfs_tree_lock(right);
1218 		btrfs_set_lock_blocking(right);
1219 
1220 		right_nr = btrfs_header_nritems(right);
1221 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1222 			wret = 1;
1223 		} else {
1224 			ret = btrfs_cow_block(trans, root, right,
1225 					      parent, pslot + 1,
1226 					      &right);
1227 			if (ret)
1228 				wret = 1;
1229 			else {
1230 				wret = balance_node_right(trans, root,
1231 							  right, mid);
1232 			}
1233 		}
1234 		if (wret < 0)
1235 			ret = wret;
1236 		if (wret == 0) {
1237 			struct btrfs_disk_key disk_key;
1238 
1239 			btrfs_node_key(right, &disk_key, 0);
1240 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1241 			btrfs_mark_buffer_dirty(parent);
1242 
1243 			if (btrfs_header_nritems(mid) <= orig_slot) {
1244 				path->nodes[level] = right;
1245 				path->slots[level + 1] += 1;
1246 				path->slots[level] = orig_slot -
1247 					btrfs_header_nritems(mid);
1248 				btrfs_tree_unlock(mid);
1249 				free_extent_buffer(mid);
1250 			} else {
1251 				btrfs_tree_unlock(right);
1252 				free_extent_buffer(right);
1253 			}
1254 			return 0;
1255 		}
1256 		btrfs_tree_unlock(right);
1257 		free_extent_buffer(right);
1258 	}
1259 	return 1;
1260 }
1261 
1262 /*
1263  * readahead one full node of leaves, finding things that are close
1264  * to the block in 'slot', and triggering ra on them.
1265  */
1266 static void reada_for_search(struct btrfs_root *root,
1267 			     struct btrfs_path *path,
1268 			     int level, int slot, u64 objectid)
1269 {
1270 	struct extent_buffer *node;
1271 	struct btrfs_disk_key disk_key;
1272 	u32 nritems;
1273 	u64 search;
1274 	u64 target;
1275 	u64 nread = 0;
1276 	u64 gen;
1277 	int direction = path->reada;
1278 	struct extent_buffer *eb;
1279 	u32 nr;
1280 	u32 blocksize;
1281 	u32 nscan = 0;
1282 
1283 	if (level != 1)
1284 		return;
1285 
1286 	if (!path->nodes[level])
1287 		return;
1288 
1289 	node = path->nodes[level];
1290 
1291 	search = btrfs_node_blockptr(node, slot);
1292 	blocksize = btrfs_level_size(root, level - 1);
1293 	eb = btrfs_find_tree_block(root, search, blocksize);
1294 	if (eb) {
1295 		free_extent_buffer(eb);
1296 		return;
1297 	}
1298 
1299 	target = search;
1300 
1301 	nritems = btrfs_header_nritems(node);
1302 	nr = slot;
1303 
1304 	while (1) {
1305 		if (direction < 0) {
1306 			if (nr == 0)
1307 				break;
1308 			nr--;
1309 		} else if (direction > 0) {
1310 			nr++;
1311 			if (nr >= nritems)
1312 				break;
1313 		}
1314 		if (path->reada < 0 && objectid) {
1315 			btrfs_node_key(node, &disk_key, nr);
1316 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1317 				break;
1318 		}
1319 		search = btrfs_node_blockptr(node, nr);
1320 		if ((search <= target && target - search <= 65536) ||
1321 		    (search > target && search - target <= 65536)) {
1322 			gen = btrfs_node_ptr_generation(node, nr);
1323 			readahead_tree_block(root, search, blocksize, gen);
1324 			nread += blocksize;
1325 		}
1326 		nscan++;
1327 		if ((nread > 65536 || nscan > 32))
1328 			break;
1329 	}
1330 }
1331 
1332 /*
1333  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1334  * cache
1335  */
1336 static noinline int reada_for_balance(struct btrfs_root *root,
1337 				      struct btrfs_path *path, int level)
1338 {
1339 	int slot;
1340 	int nritems;
1341 	struct extent_buffer *parent;
1342 	struct extent_buffer *eb;
1343 	u64 gen;
1344 	u64 block1 = 0;
1345 	u64 block2 = 0;
1346 	int ret = 0;
1347 	int blocksize;
1348 
1349 	parent = path->nodes[level + 1];
1350 	if (!parent)
1351 		return 0;
1352 
1353 	nritems = btrfs_header_nritems(parent);
1354 	slot = path->slots[level + 1];
1355 	blocksize = btrfs_level_size(root, level);
1356 
1357 	if (slot > 0) {
1358 		block1 = btrfs_node_blockptr(parent, slot - 1);
1359 		gen = btrfs_node_ptr_generation(parent, slot - 1);
1360 		eb = btrfs_find_tree_block(root, block1, blocksize);
1361 		if (eb && btrfs_buffer_uptodate(eb, gen))
1362 			block1 = 0;
1363 		free_extent_buffer(eb);
1364 	}
1365 	if (slot + 1 < nritems) {
1366 		block2 = btrfs_node_blockptr(parent, slot + 1);
1367 		gen = btrfs_node_ptr_generation(parent, slot + 1);
1368 		eb = btrfs_find_tree_block(root, block2, blocksize);
1369 		if (eb && btrfs_buffer_uptodate(eb, gen))
1370 			block2 = 0;
1371 		free_extent_buffer(eb);
1372 	}
1373 	if (block1 || block2) {
1374 		ret = -EAGAIN;
1375 
1376 		/* release the whole path */
1377 		btrfs_release_path(path);
1378 
1379 		/* read the blocks */
1380 		if (block1)
1381 			readahead_tree_block(root, block1, blocksize, 0);
1382 		if (block2)
1383 			readahead_tree_block(root, block2, blocksize, 0);
1384 
1385 		if (block1) {
1386 			eb = read_tree_block(root, block1, blocksize, 0);
1387 			free_extent_buffer(eb);
1388 		}
1389 		if (block2) {
1390 			eb = read_tree_block(root, block2, blocksize, 0);
1391 			free_extent_buffer(eb);
1392 		}
1393 	}
1394 	return ret;
1395 }
1396 
1397 
1398 /*
1399  * when we walk down the tree, it is usually safe to unlock the higher layers
1400  * in the tree.  The exceptions are when our path goes through slot 0, because
1401  * operations on the tree might require changing key pointers higher up in the
1402  * tree.
1403  *
1404  * callers might also have set path->keep_locks, which tells this code to keep
1405  * the lock if the path points to the last slot in the block.  This is part of
1406  * walking through the tree, and selecting the next slot in the higher block.
1407  *
1408  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1409  * if lowest_unlock is 1, level 0 won't be unlocked
1410  */
1411 static noinline void unlock_up(struct btrfs_path *path, int level,
1412 			       int lowest_unlock, int min_write_lock_level,
1413 			       int *write_lock_level)
1414 {
1415 	int i;
1416 	int skip_level = level;
1417 	int no_skips = 0;
1418 	struct extent_buffer *t;
1419 
1420 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1421 		if (!path->nodes[i])
1422 			break;
1423 		if (!path->locks[i])
1424 			break;
1425 		if (!no_skips && path->slots[i] == 0) {
1426 			skip_level = i + 1;
1427 			continue;
1428 		}
1429 		if (!no_skips && path->keep_locks) {
1430 			u32 nritems;
1431 			t = path->nodes[i];
1432 			nritems = btrfs_header_nritems(t);
1433 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1434 				skip_level = i + 1;
1435 				continue;
1436 			}
1437 		}
1438 		if (skip_level < i && i >= lowest_unlock)
1439 			no_skips = 1;
1440 
1441 		t = path->nodes[i];
1442 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1443 			btrfs_tree_unlock_rw(t, path->locks[i]);
1444 			path->locks[i] = 0;
1445 			if (write_lock_level &&
1446 			    i > min_write_lock_level &&
1447 			    i <= *write_lock_level) {
1448 				*write_lock_level = i - 1;
1449 			}
1450 		}
1451 	}
1452 }
1453 
1454 /*
1455  * This releases any locks held in the path starting at level and
1456  * going all the way up to the root.
1457  *
1458  * btrfs_search_slot will keep the lock held on higher nodes in a few
1459  * corner cases, such as COW of the block at slot zero in the node.  This
1460  * ignores those rules, and it should only be called when there are no
1461  * more updates to be done higher up in the tree.
1462  */
1463 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1464 {
1465 	int i;
1466 
1467 	if (path->keep_locks)
1468 		return;
1469 
1470 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1471 		if (!path->nodes[i])
1472 			continue;
1473 		if (!path->locks[i])
1474 			continue;
1475 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1476 		path->locks[i] = 0;
1477 	}
1478 }
1479 
1480 /*
1481  * helper function for btrfs_search_slot.  The goal is to find a block
1482  * in cache without setting the path to blocking.  If we find the block
1483  * we return zero and the path is unchanged.
1484  *
1485  * If we can't find the block, we set the path blocking and do some
1486  * reada.  -EAGAIN is returned and the search must be repeated.
1487  */
1488 static int
1489 read_block_for_search(struct btrfs_trans_handle *trans,
1490 		       struct btrfs_root *root, struct btrfs_path *p,
1491 		       struct extent_buffer **eb_ret, int level, int slot,
1492 		       struct btrfs_key *key)
1493 {
1494 	u64 blocknr;
1495 	u64 gen;
1496 	u32 blocksize;
1497 	struct extent_buffer *b = *eb_ret;
1498 	struct extent_buffer *tmp;
1499 	int ret;
1500 
1501 	blocknr = btrfs_node_blockptr(b, slot);
1502 	gen = btrfs_node_ptr_generation(b, slot);
1503 	blocksize = btrfs_level_size(root, level - 1);
1504 
1505 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1506 	if (tmp) {
1507 		if (btrfs_buffer_uptodate(tmp, 0)) {
1508 			if (btrfs_buffer_uptodate(tmp, gen)) {
1509 				/*
1510 				 * we found an up to date block without
1511 				 * sleeping, return
1512 				 * right away
1513 				 */
1514 				*eb_ret = tmp;
1515 				return 0;
1516 			}
1517 			/* the pages were up to date, but we failed
1518 			 * the generation number check.  Do a full
1519 			 * read for the generation number that is correct.
1520 			 * We must do this without dropping locks so
1521 			 * we can trust our generation number
1522 			 */
1523 			free_extent_buffer(tmp);
1524 			btrfs_set_path_blocking(p);
1525 
1526 			tmp = read_tree_block(root, blocknr, blocksize, gen);
1527 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1528 				*eb_ret = tmp;
1529 				return 0;
1530 			}
1531 			free_extent_buffer(tmp);
1532 			btrfs_release_path(p);
1533 			return -EIO;
1534 		}
1535 	}
1536 
1537 	/*
1538 	 * reduce lock contention at high levels
1539 	 * of the btree by dropping locks before
1540 	 * we read.  Don't release the lock on the current
1541 	 * level because we need to walk this node to figure
1542 	 * out which blocks to read.
1543 	 */
1544 	btrfs_unlock_up_safe(p, level + 1);
1545 	btrfs_set_path_blocking(p);
1546 
1547 	free_extent_buffer(tmp);
1548 	if (p->reada)
1549 		reada_for_search(root, p, level, slot, key->objectid);
1550 
1551 	btrfs_release_path(p);
1552 
1553 	ret = -EAGAIN;
1554 	tmp = read_tree_block(root, blocknr, blocksize, 0);
1555 	if (tmp) {
1556 		/*
1557 		 * If the read above didn't mark this buffer up to date,
1558 		 * it will never end up being up to date.  Set ret to EIO now
1559 		 * and give up so that our caller doesn't loop forever
1560 		 * on our EAGAINs.
1561 		 */
1562 		if (!btrfs_buffer_uptodate(tmp, 0))
1563 			ret = -EIO;
1564 		free_extent_buffer(tmp);
1565 	}
1566 	return ret;
1567 }
1568 
1569 /*
1570  * helper function for btrfs_search_slot.  This does all of the checks
1571  * for node-level blocks and does any balancing required based on
1572  * the ins_len.
1573  *
1574  * If no extra work was required, zero is returned.  If we had to
1575  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1576  * start over
1577  */
1578 static int
1579 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1580 		       struct btrfs_root *root, struct btrfs_path *p,
1581 		       struct extent_buffer *b, int level, int ins_len,
1582 		       int *write_lock_level)
1583 {
1584 	int ret;
1585 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1586 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1587 		int sret;
1588 
1589 		if (*write_lock_level < level + 1) {
1590 			*write_lock_level = level + 1;
1591 			btrfs_release_path(p);
1592 			goto again;
1593 		}
1594 
1595 		sret = reada_for_balance(root, p, level);
1596 		if (sret)
1597 			goto again;
1598 
1599 		btrfs_set_path_blocking(p);
1600 		sret = split_node(trans, root, p, level);
1601 		btrfs_clear_path_blocking(p, NULL, 0);
1602 
1603 		BUG_ON(sret > 0);
1604 		if (sret) {
1605 			ret = sret;
1606 			goto done;
1607 		}
1608 		b = p->nodes[level];
1609 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1610 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1611 		int sret;
1612 
1613 		if (*write_lock_level < level + 1) {
1614 			*write_lock_level = level + 1;
1615 			btrfs_release_path(p);
1616 			goto again;
1617 		}
1618 
1619 		sret = reada_for_balance(root, p, level);
1620 		if (sret)
1621 			goto again;
1622 
1623 		btrfs_set_path_blocking(p);
1624 		sret = balance_level(trans, root, p, level);
1625 		btrfs_clear_path_blocking(p, NULL, 0);
1626 
1627 		if (sret) {
1628 			ret = sret;
1629 			goto done;
1630 		}
1631 		b = p->nodes[level];
1632 		if (!b) {
1633 			btrfs_release_path(p);
1634 			goto again;
1635 		}
1636 		BUG_ON(btrfs_header_nritems(b) == 1);
1637 	}
1638 	return 0;
1639 
1640 again:
1641 	ret = -EAGAIN;
1642 done:
1643 	return ret;
1644 }
1645 
1646 /*
1647  * look for key in the tree.  path is filled in with nodes along the way
1648  * if key is found, we return zero and you can find the item in the leaf
1649  * level of the path (level 0)
1650  *
1651  * If the key isn't found, the path points to the slot where it should
1652  * be inserted, and 1 is returned.  If there are other errors during the
1653  * search a negative error number is returned.
1654  *
1655  * if ins_len > 0, nodes and leaves will be split as we walk down the
1656  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1657  * possible)
1658  */
1659 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1660 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1661 		      ins_len, int cow)
1662 {
1663 	struct extent_buffer *b;
1664 	int slot;
1665 	int ret;
1666 	int err;
1667 	int level;
1668 	int lowest_unlock = 1;
1669 	int root_lock;
1670 	/* everything at write_lock_level or lower must be write locked */
1671 	int write_lock_level = 0;
1672 	u8 lowest_level = 0;
1673 	int min_write_lock_level;
1674 
1675 	lowest_level = p->lowest_level;
1676 	WARN_ON(lowest_level && ins_len > 0);
1677 	WARN_ON(p->nodes[0] != NULL);
1678 
1679 	if (ins_len < 0) {
1680 		lowest_unlock = 2;
1681 
1682 		/* when we are removing items, we might have to go up to level
1683 		 * two as we update tree pointers  Make sure we keep write
1684 		 * for those levels as well
1685 		 */
1686 		write_lock_level = 2;
1687 	} else if (ins_len > 0) {
1688 		/*
1689 		 * for inserting items, make sure we have a write lock on
1690 		 * level 1 so we can update keys
1691 		 */
1692 		write_lock_level = 1;
1693 	}
1694 
1695 	if (!cow)
1696 		write_lock_level = -1;
1697 
1698 	if (cow && (p->keep_locks || p->lowest_level))
1699 		write_lock_level = BTRFS_MAX_LEVEL;
1700 
1701 	min_write_lock_level = write_lock_level;
1702 
1703 again:
1704 	/*
1705 	 * we try very hard to do read locks on the root
1706 	 */
1707 	root_lock = BTRFS_READ_LOCK;
1708 	level = 0;
1709 	if (p->search_commit_root) {
1710 		/*
1711 		 * the commit roots are read only
1712 		 * so we always do read locks
1713 		 */
1714 		b = root->commit_root;
1715 		extent_buffer_get(b);
1716 		level = btrfs_header_level(b);
1717 		if (!p->skip_locking)
1718 			btrfs_tree_read_lock(b);
1719 	} else {
1720 		if (p->skip_locking) {
1721 			b = btrfs_root_node(root);
1722 			level = btrfs_header_level(b);
1723 		} else {
1724 			/* we don't know the level of the root node
1725 			 * until we actually have it read locked
1726 			 */
1727 			b = btrfs_read_lock_root_node(root);
1728 			level = btrfs_header_level(b);
1729 			if (level <= write_lock_level) {
1730 				/* whoops, must trade for write lock */
1731 				btrfs_tree_read_unlock(b);
1732 				free_extent_buffer(b);
1733 				b = btrfs_lock_root_node(root);
1734 				root_lock = BTRFS_WRITE_LOCK;
1735 
1736 				/* the level might have changed, check again */
1737 				level = btrfs_header_level(b);
1738 			}
1739 		}
1740 	}
1741 	p->nodes[level] = b;
1742 	if (!p->skip_locking)
1743 		p->locks[level] = root_lock;
1744 
1745 	while (b) {
1746 		level = btrfs_header_level(b);
1747 
1748 		/*
1749 		 * setup the path here so we can release it under lock
1750 		 * contention with the cow code
1751 		 */
1752 		if (cow) {
1753 			/*
1754 			 * if we don't really need to cow this block
1755 			 * then we don't want to set the path blocking,
1756 			 * so we test it here
1757 			 */
1758 			if (!should_cow_block(trans, root, b))
1759 				goto cow_done;
1760 
1761 			btrfs_set_path_blocking(p);
1762 
1763 			/*
1764 			 * must have write locks on this node and the
1765 			 * parent
1766 			 */
1767 			if (level + 1 > write_lock_level) {
1768 				write_lock_level = level + 1;
1769 				btrfs_release_path(p);
1770 				goto again;
1771 			}
1772 
1773 			err = btrfs_cow_block(trans, root, b,
1774 					      p->nodes[level + 1],
1775 					      p->slots[level + 1], &b);
1776 			if (err) {
1777 				ret = err;
1778 				goto done;
1779 			}
1780 		}
1781 cow_done:
1782 		BUG_ON(!cow && ins_len);
1783 
1784 		p->nodes[level] = b;
1785 		btrfs_clear_path_blocking(p, NULL, 0);
1786 
1787 		/*
1788 		 * we have a lock on b and as long as we aren't changing
1789 		 * the tree, there is no way to for the items in b to change.
1790 		 * It is safe to drop the lock on our parent before we
1791 		 * go through the expensive btree search on b.
1792 		 *
1793 		 * If cow is true, then we might be changing slot zero,
1794 		 * which may require changing the parent.  So, we can't
1795 		 * drop the lock until after we know which slot we're
1796 		 * operating on.
1797 		 */
1798 		if (!cow)
1799 			btrfs_unlock_up_safe(p, level + 1);
1800 
1801 		ret = bin_search(b, key, level, &slot);
1802 
1803 		if (level != 0) {
1804 			int dec = 0;
1805 			if (ret && slot > 0) {
1806 				dec = 1;
1807 				slot -= 1;
1808 			}
1809 			p->slots[level] = slot;
1810 			err = setup_nodes_for_search(trans, root, p, b, level,
1811 					     ins_len, &write_lock_level);
1812 			if (err == -EAGAIN)
1813 				goto again;
1814 			if (err) {
1815 				ret = err;
1816 				goto done;
1817 			}
1818 			b = p->nodes[level];
1819 			slot = p->slots[level];
1820 
1821 			/*
1822 			 * slot 0 is special, if we change the key
1823 			 * we have to update the parent pointer
1824 			 * which means we must have a write lock
1825 			 * on the parent
1826 			 */
1827 			if (slot == 0 && cow &&
1828 			    write_lock_level < level + 1) {
1829 				write_lock_level = level + 1;
1830 				btrfs_release_path(p);
1831 				goto again;
1832 			}
1833 
1834 			unlock_up(p, level, lowest_unlock,
1835 				  min_write_lock_level, &write_lock_level);
1836 
1837 			if (level == lowest_level) {
1838 				if (dec)
1839 					p->slots[level]++;
1840 				goto done;
1841 			}
1842 
1843 			err = read_block_for_search(trans, root, p,
1844 						    &b, level, slot, key);
1845 			if (err == -EAGAIN)
1846 				goto again;
1847 			if (err) {
1848 				ret = err;
1849 				goto done;
1850 			}
1851 
1852 			if (!p->skip_locking) {
1853 				level = btrfs_header_level(b);
1854 				if (level <= write_lock_level) {
1855 					err = btrfs_try_tree_write_lock(b);
1856 					if (!err) {
1857 						btrfs_set_path_blocking(p);
1858 						btrfs_tree_lock(b);
1859 						btrfs_clear_path_blocking(p, b,
1860 								  BTRFS_WRITE_LOCK);
1861 					}
1862 					p->locks[level] = BTRFS_WRITE_LOCK;
1863 				} else {
1864 					err = btrfs_try_tree_read_lock(b);
1865 					if (!err) {
1866 						btrfs_set_path_blocking(p);
1867 						btrfs_tree_read_lock(b);
1868 						btrfs_clear_path_blocking(p, b,
1869 								  BTRFS_READ_LOCK);
1870 					}
1871 					p->locks[level] = BTRFS_READ_LOCK;
1872 				}
1873 				p->nodes[level] = b;
1874 			}
1875 		} else {
1876 			p->slots[level] = slot;
1877 			if (ins_len > 0 &&
1878 			    btrfs_leaf_free_space(root, b) < ins_len) {
1879 				if (write_lock_level < 1) {
1880 					write_lock_level = 1;
1881 					btrfs_release_path(p);
1882 					goto again;
1883 				}
1884 
1885 				btrfs_set_path_blocking(p);
1886 				err = split_leaf(trans, root, key,
1887 						 p, ins_len, ret == 0);
1888 				btrfs_clear_path_blocking(p, NULL, 0);
1889 
1890 				BUG_ON(err > 0);
1891 				if (err) {
1892 					ret = err;
1893 					goto done;
1894 				}
1895 			}
1896 			if (!p->search_for_split)
1897 				unlock_up(p, level, lowest_unlock,
1898 					  min_write_lock_level, &write_lock_level);
1899 			goto done;
1900 		}
1901 	}
1902 	ret = 1;
1903 done:
1904 	/*
1905 	 * we don't really know what they plan on doing with the path
1906 	 * from here on, so for now just mark it as blocking
1907 	 */
1908 	if (!p->leave_spinning)
1909 		btrfs_set_path_blocking(p);
1910 	if (ret < 0)
1911 		btrfs_release_path(p);
1912 	return ret;
1913 }
1914 
1915 /*
1916  * adjust the pointers going up the tree, starting at level
1917  * making sure the right key of each node is points to 'key'.
1918  * This is used after shifting pointers to the left, so it stops
1919  * fixing up pointers when a given leaf/node is not in slot 0 of the
1920  * higher levels
1921  *
1922  */
1923 static void fixup_low_keys(struct btrfs_trans_handle *trans,
1924 			   struct btrfs_root *root, struct btrfs_path *path,
1925 			   struct btrfs_disk_key *key, int level)
1926 {
1927 	int i;
1928 	struct extent_buffer *t;
1929 
1930 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1931 		int tslot = path->slots[i];
1932 		if (!path->nodes[i])
1933 			break;
1934 		t = path->nodes[i];
1935 		btrfs_set_node_key(t, key, tslot);
1936 		btrfs_mark_buffer_dirty(path->nodes[i]);
1937 		if (tslot != 0)
1938 			break;
1939 	}
1940 }
1941 
1942 /*
1943  * update item key.
1944  *
1945  * This function isn't completely safe. It's the caller's responsibility
1946  * that the new key won't break the order
1947  */
1948 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1949 			     struct btrfs_root *root, struct btrfs_path *path,
1950 			     struct btrfs_key *new_key)
1951 {
1952 	struct btrfs_disk_key disk_key;
1953 	struct extent_buffer *eb;
1954 	int slot;
1955 
1956 	eb = path->nodes[0];
1957 	slot = path->slots[0];
1958 	if (slot > 0) {
1959 		btrfs_item_key(eb, &disk_key, slot - 1);
1960 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
1961 	}
1962 	if (slot < btrfs_header_nritems(eb) - 1) {
1963 		btrfs_item_key(eb, &disk_key, slot + 1);
1964 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
1965 	}
1966 
1967 	btrfs_cpu_key_to_disk(&disk_key, new_key);
1968 	btrfs_set_item_key(eb, &disk_key, slot);
1969 	btrfs_mark_buffer_dirty(eb);
1970 	if (slot == 0)
1971 		fixup_low_keys(trans, root, path, &disk_key, 1);
1972 }
1973 
1974 /*
1975  * try to push data from one node into the next node left in the
1976  * tree.
1977  *
1978  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1979  * error, and > 0 if there was no room in the left hand block.
1980  */
1981 static int push_node_left(struct btrfs_trans_handle *trans,
1982 			  struct btrfs_root *root, struct extent_buffer *dst,
1983 			  struct extent_buffer *src, int empty)
1984 {
1985 	int push_items = 0;
1986 	int src_nritems;
1987 	int dst_nritems;
1988 	int ret = 0;
1989 
1990 	src_nritems = btrfs_header_nritems(src);
1991 	dst_nritems = btrfs_header_nritems(dst);
1992 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1993 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1994 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1995 
1996 	if (!empty && src_nritems <= 8)
1997 		return 1;
1998 
1999 	if (push_items <= 0)
2000 		return 1;
2001 
2002 	if (empty) {
2003 		push_items = min(src_nritems, push_items);
2004 		if (push_items < src_nritems) {
2005 			/* leave at least 8 pointers in the node if
2006 			 * we aren't going to empty it
2007 			 */
2008 			if (src_nritems - push_items < 8) {
2009 				if (push_items <= 8)
2010 					return 1;
2011 				push_items -= 8;
2012 			}
2013 		}
2014 	} else
2015 		push_items = min(src_nritems - 8, push_items);
2016 
2017 	copy_extent_buffer(dst, src,
2018 			   btrfs_node_key_ptr_offset(dst_nritems),
2019 			   btrfs_node_key_ptr_offset(0),
2020 			   push_items * sizeof(struct btrfs_key_ptr));
2021 
2022 	if (push_items < src_nritems) {
2023 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2024 				      btrfs_node_key_ptr_offset(push_items),
2025 				      (src_nritems - push_items) *
2026 				      sizeof(struct btrfs_key_ptr));
2027 	}
2028 	btrfs_set_header_nritems(src, src_nritems - push_items);
2029 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2030 	btrfs_mark_buffer_dirty(src);
2031 	btrfs_mark_buffer_dirty(dst);
2032 
2033 	return ret;
2034 }
2035 
2036 /*
2037  * try to push data from one node into the next node right in the
2038  * tree.
2039  *
2040  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2041  * error, and > 0 if there was no room in the right hand block.
2042  *
2043  * this will  only push up to 1/2 the contents of the left node over
2044  */
2045 static int balance_node_right(struct btrfs_trans_handle *trans,
2046 			      struct btrfs_root *root,
2047 			      struct extent_buffer *dst,
2048 			      struct extent_buffer *src)
2049 {
2050 	int push_items = 0;
2051 	int max_push;
2052 	int src_nritems;
2053 	int dst_nritems;
2054 	int ret = 0;
2055 
2056 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2057 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2058 
2059 	src_nritems = btrfs_header_nritems(src);
2060 	dst_nritems = btrfs_header_nritems(dst);
2061 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2062 	if (push_items <= 0)
2063 		return 1;
2064 
2065 	if (src_nritems < 4)
2066 		return 1;
2067 
2068 	max_push = src_nritems / 2 + 1;
2069 	/* don't try to empty the node */
2070 	if (max_push >= src_nritems)
2071 		return 1;
2072 
2073 	if (max_push < push_items)
2074 		push_items = max_push;
2075 
2076 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2077 				      btrfs_node_key_ptr_offset(0),
2078 				      (dst_nritems) *
2079 				      sizeof(struct btrfs_key_ptr));
2080 
2081 	copy_extent_buffer(dst, src,
2082 			   btrfs_node_key_ptr_offset(0),
2083 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2084 			   push_items * sizeof(struct btrfs_key_ptr));
2085 
2086 	btrfs_set_header_nritems(src, src_nritems - push_items);
2087 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2088 
2089 	btrfs_mark_buffer_dirty(src);
2090 	btrfs_mark_buffer_dirty(dst);
2091 
2092 	return ret;
2093 }
2094 
2095 /*
2096  * helper function to insert a new root level in the tree.
2097  * A new node is allocated, and a single item is inserted to
2098  * point to the existing root
2099  *
2100  * returns zero on success or < 0 on failure.
2101  */
2102 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2103 			   struct btrfs_root *root,
2104 			   struct btrfs_path *path, int level)
2105 {
2106 	u64 lower_gen;
2107 	struct extent_buffer *lower;
2108 	struct extent_buffer *c;
2109 	struct extent_buffer *old;
2110 	struct btrfs_disk_key lower_key;
2111 
2112 	BUG_ON(path->nodes[level]);
2113 	BUG_ON(path->nodes[level-1] != root->node);
2114 
2115 	lower = path->nodes[level-1];
2116 	if (level == 1)
2117 		btrfs_item_key(lower, &lower_key, 0);
2118 	else
2119 		btrfs_node_key(lower, &lower_key, 0);
2120 
2121 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2122 				   root->root_key.objectid, &lower_key,
2123 				   level, root->node->start, 0, 0);
2124 	if (IS_ERR(c))
2125 		return PTR_ERR(c);
2126 
2127 	root_add_used(root, root->nodesize);
2128 
2129 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2130 	btrfs_set_header_nritems(c, 1);
2131 	btrfs_set_header_level(c, level);
2132 	btrfs_set_header_bytenr(c, c->start);
2133 	btrfs_set_header_generation(c, trans->transid);
2134 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2135 	btrfs_set_header_owner(c, root->root_key.objectid);
2136 
2137 	write_extent_buffer(c, root->fs_info->fsid,
2138 			    (unsigned long)btrfs_header_fsid(c),
2139 			    BTRFS_FSID_SIZE);
2140 
2141 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2142 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2143 			    BTRFS_UUID_SIZE);
2144 
2145 	btrfs_set_node_key(c, &lower_key, 0);
2146 	btrfs_set_node_blockptr(c, 0, lower->start);
2147 	lower_gen = btrfs_header_generation(lower);
2148 	WARN_ON(lower_gen != trans->transid);
2149 
2150 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2151 
2152 	btrfs_mark_buffer_dirty(c);
2153 
2154 	old = root->node;
2155 	rcu_assign_pointer(root->node, c);
2156 
2157 	/* the super has an extra ref to root->node */
2158 	free_extent_buffer(old);
2159 
2160 	add_root_to_dirty_list(root);
2161 	extent_buffer_get(c);
2162 	path->nodes[level] = c;
2163 	path->locks[level] = BTRFS_WRITE_LOCK;
2164 	path->slots[level] = 0;
2165 	return 0;
2166 }
2167 
2168 /*
2169  * worker function to insert a single pointer in a node.
2170  * the node should have enough room for the pointer already
2171  *
2172  * slot and level indicate where you want the key to go, and
2173  * blocknr is the block the key points to.
2174  */
2175 static void insert_ptr(struct btrfs_trans_handle *trans,
2176 		       struct btrfs_root *root, struct btrfs_path *path,
2177 		       struct btrfs_disk_key *key, u64 bytenr,
2178 		       int slot, int level)
2179 {
2180 	struct extent_buffer *lower;
2181 	int nritems;
2182 
2183 	BUG_ON(!path->nodes[level]);
2184 	btrfs_assert_tree_locked(path->nodes[level]);
2185 	lower = path->nodes[level];
2186 	nritems = btrfs_header_nritems(lower);
2187 	BUG_ON(slot > nritems);
2188 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
2189 	if (slot != nritems) {
2190 		memmove_extent_buffer(lower,
2191 			      btrfs_node_key_ptr_offset(slot + 1),
2192 			      btrfs_node_key_ptr_offset(slot),
2193 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2194 	}
2195 	btrfs_set_node_key(lower, key, slot);
2196 	btrfs_set_node_blockptr(lower, slot, bytenr);
2197 	WARN_ON(trans->transid == 0);
2198 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2199 	btrfs_set_header_nritems(lower, nritems + 1);
2200 	btrfs_mark_buffer_dirty(lower);
2201 }
2202 
2203 /*
2204  * split the node at the specified level in path in two.
2205  * The path is corrected to point to the appropriate node after the split
2206  *
2207  * Before splitting this tries to make some room in the node by pushing
2208  * left and right, if either one works, it returns right away.
2209  *
2210  * returns 0 on success and < 0 on failure
2211  */
2212 static noinline int split_node(struct btrfs_trans_handle *trans,
2213 			       struct btrfs_root *root,
2214 			       struct btrfs_path *path, int level)
2215 {
2216 	struct extent_buffer *c;
2217 	struct extent_buffer *split;
2218 	struct btrfs_disk_key disk_key;
2219 	int mid;
2220 	int ret;
2221 	u32 c_nritems;
2222 
2223 	c = path->nodes[level];
2224 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2225 	if (c == root->node) {
2226 		/* trying to split the root, lets make a new one */
2227 		ret = insert_new_root(trans, root, path, level + 1);
2228 		if (ret)
2229 			return ret;
2230 	} else {
2231 		ret = push_nodes_for_insert(trans, root, path, level);
2232 		c = path->nodes[level];
2233 		if (!ret && btrfs_header_nritems(c) <
2234 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2235 			return 0;
2236 		if (ret < 0)
2237 			return ret;
2238 	}
2239 
2240 	c_nritems = btrfs_header_nritems(c);
2241 	mid = (c_nritems + 1) / 2;
2242 	btrfs_node_key(c, &disk_key, mid);
2243 
2244 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2245 					root->root_key.objectid,
2246 					&disk_key, level, c->start, 0, 0);
2247 	if (IS_ERR(split))
2248 		return PTR_ERR(split);
2249 
2250 	root_add_used(root, root->nodesize);
2251 
2252 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2253 	btrfs_set_header_level(split, btrfs_header_level(c));
2254 	btrfs_set_header_bytenr(split, split->start);
2255 	btrfs_set_header_generation(split, trans->transid);
2256 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2257 	btrfs_set_header_owner(split, root->root_key.objectid);
2258 	write_extent_buffer(split, root->fs_info->fsid,
2259 			    (unsigned long)btrfs_header_fsid(split),
2260 			    BTRFS_FSID_SIZE);
2261 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2262 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2263 			    BTRFS_UUID_SIZE);
2264 
2265 
2266 	copy_extent_buffer(split, c,
2267 			   btrfs_node_key_ptr_offset(0),
2268 			   btrfs_node_key_ptr_offset(mid),
2269 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2270 	btrfs_set_header_nritems(split, c_nritems - mid);
2271 	btrfs_set_header_nritems(c, mid);
2272 	ret = 0;
2273 
2274 	btrfs_mark_buffer_dirty(c);
2275 	btrfs_mark_buffer_dirty(split);
2276 
2277 	insert_ptr(trans, root, path, &disk_key, split->start,
2278 		   path->slots[level + 1] + 1, level + 1);
2279 
2280 	if (path->slots[level] >= mid) {
2281 		path->slots[level] -= mid;
2282 		btrfs_tree_unlock(c);
2283 		free_extent_buffer(c);
2284 		path->nodes[level] = split;
2285 		path->slots[level + 1] += 1;
2286 	} else {
2287 		btrfs_tree_unlock(split);
2288 		free_extent_buffer(split);
2289 	}
2290 	return ret;
2291 }
2292 
2293 /*
2294  * how many bytes are required to store the items in a leaf.  start
2295  * and nr indicate which items in the leaf to check.  This totals up the
2296  * space used both by the item structs and the item data
2297  */
2298 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2299 {
2300 	int data_len;
2301 	int nritems = btrfs_header_nritems(l);
2302 	int end = min(nritems, start + nr) - 1;
2303 
2304 	if (!nr)
2305 		return 0;
2306 	data_len = btrfs_item_end_nr(l, start);
2307 	data_len = data_len - btrfs_item_offset_nr(l, end);
2308 	data_len += sizeof(struct btrfs_item) * nr;
2309 	WARN_ON(data_len < 0);
2310 	return data_len;
2311 }
2312 
2313 /*
2314  * The space between the end of the leaf items and
2315  * the start of the leaf data.  IOW, how much room
2316  * the leaf has left for both items and data
2317  */
2318 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2319 				   struct extent_buffer *leaf)
2320 {
2321 	int nritems = btrfs_header_nritems(leaf);
2322 	int ret;
2323 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2324 	if (ret < 0) {
2325 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2326 		       "used %d nritems %d\n",
2327 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2328 		       leaf_space_used(leaf, 0, nritems), nritems);
2329 	}
2330 	return ret;
2331 }
2332 
2333 /*
2334  * min slot controls the lowest index we're willing to push to the
2335  * right.  We'll push up to and including min_slot, but no lower
2336  */
2337 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2338 				      struct btrfs_root *root,
2339 				      struct btrfs_path *path,
2340 				      int data_size, int empty,
2341 				      struct extent_buffer *right,
2342 				      int free_space, u32 left_nritems,
2343 				      u32 min_slot)
2344 {
2345 	struct extent_buffer *left = path->nodes[0];
2346 	struct extent_buffer *upper = path->nodes[1];
2347 	struct btrfs_map_token token;
2348 	struct btrfs_disk_key disk_key;
2349 	int slot;
2350 	u32 i;
2351 	int push_space = 0;
2352 	int push_items = 0;
2353 	struct btrfs_item *item;
2354 	u32 nr;
2355 	u32 right_nritems;
2356 	u32 data_end;
2357 	u32 this_item_size;
2358 
2359 	btrfs_init_map_token(&token);
2360 
2361 	if (empty)
2362 		nr = 0;
2363 	else
2364 		nr = max_t(u32, 1, min_slot);
2365 
2366 	if (path->slots[0] >= left_nritems)
2367 		push_space += data_size;
2368 
2369 	slot = path->slots[1];
2370 	i = left_nritems - 1;
2371 	while (i >= nr) {
2372 		item = btrfs_item_nr(left, i);
2373 
2374 		if (!empty && push_items > 0) {
2375 			if (path->slots[0] > i)
2376 				break;
2377 			if (path->slots[0] == i) {
2378 				int space = btrfs_leaf_free_space(root, left);
2379 				if (space + push_space * 2 > free_space)
2380 					break;
2381 			}
2382 		}
2383 
2384 		if (path->slots[0] == i)
2385 			push_space += data_size;
2386 
2387 		this_item_size = btrfs_item_size(left, item);
2388 		if (this_item_size + sizeof(*item) + push_space > free_space)
2389 			break;
2390 
2391 		push_items++;
2392 		push_space += this_item_size + sizeof(*item);
2393 		if (i == 0)
2394 			break;
2395 		i--;
2396 	}
2397 
2398 	if (push_items == 0)
2399 		goto out_unlock;
2400 
2401 	if (!empty && push_items == left_nritems)
2402 		WARN_ON(1);
2403 
2404 	/* push left to right */
2405 	right_nritems = btrfs_header_nritems(right);
2406 
2407 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2408 	push_space -= leaf_data_end(root, left);
2409 
2410 	/* make room in the right data area */
2411 	data_end = leaf_data_end(root, right);
2412 	memmove_extent_buffer(right,
2413 			      btrfs_leaf_data(right) + data_end - push_space,
2414 			      btrfs_leaf_data(right) + data_end,
2415 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2416 
2417 	/* copy from the left data area */
2418 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2419 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2420 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2421 		     push_space);
2422 
2423 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2424 			      btrfs_item_nr_offset(0),
2425 			      right_nritems * sizeof(struct btrfs_item));
2426 
2427 	/* copy the items from left to right */
2428 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2429 		   btrfs_item_nr_offset(left_nritems - push_items),
2430 		   push_items * sizeof(struct btrfs_item));
2431 
2432 	/* update the item pointers */
2433 	right_nritems += push_items;
2434 	btrfs_set_header_nritems(right, right_nritems);
2435 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2436 	for (i = 0; i < right_nritems; i++) {
2437 		item = btrfs_item_nr(right, i);
2438 		push_space -= btrfs_token_item_size(right, item, &token);
2439 		btrfs_set_token_item_offset(right, item, push_space, &token);
2440 	}
2441 
2442 	left_nritems -= push_items;
2443 	btrfs_set_header_nritems(left, left_nritems);
2444 
2445 	if (left_nritems)
2446 		btrfs_mark_buffer_dirty(left);
2447 	else
2448 		clean_tree_block(trans, root, left);
2449 
2450 	btrfs_mark_buffer_dirty(right);
2451 
2452 	btrfs_item_key(right, &disk_key, 0);
2453 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2454 	btrfs_mark_buffer_dirty(upper);
2455 
2456 	/* then fixup the leaf pointer in the path */
2457 	if (path->slots[0] >= left_nritems) {
2458 		path->slots[0] -= left_nritems;
2459 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2460 			clean_tree_block(trans, root, path->nodes[0]);
2461 		btrfs_tree_unlock(path->nodes[0]);
2462 		free_extent_buffer(path->nodes[0]);
2463 		path->nodes[0] = right;
2464 		path->slots[1] += 1;
2465 	} else {
2466 		btrfs_tree_unlock(right);
2467 		free_extent_buffer(right);
2468 	}
2469 	return 0;
2470 
2471 out_unlock:
2472 	btrfs_tree_unlock(right);
2473 	free_extent_buffer(right);
2474 	return 1;
2475 }
2476 
2477 /*
2478  * push some data in the path leaf to the right, trying to free up at
2479  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2480  *
2481  * returns 1 if the push failed because the other node didn't have enough
2482  * room, 0 if everything worked out and < 0 if there were major errors.
2483  *
2484  * this will push starting from min_slot to the end of the leaf.  It won't
2485  * push any slot lower than min_slot
2486  */
2487 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2488 			   *root, struct btrfs_path *path,
2489 			   int min_data_size, int data_size,
2490 			   int empty, u32 min_slot)
2491 {
2492 	struct extent_buffer *left = path->nodes[0];
2493 	struct extent_buffer *right;
2494 	struct extent_buffer *upper;
2495 	int slot;
2496 	int free_space;
2497 	u32 left_nritems;
2498 	int ret;
2499 
2500 	if (!path->nodes[1])
2501 		return 1;
2502 
2503 	slot = path->slots[1];
2504 	upper = path->nodes[1];
2505 	if (slot >= btrfs_header_nritems(upper) - 1)
2506 		return 1;
2507 
2508 	btrfs_assert_tree_locked(path->nodes[1]);
2509 
2510 	right = read_node_slot(root, upper, slot + 1);
2511 	if (right == NULL)
2512 		return 1;
2513 
2514 	btrfs_tree_lock(right);
2515 	btrfs_set_lock_blocking(right);
2516 
2517 	free_space = btrfs_leaf_free_space(root, right);
2518 	if (free_space < data_size)
2519 		goto out_unlock;
2520 
2521 	/* cow and double check */
2522 	ret = btrfs_cow_block(trans, root, right, upper,
2523 			      slot + 1, &right);
2524 	if (ret)
2525 		goto out_unlock;
2526 
2527 	free_space = btrfs_leaf_free_space(root, right);
2528 	if (free_space < data_size)
2529 		goto out_unlock;
2530 
2531 	left_nritems = btrfs_header_nritems(left);
2532 	if (left_nritems == 0)
2533 		goto out_unlock;
2534 
2535 	return __push_leaf_right(trans, root, path, min_data_size, empty,
2536 				right, free_space, left_nritems, min_slot);
2537 out_unlock:
2538 	btrfs_tree_unlock(right);
2539 	free_extent_buffer(right);
2540 	return 1;
2541 }
2542 
2543 /*
2544  * push some data in the path leaf to the left, trying to free up at
2545  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2546  *
2547  * max_slot can put a limit on how far into the leaf we'll push items.  The
2548  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2549  * items
2550  */
2551 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2552 				     struct btrfs_root *root,
2553 				     struct btrfs_path *path, int data_size,
2554 				     int empty, struct extent_buffer *left,
2555 				     int free_space, u32 right_nritems,
2556 				     u32 max_slot)
2557 {
2558 	struct btrfs_disk_key disk_key;
2559 	struct extent_buffer *right = path->nodes[0];
2560 	int i;
2561 	int push_space = 0;
2562 	int push_items = 0;
2563 	struct btrfs_item *item;
2564 	u32 old_left_nritems;
2565 	u32 nr;
2566 	int ret = 0;
2567 	u32 this_item_size;
2568 	u32 old_left_item_size;
2569 	struct btrfs_map_token token;
2570 
2571 	btrfs_init_map_token(&token);
2572 
2573 	if (empty)
2574 		nr = min(right_nritems, max_slot);
2575 	else
2576 		nr = min(right_nritems - 1, max_slot);
2577 
2578 	for (i = 0; i < nr; i++) {
2579 		item = btrfs_item_nr(right, i);
2580 
2581 		if (!empty && push_items > 0) {
2582 			if (path->slots[0] < i)
2583 				break;
2584 			if (path->slots[0] == i) {
2585 				int space = btrfs_leaf_free_space(root, right);
2586 				if (space + push_space * 2 > free_space)
2587 					break;
2588 			}
2589 		}
2590 
2591 		if (path->slots[0] == i)
2592 			push_space += data_size;
2593 
2594 		this_item_size = btrfs_item_size(right, item);
2595 		if (this_item_size + sizeof(*item) + push_space > free_space)
2596 			break;
2597 
2598 		push_items++;
2599 		push_space += this_item_size + sizeof(*item);
2600 	}
2601 
2602 	if (push_items == 0) {
2603 		ret = 1;
2604 		goto out;
2605 	}
2606 	if (!empty && push_items == btrfs_header_nritems(right))
2607 		WARN_ON(1);
2608 
2609 	/* push data from right to left */
2610 	copy_extent_buffer(left, right,
2611 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2612 			   btrfs_item_nr_offset(0),
2613 			   push_items * sizeof(struct btrfs_item));
2614 
2615 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2616 		     btrfs_item_offset_nr(right, push_items - 1);
2617 
2618 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2619 		     leaf_data_end(root, left) - push_space,
2620 		     btrfs_leaf_data(right) +
2621 		     btrfs_item_offset_nr(right, push_items - 1),
2622 		     push_space);
2623 	old_left_nritems = btrfs_header_nritems(left);
2624 	BUG_ON(old_left_nritems <= 0);
2625 
2626 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2627 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2628 		u32 ioff;
2629 
2630 		item = btrfs_item_nr(left, i);
2631 
2632 		ioff = btrfs_token_item_offset(left, item, &token);
2633 		btrfs_set_token_item_offset(left, item,
2634 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
2635 		      &token);
2636 	}
2637 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2638 
2639 	/* fixup right node */
2640 	if (push_items > right_nritems) {
2641 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2642 		       right_nritems);
2643 		WARN_ON(1);
2644 	}
2645 
2646 	if (push_items < right_nritems) {
2647 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2648 						  leaf_data_end(root, right);
2649 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2650 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2651 				      btrfs_leaf_data(right) +
2652 				      leaf_data_end(root, right), push_space);
2653 
2654 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2655 			      btrfs_item_nr_offset(push_items),
2656 			     (btrfs_header_nritems(right) - push_items) *
2657 			     sizeof(struct btrfs_item));
2658 	}
2659 	right_nritems -= push_items;
2660 	btrfs_set_header_nritems(right, right_nritems);
2661 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2662 	for (i = 0; i < right_nritems; i++) {
2663 		item = btrfs_item_nr(right, i);
2664 
2665 		push_space = push_space - btrfs_token_item_size(right,
2666 								item, &token);
2667 		btrfs_set_token_item_offset(right, item, push_space, &token);
2668 	}
2669 
2670 	btrfs_mark_buffer_dirty(left);
2671 	if (right_nritems)
2672 		btrfs_mark_buffer_dirty(right);
2673 	else
2674 		clean_tree_block(trans, root, right);
2675 
2676 	btrfs_item_key(right, &disk_key, 0);
2677 	fixup_low_keys(trans, root, path, &disk_key, 1);
2678 
2679 	/* then fixup the leaf pointer in the path */
2680 	if (path->slots[0] < push_items) {
2681 		path->slots[0] += old_left_nritems;
2682 		btrfs_tree_unlock(path->nodes[0]);
2683 		free_extent_buffer(path->nodes[0]);
2684 		path->nodes[0] = left;
2685 		path->slots[1] -= 1;
2686 	} else {
2687 		btrfs_tree_unlock(left);
2688 		free_extent_buffer(left);
2689 		path->slots[0] -= push_items;
2690 	}
2691 	BUG_ON(path->slots[0] < 0);
2692 	return ret;
2693 out:
2694 	btrfs_tree_unlock(left);
2695 	free_extent_buffer(left);
2696 	return ret;
2697 }
2698 
2699 /*
2700  * push some data in the path leaf to the left, trying to free up at
2701  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2702  *
2703  * max_slot can put a limit on how far into the leaf we'll push items.  The
2704  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2705  * items
2706  */
2707 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2708 			  *root, struct btrfs_path *path, int min_data_size,
2709 			  int data_size, int empty, u32 max_slot)
2710 {
2711 	struct extent_buffer *right = path->nodes[0];
2712 	struct extent_buffer *left;
2713 	int slot;
2714 	int free_space;
2715 	u32 right_nritems;
2716 	int ret = 0;
2717 
2718 	slot = path->slots[1];
2719 	if (slot == 0)
2720 		return 1;
2721 	if (!path->nodes[1])
2722 		return 1;
2723 
2724 	right_nritems = btrfs_header_nritems(right);
2725 	if (right_nritems == 0)
2726 		return 1;
2727 
2728 	btrfs_assert_tree_locked(path->nodes[1]);
2729 
2730 	left = read_node_slot(root, path->nodes[1], slot - 1);
2731 	if (left == NULL)
2732 		return 1;
2733 
2734 	btrfs_tree_lock(left);
2735 	btrfs_set_lock_blocking(left);
2736 
2737 	free_space = btrfs_leaf_free_space(root, left);
2738 	if (free_space < data_size) {
2739 		ret = 1;
2740 		goto out;
2741 	}
2742 
2743 	/* cow and double check */
2744 	ret = btrfs_cow_block(trans, root, left,
2745 			      path->nodes[1], slot - 1, &left);
2746 	if (ret) {
2747 		/* we hit -ENOSPC, but it isn't fatal here */
2748 		if (ret == -ENOSPC)
2749 			ret = 1;
2750 		goto out;
2751 	}
2752 
2753 	free_space = btrfs_leaf_free_space(root, left);
2754 	if (free_space < data_size) {
2755 		ret = 1;
2756 		goto out;
2757 	}
2758 
2759 	return __push_leaf_left(trans, root, path, min_data_size,
2760 			       empty, left, free_space, right_nritems,
2761 			       max_slot);
2762 out:
2763 	btrfs_tree_unlock(left);
2764 	free_extent_buffer(left);
2765 	return ret;
2766 }
2767 
2768 /*
2769  * split the path's leaf in two, making sure there is at least data_size
2770  * available for the resulting leaf level of the path.
2771  */
2772 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2773 				    struct btrfs_root *root,
2774 				    struct btrfs_path *path,
2775 				    struct extent_buffer *l,
2776 				    struct extent_buffer *right,
2777 				    int slot, int mid, int nritems)
2778 {
2779 	int data_copy_size;
2780 	int rt_data_off;
2781 	int i;
2782 	struct btrfs_disk_key disk_key;
2783 	struct btrfs_map_token token;
2784 
2785 	btrfs_init_map_token(&token);
2786 
2787 	nritems = nritems - mid;
2788 	btrfs_set_header_nritems(right, nritems);
2789 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2790 
2791 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2792 			   btrfs_item_nr_offset(mid),
2793 			   nritems * sizeof(struct btrfs_item));
2794 
2795 	copy_extent_buffer(right, l,
2796 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2797 		     data_copy_size, btrfs_leaf_data(l) +
2798 		     leaf_data_end(root, l), data_copy_size);
2799 
2800 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2801 		      btrfs_item_end_nr(l, mid);
2802 
2803 	for (i = 0; i < nritems; i++) {
2804 		struct btrfs_item *item = btrfs_item_nr(right, i);
2805 		u32 ioff;
2806 
2807 		ioff = btrfs_token_item_offset(right, item, &token);
2808 		btrfs_set_token_item_offset(right, item,
2809 					    ioff + rt_data_off, &token);
2810 	}
2811 
2812 	btrfs_set_header_nritems(l, mid);
2813 	btrfs_item_key(right, &disk_key, 0);
2814 	insert_ptr(trans, root, path, &disk_key, right->start,
2815 		   path->slots[1] + 1, 1);
2816 
2817 	btrfs_mark_buffer_dirty(right);
2818 	btrfs_mark_buffer_dirty(l);
2819 	BUG_ON(path->slots[0] != slot);
2820 
2821 	if (mid <= slot) {
2822 		btrfs_tree_unlock(path->nodes[0]);
2823 		free_extent_buffer(path->nodes[0]);
2824 		path->nodes[0] = right;
2825 		path->slots[0] -= mid;
2826 		path->slots[1] += 1;
2827 	} else {
2828 		btrfs_tree_unlock(right);
2829 		free_extent_buffer(right);
2830 	}
2831 
2832 	BUG_ON(path->slots[0] < 0);
2833 }
2834 
2835 /*
2836  * double splits happen when we need to insert a big item in the middle
2837  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2838  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2839  *          A                 B                 C
2840  *
2841  * We avoid this by trying to push the items on either side of our target
2842  * into the adjacent leaves.  If all goes well we can avoid the double split
2843  * completely.
2844  */
2845 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2846 					  struct btrfs_root *root,
2847 					  struct btrfs_path *path,
2848 					  int data_size)
2849 {
2850 	int ret;
2851 	int progress = 0;
2852 	int slot;
2853 	u32 nritems;
2854 
2855 	slot = path->slots[0];
2856 
2857 	/*
2858 	 * try to push all the items after our slot into the
2859 	 * right leaf
2860 	 */
2861 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2862 	if (ret < 0)
2863 		return ret;
2864 
2865 	if (ret == 0)
2866 		progress++;
2867 
2868 	nritems = btrfs_header_nritems(path->nodes[0]);
2869 	/*
2870 	 * our goal is to get our slot at the start or end of a leaf.  If
2871 	 * we've done so we're done
2872 	 */
2873 	if (path->slots[0] == 0 || path->slots[0] == nritems)
2874 		return 0;
2875 
2876 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2877 		return 0;
2878 
2879 	/* try to push all the items before our slot into the next leaf */
2880 	slot = path->slots[0];
2881 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2882 	if (ret < 0)
2883 		return ret;
2884 
2885 	if (ret == 0)
2886 		progress++;
2887 
2888 	if (progress)
2889 		return 0;
2890 	return 1;
2891 }
2892 
2893 /*
2894  * split the path's leaf in two, making sure there is at least data_size
2895  * available for the resulting leaf level of the path.
2896  *
2897  * returns 0 if all went well and < 0 on failure.
2898  */
2899 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2900 			       struct btrfs_root *root,
2901 			       struct btrfs_key *ins_key,
2902 			       struct btrfs_path *path, int data_size,
2903 			       int extend)
2904 {
2905 	struct btrfs_disk_key disk_key;
2906 	struct extent_buffer *l;
2907 	u32 nritems;
2908 	int mid;
2909 	int slot;
2910 	struct extent_buffer *right;
2911 	int ret = 0;
2912 	int wret;
2913 	int split;
2914 	int num_doubles = 0;
2915 	int tried_avoid_double = 0;
2916 
2917 	l = path->nodes[0];
2918 	slot = path->slots[0];
2919 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
2920 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2921 		return -EOVERFLOW;
2922 
2923 	/* first try to make some room by pushing left and right */
2924 	if (data_size) {
2925 		wret = push_leaf_right(trans, root, path, data_size,
2926 				       data_size, 0, 0);
2927 		if (wret < 0)
2928 			return wret;
2929 		if (wret) {
2930 			wret = push_leaf_left(trans, root, path, data_size,
2931 					      data_size, 0, (u32)-1);
2932 			if (wret < 0)
2933 				return wret;
2934 		}
2935 		l = path->nodes[0];
2936 
2937 		/* did the pushes work? */
2938 		if (btrfs_leaf_free_space(root, l) >= data_size)
2939 			return 0;
2940 	}
2941 
2942 	if (!path->nodes[1]) {
2943 		ret = insert_new_root(trans, root, path, 1);
2944 		if (ret)
2945 			return ret;
2946 	}
2947 again:
2948 	split = 1;
2949 	l = path->nodes[0];
2950 	slot = path->slots[0];
2951 	nritems = btrfs_header_nritems(l);
2952 	mid = (nritems + 1) / 2;
2953 
2954 	if (mid <= slot) {
2955 		if (nritems == 1 ||
2956 		    leaf_space_used(l, mid, nritems - mid) + data_size >
2957 			BTRFS_LEAF_DATA_SIZE(root)) {
2958 			if (slot >= nritems) {
2959 				split = 0;
2960 			} else {
2961 				mid = slot;
2962 				if (mid != nritems &&
2963 				    leaf_space_used(l, mid, nritems - mid) +
2964 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2965 					if (data_size && !tried_avoid_double)
2966 						goto push_for_double;
2967 					split = 2;
2968 				}
2969 			}
2970 		}
2971 	} else {
2972 		if (leaf_space_used(l, 0, mid) + data_size >
2973 			BTRFS_LEAF_DATA_SIZE(root)) {
2974 			if (!extend && data_size && slot == 0) {
2975 				split = 0;
2976 			} else if ((extend || !data_size) && slot == 0) {
2977 				mid = 1;
2978 			} else {
2979 				mid = slot;
2980 				if (mid != nritems &&
2981 				    leaf_space_used(l, mid, nritems - mid) +
2982 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2983 					if (data_size && !tried_avoid_double)
2984 						goto push_for_double;
2985 					split = 2 ;
2986 				}
2987 			}
2988 		}
2989 	}
2990 
2991 	if (split == 0)
2992 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
2993 	else
2994 		btrfs_item_key(l, &disk_key, mid);
2995 
2996 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2997 					root->root_key.objectid,
2998 					&disk_key, 0, l->start, 0, 0);
2999 	if (IS_ERR(right))
3000 		return PTR_ERR(right);
3001 
3002 	root_add_used(root, root->leafsize);
3003 
3004 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3005 	btrfs_set_header_bytenr(right, right->start);
3006 	btrfs_set_header_generation(right, trans->transid);
3007 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3008 	btrfs_set_header_owner(right, root->root_key.objectid);
3009 	btrfs_set_header_level(right, 0);
3010 	write_extent_buffer(right, root->fs_info->fsid,
3011 			    (unsigned long)btrfs_header_fsid(right),
3012 			    BTRFS_FSID_SIZE);
3013 
3014 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3015 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
3016 			    BTRFS_UUID_SIZE);
3017 
3018 	if (split == 0) {
3019 		if (mid <= slot) {
3020 			btrfs_set_header_nritems(right, 0);
3021 			insert_ptr(trans, root, path, &disk_key, right->start,
3022 				   path->slots[1] + 1, 1);
3023 			btrfs_tree_unlock(path->nodes[0]);
3024 			free_extent_buffer(path->nodes[0]);
3025 			path->nodes[0] = right;
3026 			path->slots[0] = 0;
3027 			path->slots[1] += 1;
3028 		} else {
3029 			btrfs_set_header_nritems(right, 0);
3030 			insert_ptr(trans, root, path, &disk_key, right->start,
3031 					  path->slots[1], 1);
3032 			btrfs_tree_unlock(path->nodes[0]);
3033 			free_extent_buffer(path->nodes[0]);
3034 			path->nodes[0] = right;
3035 			path->slots[0] = 0;
3036 			if (path->slots[1] == 0)
3037 				fixup_low_keys(trans, root, path,
3038 					       &disk_key, 1);
3039 		}
3040 		btrfs_mark_buffer_dirty(right);
3041 		return ret;
3042 	}
3043 
3044 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3045 
3046 	if (split == 2) {
3047 		BUG_ON(num_doubles != 0);
3048 		num_doubles++;
3049 		goto again;
3050 	}
3051 
3052 	return 0;
3053 
3054 push_for_double:
3055 	push_for_double_split(trans, root, path, data_size);
3056 	tried_avoid_double = 1;
3057 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3058 		return 0;
3059 	goto again;
3060 }
3061 
3062 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3063 					 struct btrfs_root *root,
3064 					 struct btrfs_path *path, int ins_len)
3065 {
3066 	struct btrfs_key key;
3067 	struct extent_buffer *leaf;
3068 	struct btrfs_file_extent_item *fi;
3069 	u64 extent_len = 0;
3070 	u32 item_size;
3071 	int ret;
3072 
3073 	leaf = path->nodes[0];
3074 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3075 
3076 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3077 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3078 
3079 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3080 		return 0;
3081 
3082 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3083 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3084 		fi = btrfs_item_ptr(leaf, path->slots[0],
3085 				    struct btrfs_file_extent_item);
3086 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3087 	}
3088 	btrfs_release_path(path);
3089 
3090 	path->keep_locks = 1;
3091 	path->search_for_split = 1;
3092 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3093 	path->search_for_split = 0;
3094 	if (ret < 0)
3095 		goto err;
3096 
3097 	ret = -EAGAIN;
3098 	leaf = path->nodes[0];
3099 	/* if our item isn't there or got smaller, return now */
3100 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3101 		goto err;
3102 
3103 	/* the leaf has  changed, it now has room.  return now */
3104 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3105 		goto err;
3106 
3107 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3108 		fi = btrfs_item_ptr(leaf, path->slots[0],
3109 				    struct btrfs_file_extent_item);
3110 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3111 			goto err;
3112 	}
3113 
3114 	btrfs_set_path_blocking(path);
3115 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3116 	if (ret)
3117 		goto err;
3118 
3119 	path->keep_locks = 0;
3120 	btrfs_unlock_up_safe(path, 1);
3121 	return 0;
3122 err:
3123 	path->keep_locks = 0;
3124 	return ret;
3125 }
3126 
3127 static noinline int split_item(struct btrfs_trans_handle *trans,
3128 			       struct btrfs_root *root,
3129 			       struct btrfs_path *path,
3130 			       struct btrfs_key *new_key,
3131 			       unsigned long split_offset)
3132 {
3133 	struct extent_buffer *leaf;
3134 	struct btrfs_item *item;
3135 	struct btrfs_item *new_item;
3136 	int slot;
3137 	char *buf;
3138 	u32 nritems;
3139 	u32 item_size;
3140 	u32 orig_offset;
3141 	struct btrfs_disk_key disk_key;
3142 
3143 	leaf = path->nodes[0];
3144 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3145 
3146 	btrfs_set_path_blocking(path);
3147 
3148 	item = btrfs_item_nr(leaf, path->slots[0]);
3149 	orig_offset = btrfs_item_offset(leaf, item);
3150 	item_size = btrfs_item_size(leaf, item);
3151 
3152 	buf = kmalloc(item_size, GFP_NOFS);
3153 	if (!buf)
3154 		return -ENOMEM;
3155 
3156 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3157 			    path->slots[0]), item_size);
3158 
3159 	slot = path->slots[0] + 1;
3160 	nritems = btrfs_header_nritems(leaf);
3161 	if (slot != nritems) {
3162 		/* shift the items */
3163 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3164 				btrfs_item_nr_offset(slot),
3165 				(nritems - slot) * sizeof(struct btrfs_item));
3166 	}
3167 
3168 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3169 	btrfs_set_item_key(leaf, &disk_key, slot);
3170 
3171 	new_item = btrfs_item_nr(leaf, slot);
3172 
3173 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3174 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3175 
3176 	btrfs_set_item_offset(leaf, item,
3177 			      orig_offset + item_size - split_offset);
3178 	btrfs_set_item_size(leaf, item, split_offset);
3179 
3180 	btrfs_set_header_nritems(leaf, nritems + 1);
3181 
3182 	/* write the data for the start of the original item */
3183 	write_extent_buffer(leaf, buf,
3184 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3185 			    split_offset);
3186 
3187 	/* write the data for the new item */
3188 	write_extent_buffer(leaf, buf + split_offset,
3189 			    btrfs_item_ptr_offset(leaf, slot),
3190 			    item_size - split_offset);
3191 	btrfs_mark_buffer_dirty(leaf);
3192 
3193 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3194 	kfree(buf);
3195 	return 0;
3196 }
3197 
3198 /*
3199  * This function splits a single item into two items,
3200  * giving 'new_key' to the new item and splitting the
3201  * old one at split_offset (from the start of the item).
3202  *
3203  * The path may be released by this operation.  After
3204  * the split, the path is pointing to the old item.  The
3205  * new item is going to be in the same node as the old one.
3206  *
3207  * Note, the item being split must be smaller enough to live alone on
3208  * a tree block with room for one extra struct btrfs_item
3209  *
3210  * This allows us to split the item in place, keeping a lock on the
3211  * leaf the entire time.
3212  */
3213 int btrfs_split_item(struct btrfs_trans_handle *trans,
3214 		     struct btrfs_root *root,
3215 		     struct btrfs_path *path,
3216 		     struct btrfs_key *new_key,
3217 		     unsigned long split_offset)
3218 {
3219 	int ret;
3220 	ret = setup_leaf_for_split(trans, root, path,
3221 				   sizeof(struct btrfs_item));
3222 	if (ret)
3223 		return ret;
3224 
3225 	ret = split_item(trans, root, path, new_key, split_offset);
3226 	return ret;
3227 }
3228 
3229 /*
3230  * This function duplicate a item, giving 'new_key' to the new item.
3231  * It guarantees both items live in the same tree leaf and the new item
3232  * is contiguous with the original item.
3233  *
3234  * This allows us to split file extent in place, keeping a lock on the
3235  * leaf the entire time.
3236  */
3237 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3238 			 struct btrfs_root *root,
3239 			 struct btrfs_path *path,
3240 			 struct btrfs_key *new_key)
3241 {
3242 	struct extent_buffer *leaf;
3243 	int ret;
3244 	u32 item_size;
3245 
3246 	leaf = path->nodes[0];
3247 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3248 	ret = setup_leaf_for_split(trans, root, path,
3249 				   item_size + sizeof(struct btrfs_item));
3250 	if (ret)
3251 		return ret;
3252 
3253 	path->slots[0]++;
3254 	setup_items_for_insert(trans, root, path, new_key, &item_size,
3255 			       item_size, item_size +
3256 			       sizeof(struct btrfs_item), 1);
3257 	leaf = path->nodes[0];
3258 	memcpy_extent_buffer(leaf,
3259 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3260 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3261 			     item_size);
3262 	return 0;
3263 }
3264 
3265 /*
3266  * make the item pointed to by the path smaller.  new_size indicates
3267  * how small to make it, and from_end tells us if we just chop bytes
3268  * off the end of the item or if we shift the item to chop bytes off
3269  * the front.
3270  */
3271 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
3272 			 struct btrfs_root *root,
3273 			 struct btrfs_path *path,
3274 			 u32 new_size, int from_end)
3275 {
3276 	int slot;
3277 	struct extent_buffer *leaf;
3278 	struct btrfs_item *item;
3279 	u32 nritems;
3280 	unsigned int data_end;
3281 	unsigned int old_data_start;
3282 	unsigned int old_size;
3283 	unsigned int size_diff;
3284 	int i;
3285 	struct btrfs_map_token token;
3286 
3287 	btrfs_init_map_token(&token);
3288 
3289 	leaf = path->nodes[0];
3290 	slot = path->slots[0];
3291 
3292 	old_size = btrfs_item_size_nr(leaf, slot);
3293 	if (old_size == new_size)
3294 		return;
3295 
3296 	nritems = btrfs_header_nritems(leaf);
3297 	data_end = leaf_data_end(root, leaf);
3298 
3299 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3300 
3301 	size_diff = old_size - new_size;
3302 
3303 	BUG_ON(slot < 0);
3304 	BUG_ON(slot >= nritems);
3305 
3306 	/*
3307 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3308 	 */
3309 	/* first correct the data pointers */
3310 	for (i = slot; i < nritems; i++) {
3311 		u32 ioff;
3312 		item = btrfs_item_nr(leaf, i);
3313 
3314 		ioff = btrfs_token_item_offset(leaf, item, &token);
3315 		btrfs_set_token_item_offset(leaf, item,
3316 					    ioff + size_diff, &token);
3317 	}
3318 
3319 	/* shift the data */
3320 	if (from_end) {
3321 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3322 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3323 			      data_end, old_data_start + new_size - data_end);
3324 	} else {
3325 		struct btrfs_disk_key disk_key;
3326 		u64 offset;
3327 
3328 		btrfs_item_key(leaf, &disk_key, slot);
3329 
3330 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3331 			unsigned long ptr;
3332 			struct btrfs_file_extent_item *fi;
3333 
3334 			fi = btrfs_item_ptr(leaf, slot,
3335 					    struct btrfs_file_extent_item);
3336 			fi = (struct btrfs_file_extent_item *)(
3337 			     (unsigned long)fi - size_diff);
3338 
3339 			if (btrfs_file_extent_type(leaf, fi) ==
3340 			    BTRFS_FILE_EXTENT_INLINE) {
3341 				ptr = btrfs_item_ptr_offset(leaf, slot);
3342 				memmove_extent_buffer(leaf, ptr,
3343 				      (unsigned long)fi,
3344 				      offsetof(struct btrfs_file_extent_item,
3345 						 disk_bytenr));
3346 			}
3347 		}
3348 
3349 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3350 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3351 			      data_end, old_data_start - data_end);
3352 
3353 		offset = btrfs_disk_key_offset(&disk_key);
3354 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3355 		btrfs_set_item_key(leaf, &disk_key, slot);
3356 		if (slot == 0)
3357 			fixup_low_keys(trans, root, path, &disk_key, 1);
3358 	}
3359 
3360 	item = btrfs_item_nr(leaf, slot);
3361 	btrfs_set_item_size(leaf, item, new_size);
3362 	btrfs_mark_buffer_dirty(leaf);
3363 
3364 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3365 		btrfs_print_leaf(root, leaf);
3366 		BUG();
3367 	}
3368 }
3369 
3370 /*
3371  * make the item pointed to by the path bigger, data_size is the new size.
3372  */
3373 void btrfs_extend_item(struct btrfs_trans_handle *trans,
3374 		       struct btrfs_root *root, struct btrfs_path *path,
3375 		       u32 data_size)
3376 {
3377 	int slot;
3378 	struct extent_buffer *leaf;
3379 	struct btrfs_item *item;
3380 	u32 nritems;
3381 	unsigned int data_end;
3382 	unsigned int old_data;
3383 	unsigned int old_size;
3384 	int i;
3385 	struct btrfs_map_token token;
3386 
3387 	btrfs_init_map_token(&token);
3388 
3389 	leaf = path->nodes[0];
3390 
3391 	nritems = btrfs_header_nritems(leaf);
3392 	data_end = leaf_data_end(root, leaf);
3393 
3394 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3395 		btrfs_print_leaf(root, leaf);
3396 		BUG();
3397 	}
3398 	slot = path->slots[0];
3399 	old_data = btrfs_item_end_nr(leaf, slot);
3400 
3401 	BUG_ON(slot < 0);
3402 	if (slot >= nritems) {
3403 		btrfs_print_leaf(root, leaf);
3404 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3405 		       slot, nritems);
3406 		BUG_ON(1);
3407 	}
3408 
3409 	/*
3410 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3411 	 */
3412 	/* first correct the data pointers */
3413 	for (i = slot; i < nritems; i++) {
3414 		u32 ioff;
3415 		item = btrfs_item_nr(leaf, i);
3416 
3417 		ioff = btrfs_token_item_offset(leaf, item, &token);
3418 		btrfs_set_token_item_offset(leaf, item,
3419 					    ioff - data_size, &token);
3420 	}
3421 
3422 	/* shift the data */
3423 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3424 		      data_end - data_size, btrfs_leaf_data(leaf) +
3425 		      data_end, old_data - data_end);
3426 
3427 	data_end = old_data;
3428 	old_size = btrfs_item_size_nr(leaf, slot);
3429 	item = btrfs_item_nr(leaf, slot);
3430 	btrfs_set_item_size(leaf, item, old_size + data_size);
3431 	btrfs_mark_buffer_dirty(leaf);
3432 
3433 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3434 		btrfs_print_leaf(root, leaf);
3435 		BUG();
3436 	}
3437 }
3438 
3439 /*
3440  * Given a key and some data, insert items into the tree.
3441  * This does all the path init required, making room in the tree if needed.
3442  * Returns the number of keys that were inserted.
3443  */
3444 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3445 			    struct btrfs_root *root,
3446 			    struct btrfs_path *path,
3447 			    struct btrfs_key *cpu_key, u32 *data_size,
3448 			    int nr)
3449 {
3450 	struct extent_buffer *leaf;
3451 	struct btrfs_item *item;
3452 	int ret = 0;
3453 	int slot;
3454 	int i;
3455 	u32 nritems;
3456 	u32 total_data = 0;
3457 	u32 total_size = 0;
3458 	unsigned int data_end;
3459 	struct btrfs_disk_key disk_key;
3460 	struct btrfs_key found_key;
3461 	struct btrfs_map_token token;
3462 
3463 	btrfs_init_map_token(&token);
3464 
3465 	for (i = 0; i < nr; i++) {
3466 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3467 		    BTRFS_LEAF_DATA_SIZE(root)) {
3468 			break;
3469 			nr = i;
3470 		}
3471 		total_data += data_size[i];
3472 		total_size += data_size[i] + sizeof(struct btrfs_item);
3473 	}
3474 	BUG_ON(nr == 0);
3475 
3476 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3477 	if (ret == 0)
3478 		return -EEXIST;
3479 	if (ret < 0)
3480 		goto out;
3481 
3482 	leaf = path->nodes[0];
3483 
3484 	nritems = btrfs_header_nritems(leaf);
3485 	data_end = leaf_data_end(root, leaf);
3486 
3487 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3488 		for (i = nr; i >= 0; i--) {
3489 			total_data -= data_size[i];
3490 			total_size -= data_size[i] + sizeof(struct btrfs_item);
3491 			if (total_size < btrfs_leaf_free_space(root, leaf))
3492 				break;
3493 		}
3494 		nr = i;
3495 	}
3496 
3497 	slot = path->slots[0];
3498 	BUG_ON(slot < 0);
3499 
3500 	if (slot != nritems) {
3501 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3502 
3503 		item = btrfs_item_nr(leaf, slot);
3504 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3505 
3506 		/* figure out how many keys we can insert in here */
3507 		total_data = data_size[0];
3508 		for (i = 1; i < nr; i++) {
3509 			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3510 				break;
3511 			total_data += data_size[i];
3512 		}
3513 		nr = i;
3514 
3515 		if (old_data < data_end) {
3516 			btrfs_print_leaf(root, leaf);
3517 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3518 			       slot, old_data, data_end);
3519 			BUG_ON(1);
3520 		}
3521 		/*
3522 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3523 		 */
3524 		/* first correct the data pointers */
3525 		for (i = slot; i < nritems; i++) {
3526 			u32 ioff;
3527 
3528 			item = btrfs_item_nr(leaf, i);
3529 			ioff = btrfs_token_item_offset(leaf, item, &token);
3530 			btrfs_set_token_item_offset(leaf, item,
3531 						    ioff - total_data, &token);
3532 		}
3533 		/* shift the items */
3534 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3535 			      btrfs_item_nr_offset(slot),
3536 			      (nritems - slot) * sizeof(struct btrfs_item));
3537 
3538 		/* shift the data */
3539 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3540 			      data_end - total_data, btrfs_leaf_data(leaf) +
3541 			      data_end, old_data - data_end);
3542 		data_end = old_data;
3543 	} else {
3544 		/*
3545 		 * this sucks but it has to be done, if we are inserting at
3546 		 * the end of the leaf only insert 1 of the items, since we
3547 		 * have no way of knowing whats on the next leaf and we'd have
3548 		 * to drop our current locks to figure it out
3549 		 */
3550 		nr = 1;
3551 	}
3552 
3553 	/* setup the item for the new data */
3554 	for (i = 0; i < nr; i++) {
3555 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3556 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3557 		item = btrfs_item_nr(leaf, slot + i);
3558 		btrfs_set_token_item_offset(leaf, item,
3559 					    data_end - data_size[i], &token);
3560 		data_end -= data_size[i];
3561 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
3562 	}
3563 	btrfs_set_header_nritems(leaf, nritems + nr);
3564 	btrfs_mark_buffer_dirty(leaf);
3565 
3566 	ret = 0;
3567 	if (slot == 0) {
3568 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3569 		fixup_low_keys(trans, root, path, &disk_key, 1);
3570 	}
3571 
3572 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3573 		btrfs_print_leaf(root, leaf);
3574 		BUG();
3575 	}
3576 out:
3577 	if (!ret)
3578 		ret = nr;
3579 	return ret;
3580 }
3581 
3582 /*
3583  * this is a helper for btrfs_insert_empty_items, the main goal here is
3584  * to save stack depth by doing the bulk of the work in a function
3585  * that doesn't call btrfs_search_slot
3586  */
3587 void setup_items_for_insert(struct btrfs_trans_handle *trans,
3588 			    struct btrfs_root *root, struct btrfs_path *path,
3589 			    struct btrfs_key *cpu_key, u32 *data_size,
3590 			    u32 total_data, u32 total_size, int nr)
3591 {
3592 	struct btrfs_item *item;
3593 	int i;
3594 	u32 nritems;
3595 	unsigned int data_end;
3596 	struct btrfs_disk_key disk_key;
3597 	struct extent_buffer *leaf;
3598 	int slot;
3599 	struct btrfs_map_token token;
3600 
3601 	btrfs_init_map_token(&token);
3602 
3603 	leaf = path->nodes[0];
3604 	slot = path->slots[0];
3605 
3606 	nritems = btrfs_header_nritems(leaf);
3607 	data_end = leaf_data_end(root, leaf);
3608 
3609 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3610 		btrfs_print_leaf(root, leaf);
3611 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3612 		       total_size, btrfs_leaf_free_space(root, leaf));
3613 		BUG();
3614 	}
3615 
3616 	if (slot != nritems) {
3617 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3618 
3619 		if (old_data < data_end) {
3620 			btrfs_print_leaf(root, leaf);
3621 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3622 			       slot, old_data, data_end);
3623 			BUG_ON(1);
3624 		}
3625 		/*
3626 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3627 		 */
3628 		/* first correct the data pointers */
3629 		for (i = slot; i < nritems; i++) {
3630 			u32 ioff;
3631 
3632 			item = btrfs_item_nr(leaf, i);
3633 			ioff = btrfs_token_item_offset(leaf, item, &token);
3634 			btrfs_set_token_item_offset(leaf, item,
3635 						    ioff - total_data, &token);
3636 		}
3637 		/* shift the items */
3638 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3639 			      btrfs_item_nr_offset(slot),
3640 			      (nritems - slot) * sizeof(struct btrfs_item));
3641 
3642 		/* shift the data */
3643 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3644 			      data_end - total_data, btrfs_leaf_data(leaf) +
3645 			      data_end, old_data - data_end);
3646 		data_end = old_data;
3647 	}
3648 
3649 	/* setup the item for the new data */
3650 	for (i = 0; i < nr; i++) {
3651 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3652 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3653 		item = btrfs_item_nr(leaf, slot + i);
3654 		btrfs_set_token_item_offset(leaf, item,
3655 					    data_end - data_size[i], &token);
3656 		data_end -= data_size[i];
3657 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
3658 	}
3659 
3660 	btrfs_set_header_nritems(leaf, nritems + nr);
3661 
3662 	if (slot == 0) {
3663 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3664 		fixup_low_keys(trans, root, path, &disk_key, 1);
3665 	}
3666 	btrfs_unlock_up_safe(path, 1);
3667 	btrfs_mark_buffer_dirty(leaf);
3668 
3669 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3670 		btrfs_print_leaf(root, leaf);
3671 		BUG();
3672 	}
3673 }
3674 
3675 /*
3676  * Given a key and some data, insert items into the tree.
3677  * This does all the path init required, making room in the tree if needed.
3678  */
3679 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3680 			    struct btrfs_root *root,
3681 			    struct btrfs_path *path,
3682 			    struct btrfs_key *cpu_key, u32 *data_size,
3683 			    int nr)
3684 {
3685 	int ret = 0;
3686 	int slot;
3687 	int i;
3688 	u32 total_size = 0;
3689 	u32 total_data = 0;
3690 
3691 	for (i = 0; i < nr; i++)
3692 		total_data += data_size[i];
3693 
3694 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3695 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3696 	if (ret == 0)
3697 		return -EEXIST;
3698 	if (ret < 0)
3699 		return ret;
3700 
3701 	slot = path->slots[0];
3702 	BUG_ON(slot < 0);
3703 
3704 	setup_items_for_insert(trans, root, path, cpu_key, data_size,
3705 			       total_data, total_size, nr);
3706 	return 0;
3707 }
3708 
3709 /*
3710  * Given a key and some data, insert an item into the tree.
3711  * This does all the path init required, making room in the tree if needed.
3712  */
3713 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3714 		      *root, struct btrfs_key *cpu_key, void *data, u32
3715 		      data_size)
3716 {
3717 	int ret = 0;
3718 	struct btrfs_path *path;
3719 	struct extent_buffer *leaf;
3720 	unsigned long ptr;
3721 
3722 	path = btrfs_alloc_path();
3723 	if (!path)
3724 		return -ENOMEM;
3725 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3726 	if (!ret) {
3727 		leaf = path->nodes[0];
3728 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3729 		write_extent_buffer(leaf, data, ptr, data_size);
3730 		btrfs_mark_buffer_dirty(leaf);
3731 	}
3732 	btrfs_free_path(path);
3733 	return ret;
3734 }
3735 
3736 /*
3737  * delete the pointer from a given node.
3738  *
3739  * the tree should have been previously balanced so the deletion does not
3740  * empty a node.
3741  */
3742 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3743 		    struct btrfs_path *path, int level, int slot)
3744 {
3745 	struct extent_buffer *parent = path->nodes[level];
3746 	u32 nritems;
3747 
3748 	nritems = btrfs_header_nritems(parent);
3749 	if (slot != nritems - 1) {
3750 		memmove_extent_buffer(parent,
3751 			      btrfs_node_key_ptr_offset(slot),
3752 			      btrfs_node_key_ptr_offset(slot + 1),
3753 			      sizeof(struct btrfs_key_ptr) *
3754 			      (nritems - slot - 1));
3755 	}
3756 	nritems--;
3757 	btrfs_set_header_nritems(parent, nritems);
3758 	if (nritems == 0 && parent == root->node) {
3759 		BUG_ON(btrfs_header_level(root->node) != 1);
3760 		/* just turn the root into a leaf and break */
3761 		btrfs_set_header_level(root->node, 0);
3762 	} else if (slot == 0) {
3763 		struct btrfs_disk_key disk_key;
3764 
3765 		btrfs_node_key(parent, &disk_key, 0);
3766 		fixup_low_keys(trans, root, path, &disk_key, level + 1);
3767 	}
3768 	btrfs_mark_buffer_dirty(parent);
3769 }
3770 
3771 /*
3772  * a helper function to delete the leaf pointed to by path->slots[1] and
3773  * path->nodes[1].
3774  *
3775  * This deletes the pointer in path->nodes[1] and frees the leaf
3776  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3777  *
3778  * The path must have already been setup for deleting the leaf, including
3779  * all the proper balancing.  path->nodes[1] must be locked.
3780  */
3781 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
3782 				    struct btrfs_root *root,
3783 				    struct btrfs_path *path,
3784 				    struct extent_buffer *leaf)
3785 {
3786 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3787 	del_ptr(trans, root, path, 1, path->slots[1]);
3788 
3789 	/*
3790 	 * btrfs_free_extent is expensive, we want to make sure we
3791 	 * aren't holding any locks when we call it
3792 	 */
3793 	btrfs_unlock_up_safe(path, 0);
3794 
3795 	root_sub_used(root, leaf->len);
3796 
3797 	extent_buffer_get(leaf);
3798 	btrfs_free_tree_block(trans, root, leaf, 0, 1, 0);
3799 	free_extent_buffer_stale(leaf);
3800 }
3801 /*
3802  * delete the item at the leaf level in path.  If that empties
3803  * the leaf, remove it from the tree
3804  */
3805 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3806 		    struct btrfs_path *path, int slot, int nr)
3807 {
3808 	struct extent_buffer *leaf;
3809 	struct btrfs_item *item;
3810 	int last_off;
3811 	int dsize = 0;
3812 	int ret = 0;
3813 	int wret;
3814 	int i;
3815 	u32 nritems;
3816 	struct btrfs_map_token token;
3817 
3818 	btrfs_init_map_token(&token);
3819 
3820 	leaf = path->nodes[0];
3821 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3822 
3823 	for (i = 0; i < nr; i++)
3824 		dsize += btrfs_item_size_nr(leaf, slot + i);
3825 
3826 	nritems = btrfs_header_nritems(leaf);
3827 
3828 	if (slot + nr != nritems) {
3829 		int data_end = leaf_data_end(root, leaf);
3830 
3831 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3832 			      data_end + dsize,
3833 			      btrfs_leaf_data(leaf) + data_end,
3834 			      last_off - data_end);
3835 
3836 		for (i = slot + nr; i < nritems; i++) {
3837 			u32 ioff;
3838 
3839 			item = btrfs_item_nr(leaf, i);
3840 			ioff = btrfs_token_item_offset(leaf, item, &token);
3841 			btrfs_set_token_item_offset(leaf, item,
3842 						    ioff + dsize, &token);
3843 		}
3844 
3845 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3846 			      btrfs_item_nr_offset(slot + nr),
3847 			      sizeof(struct btrfs_item) *
3848 			      (nritems - slot - nr));
3849 	}
3850 	btrfs_set_header_nritems(leaf, nritems - nr);
3851 	nritems -= nr;
3852 
3853 	/* delete the leaf if we've emptied it */
3854 	if (nritems == 0) {
3855 		if (leaf == root->node) {
3856 			btrfs_set_header_level(leaf, 0);
3857 		} else {
3858 			btrfs_set_path_blocking(path);
3859 			clean_tree_block(trans, root, leaf);
3860 			btrfs_del_leaf(trans, root, path, leaf);
3861 		}
3862 	} else {
3863 		int used = leaf_space_used(leaf, 0, nritems);
3864 		if (slot == 0) {
3865 			struct btrfs_disk_key disk_key;
3866 
3867 			btrfs_item_key(leaf, &disk_key, 0);
3868 			fixup_low_keys(trans, root, path, &disk_key, 1);
3869 		}
3870 
3871 		/* delete the leaf if it is mostly empty */
3872 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3873 			/* push_leaf_left fixes the path.
3874 			 * make sure the path still points to our leaf
3875 			 * for possible call to del_ptr below
3876 			 */
3877 			slot = path->slots[1];
3878 			extent_buffer_get(leaf);
3879 
3880 			btrfs_set_path_blocking(path);
3881 			wret = push_leaf_left(trans, root, path, 1, 1,
3882 					      1, (u32)-1);
3883 			if (wret < 0 && wret != -ENOSPC)
3884 				ret = wret;
3885 
3886 			if (path->nodes[0] == leaf &&
3887 			    btrfs_header_nritems(leaf)) {
3888 				wret = push_leaf_right(trans, root, path, 1,
3889 						       1, 1, 0);
3890 				if (wret < 0 && wret != -ENOSPC)
3891 					ret = wret;
3892 			}
3893 
3894 			if (btrfs_header_nritems(leaf) == 0) {
3895 				path->slots[1] = slot;
3896 				btrfs_del_leaf(trans, root, path, leaf);
3897 				free_extent_buffer(leaf);
3898 				ret = 0;
3899 			} else {
3900 				/* if we're still in the path, make sure
3901 				 * we're dirty.  Otherwise, one of the
3902 				 * push_leaf functions must have already
3903 				 * dirtied this buffer
3904 				 */
3905 				if (path->nodes[0] == leaf)
3906 					btrfs_mark_buffer_dirty(leaf);
3907 				free_extent_buffer(leaf);
3908 			}
3909 		} else {
3910 			btrfs_mark_buffer_dirty(leaf);
3911 		}
3912 	}
3913 	return ret;
3914 }
3915 
3916 /*
3917  * search the tree again to find a leaf with lesser keys
3918  * returns 0 if it found something or 1 if there are no lesser leaves.
3919  * returns < 0 on io errors.
3920  *
3921  * This may release the path, and so you may lose any locks held at the
3922  * time you call it.
3923  */
3924 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3925 {
3926 	struct btrfs_key key;
3927 	struct btrfs_disk_key found_key;
3928 	int ret;
3929 
3930 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3931 
3932 	if (key.offset > 0)
3933 		key.offset--;
3934 	else if (key.type > 0)
3935 		key.type--;
3936 	else if (key.objectid > 0)
3937 		key.objectid--;
3938 	else
3939 		return 1;
3940 
3941 	btrfs_release_path(path);
3942 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3943 	if (ret < 0)
3944 		return ret;
3945 	btrfs_item_key(path->nodes[0], &found_key, 0);
3946 	ret = comp_keys(&found_key, &key);
3947 	if (ret < 0)
3948 		return 0;
3949 	return 1;
3950 }
3951 
3952 /*
3953  * A helper function to walk down the tree starting at min_key, and looking
3954  * for nodes or leaves that are either in cache or have a minimum
3955  * transaction id.  This is used by the btree defrag code, and tree logging
3956  *
3957  * This does not cow, but it does stuff the starting key it finds back
3958  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3959  * key and get a writable path.
3960  *
3961  * This does lock as it descends, and path->keep_locks should be set
3962  * to 1 by the caller.
3963  *
3964  * This honors path->lowest_level to prevent descent past a given level
3965  * of the tree.
3966  *
3967  * min_trans indicates the oldest transaction that you are interested
3968  * in walking through.  Any nodes or leaves older than min_trans are
3969  * skipped over (without reading them).
3970  *
3971  * returns zero if something useful was found, < 0 on error and 1 if there
3972  * was nothing in the tree that matched the search criteria.
3973  */
3974 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3975 			 struct btrfs_key *max_key,
3976 			 struct btrfs_path *path, int cache_only,
3977 			 u64 min_trans)
3978 {
3979 	struct extent_buffer *cur;
3980 	struct btrfs_key found_key;
3981 	int slot;
3982 	int sret;
3983 	u32 nritems;
3984 	int level;
3985 	int ret = 1;
3986 
3987 	WARN_ON(!path->keep_locks);
3988 again:
3989 	cur = btrfs_read_lock_root_node(root);
3990 	level = btrfs_header_level(cur);
3991 	WARN_ON(path->nodes[level]);
3992 	path->nodes[level] = cur;
3993 	path->locks[level] = BTRFS_READ_LOCK;
3994 
3995 	if (btrfs_header_generation(cur) < min_trans) {
3996 		ret = 1;
3997 		goto out;
3998 	}
3999 	while (1) {
4000 		nritems = btrfs_header_nritems(cur);
4001 		level = btrfs_header_level(cur);
4002 		sret = bin_search(cur, min_key, level, &slot);
4003 
4004 		/* at the lowest level, we're done, setup the path and exit */
4005 		if (level == path->lowest_level) {
4006 			if (slot >= nritems)
4007 				goto find_next_key;
4008 			ret = 0;
4009 			path->slots[level] = slot;
4010 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4011 			goto out;
4012 		}
4013 		if (sret && slot > 0)
4014 			slot--;
4015 		/*
4016 		 * check this node pointer against the cache_only and
4017 		 * min_trans parameters.  If it isn't in cache or is too
4018 		 * old, skip to the next one.
4019 		 */
4020 		while (slot < nritems) {
4021 			u64 blockptr;
4022 			u64 gen;
4023 			struct extent_buffer *tmp;
4024 			struct btrfs_disk_key disk_key;
4025 
4026 			blockptr = btrfs_node_blockptr(cur, slot);
4027 			gen = btrfs_node_ptr_generation(cur, slot);
4028 			if (gen < min_trans) {
4029 				slot++;
4030 				continue;
4031 			}
4032 			if (!cache_only)
4033 				break;
4034 
4035 			if (max_key) {
4036 				btrfs_node_key(cur, &disk_key, slot);
4037 				if (comp_keys(&disk_key, max_key) >= 0) {
4038 					ret = 1;
4039 					goto out;
4040 				}
4041 			}
4042 
4043 			tmp = btrfs_find_tree_block(root, blockptr,
4044 					    btrfs_level_size(root, level - 1));
4045 
4046 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4047 				free_extent_buffer(tmp);
4048 				break;
4049 			}
4050 			if (tmp)
4051 				free_extent_buffer(tmp);
4052 			slot++;
4053 		}
4054 find_next_key:
4055 		/*
4056 		 * we didn't find a candidate key in this node, walk forward
4057 		 * and find another one
4058 		 */
4059 		if (slot >= nritems) {
4060 			path->slots[level] = slot;
4061 			btrfs_set_path_blocking(path);
4062 			sret = btrfs_find_next_key(root, path, min_key, level,
4063 						  cache_only, min_trans);
4064 			if (sret == 0) {
4065 				btrfs_release_path(path);
4066 				goto again;
4067 			} else {
4068 				goto out;
4069 			}
4070 		}
4071 		/* save our key for returning back */
4072 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4073 		path->slots[level] = slot;
4074 		if (level == path->lowest_level) {
4075 			ret = 0;
4076 			unlock_up(path, level, 1, 0, NULL);
4077 			goto out;
4078 		}
4079 		btrfs_set_path_blocking(path);
4080 		cur = read_node_slot(root, cur, slot);
4081 		BUG_ON(!cur); /* -ENOMEM */
4082 
4083 		btrfs_tree_read_lock(cur);
4084 
4085 		path->locks[level - 1] = BTRFS_READ_LOCK;
4086 		path->nodes[level - 1] = cur;
4087 		unlock_up(path, level, 1, 0, NULL);
4088 		btrfs_clear_path_blocking(path, NULL, 0);
4089 	}
4090 out:
4091 	if (ret == 0)
4092 		memcpy(min_key, &found_key, sizeof(found_key));
4093 	btrfs_set_path_blocking(path);
4094 	return ret;
4095 }
4096 
4097 /*
4098  * this is similar to btrfs_next_leaf, but does not try to preserve
4099  * and fixup the path.  It looks for and returns the next key in the
4100  * tree based on the current path and the cache_only and min_trans
4101  * parameters.
4102  *
4103  * 0 is returned if another key is found, < 0 if there are any errors
4104  * and 1 is returned if there are no higher keys in the tree
4105  *
4106  * path->keep_locks should be set to 1 on the search made before
4107  * calling this function.
4108  */
4109 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4110 			struct btrfs_key *key, int level,
4111 			int cache_only, u64 min_trans)
4112 {
4113 	int slot;
4114 	struct extent_buffer *c;
4115 
4116 	WARN_ON(!path->keep_locks);
4117 	while (level < BTRFS_MAX_LEVEL) {
4118 		if (!path->nodes[level])
4119 			return 1;
4120 
4121 		slot = path->slots[level] + 1;
4122 		c = path->nodes[level];
4123 next:
4124 		if (slot >= btrfs_header_nritems(c)) {
4125 			int ret;
4126 			int orig_lowest;
4127 			struct btrfs_key cur_key;
4128 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4129 			    !path->nodes[level + 1])
4130 				return 1;
4131 
4132 			if (path->locks[level + 1]) {
4133 				level++;
4134 				continue;
4135 			}
4136 
4137 			slot = btrfs_header_nritems(c) - 1;
4138 			if (level == 0)
4139 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4140 			else
4141 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4142 
4143 			orig_lowest = path->lowest_level;
4144 			btrfs_release_path(path);
4145 			path->lowest_level = level;
4146 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4147 						0, 0);
4148 			path->lowest_level = orig_lowest;
4149 			if (ret < 0)
4150 				return ret;
4151 
4152 			c = path->nodes[level];
4153 			slot = path->slots[level];
4154 			if (ret == 0)
4155 				slot++;
4156 			goto next;
4157 		}
4158 
4159 		if (level == 0)
4160 			btrfs_item_key_to_cpu(c, key, slot);
4161 		else {
4162 			u64 blockptr = btrfs_node_blockptr(c, slot);
4163 			u64 gen = btrfs_node_ptr_generation(c, slot);
4164 
4165 			if (cache_only) {
4166 				struct extent_buffer *cur;
4167 				cur = btrfs_find_tree_block(root, blockptr,
4168 					    btrfs_level_size(root, level - 1));
4169 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4170 					slot++;
4171 					if (cur)
4172 						free_extent_buffer(cur);
4173 					goto next;
4174 				}
4175 				free_extent_buffer(cur);
4176 			}
4177 			if (gen < min_trans) {
4178 				slot++;
4179 				goto next;
4180 			}
4181 			btrfs_node_key_to_cpu(c, key, slot);
4182 		}
4183 		return 0;
4184 	}
4185 	return 1;
4186 }
4187 
4188 /*
4189  * search the tree again to find a leaf with greater keys
4190  * returns 0 if it found something or 1 if there are no greater leaves.
4191  * returns < 0 on io errors.
4192  */
4193 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4194 {
4195 	int slot;
4196 	int level;
4197 	struct extent_buffer *c;
4198 	struct extent_buffer *next;
4199 	struct btrfs_key key;
4200 	u32 nritems;
4201 	int ret;
4202 	int old_spinning = path->leave_spinning;
4203 	int next_rw_lock = 0;
4204 
4205 	nritems = btrfs_header_nritems(path->nodes[0]);
4206 	if (nritems == 0)
4207 		return 1;
4208 
4209 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4210 again:
4211 	level = 1;
4212 	next = NULL;
4213 	next_rw_lock = 0;
4214 	btrfs_release_path(path);
4215 
4216 	path->keep_locks = 1;
4217 	path->leave_spinning = 1;
4218 
4219 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4220 	path->keep_locks = 0;
4221 
4222 	if (ret < 0)
4223 		return ret;
4224 
4225 	nritems = btrfs_header_nritems(path->nodes[0]);
4226 	/*
4227 	 * by releasing the path above we dropped all our locks.  A balance
4228 	 * could have added more items next to the key that used to be
4229 	 * at the very end of the block.  So, check again here and
4230 	 * advance the path if there are now more items available.
4231 	 */
4232 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4233 		if (ret == 0)
4234 			path->slots[0]++;
4235 		ret = 0;
4236 		goto done;
4237 	}
4238 
4239 	while (level < BTRFS_MAX_LEVEL) {
4240 		if (!path->nodes[level]) {
4241 			ret = 1;
4242 			goto done;
4243 		}
4244 
4245 		slot = path->slots[level] + 1;
4246 		c = path->nodes[level];
4247 		if (slot >= btrfs_header_nritems(c)) {
4248 			level++;
4249 			if (level == BTRFS_MAX_LEVEL) {
4250 				ret = 1;
4251 				goto done;
4252 			}
4253 			continue;
4254 		}
4255 
4256 		if (next) {
4257 			btrfs_tree_unlock_rw(next, next_rw_lock);
4258 			free_extent_buffer(next);
4259 		}
4260 
4261 		next = c;
4262 		next_rw_lock = path->locks[level];
4263 		ret = read_block_for_search(NULL, root, path, &next, level,
4264 					    slot, &key);
4265 		if (ret == -EAGAIN)
4266 			goto again;
4267 
4268 		if (ret < 0) {
4269 			btrfs_release_path(path);
4270 			goto done;
4271 		}
4272 
4273 		if (!path->skip_locking) {
4274 			ret = btrfs_try_tree_read_lock(next);
4275 			if (!ret) {
4276 				btrfs_set_path_blocking(path);
4277 				btrfs_tree_read_lock(next);
4278 				btrfs_clear_path_blocking(path, next,
4279 							  BTRFS_READ_LOCK);
4280 			}
4281 			next_rw_lock = BTRFS_READ_LOCK;
4282 		}
4283 		break;
4284 	}
4285 	path->slots[level] = slot;
4286 	while (1) {
4287 		level--;
4288 		c = path->nodes[level];
4289 		if (path->locks[level])
4290 			btrfs_tree_unlock_rw(c, path->locks[level]);
4291 
4292 		free_extent_buffer(c);
4293 		path->nodes[level] = next;
4294 		path->slots[level] = 0;
4295 		if (!path->skip_locking)
4296 			path->locks[level] = next_rw_lock;
4297 		if (!level)
4298 			break;
4299 
4300 		ret = read_block_for_search(NULL, root, path, &next, level,
4301 					    0, &key);
4302 		if (ret == -EAGAIN)
4303 			goto again;
4304 
4305 		if (ret < 0) {
4306 			btrfs_release_path(path);
4307 			goto done;
4308 		}
4309 
4310 		if (!path->skip_locking) {
4311 			ret = btrfs_try_tree_read_lock(next);
4312 			if (!ret) {
4313 				btrfs_set_path_blocking(path);
4314 				btrfs_tree_read_lock(next);
4315 				btrfs_clear_path_blocking(path, next,
4316 							  BTRFS_READ_LOCK);
4317 			}
4318 			next_rw_lock = BTRFS_READ_LOCK;
4319 		}
4320 	}
4321 	ret = 0;
4322 done:
4323 	unlock_up(path, 0, 1, 0, NULL);
4324 	path->leave_spinning = old_spinning;
4325 	if (!old_spinning)
4326 		btrfs_set_path_blocking(path);
4327 
4328 	return ret;
4329 }
4330 
4331 /*
4332  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4333  * searching until it gets past min_objectid or finds an item of 'type'
4334  *
4335  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4336  */
4337 int btrfs_previous_item(struct btrfs_root *root,
4338 			struct btrfs_path *path, u64 min_objectid,
4339 			int type)
4340 {
4341 	struct btrfs_key found_key;
4342 	struct extent_buffer *leaf;
4343 	u32 nritems;
4344 	int ret;
4345 
4346 	while (1) {
4347 		if (path->slots[0] == 0) {
4348 			btrfs_set_path_blocking(path);
4349 			ret = btrfs_prev_leaf(root, path);
4350 			if (ret != 0)
4351 				return ret;
4352 		} else {
4353 			path->slots[0]--;
4354 		}
4355 		leaf = path->nodes[0];
4356 		nritems = btrfs_header_nritems(leaf);
4357 		if (nritems == 0)
4358 			return 1;
4359 		if (path->slots[0] == nritems)
4360 			path->slots[0]--;
4361 
4362 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4363 		if (found_key.objectid < min_objectid)
4364 			break;
4365 		if (found_key.type == type)
4366 			return 0;
4367 		if (found_key.objectid == min_objectid &&
4368 		    found_key.type < type)
4369 			break;
4370 	}
4371 	return 1;
4372 }
4373