1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 41 struct btrfs_path *path, int level, int slot, 42 int tree_mod_log); 43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 44 struct extent_buffer *eb); 45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr, 46 u32 blocksize, u64 parent_transid, 47 u64 time_seq); 48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root, 49 u64 bytenr, u32 blocksize, 50 u64 time_seq); 51 52 struct btrfs_path *btrfs_alloc_path(void) 53 { 54 struct btrfs_path *path; 55 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 56 return path; 57 } 58 59 /* 60 * set all locked nodes in the path to blocking locks. This should 61 * be done before scheduling 62 */ 63 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 64 { 65 int i; 66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 67 if (!p->nodes[i] || !p->locks[i]) 68 continue; 69 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 70 if (p->locks[i] == BTRFS_READ_LOCK) 71 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 72 else if (p->locks[i] == BTRFS_WRITE_LOCK) 73 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 74 } 75 } 76 77 /* 78 * reset all the locked nodes in the patch to spinning locks. 79 * 80 * held is used to keep lockdep happy, when lockdep is enabled 81 * we set held to a blocking lock before we go around and 82 * retake all the spinlocks in the path. You can safely use NULL 83 * for held 84 */ 85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 86 struct extent_buffer *held, int held_rw) 87 { 88 int i; 89 90 #ifdef CONFIG_DEBUG_LOCK_ALLOC 91 /* lockdep really cares that we take all of these spinlocks 92 * in the right order. If any of the locks in the path are not 93 * currently blocking, it is going to complain. So, make really 94 * really sure by forcing the path to blocking before we clear 95 * the path blocking. 96 */ 97 if (held) { 98 btrfs_set_lock_blocking_rw(held, held_rw); 99 if (held_rw == BTRFS_WRITE_LOCK) 100 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 101 else if (held_rw == BTRFS_READ_LOCK) 102 held_rw = BTRFS_READ_LOCK_BLOCKING; 103 } 104 btrfs_set_path_blocking(p); 105 #endif 106 107 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 108 if (p->nodes[i] && p->locks[i]) { 109 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 110 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 111 p->locks[i] = BTRFS_WRITE_LOCK; 112 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 113 p->locks[i] = BTRFS_READ_LOCK; 114 } 115 } 116 117 #ifdef CONFIG_DEBUG_LOCK_ALLOC 118 if (held) 119 btrfs_clear_lock_blocking_rw(held, held_rw); 120 #endif 121 } 122 123 /* this also releases the path */ 124 void btrfs_free_path(struct btrfs_path *p) 125 { 126 if (!p) 127 return; 128 btrfs_release_path(p); 129 kmem_cache_free(btrfs_path_cachep, p); 130 } 131 132 /* 133 * path release drops references on the extent buffers in the path 134 * and it drops any locks held by this path 135 * 136 * It is safe to call this on paths that no locks or extent buffers held. 137 */ 138 noinline void btrfs_release_path(struct btrfs_path *p) 139 { 140 int i; 141 142 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 143 p->slots[i] = 0; 144 if (!p->nodes[i]) 145 continue; 146 if (p->locks[i]) { 147 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 148 p->locks[i] = 0; 149 } 150 free_extent_buffer(p->nodes[i]); 151 p->nodes[i] = NULL; 152 } 153 } 154 155 /* 156 * safely gets a reference on the root node of a tree. A lock 157 * is not taken, so a concurrent writer may put a different node 158 * at the root of the tree. See btrfs_lock_root_node for the 159 * looping required. 160 * 161 * The extent buffer returned by this has a reference taken, so 162 * it won't disappear. It may stop being the root of the tree 163 * at any time because there are no locks held. 164 */ 165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 166 { 167 struct extent_buffer *eb; 168 169 while (1) { 170 rcu_read_lock(); 171 eb = rcu_dereference(root->node); 172 173 /* 174 * RCU really hurts here, we could free up the root node because 175 * it was cow'ed but we may not get the new root node yet so do 176 * the inc_not_zero dance and if it doesn't work then 177 * synchronize_rcu and try again. 178 */ 179 if (atomic_inc_not_zero(&eb->refs)) { 180 rcu_read_unlock(); 181 break; 182 } 183 rcu_read_unlock(); 184 synchronize_rcu(); 185 } 186 return eb; 187 } 188 189 /* loop around taking references on and locking the root node of the 190 * tree until you end up with a lock on the root. A locked buffer 191 * is returned, with a reference held. 192 */ 193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 194 { 195 struct extent_buffer *eb; 196 197 while (1) { 198 eb = btrfs_root_node(root); 199 btrfs_tree_lock(eb); 200 if (eb == root->node) 201 break; 202 btrfs_tree_unlock(eb); 203 free_extent_buffer(eb); 204 } 205 return eb; 206 } 207 208 /* loop around taking references on and locking the root node of the 209 * tree until you end up with a lock on the root. A locked buffer 210 * is returned, with a reference held. 211 */ 212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 213 { 214 struct extent_buffer *eb; 215 216 while (1) { 217 eb = btrfs_root_node(root); 218 btrfs_tree_read_lock(eb); 219 if (eb == root->node) 220 break; 221 btrfs_tree_read_unlock(eb); 222 free_extent_buffer(eb); 223 } 224 return eb; 225 } 226 227 /* cowonly root (everything not a reference counted cow subvolume), just get 228 * put onto a simple dirty list. transaction.c walks this to make sure they 229 * get properly updated on disk. 230 */ 231 static void add_root_to_dirty_list(struct btrfs_root *root) 232 { 233 spin_lock(&root->fs_info->trans_lock); 234 if (root->track_dirty && list_empty(&root->dirty_list)) { 235 list_add(&root->dirty_list, 236 &root->fs_info->dirty_cowonly_roots); 237 } 238 spin_unlock(&root->fs_info->trans_lock); 239 } 240 241 /* 242 * used by snapshot creation to make a copy of a root for a tree with 243 * a given objectid. The buffer with the new root node is returned in 244 * cow_ret, and this func returns zero on success or a negative error code. 245 */ 246 int btrfs_copy_root(struct btrfs_trans_handle *trans, 247 struct btrfs_root *root, 248 struct extent_buffer *buf, 249 struct extent_buffer **cow_ret, u64 new_root_objectid) 250 { 251 struct extent_buffer *cow; 252 int ret = 0; 253 int level; 254 struct btrfs_disk_key disk_key; 255 256 WARN_ON(root->ref_cows && trans->transid != 257 root->fs_info->running_transaction->transid); 258 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 259 260 level = btrfs_header_level(buf); 261 if (level == 0) 262 btrfs_item_key(buf, &disk_key, 0); 263 else 264 btrfs_node_key(buf, &disk_key, 0); 265 266 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 267 new_root_objectid, &disk_key, level, 268 buf->start, 0); 269 if (IS_ERR(cow)) 270 return PTR_ERR(cow); 271 272 copy_extent_buffer(cow, buf, 0, 0, cow->len); 273 btrfs_set_header_bytenr(cow, cow->start); 274 btrfs_set_header_generation(cow, trans->transid); 275 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 276 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 277 BTRFS_HEADER_FLAG_RELOC); 278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 279 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 280 else 281 btrfs_set_header_owner(cow, new_root_objectid); 282 283 write_extent_buffer(cow, root->fs_info->fsid, 284 (unsigned long)btrfs_header_fsid(cow), 285 BTRFS_FSID_SIZE); 286 287 WARN_ON(btrfs_header_generation(buf) > trans->transid); 288 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 289 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 290 else 291 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 292 293 if (ret) 294 return ret; 295 296 btrfs_mark_buffer_dirty(cow); 297 *cow_ret = cow; 298 return 0; 299 } 300 301 enum mod_log_op { 302 MOD_LOG_KEY_REPLACE, 303 MOD_LOG_KEY_ADD, 304 MOD_LOG_KEY_REMOVE, 305 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 306 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 307 MOD_LOG_MOVE_KEYS, 308 MOD_LOG_ROOT_REPLACE, 309 }; 310 311 struct tree_mod_move { 312 int dst_slot; 313 int nr_items; 314 }; 315 316 struct tree_mod_root { 317 u64 logical; 318 u8 level; 319 }; 320 321 struct tree_mod_elem { 322 struct rb_node node; 323 u64 index; /* shifted logical */ 324 struct seq_list elem; 325 enum mod_log_op op; 326 327 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 328 int slot; 329 330 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 331 u64 generation; 332 333 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 334 struct btrfs_disk_key key; 335 u64 blockptr; 336 337 /* this is used for op == MOD_LOG_MOVE_KEYS */ 338 struct tree_mod_move move; 339 340 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 341 struct tree_mod_root old_root; 342 }; 343 344 static inline void 345 __get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct seq_list *elem) 346 { 347 elem->seq = atomic_inc_return(&fs_info->tree_mod_seq); 348 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 349 } 350 351 void btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 352 struct seq_list *elem) 353 { 354 elem->flags = 1; 355 spin_lock(&fs_info->tree_mod_seq_lock); 356 __get_tree_mod_seq(fs_info, elem); 357 spin_unlock(&fs_info->tree_mod_seq_lock); 358 } 359 360 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 361 struct seq_list *elem) 362 { 363 struct rb_root *tm_root; 364 struct rb_node *node; 365 struct rb_node *next; 366 struct seq_list *cur_elem; 367 struct tree_mod_elem *tm; 368 u64 min_seq = (u64)-1; 369 u64 seq_putting = elem->seq; 370 371 if (!seq_putting) 372 return; 373 374 BUG_ON(!(elem->flags & 1)); 375 spin_lock(&fs_info->tree_mod_seq_lock); 376 list_del(&elem->list); 377 378 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 379 if ((cur_elem->flags & 1) && cur_elem->seq < min_seq) { 380 if (seq_putting > cur_elem->seq) { 381 /* 382 * blocker with lower sequence number exists, we 383 * cannot remove anything from the log 384 */ 385 goto out; 386 } 387 min_seq = cur_elem->seq; 388 } 389 } 390 391 /* 392 * anything that's lower than the lowest existing (read: blocked) 393 * sequence number can be removed from the tree. 394 */ 395 write_lock(&fs_info->tree_mod_log_lock); 396 tm_root = &fs_info->tree_mod_log; 397 for (node = rb_first(tm_root); node; node = next) { 398 next = rb_next(node); 399 tm = container_of(node, struct tree_mod_elem, node); 400 if (tm->elem.seq > min_seq) 401 continue; 402 rb_erase(node, tm_root); 403 list_del(&tm->elem.list); 404 kfree(tm); 405 } 406 write_unlock(&fs_info->tree_mod_log_lock); 407 out: 408 spin_unlock(&fs_info->tree_mod_seq_lock); 409 } 410 411 /* 412 * key order of the log: 413 * index -> sequence 414 * 415 * the index is the shifted logical of the *new* root node for root replace 416 * operations, or the shifted logical of the affected block for all other 417 * operations. 418 */ 419 static noinline int 420 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 421 { 422 struct rb_root *tm_root; 423 struct rb_node **new; 424 struct rb_node *parent = NULL; 425 struct tree_mod_elem *cur; 426 int ret = 0; 427 428 BUG_ON(!tm || !tm->elem.seq); 429 430 write_lock(&fs_info->tree_mod_log_lock); 431 tm_root = &fs_info->tree_mod_log; 432 new = &tm_root->rb_node; 433 while (*new) { 434 cur = container_of(*new, struct tree_mod_elem, node); 435 parent = *new; 436 if (cur->index < tm->index) 437 new = &((*new)->rb_left); 438 else if (cur->index > tm->index) 439 new = &((*new)->rb_right); 440 else if (cur->elem.seq < tm->elem.seq) 441 new = &((*new)->rb_left); 442 else if (cur->elem.seq > tm->elem.seq) 443 new = &((*new)->rb_right); 444 else { 445 kfree(tm); 446 ret = -EEXIST; 447 goto unlock; 448 } 449 } 450 451 rb_link_node(&tm->node, parent, new); 452 rb_insert_color(&tm->node, tm_root); 453 unlock: 454 write_unlock(&fs_info->tree_mod_log_lock); 455 return ret; 456 } 457 458 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 459 struct extent_buffer *eb) { 460 smp_mb(); 461 if (list_empty(&(fs_info)->tree_mod_seq_list)) 462 return 1; 463 if (!eb) 464 return 0; 465 if (btrfs_header_level(eb) == 0) 466 return 1; 467 return 0; 468 } 469 470 /* 471 * This allocates memory and gets a tree modification sequence number when 472 * needed. 473 * 474 * Returns 0 when no sequence number is needed, < 0 on error. 475 * Returns 1 when a sequence number was added. In this case, 476 * fs_info->tree_mod_seq_lock was acquired and must be released by the caller 477 * after inserting into the rb tree. 478 */ 479 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags, 480 struct tree_mod_elem **tm_ret) 481 { 482 struct tree_mod_elem *tm; 483 int seq; 484 485 if (tree_mod_dont_log(fs_info, NULL)) 486 return 0; 487 488 tm = *tm_ret = kzalloc(sizeof(*tm), flags); 489 if (!tm) 490 return -ENOMEM; 491 492 tm->elem.flags = 0; 493 spin_lock(&fs_info->tree_mod_seq_lock); 494 if (list_empty(&fs_info->tree_mod_seq_list)) { 495 /* 496 * someone emptied the list while we were waiting for the lock. 497 * we must not add to the list, because no blocker exists. items 498 * are removed from the list only when the existing blocker is 499 * removed from the list. 500 */ 501 kfree(tm); 502 seq = 0; 503 spin_unlock(&fs_info->tree_mod_seq_lock); 504 } else { 505 __get_tree_mod_seq(fs_info, &tm->elem); 506 seq = tm->elem.seq; 507 } 508 509 return seq; 510 } 511 512 static noinline int 513 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info, 514 struct extent_buffer *eb, int slot, 515 enum mod_log_op op, gfp_t flags) 516 { 517 struct tree_mod_elem *tm; 518 int ret; 519 520 ret = tree_mod_alloc(fs_info, flags, &tm); 521 if (ret <= 0) 522 return ret; 523 524 tm->index = eb->start >> PAGE_CACHE_SHIFT; 525 if (op != MOD_LOG_KEY_ADD) { 526 btrfs_node_key(eb, &tm->key, slot); 527 tm->blockptr = btrfs_node_blockptr(eb, slot); 528 } 529 tm->op = op; 530 tm->slot = slot; 531 tm->generation = btrfs_node_ptr_generation(eb, slot); 532 533 ret = __tree_mod_log_insert(fs_info, tm); 534 spin_unlock(&fs_info->tree_mod_seq_lock); 535 return ret; 536 } 537 538 static noinline int 539 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 540 int slot, enum mod_log_op op) 541 { 542 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS); 543 } 544 545 static noinline int 546 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 547 struct extent_buffer *eb, int dst_slot, int src_slot, 548 int nr_items, gfp_t flags) 549 { 550 struct tree_mod_elem *tm; 551 int ret; 552 int i; 553 554 if (tree_mod_dont_log(fs_info, eb)) 555 return 0; 556 557 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 558 ret = tree_mod_log_insert_key(fs_info, eb, i + dst_slot, 559 MOD_LOG_KEY_REMOVE_WHILE_MOVING); 560 BUG_ON(ret < 0); 561 } 562 563 ret = tree_mod_alloc(fs_info, flags, &tm); 564 if (ret <= 0) 565 return ret; 566 567 tm->index = eb->start >> PAGE_CACHE_SHIFT; 568 tm->slot = src_slot; 569 tm->move.dst_slot = dst_slot; 570 tm->move.nr_items = nr_items; 571 tm->op = MOD_LOG_MOVE_KEYS; 572 573 ret = __tree_mod_log_insert(fs_info, tm); 574 spin_unlock(&fs_info->tree_mod_seq_lock); 575 return ret; 576 } 577 578 static noinline int 579 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 580 struct extent_buffer *old_root, 581 struct extent_buffer *new_root, gfp_t flags) 582 { 583 struct tree_mod_elem *tm; 584 int ret; 585 586 ret = tree_mod_alloc(fs_info, flags, &tm); 587 if (ret <= 0) 588 return ret; 589 590 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 591 tm->old_root.logical = old_root->start; 592 tm->old_root.level = btrfs_header_level(old_root); 593 tm->generation = btrfs_header_generation(old_root); 594 tm->op = MOD_LOG_ROOT_REPLACE; 595 596 ret = __tree_mod_log_insert(fs_info, tm); 597 spin_unlock(&fs_info->tree_mod_seq_lock); 598 return ret; 599 } 600 601 static struct tree_mod_elem * 602 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 603 int smallest) 604 { 605 struct rb_root *tm_root; 606 struct rb_node *node; 607 struct tree_mod_elem *cur = NULL; 608 struct tree_mod_elem *found = NULL; 609 u64 index = start >> PAGE_CACHE_SHIFT; 610 611 read_lock(&fs_info->tree_mod_log_lock); 612 tm_root = &fs_info->tree_mod_log; 613 node = tm_root->rb_node; 614 while (node) { 615 cur = container_of(node, struct tree_mod_elem, node); 616 if (cur->index < index) { 617 node = node->rb_left; 618 } else if (cur->index > index) { 619 node = node->rb_right; 620 } else if (cur->elem.seq < min_seq) { 621 node = node->rb_left; 622 } else if (!smallest) { 623 /* we want the node with the highest seq */ 624 if (found) 625 BUG_ON(found->elem.seq > cur->elem.seq); 626 found = cur; 627 node = node->rb_left; 628 } else if (cur->elem.seq > min_seq) { 629 /* we want the node with the smallest seq */ 630 if (found) 631 BUG_ON(found->elem.seq < cur->elem.seq); 632 found = cur; 633 node = node->rb_right; 634 } else { 635 found = cur; 636 break; 637 } 638 } 639 read_unlock(&fs_info->tree_mod_log_lock); 640 641 return found; 642 } 643 644 /* 645 * this returns the element from the log with the smallest time sequence 646 * value that's in the log (the oldest log item). any element with a time 647 * sequence lower than min_seq will be ignored. 648 */ 649 static struct tree_mod_elem * 650 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 651 u64 min_seq) 652 { 653 return __tree_mod_log_search(fs_info, start, min_seq, 1); 654 } 655 656 /* 657 * this returns the element from the log with the largest time sequence 658 * value that's in the log (the most recent log item). any element with 659 * a time sequence lower than min_seq will be ignored. 660 */ 661 static struct tree_mod_elem * 662 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 663 { 664 return __tree_mod_log_search(fs_info, start, min_seq, 0); 665 } 666 667 static inline void 668 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 669 struct extent_buffer *src, unsigned long dst_offset, 670 unsigned long src_offset, int nr_items) 671 { 672 int ret; 673 int i; 674 675 if (tree_mod_dont_log(fs_info, NULL)) 676 return; 677 678 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 679 return; 680 681 /* speed this up by single seq for all operations? */ 682 for (i = 0; i < nr_items; i++) { 683 ret = tree_mod_log_insert_key(fs_info, src, i + src_offset, 684 MOD_LOG_KEY_REMOVE); 685 BUG_ON(ret < 0); 686 ret = tree_mod_log_insert_key(fs_info, dst, i + dst_offset, 687 MOD_LOG_KEY_ADD); 688 BUG_ON(ret < 0); 689 } 690 } 691 692 static inline void 693 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 694 int dst_offset, int src_offset, int nr_items) 695 { 696 int ret; 697 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 698 nr_items, GFP_NOFS); 699 BUG_ON(ret < 0); 700 } 701 702 static inline void 703 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 704 struct extent_buffer *eb, 705 struct btrfs_disk_key *disk_key, int slot, int atomic) 706 { 707 int ret; 708 709 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot, 710 MOD_LOG_KEY_REPLACE, 711 atomic ? GFP_ATOMIC : GFP_NOFS); 712 BUG_ON(ret < 0); 713 } 714 715 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 716 struct extent_buffer *eb) 717 { 718 int i; 719 int ret; 720 u32 nritems; 721 722 if (tree_mod_dont_log(fs_info, eb)) 723 return; 724 725 nritems = btrfs_header_nritems(eb); 726 for (i = nritems - 1; i >= 0; i--) { 727 ret = tree_mod_log_insert_key(fs_info, eb, i, 728 MOD_LOG_KEY_REMOVE_WHILE_FREEING); 729 BUG_ON(ret < 0); 730 } 731 } 732 733 static inline void 734 tree_mod_log_set_root_pointer(struct btrfs_root *root, 735 struct extent_buffer *new_root_node) 736 { 737 int ret; 738 tree_mod_log_free_eb(root->fs_info, root->node); 739 ret = tree_mod_log_insert_root(root->fs_info, root->node, 740 new_root_node, GFP_NOFS); 741 BUG_ON(ret < 0); 742 } 743 744 /* 745 * check if the tree block can be shared by multiple trees 746 */ 747 int btrfs_block_can_be_shared(struct btrfs_root *root, 748 struct extent_buffer *buf) 749 { 750 /* 751 * Tree blocks not in refernece counted trees and tree roots 752 * are never shared. If a block was allocated after the last 753 * snapshot and the block was not allocated by tree relocation, 754 * we know the block is not shared. 755 */ 756 if (root->ref_cows && 757 buf != root->node && buf != root->commit_root && 758 (btrfs_header_generation(buf) <= 759 btrfs_root_last_snapshot(&root->root_item) || 760 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 761 return 1; 762 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 763 if (root->ref_cows && 764 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 765 return 1; 766 #endif 767 return 0; 768 } 769 770 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 771 struct btrfs_root *root, 772 struct extent_buffer *buf, 773 struct extent_buffer *cow, 774 int *last_ref) 775 { 776 u64 refs; 777 u64 owner; 778 u64 flags; 779 u64 new_flags = 0; 780 int ret; 781 782 /* 783 * Backrefs update rules: 784 * 785 * Always use full backrefs for extent pointers in tree block 786 * allocated by tree relocation. 787 * 788 * If a shared tree block is no longer referenced by its owner 789 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 790 * use full backrefs for extent pointers in tree block. 791 * 792 * If a tree block is been relocating 793 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 794 * use full backrefs for extent pointers in tree block. 795 * The reason for this is some operations (such as drop tree) 796 * are only allowed for blocks use full backrefs. 797 */ 798 799 if (btrfs_block_can_be_shared(root, buf)) { 800 ret = btrfs_lookup_extent_info(trans, root, buf->start, 801 buf->len, &refs, &flags); 802 if (ret) 803 return ret; 804 if (refs == 0) { 805 ret = -EROFS; 806 btrfs_std_error(root->fs_info, ret); 807 return ret; 808 } 809 } else { 810 refs = 1; 811 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 812 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 813 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 814 else 815 flags = 0; 816 } 817 818 owner = btrfs_header_owner(buf); 819 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 820 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 821 822 if (refs > 1) { 823 if ((owner == root->root_key.objectid || 824 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 825 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 826 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 827 BUG_ON(ret); /* -ENOMEM */ 828 829 if (root->root_key.objectid == 830 BTRFS_TREE_RELOC_OBJECTID) { 831 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 832 BUG_ON(ret); /* -ENOMEM */ 833 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 834 BUG_ON(ret); /* -ENOMEM */ 835 } 836 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 837 } else { 838 839 if (root->root_key.objectid == 840 BTRFS_TREE_RELOC_OBJECTID) 841 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 842 else 843 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 844 BUG_ON(ret); /* -ENOMEM */ 845 } 846 if (new_flags != 0) { 847 ret = btrfs_set_disk_extent_flags(trans, root, 848 buf->start, 849 buf->len, 850 new_flags, 0); 851 if (ret) 852 return ret; 853 } 854 } else { 855 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 856 if (root->root_key.objectid == 857 BTRFS_TREE_RELOC_OBJECTID) 858 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 859 else 860 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 861 BUG_ON(ret); /* -ENOMEM */ 862 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 863 BUG_ON(ret); /* -ENOMEM */ 864 } 865 /* 866 * don't log freeing in case we're freeing the root node, this 867 * is done by tree_mod_log_set_root_pointer later 868 */ 869 if (buf != root->node && btrfs_header_level(buf) != 0) 870 tree_mod_log_free_eb(root->fs_info, buf); 871 clean_tree_block(trans, root, buf); 872 *last_ref = 1; 873 } 874 return 0; 875 } 876 877 /* 878 * does the dirty work in cow of a single block. The parent block (if 879 * supplied) is updated to point to the new cow copy. The new buffer is marked 880 * dirty and returned locked. If you modify the block it needs to be marked 881 * dirty again. 882 * 883 * search_start -- an allocation hint for the new block 884 * 885 * empty_size -- a hint that you plan on doing more cow. This is the size in 886 * bytes the allocator should try to find free next to the block it returns. 887 * This is just a hint and may be ignored by the allocator. 888 */ 889 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 890 struct btrfs_root *root, 891 struct extent_buffer *buf, 892 struct extent_buffer *parent, int parent_slot, 893 struct extent_buffer **cow_ret, 894 u64 search_start, u64 empty_size) 895 { 896 struct btrfs_disk_key disk_key; 897 struct extent_buffer *cow; 898 int level, ret; 899 int last_ref = 0; 900 int unlock_orig = 0; 901 u64 parent_start; 902 903 if (*cow_ret == buf) 904 unlock_orig = 1; 905 906 btrfs_assert_tree_locked(buf); 907 908 WARN_ON(root->ref_cows && trans->transid != 909 root->fs_info->running_transaction->transid); 910 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 911 912 level = btrfs_header_level(buf); 913 914 if (level == 0) 915 btrfs_item_key(buf, &disk_key, 0); 916 else 917 btrfs_node_key(buf, &disk_key, 0); 918 919 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 920 if (parent) 921 parent_start = parent->start; 922 else 923 parent_start = 0; 924 } else 925 parent_start = 0; 926 927 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 928 root->root_key.objectid, &disk_key, 929 level, search_start, empty_size); 930 if (IS_ERR(cow)) 931 return PTR_ERR(cow); 932 933 /* cow is set to blocking by btrfs_init_new_buffer */ 934 935 copy_extent_buffer(cow, buf, 0, 0, cow->len); 936 btrfs_set_header_bytenr(cow, cow->start); 937 btrfs_set_header_generation(cow, trans->transid); 938 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 939 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 940 BTRFS_HEADER_FLAG_RELOC); 941 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 942 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 943 else 944 btrfs_set_header_owner(cow, root->root_key.objectid); 945 946 write_extent_buffer(cow, root->fs_info->fsid, 947 (unsigned long)btrfs_header_fsid(cow), 948 BTRFS_FSID_SIZE); 949 950 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 951 if (ret) { 952 btrfs_abort_transaction(trans, root, ret); 953 return ret; 954 } 955 956 if (root->ref_cows) 957 btrfs_reloc_cow_block(trans, root, buf, cow); 958 959 if (buf == root->node) { 960 WARN_ON(parent && parent != buf); 961 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 962 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 963 parent_start = buf->start; 964 else 965 parent_start = 0; 966 967 extent_buffer_get(cow); 968 tree_mod_log_set_root_pointer(root, cow); 969 rcu_assign_pointer(root->node, cow); 970 971 btrfs_free_tree_block(trans, root, buf, parent_start, 972 last_ref); 973 free_extent_buffer(buf); 974 add_root_to_dirty_list(root); 975 } else { 976 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 977 parent_start = parent->start; 978 else 979 parent_start = 0; 980 981 WARN_ON(trans->transid != btrfs_header_generation(parent)); 982 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 983 MOD_LOG_KEY_REPLACE); 984 btrfs_set_node_blockptr(parent, parent_slot, 985 cow->start); 986 btrfs_set_node_ptr_generation(parent, parent_slot, 987 trans->transid); 988 btrfs_mark_buffer_dirty(parent); 989 btrfs_free_tree_block(trans, root, buf, parent_start, 990 last_ref); 991 } 992 if (unlock_orig) 993 btrfs_tree_unlock(buf); 994 free_extent_buffer_stale(buf); 995 btrfs_mark_buffer_dirty(cow); 996 *cow_ret = cow; 997 return 0; 998 } 999 1000 /* 1001 * returns the logical address of the oldest predecessor of the given root. 1002 * entries older than time_seq are ignored. 1003 */ 1004 static struct tree_mod_elem * 1005 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1006 struct btrfs_root *root, u64 time_seq) 1007 { 1008 struct tree_mod_elem *tm; 1009 struct tree_mod_elem *found = NULL; 1010 u64 root_logical = root->node->start; 1011 int looped = 0; 1012 1013 if (!time_seq) 1014 return 0; 1015 1016 /* 1017 * the very last operation that's logged for a root is the replacement 1018 * operation (if it is replaced at all). this has the index of the *new* 1019 * root, making it the very first operation that's logged for this root. 1020 */ 1021 while (1) { 1022 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1023 time_seq); 1024 if (!looped && !tm) 1025 return 0; 1026 /* 1027 * if there are no tree operation for the oldest root, we simply 1028 * return it. this should only happen if that (old) root is at 1029 * level 0. 1030 */ 1031 if (!tm) 1032 break; 1033 1034 /* 1035 * if there's an operation that's not a root replacement, we 1036 * found the oldest version of our root. normally, we'll find a 1037 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1038 */ 1039 if (tm->op != MOD_LOG_ROOT_REPLACE) 1040 break; 1041 1042 found = tm; 1043 root_logical = tm->old_root.logical; 1044 BUG_ON(root_logical == root->node->start); 1045 looped = 1; 1046 } 1047 1048 /* if there's no old root to return, return what we found instead */ 1049 if (!found) 1050 found = tm; 1051 1052 return found; 1053 } 1054 1055 /* 1056 * tm is a pointer to the first operation to rewind within eb. then, all 1057 * previous operations will be rewinded (until we reach something older than 1058 * time_seq). 1059 */ 1060 static void 1061 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq, 1062 struct tree_mod_elem *first_tm) 1063 { 1064 u32 n; 1065 struct rb_node *next; 1066 struct tree_mod_elem *tm = first_tm; 1067 unsigned long o_dst; 1068 unsigned long o_src; 1069 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1070 1071 n = btrfs_header_nritems(eb); 1072 while (tm && tm->elem.seq >= time_seq) { 1073 /* 1074 * all the operations are recorded with the operator used for 1075 * the modification. as we're going backwards, we do the 1076 * opposite of each operation here. 1077 */ 1078 switch (tm->op) { 1079 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1080 BUG_ON(tm->slot < n); 1081 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1082 case MOD_LOG_KEY_REMOVE: 1083 btrfs_set_node_key(eb, &tm->key, tm->slot); 1084 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1085 btrfs_set_node_ptr_generation(eb, tm->slot, 1086 tm->generation); 1087 n++; 1088 break; 1089 case MOD_LOG_KEY_REPLACE: 1090 BUG_ON(tm->slot >= n); 1091 btrfs_set_node_key(eb, &tm->key, tm->slot); 1092 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1093 btrfs_set_node_ptr_generation(eb, tm->slot, 1094 tm->generation); 1095 break; 1096 case MOD_LOG_KEY_ADD: 1097 /* if a move operation is needed it's in the log */ 1098 n--; 1099 break; 1100 case MOD_LOG_MOVE_KEYS: 1101 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1102 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1103 memmove_extent_buffer(eb, o_dst, o_src, 1104 tm->move.nr_items * p_size); 1105 break; 1106 case MOD_LOG_ROOT_REPLACE: 1107 /* 1108 * this operation is special. for roots, this must be 1109 * handled explicitly before rewinding. 1110 * for non-roots, this operation may exist if the node 1111 * was a root: root A -> child B; then A gets empty and 1112 * B is promoted to the new root. in the mod log, we'll 1113 * have a root-replace operation for B, a tree block 1114 * that is no root. we simply ignore that operation. 1115 */ 1116 break; 1117 } 1118 next = rb_next(&tm->node); 1119 if (!next) 1120 break; 1121 tm = container_of(next, struct tree_mod_elem, node); 1122 if (tm->index != first_tm->index) 1123 break; 1124 } 1125 btrfs_set_header_nritems(eb, n); 1126 } 1127 1128 static struct extent_buffer * 1129 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1130 u64 time_seq) 1131 { 1132 struct extent_buffer *eb_rewin; 1133 struct tree_mod_elem *tm; 1134 1135 if (!time_seq) 1136 return eb; 1137 1138 if (btrfs_header_level(eb) == 0) 1139 return eb; 1140 1141 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1142 if (!tm) 1143 return eb; 1144 1145 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1146 BUG_ON(tm->slot != 0); 1147 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1148 fs_info->tree_root->nodesize); 1149 BUG_ON(!eb_rewin); 1150 btrfs_set_header_bytenr(eb_rewin, eb->start); 1151 btrfs_set_header_backref_rev(eb_rewin, 1152 btrfs_header_backref_rev(eb)); 1153 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1154 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1155 } else { 1156 eb_rewin = btrfs_clone_extent_buffer(eb); 1157 BUG_ON(!eb_rewin); 1158 } 1159 1160 extent_buffer_get(eb_rewin); 1161 free_extent_buffer(eb); 1162 1163 __tree_mod_log_rewind(eb_rewin, time_seq, tm); 1164 1165 return eb_rewin; 1166 } 1167 1168 /* 1169 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1170 * value. If there are no changes, the current root->root_node is returned. If 1171 * anything changed in between, there's a fresh buffer allocated on which the 1172 * rewind operations are done. In any case, the returned buffer is read locked. 1173 * Returns NULL on error (with no locks held). 1174 */ 1175 static inline struct extent_buffer * 1176 get_old_root(struct btrfs_root *root, u64 time_seq) 1177 { 1178 struct tree_mod_elem *tm; 1179 struct extent_buffer *eb; 1180 struct tree_mod_root *old_root = NULL; 1181 u64 old_generation = 0; 1182 u64 logical; 1183 1184 eb = btrfs_read_lock_root_node(root); 1185 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq); 1186 if (!tm) 1187 return root->node; 1188 1189 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1190 old_root = &tm->old_root; 1191 old_generation = tm->generation; 1192 logical = old_root->logical; 1193 } else { 1194 logical = root->node->start; 1195 } 1196 1197 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1198 if (old_root) 1199 eb = alloc_dummy_extent_buffer(logical, root->nodesize); 1200 else 1201 eb = btrfs_clone_extent_buffer(root->node); 1202 btrfs_tree_read_unlock(root->node); 1203 free_extent_buffer(root->node); 1204 if (!eb) 1205 return NULL; 1206 btrfs_tree_read_lock(eb); 1207 if (old_root) { 1208 btrfs_set_header_bytenr(eb, eb->start); 1209 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1210 btrfs_set_header_owner(eb, root->root_key.objectid); 1211 btrfs_set_header_level(eb, old_root->level); 1212 btrfs_set_header_generation(eb, old_generation); 1213 } 1214 if (tm) 1215 __tree_mod_log_rewind(eb, time_seq, tm); 1216 else 1217 WARN_ON(btrfs_header_level(eb) != 0); 1218 extent_buffer_get(eb); 1219 1220 return eb; 1221 } 1222 1223 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1224 struct btrfs_root *root, 1225 struct extent_buffer *buf) 1226 { 1227 /* ensure we can see the force_cow */ 1228 smp_rmb(); 1229 1230 /* 1231 * We do not need to cow a block if 1232 * 1) this block is not created or changed in this transaction; 1233 * 2) this block does not belong to TREE_RELOC tree; 1234 * 3) the root is not forced COW. 1235 * 1236 * What is forced COW: 1237 * when we create snapshot during commiting the transaction, 1238 * after we've finished coping src root, we must COW the shared 1239 * block to ensure the metadata consistency. 1240 */ 1241 if (btrfs_header_generation(buf) == trans->transid && 1242 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1243 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1244 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1245 !root->force_cow) 1246 return 0; 1247 return 1; 1248 } 1249 1250 /* 1251 * cows a single block, see __btrfs_cow_block for the real work. 1252 * This version of it has extra checks so that a block isn't cow'd more than 1253 * once per transaction, as long as it hasn't been written yet 1254 */ 1255 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1256 struct btrfs_root *root, struct extent_buffer *buf, 1257 struct extent_buffer *parent, int parent_slot, 1258 struct extent_buffer **cow_ret) 1259 { 1260 u64 search_start; 1261 int ret; 1262 1263 if (trans->transaction != root->fs_info->running_transaction) { 1264 printk(KERN_CRIT "trans %llu running %llu\n", 1265 (unsigned long long)trans->transid, 1266 (unsigned long long) 1267 root->fs_info->running_transaction->transid); 1268 WARN_ON(1); 1269 } 1270 if (trans->transid != root->fs_info->generation) { 1271 printk(KERN_CRIT "trans %llu running %llu\n", 1272 (unsigned long long)trans->transid, 1273 (unsigned long long)root->fs_info->generation); 1274 WARN_ON(1); 1275 } 1276 1277 if (!should_cow_block(trans, root, buf)) { 1278 *cow_ret = buf; 1279 return 0; 1280 } 1281 1282 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1283 1284 if (parent) 1285 btrfs_set_lock_blocking(parent); 1286 btrfs_set_lock_blocking(buf); 1287 1288 ret = __btrfs_cow_block(trans, root, buf, parent, 1289 parent_slot, cow_ret, search_start, 0); 1290 1291 trace_btrfs_cow_block(root, buf, *cow_ret); 1292 1293 return ret; 1294 } 1295 1296 /* 1297 * helper function for defrag to decide if two blocks pointed to by a 1298 * node are actually close by 1299 */ 1300 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1301 { 1302 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1303 return 1; 1304 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1305 return 1; 1306 return 0; 1307 } 1308 1309 /* 1310 * compare two keys in a memcmp fashion 1311 */ 1312 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1313 { 1314 struct btrfs_key k1; 1315 1316 btrfs_disk_key_to_cpu(&k1, disk); 1317 1318 return btrfs_comp_cpu_keys(&k1, k2); 1319 } 1320 1321 /* 1322 * same as comp_keys only with two btrfs_key's 1323 */ 1324 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1325 { 1326 if (k1->objectid > k2->objectid) 1327 return 1; 1328 if (k1->objectid < k2->objectid) 1329 return -1; 1330 if (k1->type > k2->type) 1331 return 1; 1332 if (k1->type < k2->type) 1333 return -1; 1334 if (k1->offset > k2->offset) 1335 return 1; 1336 if (k1->offset < k2->offset) 1337 return -1; 1338 return 0; 1339 } 1340 1341 /* 1342 * this is used by the defrag code to go through all the 1343 * leaves pointed to by a node and reallocate them so that 1344 * disk order is close to key order 1345 */ 1346 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1347 struct btrfs_root *root, struct extent_buffer *parent, 1348 int start_slot, int cache_only, u64 *last_ret, 1349 struct btrfs_key *progress) 1350 { 1351 struct extent_buffer *cur; 1352 u64 blocknr; 1353 u64 gen; 1354 u64 search_start = *last_ret; 1355 u64 last_block = 0; 1356 u64 other; 1357 u32 parent_nritems; 1358 int end_slot; 1359 int i; 1360 int err = 0; 1361 int parent_level; 1362 int uptodate; 1363 u32 blocksize; 1364 int progress_passed = 0; 1365 struct btrfs_disk_key disk_key; 1366 1367 parent_level = btrfs_header_level(parent); 1368 if (cache_only && parent_level != 1) 1369 return 0; 1370 1371 if (trans->transaction != root->fs_info->running_transaction) 1372 WARN_ON(1); 1373 if (trans->transid != root->fs_info->generation) 1374 WARN_ON(1); 1375 1376 parent_nritems = btrfs_header_nritems(parent); 1377 blocksize = btrfs_level_size(root, parent_level - 1); 1378 end_slot = parent_nritems; 1379 1380 if (parent_nritems == 1) 1381 return 0; 1382 1383 btrfs_set_lock_blocking(parent); 1384 1385 for (i = start_slot; i < end_slot; i++) { 1386 int close = 1; 1387 1388 btrfs_node_key(parent, &disk_key, i); 1389 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1390 continue; 1391 1392 progress_passed = 1; 1393 blocknr = btrfs_node_blockptr(parent, i); 1394 gen = btrfs_node_ptr_generation(parent, i); 1395 if (last_block == 0) 1396 last_block = blocknr; 1397 1398 if (i > 0) { 1399 other = btrfs_node_blockptr(parent, i - 1); 1400 close = close_blocks(blocknr, other, blocksize); 1401 } 1402 if (!close && i < end_slot - 2) { 1403 other = btrfs_node_blockptr(parent, i + 1); 1404 close = close_blocks(blocknr, other, blocksize); 1405 } 1406 if (close) { 1407 last_block = blocknr; 1408 continue; 1409 } 1410 1411 cur = btrfs_find_tree_block(root, blocknr, blocksize); 1412 if (cur) 1413 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1414 else 1415 uptodate = 0; 1416 if (!cur || !uptodate) { 1417 if (cache_only) { 1418 free_extent_buffer(cur); 1419 continue; 1420 } 1421 if (!cur) { 1422 cur = read_tree_block(root, blocknr, 1423 blocksize, gen); 1424 if (!cur) 1425 return -EIO; 1426 } else if (!uptodate) { 1427 err = btrfs_read_buffer(cur, gen); 1428 if (err) { 1429 free_extent_buffer(cur); 1430 return err; 1431 } 1432 } 1433 } 1434 if (search_start == 0) 1435 search_start = last_block; 1436 1437 btrfs_tree_lock(cur); 1438 btrfs_set_lock_blocking(cur); 1439 err = __btrfs_cow_block(trans, root, cur, parent, i, 1440 &cur, search_start, 1441 min(16 * blocksize, 1442 (end_slot - i) * blocksize)); 1443 if (err) { 1444 btrfs_tree_unlock(cur); 1445 free_extent_buffer(cur); 1446 break; 1447 } 1448 search_start = cur->start; 1449 last_block = cur->start; 1450 *last_ret = search_start; 1451 btrfs_tree_unlock(cur); 1452 free_extent_buffer(cur); 1453 } 1454 return err; 1455 } 1456 1457 /* 1458 * The leaf data grows from end-to-front in the node. 1459 * this returns the address of the start of the last item, 1460 * which is the stop of the leaf data stack 1461 */ 1462 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1463 struct extent_buffer *leaf) 1464 { 1465 u32 nr = btrfs_header_nritems(leaf); 1466 if (nr == 0) 1467 return BTRFS_LEAF_DATA_SIZE(root); 1468 return btrfs_item_offset_nr(leaf, nr - 1); 1469 } 1470 1471 1472 /* 1473 * search for key in the extent_buffer. The items start at offset p, 1474 * and they are item_size apart. There are 'max' items in p. 1475 * 1476 * the slot in the array is returned via slot, and it points to 1477 * the place where you would insert key if it is not found in 1478 * the array. 1479 * 1480 * slot may point to max if the key is bigger than all of the keys 1481 */ 1482 static noinline int generic_bin_search(struct extent_buffer *eb, 1483 unsigned long p, 1484 int item_size, struct btrfs_key *key, 1485 int max, int *slot) 1486 { 1487 int low = 0; 1488 int high = max; 1489 int mid; 1490 int ret; 1491 struct btrfs_disk_key *tmp = NULL; 1492 struct btrfs_disk_key unaligned; 1493 unsigned long offset; 1494 char *kaddr = NULL; 1495 unsigned long map_start = 0; 1496 unsigned long map_len = 0; 1497 int err; 1498 1499 while (low < high) { 1500 mid = (low + high) / 2; 1501 offset = p + mid * item_size; 1502 1503 if (!kaddr || offset < map_start || 1504 (offset + sizeof(struct btrfs_disk_key)) > 1505 map_start + map_len) { 1506 1507 err = map_private_extent_buffer(eb, offset, 1508 sizeof(struct btrfs_disk_key), 1509 &kaddr, &map_start, &map_len); 1510 1511 if (!err) { 1512 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1513 map_start); 1514 } else { 1515 read_extent_buffer(eb, &unaligned, 1516 offset, sizeof(unaligned)); 1517 tmp = &unaligned; 1518 } 1519 1520 } else { 1521 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1522 map_start); 1523 } 1524 ret = comp_keys(tmp, key); 1525 1526 if (ret < 0) 1527 low = mid + 1; 1528 else if (ret > 0) 1529 high = mid; 1530 else { 1531 *slot = mid; 1532 return 0; 1533 } 1534 } 1535 *slot = low; 1536 return 1; 1537 } 1538 1539 /* 1540 * simple bin_search frontend that does the right thing for 1541 * leaves vs nodes 1542 */ 1543 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1544 int level, int *slot) 1545 { 1546 if (level == 0) 1547 return generic_bin_search(eb, 1548 offsetof(struct btrfs_leaf, items), 1549 sizeof(struct btrfs_item), 1550 key, btrfs_header_nritems(eb), 1551 slot); 1552 else 1553 return generic_bin_search(eb, 1554 offsetof(struct btrfs_node, ptrs), 1555 sizeof(struct btrfs_key_ptr), 1556 key, btrfs_header_nritems(eb), 1557 slot); 1558 } 1559 1560 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1561 int level, int *slot) 1562 { 1563 return bin_search(eb, key, level, slot); 1564 } 1565 1566 static void root_add_used(struct btrfs_root *root, u32 size) 1567 { 1568 spin_lock(&root->accounting_lock); 1569 btrfs_set_root_used(&root->root_item, 1570 btrfs_root_used(&root->root_item) + size); 1571 spin_unlock(&root->accounting_lock); 1572 } 1573 1574 static void root_sub_used(struct btrfs_root *root, u32 size) 1575 { 1576 spin_lock(&root->accounting_lock); 1577 btrfs_set_root_used(&root->root_item, 1578 btrfs_root_used(&root->root_item) - size); 1579 spin_unlock(&root->accounting_lock); 1580 } 1581 1582 /* given a node and slot number, this reads the blocks it points to. The 1583 * extent buffer is returned with a reference taken (but unlocked). 1584 * NULL is returned on error. 1585 */ 1586 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1587 struct extent_buffer *parent, int slot) 1588 { 1589 int level = btrfs_header_level(parent); 1590 if (slot < 0) 1591 return NULL; 1592 if (slot >= btrfs_header_nritems(parent)) 1593 return NULL; 1594 1595 BUG_ON(level == 0); 1596 1597 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 1598 btrfs_level_size(root, level - 1), 1599 btrfs_node_ptr_generation(parent, slot)); 1600 } 1601 1602 /* 1603 * node level balancing, used to make sure nodes are in proper order for 1604 * item deletion. We balance from the top down, so we have to make sure 1605 * that a deletion won't leave an node completely empty later on. 1606 */ 1607 static noinline int balance_level(struct btrfs_trans_handle *trans, 1608 struct btrfs_root *root, 1609 struct btrfs_path *path, int level) 1610 { 1611 struct extent_buffer *right = NULL; 1612 struct extent_buffer *mid; 1613 struct extent_buffer *left = NULL; 1614 struct extent_buffer *parent = NULL; 1615 int ret = 0; 1616 int wret; 1617 int pslot; 1618 int orig_slot = path->slots[level]; 1619 u64 orig_ptr; 1620 1621 if (level == 0) 1622 return 0; 1623 1624 mid = path->nodes[level]; 1625 1626 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1627 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1628 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1629 1630 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1631 1632 if (level < BTRFS_MAX_LEVEL - 1) { 1633 parent = path->nodes[level + 1]; 1634 pslot = path->slots[level + 1]; 1635 } 1636 1637 /* 1638 * deal with the case where there is only one pointer in the root 1639 * by promoting the node below to a root 1640 */ 1641 if (!parent) { 1642 struct extent_buffer *child; 1643 1644 if (btrfs_header_nritems(mid) != 1) 1645 return 0; 1646 1647 /* promote the child to a root */ 1648 child = read_node_slot(root, mid, 0); 1649 if (!child) { 1650 ret = -EROFS; 1651 btrfs_std_error(root->fs_info, ret); 1652 goto enospc; 1653 } 1654 1655 btrfs_tree_lock(child); 1656 btrfs_set_lock_blocking(child); 1657 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1658 if (ret) { 1659 btrfs_tree_unlock(child); 1660 free_extent_buffer(child); 1661 goto enospc; 1662 } 1663 1664 tree_mod_log_set_root_pointer(root, child); 1665 rcu_assign_pointer(root->node, child); 1666 1667 add_root_to_dirty_list(root); 1668 btrfs_tree_unlock(child); 1669 1670 path->locks[level] = 0; 1671 path->nodes[level] = NULL; 1672 clean_tree_block(trans, root, mid); 1673 btrfs_tree_unlock(mid); 1674 /* once for the path */ 1675 free_extent_buffer(mid); 1676 1677 root_sub_used(root, mid->len); 1678 btrfs_free_tree_block(trans, root, mid, 0, 1); 1679 /* once for the root ptr */ 1680 free_extent_buffer_stale(mid); 1681 return 0; 1682 } 1683 if (btrfs_header_nritems(mid) > 1684 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1685 return 0; 1686 1687 left = read_node_slot(root, parent, pslot - 1); 1688 if (left) { 1689 btrfs_tree_lock(left); 1690 btrfs_set_lock_blocking(left); 1691 wret = btrfs_cow_block(trans, root, left, 1692 parent, pslot - 1, &left); 1693 if (wret) { 1694 ret = wret; 1695 goto enospc; 1696 } 1697 } 1698 right = read_node_slot(root, parent, pslot + 1); 1699 if (right) { 1700 btrfs_tree_lock(right); 1701 btrfs_set_lock_blocking(right); 1702 wret = btrfs_cow_block(trans, root, right, 1703 parent, pslot + 1, &right); 1704 if (wret) { 1705 ret = wret; 1706 goto enospc; 1707 } 1708 } 1709 1710 /* first, try to make some room in the middle buffer */ 1711 if (left) { 1712 orig_slot += btrfs_header_nritems(left); 1713 wret = push_node_left(trans, root, left, mid, 1); 1714 if (wret < 0) 1715 ret = wret; 1716 } 1717 1718 /* 1719 * then try to empty the right most buffer into the middle 1720 */ 1721 if (right) { 1722 wret = push_node_left(trans, root, mid, right, 1); 1723 if (wret < 0 && wret != -ENOSPC) 1724 ret = wret; 1725 if (btrfs_header_nritems(right) == 0) { 1726 clean_tree_block(trans, root, right); 1727 btrfs_tree_unlock(right); 1728 del_ptr(trans, root, path, level + 1, pslot + 1, 1); 1729 root_sub_used(root, right->len); 1730 btrfs_free_tree_block(trans, root, right, 0, 1); 1731 free_extent_buffer_stale(right); 1732 right = NULL; 1733 } else { 1734 struct btrfs_disk_key right_key; 1735 btrfs_node_key(right, &right_key, 0); 1736 tree_mod_log_set_node_key(root->fs_info, parent, 1737 &right_key, pslot + 1, 0); 1738 btrfs_set_node_key(parent, &right_key, pslot + 1); 1739 btrfs_mark_buffer_dirty(parent); 1740 } 1741 } 1742 if (btrfs_header_nritems(mid) == 1) { 1743 /* 1744 * we're not allowed to leave a node with one item in the 1745 * tree during a delete. A deletion from lower in the tree 1746 * could try to delete the only pointer in this node. 1747 * So, pull some keys from the left. 1748 * There has to be a left pointer at this point because 1749 * otherwise we would have pulled some pointers from the 1750 * right 1751 */ 1752 if (!left) { 1753 ret = -EROFS; 1754 btrfs_std_error(root->fs_info, ret); 1755 goto enospc; 1756 } 1757 wret = balance_node_right(trans, root, mid, left); 1758 if (wret < 0) { 1759 ret = wret; 1760 goto enospc; 1761 } 1762 if (wret == 1) { 1763 wret = push_node_left(trans, root, left, mid, 1); 1764 if (wret < 0) 1765 ret = wret; 1766 } 1767 BUG_ON(wret == 1); 1768 } 1769 if (btrfs_header_nritems(mid) == 0) { 1770 clean_tree_block(trans, root, mid); 1771 btrfs_tree_unlock(mid); 1772 del_ptr(trans, root, path, level + 1, pslot, 1); 1773 root_sub_used(root, mid->len); 1774 btrfs_free_tree_block(trans, root, mid, 0, 1); 1775 free_extent_buffer_stale(mid); 1776 mid = NULL; 1777 } else { 1778 /* update the parent key to reflect our changes */ 1779 struct btrfs_disk_key mid_key; 1780 btrfs_node_key(mid, &mid_key, 0); 1781 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key, 1782 pslot, 0); 1783 btrfs_set_node_key(parent, &mid_key, pslot); 1784 btrfs_mark_buffer_dirty(parent); 1785 } 1786 1787 /* update the path */ 1788 if (left) { 1789 if (btrfs_header_nritems(left) > orig_slot) { 1790 extent_buffer_get(left); 1791 /* left was locked after cow */ 1792 path->nodes[level] = left; 1793 path->slots[level + 1] -= 1; 1794 path->slots[level] = orig_slot; 1795 if (mid) { 1796 btrfs_tree_unlock(mid); 1797 free_extent_buffer(mid); 1798 } 1799 } else { 1800 orig_slot -= btrfs_header_nritems(left); 1801 path->slots[level] = orig_slot; 1802 } 1803 } 1804 /* double check we haven't messed things up */ 1805 if (orig_ptr != 1806 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1807 BUG(); 1808 enospc: 1809 if (right) { 1810 btrfs_tree_unlock(right); 1811 free_extent_buffer(right); 1812 } 1813 if (left) { 1814 if (path->nodes[level] != left) 1815 btrfs_tree_unlock(left); 1816 free_extent_buffer(left); 1817 } 1818 return ret; 1819 } 1820 1821 /* Node balancing for insertion. Here we only split or push nodes around 1822 * when they are completely full. This is also done top down, so we 1823 * have to be pessimistic. 1824 */ 1825 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1826 struct btrfs_root *root, 1827 struct btrfs_path *path, int level) 1828 { 1829 struct extent_buffer *right = NULL; 1830 struct extent_buffer *mid; 1831 struct extent_buffer *left = NULL; 1832 struct extent_buffer *parent = NULL; 1833 int ret = 0; 1834 int wret; 1835 int pslot; 1836 int orig_slot = path->slots[level]; 1837 1838 if (level == 0) 1839 return 1; 1840 1841 mid = path->nodes[level]; 1842 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1843 1844 if (level < BTRFS_MAX_LEVEL - 1) { 1845 parent = path->nodes[level + 1]; 1846 pslot = path->slots[level + 1]; 1847 } 1848 1849 if (!parent) 1850 return 1; 1851 1852 left = read_node_slot(root, parent, pslot - 1); 1853 1854 /* first, try to make some room in the middle buffer */ 1855 if (left) { 1856 u32 left_nr; 1857 1858 btrfs_tree_lock(left); 1859 btrfs_set_lock_blocking(left); 1860 1861 left_nr = btrfs_header_nritems(left); 1862 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1863 wret = 1; 1864 } else { 1865 ret = btrfs_cow_block(trans, root, left, parent, 1866 pslot - 1, &left); 1867 if (ret) 1868 wret = 1; 1869 else { 1870 wret = push_node_left(trans, root, 1871 left, mid, 0); 1872 } 1873 } 1874 if (wret < 0) 1875 ret = wret; 1876 if (wret == 0) { 1877 struct btrfs_disk_key disk_key; 1878 orig_slot += left_nr; 1879 btrfs_node_key(mid, &disk_key, 0); 1880 tree_mod_log_set_node_key(root->fs_info, parent, 1881 &disk_key, pslot, 0); 1882 btrfs_set_node_key(parent, &disk_key, pslot); 1883 btrfs_mark_buffer_dirty(parent); 1884 if (btrfs_header_nritems(left) > orig_slot) { 1885 path->nodes[level] = left; 1886 path->slots[level + 1] -= 1; 1887 path->slots[level] = orig_slot; 1888 btrfs_tree_unlock(mid); 1889 free_extent_buffer(mid); 1890 } else { 1891 orig_slot -= 1892 btrfs_header_nritems(left); 1893 path->slots[level] = orig_slot; 1894 btrfs_tree_unlock(left); 1895 free_extent_buffer(left); 1896 } 1897 return 0; 1898 } 1899 btrfs_tree_unlock(left); 1900 free_extent_buffer(left); 1901 } 1902 right = read_node_slot(root, parent, pslot + 1); 1903 1904 /* 1905 * then try to empty the right most buffer into the middle 1906 */ 1907 if (right) { 1908 u32 right_nr; 1909 1910 btrfs_tree_lock(right); 1911 btrfs_set_lock_blocking(right); 1912 1913 right_nr = btrfs_header_nritems(right); 1914 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1915 wret = 1; 1916 } else { 1917 ret = btrfs_cow_block(trans, root, right, 1918 parent, pslot + 1, 1919 &right); 1920 if (ret) 1921 wret = 1; 1922 else { 1923 wret = balance_node_right(trans, root, 1924 right, mid); 1925 } 1926 } 1927 if (wret < 0) 1928 ret = wret; 1929 if (wret == 0) { 1930 struct btrfs_disk_key disk_key; 1931 1932 btrfs_node_key(right, &disk_key, 0); 1933 tree_mod_log_set_node_key(root->fs_info, parent, 1934 &disk_key, pslot + 1, 0); 1935 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1936 btrfs_mark_buffer_dirty(parent); 1937 1938 if (btrfs_header_nritems(mid) <= orig_slot) { 1939 path->nodes[level] = right; 1940 path->slots[level + 1] += 1; 1941 path->slots[level] = orig_slot - 1942 btrfs_header_nritems(mid); 1943 btrfs_tree_unlock(mid); 1944 free_extent_buffer(mid); 1945 } else { 1946 btrfs_tree_unlock(right); 1947 free_extent_buffer(right); 1948 } 1949 return 0; 1950 } 1951 btrfs_tree_unlock(right); 1952 free_extent_buffer(right); 1953 } 1954 return 1; 1955 } 1956 1957 /* 1958 * readahead one full node of leaves, finding things that are close 1959 * to the block in 'slot', and triggering ra on them. 1960 */ 1961 static void reada_for_search(struct btrfs_root *root, 1962 struct btrfs_path *path, 1963 int level, int slot, u64 objectid) 1964 { 1965 struct extent_buffer *node; 1966 struct btrfs_disk_key disk_key; 1967 u32 nritems; 1968 u64 search; 1969 u64 target; 1970 u64 nread = 0; 1971 u64 gen; 1972 int direction = path->reada; 1973 struct extent_buffer *eb; 1974 u32 nr; 1975 u32 blocksize; 1976 u32 nscan = 0; 1977 1978 if (level != 1) 1979 return; 1980 1981 if (!path->nodes[level]) 1982 return; 1983 1984 node = path->nodes[level]; 1985 1986 search = btrfs_node_blockptr(node, slot); 1987 blocksize = btrfs_level_size(root, level - 1); 1988 eb = btrfs_find_tree_block(root, search, blocksize); 1989 if (eb) { 1990 free_extent_buffer(eb); 1991 return; 1992 } 1993 1994 target = search; 1995 1996 nritems = btrfs_header_nritems(node); 1997 nr = slot; 1998 1999 while (1) { 2000 if (direction < 0) { 2001 if (nr == 0) 2002 break; 2003 nr--; 2004 } else if (direction > 0) { 2005 nr++; 2006 if (nr >= nritems) 2007 break; 2008 } 2009 if (path->reada < 0 && objectid) { 2010 btrfs_node_key(node, &disk_key, nr); 2011 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2012 break; 2013 } 2014 search = btrfs_node_blockptr(node, nr); 2015 if ((search <= target && target - search <= 65536) || 2016 (search > target && search - target <= 65536)) { 2017 gen = btrfs_node_ptr_generation(node, nr); 2018 readahead_tree_block(root, search, blocksize, gen); 2019 nread += blocksize; 2020 } 2021 nscan++; 2022 if ((nread > 65536 || nscan > 32)) 2023 break; 2024 } 2025 } 2026 2027 /* 2028 * returns -EAGAIN if it had to drop the path, or zero if everything was in 2029 * cache 2030 */ 2031 static noinline int reada_for_balance(struct btrfs_root *root, 2032 struct btrfs_path *path, int level) 2033 { 2034 int slot; 2035 int nritems; 2036 struct extent_buffer *parent; 2037 struct extent_buffer *eb; 2038 u64 gen; 2039 u64 block1 = 0; 2040 u64 block2 = 0; 2041 int ret = 0; 2042 int blocksize; 2043 2044 parent = path->nodes[level + 1]; 2045 if (!parent) 2046 return 0; 2047 2048 nritems = btrfs_header_nritems(parent); 2049 slot = path->slots[level + 1]; 2050 blocksize = btrfs_level_size(root, level); 2051 2052 if (slot > 0) { 2053 block1 = btrfs_node_blockptr(parent, slot - 1); 2054 gen = btrfs_node_ptr_generation(parent, slot - 1); 2055 eb = btrfs_find_tree_block(root, block1, blocksize); 2056 /* 2057 * if we get -eagain from btrfs_buffer_uptodate, we 2058 * don't want to return eagain here. That will loop 2059 * forever 2060 */ 2061 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2062 block1 = 0; 2063 free_extent_buffer(eb); 2064 } 2065 if (slot + 1 < nritems) { 2066 block2 = btrfs_node_blockptr(parent, slot + 1); 2067 gen = btrfs_node_ptr_generation(parent, slot + 1); 2068 eb = btrfs_find_tree_block(root, block2, blocksize); 2069 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2070 block2 = 0; 2071 free_extent_buffer(eb); 2072 } 2073 if (block1 || block2) { 2074 ret = -EAGAIN; 2075 2076 /* release the whole path */ 2077 btrfs_release_path(path); 2078 2079 /* read the blocks */ 2080 if (block1) 2081 readahead_tree_block(root, block1, blocksize, 0); 2082 if (block2) 2083 readahead_tree_block(root, block2, blocksize, 0); 2084 2085 if (block1) { 2086 eb = read_tree_block(root, block1, blocksize, 0); 2087 free_extent_buffer(eb); 2088 } 2089 if (block2) { 2090 eb = read_tree_block(root, block2, blocksize, 0); 2091 free_extent_buffer(eb); 2092 } 2093 } 2094 return ret; 2095 } 2096 2097 2098 /* 2099 * when we walk down the tree, it is usually safe to unlock the higher layers 2100 * in the tree. The exceptions are when our path goes through slot 0, because 2101 * operations on the tree might require changing key pointers higher up in the 2102 * tree. 2103 * 2104 * callers might also have set path->keep_locks, which tells this code to keep 2105 * the lock if the path points to the last slot in the block. This is part of 2106 * walking through the tree, and selecting the next slot in the higher block. 2107 * 2108 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2109 * if lowest_unlock is 1, level 0 won't be unlocked 2110 */ 2111 static noinline void unlock_up(struct btrfs_path *path, int level, 2112 int lowest_unlock, int min_write_lock_level, 2113 int *write_lock_level) 2114 { 2115 int i; 2116 int skip_level = level; 2117 int no_skips = 0; 2118 struct extent_buffer *t; 2119 2120 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2121 if (!path->nodes[i]) 2122 break; 2123 if (!path->locks[i]) 2124 break; 2125 if (!no_skips && path->slots[i] == 0) { 2126 skip_level = i + 1; 2127 continue; 2128 } 2129 if (!no_skips && path->keep_locks) { 2130 u32 nritems; 2131 t = path->nodes[i]; 2132 nritems = btrfs_header_nritems(t); 2133 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2134 skip_level = i + 1; 2135 continue; 2136 } 2137 } 2138 if (skip_level < i && i >= lowest_unlock) 2139 no_skips = 1; 2140 2141 t = path->nodes[i]; 2142 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2143 btrfs_tree_unlock_rw(t, path->locks[i]); 2144 path->locks[i] = 0; 2145 if (write_lock_level && 2146 i > min_write_lock_level && 2147 i <= *write_lock_level) { 2148 *write_lock_level = i - 1; 2149 } 2150 } 2151 } 2152 } 2153 2154 /* 2155 * This releases any locks held in the path starting at level and 2156 * going all the way up to the root. 2157 * 2158 * btrfs_search_slot will keep the lock held on higher nodes in a few 2159 * corner cases, such as COW of the block at slot zero in the node. This 2160 * ignores those rules, and it should only be called when there are no 2161 * more updates to be done higher up in the tree. 2162 */ 2163 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2164 { 2165 int i; 2166 2167 if (path->keep_locks) 2168 return; 2169 2170 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2171 if (!path->nodes[i]) 2172 continue; 2173 if (!path->locks[i]) 2174 continue; 2175 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2176 path->locks[i] = 0; 2177 } 2178 } 2179 2180 /* 2181 * helper function for btrfs_search_slot. The goal is to find a block 2182 * in cache without setting the path to blocking. If we find the block 2183 * we return zero and the path is unchanged. 2184 * 2185 * If we can't find the block, we set the path blocking and do some 2186 * reada. -EAGAIN is returned and the search must be repeated. 2187 */ 2188 static int 2189 read_block_for_search(struct btrfs_trans_handle *trans, 2190 struct btrfs_root *root, struct btrfs_path *p, 2191 struct extent_buffer **eb_ret, int level, int slot, 2192 struct btrfs_key *key, u64 time_seq) 2193 { 2194 u64 blocknr; 2195 u64 gen; 2196 u32 blocksize; 2197 struct extent_buffer *b = *eb_ret; 2198 struct extent_buffer *tmp; 2199 int ret; 2200 2201 blocknr = btrfs_node_blockptr(b, slot); 2202 gen = btrfs_node_ptr_generation(b, slot); 2203 blocksize = btrfs_level_size(root, level - 1); 2204 2205 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 2206 if (tmp) { 2207 /* first we do an atomic uptodate check */ 2208 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) { 2209 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2210 /* 2211 * we found an up to date block without 2212 * sleeping, return 2213 * right away 2214 */ 2215 *eb_ret = tmp; 2216 return 0; 2217 } 2218 /* the pages were up to date, but we failed 2219 * the generation number check. Do a full 2220 * read for the generation number that is correct. 2221 * We must do this without dropping locks so 2222 * we can trust our generation number 2223 */ 2224 free_extent_buffer(tmp); 2225 btrfs_set_path_blocking(p); 2226 2227 /* now we're allowed to do a blocking uptodate check */ 2228 tmp = read_tree_block(root, blocknr, blocksize, gen); 2229 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) { 2230 *eb_ret = tmp; 2231 return 0; 2232 } 2233 free_extent_buffer(tmp); 2234 btrfs_release_path(p); 2235 return -EIO; 2236 } 2237 } 2238 2239 /* 2240 * reduce lock contention at high levels 2241 * of the btree by dropping locks before 2242 * we read. Don't release the lock on the current 2243 * level because we need to walk this node to figure 2244 * out which blocks to read. 2245 */ 2246 btrfs_unlock_up_safe(p, level + 1); 2247 btrfs_set_path_blocking(p); 2248 2249 free_extent_buffer(tmp); 2250 if (p->reada) 2251 reada_for_search(root, p, level, slot, key->objectid); 2252 2253 btrfs_release_path(p); 2254 2255 ret = -EAGAIN; 2256 tmp = read_tree_block(root, blocknr, blocksize, 0); 2257 if (tmp) { 2258 /* 2259 * If the read above didn't mark this buffer up to date, 2260 * it will never end up being up to date. Set ret to EIO now 2261 * and give up so that our caller doesn't loop forever 2262 * on our EAGAINs. 2263 */ 2264 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2265 ret = -EIO; 2266 free_extent_buffer(tmp); 2267 } 2268 return ret; 2269 } 2270 2271 /* 2272 * helper function for btrfs_search_slot. This does all of the checks 2273 * for node-level blocks and does any balancing required based on 2274 * the ins_len. 2275 * 2276 * If no extra work was required, zero is returned. If we had to 2277 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2278 * start over 2279 */ 2280 static int 2281 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2282 struct btrfs_root *root, struct btrfs_path *p, 2283 struct extent_buffer *b, int level, int ins_len, 2284 int *write_lock_level) 2285 { 2286 int ret; 2287 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2288 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2289 int sret; 2290 2291 if (*write_lock_level < level + 1) { 2292 *write_lock_level = level + 1; 2293 btrfs_release_path(p); 2294 goto again; 2295 } 2296 2297 sret = reada_for_balance(root, p, level); 2298 if (sret) 2299 goto again; 2300 2301 btrfs_set_path_blocking(p); 2302 sret = split_node(trans, root, p, level); 2303 btrfs_clear_path_blocking(p, NULL, 0); 2304 2305 BUG_ON(sret > 0); 2306 if (sret) { 2307 ret = sret; 2308 goto done; 2309 } 2310 b = p->nodes[level]; 2311 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2312 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2313 int sret; 2314 2315 if (*write_lock_level < level + 1) { 2316 *write_lock_level = level + 1; 2317 btrfs_release_path(p); 2318 goto again; 2319 } 2320 2321 sret = reada_for_balance(root, p, level); 2322 if (sret) 2323 goto again; 2324 2325 btrfs_set_path_blocking(p); 2326 sret = balance_level(trans, root, p, level); 2327 btrfs_clear_path_blocking(p, NULL, 0); 2328 2329 if (sret) { 2330 ret = sret; 2331 goto done; 2332 } 2333 b = p->nodes[level]; 2334 if (!b) { 2335 btrfs_release_path(p); 2336 goto again; 2337 } 2338 BUG_ON(btrfs_header_nritems(b) == 1); 2339 } 2340 return 0; 2341 2342 again: 2343 ret = -EAGAIN; 2344 done: 2345 return ret; 2346 } 2347 2348 /* 2349 * look for key in the tree. path is filled in with nodes along the way 2350 * if key is found, we return zero and you can find the item in the leaf 2351 * level of the path (level 0) 2352 * 2353 * If the key isn't found, the path points to the slot where it should 2354 * be inserted, and 1 is returned. If there are other errors during the 2355 * search a negative error number is returned. 2356 * 2357 * if ins_len > 0, nodes and leaves will be split as we walk down the 2358 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2359 * possible) 2360 */ 2361 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2362 *root, struct btrfs_key *key, struct btrfs_path *p, int 2363 ins_len, int cow) 2364 { 2365 struct extent_buffer *b; 2366 int slot; 2367 int ret; 2368 int err; 2369 int level; 2370 int lowest_unlock = 1; 2371 int root_lock; 2372 /* everything at write_lock_level or lower must be write locked */ 2373 int write_lock_level = 0; 2374 u8 lowest_level = 0; 2375 int min_write_lock_level; 2376 2377 lowest_level = p->lowest_level; 2378 WARN_ON(lowest_level && ins_len > 0); 2379 WARN_ON(p->nodes[0] != NULL); 2380 2381 if (ins_len < 0) { 2382 lowest_unlock = 2; 2383 2384 /* when we are removing items, we might have to go up to level 2385 * two as we update tree pointers Make sure we keep write 2386 * for those levels as well 2387 */ 2388 write_lock_level = 2; 2389 } else if (ins_len > 0) { 2390 /* 2391 * for inserting items, make sure we have a write lock on 2392 * level 1 so we can update keys 2393 */ 2394 write_lock_level = 1; 2395 } 2396 2397 if (!cow) 2398 write_lock_level = -1; 2399 2400 if (cow && (p->keep_locks || p->lowest_level)) 2401 write_lock_level = BTRFS_MAX_LEVEL; 2402 2403 min_write_lock_level = write_lock_level; 2404 2405 again: 2406 /* 2407 * we try very hard to do read locks on the root 2408 */ 2409 root_lock = BTRFS_READ_LOCK; 2410 level = 0; 2411 if (p->search_commit_root) { 2412 /* 2413 * the commit roots are read only 2414 * so we always do read locks 2415 */ 2416 b = root->commit_root; 2417 extent_buffer_get(b); 2418 level = btrfs_header_level(b); 2419 if (!p->skip_locking) 2420 btrfs_tree_read_lock(b); 2421 } else { 2422 if (p->skip_locking) { 2423 b = btrfs_root_node(root); 2424 level = btrfs_header_level(b); 2425 } else { 2426 /* we don't know the level of the root node 2427 * until we actually have it read locked 2428 */ 2429 b = btrfs_read_lock_root_node(root); 2430 level = btrfs_header_level(b); 2431 if (level <= write_lock_level) { 2432 /* whoops, must trade for write lock */ 2433 btrfs_tree_read_unlock(b); 2434 free_extent_buffer(b); 2435 b = btrfs_lock_root_node(root); 2436 root_lock = BTRFS_WRITE_LOCK; 2437 2438 /* the level might have changed, check again */ 2439 level = btrfs_header_level(b); 2440 } 2441 } 2442 } 2443 p->nodes[level] = b; 2444 if (!p->skip_locking) 2445 p->locks[level] = root_lock; 2446 2447 while (b) { 2448 level = btrfs_header_level(b); 2449 2450 /* 2451 * setup the path here so we can release it under lock 2452 * contention with the cow code 2453 */ 2454 if (cow) { 2455 /* 2456 * if we don't really need to cow this block 2457 * then we don't want to set the path blocking, 2458 * so we test it here 2459 */ 2460 if (!should_cow_block(trans, root, b)) 2461 goto cow_done; 2462 2463 btrfs_set_path_blocking(p); 2464 2465 /* 2466 * must have write locks on this node and the 2467 * parent 2468 */ 2469 if (level + 1 > write_lock_level) { 2470 write_lock_level = level + 1; 2471 btrfs_release_path(p); 2472 goto again; 2473 } 2474 2475 err = btrfs_cow_block(trans, root, b, 2476 p->nodes[level + 1], 2477 p->slots[level + 1], &b); 2478 if (err) { 2479 ret = err; 2480 goto done; 2481 } 2482 } 2483 cow_done: 2484 BUG_ON(!cow && ins_len); 2485 2486 p->nodes[level] = b; 2487 btrfs_clear_path_blocking(p, NULL, 0); 2488 2489 /* 2490 * we have a lock on b and as long as we aren't changing 2491 * the tree, there is no way to for the items in b to change. 2492 * It is safe to drop the lock on our parent before we 2493 * go through the expensive btree search on b. 2494 * 2495 * If cow is true, then we might be changing slot zero, 2496 * which may require changing the parent. So, we can't 2497 * drop the lock until after we know which slot we're 2498 * operating on. 2499 */ 2500 if (!cow) 2501 btrfs_unlock_up_safe(p, level + 1); 2502 2503 ret = bin_search(b, key, level, &slot); 2504 2505 if (level != 0) { 2506 int dec = 0; 2507 if (ret && slot > 0) { 2508 dec = 1; 2509 slot -= 1; 2510 } 2511 p->slots[level] = slot; 2512 err = setup_nodes_for_search(trans, root, p, b, level, 2513 ins_len, &write_lock_level); 2514 if (err == -EAGAIN) 2515 goto again; 2516 if (err) { 2517 ret = err; 2518 goto done; 2519 } 2520 b = p->nodes[level]; 2521 slot = p->slots[level]; 2522 2523 /* 2524 * slot 0 is special, if we change the key 2525 * we have to update the parent pointer 2526 * which means we must have a write lock 2527 * on the parent 2528 */ 2529 if (slot == 0 && cow && 2530 write_lock_level < level + 1) { 2531 write_lock_level = level + 1; 2532 btrfs_release_path(p); 2533 goto again; 2534 } 2535 2536 unlock_up(p, level, lowest_unlock, 2537 min_write_lock_level, &write_lock_level); 2538 2539 if (level == lowest_level) { 2540 if (dec) 2541 p->slots[level]++; 2542 goto done; 2543 } 2544 2545 err = read_block_for_search(trans, root, p, 2546 &b, level, slot, key, 0); 2547 if (err == -EAGAIN) 2548 goto again; 2549 if (err) { 2550 ret = err; 2551 goto done; 2552 } 2553 2554 if (!p->skip_locking) { 2555 level = btrfs_header_level(b); 2556 if (level <= write_lock_level) { 2557 err = btrfs_try_tree_write_lock(b); 2558 if (!err) { 2559 btrfs_set_path_blocking(p); 2560 btrfs_tree_lock(b); 2561 btrfs_clear_path_blocking(p, b, 2562 BTRFS_WRITE_LOCK); 2563 } 2564 p->locks[level] = BTRFS_WRITE_LOCK; 2565 } else { 2566 err = btrfs_try_tree_read_lock(b); 2567 if (!err) { 2568 btrfs_set_path_blocking(p); 2569 btrfs_tree_read_lock(b); 2570 btrfs_clear_path_blocking(p, b, 2571 BTRFS_READ_LOCK); 2572 } 2573 p->locks[level] = BTRFS_READ_LOCK; 2574 } 2575 p->nodes[level] = b; 2576 } 2577 } else { 2578 p->slots[level] = slot; 2579 if (ins_len > 0 && 2580 btrfs_leaf_free_space(root, b) < ins_len) { 2581 if (write_lock_level < 1) { 2582 write_lock_level = 1; 2583 btrfs_release_path(p); 2584 goto again; 2585 } 2586 2587 btrfs_set_path_blocking(p); 2588 err = split_leaf(trans, root, key, 2589 p, ins_len, ret == 0); 2590 btrfs_clear_path_blocking(p, NULL, 0); 2591 2592 BUG_ON(err > 0); 2593 if (err) { 2594 ret = err; 2595 goto done; 2596 } 2597 } 2598 if (!p->search_for_split) 2599 unlock_up(p, level, lowest_unlock, 2600 min_write_lock_level, &write_lock_level); 2601 goto done; 2602 } 2603 } 2604 ret = 1; 2605 done: 2606 /* 2607 * we don't really know what they plan on doing with the path 2608 * from here on, so for now just mark it as blocking 2609 */ 2610 if (!p->leave_spinning) 2611 btrfs_set_path_blocking(p); 2612 if (ret < 0) 2613 btrfs_release_path(p); 2614 return ret; 2615 } 2616 2617 /* 2618 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2619 * current state of the tree together with the operations recorded in the tree 2620 * modification log to search for the key in a previous version of this tree, as 2621 * denoted by the time_seq parameter. 2622 * 2623 * Naturally, there is no support for insert, delete or cow operations. 2624 * 2625 * The resulting path and return value will be set up as if we called 2626 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2627 */ 2628 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2629 struct btrfs_path *p, u64 time_seq) 2630 { 2631 struct extent_buffer *b; 2632 int slot; 2633 int ret; 2634 int err; 2635 int level; 2636 int lowest_unlock = 1; 2637 u8 lowest_level = 0; 2638 2639 lowest_level = p->lowest_level; 2640 WARN_ON(p->nodes[0] != NULL); 2641 2642 if (p->search_commit_root) { 2643 BUG_ON(time_seq); 2644 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2645 } 2646 2647 again: 2648 b = get_old_root(root, time_seq); 2649 level = btrfs_header_level(b); 2650 p->locks[level] = BTRFS_READ_LOCK; 2651 2652 while (b) { 2653 level = btrfs_header_level(b); 2654 p->nodes[level] = b; 2655 btrfs_clear_path_blocking(p, NULL, 0); 2656 2657 /* 2658 * we have a lock on b and as long as we aren't changing 2659 * the tree, there is no way to for the items in b to change. 2660 * It is safe to drop the lock on our parent before we 2661 * go through the expensive btree search on b. 2662 */ 2663 btrfs_unlock_up_safe(p, level + 1); 2664 2665 ret = bin_search(b, key, level, &slot); 2666 2667 if (level != 0) { 2668 int dec = 0; 2669 if (ret && slot > 0) { 2670 dec = 1; 2671 slot -= 1; 2672 } 2673 p->slots[level] = slot; 2674 unlock_up(p, level, lowest_unlock, 0, NULL); 2675 2676 if (level == lowest_level) { 2677 if (dec) 2678 p->slots[level]++; 2679 goto done; 2680 } 2681 2682 err = read_block_for_search(NULL, root, p, &b, level, 2683 slot, key, time_seq); 2684 if (err == -EAGAIN) 2685 goto again; 2686 if (err) { 2687 ret = err; 2688 goto done; 2689 } 2690 2691 level = btrfs_header_level(b); 2692 err = btrfs_try_tree_read_lock(b); 2693 if (!err) { 2694 btrfs_set_path_blocking(p); 2695 btrfs_tree_read_lock(b); 2696 btrfs_clear_path_blocking(p, b, 2697 BTRFS_READ_LOCK); 2698 } 2699 p->locks[level] = BTRFS_READ_LOCK; 2700 p->nodes[level] = b; 2701 b = tree_mod_log_rewind(root->fs_info, b, time_seq); 2702 if (b != p->nodes[level]) { 2703 btrfs_tree_unlock_rw(p->nodes[level], 2704 p->locks[level]); 2705 p->locks[level] = 0; 2706 p->nodes[level] = b; 2707 } 2708 } else { 2709 p->slots[level] = slot; 2710 unlock_up(p, level, lowest_unlock, 0, NULL); 2711 goto done; 2712 } 2713 } 2714 ret = 1; 2715 done: 2716 if (!p->leave_spinning) 2717 btrfs_set_path_blocking(p); 2718 if (ret < 0) 2719 btrfs_release_path(p); 2720 2721 return ret; 2722 } 2723 2724 /* 2725 * adjust the pointers going up the tree, starting at level 2726 * making sure the right key of each node is points to 'key'. 2727 * This is used after shifting pointers to the left, so it stops 2728 * fixing up pointers when a given leaf/node is not in slot 0 of the 2729 * higher levels 2730 * 2731 */ 2732 static void fixup_low_keys(struct btrfs_trans_handle *trans, 2733 struct btrfs_root *root, struct btrfs_path *path, 2734 struct btrfs_disk_key *key, int level) 2735 { 2736 int i; 2737 struct extent_buffer *t; 2738 2739 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2740 int tslot = path->slots[i]; 2741 if (!path->nodes[i]) 2742 break; 2743 t = path->nodes[i]; 2744 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1); 2745 btrfs_set_node_key(t, key, tslot); 2746 btrfs_mark_buffer_dirty(path->nodes[i]); 2747 if (tslot != 0) 2748 break; 2749 } 2750 } 2751 2752 /* 2753 * update item key. 2754 * 2755 * This function isn't completely safe. It's the caller's responsibility 2756 * that the new key won't break the order 2757 */ 2758 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 2759 struct btrfs_root *root, struct btrfs_path *path, 2760 struct btrfs_key *new_key) 2761 { 2762 struct btrfs_disk_key disk_key; 2763 struct extent_buffer *eb; 2764 int slot; 2765 2766 eb = path->nodes[0]; 2767 slot = path->slots[0]; 2768 if (slot > 0) { 2769 btrfs_item_key(eb, &disk_key, slot - 1); 2770 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 2771 } 2772 if (slot < btrfs_header_nritems(eb) - 1) { 2773 btrfs_item_key(eb, &disk_key, slot + 1); 2774 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 2775 } 2776 2777 btrfs_cpu_key_to_disk(&disk_key, new_key); 2778 btrfs_set_item_key(eb, &disk_key, slot); 2779 btrfs_mark_buffer_dirty(eb); 2780 if (slot == 0) 2781 fixup_low_keys(trans, root, path, &disk_key, 1); 2782 } 2783 2784 /* 2785 * try to push data from one node into the next node left in the 2786 * tree. 2787 * 2788 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2789 * error, and > 0 if there was no room in the left hand block. 2790 */ 2791 static int push_node_left(struct btrfs_trans_handle *trans, 2792 struct btrfs_root *root, struct extent_buffer *dst, 2793 struct extent_buffer *src, int empty) 2794 { 2795 int push_items = 0; 2796 int src_nritems; 2797 int dst_nritems; 2798 int ret = 0; 2799 2800 src_nritems = btrfs_header_nritems(src); 2801 dst_nritems = btrfs_header_nritems(dst); 2802 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2803 WARN_ON(btrfs_header_generation(src) != trans->transid); 2804 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2805 2806 if (!empty && src_nritems <= 8) 2807 return 1; 2808 2809 if (push_items <= 0) 2810 return 1; 2811 2812 if (empty) { 2813 push_items = min(src_nritems, push_items); 2814 if (push_items < src_nritems) { 2815 /* leave at least 8 pointers in the node if 2816 * we aren't going to empty it 2817 */ 2818 if (src_nritems - push_items < 8) { 2819 if (push_items <= 8) 2820 return 1; 2821 push_items -= 8; 2822 } 2823 } 2824 } else 2825 push_items = min(src_nritems - 8, push_items); 2826 2827 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 2828 push_items); 2829 copy_extent_buffer(dst, src, 2830 btrfs_node_key_ptr_offset(dst_nritems), 2831 btrfs_node_key_ptr_offset(0), 2832 push_items * sizeof(struct btrfs_key_ptr)); 2833 2834 if (push_items < src_nritems) { 2835 tree_mod_log_eb_move(root->fs_info, src, 0, push_items, 2836 src_nritems - push_items); 2837 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2838 btrfs_node_key_ptr_offset(push_items), 2839 (src_nritems - push_items) * 2840 sizeof(struct btrfs_key_ptr)); 2841 } 2842 btrfs_set_header_nritems(src, src_nritems - push_items); 2843 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2844 btrfs_mark_buffer_dirty(src); 2845 btrfs_mark_buffer_dirty(dst); 2846 2847 return ret; 2848 } 2849 2850 /* 2851 * try to push data from one node into the next node right in the 2852 * tree. 2853 * 2854 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2855 * error, and > 0 if there was no room in the right hand block. 2856 * 2857 * this will only push up to 1/2 the contents of the left node over 2858 */ 2859 static int balance_node_right(struct btrfs_trans_handle *trans, 2860 struct btrfs_root *root, 2861 struct extent_buffer *dst, 2862 struct extent_buffer *src) 2863 { 2864 int push_items = 0; 2865 int max_push; 2866 int src_nritems; 2867 int dst_nritems; 2868 int ret = 0; 2869 2870 WARN_ON(btrfs_header_generation(src) != trans->transid); 2871 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2872 2873 src_nritems = btrfs_header_nritems(src); 2874 dst_nritems = btrfs_header_nritems(dst); 2875 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2876 if (push_items <= 0) 2877 return 1; 2878 2879 if (src_nritems < 4) 2880 return 1; 2881 2882 max_push = src_nritems / 2 + 1; 2883 /* don't try to empty the node */ 2884 if (max_push >= src_nritems) 2885 return 1; 2886 2887 if (max_push < push_items) 2888 push_items = max_push; 2889 2890 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 2891 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2892 btrfs_node_key_ptr_offset(0), 2893 (dst_nritems) * 2894 sizeof(struct btrfs_key_ptr)); 2895 2896 tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 2897 src_nritems - push_items, push_items); 2898 copy_extent_buffer(dst, src, 2899 btrfs_node_key_ptr_offset(0), 2900 btrfs_node_key_ptr_offset(src_nritems - push_items), 2901 push_items * sizeof(struct btrfs_key_ptr)); 2902 2903 btrfs_set_header_nritems(src, src_nritems - push_items); 2904 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2905 2906 btrfs_mark_buffer_dirty(src); 2907 btrfs_mark_buffer_dirty(dst); 2908 2909 return ret; 2910 } 2911 2912 /* 2913 * helper function to insert a new root level in the tree. 2914 * A new node is allocated, and a single item is inserted to 2915 * point to the existing root 2916 * 2917 * returns zero on success or < 0 on failure. 2918 */ 2919 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2920 struct btrfs_root *root, 2921 struct btrfs_path *path, int level) 2922 { 2923 u64 lower_gen; 2924 struct extent_buffer *lower; 2925 struct extent_buffer *c; 2926 struct extent_buffer *old; 2927 struct btrfs_disk_key lower_key; 2928 2929 BUG_ON(path->nodes[level]); 2930 BUG_ON(path->nodes[level-1] != root->node); 2931 2932 lower = path->nodes[level-1]; 2933 if (level == 1) 2934 btrfs_item_key(lower, &lower_key, 0); 2935 else 2936 btrfs_node_key(lower, &lower_key, 0); 2937 2938 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2939 root->root_key.objectid, &lower_key, 2940 level, root->node->start, 0); 2941 if (IS_ERR(c)) 2942 return PTR_ERR(c); 2943 2944 root_add_used(root, root->nodesize); 2945 2946 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 2947 btrfs_set_header_nritems(c, 1); 2948 btrfs_set_header_level(c, level); 2949 btrfs_set_header_bytenr(c, c->start); 2950 btrfs_set_header_generation(c, trans->transid); 2951 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 2952 btrfs_set_header_owner(c, root->root_key.objectid); 2953 2954 write_extent_buffer(c, root->fs_info->fsid, 2955 (unsigned long)btrfs_header_fsid(c), 2956 BTRFS_FSID_SIZE); 2957 2958 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2959 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2960 BTRFS_UUID_SIZE); 2961 2962 btrfs_set_node_key(c, &lower_key, 0); 2963 btrfs_set_node_blockptr(c, 0, lower->start); 2964 lower_gen = btrfs_header_generation(lower); 2965 WARN_ON(lower_gen != trans->transid); 2966 2967 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2968 2969 btrfs_mark_buffer_dirty(c); 2970 2971 old = root->node; 2972 tree_mod_log_set_root_pointer(root, c); 2973 rcu_assign_pointer(root->node, c); 2974 2975 /* the super has an extra ref to root->node */ 2976 free_extent_buffer(old); 2977 2978 add_root_to_dirty_list(root); 2979 extent_buffer_get(c); 2980 path->nodes[level] = c; 2981 path->locks[level] = BTRFS_WRITE_LOCK; 2982 path->slots[level] = 0; 2983 return 0; 2984 } 2985 2986 /* 2987 * worker function to insert a single pointer in a node. 2988 * the node should have enough room for the pointer already 2989 * 2990 * slot and level indicate where you want the key to go, and 2991 * blocknr is the block the key points to. 2992 */ 2993 static void insert_ptr(struct btrfs_trans_handle *trans, 2994 struct btrfs_root *root, struct btrfs_path *path, 2995 struct btrfs_disk_key *key, u64 bytenr, 2996 int slot, int level) 2997 { 2998 struct extent_buffer *lower; 2999 int nritems; 3000 int ret; 3001 3002 BUG_ON(!path->nodes[level]); 3003 btrfs_assert_tree_locked(path->nodes[level]); 3004 lower = path->nodes[level]; 3005 nritems = btrfs_header_nritems(lower); 3006 BUG_ON(slot > nritems); 3007 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3008 if (slot != nritems) { 3009 if (level) 3010 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3011 slot, nritems - slot); 3012 memmove_extent_buffer(lower, 3013 btrfs_node_key_ptr_offset(slot + 1), 3014 btrfs_node_key_ptr_offset(slot), 3015 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3016 } 3017 if (level) { 3018 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3019 MOD_LOG_KEY_ADD); 3020 BUG_ON(ret < 0); 3021 } 3022 btrfs_set_node_key(lower, key, slot); 3023 btrfs_set_node_blockptr(lower, slot, bytenr); 3024 WARN_ON(trans->transid == 0); 3025 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3026 btrfs_set_header_nritems(lower, nritems + 1); 3027 btrfs_mark_buffer_dirty(lower); 3028 } 3029 3030 /* 3031 * split the node at the specified level in path in two. 3032 * The path is corrected to point to the appropriate node after the split 3033 * 3034 * Before splitting this tries to make some room in the node by pushing 3035 * left and right, if either one works, it returns right away. 3036 * 3037 * returns 0 on success and < 0 on failure 3038 */ 3039 static noinline int split_node(struct btrfs_trans_handle *trans, 3040 struct btrfs_root *root, 3041 struct btrfs_path *path, int level) 3042 { 3043 struct extent_buffer *c; 3044 struct extent_buffer *split; 3045 struct btrfs_disk_key disk_key; 3046 int mid; 3047 int ret; 3048 u32 c_nritems; 3049 3050 c = path->nodes[level]; 3051 WARN_ON(btrfs_header_generation(c) != trans->transid); 3052 if (c == root->node) { 3053 /* trying to split the root, lets make a new one */ 3054 ret = insert_new_root(trans, root, path, level + 1); 3055 if (ret) 3056 return ret; 3057 } else { 3058 ret = push_nodes_for_insert(trans, root, path, level); 3059 c = path->nodes[level]; 3060 if (!ret && btrfs_header_nritems(c) < 3061 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3062 return 0; 3063 if (ret < 0) 3064 return ret; 3065 } 3066 3067 c_nritems = btrfs_header_nritems(c); 3068 mid = (c_nritems + 1) / 2; 3069 btrfs_node_key(c, &disk_key, mid); 3070 3071 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3072 root->root_key.objectid, 3073 &disk_key, level, c->start, 0); 3074 if (IS_ERR(split)) 3075 return PTR_ERR(split); 3076 3077 root_add_used(root, root->nodesize); 3078 3079 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3080 btrfs_set_header_level(split, btrfs_header_level(c)); 3081 btrfs_set_header_bytenr(split, split->start); 3082 btrfs_set_header_generation(split, trans->transid); 3083 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3084 btrfs_set_header_owner(split, root->root_key.objectid); 3085 write_extent_buffer(split, root->fs_info->fsid, 3086 (unsigned long)btrfs_header_fsid(split), 3087 BTRFS_FSID_SIZE); 3088 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3089 (unsigned long)btrfs_header_chunk_tree_uuid(split), 3090 BTRFS_UUID_SIZE); 3091 3092 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid); 3093 copy_extent_buffer(split, c, 3094 btrfs_node_key_ptr_offset(0), 3095 btrfs_node_key_ptr_offset(mid), 3096 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3097 btrfs_set_header_nritems(split, c_nritems - mid); 3098 btrfs_set_header_nritems(c, mid); 3099 ret = 0; 3100 3101 btrfs_mark_buffer_dirty(c); 3102 btrfs_mark_buffer_dirty(split); 3103 3104 insert_ptr(trans, root, path, &disk_key, split->start, 3105 path->slots[level + 1] + 1, level + 1); 3106 3107 if (path->slots[level] >= mid) { 3108 path->slots[level] -= mid; 3109 btrfs_tree_unlock(c); 3110 free_extent_buffer(c); 3111 path->nodes[level] = split; 3112 path->slots[level + 1] += 1; 3113 } else { 3114 btrfs_tree_unlock(split); 3115 free_extent_buffer(split); 3116 } 3117 return ret; 3118 } 3119 3120 /* 3121 * how many bytes are required to store the items in a leaf. start 3122 * and nr indicate which items in the leaf to check. This totals up the 3123 * space used both by the item structs and the item data 3124 */ 3125 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3126 { 3127 int data_len; 3128 int nritems = btrfs_header_nritems(l); 3129 int end = min(nritems, start + nr) - 1; 3130 3131 if (!nr) 3132 return 0; 3133 data_len = btrfs_item_end_nr(l, start); 3134 data_len = data_len - btrfs_item_offset_nr(l, end); 3135 data_len += sizeof(struct btrfs_item) * nr; 3136 WARN_ON(data_len < 0); 3137 return data_len; 3138 } 3139 3140 /* 3141 * The space between the end of the leaf items and 3142 * the start of the leaf data. IOW, how much room 3143 * the leaf has left for both items and data 3144 */ 3145 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3146 struct extent_buffer *leaf) 3147 { 3148 int nritems = btrfs_header_nritems(leaf); 3149 int ret; 3150 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3151 if (ret < 0) { 3152 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 3153 "used %d nritems %d\n", 3154 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3155 leaf_space_used(leaf, 0, nritems), nritems); 3156 } 3157 return ret; 3158 } 3159 3160 /* 3161 * min slot controls the lowest index we're willing to push to the 3162 * right. We'll push up to and including min_slot, but no lower 3163 */ 3164 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3165 struct btrfs_root *root, 3166 struct btrfs_path *path, 3167 int data_size, int empty, 3168 struct extent_buffer *right, 3169 int free_space, u32 left_nritems, 3170 u32 min_slot) 3171 { 3172 struct extent_buffer *left = path->nodes[0]; 3173 struct extent_buffer *upper = path->nodes[1]; 3174 struct btrfs_map_token token; 3175 struct btrfs_disk_key disk_key; 3176 int slot; 3177 u32 i; 3178 int push_space = 0; 3179 int push_items = 0; 3180 struct btrfs_item *item; 3181 u32 nr; 3182 u32 right_nritems; 3183 u32 data_end; 3184 u32 this_item_size; 3185 3186 btrfs_init_map_token(&token); 3187 3188 if (empty) 3189 nr = 0; 3190 else 3191 nr = max_t(u32, 1, min_slot); 3192 3193 if (path->slots[0] >= left_nritems) 3194 push_space += data_size; 3195 3196 slot = path->slots[1]; 3197 i = left_nritems - 1; 3198 while (i >= nr) { 3199 item = btrfs_item_nr(left, i); 3200 3201 if (!empty && push_items > 0) { 3202 if (path->slots[0] > i) 3203 break; 3204 if (path->slots[0] == i) { 3205 int space = btrfs_leaf_free_space(root, left); 3206 if (space + push_space * 2 > free_space) 3207 break; 3208 } 3209 } 3210 3211 if (path->slots[0] == i) 3212 push_space += data_size; 3213 3214 this_item_size = btrfs_item_size(left, item); 3215 if (this_item_size + sizeof(*item) + push_space > free_space) 3216 break; 3217 3218 push_items++; 3219 push_space += this_item_size + sizeof(*item); 3220 if (i == 0) 3221 break; 3222 i--; 3223 } 3224 3225 if (push_items == 0) 3226 goto out_unlock; 3227 3228 if (!empty && push_items == left_nritems) 3229 WARN_ON(1); 3230 3231 /* push left to right */ 3232 right_nritems = btrfs_header_nritems(right); 3233 3234 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3235 push_space -= leaf_data_end(root, left); 3236 3237 /* make room in the right data area */ 3238 data_end = leaf_data_end(root, right); 3239 memmove_extent_buffer(right, 3240 btrfs_leaf_data(right) + data_end - push_space, 3241 btrfs_leaf_data(right) + data_end, 3242 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3243 3244 /* copy from the left data area */ 3245 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3246 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3247 btrfs_leaf_data(left) + leaf_data_end(root, left), 3248 push_space); 3249 3250 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3251 btrfs_item_nr_offset(0), 3252 right_nritems * sizeof(struct btrfs_item)); 3253 3254 /* copy the items from left to right */ 3255 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3256 btrfs_item_nr_offset(left_nritems - push_items), 3257 push_items * sizeof(struct btrfs_item)); 3258 3259 /* update the item pointers */ 3260 right_nritems += push_items; 3261 btrfs_set_header_nritems(right, right_nritems); 3262 push_space = BTRFS_LEAF_DATA_SIZE(root); 3263 for (i = 0; i < right_nritems; i++) { 3264 item = btrfs_item_nr(right, i); 3265 push_space -= btrfs_token_item_size(right, item, &token); 3266 btrfs_set_token_item_offset(right, item, push_space, &token); 3267 } 3268 3269 left_nritems -= push_items; 3270 btrfs_set_header_nritems(left, left_nritems); 3271 3272 if (left_nritems) 3273 btrfs_mark_buffer_dirty(left); 3274 else 3275 clean_tree_block(trans, root, left); 3276 3277 btrfs_mark_buffer_dirty(right); 3278 3279 btrfs_item_key(right, &disk_key, 0); 3280 btrfs_set_node_key(upper, &disk_key, slot + 1); 3281 btrfs_mark_buffer_dirty(upper); 3282 3283 /* then fixup the leaf pointer in the path */ 3284 if (path->slots[0] >= left_nritems) { 3285 path->slots[0] -= left_nritems; 3286 if (btrfs_header_nritems(path->nodes[0]) == 0) 3287 clean_tree_block(trans, root, path->nodes[0]); 3288 btrfs_tree_unlock(path->nodes[0]); 3289 free_extent_buffer(path->nodes[0]); 3290 path->nodes[0] = right; 3291 path->slots[1] += 1; 3292 } else { 3293 btrfs_tree_unlock(right); 3294 free_extent_buffer(right); 3295 } 3296 return 0; 3297 3298 out_unlock: 3299 btrfs_tree_unlock(right); 3300 free_extent_buffer(right); 3301 return 1; 3302 } 3303 3304 /* 3305 * push some data in the path leaf to the right, trying to free up at 3306 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3307 * 3308 * returns 1 if the push failed because the other node didn't have enough 3309 * room, 0 if everything worked out and < 0 if there were major errors. 3310 * 3311 * this will push starting from min_slot to the end of the leaf. It won't 3312 * push any slot lower than min_slot 3313 */ 3314 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3315 *root, struct btrfs_path *path, 3316 int min_data_size, int data_size, 3317 int empty, u32 min_slot) 3318 { 3319 struct extent_buffer *left = path->nodes[0]; 3320 struct extent_buffer *right; 3321 struct extent_buffer *upper; 3322 int slot; 3323 int free_space; 3324 u32 left_nritems; 3325 int ret; 3326 3327 if (!path->nodes[1]) 3328 return 1; 3329 3330 slot = path->slots[1]; 3331 upper = path->nodes[1]; 3332 if (slot >= btrfs_header_nritems(upper) - 1) 3333 return 1; 3334 3335 btrfs_assert_tree_locked(path->nodes[1]); 3336 3337 right = read_node_slot(root, upper, slot + 1); 3338 if (right == NULL) 3339 return 1; 3340 3341 btrfs_tree_lock(right); 3342 btrfs_set_lock_blocking(right); 3343 3344 free_space = btrfs_leaf_free_space(root, right); 3345 if (free_space < data_size) 3346 goto out_unlock; 3347 3348 /* cow and double check */ 3349 ret = btrfs_cow_block(trans, root, right, upper, 3350 slot + 1, &right); 3351 if (ret) 3352 goto out_unlock; 3353 3354 free_space = btrfs_leaf_free_space(root, right); 3355 if (free_space < data_size) 3356 goto out_unlock; 3357 3358 left_nritems = btrfs_header_nritems(left); 3359 if (left_nritems == 0) 3360 goto out_unlock; 3361 3362 return __push_leaf_right(trans, root, path, min_data_size, empty, 3363 right, free_space, left_nritems, min_slot); 3364 out_unlock: 3365 btrfs_tree_unlock(right); 3366 free_extent_buffer(right); 3367 return 1; 3368 } 3369 3370 /* 3371 * push some data in the path leaf to the left, trying to free up at 3372 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3373 * 3374 * max_slot can put a limit on how far into the leaf we'll push items. The 3375 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3376 * items 3377 */ 3378 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3379 struct btrfs_root *root, 3380 struct btrfs_path *path, int data_size, 3381 int empty, struct extent_buffer *left, 3382 int free_space, u32 right_nritems, 3383 u32 max_slot) 3384 { 3385 struct btrfs_disk_key disk_key; 3386 struct extent_buffer *right = path->nodes[0]; 3387 int i; 3388 int push_space = 0; 3389 int push_items = 0; 3390 struct btrfs_item *item; 3391 u32 old_left_nritems; 3392 u32 nr; 3393 int ret = 0; 3394 u32 this_item_size; 3395 u32 old_left_item_size; 3396 struct btrfs_map_token token; 3397 3398 btrfs_init_map_token(&token); 3399 3400 if (empty) 3401 nr = min(right_nritems, max_slot); 3402 else 3403 nr = min(right_nritems - 1, max_slot); 3404 3405 for (i = 0; i < nr; i++) { 3406 item = btrfs_item_nr(right, i); 3407 3408 if (!empty && push_items > 0) { 3409 if (path->slots[0] < i) 3410 break; 3411 if (path->slots[0] == i) { 3412 int space = btrfs_leaf_free_space(root, right); 3413 if (space + push_space * 2 > free_space) 3414 break; 3415 } 3416 } 3417 3418 if (path->slots[0] == i) 3419 push_space += data_size; 3420 3421 this_item_size = btrfs_item_size(right, item); 3422 if (this_item_size + sizeof(*item) + push_space > free_space) 3423 break; 3424 3425 push_items++; 3426 push_space += this_item_size + sizeof(*item); 3427 } 3428 3429 if (push_items == 0) { 3430 ret = 1; 3431 goto out; 3432 } 3433 if (!empty && push_items == btrfs_header_nritems(right)) 3434 WARN_ON(1); 3435 3436 /* push data from right to left */ 3437 copy_extent_buffer(left, right, 3438 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3439 btrfs_item_nr_offset(0), 3440 push_items * sizeof(struct btrfs_item)); 3441 3442 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3443 btrfs_item_offset_nr(right, push_items - 1); 3444 3445 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3446 leaf_data_end(root, left) - push_space, 3447 btrfs_leaf_data(right) + 3448 btrfs_item_offset_nr(right, push_items - 1), 3449 push_space); 3450 old_left_nritems = btrfs_header_nritems(left); 3451 BUG_ON(old_left_nritems <= 0); 3452 3453 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3454 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3455 u32 ioff; 3456 3457 item = btrfs_item_nr(left, i); 3458 3459 ioff = btrfs_token_item_offset(left, item, &token); 3460 btrfs_set_token_item_offset(left, item, 3461 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3462 &token); 3463 } 3464 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3465 3466 /* fixup right node */ 3467 if (push_items > right_nritems) { 3468 printk(KERN_CRIT "push items %d nr %u\n", push_items, 3469 right_nritems); 3470 WARN_ON(1); 3471 } 3472 3473 if (push_items < right_nritems) { 3474 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3475 leaf_data_end(root, right); 3476 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3477 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3478 btrfs_leaf_data(right) + 3479 leaf_data_end(root, right), push_space); 3480 3481 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3482 btrfs_item_nr_offset(push_items), 3483 (btrfs_header_nritems(right) - push_items) * 3484 sizeof(struct btrfs_item)); 3485 } 3486 right_nritems -= push_items; 3487 btrfs_set_header_nritems(right, right_nritems); 3488 push_space = BTRFS_LEAF_DATA_SIZE(root); 3489 for (i = 0; i < right_nritems; i++) { 3490 item = btrfs_item_nr(right, i); 3491 3492 push_space = push_space - btrfs_token_item_size(right, 3493 item, &token); 3494 btrfs_set_token_item_offset(right, item, push_space, &token); 3495 } 3496 3497 btrfs_mark_buffer_dirty(left); 3498 if (right_nritems) 3499 btrfs_mark_buffer_dirty(right); 3500 else 3501 clean_tree_block(trans, root, right); 3502 3503 btrfs_item_key(right, &disk_key, 0); 3504 fixup_low_keys(trans, root, path, &disk_key, 1); 3505 3506 /* then fixup the leaf pointer in the path */ 3507 if (path->slots[0] < push_items) { 3508 path->slots[0] += old_left_nritems; 3509 btrfs_tree_unlock(path->nodes[0]); 3510 free_extent_buffer(path->nodes[0]); 3511 path->nodes[0] = left; 3512 path->slots[1] -= 1; 3513 } else { 3514 btrfs_tree_unlock(left); 3515 free_extent_buffer(left); 3516 path->slots[0] -= push_items; 3517 } 3518 BUG_ON(path->slots[0] < 0); 3519 return ret; 3520 out: 3521 btrfs_tree_unlock(left); 3522 free_extent_buffer(left); 3523 return ret; 3524 } 3525 3526 /* 3527 * push some data in the path leaf to the left, trying to free up at 3528 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3529 * 3530 * max_slot can put a limit on how far into the leaf we'll push items. The 3531 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3532 * items 3533 */ 3534 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3535 *root, struct btrfs_path *path, int min_data_size, 3536 int data_size, int empty, u32 max_slot) 3537 { 3538 struct extent_buffer *right = path->nodes[0]; 3539 struct extent_buffer *left; 3540 int slot; 3541 int free_space; 3542 u32 right_nritems; 3543 int ret = 0; 3544 3545 slot = path->slots[1]; 3546 if (slot == 0) 3547 return 1; 3548 if (!path->nodes[1]) 3549 return 1; 3550 3551 right_nritems = btrfs_header_nritems(right); 3552 if (right_nritems == 0) 3553 return 1; 3554 3555 btrfs_assert_tree_locked(path->nodes[1]); 3556 3557 left = read_node_slot(root, path->nodes[1], slot - 1); 3558 if (left == NULL) 3559 return 1; 3560 3561 btrfs_tree_lock(left); 3562 btrfs_set_lock_blocking(left); 3563 3564 free_space = btrfs_leaf_free_space(root, left); 3565 if (free_space < data_size) { 3566 ret = 1; 3567 goto out; 3568 } 3569 3570 /* cow and double check */ 3571 ret = btrfs_cow_block(trans, root, left, 3572 path->nodes[1], slot - 1, &left); 3573 if (ret) { 3574 /* we hit -ENOSPC, but it isn't fatal here */ 3575 if (ret == -ENOSPC) 3576 ret = 1; 3577 goto out; 3578 } 3579 3580 free_space = btrfs_leaf_free_space(root, left); 3581 if (free_space < data_size) { 3582 ret = 1; 3583 goto out; 3584 } 3585 3586 return __push_leaf_left(trans, root, path, min_data_size, 3587 empty, left, free_space, right_nritems, 3588 max_slot); 3589 out: 3590 btrfs_tree_unlock(left); 3591 free_extent_buffer(left); 3592 return ret; 3593 } 3594 3595 /* 3596 * split the path's leaf in two, making sure there is at least data_size 3597 * available for the resulting leaf level of the path. 3598 */ 3599 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3600 struct btrfs_root *root, 3601 struct btrfs_path *path, 3602 struct extent_buffer *l, 3603 struct extent_buffer *right, 3604 int slot, int mid, int nritems) 3605 { 3606 int data_copy_size; 3607 int rt_data_off; 3608 int i; 3609 struct btrfs_disk_key disk_key; 3610 struct btrfs_map_token token; 3611 3612 btrfs_init_map_token(&token); 3613 3614 nritems = nritems - mid; 3615 btrfs_set_header_nritems(right, nritems); 3616 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 3617 3618 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3619 btrfs_item_nr_offset(mid), 3620 nritems * sizeof(struct btrfs_item)); 3621 3622 copy_extent_buffer(right, l, 3623 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 3624 data_copy_size, btrfs_leaf_data(l) + 3625 leaf_data_end(root, l), data_copy_size); 3626 3627 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 3628 btrfs_item_end_nr(l, mid); 3629 3630 for (i = 0; i < nritems; i++) { 3631 struct btrfs_item *item = btrfs_item_nr(right, i); 3632 u32 ioff; 3633 3634 ioff = btrfs_token_item_offset(right, item, &token); 3635 btrfs_set_token_item_offset(right, item, 3636 ioff + rt_data_off, &token); 3637 } 3638 3639 btrfs_set_header_nritems(l, mid); 3640 btrfs_item_key(right, &disk_key, 0); 3641 insert_ptr(trans, root, path, &disk_key, right->start, 3642 path->slots[1] + 1, 1); 3643 3644 btrfs_mark_buffer_dirty(right); 3645 btrfs_mark_buffer_dirty(l); 3646 BUG_ON(path->slots[0] != slot); 3647 3648 if (mid <= slot) { 3649 btrfs_tree_unlock(path->nodes[0]); 3650 free_extent_buffer(path->nodes[0]); 3651 path->nodes[0] = right; 3652 path->slots[0] -= mid; 3653 path->slots[1] += 1; 3654 } else { 3655 btrfs_tree_unlock(right); 3656 free_extent_buffer(right); 3657 } 3658 3659 BUG_ON(path->slots[0] < 0); 3660 } 3661 3662 /* 3663 * double splits happen when we need to insert a big item in the middle 3664 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3665 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3666 * A B C 3667 * 3668 * We avoid this by trying to push the items on either side of our target 3669 * into the adjacent leaves. If all goes well we can avoid the double split 3670 * completely. 3671 */ 3672 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3673 struct btrfs_root *root, 3674 struct btrfs_path *path, 3675 int data_size) 3676 { 3677 int ret; 3678 int progress = 0; 3679 int slot; 3680 u32 nritems; 3681 3682 slot = path->slots[0]; 3683 3684 /* 3685 * try to push all the items after our slot into the 3686 * right leaf 3687 */ 3688 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 3689 if (ret < 0) 3690 return ret; 3691 3692 if (ret == 0) 3693 progress++; 3694 3695 nritems = btrfs_header_nritems(path->nodes[0]); 3696 /* 3697 * our goal is to get our slot at the start or end of a leaf. If 3698 * we've done so we're done 3699 */ 3700 if (path->slots[0] == 0 || path->slots[0] == nritems) 3701 return 0; 3702 3703 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3704 return 0; 3705 3706 /* try to push all the items before our slot into the next leaf */ 3707 slot = path->slots[0]; 3708 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 3709 if (ret < 0) 3710 return ret; 3711 3712 if (ret == 0) 3713 progress++; 3714 3715 if (progress) 3716 return 0; 3717 return 1; 3718 } 3719 3720 /* 3721 * split the path's leaf in two, making sure there is at least data_size 3722 * available for the resulting leaf level of the path. 3723 * 3724 * returns 0 if all went well and < 0 on failure. 3725 */ 3726 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3727 struct btrfs_root *root, 3728 struct btrfs_key *ins_key, 3729 struct btrfs_path *path, int data_size, 3730 int extend) 3731 { 3732 struct btrfs_disk_key disk_key; 3733 struct extent_buffer *l; 3734 u32 nritems; 3735 int mid; 3736 int slot; 3737 struct extent_buffer *right; 3738 int ret = 0; 3739 int wret; 3740 int split; 3741 int num_doubles = 0; 3742 int tried_avoid_double = 0; 3743 3744 l = path->nodes[0]; 3745 slot = path->slots[0]; 3746 if (extend && data_size + btrfs_item_size_nr(l, slot) + 3747 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 3748 return -EOVERFLOW; 3749 3750 /* first try to make some room by pushing left and right */ 3751 if (data_size) { 3752 wret = push_leaf_right(trans, root, path, data_size, 3753 data_size, 0, 0); 3754 if (wret < 0) 3755 return wret; 3756 if (wret) { 3757 wret = push_leaf_left(trans, root, path, data_size, 3758 data_size, 0, (u32)-1); 3759 if (wret < 0) 3760 return wret; 3761 } 3762 l = path->nodes[0]; 3763 3764 /* did the pushes work? */ 3765 if (btrfs_leaf_free_space(root, l) >= data_size) 3766 return 0; 3767 } 3768 3769 if (!path->nodes[1]) { 3770 ret = insert_new_root(trans, root, path, 1); 3771 if (ret) 3772 return ret; 3773 } 3774 again: 3775 split = 1; 3776 l = path->nodes[0]; 3777 slot = path->slots[0]; 3778 nritems = btrfs_header_nritems(l); 3779 mid = (nritems + 1) / 2; 3780 3781 if (mid <= slot) { 3782 if (nritems == 1 || 3783 leaf_space_used(l, mid, nritems - mid) + data_size > 3784 BTRFS_LEAF_DATA_SIZE(root)) { 3785 if (slot >= nritems) { 3786 split = 0; 3787 } else { 3788 mid = slot; 3789 if (mid != nritems && 3790 leaf_space_used(l, mid, nritems - mid) + 3791 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3792 if (data_size && !tried_avoid_double) 3793 goto push_for_double; 3794 split = 2; 3795 } 3796 } 3797 } 3798 } else { 3799 if (leaf_space_used(l, 0, mid) + data_size > 3800 BTRFS_LEAF_DATA_SIZE(root)) { 3801 if (!extend && data_size && slot == 0) { 3802 split = 0; 3803 } else if ((extend || !data_size) && slot == 0) { 3804 mid = 1; 3805 } else { 3806 mid = slot; 3807 if (mid != nritems && 3808 leaf_space_used(l, mid, nritems - mid) + 3809 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3810 if (data_size && !tried_avoid_double) 3811 goto push_for_double; 3812 split = 2 ; 3813 } 3814 } 3815 } 3816 } 3817 3818 if (split == 0) 3819 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3820 else 3821 btrfs_item_key(l, &disk_key, mid); 3822 3823 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 3824 root->root_key.objectid, 3825 &disk_key, 0, l->start, 0); 3826 if (IS_ERR(right)) 3827 return PTR_ERR(right); 3828 3829 root_add_used(root, root->leafsize); 3830 3831 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 3832 btrfs_set_header_bytenr(right, right->start); 3833 btrfs_set_header_generation(right, trans->transid); 3834 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 3835 btrfs_set_header_owner(right, root->root_key.objectid); 3836 btrfs_set_header_level(right, 0); 3837 write_extent_buffer(right, root->fs_info->fsid, 3838 (unsigned long)btrfs_header_fsid(right), 3839 BTRFS_FSID_SIZE); 3840 3841 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 3842 (unsigned long)btrfs_header_chunk_tree_uuid(right), 3843 BTRFS_UUID_SIZE); 3844 3845 if (split == 0) { 3846 if (mid <= slot) { 3847 btrfs_set_header_nritems(right, 0); 3848 insert_ptr(trans, root, path, &disk_key, right->start, 3849 path->slots[1] + 1, 1); 3850 btrfs_tree_unlock(path->nodes[0]); 3851 free_extent_buffer(path->nodes[0]); 3852 path->nodes[0] = right; 3853 path->slots[0] = 0; 3854 path->slots[1] += 1; 3855 } else { 3856 btrfs_set_header_nritems(right, 0); 3857 insert_ptr(trans, root, path, &disk_key, right->start, 3858 path->slots[1], 1); 3859 btrfs_tree_unlock(path->nodes[0]); 3860 free_extent_buffer(path->nodes[0]); 3861 path->nodes[0] = right; 3862 path->slots[0] = 0; 3863 if (path->slots[1] == 0) 3864 fixup_low_keys(trans, root, path, 3865 &disk_key, 1); 3866 } 3867 btrfs_mark_buffer_dirty(right); 3868 return ret; 3869 } 3870 3871 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 3872 3873 if (split == 2) { 3874 BUG_ON(num_doubles != 0); 3875 num_doubles++; 3876 goto again; 3877 } 3878 3879 return 0; 3880 3881 push_for_double: 3882 push_for_double_split(trans, root, path, data_size); 3883 tried_avoid_double = 1; 3884 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3885 return 0; 3886 goto again; 3887 } 3888 3889 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3890 struct btrfs_root *root, 3891 struct btrfs_path *path, int ins_len) 3892 { 3893 struct btrfs_key key; 3894 struct extent_buffer *leaf; 3895 struct btrfs_file_extent_item *fi; 3896 u64 extent_len = 0; 3897 u32 item_size; 3898 int ret; 3899 3900 leaf = path->nodes[0]; 3901 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3902 3903 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3904 key.type != BTRFS_EXTENT_CSUM_KEY); 3905 3906 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 3907 return 0; 3908 3909 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3910 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3911 fi = btrfs_item_ptr(leaf, path->slots[0], 3912 struct btrfs_file_extent_item); 3913 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3914 } 3915 btrfs_release_path(path); 3916 3917 path->keep_locks = 1; 3918 path->search_for_split = 1; 3919 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3920 path->search_for_split = 0; 3921 if (ret < 0) 3922 goto err; 3923 3924 ret = -EAGAIN; 3925 leaf = path->nodes[0]; 3926 /* if our item isn't there or got smaller, return now */ 3927 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 3928 goto err; 3929 3930 /* the leaf has changed, it now has room. return now */ 3931 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 3932 goto err; 3933 3934 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3935 fi = btrfs_item_ptr(leaf, path->slots[0], 3936 struct btrfs_file_extent_item); 3937 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3938 goto err; 3939 } 3940 3941 btrfs_set_path_blocking(path); 3942 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3943 if (ret) 3944 goto err; 3945 3946 path->keep_locks = 0; 3947 btrfs_unlock_up_safe(path, 1); 3948 return 0; 3949 err: 3950 path->keep_locks = 0; 3951 return ret; 3952 } 3953 3954 static noinline int split_item(struct btrfs_trans_handle *trans, 3955 struct btrfs_root *root, 3956 struct btrfs_path *path, 3957 struct btrfs_key *new_key, 3958 unsigned long split_offset) 3959 { 3960 struct extent_buffer *leaf; 3961 struct btrfs_item *item; 3962 struct btrfs_item *new_item; 3963 int slot; 3964 char *buf; 3965 u32 nritems; 3966 u32 item_size; 3967 u32 orig_offset; 3968 struct btrfs_disk_key disk_key; 3969 3970 leaf = path->nodes[0]; 3971 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3972 3973 btrfs_set_path_blocking(path); 3974 3975 item = btrfs_item_nr(leaf, path->slots[0]); 3976 orig_offset = btrfs_item_offset(leaf, item); 3977 item_size = btrfs_item_size(leaf, item); 3978 3979 buf = kmalloc(item_size, GFP_NOFS); 3980 if (!buf) 3981 return -ENOMEM; 3982 3983 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3984 path->slots[0]), item_size); 3985 3986 slot = path->slots[0] + 1; 3987 nritems = btrfs_header_nritems(leaf); 3988 if (slot != nritems) { 3989 /* shift the items */ 3990 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3991 btrfs_item_nr_offset(slot), 3992 (nritems - slot) * sizeof(struct btrfs_item)); 3993 } 3994 3995 btrfs_cpu_key_to_disk(&disk_key, new_key); 3996 btrfs_set_item_key(leaf, &disk_key, slot); 3997 3998 new_item = btrfs_item_nr(leaf, slot); 3999 4000 btrfs_set_item_offset(leaf, new_item, orig_offset); 4001 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4002 4003 btrfs_set_item_offset(leaf, item, 4004 orig_offset + item_size - split_offset); 4005 btrfs_set_item_size(leaf, item, split_offset); 4006 4007 btrfs_set_header_nritems(leaf, nritems + 1); 4008 4009 /* write the data for the start of the original item */ 4010 write_extent_buffer(leaf, buf, 4011 btrfs_item_ptr_offset(leaf, path->slots[0]), 4012 split_offset); 4013 4014 /* write the data for the new item */ 4015 write_extent_buffer(leaf, buf + split_offset, 4016 btrfs_item_ptr_offset(leaf, slot), 4017 item_size - split_offset); 4018 btrfs_mark_buffer_dirty(leaf); 4019 4020 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4021 kfree(buf); 4022 return 0; 4023 } 4024 4025 /* 4026 * This function splits a single item into two items, 4027 * giving 'new_key' to the new item and splitting the 4028 * old one at split_offset (from the start of the item). 4029 * 4030 * The path may be released by this operation. After 4031 * the split, the path is pointing to the old item. The 4032 * new item is going to be in the same node as the old one. 4033 * 4034 * Note, the item being split must be smaller enough to live alone on 4035 * a tree block with room for one extra struct btrfs_item 4036 * 4037 * This allows us to split the item in place, keeping a lock on the 4038 * leaf the entire time. 4039 */ 4040 int btrfs_split_item(struct btrfs_trans_handle *trans, 4041 struct btrfs_root *root, 4042 struct btrfs_path *path, 4043 struct btrfs_key *new_key, 4044 unsigned long split_offset) 4045 { 4046 int ret; 4047 ret = setup_leaf_for_split(trans, root, path, 4048 sizeof(struct btrfs_item)); 4049 if (ret) 4050 return ret; 4051 4052 ret = split_item(trans, root, path, new_key, split_offset); 4053 return ret; 4054 } 4055 4056 /* 4057 * This function duplicate a item, giving 'new_key' to the new item. 4058 * It guarantees both items live in the same tree leaf and the new item 4059 * is contiguous with the original item. 4060 * 4061 * This allows us to split file extent in place, keeping a lock on the 4062 * leaf the entire time. 4063 */ 4064 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4065 struct btrfs_root *root, 4066 struct btrfs_path *path, 4067 struct btrfs_key *new_key) 4068 { 4069 struct extent_buffer *leaf; 4070 int ret; 4071 u32 item_size; 4072 4073 leaf = path->nodes[0]; 4074 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4075 ret = setup_leaf_for_split(trans, root, path, 4076 item_size + sizeof(struct btrfs_item)); 4077 if (ret) 4078 return ret; 4079 4080 path->slots[0]++; 4081 setup_items_for_insert(trans, root, path, new_key, &item_size, 4082 item_size, item_size + 4083 sizeof(struct btrfs_item), 1); 4084 leaf = path->nodes[0]; 4085 memcpy_extent_buffer(leaf, 4086 btrfs_item_ptr_offset(leaf, path->slots[0]), 4087 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4088 item_size); 4089 return 0; 4090 } 4091 4092 /* 4093 * make the item pointed to by the path smaller. new_size indicates 4094 * how small to make it, and from_end tells us if we just chop bytes 4095 * off the end of the item or if we shift the item to chop bytes off 4096 * the front. 4097 */ 4098 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 4099 struct btrfs_root *root, 4100 struct btrfs_path *path, 4101 u32 new_size, int from_end) 4102 { 4103 int slot; 4104 struct extent_buffer *leaf; 4105 struct btrfs_item *item; 4106 u32 nritems; 4107 unsigned int data_end; 4108 unsigned int old_data_start; 4109 unsigned int old_size; 4110 unsigned int size_diff; 4111 int i; 4112 struct btrfs_map_token token; 4113 4114 btrfs_init_map_token(&token); 4115 4116 leaf = path->nodes[0]; 4117 slot = path->slots[0]; 4118 4119 old_size = btrfs_item_size_nr(leaf, slot); 4120 if (old_size == new_size) 4121 return; 4122 4123 nritems = btrfs_header_nritems(leaf); 4124 data_end = leaf_data_end(root, leaf); 4125 4126 old_data_start = btrfs_item_offset_nr(leaf, slot); 4127 4128 size_diff = old_size - new_size; 4129 4130 BUG_ON(slot < 0); 4131 BUG_ON(slot >= nritems); 4132 4133 /* 4134 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4135 */ 4136 /* first correct the data pointers */ 4137 for (i = slot; i < nritems; i++) { 4138 u32 ioff; 4139 item = btrfs_item_nr(leaf, i); 4140 4141 ioff = btrfs_token_item_offset(leaf, item, &token); 4142 btrfs_set_token_item_offset(leaf, item, 4143 ioff + size_diff, &token); 4144 } 4145 4146 /* shift the data */ 4147 if (from_end) { 4148 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4149 data_end + size_diff, btrfs_leaf_data(leaf) + 4150 data_end, old_data_start + new_size - data_end); 4151 } else { 4152 struct btrfs_disk_key disk_key; 4153 u64 offset; 4154 4155 btrfs_item_key(leaf, &disk_key, slot); 4156 4157 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4158 unsigned long ptr; 4159 struct btrfs_file_extent_item *fi; 4160 4161 fi = btrfs_item_ptr(leaf, slot, 4162 struct btrfs_file_extent_item); 4163 fi = (struct btrfs_file_extent_item *)( 4164 (unsigned long)fi - size_diff); 4165 4166 if (btrfs_file_extent_type(leaf, fi) == 4167 BTRFS_FILE_EXTENT_INLINE) { 4168 ptr = btrfs_item_ptr_offset(leaf, slot); 4169 memmove_extent_buffer(leaf, ptr, 4170 (unsigned long)fi, 4171 offsetof(struct btrfs_file_extent_item, 4172 disk_bytenr)); 4173 } 4174 } 4175 4176 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4177 data_end + size_diff, btrfs_leaf_data(leaf) + 4178 data_end, old_data_start - data_end); 4179 4180 offset = btrfs_disk_key_offset(&disk_key); 4181 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4182 btrfs_set_item_key(leaf, &disk_key, slot); 4183 if (slot == 0) 4184 fixup_low_keys(trans, root, path, &disk_key, 1); 4185 } 4186 4187 item = btrfs_item_nr(leaf, slot); 4188 btrfs_set_item_size(leaf, item, new_size); 4189 btrfs_mark_buffer_dirty(leaf); 4190 4191 if (btrfs_leaf_free_space(root, leaf) < 0) { 4192 btrfs_print_leaf(root, leaf); 4193 BUG(); 4194 } 4195 } 4196 4197 /* 4198 * make the item pointed to by the path bigger, data_size is the new size. 4199 */ 4200 void btrfs_extend_item(struct btrfs_trans_handle *trans, 4201 struct btrfs_root *root, struct btrfs_path *path, 4202 u32 data_size) 4203 { 4204 int slot; 4205 struct extent_buffer *leaf; 4206 struct btrfs_item *item; 4207 u32 nritems; 4208 unsigned int data_end; 4209 unsigned int old_data; 4210 unsigned int old_size; 4211 int i; 4212 struct btrfs_map_token token; 4213 4214 btrfs_init_map_token(&token); 4215 4216 leaf = path->nodes[0]; 4217 4218 nritems = btrfs_header_nritems(leaf); 4219 data_end = leaf_data_end(root, leaf); 4220 4221 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4222 btrfs_print_leaf(root, leaf); 4223 BUG(); 4224 } 4225 slot = path->slots[0]; 4226 old_data = btrfs_item_end_nr(leaf, slot); 4227 4228 BUG_ON(slot < 0); 4229 if (slot >= nritems) { 4230 btrfs_print_leaf(root, leaf); 4231 printk(KERN_CRIT "slot %d too large, nritems %d\n", 4232 slot, nritems); 4233 BUG_ON(1); 4234 } 4235 4236 /* 4237 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4238 */ 4239 /* first correct the data pointers */ 4240 for (i = slot; i < nritems; i++) { 4241 u32 ioff; 4242 item = btrfs_item_nr(leaf, i); 4243 4244 ioff = btrfs_token_item_offset(leaf, item, &token); 4245 btrfs_set_token_item_offset(leaf, item, 4246 ioff - data_size, &token); 4247 } 4248 4249 /* shift the data */ 4250 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4251 data_end - data_size, btrfs_leaf_data(leaf) + 4252 data_end, old_data - data_end); 4253 4254 data_end = old_data; 4255 old_size = btrfs_item_size_nr(leaf, slot); 4256 item = btrfs_item_nr(leaf, slot); 4257 btrfs_set_item_size(leaf, item, old_size + data_size); 4258 btrfs_mark_buffer_dirty(leaf); 4259 4260 if (btrfs_leaf_free_space(root, leaf) < 0) { 4261 btrfs_print_leaf(root, leaf); 4262 BUG(); 4263 } 4264 } 4265 4266 /* 4267 * Given a key and some data, insert items into the tree. 4268 * This does all the path init required, making room in the tree if needed. 4269 * Returns the number of keys that were inserted. 4270 */ 4271 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 4272 struct btrfs_root *root, 4273 struct btrfs_path *path, 4274 struct btrfs_key *cpu_key, u32 *data_size, 4275 int nr) 4276 { 4277 struct extent_buffer *leaf; 4278 struct btrfs_item *item; 4279 int ret = 0; 4280 int slot; 4281 int i; 4282 u32 nritems; 4283 u32 total_data = 0; 4284 u32 total_size = 0; 4285 unsigned int data_end; 4286 struct btrfs_disk_key disk_key; 4287 struct btrfs_key found_key; 4288 struct btrfs_map_token token; 4289 4290 btrfs_init_map_token(&token); 4291 4292 for (i = 0; i < nr; i++) { 4293 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 4294 BTRFS_LEAF_DATA_SIZE(root)) { 4295 break; 4296 nr = i; 4297 } 4298 total_data += data_size[i]; 4299 total_size += data_size[i] + sizeof(struct btrfs_item); 4300 } 4301 BUG_ON(nr == 0); 4302 4303 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4304 if (ret == 0) 4305 return -EEXIST; 4306 if (ret < 0) 4307 goto out; 4308 4309 leaf = path->nodes[0]; 4310 4311 nritems = btrfs_header_nritems(leaf); 4312 data_end = leaf_data_end(root, leaf); 4313 4314 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4315 for (i = nr; i >= 0; i--) { 4316 total_data -= data_size[i]; 4317 total_size -= data_size[i] + sizeof(struct btrfs_item); 4318 if (total_size < btrfs_leaf_free_space(root, leaf)) 4319 break; 4320 } 4321 nr = i; 4322 } 4323 4324 slot = path->slots[0]; 4325 BUG_ON(slot < 0); 4326 4327 if (slot != nritems) { 4328 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4329 4330 item = btrfs_item_nr(leaf, slot); 4331 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4332 4333 /* figure out how many keys we can insert in here */ 4334 total_data = data_size[0]; 4335 for (i = 1; i < nr; i++) { 4336 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0) 4337 break; 4338 total_data += data_size[i]; 4339 } 4340 nr = i; 4341 4342 if (old_data < data_end) { 4343 btrfs_print_leaf(root, leaf); 4344 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 4345 slot, old_data, data_end); 4346 BUG_ON(1); 4347 } 4348 /* 4349 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4350 */ 4351 /* first correct the data pointers */ 4352 for (i = slot; i < nritems; i++) { 4353 u32 ioff; 4354 4355 item = btrfs_item_nr(leaf, i); 4356 ioff = btrfs_token_item_offset(leaf, item, &token); 4357 btrfs_set_token_item_offset(leaf, item, 4358 ioff - total_data, &token); 4359 } 4360 /* shift the items */ 4361 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4362 btrfs_item_nr_offset(slot), 4363 (nritems - slot) * sizeof(struct btrfs_item)); 4364 4365 /* shift the data */ 4366 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4367 data_end - total_data, btrfs_leaf_data(leaf) + 4368 data_end, old_data - data_end); 4369 data_end = old_data; 4370 } else { 4371 /* 4372 * this sucks but it has to be done, if we are inserting at 4373 * the end of the leaf only insert 1 of the items, since we 4374 * have no way of knowing whats on the next leaf and we'd have 4375 * to drop our current locks to figure it out 4376 */ 4377 nr = 1; 4378 } 4379 4380 /* setup the item for the new data */ 4381 for (i = 0; i < nr; i++) { 4382 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4383 btrfs_set_item_key(leaf, &disk_key, slot + i); 4384 item = btrfs_item_nr(leaf, slot + i); 4385 btrfs_set_token_item_offset(leaf, item, 4386 data_end - data_size[i], &token); 4387 data_end -= data_size[i]; 4388 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4389 } 4390 btrfs_set_header_nritems(leaf, nritems + nr); 4391 btrfs_mark_buffer_dirty(leaf); 4392 4393 ret = 0; 4394 if (slot == 0) { 4395 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4396 fixup_low_keys(trans, root, path, &disk_key, 1); 4397 } 4398 4399 if (btrfs_leaf_free_space(root, leaf) < 0) { 4400 btrfs_print_leaf(root, leaf); 4401 BUG(); 4402 } 4403 out: 4404 if (!ret) 4405 ret = nr; 4406 return ret; 4407 } 4408 4409 /* 4410 * this is a helper for btrfs_insert_empty_items, the main goal here is 4411 * to save stack depth by doing the bulk of the work in a function 4412 * that doesn't call btrfs_search_slot 4413 */ 4414 void setup_items_for_insert(struct btrfs_trans_handle *trans, 4415 struct btrfs_root *root, struct btrfs_path *path, 4416 struct btrfs_key *cpu_key, u32 *data_size, 4417 u32 total_data, u32 total_size, int nr) 4418 { 4419 struct btrfs_item *item; 4420 int i; 4421 u32 nritems; 4422 unsigned int data_end; 4423 struct btrfs_disk_key disk_key; 4424 struct extent_buffer *leaf; 4425 int slot; 4426 struct btrfs_map_token token; 4427 4428 btrfs_init_map_token(&token); 4429 4430 leaf = path->nodes[0]; 4431 slot = path->slots[0]; 4432 4433 nritems = btrfs_header_nritems(leaf); 4434 data_end = leaf_data_end(root, leaf); 4435 4436 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4437 btrfs_print_leaf(root, leaf); 4438 printk(KERN_CRIT "not enough freespace need %u have %d\n", 4439 total_size, btrfs_leaf_free_space(root, leaf)); 4440 BUG(); 4441 } 4442 4443 if (slot != nritems) { 4444 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4445 4446 if (old_data < data_end) { 4447 btrfs_print_leaf(root, leaf); 4448 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 4449 slot, old_data, data_end); 4450 BUG_ON(1); 4451 } 4452 /* 4453 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4454 */ 4455 /* first correct the data pointers */ 4456 for (i = slot; i < nritems; i++) { 4457 u32 ioff; 4458 4459 item = btrfs_item_nr(leaf, i); 4460 ioff = btrfs_token_item_offset(leaf, item, &token); 4461 btrfs_set_token_item_offset(leaf, item, 4462 ioff - total_data, &token); 4463 } 4464 /* shift the items */ 4465 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4466 btrfs_item_nr_offset(slot), 4467 (nritems - slot) * sizeof(struct btrfs_item)); 4468 4469 /* shift the data */ 4470 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4471 data_end - total_data, btrfs_leaf_data(leaf) + 4472 data_end, old_data - data_end); 4473 data_end = old_data; 4474 } 4475 4476 /* setup the item for the new data */ 4477 for (i = 0; i < nr; i++) { 4478 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4479 btrfs_set_item_key(leaf, &disk_key, slot + i); 4480 item = btrfs_item_nr(leaf, slot + i); 4481 btrfs_set_token_item_offset(leaf, item, 4482 data_end - data_size[i], &token); 4483 data_end -= data_size[i]; 4484 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4485 } 4486 4487 btrfs_set_header_nritems(leaf, nritems + nr); 4488 4489 if (slot == 0) { 4490 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4491 fixup_low_keys(trans, root, path, &disk_key, 1); 4492 } 4493 btrfs_unlock_up_safe(path, 1); 4494 btrfs_mark_buffer_dirty(leaf); 4495 4496 if (btrfs_leaf_free_space(root, leaf) < 0) { 4497 btrfs_print_leaf(root, leaf); 4498 BUG(); 4499 } 4500 } 4501 4502 /* 4503 * Given a key and some data, insert items into the tree. 4504 * This does all the path init required, making room in the tree if needed. 4505 */ 4506 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4507 struct btrfs_root *root, 4508 struct btrfs_path *path, 4509 struct btrfs_key *cpu_key, u32 *data_size, 4510 int nr) 4511 { 4512 int ret = 0; 4513 int slot; 4514 int i; 4515 u32 total_size = 0; 4516 u32 total_data = 0; 4517 4518 for (i = 0; i < nr; i++) 4519 total_data += data_size[i]; 4520 4521 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4522 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4523 if (ret == 0) 4524 return -EEXIST; 4525 if (ret < 0) 4526 return ret; 4527 4528 slot = path->slots[0]; 4529 BUG_ON(slot < 0); 4530 4531 setup_items_for_insert(trans, root, path, cpu_key, data_size, 4532 total_data, total_size, nr); 4533 return 0; 4534 } 4535 4536 /* 4537 * Given a key and some data, insert an item into the tree. 4538 * This does all the path init required, making room in the tree if needed. 4539 */ 4540 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4541 *root, struct btrfs_key *cpu_key, void *data, u32 4542 data_size) 4543 { 4544 int ret = 0; 4545 struct btrfs_path *path; 4546 struct extent_buffer *leaf; 4547 unsigned long ptr; 4548 4549 path = btrfs_alloc_path(); 4550 if (!path) 4551 return -ENOMEM; 4552 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4553 if (!ret) { 4554 leaf = path->nodes[0]; 4555 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4556 write_extent_buffer(leaf, data, ptr, data_size); 4557 btrfs_mark_buffer_dirty(leaf); 4558 } 4559 btrfs_free_path(path); 4560 return ret; 4561 } 4562 4563 /* 4564 * delete the pointer from a given node. 4565 * 4566 * the tree should have been previously balanced so the deletion does not 4567 * empty a node. 4568 */ 4569 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4570 struct btrfs_path *path, int level, int slot, 4571 int tree_mod_log) 4572 { 4573 struct extent_buffer *parent = path->nodes[level]; 4574 u32 nritems; 4575 int ret; 4576 4577 nritems = btrfs_header_nritems(parent); 4578 if (slot != nritems - 1) { 4579 if (tree_mod_log && level) 4580 tree_mod_log_eb_move(root->fs_info, parent, slot, 4581 slot + 1, nritems - slot - 1); 4582 memmove_extent_buffer(parent, 4583 btrfs_node_key_ptr_offset(slot), 4584 btrfs_node_key_ptr_offset(slot + 1), 4585 sizeof(struct btrfs_key_ptr) * 4586 (nritems - slot - 1)); 4587 } else if (tree_mod_log && level) { 4588 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4589 MOD_LOG_KEY_REMOVE); 4590 BUG_ON(ret < 0); 4591 } 4592 4593 nritems--; 4594 btrfs_set_header_nritems(parent, nritems); 4595 if (nritems == 0 && parent == root->node) { 4596 BUG_ON(btrfs_header_level(root->node) != 1); 4597 /* just turn the root into a leaf and break */ 4598 btrfs_set_header_level(root->node, 0); 4599 } else if (slot == 0) { 4600 struct btrfs_disk_key disk_key; 4601 4602 btrfs_node_key(parent, &disk_key, 0); 4603 fixup_low_keys(trans, root, path, &disk_key, level + 1); 4604 } 4605 btrfs_mark_buffer_dirty(parent); 4606 } 4607 4608 /* 4609 * a helper function to delete the leaf pointed to by path->slots[1] and 4610 * path->nodes[1]. 4611 * 4612 * This deletes the pointer in path->nodes[1] and frees the leaf 4613 * block extent. zero is returned if it all worked out, < 0 otherwise. 4614 * 4615 * The path must have already been setup for deleting the leaf, including 4616 * all the proper balancing. path->nodes[1] must be locked. 4617 */ 4618 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4619 struct btrfs_root *root, 4620 struct btrfs_path *path, 4621 struct extent_buffer *leaf) 4622 { 4623 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4624 del_ptr(trans, root, path, 1, path->slots[1], 1); 4625 4626 /* 4627 * btrfs_free_extent is expensive, we want to make sure we 4628 * aren't holding any locks when we call it 4629 */ 4630 btrfs_unlock_up_safe(path, 0); 4631 4632 root_sub_used(root, leaf->len); 4633 4634 extent_buffer_get(leaf); 4635 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4636 free_extent_buffer_stale(leaf); 4637 } 4638 /* 4639 * delete the item at the leaf level in path. If that empties 4640 * the leaf, remove it from the tree 4641 */ 4642 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4643 struct btrfs_path *path, int slot, int nr) 4644 { 4645 struct extent_buffer *leaf; 4646 struct btrfs_item *item; 4647 int last_off; 4648 int dsize = 0; 4649 int ret = 0; 4650 int wret; 4651 int i; 4652 u32 nritems; 4653 struct btrfs_map_token token; 4654 4655 btrfs_init_map_token(&token); 4656 4657 leaf = path->nodes[0]; 4658 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4659 4660 for (i = 0; i < nr; i++) 4661 dsize += btrfs_item_size_nr(leaf, slot + i); 4662 4663 nritems = btrfs_header_nritems(leaf); 4664 4665 if (slot + nr != nritems) { 4666 int data_end = leaf_data_end(root, leaf); 4667 4668 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4669 data_end + dsize, 4670 btrfs_leaf_data(leaf) + data_end, 4671 last_off - data_end); 4672 4673 for (i = slot + nr; i < nritems; i++) { 4674 u32 ioff; 4675 4676 item = btrfs_item_nr(leaf, i); 4677 ioff = btrfs_token_item_offset(leaf, item, &token); 4678 btrfs_set_token_item_offset(leaf, item, 4679 ioff + dsize, &token); 4680 } 4681 4682 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4683 btrfs_item_nr_offset(slot + nr), 4684 sizeof(struct btrfs_item) * 4685 (nritems - slot - nr)); 4686 } 4687 btrfs_set_header_nritems(leaf, nritems - nr); 4688 nritems -= nr; 4689 4690 /* delete the leaf if we've emptied it */ 4691 if (nritems == 0) { 4692 if (leaf == root->node) { 4693 btrfs_set_header_level(leaf, 0); 4694 } else { 4695 btrfs_set_path_blocking(path); 4696 clean_tree_block(trans, root, leaf); 4697 btrfs_del_leaf(trans, root, path, leaf); 4698 } 4699 } else { 4700 int used = leaf_space_used(leaf, 0, nritems); 4701 if (slot == 0) { 4702 struct btrfs_disk_key disk_key; 4703 4704 btrfs_item_key(leaf, &disk_key, 0); 4705 fixup_low_keys(trans, root, path, &disk_key, 1); 4706 } 4707 4708 /* delete the leaf if it is mostly empty */ 4709 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 4710 /* push_leaf_left fixes the path. 4711 * make sure the path still points to our leaf 4712 * for possible call to del_ptr below 4713 */ 4714 slot = path->slots[1]; 4715 extent_buffer_get(leaf); 4716 4717 btrfs_set_path_blocking(path); 4718 wret = push_leaf_left(trans, root, path, 1, 1, 4719 1, (u32)-1); 4720 if (wret < 0 && wret != -ENOSPC) 4721 ret = wret; 4722 4723 if (path->nodes[0] == leaf && 4724 btrfs_header_nritems(leaf)) { 4725 wret = push_leaf_right(trans, root, path, 1, 4726 1, 1, 0); 4727 if (wret < 0 && wret != -ENOSPC) 4728 ret = wret; 4729 } 4730 4731 if (btrfs_header_nritems(leaf) == 0) { 4732 path->slots[1] = slot; 4733 btrfs_del_leaf(trans, root, path, leaf); 4734 free_extent_buffer(leaf); 4735 ret = 0; 4736 } else { 4737 /* if we're still in the path, make sure 4738 * we're dirty. Otherwise, one of the 4739 * push_leaf functions must have already 4740 * dirtied this buffer 4741 */ 4742 if (path->nodes[0] == leaf) 4743 btrfs_mark_buffer_dirty(leaf); 4744 free_extent_buffer(leaf); 4745 } 4746 } else { 4747 btrfs_mark_buffer_dirty(leaf); 4748 } 4749 } 4750 return ret; 4751 } 4752 4753 /* 4754 * search the tree again to find a leaf with lesser keys 4755 * returns 0 if it found something or 1 if there are no lesser leaves. 4756 * returns < 0 on io errors. 4757 * 4758 * This may release the path, and so you may lose any locks held at the 4759 * time you call it. 4760 */ 4761 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4762 { 4763 struct btrfs_key key; 4764 struct btrfs_disk_key found_key; 4765 int ret; 4766 4767 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4768 4769 if (key.offset > 0) 4770 key.offset--; 4771 else if (key.type > 0) 4772 key.type--; 4773 else if (key.objectid > 0) 4774 key.objectid--; 4775 else 4776 return 1; 4777 4778 btrfs_release_path(path); 4779 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4780 if (ret < 0) 4781 return ret; 4782 btrfs_item_key(path->nodes[0], &found_key, 0); 4783 ret = comp_keys(&found_key, &key); 4784 if (ret < 0) 4785 return 0; 4786 return 1; 4787 } 4788 4789 /* 4790 * A helper function to walk down the tree starting at min_key, and looking 4791 * for nodes or leaves that are either in cache or have a minimum 4792 * transaction id. This is used by the btree defrag code, and tree logging 4793 * 4794 * This does not cow, but it does stuff the starting key it finds back 4795 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4796 * key and get a writable path. 4797 * 4798 * This does lock as it descends, and path->keep_locks should be set 4799 * to 1 by the caller. 4800 * 4801 * This honors path->lowest_level to prevent descent past a given level 4802 * of the tree. 4803 * 4804 * min_trans indicates the oldest transaction that you are interested 4805 * in walking through. Any nodes or leaves older than min_trans are 4806 * skipped over (without reading them). 4807 * 4808 * returns zero if something useful was found, < 0 on error and 1 if there 4809 * was nothing in the tree that matched the search criteria. 4810 */ 4811 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4812 struct btrfs_key *max_key, 4813 struct btrfs_path *path, int cache_only, 4814 u64 min_trans) 4815 { 4816 struct extent_buffer *cur; 4817 struct btrfs_key found_key; 4818 int slot; 4819 int sret; 4820 u32 nritems; 4821 int level; 4822 int ret = 1; 4823 4824 WARN_ON(!path->keep_locks); 4825 again: 4826 cur = btrfs_read_lock_root_node(root); 4827 level = btrfs_header_level(cur); 4828 WARN_ON(path->nodes[level]); 4829 path->nodes[level] = cur; 4830 path->locks[level] = BTRFS_READ_LOCK; 4831 4832 if (btrfs_header_generation(cur) < min_trans) { 4833 ret = 1; 4834 goto out; 4835 } 4836 while (1) { 4837 nritems = btrfs_header_nritems(cur); 4838 level = btrfs_header_level(cur); 4839 sret = bin_search(cur, min_key, level, &slot); 4840 4841 /* at the lowest level, we're done, setup the path and exit */ 4842 if (level == path->lowest_level) { 4843 if (slot >= nritems) 4844 goto find_next_key; 4845 ret = 0; 4846 path->slots[level] = slot; 4847 btrfs_item_key_to_cpu(cur, &found_key, slot); 4848 goto out; 4849 } 4850 if (sret && slot > 0) 4851 slot--; 4852 /* 4853 * check this node pointer against the cache_only and 4854 * min_trans parameters. If it isn't in cache or is too 4855 * old, skip to the next one. 4856 */ 4857 while (slot < nritems) { 4858 u64 blockptr; 4859 u64 gen; 4860 struct extent_buffer *tmp; 4861 struct btrfs_disk_key disk_key; 4862 4863 blockptr = btrfs_node_blockptr(cur, slot); 4864 gen = btrfs_node_ptr_generation(cur, slot); 4865 if (gen < min_trans) { 4866 slot++; 4867 continue; 4868 } 4869 if (!cache_only) 4870 break; 4871 4872 if (max_key) { 4873 btrfs_node_key(cur, &disk_key, slot); 4874 if (comp_keys(&disk_key, max_key) >= 0) { 4875 ret = 1; 4876 goto out; 4877 } 4878 } 4879 4880 tmp = btrfs_find_tree_block(root, blockptr, 4881 btrfs_level_size(root, level - 1)); 4882 4883 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 4884 free_extent_buffer(tmp); 4885 break; 4886 } 4887 if (tmp) 4888 free_extent_buffer(tmp); 4889 slot++; 4890 } 4891 find_next_key: 4892 /* 4893 * we didn't find a candidate key in this node, walk forward 4894 * and find another one 4895 */ 4896 if (slot >= nritems) { 4897 path->slots[level] = slot; 4898 btrfs_set_path_blocking(path); 4899 sret = btrfs_find_next_key(root, path, min_key, level, 4900 cache_only, min_trans); 4901 if (sret == 0) { 4902 btrfs_release_path(path); 4903 goto again; 4904 } else { 4905 goto out; 4906 } 4907 } 4908 /* save our key for returning back */ 4909 btrfs_node_key_to_cpu(cur, &found_key, slot); 4910 path->slots[level] = slot; 4911 if (level == path->lowest_level) { 4912 ret = 0; 4913 unlock_up(path, level, 1, 0, NULL); 4914 goto out; 4915 } 4916 btrfs_set_path_blocking(path); 4917 cur = read_node_slot(root, cur, slot); 4918 BUG_ON(!cur); /* -ENOMEM */ 4919 4920 btrfs_tree_read_lock(cur); 4921 4922 path->locks[level - 1] = BTRFS_READ_LOCK; 4923 path->nodes[level - 1] = cur; 4924 unlock_up(path, level, 1, 0, NULL); 4925 btrfs_clear_path_blocking(path, NULL, 0); 4926 } 4927 out: 4928 if (ret == 0) 4929 memcpy(min_key, &found_key, sizeof(found_key)); 4930 btrfs_set_path_blocking(path); 4931 return ret; 4932 } 4933 4934 /* 4935 * this is similar to btrfs_next_leaf, but does not try to preserve 4936 * and fixup the path. It looks for and returns the next key in the 4937 * tree based on the current path and the cache_only and min_trans 4938 * parameters. 4939 * 4940 * 0 is returned if another key is found, < 0 if there are any errors 4941 * and 1 is returned if there are no higher keys in the tree 4942 * 4943 * path->keep_locks should be set to 1 on the search made before 4944 * calling this function. 4945 */ 4946 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4947 struct btrfs_key *key, int level, 4948 int cache_only, u64 min_trans) 4949 { 4950 int slot; 4951 struct extent_buffer *c; 4952 4953 WARN_ON(!path->keep_locks); 4954 while (level < BTRFS_MAX_LEVEL) { 4955 if (!path->nodes[level]) 4956 return 1; 4957 4958 slot = path->slots[level] + 1; 4959 c = path->nodes[level]; 4960 next: 4961 if (slot >= btrfs_header_nritems(c)) { 4962 int ret; 4963 int orig_lowest; 4964 struct btrfs_key cur_key; 4965 if (level + 1 >= BTRFS_MAX_LEVEL || 4966 !path->nodes[level + 1]) 4967 return 1; 4968 4969 if (path->locks[level + 1]) { 4970 level++; 4971 continue; 4972 } 4973 4974 slot = btrfs_header_nritems(c) - 1; 4975 if (level == 0) 4976 btrfs_item_key_to_cpu(c, &cur_key, slot); 4977 else 4978 btrfs_node_key_to_cpu(c, &cur_key, slot); 4979 4980 orig_lowest = path->lowest_level; 4981 btrfs_release_path(path); 4982 path->lowest_level = level; 4983 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4984 0, 0); 4985 path->lowest_level = orig_lowest; 4986 if (ret < 0) 4987 return ret; 4988 4989 c = path->nodes[level]; 4990 slot = path->slots[level]; 4991 if (ret == 0) 4992 slot++; 4993 goto next; 4994 } 4995 4996 if (level == 0) 4997 btrfs_item_key_to_cpu(c, key, slot); 4998 else { 4999 u64 blockptr = btrfs_node_blockptr(c, slot); 5000 u64 gen = btrfs_node_ptr_generation(c, slot); 5001 5002 if (cache_only) { 5003 struct extent_buffer *cur; 5004 cur = btrfs_find_tree_block(root, blockptr, 5005 btrfs_level_size(root, level - 1)); 5006 if (!cur || 5007 btrfs_buffer_uptodate(cur, gen, 1) <= 0) { 5008 slot++; 5009 if (cur) 5010 free_extent_buffer(cur); 5011 goto next; 5012 } 5013 free_extent_buffer(cur); 5014 } 5015 if (gen < min_trans) { 5016 slot++; 5017 goto next; 5018 } 5019 btrfs_node_key_to_cpu(c, key, slot); 5020 } 5021 return 0; 5022 } 5023 return 1; 5024 } 5025 5026 /* 5027 * search the tree again to find a leaf with greater keys 5028 * returns 0 if it found something or 1 if there are no greater leaves. 5029 * returns < 0 on io errors. 5030 */ 5031 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5032 { 5033 return btrfs_next_old_leaf(root, path, 0); 5034 } 5035 5036 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5037 u64 time_seq) 5038 { 5039 int slot; 5040 int level; 5041 struct extent_buffer *c; 5042 struct extent_buffer *next; 5043 struct btrfs_key key; 5044 u32 nritems; 5045 int ret; 5046 int old_spinning = path->leave_spinning; 5047 int next_rw_lock = 0; 5048 5049 nritems = btrfs_header_nritems(path->nodes[0]); 5050 if (nritems == 0) 5051 return 1; 5052 5053 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5054 again: 5055 level = 1; 5056 next = NULL; 5057 next_rw_lock = 0; 5058 btrfs_release_path(path); 5059 5060 path->keep_locks = 1; 5061 path->leave_spinning = 1; 5062 5063 if (time_seq) 5064 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5065 else 5066 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5067 path->keep_locks = 0; 5068 5069 if (ret < 0) 5070 return ret; 5071 5072 nritems = btrfs_header_nritems(path->nodes[0]); 5073 /* 5074 * by releasing the path above we dropped all our locks. A balance 5075 * could have added more items next to the key that used to be 5076 * at the very end of the block. So, check again here and 5077 * advance the path if there are now more items available. 5078 */ 5079 if (nritems > 0 && path->slots[0] < nritems - 1) { 5080 if (ret == 0) 5081 path->slots[0]++; 5082 ret = 0; 5083 goto done; 5084 } 5085 5086 while (level < BTRFS_MAX_LEVEL) { 5087 if (!path->nodes[level]) { 5088 ret = 1; 5089 goto done; 5090 } 5091 5092 slot = path->slots[level] + 1; 5093 c = path->nodes[level]; 5094 if (slot >= btrfs_header_nritems(c)) { 5095 level++; 5096 if (level == BTRFS_MAX_LEVEL) { 5097 ret = 1; 5098 goto done; 5099 } 5100 continue; 5101 } 5102 5103 if (next) { 5104 btrfs_tree_unlock_rw(next, next_rw_lock); 5105 free_extent_buffer(next); 5106 } 5107 5108 next = c; 5109 next_rw_lock = path->locks[level]; 5110 ret = read_block_for_search(NULL, root, path, &next, level, 5111 slot, &key, 0); 5112 if (ret == -EAGAIN) 5113 goto again; 5114 5115 if (ret < 0) { 5116 btrfs_release_path(path); 5117 goto done; 5118 } 5119 5120 if (!path->skip_locking) { 5121 ret = btrfs_try_tree_read_lock(next); 5122 if (!ret && time_seq) { 5123 /* 5124 * If we don't get the lock, we may be racing 5125 * with push_leaf_left, holding that lock while 5126 * itself waiting for the leaf we've currently 5127 * locked. To solve this situation, we give up 5128 * on our lock and cycle. 5129 */ 5130 btrfs_release_path(path); 5131 cond_resched(); 5132 goto again; 5133 } 5134 if (!ret) { 5135 btrfs_set_path_blocking(path); 5136 btrfs_tree_read_lock(next); 5137 btrfs_clear_path_blocking(path, next, 5138 BTRFS_READ_LOCK); 5139 } 5140 next_rw_lock = BTRFS_READ_LOCK; 5141 } 5142 break; 5143 } 5144 path->slots[level] = slot; 5145 while (1) { 5146 level--; 5147 c = path->nodes[level]; 5148 if (path->locks[level]) 5149 btrfs_tree_unlock_rw(c, path->locks[level]); 5150 5151 free_extent_buffer(c); 5152 path->nodes[level] = next; 5153 path->slots[level] = 0; 5154 if (!path->skip_locking) 5155 path->locks[level] = next_rw_lock; 5156 if (!level) 5157 break; 5158 5159 ret = read_block_for_search(NULL, root, path, &next, level, 5160 0, &key, 0); 5161 if (ret == -EAGAIN) 5162 goto again; 5163 5164 if (ret < 0) { 5165 btrfs_release_path(path); 5166 goto done; 5167 } 5168 5169 if (!path->skip_locking) { 5170 ret = btrfs_try_tree_read_lock(next); 5171 if (!ret) { 5172 btrfs_set_path_blocking(path); 5173 btrfs_tree_read_lock(next); 5174 btrfs_clear_path_blocking(path, next, 5175 BTRFS_READ_LOCK); 5176 } 5177 next_rw_lock = BTRFS_READ_LOCK; 5178 } 5179 } 5180 ret = 0; 5181 done: 5182 unlock_up(path, 0, 1, 0, NULL); 5183 path->leave_spinning = old_spinning; 5184 if (!old_spinning) 5185 btrfs_set_path_blocking(path); 5186 5187 return ret; 5188 } 5189 5190 /* 5191 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5192 * searching until it gets past min_objectid or finds an item of 'type' 5193 * 5194 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5195 */ 5196 int btrfs_previous_item(struct btrfs_root *root, 5197 struct btrfs_path *path, u64 min_objectid, 5198 int type) 5199 { 5200 struct btrfs_key found_key; 5201 struct extent_buffer *leaf; 5202 u32 nritems; 5203 int ret; 5204 5205 while (1) { 5206 if (path->slots[0] == 0) { 5207 btrfs_set_path_blocking(path); 5208 ret = btrfs_prev_leaf(root, path); 5209 if (ret != 0) 5210 return ret; 5211 } else { 5212 path->slots[0]--; 5213 } 5214 leaf = path->nodes[0]; 5215 nritems = btrfs_header_nritems(leaf); 5216 if (nritems == 0) 5217 return 1; 5218 if (path->slots[0] == nritems) 5219 path->slots[0]--; 5220 5221 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5222 if (found_key.objectid < min_objectid) 5223 break; 5224 if (found_key.type == type) 5225 return 0; 5226 if (found_key.objectid == min_objectid && 5227 found_key.type < type) 5228 break; 5229 } 5230 return 1; 5231 } 5232