xref: /linux/fs/btrfs/ctree.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26 
27 static struct kmem_cache *btrfs_path_cachep;
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
33 		      int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct extent_buffer *dst,
36 			  struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 
41 static const struct btrfs_csums {
42 	u16		size;
43 	const char	name[10];
44 	const char	driver[12];
45 } btrfs_csums[] = {
46 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50 				     .driver = "blake2b-256" },
51 };
52 
53 /*
54  * The leaf data grows from end-to-front in the node.  this returns the address
55  * of the start of the last item, which is the stop of the leaf data stack.
56  */
57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59 	u32 nr = btrfs_header_nritems(leaf);
60 
61 	if (nr == 0)
62 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63 	return btrfs_item_offset(leaf, nr - 1);
64 }
65 
66 /*
67  * Move data in a @leaf (using memmove, safe for overlapping ranges).
68  *
69  * @leaf:	leaf that we're doing a memmove on
70  * @dst_offset:	item data offset we're moving to
71  * @src_offset:	item data offset were' moving from
72  * @len:	length of the data we're moving
73  *
74  * Wrapper around memmove_extent_buffer() that takes into account the header on
75  * the leaf.  The btrfs_item offset's start directly after the header, so we
76  * have to adjust any offsets to account for the header in the leaf.  This
77  * handles that math to simplify the callers.
78  */
79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80 				     unsigned long dst_offset,
81 				     unsigned long src_offset,
82 				     unsigned long len)
83 {
84 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85 			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87 
88 /*
89  * Copy item data from @src into @dst at the given @offset.
90  *
91  * @dst:	destination leaf that we're copying into
92  * @src:	source leaf that we're copying from
93  * @dst_offset:	item data offset we're copying to
94  * @src_offset:	item data offset were' copying from
95  * @len:	length of the data we're copying
96  *
97  * Wrapper around copy_extent_buffer() that takes into account the header on
98  * the leaf.  The btrfs_item offset's start directly after the header, so we
99  * have to adjust any offsets to account for the header in the leaf.  This
100  * handles that math to simplify the callers.
101  */
102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103 				  const struct extent_buffer *src,
104 				  unsigned long dst_offset,
105 				  unsigned long src_offset, unsigned long len)
106 {
107 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108 			   btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110 
111 /*
112  * Move items in a @leaf (using memmove).
113  *
114  * @dst:	destination leaf for the items
115  * @dst_item:	the item nr we're copying into
116  * @src_item:	the item nr we're copying from
117  * @nr_items:	the number of items to copy
118  *
119  * Wrapper around memmove_extent_buffer() that does the math to get the
120  * appropriate offsets into the leaf from the item numbers.
121  */
122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123 				      int dst_item, int src_item, int nr_items)
124 {
125 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126 			      btrfs_item_nr_offset(leaf, src_item),
127 			      nr_items * sizeof(struct btrfs_item));
128 }
129 
130 /*
131  * Copy items from @src into @dst at the given @offset.
132  *
133  * @dst:	destination leaf for the items
134  * @src:	source leaf for the items
135  * @dst_item:	the item nr we're copying into
136  * @src_item:	the item nr we're copying from
137  * @nr_items:	the number of items to copy
138  *
139  * Wrapper around copy_extent_buffer() that does the math to get the
140  * appropriate offsets into the leaf from the item numbers.
141  */
142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143 				   const struct extent_buffer *src,
144 				   int dst_item, int src_item, int nr_items)
145 {
146 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147 			      btrfs_item_nr_offset(src, src_item),
148 			      nr_items * sizeof(struct btrfs_item));
149 }
150 
151 /* This exists for btrfs-progs usages. */
152 u16 btrfs_csum_type_size(u16 type)
153 {
154 	return btrfs_csums[type].size;
155 }
156 
157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159 	u16 t = btrfs_super_csum_type(s);
160 	/*
161 	 * csum type is validated at mount time
162 	 */
163 	return btrfs_csum_type_size(t);
164 }
165 
166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168 	/* csum type is validated at mount time */
169 	return btrfs_csums[csum_type].name;
170 }
171 
172 /*
173  * Return driver name if defined, otherwise the name that's also a valid driver
174  * name
175  */
176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178 	/* csum type is validated at mount time */
179 	return btrfs_csums[csum_type].driver[0] ?
180 		btrfs_csums[csum_type].driver :
181 		btrfs_csums[csum_type].name;
182 }
183 
184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186 	return ARRAY_SIZE(btrfs_csums);
187 }
188 
189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191 	might_sleep();
192 
193 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195 
196 /* this also releases the path */
197 void btrfs_free_path(struct btrfs_path *p)
198 {
199 	if (!p)
200 		return;
201 	btrfs_release_path(p);
202 	kmem_cache_free(btrfs_path_cachep, p);
203 }
204 
205 /*
206  * path release drops references on the extent buffers in the path
207  * and it drops any locks held by this path
208  *
209  * It is safe to call this on paths that no locks or extent buffers held.
210  */
211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213 	int i;
214 
215 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216 		p->slots[i] = 0;
217 		if (!p->nodes[i])
218 			continue;
219 		if (p->locks[i]) {
220 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221 			p->locks[i] = 0;
222 		}
223 		free_extent_buffer(p->nodes[i]);
224 		p->nodes[i] = NULL;
225 	}
226 }
227 
228 /*
229  * We want the transaction abort to print stack trace only for errors where the
230  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231  * caused by external factors.
232  */
233 bool __cold abort_should_print_stack(int error)
234 {
235 	switch (error) {
236 	case -EIO:
237 	case -EROFS:
238 	case -ENOMEM:
239 		return false;
240 	}
241 	return true;
242 }
243 
244 /*
245  * safely gets a reference on the root node of a tree.  A lock
246  * is not taken, so a concurrent writer may put a different node
247  * at the root of the tree.  See btrfs_lock_root_node for the
248  * looping required.
249  *
250  * The extent buffer returned by this has a reference taken, so
251  * it won't disappear.  It may stop being the root of the tree
252  * at any time because there are no locks held.
253  */
254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256 	struct extent_buffer *eb;
257 
258 	while (1) {
259 		rcu_read_lock();
260 		eb = rcu_dereference(root->node);
261 
262 		/*
263 		 * RCU really hurts here, we could free up the root node because
264 		 * it was COWed but we may not get the new root node yet so do
265 		 * the inc_not_zero dance and if it doesn't work then
266 		 * synchronize_rcu and try again.
267 		 */
268 		if (atomic_inc_not_zero(&eb->refs)) {
269 			rcu_read_unlock();
270 			break;
271 		}
272 		rcu_read_unlock();
273 		synchronize_rcu();
274 	}
275 	return eb;
276 }
277 
278 /*
279  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280  * just get put onto a simple dirty list.  Transaction walks this list to make
281  * sure they get properly updated on disk.
282  */
283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285 	struct btrfs_fs_info *fs_info = root->fs_info;
286 
287 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289 		return;
290 
291 	spin_lock(&fs_info->trans_lock);
292 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293 		/* Want the extent tree to be the last on the list */
294 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
295 			list_move_tail(&root->dirty_list,
296 				       &fs_info->dirty_cowonly_roots);
297 		else
298 			list_move(&root->dirty_list,
299 				  &fs_info->dirty_cowonly_roots);
300 	}
301 	spin_unlock(&fs_info->trans_lock);
302 }
303 
304 /*
305  * used by snapshot creation to make a copy of a root for a tree with
306  * a given objectid.  The buffer with the new root node is returned in
307  * cow_ret, and this func returns zero on success or a negative error code.
308  */
309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310 		      struct btrfs_root *root,
311 		      struct extent_buffer *buf,
312 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314 	struct btrfs_fs_info *fs_info = root->fs_info;
315 	struct extent_buffer *cow;
316 	int ret = 0;
317 	int level;
318 	struct btrfs_disk_key disk_key;
319 	u64 reloc_src_root = 0;
320 
321 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
322 		trans->transid != fs_info->running_transaction->transid);
323 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
324 		trans->transid != root->last_trans);
325 
326 	level = btrfs_header_level(buf);
327 	if (level == 0)
328 		btrfs_item_key(buf, &disk_key, 0);
329 	else
330 		btrfs_node_key(buf, &disk_key, 0);
331 
332 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
333 		reloc_src_root = btrfs_header_owner(buf);
334 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
335 				     &disk_key, level, buf->start, 0,
336 				     reloc_src_root, BTRFS_NESTING_NEW_ROOT);
337 	if (IS_ERR(cow))
338 		return PTR_ERR(cow);
339 
340 	copy_extent_buffer_full(cow, buf);
341 	btrfs_set_header_bytenr(cow, cow->start);
342 	btrfs_set_header_generation(cow, trans->transid);
343 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
344 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
345 				     BTRFS_HEADER_FLAG_RELOC);
346 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
347 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
348 	else
349 		btrfs_set_header_owner(cow, new_root_objectid);
350 
351 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
352 
353 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
354 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
355 		ret = btrfs_inc_ref(trans, root, cow, 1);
356 	else
357 		ret = btrfs_inc_ref(trans, root, cow, 0);
358 	if (ret) {
359 		btrfs_tree_unlock(cow);
360 		free_extent_buffer(cow);
361 		btrfs_abort_transaction(trans, ret);
362 		return ret;
363 	}
364 
365 	btrfs_mark_buffer_dirty(trans, cow);
366 	*cow_ret = cow;
367 	return 0;
368 }
369 
370 /*
371  * check if the tree block can be shared by multiple trees
372  */
373 int btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
374 			      struct btrfs_root *root,
375 			      struct extent_buffer *buf)
376 {
377 	/*
378 	 * Tree blocks not in shareable trees and tree roots are never shared.
379 	 * If a block was allocated after the last snapshot and the block was
380 	 * not allocated by tree relocation, we know the block is not shared.
381 	 */
382 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
383 	    buf != root->node &&
384 	    (btrfs_header_generation(buf) <=
385 	     btrfs_root_last_snapshot(&root->root_item) ||
386 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) {
387 		if (buf != root->commit_root)
388 			return 1;
389 		/*
390 		 * An extent buffer that used to be the commit root may still be
391 		 * shared because the tree height may have increased and it
392 		 * became a child of a higher level root. This can happen when
393 		 * snapshotting a subvolume created in the current transaction.
394 		 */
395 		if (btrfs_header_generation(buf) == trans->transid)
396 			return 1;
397 	}
398 
399 	return 0;
400 }
401 
402 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
403 				       struct btrfs_root *root,
404 				       struct extent_buffer *buf,
405 				       struct extent_buffer *cow,
406 				       int *last_ref)
407 {
408 	struct btrfs_fs_info *fs_info = root->fs_info;
409 	u64 refs;
410 	u64 owner;
411 	u64 flags;
412 	u64 new_flags = 0;
413 	int ret;
414 
415 	/*
416 	 * Backrefs update rules:
417 	 *
418 	 * Always use full backrefs for extent pointers in tree block
419 	 * allocated by tree relocation.
420 	 *
421 	 * If a shared tree block is no longer referenced by its owner
422 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
423 	 * use full backrefs for extent pointers in tree block.
424 	 *
425 	 * If a tree block is been relocating
426 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
427 	 * use full backrefs for extent pointers in tree block.
428 	 * The reason for this is some operations (such as drop tree)
429 	 * are only allowed for blocks use full backrefs.
430 	 */
431 
432 	if (btrfs_block_can_be_shared(trans, root, buf)) {
433 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
434 					       btrfs_header_level(buf), 1,
435 					       &refs, &flags);
436 		if (ret)
437 			return ret;
438 		if (unlikely(refs == 0)) {
439 			btrfs_crit(fs_info,
440 		"found 0 references for tree block at bytenr %llu level %d root %llu",
441 				   buf->start, btrfs_header_level(buf),
442 				   btrfs_root_id(root));
443 			ret = -EUCLEAN;
444 			btrfs_abort_transaction(trans, ret);
445 			return ret;
446 		}
447 	} else {
448 		refs = 1;
449 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
450 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
451 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
452 		else
453 			flags = 0;
454 	}
455 
456 	owner = btrfs_header_owner(buf);
457 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
458 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
459 
460 	if (refs > 1) {
461 		if ((owner == root->root_key.objectid ||
462 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
463 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
464 			ret = btrfs_inc_ref(trans, root, buf, 1);
465 			if (ret)
466 				return ret;
467 
468 			if (root->root_key.objectid ==
469 			    BTRFS_TREE_RELOC_OBJECTID) {
470 				ret = btrfs_dec_ref(trans, root, buf, 0);
471 				if (ret)
472 					return ret;
473 				ret = btrfs_inc_ref(trans, root, cow, 1);
474 				if (ret)
475 					return ret;
476 			}
477 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
478 		} else {
479 
480 			if (root->root_key.objectid ==
481 			    BTRFS_TREE_RELOC_OBJECTID)
482 				ret = btrfs_inc_ref(trans, root, cow, 1);
483 			else
484 				ret = btrfs_inc_ref(trans, root, cow, 0);
485 			if (ret)
486 				return ret;
487 		}
488 		if (new_flags != 0) {
489 			ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
490 			if (ret)
491 				return ret;
492 		}
493 	} else {
494 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
495 			if (root->root_key.objectid ==
496 			    BTRFS_TREE_RELOC_OBJECTID)
497 				ret = btrfs_inc_ref(trans, root, cow, 1);
498 			else
499 				ret = btrfs_inc_ref(trans, root, cow, 0);
500 			if (ret)
501 				return ret;
502 			ret = btrfs_dec_ref(trans, root, buf, 1);
503 			if (ret)
504 				return ret;
505 		}
506 		btrfs_clear_buffer_dirty(trans, buf);
507 		*last_ref = 1;
508 	}
509 	return 0;
510 }
511 
512 /*
513  * does the dirty work in cow of a single block.  The parent block (if
514  * supplied) is updated to point to the new cow copy.  The new buffer is marked
515  * dirty and returned locked.  If you modify the block it needs to be marked
516  * dirty again.
517  *
518  * search_start -- an allocation hint for the new block
519  *
520  * empty_size -- a hint that you plan on doing more cow.  This is the size in
521  * bytes the allocator should try to find free next to the block it returns.
522  * This is just a hint and may be ignored by the allocator.
523  */
524 int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
525 			  struct btrfs_root *root,
526 			  struct extent_buffer *buf,
527 			  struct extent_buffer *parent, int parent_slot,
528 			  struct extent_buffer **cow_ret,
529 			  u64 search_start, u64 empty_size,
530 			  enum btrfs_lock_nesting nest)
531 {
532 	struct btrfs_fs_info *fs_info = root->fs_info;
533 	struct btrfs_disk_key disk_key;
534 	struct extent_buffer *cow;
535 	int level, ret;
536 	int last_ref = 0;
537 	int unlock_orig = 0;
538 	u64 parent_start = 0;
539 	u64 reloc_src_root = 0;
540 
541 	if (*cow_ret == buf)
542 		unlock_orig = 1;
543 
544 	btrfs_assert_tree_write_locked(buf);
545 
546 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
547 		trans->transid != fs_info->running_transaction->transid);
548 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
549 		trans->transid != root->last_trans);
550 
551 	level = btrfs_header_level(buf);
552 
553 	if (level == 0)
554 		btrfs_item_key(buf, &disk_key, 0);
555 	else
556 		btrfs_node_key(buf, &disk_key, 0);
557 
558 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
559 		if (parent)
560 			parent_start = parent->start;
561 		reloc_src_root = btrfs_header_owner(buf);
562 	}
563 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
564 				     root->root_key.objectid, &disk_key, level,
565 				     search_start, empty_size, reloc_src_root, nest);
566 	if (IS_ERR(cow))
567 		return PTR_ERR(cow);
568 
569 	/* cow is set to blocking by btrfs_init_new_buffer */
570 
571 	copy_extent_buffer_full(cow, buf);
572 	btrfs_set_header_bytenr(cow, cow->start);
573 	btrfs_set_header_generation(cow, trans->transid);
574 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
575 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
576 				     BTRFS_HEADER_FLAG_RELOC);
577 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
578 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
579 	else
580 		btrfs_set_header_owner(cow, root->root_key.objectid);
581 
582 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
583 
584 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
585 	if (ret) {
586 		btrfs_tree_unlock(cow);
587 		free_extent_buffer(cow);
588 		btrfs_abort_transaction(trans, ret);
589 		return ret;
590 	}
591 
592 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
593 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
594 		if (ret) {
595 			btrfs_tree_unlock(cow);
596 			free_extent_buffer(cow);
597 			btrfs_abort_transaction(trans, ret);
598 			return ret;
599 		}
600 	}
601 
602 	if (buf == root->node) {
603 		WARN_ON(parent && parent != buf);
604 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
605 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
606 			parent_start = buf->start;
607 
608 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
609 		if (ret < 0) {
610 			btrfs_tree_unlock(cow);
611 			free_extent_buffer(cow);
612 			btrfs_abort_transaction(trans, ret);
613 			return ret;
614 		}
615 		atomic_inc(&cow->refs);
616 		rcu_assign_pointer(root->node, cow);
617 
618 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
619 				      parent_start, last_ref);
620 		free_extent_buffer(buf);
621 		add_root_to_dirty_list(root);
622 	} else {
623 		WARN_ON(trans->transid != btrfs_header_generation(parent));
624 		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
625 						    BTRFS_MOD_LOG_KEY_REPLACE);
626 		if (ret) {
627 			btrfs_tree_unlock(cow);
628 			free_extent_buffer(cow);
629 			btrfs_abort_transaction(trans, ret);
630 			return ret;
631 		}
632 		btrfs_set_node_blockptr(parent, parent_slot,
633 					cow->start);
634 		btrfs_set_node_ptr_generation(parent, parent_slot,
635 					      trans->transid);
636 		btrfs_mark_buffer_dirty(trans, parent);
637 		if (last_ref) {
638 			ret = btrfs_tree_mod_log_free_eb(buf);
639 			if (ret) {
640 				btrfs_tree_unlock(cow);
641 				free_extent_buffer(cow);
642 				btrfs_abort_transaction(trans, ret);
643 				return ret;
644 			}
645 		}
646 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
647 				      parent_start, last_ref);
648 	}
649 	if (unlock_orig)
650 		btrfs_tree_unlock(buf);
651 	free_extent_buffer_stale(buf);
652 	btrfs_mark_buffer_dirty(trans, cow);
653 	*cow_ret = cow;
654 	return 0;
655 }
656 
657 static inline int should_cow_block(struct btrfs_trans_handle *trans,
658 				   struct btrfs_root *root,
659 				   struct extent_buffer *buf)
660 {
661 	if (btrfs_is_testing(root->fs_info))
662 		return 0;
663 
664 	/* Ensure we can see the FORCE_COW bit */
665 	smp_mb__before_atomic();
666 
667 	/*
668 	 * We do not need to cow a block if
669 	 * 1) this block is not created or changed in this transaction;
670 	 * 2) this block does not belong to TREE_RELOC tree;
671 	 * 3) the root is not forced COW.
672 	 *
673 	 * What is forced COW:
674 	 *    when we create snapshot during committing the transaction,
675 	 *    after we've finished copying src root, we must COW the shared
676 	 *    block to ensure the metadata consistency.
677 	 */
678 	if (btrfs_header_generation(buf) == trans->transid &&
679 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
680 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
681 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
682 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
683 		return 0;
684 	return 1;
685 }
686 
687 /*
688  * COWs a single block, see btrfs_force_cow_block() for the real work.
689  * This version of it has extra checks so that a block isn't COWed more than
690  * once per transaction, as long as it hasn't been written yet
691  */
692 int btrfs_cow_block(struct btrfs_trans_handle *trans,
693 		    struct btrfs_root *root, struct extent_buffer *buf,
694 		    struct extent_buffer *parent, int parent_slot,
695 		    struct extent_buffer **cow_ret,
696 		    enum btrfs_lock_nesting nest)
697 {
698 	struct btrfs_fs_info *fs_info = root->fs_info;
699 	u64 search_start;
700 	int ret;
701 
702 	if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) {
703 		btrfs_abort_transaction(trans, -EUCLEAN);
704 		btrfs_crit(fs_info,
705 		   "attempt to COW block %llu on root %llu that is being deleted",
706 			   buf->start, btrfs_root_id(root));
707 		return -EUCLEAN;
708 	}
709 
710 	/*
711 	 * COWing must happen through a running transaction, which always
712 	 * matches the current fs generation (it's a transaction with a state
713 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
714 	 * into error state to prevent the commit of any transaction.
715 	 */
716 	if (unlikely(trans->transaction != fs_info->running_transaction ||
717 		     trans->transid != fs_info->generation)) {
718 		btrfs_abort_transaction(trans, -EUCLEAN);
719 		btrfs_crit(fs_info,
720 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
721 			   buf->start, btrfs_root_id(root), trans->transid,
722 			   fs_info->running_transaction->transid,
723 			   fs_info->generation);
724 		return -EUCLEAN;
725 	}
726 
727 	if (!should_cow_block(trans, root, buf)) {
728 		*cow_ret = buf;
729 		return 0;
730 	}
731 
732 	search_start = round_down(buf->start, SZ_1G);
733 
734 	/*
735 	 * Before CoWing this block for later modification, check if it's
736 	 * the subtree root and do the delayed subtree trace if needed.
737 	 *
738 	 * Also We don't care about the error, as it's handled internally.
739 	 */
740 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
741 	ret = btrfs_force_cow_block(trans, root, buf, parent, parent_slot,
742 				    cow_ret, search_start, 0, nest);
743 
744 	trace_btrfs_cow_block(root, buf, *cow_ret);
745 
746 	return ret;
747 }
748 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
749 
750 /*
751  * same as comp_keys only with two btrfs_key's
752  */
753 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
754 {
755 	if (k1->objectid > k2->objectid)
756 		return 1;
757 	if (k1->objectid < k2->objectid)
758 		return -1;
759 	if (k1->type > k2->type)
760 		return 1;
761 	if (k1->type < k2->type)
762 		return -1;
763 	if (k1->offset > k2->offset)
764 		return 1;
765 	if (k1->offset < k2->offset)
766 		return -1;
767 	return 0;
768 }
769 
770 /*
771  * Search for a key in the given extent_buffer.
772  *
773  * The lower boundary for the search is specified by the slot number @first_slot.
774  * Use a value of 0 to search over the whole extent buffer. Works for both
775  * leaves and nodes.
776  *
777  * The slot in the extent buffer is returned via @slot. If the key exists in the
778  * extent buffer, then @slot will point to the slot where the key is, otherwise
779  * it points to the slot where you would insert the key.
780  *
781  * Slot may point to the total number of items (i.e. one position beyond the last
782  * key) if the key is bigger than the last key in the extent buffer.
783  */
784 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
785 		     const struct btrfs_key *key, int *slot)
786 {
787 	unsigned long p;
788 	int item_size;
789 	/*
790 	 * Use unsigned types for the low and high slots, so that we get a more
791 	 * efficient division in the search loop below.
792 	 */
793 	u32 low = first_slot;
794 	u32 high = btrfs_header_nritems(eb);
795 	int ret;
796 	const int key_size = sizeof(struct btrfs_disk_key);
797 
798 	if (unlikely(low > high)) {
799 		btrfs_err(eb->fs_info,
800 		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
801 			  __func__, low, high, eb->start,
802 			  btrfs_header_owner(eb), btrfs_header_level(eb));
803 		return -EINVAL;
804 	}
805 
806 	if (btrfs_header_level(eb) == 0) {
807 		p = offsetof(struct btrfs_leaf, items);
808 		item_size = sizeof(struct btrfs_item);
809 	} else {
810 		p = offsetof(struct btrfs_node, ptrs);
811 		item_size = sizeof(struct btrfs_key_ptr);
812 	}
813 
814 	while (low < high) {
815 		unsigned long oip;
816 		unsigned long offset;
817 		struct btrfs_disk_key *tmp;
818 		struct btrfs_disk_key unaligned;
819 		int mid;
820 
821 		mid = (low + high) / 2;
822 		offset = p + mid * item_size;
823 		oip = offset_in_page(offset);
824 
825 		if (oip + key_size <= PAGE_SIZE) {
826 			const unsigned long idx = get_eb_page_index(offset);
827 			char *kaddr = page_address(eb->pages[idx]);
828 
829 			oip = get_eb_offset_in_page(eb, offset);
830 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
831 		} else {
832 			read_extent_buffer(eb, &unaligned, offset, key_size);
833 			tmp = &unaligned;
834 		}
835 
836 		ret = btrfs_comp_keys(tmp, key);
837 
838 		if (ret < 0)
839 			low = mid + 1;
840 		else if (ret > 0)
841 			high = mid;
842 		else {
843 			*slot = mid;
844 			return 0;
845 		}
846 	}
847 	*slot = low;
848 	return 1;
849 }
850 
851 static void root_add_used_bytes(struct btrfs_root *root)
852 {
853 	spin_lock(&root->accounting_lock);
854 	btrfs_set_root_used(&root->root_item,
855 		btrfs_root_used(&root->root_item) + root->fs_info->nodesize);
856 	spin_unlock(&root->accounting_lock);
857 }
858 
859 static void root_sub_used_bytes(struct btrfs_root *root)
860 {
861 	spin_lock(&root->accounting_lock);
862 	btrfs_set_root_used(&root->root_item,
863 		btrfs_root_used(&root->root_item) - root->fs_info->nodesize);
864 	spin_unlock(&root->accounting_lock);
865 }
866 
867 /* given a node and slot number, this reads the blocks it points to.  The
868  * extent buffer is returned with a reference taken (but unlocked).
869  */
870 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
871 					   int slot)
872 {
873 	int level = btrfs_header_level(parent);
874 	struct btrfs_tree_parent_check check = { 0 };
875 	struct extent_buffer *eb;
876 
877 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
878 		return ERR_PTR(-ENOENT);
879 
880 	ASSERT(level);
881 
882 	check.level = level - 1;
883 	check.transid = btrfs_node_ptr_generation(parent, slot);
884 	check.owner_root = btrfs_header_owner(parent);
885 	check.has_first_key = true;
886 	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
887 
888 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
889 			     &check);
890 	if (IS_ERR(eb))
891 		return eb;
892 	if (!extent_buffer_uptodate(eb)) {
893 		free_extent_buffer(eb);
894 		return ERR_PTR(-EIO);
895 	}
896 
897 	return eb;
898 }
899 
900 /*
901  * node level balancing, used to make sure nodes are in proper order for
902  * item deletion.  We balance from the top down, so we have to make sure
903  * that a deletion won't leave an node completely empty later on.
904  */
905 static noinline int balance_level(struct btrfs_trans_handle *trans,
906 			 struct btrfs_root *root,
907 			 struct btrfs_path *path, int level)
908 {
909 	struct btrfs_fs_info *fs_info = root->fs_info;
910 	struct extent_buffer *right = NULL;
911 	struct extent_buffer *mid;
912 	struct extent_buffer *left = NULL;
913 	struct extent_buffer *parent = NULL;
914 	int ret = 0;
915 	int wret;
916 	int pslot;
917 	int orig_slot = path->slots[level];
918 	u64 orig_ptr;
919 
920 	ASSERT(level > 0);
921 
922 	mid = path->nodes[level];
923 
924 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
925 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
926 
927 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
928 
929 	if (level < BTRFS_MAX_LEVEL - 1) {
930 		parent = path->nodes[level + 1];
931 		pslot = path->slots[level + 1];
932 	}
933 
934 	/*
935 	 * deal with the case where there is only one pointer in the root
936 	 * by promoting the node below to a root
937 	 */
938 	if (!parent) {
939 		struct extent_buffer *child;
940 
941 		if (btrfs_header_nritems(mid) != 1)
942 			return 0;
943 
944 		/* promote the child to a root */
945 		child = btrfs_read_node_slot(mid, 0);
946 		if (IS_ERR(child)) {
947 			ret = PTR_ERR(child);
948 			goto out;
949 		}
950 
951 		btrfs_tree_lock(child);
952 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
953 				      BTRFS_NESTING_COW);
954 		if (ret) {
955 			btrfs_tree_unlock(child);
956 			free_extent_buffer(child);
957 			goto out;
958 		}
959 
960 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
961 		if (ret < 0) {
962 			btrfs_tree_unlock(child);
963 			free_extent_buffer(child);
964 			btrfs_abort_transaction(trans, ret);
965 			goto out;
966 		}
967 		rcu_assign_pointer(root->node, child);
968 
969 		add_root_to_dirty_list(root);
970 		btrfs_tree_unlock(child);
971 
972 		path->locks[level] = 0;
973 		path->nodes[level] = NULL;
974 		btrfs_clear_buffer_dirty(trans, mid);
975 		btrfs_tree_unlock(mid);
976 		/* once for the path */
977 		free_extent_buffer(mid);
978 
979 		root_sub_used_bytes(root);
980 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
981 		/* once for the root ptr */
982 		free_extent_buffer_stale(mid);
983 		return 0;
984 	}
985 	if (btrfs_header_nritems(mid) >
986 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
987 		return 0;
988 
989 	if (pslot) {
990 		left = btrfs_read_node_slot(parent, pslot - 1);
991 		if (IS_ERR(left)) {
992 			ret = PTR_ERR(left);
993 			left = NULL;
994 			goto out;
995 		}
996 
997 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
998 		wret = btrfs_cow_block(trans, root, left,
999 				       parent, pslot - 1, &left,
1000 				       BTRFS_NESTING_LEFT_COW);
1001 		if (wret) {
1002 			ret = wret;
1003 			goto out;
1004 		}
1005 	}
1006 
1007 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1008 		right = btrfs_read_node_slot(parent, pslot + 1);
1009 		if (IS_ERR(right)) {
1010 			ret = PTR_ERR(right);
1011 			right = NULL;
1012 			goto out;
1013 		}
1014 
1015 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1016 		wret = btrfs_cow_block(trans, root, right,
1017 				       parent, pslot + 1, &right,
1018 				       BTRFS_NESTING_RIGHT_COW);
1019 		if (wret) {
1020 			ret = wret;
1021 			goto out;
1022 		}
1023 	}
1024 
1025 	/* first, try to make some room in the middle buffer */
1026 	if (left) {
1027 		orig_slot += btrfs_header_nritems(left);
1028 		wret = push_node_left(trans, left, mid, 1);
1029 		if (wret < 0)
1030 			ret = wret;
1031 	}
1032 
1033 	/*
1034 	 * then try to empty the right most buffer into the middle
1035 	 */
1036 	if (right) {
1037 		wret = push_node_left(trans, mid, right, 1);
1038 		if (wret < 0 && wret != -ENOSPC)
1039 			ret = wret;
1040 		if (btrfs_header_nritems(right) == 0) {
1041 			btrfs_clear_buffer_dirty(trans, right);
1042 			btrfs_tree_unlock(right);
1043 			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1044 			if (ret < 0) {
1045 				free_extent_buffer_stale(right);
1046 				right = NULL;
1047 				goto out;
1048 			}
1049 			root_sub_used_bytes(root);
1050 			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1051 					      0, 1);
1052 			free_extent_buffer_stale(right);
1053 			right = NULL;
1054 		} else {
1055 			struct btrfs_disk_key right_key;
1056 			btrfs_node_key(right, &right_key, 0);
1057 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1058 					BTRFS_MOD_LOG_KEY_REPLACE);
1059 			if (ret < 0) {
1060 				btrfs_abort_transaction(trans, ret);
1061 				goto out;
1062 			}
1063 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1064 			btrfs_mark_buffer_dirty(trans, parent);
1065 		}
1066 	}
1067 	if (btrfs_header_nritems(mid) == 1) {
1068 		/*
1069 		 * we're not allowed to leave a node with one item in the
1070 		 * tree during a delete.  A deletion from lower in the tree
1071 		 * could try to delete the only pointer in this node.
1072 		 * So, pull some keys from the left.
1073 		 * There has to be a left pointer at this point because
1074 		 * otherwise we would have pulled some pointers from the
1075 		 * right
1076 		 */
1077 		if (unlikely(!left)) {
1078 			btrfs_crit(fs_info,
1079 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1080 				   parent->start, btrfs_header_level(parent),
1081 				   mid->start, btrfs_root_id(root));
1082 			ret = -EUCLEAN;
1083 			btrfs_abort_transaction(trans, ret);
1084 			goto out;
1085 		}
1086 		wret = balance_node_right(trans, mid, left);
1087 		if (wret < 0) {
1088 			ret = wret;
1089 			goto out;
1090 		}
1091 		if (wret == 1) {
1092 			wret = push_node_left(trans, left, mid, 1);
1093 			if (wret < 0)
1094 				ret = wret;
1095 		}
1096 		BUG_ON(wret == 1);
1097 	}
1098 	if (btrfs_header_nritems(mid) == 0) {
1099 		btrfs_clear_buffer_dirty(trans, mid);
1100 		btrfs_tree_unlock(mid);
1101 		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1102 		if (ret < 0) {
1103 			free_extent_buffer_stale(mid);
1104 			mid = NULL;
1105 			goto out;
1106 		}
1107 		root_sub_used_bytes(root);
1108 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1109 		free_extent_buffer_stale(mid);
1110 		mid = NULL;
1111 	} else {
1112 		/* update the parent key to reflect our changes */
1113 		struct btrfs_disk_key mid_key;
1114 		btrfs_node_key(mid, &mid_key, 0);
1115 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1116 						    BTRFS_MOD_LOG_KEY_REPLACE);
1117 		if (ret < 0) {
1118 			btrfs_abort_transaction(trans, ret);
1119 			goto out;
1120 		}
1121 		btrfs_set_node_key(parent, &mid_key, pslot);
1122 		btrfs_mark_buffer_dirty(trans, parent);
1123 	}
1124 
1125 	/* update the path */
1126 	if (left) {
1127 		if (btrfs_header_nritems(left) > orig_slot) {
1128 			atomic_inc(&left->refs);
1129 			/* left was locked after cow */
1130 			path->nodes[level] = left;
1131 			path->slots[level + 1] -= 1;
1132 			path->slots[level] = orig_slot;
1133 			if (mid) {
1134 				btrfs_tree_unlock(mid);
1135 				free_extent_buffer(mid);
1136 			}
1137 		} else {
1138 			orig_slot -= btrfs_header_nritems(left);
1139 			path->slots[level] = orig_slot;
1140 		}
1141 	}
1142 	/* double check we haven't messed things up */
1143 	if (orig_ptr !=
1144 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1145 		BUG();
1146 out:
1147 	if (right) {
1148 		btrfs_tree_unlock(right);
1149 		free_extent_buffer(right);
1150 	}
1151 	if (left) {
1152 		if (path->nodes[level] != left)
1153 			btrfs_tree_unlock(left);
1154 		free_extent_buffer(left);
1155 	}
1156 	return ret;
1157 }
1158 
1159 /* Node balancing for insertion.  Here we only split or push nodes around
1160  * when they are completely full.  This is also done top down, so we
1161  * have to be pessimistic.
1162  */
1163 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1164 					  struct btrfs_root *root,
1165 					  struct btrfs_path *path, int level)
1166 {
1167 	struct btrfs_fs_info *fs_info = root->fs_info;
1168 	struct extent_buffer *right = NULL;
1169 	struct extent_buffer *mid;
1170 	struct extent_buffer *left = NULL;
1171 	struct extent_buffer *parent = NULL;
1172 	int ret = 0;
1173 	int wret;
1174 	int pslot;
1175 	int orig_slot = path->slots[level];
1176 
1177 	if (level == 0)
1178 		return 1;
1179 
1180 	mid = path->nodes[level];
1181 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1182 
1183 	if (level < BTRFS_MAX_LEVEL - 1) {
1184 		parent = path->nodes[level + 1];
1185 		pslot = path->slots[level + 1];
1186 	}
1187 
1188 	if (!parent)
1189 		return 1;
1190 
1191 	/* first, try to make some room in the middle buffer */
1192 	if (pslot) {
1193 		u32 left_nr;
1194 
1195 		left = btrfs_read_node_slot(parent, pslot - 1);
1196 		if (IS_ERR(left))
1197 			return PTR_ERR(left);
1198 
1199 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1200 
1201 		left_nr = btrfs_header_nritems(left);
1202 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1203 			wret = 1;
1204 		} else {
1205 			ret = btrfs_cow_block(trans, root, left, parent,
1206 					      pslot - 1, &left,
1207 					      BTRFS_NESTING_LEFT_COW);
1208 			if (ret)
1209 				wret = 1;
1210 			else {
1211 				wret = push_node_left(trans, left, mid, 0);
1212 			}
1213 		}
1214 		if (wret < 0)
1215 			ret = wret;
1216 		if (wret == 0) {
1217 			struct btrfs_disk_key disk_key;
1218 			orig_slot += left_nr;
1219 			btrfs_node_key(mid, &disk_key, 0);
1220 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1221 					BTRFS_MOD_LOG_KEY_REPLACE);
1222 			if (ret < 0) {
1223 				btrfs_tree_unlock(left);
1224 				free_extent_buffer(left);
1225 				btrfs_abort_transaction(trans, ret);
1226 				return ret;
1227 			}
1228 			btrfs_set_node_key(parent, &disk_key, pslot);
1229 			btrfs_mark_buffer_dirty(trans, parent);
1230 			if (btrfs_header_nritems(left) > orig_slot) {
1231 				path->nodes[level] = left;
1232 				path->slots[level + 1] -= 1;
1233 				path->slots[level] = orig_slot;
1234 				btrfs_tree_unlock(mid);
1235 				free_extent_buffer(mid);
1236 			} else {
1237 				orig_slot -=
1238 					btrfs_header_nritems(left);
1239 				path->slots[level] = orig_slot;
1240 				btrfs_tree_unlock(left);
1241 				free_extent_buffer(left);
1242 			}
1243 			return 0;
1244 		}
1245 		btrfs_tree_unlock(left);
1246 		free_extent_buffer(left);
1247 	}
1248 
1249 	/*
1250 	 * then try to empty the right most buffer into the middle
1251 	 */
1252 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1253 		u32 right_nr;
1254 
1255 		right = btrfs_read_node_slot(parent, pslot + 1);
1256 		if (IS_ERR(right))
1257 			return PTR_ERR(right);
1258 
1259 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1260 
1261 		right_nr = btrfs_header_nritems(right);
1262 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1263 			wret = 1;
1264 		} else {
1265 			ret = btrfs_cow_block(trans, root, right,
1266 					      parent, pslot + 1,
1267 					      &right, BTRFS_NESTING_RIGHT_COW);
1268 			if (ret)
1269 				wret = 1;
1270 			else {
1271 				wret = balance_node_right(trans, right, mid);
1272 			}
1273 		}
1274 		if (wret < 0)
1275 			ret = wret;
1276 		if (wret == 0) {
1277 			struct btrfs_disk_key disk_key;
1278 
1279 			btrfs_node_key(right, &disk_key, 0);
1280 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1281 					BTRFS_MOD_LOG_KEY_REPLACE);
1282 			if (ret < 0) {
1283 				btrfs_tree_unlock(right);
1284 				free_extent_buffer(right);
1285 				btrfs_abort_transaction(trans, ret);
1286 				return ret;
1287 			}
1288 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1289 			btrfs_mark_buffer_dirty(trans, parent);
1290 
1291 			if (btrfs_header_nritems(mid) <= orig_slot) {
1292 				path->nodes[level] = right;
1293 				path->slots[level + 1] += 1;
1294 				path->slots[level] = orig_slot -
1295 					btrfs_header_nritems(mid);
1296 				btrfs_tree_unlock(mid);
1297 				free_extent_buffer(mid);
1298 			} else {
1299 				btrfs_tree_unlock(right);
1300 				free_extent_buffer(right);
1301 			}
1302 			return 0;
1303 		}
1304 		btrfs_tree_unlock(right);
1305 		free_extent_buffer(right);
1306 	}
1307 	return 1;
1308 }
1309 
1310 /*
1311  * readahead one full node of leaves, finding things that are close
1312  * to the block in 'slot', and triggering ra on them.
1313  */
1314 static void reada_for_search(struct btrfs_fs_info *fs_info,
1315 			     struct btrfs_path *path,
1316 			     int level, int slot, u64 objectid)
1317 {
1318 	struct extent_buffer *node;
1319 	struct btrfs_disk_key disk_key;
1320 	u32 nritems;
1321 	u64 search;
1322 	u64 target;
1323 	u64 nread = 0;
1324 	u64 nread_max;
1325 	u32 nr;
1326 	u32 blocksize;
1327 	u32 nscan = 0;
1328 
1329 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1330 		return;
1331 
1332 	if (!path->nodes[level])
1333 		return;
1334 
1335 	node = path->nodes[level];
1336 
1337 	/*
1338 	 * Since the time between visiting leaves is much shorter than the time
1339 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1340 	 * much IO at once (possibly random).
1341 	 */
1342 	if (path->reada == READA_FORWARD_ALWAYS) {
1343 		if (level > 1)
1344 			nread_max = node->fs_info->nodesize;
1345 		else
1346 			nread_max = SZ_128K;
1347 	} else {
1348 		nread_max = SZ_64K;
1349 	}
1350 
1351 	search = btrfs_node_blockptr(node, slot);
1352 	blocksize = fs_info->nodesize;
1353 	if (path->reada != READA_FORWARD_ALWAYS) {
1354 		struct extent_buffer *eb;
1355 
1356 		eb = find_extent_buffer(fs_info, search);
1357 		if (eb) {
1358 			free_extent_buffer(eb);
1359 			return;
1360 		}
1361 	}
1362 
1363 	target = search;
1364 
1365 	nritems = btrfs_header_nritems(node);
1366 	nr = slot;
1367 
1368 	while (1) {
1369 		if (path->reada == READA_BACK) {
1370 			if (nr == 0)
1371 				break;
1372 			nr--;
1373 		} else if (path->reada == READA_FORWARD ||
1374 			   path->reada == READA_FORWARD_ALWAYS) {
1375 			nr++;
1376 			if (nr >= nritems)
1377 				break;
1378 		}
1379 		if (path->reada == READA_BACK && objectid) {
1380 			btrfs_node_key(node, &disk_key, nr);
1381 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1382 				break;
1383 		}
1384 		search = btrfs_node_blockptr(node, nr);
1385 		if (path->reada == READA_FORWARD_ALWAYS ||
1386 		    (search <= target && target - search <= 65536) ||
1387 		    (search > target && search - target <= 65536)) {
1388 			btrfs_readahead_node_child(node, nr);
1389 			nread += blocksize;
1390 		}
1391 		nscan++;
1392 		if (nread > nread_max || nscan > 32)
1393 			break;
1394 	}
1395 }
1396 
1397 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1398 {
1399 	struct extent_buffer *parent;
1400 	int slot;
1401 	int nritems;
1402 
1403 	parent = path->nodes[level + 1];
1404 	if (!parent)
1405 		return;
1406 
1407 	nritems = btrfs_header_nritems(parent);
1408 	slot = path->slots[level + 1];
1409 
1410 	if (slot > 0)
1411 		btrfs_readahead_node_child(parent, slot - 1);
1412 	if (slot + 1 < nritems)
1413 		btrfs_readahead_node_child(parent, slot + 1);
1414 }
1415 
1416 
1417 /*
1418  * when we walk down the tree, it is usually safe to unlock the higher layers
1419  * in the tree.  The exceptions are when our path goes through slot 0, because
1420  * operations on the tree might require changing key pointers higher up in the
1421  * tree.
1422  *
1423  * callers might also have set path->keep_locks, which tells this code to keep
1424  * the lock if the path points to the last slot in the block.  This is part of
1425  * walking through the tree, and selecting the next slot in the higher block.
1426  *
1427  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1428  * if lowest_unlock is 1, level 0 won't be unlocked
1429  */
1430 static noinline void unlock_up(struct btrfs_path *path, int level,
1431 			       int lowest_unlock, int min_write_lock_level,
1432 			       int *write_lock_level)
1433 {
1434 	int i;
1435 	int skip_level = level;
1436 	bool check_skip = true;
1437 
1438 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1439 		if (!path->nodes[i])
1440 			break;
1441 		if (!path->locks[i])
1442 			break;
1443 
1444 		if (check_skip) {
1445 			if (path->slots[i] == 0) {
1446 				skip_level = i + 1;
1447 				continue;
1448 			}
1449 
1450 			if (path->keep_locks) {
1451 				u32 nritems;
1452 
1453 				nritems = btrfs_header_nritems(path->nodes[i]);
1454 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1455 					skip_level = i + 1;
1456 					continue;
1457 				}
1458 			}
1459 		}
1460 
1461 		if (i >= lowest_unlock && i > skip_level) {
1462 			check_skip = false;
1463 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1464 			path->locks[i] = 0;
1465 			if (write_lock_level &&
1466 			    i > min_write_lock_level &&
1467 			    i <= *write_lock_level) {
1468 				*write_lock_level = i - 1;
1469 			}
1470 		}
1471 	}
1472 }
1473 
1474 /*
1475  * Helper function for btrfs_search_slot() and other functions that do a search
1476  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1477  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1478  * its pages from disk.
1479  *
1480  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1481  * whole btree search, starting again from the current root node.
1482  */
1483 static int
1484 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1485 		      struct extent_buffer **eb_ret, int level, int slot,
1486 		      const struct btrfs_key *key)
1487 {
1488 	struct btrfs_fs_info *fs_info = root->fs_info;
1489 	struct btrfs_tree_parent_check check = { 0 };
1490 	u64 blocknr;
1491 	u64 gen;
1492 	struct extent_buffer *tmp;
1493 	int ret;
1494 	int parent_level;
1495 	bool unlock_up;
1496 
1497 	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1498 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1499 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1500 	parent_level = btrfs_header_level(*eb_ret);
1501 	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1502 	check.has_first_key = true;
1503 	check.level = parent_level - 1;
1504 	check.transid = gen;
1505 	check.owner_root = root->root_key.objectid;
1506 
1507 	/*
1508 	 * If we need to read an extent buffer from disk and we are holding locks
1509 	 * on upper level nodes, we unlock all the upper nodes before reading the
1510 	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1511 	 * restart the search. We don't release the lock on the current level
1512 	 * because we need to walk this node to figure out which blocks to read.
1513 	 */
1514 	tmp = find_extent_buffer(fs_info, blocknr);
1515 	if (tmp) {
1516 		if (p->reada == READA_FORWARD_ALWAYS)
1517 			reada_for_search(fs_info, p, level, slot, key->objectid);
1518 
1519 		/* first we do an atomic uptodate check */
1520 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1521 			/*
1522 			 * Do extra check for first_key, eb can be stale due to
1523 			 * being cached, read from scrub, or have multiple
1524 			 * parents (shared tree blocks).
1525 			 */
1526 			if (btrfs_verify_level_key(tmp,
1527 					parent_level - 1, &check.first_key, gen)) {
1528 				free_extent_buffer(tmp);
1529 				return -EUCLEAN;
1530 			}
1531 			*eb_ret = tmp;
1532 			return 0;
1533 		}
1534 
1535 		if (p->nowait) {
1536 			free_extent_buffer(tmp);
1537 			return -EAGAIN;
1538 		}
1539 
1540 		if (unlock_up)
1541 			btrfs_unlock_up_safe(p, level + 1);
1542 
1543 		/* now we're allowed to do a blocking uptodate check */
1544 		ret = btrfs_read_extent_buffer(tmp, &check);
1545 		if (ret) {
1546 			free_extent_buffer(tmp);
1547 			btrfs_release_path(p);
1548 			return -EIO;
1549 		}
1550 		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1551 			free_extent_buffer(tmp);
1552 			btrfs_release_path(p);
1553 			return -EUCLEAN;
1554 		}
1555 
1556 		if (unlock_up)
1557 			ret = -EAGAIN;
1558 
1559 		goto out;
1560 	} else if (p->nowait) {
1561 		return -EAGAIN;
1562 	}
1563 
1564 	if (unlock_up) {
1565 		btrfs_unlock_up_safe(p, level + 1);
1566 		ret = -EAGAIN;
1567 	} else {
1568 		ret = 0;
1569 	}
1570 
1571 	if (p->reada != READA_NONE)
1572 		reada_for_search(fs_info, p, level, slot, key->objectid);
1573 
1574 	tmp = read_tree_block(fs_info, blocknr, &check);
1575 	if (IS_ERR(tmp)) {
1576 		btrfs_release_path(p);
1577 		return PTR_ERR(tmp);
1578 	}
1579 	/*
1580 	 * If the read above didn't mark this buffer up to date,
1581 	 * it will never end up being up to date.  Set ret to EIO now
1582 	 * and give up so that our caller doesn't loop forever
1583 	 * on our EAGAINs.
1584 	 */
1585 	if (!extent_buffer_uptodate(tmp))
1586 		ret = -EIO;
1587 
1588 out:
1589 	if (ret == 0) {
1590 		*eb_ret = tmp;
1591 	} else {
1592 		free_extent_buffer(tmp);
1593 		btrfs_release_path(p);
1594 	}
1595 
1596 	return ret;
1597 }
1598 
1599 /*
1600  * helper function for btrfs_search_slot.  This does all of the checks
1601  * for node-level blocks and does any balancing required based on
1602  * the ins_len.
1603  *
1604  * If no extra work was required, zero is returned.  If we had to
1605  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1606  * start over
1607  */
1608 static int
1609 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1610 		       struct btrfs_root *root, struct btrfs_path *p,
1611 		       struct extent_buffer *b, int level, int ins_len,
1612 		       int *write_lock_level)
1613 {
1614 	struct btrfs_fs_info *fs_info = root->fs_info;
1615 	int ret = 0;
1616 
1617 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1618 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1619 
1620 		if (*write_lock_level < level + 1) {
1621 			*write_lock_level = level + 1;
1622 			btrfs_release_path(p);
1623 			return -EAGAIN;
1624 		}
1625 
1626 		reada_for_balance(p, level);
1627 		ret = split_node(trans, root, p, level);
1628 
1629 		b = p->nodes[level];
1630 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1631 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1632 
1633 		if (*write_lock_level < level + 1) {
1634 			*write_lock_level = level + 1;
1635 			btrfs_release_path(p);
1636 			return -EAGAIN;
1637 		}
1638 
1639 		reada_for_balance(p, level);
1640 		ret = balance_level(trans, root, p, level);
1641 		if (ret)
1642 			return ret;
1643 
1644 		b = p->nodes[level];
1645 		if (!b) {
1646 			btrfs_release_path(p);
1647 			return -EAGAIN;
1648 		}
1649 		BUG_ON(btrfs_header_nritems(b) == 1);
1650 	}
1651 	return ret;
1652 }
1653 
1654 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1655 		u64 iobjectid, u64 ioff, u8 key_type,
1656 		struct btrfs_key *found_key)
1657 {
1658 	int ret;
1659 	struct btrfs_key key;
1660 	struct extent_buffer *eb;
1661 
1662 	ASSERT(path);
1663 	ASSERT(found_key);
1664 
1665 	key.type = key_type;
1666 	key.objectid = iobjectid;
1667 	key.offset = ioff;
1668 
1669 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1670 	if (ret < 0)
1671 		return ret;
1672 
1673 	eb = path->nodes[0];
1674 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1675 		ret = btrfs_next_leaf(fs_root, path);
1676 		if (ret)
1677 			return ret;
1678 		eb = path->nodes[0];
1679 	}
1680 
1681 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1682 	if (found_key->type != key.type ||
1683 			found_key->objectid != key.objectid)
1684 		return 1;
1685 
1686 	return 0;
1687 }
1688 
1689 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1690 							struct btrfs_path *p,
1691 							int write_lock_level)
1692 {
1693 	struct extent_buffer *b;
1694 	int root_lock = 0;
1695 	int level = 0;
1696 
1697 	if (p->search_commit_root) {
1698 		b = root->commit_root;
1699 		atomic_inc(&b->refs);
1700 		level = btrfs_header_level(b);
1701 		/*
1702 		 * Ensure that all callers have set skip_locking when
1703 		 * p->search_commit_root = 1.
1704 		 */
1705 		ASSERT(p->skip_locking == 1);
1706 
1707 		goto out;
1708 	}
1709 
1710 	if (p->skip_locking) {
1711 		b = btrfs_root_node(root);
1712 		level = btrfs_header_level(b);
1713 		goto out;
1714 	}
1715 
1716 	/* We try very hard to do read locks on the root */
1717 	root_lock = BTRFS_READ_LOCK;
1718 
1719 	/*
1720 	 * If the level is set to maximum, we can skip trying to get the read
1721 	 * lock.
1722 	 */
1723 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1724 		/*
1725 		 * We don't know the level of the root node until we actually
1726 		 * have it read locked
1727 		 */
1728 		if (p->nowait) {
1729 			b = btrfs_try_read_lock_root_node(root);
1730 			if (IS_ERR(b))
1731 				return b;
1732 		} else {
1733 			b = btrfs_read_lock_root_node(root);
1734 		}
1735 		level = btrfs_header_level(b);
1736 		if (level > write_lock_level)
1737 			goto out;
1738 
1739 		/* Whoops, must trade for write lock */
1740 		btrfs_tree_read_unlock(b);
1741 		free_extent_buffer(b);
1742 	}
1743 
1744 	b = btrfs_lock_root_node(root);
1745 	root_lock = BTRFS_WRITE_LOCK;
1746 
1747 	/* The level might have changed, check again */
1748 	level = btrfs_header_level(b);
1749 
1750 out:
1751 	/*
1752 	 * The root may have failed to write out at some point, and thus is no
1753 	 * longer valid, return an error in this case.
1754 	 */
1755 	if (!extent_buffer_uptodate(b)) {
1756 		if (root_lock)
1757 			btrfs_tree_unlock_rw(b, root_lock);
1758 		free_extent_buffer(b);
1759 		return ERR_PTR(-EIO);
1760 	}
1761 
1762 	p->nodes[level] = b;
1763 	if (!p->skip_locking)
1764 		p->locks[level] = root_lock;
1765 	/*
1766 	 * Callers are responsible for dropping b's references.
1767 	 */
1768 	return b;
1769 }
1770 
1771 /*
1772  * Replace the extent buffer at the lowest level of the path with a cloned
1773  * version. The purpose is to be able to use it safely, after releasing the
1774  * commit root semaphore, even if relocation is happening in parallel, the
1775  * transaction used for relocation is committed and the extent buffer is
1776  * reallocated in the next transaction.
1777  *
1778  * This is used in a context where the caller does not prevent transaction
1779  * commits from happening, either by holding a transaction handle or holding
1780  * some lock, while it's doing searches through a commit root.
1781  * At the moment it's only used for send operations.
1782  */
1783 static int finish_need_commit_sem_search(struct btrfs_path *path)
1784 {
1785 	const int i = path->lowest_level;
1786 	const int slot = path->slots[i];
1787 	struct extent_buffer *lowest = path->nodes[i];
1788 	struct extent_buffer *clone;
1789 
1790 	ASSERT(path->need_commit_sem);
1791 
1792 	if (!lowest)
1793 		return 0;
1794 
1795 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1796 
1797 	clone = btrfs_clone_extent_buffer(lowest);
1798 	if (!clone)
1799 		return -ENOMEM;
1800 
1801 	btrfs_release_path(path);
1802 	path->nodes[i] = clone;
1803 	path->slots[i] = slot;
1804 
1805 	return 0;
1806 }
1807 
1808 static inline int search_for_key_slot(struct extent_buffer *eb,
1809 				      int search_low_slot,
1810 				      const struct btrfs_key *key,
1811 				      int prev_cmp,
1812 				      int *slot)
1813 {
1814 	/*
1815 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1816 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1817 	 * always be at slot 0 on lower levels, since each key pointer
1818 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1819 	 * subtree it points to. Thus we can skip searching lower levels.
1820 	 */
1821 	if (prev_cmp == 0) {
1822 		*slot = 0;
1823 		return 0;
1824 	}
1825 
1826 	return btrfs_bin_search(eb, search_low_slot, key, slot);
1827 }
1828 
1829 static int search_leaf(struct btrfs_trans_handle *trans,
1830 		       struct btrfs_root *root,
1831 		       const struct btrfs_key *key,
1832 		       struct btrfs_path *path,
1833 		       int ins_len,
1834 		       int prev_cmp)
1835 {
1836 	struct extent_buffer *leaf = path->nodes[0];
1837 	int leaf_free_space = -1;
1838 	int search_low_slot = 0;
1839 	int ret;
1840 	bool do_bin_search = true;
1841 
1842 	/*
1843 	 * If we are doing an insertion, the leaf has enough free space and the
1844 	 * destination slot for the key is not slot 0, then we can unlock our
1845 	 * write lock on the parent, and any other upper nodes, before doing the
1846 	 * binary search on the leaf (with search_for_key_slot()), allowing other
1847 	 * tasks to lock the parent and any other upper nodes.
1848 	 */
1849 	if (ins_len > 0) {
1850 		/*
1851 		 * Cache the leaf free space, since we will need it later and it
1852 		 * will not change until then.
1853 		 */
1854 		leaf_free_space = btrfs_leaf_free_space(leaf);
1855 
1856 		/*
1857 		 * !path->locks[1] means we have a single node tree, the leaf is
1858 		 * the root of the tree.
1859 		 */
1860 		if (path->locks[1] && leaf_free_space >= ins_len) {
1861 			struct btrfs_disk_key first_key;
1862 
1863 			ASSERT(btrfs_header_nritems(leaf) > 0);
1864 			btrfs_item_key(leaf, &first_key, 0);
1865 
1866 			/*
1867 			 * Doing the extra comparison with the first key is cheap,
1868 			 * taking into account that the first key is very likely
1869 			 * already in a cache line because it immediately follows
1870 			 * the extent buffer's header and we have recently accessed
1871 			 * the header's level field.
1872 			 */
1873 			ret = btrfs_comp_keys(&first_key, key);
1874 			if (ret < 0) {
1875 				/*
1876 				 * The first key is smaller than the key we want
1877 				 * to insert, so we are safe to unlock all upper
1878 				 * nodes and we have to do the binary search.
1879 				 *
1880 				 * We do use btrfs_unlock_up_safe() and not
1881 				 * unlock_up() because the later does not unlock
1882 				 * nodes with a slot of 0 - we can safely unlock
1883 				 * any node even if its slot is 0 since in this
1884 				 * case the key does not end up at slot 0 of the
1885 				 * leaf and there's no need to split the leaf.
1886 				 */
1887 				btrfs_unlock_up_safe(path, 1);
1888 				search_low_slot = 1;
1889 			} else {
1890 				/*
1891 				 * The first key is >= then the key we want to
1892 				 * insert, so we can skip the binary search as
1893 				 * the target key will be at slot 0.
1894 				 *
1895 				 * We can not unlock upper nodes when the key is
1896 				 * less than the first key, because we will need
1897 				 * to update the key at slot 0 of the parent node
1898 				 * and possibly of other upper nodes too.
1899 				 * If the key matches the first key, then we can
1900 				 * unlock all the upper nodes, using
1901 				 * btrfs_unlock_up_safe() instead of unlock_up()
1902 				 * as stated above.
1903 				 */
1904 				if (ret == 0)
1905 					btrfs_unlock_up_safe(path, 1);
1906 				/*
1907 				 * ret is already 0 or 1, matching the result of
1908 				 * a btrfs_bin_search() call, so there is no need
1909 				 * to adjust it.
1910 				 */
1911 				do_bin_search = false;
1912 				path->slots[0] = 0;
1913 			}
1914 		}
1915 	}
1916 
1917 	if (do_bin_search) {
1918 		ret = search_for_key_slot(leaf, search_low_slot, key,
1919 					  prev_cmp, &path->slots[0]);
1920 		if (ret < 0)
1921 			return ret;
1922 	}
1923 
1924 	if (ins_len > 0) {
1925 		/*
1926 		 * Item key already exists. In this case, if we are allowed to
1927 		 * insert the item (for example, in dir_item case, item key
1928 		 * collision is allowed), it will be merged with the original
1929 		 * item. Only the item size grows, no new btrfs item will be
1930 		 * added. If search_for_extension is not set, ins_len already
1931 		 * accounts the size btrfs_item, deduct it here so leaf space
1932 		 * check will be correct.
1933 		 */
1934 		if (ret == 0 && !path->search_for_extension) {
1935 			ASSERT(ins_len >= sizeof(struct btrfs_item));
1936 			ins_len -= sizeof(struct btrfs_item);
1937 		}
1938 
1939 		ASSERT(leaf_free_space >= 0);
1940 
1941 		if (leaf_free_space < ins_len) {
1942 			int err;
1943 
1944 			err = split_leaf(trans, root, key, path, ins_len,
1945 					 (ret == 0));
1946 			ASSERT(err <= 0);
1947 			if (WARN_ON(err > 0))
1948 				err = -EUCLEAN;
1949 			if (err)
1950 				ret = err;
1951 		}
1952 	}
1953 
1954 	return ret;
1955 }
1956 
1957 /*
1958  * Look for a key in a tree and perform necessary modifications to preserve
1959  * tree invariants.
1960  *
1961  * @trans:	Handle of transaction, used when modifying the tree
1962  * @p:		Holds all btree nodes along the search path
1963  * @root:	The root node of the tree
1964  * @key:	The key we are looking for
1965  * @ins_len:	Indicates purpose of search:
1966  *              >0  for inserts it's size of item inserted (*)
1967  *              <0  for deletions
1968  *               0  for plain searches, not modifying the tree
1969  *
1970  *              (*) If size of item inserted doesn't include
1971  *              sizeof(struct btrfs_item), then p->search_for_extension must
1972  *              be set.
1973  * @cow:	boolean should CoW operations be performed. Must always be 1
1974  *		when modifying the tree.
1975  *
1976  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1977  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1978  *
1979  * If @key is found, 0 is returned and you can find the item in the leaf level
1980  * of the path (level 0)
1981  *
1982  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1983  * points to the slot where it should be inserted
1984  *
1985  * If an error is encountered while searching the tree a negative error number
1986  * is returned
1987  */
1988 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1989 		      const struct btrfs_key *key, struct btrfs_path *p,
1990 		      int ins_len, int cow)
1991 {
1992 	struct btrfs_fs_info *fs_info = root->fs_info;
1993 	struct extent_buffer *b;
1994 	int slot;
1995 	int ret;
1996 	int err;
1997 	int level;
1998 	int lowest_unlock = 1;
1999 	/* everything at write_lock_level or lower must be write locked */
2000 	int write_lock_level = 0;
2001 	u8 lowest_level = 0;
2002 	int min_write_lock_level;
2003 	int prev_cmp;
2004 
2005 	might_sleep();
2006 
2007 	lowest_level = p->lowest_level;
2008 	WARN_ON(lowest_level && ins_len > 0);
2009 	WARN_ON(p->nodes[0] != NULL);
2010 	BUG_ON(!cow && ins_len);
2011 
2012 	/*
2013 	 * For now only allow nowait for read only operations.  There's no
2014 	 * strict reason why we can't, we just only need it for reads so it's
2015 	 * only implemented for reads.
2016 	 */
2017 	ASSERT(!p->nowait || !cow);
2018 
2019 	if (ins_len < 0) {
2020 		lowest_unlock = 2;
2021 
2022 		/* when we are removing items, we might have to go up to level
2023 		 * two as we update tree pointers  Make sure we keep write
2024 		 * for those levels as well
2025 		 */
2026 		write_lock_level = 2;
2027 	} else if (ins_len > 0) {
2028 		/*
2029 		 * for inserting items, make sure we have a write lock on
2030 		 * level 1 so we can update keys
2031 		 */
2032 		write_lock_level = 1;
2033 	}
2034 
2035 	if (!cow)
2036 		write_lock_level = -1;
2037 
2038 	if (cow && (p->keep_locks || p->lowest_level))
2039 		write_lock_level = BTRFS_MAX_LEVEL;
2040 
2041 	min_write_lock_level = write_lock_level;
2042 
2043 	if (p->need_commit_sem) {
2044 		ASSERT(p->search_commit_root);
2045 		if (p->nowait) {
2046 			if (!down_read_trylock(&fs_info->commit_root_sem))
2047 				return -EAGAIN;
2048 		} else {
2049 			down_read(&fs_info->commit_root_sem);
2050 		}
2051 	}
2052 
2053 again:
2054 	prev_cmp = -1;
2055 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2056 	if (IS_ERR(b)) {
2057 		ret = PTR_ERR(b);
2058 		goto done;
2059 	}
2060 
2061 	while (b) {
2062 		int dec = 0;
2063 
2064 		level = btrfs_header_level(b);
2065 
2066 		if (cow) {
2067 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2068 
2069 			/*
2070 			 * if we don't really need to cow this block
2071 			 * then we don't want to set the path blocking,
2072 			 * so we test it here
2073 			 */
2074 			if (!should_cow_block(trans, root, b))
2075 				goto cow_done;
2076 
2077 			/*
2078 			 * must have write locks on this node and the
2079 			 * parent
2080 			 */
2081 			if (level > write_lock_level ||
2082 			    (level + 1 > write_lock_level &&
2083 			    level + 1 < BTRFS_MAX_LEVEL &&
2084 			    p->nodes[level + 1])) {
2085 				write_lock_level = level + 1;
2086 				btrfs_release_path(p);
2087 				goto again;
2088 			}
2089 
2090 			if (last_level)
2091 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2092 						      &b,
2093 						      BTRFS_NESTING_COW);
2094 			else
2095 				err = btrfs_cow_block(trans, root, b,
2096 						      p->nodes[level + 1],
2097 						      p->slots[level + 1], &b,
2098 						      BTRFS_NESTING_COW);
2099 			if (err) {
2100 				ret = err;
2101 				goto done;
2102 			}
2103 		}
2104 cow_done:
2105 		p->nodes[level] = b;
2106 
2107 		/*
2108 		 * we have a lock on b and as long as we aren't changing
2109 		 * the tree, there is no way to for the items in b to change.
2110 		 * It is safe to drop the lock on our parent before we
2111 		 * go through the expensive btree search on b.
2112 		 *
2113 		 * If we're inserting or deleting (ins_len != 0), then we might
2114 		 * be changing slot zero, which may require changing the parent.
2115 		 * So, we can't drop the lock until after we know which slot
2116 		 * we're operating on.
2117 		 */
2118 		if (!ins_len && !p->keep_locks) {
2119 			int u = level + 1;
2120 
2121 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2122 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2123 				p->locks[u] = 0;
2124 			}
2125 		}
2126 
2127 		if (level == 0) {
2128 			if (ins_len > 0)
2129 				ASSERT(write_lock_level >= 1);
2130 
2131 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2132 			if (!p->search_for_split)
2133 				unlock_up(p, level, lowest_unlock,
2134 					  min_write_lock_level, NULL);
2135 			goto done;
2136 		}
2137 
2138 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2139 		if (ret < 0)
2140 			goto done;
2141 		prev_cmp = ret;
2142 
2143 		if (ret && slot > 0) {
2144 			dec = 1;
2145 			slot--;
2146 		}
2147 		p->slots[level] = slot;
2148 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2149 					     &write_lock_level);
2150 		if (err == -EAGAIN)
2151 			goto again;
2152 		if (err) {
2153 			ret = err;
2154 			goto done;
2155 		}
2156 		b = p->nodes[level];
2157 		slot = p->slots[level];
2158 
2159 		/*
2160 		 * Slot 0 is special, if we change the key we have to update
2161 		 * the parent pointer which means we must have a write lock on
2162 		 * the parent
2163 		 */
2164 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2165 			write_lock_level = level + 1;
2166 			btrfs_release_path(p);
2167 			goto again;
2168 		}
2169 
2170 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2171 			  &write_lock_level);
2172 
2173 		if (level == lowest_level) {
2174 			if (dec)
2175 				p->slots[level]++;
2176 			goto done;
2177 		}
2178 
2179 		err = read_block_for_search(root, p, &b, level, slot, key);
2180 		if (err == -EAGAIN)
2181 			goto again;
2182 		if (err) {
2183 			ret = err;
2184 			goto done;
2185 		}
2186 
2187 		if (!p->skip_locking) {
2188 			level = btrfs_header_level(b);
2189 
2190 			btrfs_maybe_reset_lockdep_class(root, b);
2191 
2192 			if (level <= write_lock_level) {
2193 				btrfs_tree_lock(b);
2194 				p->locks[level] = BTRFS_WRITE_LOCK;
2195 			} else {
2196 				if (p->nowait) {
2197 					if (!btrfs_try_tree_read_lock(b)) {
2198 						free_extent_buffer(b);
2199 						ret = -EAGAIN;
2200 						goto done;
2201 					}
2202 				} else {
2203 					btrfs_tree_read_lock(b);
2204 				}
2205 				p->locks[level] = BTRFS_READ_LOCK;
2206 			}
2207 			p->nodes[level] = b;
2208 		}
2209 	}
2210 	ret = 1;
2211 done:
2212 	if (ret < 0 && !p->skip_release_on_error)
2213 		btrfs_release_path(p);
2214 
2215 	if (p->need_commit_sem) {
2216 		int ret2;
2217 
2218 		ret2 = finish_need_commit_sem_search(p);
2219 		up_read(&fs_info->commit_root_sem);
2220 		if (ret2)
2221 			ret = ret2;
2222 	}
2223 
2224 	return ret;
2225 }
2226 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2227 
2228 /*
2229  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2230  * current state of the tree together with the operations recorded in the tree
2231  * modification log to search for the key in a previous version of this tree, as
2232  * denoted by the time_seq parameter.
2233  *
2234  * Naturally, there is no support for insert, delete or cow operations.
2235  *
2236  * The resulting path and return value will be set up as if we called
2237  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2238  */
2239 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2240 			  struct btrfs_path *p, u64 time_seq)
2241 {
2242 	struct btrfs_fs_info *fs_info = root->fs_info;
2243 	struct extent_buffer *b;
2244 	int slot;
2245 	int ret;
2246 	int err;
2247 	int level;
2248 	int lowest_unlock = 1;
2249 	u8 lowest_level = 0;
2250 
2251 	lowest_level = p->lowest_level;
2252 	WARN_ON(p->nodes[0] != NULL);
2253 	ASSERT(!p->nowait);
2254 
2255 	if (p->search_commit_root) {
2256 		BUG_ON(time_seq);
2257 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2258 	}
2259 
2260 again:
2261 	b = btrfs_get_old_root(root, time_seq);
2262 	if (!b) {
2263 		ret = -EIO;
2264 		goto done;
2265 	}
2266 	level = btrfs_header_level(b);
2267 	p->locks[level] = BTRFS_READ_LOCK;
2268 
2269 	while (b) {
2270 		int dec = 0;
2271 
2272 		level = btrfs_header_level(b);
2273 		p->nodes[level] = b;
2274 
2275 		/*
2276 		 * we have a lock on b and as long as we aren't changing
2277 		 * the tree, there is no way to for the items in b to change.
2278 		 * It is safe to drop the lock on our parent before we
2279 		 * go through the expensive btree search on b.
2280 		 */
2281 		btrfs_unlock_up_safe(p, level + 1);
2282 
2283 		ret = btrfs_bin_search(b, 0, key, &slot);
2284 		if (ret < 0)
2285 			goto done;
2286 
2287 		if (level == 0) {
2288 			p->slots[level] = slot;
2289 			unlock_up(p, level, lowest_unlock, 0, NULL);
2290 			goto done;
2291 		}
2292 
2293 		if (ret && slot > 0) {
2294 			dec = 1;
2295 			slot--;
2296 		}
2297 		p->slots[level] = slot;
2298 		unlock_up(p, level, lowest_unlock, 0, NULL);
2299 
2300 		if (level == lowest_level) {
2301 			if (dec)
2302 				p->slots[level]++;
2303 			goto done;
2304 		}
2305 
2306 		err = read_block_for_search(root, p, &b, level, slot, key);
2307 		if (err == -EAGAIN)
2308 			goto again;
2309 		if (err) {
2310 			ret = err;
2311 			goto done;
2312 		}
2313 
2314 		level = btrfs_header_level(b);
2315 		btrfs_tree_read_lock(b);
2316 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2317 		if (!b) {
2318 			ret = -ENOMEM;
2319 			goto done;
2320 		}
2321 		p->locks[level] = BTRFS_READ_LOCK;
2322 		p->nodes[level] = b;
2323 	}
2324 	ret = 1;
2325 done:
2326 	if (ret < 0)
2327 		btrfs_release_path(p);
2328 
2329 	return ret;
2330 }
2331 
2332 /*
2333  * Search the tree again to find a leaf with smaller keys.
2334  * Returns 0 if it found something.
2335  * Returns 1 if there are no smaller keys.
2336  * Returns < 0 on error.
2337  *
2338  * This may release the path, and so you may lose any locks held at the
2339  * time you call it.
2340  */
2341 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2342 {
2343 	struct btrfs_key key;
2344 	struct btrfs_key orig_key;
2345 	struct btrfs_disk_key found_key;
2346 	int ret;
2347 
2348 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2349 	orig_key = key;
2350 
2351 	if (key.offset > 0) {
2352 		key.offset--;
2353 	} else if (key.type > 0) {
2354 		key.type--;
2355 		key.offset = (u64)-1;
2356 	} else if (key.objectid > 0) {
2357 		key.objectid--;
2358 		key.type = (u8)-1;
2359 		key.offset = (u64)-1;
2360 	} else {
2361 		return 1;
2362 	}
2363 
2364 	btrfs_release_path(path);
2365 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2366 	if (ret <= 0)
2367 		return ret;
2368 
2369 	/*
2370 	 * Previous key not found. Even if we were at slot 0 of the leaf we had
2371 	 * before releasing the path and calling btrfs_search_slot(), we now may
2372 	 * be in a slot pointing to the same original key - this can happen if
2373 	 * after we released the path, one of more items were moved from a
2374 	 * sibling leaf into the front of the leaf we had due to an insertion
2375 	 * (see push_leaf_right()).
2376 	 * If we hit this case and our slot is > 0 and just decrement the slot
2377 	 * so that the caller does not process the same key again, which may or
2378 	 * may not break the caller, depending on its logic.
2379 	 */
2380 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2381 		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2382 		ret = btrfs_comp_keys(&found_key, &orig_key);
2383 		if (ret == 0) {
2384 			if (path->slots[0] > 0) {
2385 				path->slots[0]--;
2386 				return 0;
2387 			}
2388 			/*
2389 			 * At slot 0, same key as before, it means orig_key is
2390 			 * the lowest, leftmost, key in the tree. We're done.
2391 			 */
2392 			return 1;
2393 		}
2394 	}
2395 
2396 	btrfs_item_key(path->nodes[0], &found_key, 0);
2397 	ret = btrfs_comp_keys(&found_key, &key);
2398 	/*
2399 	 * We might have had an item with the previous key in the tree right
2400 	 * before we released our path. And after we released our path, that
2401 	 * item might have been pushed to the first slot (0) of the leaf we
2402 	 * were holding due to a tree balance. Alternatively, an item with the
2403 	 * previous key can exist as the only element of a leaf (big fat item).
2404 	 * Therefore account for these 2 cases, so that our callers (like
2405 	 * btrfs_previous_item) don't miss an existing item with a key matching
2406 	 * the previous key we computed above.
2407 	 */
2408 	if (ret <= 0)
2409 		return 0;
2410 	return 1;
2411 }
2412 
2413 /*
2414  * helper to use instead of search slot if no exact match is needed but
2415  * instead the next or previous item should be returned.
2416  * When find_higher is true, the next higher item is returned, the next lower
2417  * otherwise.
2418  * When return_any and find_higher are both true, and no higher item is found,
2419  * return the next lower instead.
2420  * When return_any is true and find_higher is false, and no lower item is found,
2421  * return the next higher instead.
2422  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2423  * < 0 on error
2424  */
2425 int btrfs_search_slot_for_read(struct btrfs_root *root,
2426 			       const struct btrfs_key *key,
2427 			       struct btrfs_path *p, int find_higher,
2428 			       int return_any)
2429 {
2430 	int ret;
2431 	struct extent_buffer *leaf;
2432 
2433 again:
2434 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2435 	if (ret <= 0)
2436 		return ret;
2437 	/*
2438 	 * a return value of 1 means the path is at the position where the
2439 	 * item should be inserted. Normally this is the next bigger item,
2440 	 * but in case the previous item is the last in a leaf, path points
2441 	 * to the first free slot in the previous leaf, i.e. at an invalid
2442 	 * item.
2443 	 */
2444 	leaf = p->nodes[0];
2445 
2446 	if (find_higher) {
2447 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2448 			ret = btrfs_next_leaf(root, p);
2449 			if (ret <= 0)
2450 				return ret;
2451 			if (!return_any)
2452 				return 1;
2453 			/*
2454 			 * no higher item found, return the next
2455 			 * lower instead
2456 			 */
2457 			return_any = 0;
2458 			find_higher = 0;
2459 			btrfs_release_path(p);
2460 			goto again;
2461 		}
2462 	} else {
2463 		if (p->slots[0] == 0) {
2464 			ret = btrfs_prev_leaf(root, p);
2465 			if (ret < 0)
2466 				return ret;
2467 			if (!ret) {
2468 				leaf = p->nodes[0];
2469 				if (p->slots[0] == btrfs_header_nritems(leaf))
2470 					p->slots[0]--;
2471 				return 0;
2472 			}
2473 			if (!return_any)
2474 				return 1;
2475 			/*
2476 			 * no lower item found, return the next
2477 			 * higher instead
2478 			 */
2479 			return_any = 0;
2480 			find_higher = 1;
2481 			btrfs_release_path(p);
2482 			goto again;
2483 		} else {
2484 			--p->slots[0];
2485 		}
2486 	}
2487 	return 0;
2488 }
2489 
2490 /*
2491  * Execute search and call btrfs_previous_item to traverse backwards if the item
2492  * was not found.
2493  *
2494  * Return 0 if found, 1 if not found and < 0 if error.
2495  */
2496 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2497 			   struct btrfs_path *path)
2498 {
2499 	int ret;
2500 
2501 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2502 	if (ret > 0)
2503 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2504 
2505 	if (ret == 0)
2506 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2507 
2508 	return ret;
2509 }
2510 
2511 /*
2512  * Search for a valid slot for the given path.
2513  *
2514  * @root:	The root node of the tree.
2515  * @key:	Will contain a valid item if found.
2516  * @path:	The starting point to validate the slot.
2517  *
2518  * Return: 0  if the item is valid
2519  *         1  if not found
2520  *         <0 if error.
2521  */
2522 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2523 			      struct btrfs_path *path)
2524 {
2525 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2526 		int ret;
2527 
2528 		ret = btrfs_next_leaf(root, path);
2529 		if (ret)
2530 			return ret;
2531 	}
2532 
2533 	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2534 	return 0;
2535 }
2536 
2537 /*
2538  * adjust the pointers going up the tree, starting at level
2539  * making sure the right key of each node is points to 'key'.
2540  * This is used after shifting pointers to the left, so it stops
2541  * fixing up pointers when a given leaf/node is not in slot 0 of the
2542  * higher levels
2543  *
2544  */
2545 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2546 			   struct btrfs_path *path,
2547 			   struct btrfs_disk_key *key, int level)
2548 {
2549 	int i;
2550 	struct extent_buffer *t;
2551 	int ret;
2552 
2553 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2554 		int tslot = path->slots[i];
2555 
2556 		if (!path->nodes[i])
2557 			break;
2558 		t = path->nodes[i];
2559 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2560 						    BTRFS_MOD_LOG_KEY_REPLACE);
2561 		BUG_ON(ret < 0);
2562 		btrfs_set_node_key(t, key, tslot);
2563 		btrfs_mark_buffer_dirty(trans, path->nodes[i]);
2564 		if (tslot != 0)
2565 			break;
2566 	}
2567 }
2568 
2569 /*
2570  * update item key.
2571  *
2572  * This function isn't completely safe. It's the caller's responsibility
2573  * that the new key won't break the order
2574  */
2575 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2576 			     struct btrfs_path *path,
2577 			     const struct btrfs_key *new_key)
2578 {
2579 	struct btrfs_fs_info *fs_info = trans->fs_info;
2580 	struct btrfs_disk_key disk_key;
2581 	struct extent_buffer *eb;
2582 	int slot;
2583 
2584 	eb = path->nodes[0];
2585 	slot = path->slots[0];
2586 	if (slot > 0) {
2587 		btrfs_item_key(eb, &disk_key, slot - 1);
2588 		if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) {
2589 			btrfs_print_leaf(eb);
2590 			btrfs_crit(fs_info,
2591 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2592 				   slot, btrfs_disk_key_objectid(&disk_key),
2593 				   btrfs_disk_key_type(&disk_key),
2594 				   btrfs_disk_key_offset(&disk_key),
2595 				   new_key->objectid, new_key->type,
2596 				   new_key->offset);
2597 			BUG();
2598 		}
2599 	}
2600 	if (slot < btrfs_header_nritems(eb) - 1) {
2601 		btrfs_item_key(eb, &disk_key, slot + 1);
2602 		if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) {
2603 			btrfs_print_leaf(eb);
2604 			btrfs_crit(fs_info,
2605 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2606 				   slot, btrfs_disk_key_objectid(&disk_key),
2607 				   btrfs_disk_key_type(&disk_key),
2608 				   btrfs_disk_key_offset(&disk_key),
2609 				   new_key->objectid, new_key->type,
2610 				   new_key->offset);
2611 			BUG();
2612 		}
2613 	}
2614 
2615 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2616 	btrfs_set_item_key(eb, &disk_key, slot);
2617 	btrfs_mark_buffer_dirty(trans, eb);
2618 	if (slot == 0)
2619 		fixup_low_keys(trans, path, &disk_key, 1);
2620 }
2621 
2622 /*
2623  * Check key order of two sibling extent buffers.
2624  *
2625  * Return true if something is wrong.
2626  * Return false if everything is fine.
2627  *
2628  * Tree-checker only works inside one tree block, thus the following
2629  * corruption can not be detected by tree-checker:
2630  *
2631  * Leaf @left			| Leaf @right
2632  * --------------------------------------------------------------
2633  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2634  *
2635  * Key f6 in leaf @left itself is valid, but not valid when the next
2636  * key in leaf @right is 7.
2637  * This can only be checked at tree block merge time.
2638  * And since tree checker has ensured all key order in each tree block
2639  * is correct, we only need to bother the last key of @left and the first
2640  * key of @right.
2641  */
2642 static bool check_sibling_keys(struct extent_buffer *left,
2643 			       struct extent_buffer *right)
2644 {
2645 	struct btrfs_key left_last;
2646 	struct btrfs_key right_first;
2647 	int level = btrfs_header_level(left);
2648 	int nr_left = btrfs_header_nritems(left);
2649 	int nr_right = btrfs_header_nritems(right);
2650 
2651 	/* No key to check in one of the tree blocks */
2652 	if (!nr_left || !nr_right)
2653 		return false;
2654 
2655 	if (level) {
2656 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2657 		btrfs_node_key_to_cpu(right, &right_first, 0);
2658 	} else {
2659 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2660 		btrfs_item_key_to_cpu(right, &right_first, 0);
2661 	}
2662 
2663 	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2664 		btrfs_crit(left->fs_info, "left extent buffer:");
2665 		btrfs_print_tree(left, false);
2666 		btrfs_crit(left->fs_info, "right extent buffer:");
2667 		btrfs_print_tree(right, false);
2668 		btrfs_crit(left->fs_info,
2669 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2670 			   left_last.objectid, left_last.type,
2671 			   left_last.offset, right_first.objectid,
2672 			   right_first.type, right_first.offset);
2673 		return true;
2674 	}
2675 	return false;
2676 }
2677 
2678 /*
2679  * try to push data from one node into the next node left in the
2680  * tree.
2681  *
2682  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2683  * error, and > 0 if there was no room in the left hand block.
2684  */
2685 static int push_node_left(struct btrfs_trans_handle *trans,
2686 			  struct extent_buffer *dst,
2687 			  struct extent_buffer *src, int empty)
2688 {
2689 	struct btrfs_fs_info *fs_info = trans->fs_info;
2690 	int push_items = 0;
2691 	int src_nritems;
2692 	int dst_nritems;
2693 	int ret = 0;
2694 
2695 	src_nritems = btrfs_header_nritems(src);
2696 	dst_nritems = btrfs_header_nritems(dst);
2697 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2698 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2699 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2700 
2701 	if (!empty && src_nritems <= 8)
2702 		return 1;
2703 
2704 	if (push_items <= 0)
2705 		return 1;
2706 
2707 	if (empty) {
2708 		push_items = min(src_nritems, push_items);
2709 		if (push_items < src_nritems) {
2710 			/* leave at least 8 pointers in the node if
2711 			 * we aren't going to empty it
2712 			 */
2713 			if (src_nritems - push_items < 8) {
2714 				if (push_items <= 8)
2715 					return 1;
2716 				push_items -= 8;
2717 			}
2718 		}
2719 	} else
2720 		push_items = min(src_nritems - 8, push_items);
2721 
2722 	/* dst is the left eb, src is the middle eb */
2723 	if (check_sibling_keys(dst, src)) {
2724 		ret = -EUCLEAN;
2725 		btrfs_abort_transaction(trans, ret);
2726 		return ret;
2727 	}
2728 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2729 	if (ret) {
2730 		btrfs_abort_transaction(trans, ret);
2731 		return ret;
2732 	}
2733 	copy_extent_buffer(dst, src,
2734 			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2735 			   btrfs_node_key_ptr_offset(src, 0),
2736 			   push_items * sizeof(struct btrfs_key_ptr));
2737 
2738 	if (push_items < src_nritems) {
2739 		/*
2740 		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2741 		 * don't need to do an explicit tree mod log operation for it.
2742 		 */
2743 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2744 				      btrfs_node_key_ptr_offset(src, push_items),
2745 				      (src_nritems - push_items) *
2746 				      sizeof(struct btrfs_key_ptr));
2747 	}
2748 	btrfs_set_header_nritems(src, src_nritems - push_items);
2749 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2750 	btrfs_mark_buffer_dirty(trans, src);
2751 	btrfs_mark_buffer_dirty(trans, dst);
2752 
2753 	return ret;
2754 }
2755 
2756 /*
2757  * try to push data from one node into the next node right in the
2758  * tree.
2759  *
2760  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2761  * error, and > 0 if there was no room in the right hand block.
2762  *
2763  * this will  only push up to 1/2 the contents of the left node over
2764  */
2765 static int balance_node_right(struct btrfs_trans_handle *trans,
2766 			      struct extent_buffer *dst,
2767 			      struct extent_buffer *src)
2768 {
2769 	struct btrfs_fs_info *fs_info = trans->fs_info;
2770 	int push_items = 0;
2771 	int max_push;
2772 	int src_nritems;
2773 	int dst_nritems;
2774 	int ret = 0;
2775 
2776 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2777 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2778 
2779 	src_nritems = btrfs_header_nritems(src);
2780 	dst_nritems = btrfs_header_nritems(dst);
2781 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2782 	if (push_items <= 0)
2783 		return 1;
2784 
2785 	if (src_nritems < 4)
2786 		return 1;
2787 
2788 	max_push = src_nritems / 2 + 1;
2789 	/* don't try to empty the node */
2790 	if (max_push >= src_nritems)
2791 		return 1;
2792 
2793 	if (max_push < push_items)
2794 		push_items = max_push;
2795 
2796 	/* dst is the right eb, src is the middle eb */
2797 	if (check_sibling_keys(src, dst)) {
2798 		ret = -EUCLEAN;
2799 		btrfs_abort_transaction(trans, ret);
2800 		return ret;
2801 	}
2802 
2803 	/*
2804 	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2805 	 * need to do an explicit tree mod log operation for it.
2806 	 */
2807 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2808 				      btrfs_node_key_ptr_offset(dst, 0),
2809 				      (dst_nritems) *
2810 				      sizeof(struct btrfs_key_ptr));
2811 
2812 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2813 					 push_items);
2814 	if (ret) {
2815 		btrfs_abort_transaction(trans, ret);
2816 		return ret;
2817 	}
2818 	copy_extent_buffer(dst, src,
2819 			   btrfs_node_key_ptr_offset(dst, 0),
2820 			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2821 			   push_items * sizeof(struct btrfs_key_ptr));
2822 
2823 	btrfs_set_header_nritems(src, src_nritems - push_items);
2824 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2825 
2826 	btrfs_mark_buffer_dirty(trans, src);
2827 	btrfs_mark_buffer_dirty(trans, dst);
2828 
2829 	return ret;
2830 }
2831 
2832 /*
2833  * helper function to insert a new root level in the tree.
2834  * A new node is allocated, and a single item is inserted to
2835  * point to the existing root
2836  *
2837  * returns zero on success or < 0 on failure.
2838  */
2839 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2840 			   struct btrfs_root *root,
2841 			   struct btrfs_path *path, int level)
2842 {
2843 	u64 lower_gen;
2844 	struct extent_buffer *lower;
2845 	struct extent_buffer *c;
2846 	struct extent_buffer *old;
2847 	struct btrfs_disk_key lower_key;
2848 	int ret;
2849 
2850 	BUG_ON(path->nodes[level]);
2851 	BUG_ON(path->nodes[level-1] != root->node);
2852 
2853 	lower = path->nodes[level-1];
2854 	if (level == 1)
2855 		btrfs_item_key(lower, &lower_key, 0);
2856 	else
2857 		btrfs_node_key(lower, &lower_key, 0);
2858 
2859 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2860 				   &lower_key, level, root->node->start, 0,
2861 				   0, BTRFS_NESTING_NEW_ROOT);
2862 	if (IS_ERR(c))
2863 		return PTR_ERR(c);
2864 
2865 	root_add_used_bytes(root);
2866 
2867 	btrfs_set_header_nritems(c, 1);
2868 	btrfs_set_node_key(c, &lower_key, 0);
2869 	btrfs_set_node_blockptr(c, 0, lower->start);
2870 	lower_gen = btrfs_header_generation(lower);
2871 	WARN_ON(lower_gen != trans->transid);
2872 
2873 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2874 
2875 	btrfs_mark_buffer_dirty(trans, c);
2876 
2877 	old = root->node;
2878 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2879 	if (ret < 0) {
2880 		btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2881 		btrfs_tree_unlock(c);
2882 		free_extent_buffer(c);
2883 		return ret;
2884 	}
2885 	rcu_assign_pointer(root->node, c);
2886 
2887 	/* the super has an extra ref to root->node */
2888 	free_extent_buffer(old);
2889 
2890 	add_root_to_dirty_list(root);
2891 	atomic_inc(&c->refs);
2892 	path->nodes[level] = c;
2893 	path->locks[level] = BTRFS_WRITE_LOCK;
2894 	path->slots[level] = 0;
2895 	return 0;
2896 }
2897 
2898 /*
2899  * worker function to insert a single pointer in a node.
2900  * the node should have enough room for the pointer already
2901  *
2902  * slot and level indicate where you want the key to go, and
2903  * blocknr is the block the key points to.
2904  */
2905 static int insert_ptr(struct btrfs_trans_handle *trans,
2906 		      struct btrfs_path *path,
2907 		      struct btrfs_disk_key *key, u64 bytenr,
2908 		      int slot, int level)
2909 {
2910 	struct extent_buffer *lower;
2911 	int nritems;
2912 	int ret;
2913 
2914 	BUG_ON(!path->nodes[level]);
2915 	btrfs_assert_tree_write_locked(path->nodes[level]);
2916 	lower = path->nodes[level];
2917 	nritems = btrfs_header_nritems(lower);
2918 	BUG_ON(slot > nritems);
2919 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2920 	if (slot != nritems) {
2921 		if (level) {
2922 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2923 					slot, nritems - slot);
2924 			if (ret < 0) {
2925 				btrfs_abort_transaction(trans, ret);
2926 				return ret;
2927 			}
2928 		}
2929 		memmove_extent_buffer(lower,
2930 			      btrfs_node_key_ptr_offset(lower, slot + 1),
2931 			      btrfs_node_key_ptr_offset(lower, slot),
2932 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2933 	}
2934 	if (level) {
2935 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2936 						    BTRFS_MOD_LOG_KEY_ADD);
2937 		if (ret < 0) {
2938 			btrfs_abort_transaction(trans, ret);
2939 			return ret;
2940 		}
2941 	}
2942 	btrfs_set_node_key(lower, key, slot);
2943 	btrfs_set_node_blockptr(lower, slot, bytenr);
2944 	WARN_ON(trans->transid == 0);
2945 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2946 	btrfs_set_header_nritems(lower, nritems + 1);
2947 	btrfs_mark_buffer_dirty(trans, lower);
2948 
2949 	return 0;
2950 }
2951 
2952 /*
2953  * split the node at the specified level in path in two.
2954  * The path is corrected to point to the appropriate node after the split
2955  *
2956  * Before splitting this tries to make some room in the node by pushing
2957  * left and right, if either one works, it returns right away.
2958  *
2959  * returns 0 on success and < 0 on failure
2960  */
2961 static noinline int split_node(struct btrfs_trans_handle *trans,
2962 			       struct btrfs_root *root,
2963 			       struct btrfs_path *path, int level)
2964 {
2965 	struct btrfs_fs_info *fs_info = root->fs_info;
2966 	struct extent_buffer *c;
2967 	struct extent_buffer *split;
2968 	struct btrfs_disk_key disk_key;
2969 	int mid;
2970 	int ret;
2971 	u32 c_nritems;
2972 
2973 	c = path->nodes[level];
2974 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2975 	if (c == root->node) {
2976 		/*
2977 		 * trying to split the root, lets make a new one
2978 		 *
2979 		 * tree mod log: We don't log_removal old root in
2980 		 * insert_new_root, because that root buffer will be kept as a
2981 		 * normal node. We are going to log removal of half of the
2982 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2983 		 * holding a tree lock on the buffer, which is why we cannot
2984 		 * race with other tree_mod_log users.
2985 		 */
2986 		ret = insert_new_root(trans, root, path, level + 1);
2987 		if (ret)
2988 			return ret;
2989 	} else {
2990 		ret = push_nodes_for_insert(trans, root, path, level);
2991 		c = path->nodes[level];
2992 		if (!ret && btrfs_header_nritems(c) <
2993 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2994 			return 0;
2995 		if (ret < 0)
2996 			return ret;
2997 	}
2998 
2999 	c_nritems = btrfs_header_nritems(c);
3000 	mid = (c_nritems + 1) / 2;
3001 	btrfs_node_key(c, &disk_key, mid);
3002 
3003 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3004 				       &disk_key, level, c->start, 0,
3005 				       0, BTRFS_NESTING_SPLIT);
3006 	if (IS_ERR(split))
3007 		return PTR_ERR(split);
3008 
3009 	root_add_used_bytes(root);
3010 	ASSERT(btrfs_header_level(c) == level);
3011 
3012 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3013 	if (ret) {
3014 		btrfs_tree_unlock(split);
3015 		free_extent_buffer(split);
3016 		btrfs_abort_transaction(trans, ret);
3017 		return ret;
3018 	}
3019 	copy_extent_buffer(split, c,
3020 			   btrfs_node_key_ptr_offset(split, 0),
3021 			   btrfs_node_key_ptr_offset(c, mid),
3022 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3023 	btrfs_set_header_nritems(split, c_nritems - mid);
3024 	btrfs_set_header_nritems(c, mid);
3025 
3026 	btrfs_mark_buffer_dirty(trans, c);
3027 	btrfs_mark_buffer_dirty(trans, split);
3028 
3029 	ret = insert_ptr(trans, path, &disk_key, split->start,
3030 			 path->slots[level + 1] + 1, level + 1);
3031 	if (ret < 0) {
3032 		btrfs_tree_unlock(split);
3033 		free_extent_buffer(split);
3034 		return ret;
3035 	}
3036 
3037 	if (path->slots[level] >= mid) {
3038 		path->slots[level] -= mid;
3039 		btrfs_tree_unlock(c);
3040 		free_extent_buffer(c);
3041 		path->nodes[level] = split;
3042 		path->slots[level + 1] += 1;
3043 	} else {
3044 		btrfs_tree_unlock(split);
3045 		free_extent_buffer(split);
3046 	}
3047 	return 0;
3048 }
3049 
3050 /*
3051  * how many bytes are required to store the items in a leaf.  start
3052  * and nr indicate which items in the leaf to check.  This totals up the
3053  * space used both by the item structs and the item data
3054  */
3055 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3056 {
3057 	int data_len;
3058 	int nritems = btrfs_header_nritems(l);
3059 	int end = min(nritems, start + nr) - 1;
3060 
3061 	if (!nr)
3062 		return 0;
3063 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3064 	data_len = data_len - btrfs_item_offset(l, end);
3065 	data_len += sizeof(struct btrfs_item) * nr;
3066 	WARN_ON(data_len < 0);
3067 	return data_len;
3068 }
3069 
3070 /*
3071  * The space between the end of the leaf items and
3072  * the start of the leaf data.  IOW, how much room
3073  * the leaf has left for both items and data
3074  */
3075 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3076 {
3077 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3078 	int nritems = btrfs_header_nritems(leaf);
3079 	int ret;
3080 
3081 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3082 	if (ret < 0) {
3083 		btrfs_crit(fs_info,
3084 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3085 			   ret,
3086 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3087 			   leaf_space_used(leaf, 0, nritems), nritems);
3088 	}
3089 	return ret;
3090 }
3091 
3092 /*
3093  * min slot controls the lowest index we're willing to push to the
3094  * right.  We'll push up to and including min_slot, but no lower
3095  */
3096 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3097 				      struct btrfs_path *path,
3098 				      int data_size, int empty,
3099 				      struct extent_buffer *right,
3100 				      int free_space, u32 left_nritems,
3101 				      u32 min_slot)
3102 {
3103 	struct btrfs_fs_info *fs_info = right->fs_info;
3104 	struct extent_buffer *left = path->nodes[0];
3105 	struct extent_buffer *upper = path->nodes[1];
3106 	struct btrfs_map_token token;
3107 	struct btrfs_disk_key disk_key;
3108 	int slot;
3109 	u32 i;
3110 	int push_space = 0;
3111 	int push_items = 0;
3112 	u32 nr;
3113 	u32 right_nritems;
3114 	u32 data_end;
3115 	u32 this_item_size;
3116 
3117 	if (empty)
3118 		nr = 0;
3119 	else
3120 		nr = max_t(u32, 1, min_slot);
3121 
3122 	if (path->slots[0] >= left_nritems)
3123 		push_space += data_size;
3124 
3125 	slot = path->slots[1];
3126 	i = left_nritems - 1;
3127 	while (i >= nr) {
3128 		if (!empty && push_items > 0) {
3129 			if (path->slots[0] > i)
3130 				break;
3131 			if (path->slots[0] == i) {
3132 				int space = btrfs_leaf_free_space(left);
3133 
3134 				if (space + push_space * 2 > free_space)
3135 					break;
3136 			}
3137 		}
3138 
3139 		if (path->slots[0] == i)
3140 			push_space += data_size;
3141 
3142 		this_item_size = btrfs_item_size(left, i);
3143 		if (this_item_size + sizeof(struct btrfs_item) +
3144 		    push_space > free_space)
3145 			break;
3146 
3147 		push_items++;
3148 		push_space += this_item_size + sizeof(struct btrfs_item);
3149 		if (i == 0)
3150 			break;
3151 		i--;
3152 	}
3153 
3154 	if (push_items == 0)
3155 		goto out_unlock;
3156 
3157 	WARN_ON(!empty && push_items == left_nritems);
3158 
3159 	/* push left to right */
3160 	right_nritems = btrfs_header_nritems(right);
3161 
3162 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3163 	push_space -= leaf_data_end(left);
3164 
3165 	/* make room in the right data area */
3166 	data_end = leaf_data_end(right);
3167 	memmove_leaf_data(right, data_end - push_space, data_end,
3168 			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3169 
3170 	/* copy from the left data area */
3171 	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3172 		       leaf_data_end(left), push_space);
3173 
3174 	memmove_leaf_items(right, push_items, 0, right_nritems);
3175 
3176 	/* copy the items from left to right */
3177 	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3178 
3179 	/* update the item pointers */
3180 	btrfs_init_map_token(&token, right);
3181 	right_nritems += push_items;
3182 	btrfs_set_header_nritems(right, right_nritems);
3183 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3184 	for (i = 0; i < right_nritems; i++) {
3185 		push_space -= btrfs_token_item_size(&token, i);
3186 		btrfs_set_token_item_offset(&token, i, push_space);
3187 	}
3188 
3189 	left_nritems -= push_items;
3190 	btrfs_set_header_nritems(left, left_nritems);
3191 
3192 	if (left_nritems)
3193 		btrfs_mark_buffer_dirty(trans, left);
3194 	else
3195 		btrfs_clear_buffer_dirty(trans, left);
3196 
3197 	btrfs_mark_buffer_dirty(trans, right);
3198 
3199 	btrfs_item_key(right, &disk_key, 0);
3200 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3201 	btrfs_mark_buffer_dirty(trans, upper);
3202 
3203 	/* then fixup the leaf pointer in the path */
3204 	if (path->slots[0] >= left_nritems) {
3205 		path->slots[0] -= left_nritems;
3206 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3207 			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3208 		btrfs_tree_unlock(path->nodes[0]);
3209 		free_extent_buffer(path->nodes[0]);
3210 		path->nodes[0] = right;
3211 		path->slots[1] += 1;
3212 	} else {
3213 		btrfs_tree_unlock(right);
3214 		free_extent_buffer(right);
3215 	}
3216 	return 0;
3217 
3218 out_unlock:
3219 	btrfs_tree_unlock(right);
3220 	free_extent_buffer(right);
3221 	return 1;
3222 }
3223 
3224 /*
3225  * push some data in the path leaf to the right, trying to free up at
3226  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3227  *
3228  * returns 1 if the push failed because the other node didn't have enough
3229  * room, 0 if everything worked out and < 0 if there were major errors.
3230  *
3231  * this will push starting from min_slot to the end of the leaf.  It won't
3232  * push any slot lower than min_slot
3233  */
3234 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3235 			   *root, struct btrfs_path *path,
3236 			   int min_data_size, int data_size,
3237 			   int empty, u32 min_slot)
3238 {
3239 	struct extent_buffer *left = path->nodes[0];
3240 	struct extent_buffer *right;
3241 	struct extent_buffer *upper;
3242 	int slot;
3243 	int free_space;
3244 	u32 left_nritems;
3245 	int ret;
3246 
3247 	if (!path->nodes[1])
3248 		return 1;
3249 
3250 	slot = path->slots[1];
3251 	upper = path->nodes[1];
3252 	if (slot >= btrfs_header_nritems(upper) - 1)
3253 		return 1;
3254 
3255 	btrfs_assert_tree_write_locked(path->nodes[1]);
3256 
3257 	right = btrfs_read_node_slot(upper, slot + 1);
3258 	if (IS_ERR(right))
3259 		return PTR_ERR(right);
3260 
3261 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3262 
3263 	free_space = btrfs_leaf_free_space(right);
3264 	if (free_space < data_size)
3265 		goto out_unlock;
3266 
3267 	ret = btrfs_cow_block(trans, root, right, upper,
3268 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3269 	if (ret)
3270 		goto out_unlock;
3271 
3272 	left_nritems = btrfs_header_nritems(left);
3273 	if (left_nritems == 0)
3274 		goto out_unlock;
3275 
3276 	if (check_sibling_keys(left, right)) {
3277 		ret = -EUCLEAN;
3278 		btrfs_abort_transaction(trans, ret);
3279 		btrfs_tree_unlock(right);
3280 		free_extent_buffer(right);
3281 		return ret;
3282 	}
3283 	if (path->slots[0] == left_nritems && !empty) {
3284 		/* Key greater than all keys in the leaf, right neighbor has
3285 		 * enough room for it and we're not emptying our leaf to delete
3286 		 * it, therefore use right neighbor to insert the new item and
3287 		 * no need to touch/dirty our left leaf. */
3288 		btrfs_tree_unlock(left);
3289 		free_extent_buffer(left);
3290 		path->nodes[0] = right;
3291 		path->slots[0] = 0;
3292 		path->slots[1]++;
3293 		return 0;
3294 	}
3295 
3296 	return __push_leaf_right(trans, path, min_data_size, empty, right,
3297 				 free_space, left_nritems, min_slot);
3298 out_unlock:
3299 	btrfs_tree_unlock(right);
3300 	free_extent_buffer(right);
3301 	return 1;
3302 }
3303 
3304 /*
3305  * push some data in the path leaf to the left, trying to free up at
3306  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3307  *
3308  * max_slot can put a limit on how far into the leaf we'll push items.  The
3309  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3310  * items
3311  */
3312 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3313 				     struct btrfs_path *path, int data_size,
3314 				     int empty, struct extent_buffer *left,
3315 				     int free_space, u32 right_nritems,
3316 				     u32 max_slot)
3317 {
3318 	struct btrfs_fs_info *fs_info = left->fs_info;
3319 	struct btrfs_disk_key disk_key;
3320 	struct extent_buffer *right = path->nodes[0];
3321 	int i;
3322 	int push_space = 0;
3323 	int push_items = 0;
3324 	u32 old_left_nritems;
3325 	u32 nr;
3326 	int ret = 0;
3327 	u32 this_item_size;
3328 	u32 old_left_item_size;
3329 	struct btrfs_map_token token;
3330 
3331 	if (empty)
3332 		nr = min(right_nritems, max_slot);
3333 	else
3334 		nr = min(right_nritems - 1, max_slot);
3335 
3336 	for (i = 0; i < nr; i++) {
3337 		if (!empty && push_items > 0) {
3338 			if (path->slots[0] < i)
3339 				break;
3340 			if (path->slots[0] == i) {
3341 				int space = btrfs_leaf_free_space(right);
3342 
3343 				if (space + push_space * 2 > free_space)
3344 					break;
3345 			}
3346 		}
3347 
3348 		if (path->slots[0] == i)
3349 			push_space += data_size;
3350 
3351 		this_item_size = btrfs_item_size(right, i);
3352 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3353 		    free_space)
3354 			break;
3355 
3356 		push_items++;
3357 		push_space += this_item_size + sizeof(struct btrfs_item);
3358 	}
3359 
3360 	if (push_items == 0) {
3361 		ret = 1;
3362 		goto out;
3363 	}
3364 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3365 
3366 	/* push data from right to left */
3367 	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3368 
3369 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3370 		     btrfs_item_offset(right, push_items - 1);
3371 
3372 	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3373 		       btrfs_item_offset(right, push_items - 1), push_space);
3374 	old_left_nritems = btrfs_header_nritems(left);
3375 	BUG_ON(old_left_nritems <= 0);
3376 
3377 	btrfs_init_map_token(&token, left);
3378 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3379 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3380 		u32 ioff;
3381 
3382 		ioff = btrfs_token_item_offset(&token, i);
3383 		btrfs_set_token_item_offset(&token, i,
3384 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3385 	}
3386 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3387 
3388 	/* fixup right node */
3389 	if (push_items > right_nritems)
3390 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3391 		       right_nritems);
3392 
3393 	if (push_items < right_nritems) {
3394 		push_space = btrfs_item_offset(right, push_items - 1) -
3395 						  leaf_data_end(right);
3396 		memmove_leaf_data(right,
3397 				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3398 				  leaf_data_end(right), push_space);
3399 
3400 		memmove_leaf_items(right, 0, push_items,
3401 				   btrfs_header_nritems(right) - push_items);
3402 	}
3403 
3404 	btrfs_init_map_token(&token, right);
3405 	right_nritems -= push_items;
3406 	btrfs_set_header_nritems(right, right_nritems);
3407 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3408 	for (i = 0; i < right_nritems; i++) {
3409 		push_space = push_space - btrfs_token_item_size(&token, i);
3410 		btrfs_set_token_item_offset(&token, i, push_space);
3411 	}
3412 
3413 	btrfs_mark_buffer_dirty(trans, left);
3414 	if (right_nritems)
3415 		btrfs_mark_buffer_dirty(trans, right);
3416 	else
3417 		btrfs_clear_buffer_dirty(trans, right);
3418 
3419 	btrfs_item_key(right, &disk_key, 0);
3420 	fixup_low_keys(trans, path, &disk_key, 1);
3421 
3422 	/* then fixup the leaf pointer in the path */
3423 	if (path->slots[0] < push_items) {
3424 		path->slots[0] += old_left_nritems;
3425 		btrfs_tree_unlock(path->nodes[0]);
3426 		free_extent_buffer(path->nodes[0]);
3427 		path->nodes[0] = left;
3428 		path->slots[1] -= 1;
3429 	} else {
3430 		btrfs_tree_unlock(left);
3431 		free_extent_buffer(left);
3432 		path->slots[0] -= push_items;
3433 	}
3434 	BUG_ON(path->slots[0] < 0);
3435 	return ret;
3436 out:
3437 	btrfs_tree_unlock(left);
3438 	free_extent_buffer(left);
3439 	return ret;
3440 }
3441 
3442 /*
3443  * push some data in the path leaf to the left, trying to free up at
3444  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3445  *
3446  * max_slot can put a limit on how far into the leaf we'll push items.  The
3447  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3448  * items
3449  */
3450 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3451 			  *root, struct btrfs_path *path, int min_data_size,
3452 			  int data_size, int empty, u32 max_slot)
3453 {
3454 	struct extent_buffer *right = path->nodes[0];
3455 	struct extent_buffer *left;
3456 	int slot;
3457 	int free_space;
3458 	u32 right_nritems;
3459 	int ret = 0;
3460 
3461 	slot = path->slots[1];
3462 	if (slot == 0)
3463 		return 1;
3464 	if (!path->nodes[1])
3465 		return 1;
3466 
3467 	right_nritems = btrfs_header_nritems(right);
3468 	if (right_nritems == 0)
3469 		return 1;
3470 
3471 	btrfs_assert_tree_write_locked(path->nodes[1]);
3472 
3473 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3474 	if (IS_ERR(left))
3475 		return PTR_ERR(left);
3476 
3477 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3478 
3479 	free_space = btrfs_leaf_free_space(left);
3480 	if (free_space < data_size) {
3481 		ret = 1;
3482 		goto out;
3483 	}
3484 
3485 	ret = btrfs_cow_block(trans, root, left,
3486 			      path->nodes[1], slot - 1, &left,
3487 			      BTRFS_NESTING_LEFT_COW);
3488 	if (ret) {
3489 		/* we hit -ENOSPC, but it isn't fatal here */
3490 		if (ret == -ENOSPC)
3491 			ret = 1;
3492 		goto out;
3493 	}
3494 
3495 	if (check_sibling_keys(left, right)) {
3496 		ret = -EUCLEAN;
3497 		btrfs_abort_transaction(trans, ret);
3498 		goto out;
3499 	}
3500 	return __push_leaf_left(trans, path, min_data_size, empty, left,
3501 				free_space, right_nritems, max_slot);
3502 out:
3503 	btrfs_tree_unlock(left);
3504 	free_extent_buffer(left);
3505 	return ret;
3506 }
3507 
3508 /*
3509  * split the path's leaf in two, making sure there is at least data_size
3510  * available for the resulting leaf level of the path.
3511  */
3512 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3513 				   struct btrfs_path *path,
3514 				   struct extent_buffer *l,
3515 				   struct extent_buffer *right,
3516 				   int slot, int mid, int nritems)
3517 {
3518 	struct btrfs_fs_info *fs_info = trans->fs_info;
3519 	int data_copy_size;
3520 	int rt_data_off;
3521 	int i;
3522 	int ret;
3523 	struct btrfs_disk_key disk_key;
3524 	struct btrfs_map_token token;
3525 
3526 	nritems = nritems - mid;
3527 	btrfs_set_header_nritems(right, nritems);
3528 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3529 
3530 	copy_leaf_items(right, l, 0, mid, nritems);
3531 
3532 	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3533 		       leaf_data_end(l), data_copy_size);
3534 
3535 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3536 
3537 	btrfs_init_map_token(&token, right);
3538 	for (i = 0; i < nritems; i++) {
3539 		u32 ioff;
3540 
3541 		ioff = btrfs_token_item_offset(&token, i);
3542 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3543 	}
3544 
3545 	btrfs_set_header_nritems(l, mid);
3546 	btrfs_item_key(right, &disk_key, 0);
3547 	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3548 	if (ret < 0)
3549 		return ret;
3550 
3551 	btrfs_mark_buffer_dirty(trans, right);
3552 	btrfs_mark_buffer_dirty(trans, l);
3553 	BUG_ON(path->slots[0] != slot);
3554 
3555 	if (mid <= slot) {
3556 		btrfs_tree_unlock(path->nodes[0]);
3557 		free_extent_buffer(path->nodes[0]);
3558 		path->nodes[0] = right;
3559 		path->slots[0] -= mid;
3560 		path->slots[1] += 1;
3561 	} else {
3562 		btrfs_tree_unlock(right);
3563 		free_extent_buffer(right);
3564 	}
3565 
3566 	BUG_ON(path->slots[0] < 0);
3567 
3568 	return 0;
3569 }
3570 
3571 /*
3572  * double splits happen when we need to insert a big item in the middle
3573  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3574  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3575  *          A                 B                 C
3576  *
3577  * We avoid this by trying to push the items on either side of our target
3578  * into the adjacent leaves.  If all goes well we can avoid the double split
3579  * completely.
3580  */
3581 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3582 					  struct btrfs_root *root,
3583 					  struct btrfs_path *path,
3584 					  int data_size)
3585 {
3586 	int ret;
3587 	int progress = 0;
3588 	int slot;
3589 	u32 nritems;
3590 	int space_needed = data_size;
3591 
3592 	slot = path->slots[0];
3593 	if (slot < btrfs_header_nritems(path->nodes[0]))
3594 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3595 
3596 	/*
3597 	 * try to push all the items after our slot into the
3598 	 * right leaf
3599 	 */
3600 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3601 	if (ret < 0)
3602 		return ret;
3603 
3604 	if (ret == 0)
3605 		progress++;
3606 
3607 	nritems = btrfs_header_nritems(path->nodes[0]);
3608 	/*
3609 	 * our goal is to get our slot at the start or end of a leaf.  If
3610 	 * we've done so we're done
3611 	 */
3612 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3613 		return 0;
3614 
3615 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3616 		return 0;
3617 
3618 	/* try to push all the items before our slot into the next leaf */
3619 	slot = path->slots[0];
3620 	space_needed = data_size;
3621 	if (slot > 0)
3622 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3623 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3624 	if (ret < 0)
3625 		return ret;
3626 
3627 	if (ret == 0)
3628 		progress++;
3629 
3630 	if (progress)
3631 		return 0;
3632 	return 1;
3633 }
3634 
3635 /*
3636  * split the path's leaf in two, making sure there is at least data_size
3637  * available for the resulting leaf level of the path.
3638  *
3639  * returns 0 if all went well and < 0 on failure.
3640  */
3641 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3642 			       struct btrfs_root *root,
3643 			       const struct btrfs_key *ins_key,
3644 			       struct btrfs_path *path, int data_size,
3645 			       int extend)
3646 {
3647 	struct btrfs_disk_key disk_key;
3648 	struct extent_buffer *l;
3649 	u32 nritems;
3650 	int mid;
3651 	int slot;
3652 	struct extent_buffer *right;
3653 	struct btrfs_fs_info *fs_info = root->fs_info;
3654 	int ret = 0;
3655 	int wret;
3656 	int split;
3657 	int num_doubles = 0;
3658 	int tried_avoid_double = 0;
3659 
3660 	l = path->nodes[0];
3661 	slot = path->slots[0];
3662 	if (extend && data_size + btrfs_item_size(l, slot) +
3663 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3664 		return -EOVERFLOW;
3665 
3666 	/* first try to make some room by pushing left and right */
3667 	if (data_size && path->nodes[1]) {
3668 		int space_needed = data_size;
3669 
3670 		if (slot < btrfs_header_nritems(l))
3671 			space_needed -= btrfs_leaf_free_space(l);
3672 
3673 		wret = push_leaf_right(trans, root, path, space_needed,
3674 				       space_needed, 0, 0);
3675 		if (wret < 0)
3676 			return wret;
3677 		if (wret) {
3678 			space_needed = data_size;
3679 			if (slot > 0)
3680 				space_needed -= btrfs_leaf_free_space(l);
3681 			wret = push_leaf_left(trans, root, path, space_needed,
3682 					      space_needed, 0, (u32)-1);
3683 			if (wret < 0)
3684 				return wret;
3685 		}
3686 		l = path->nodes[0];
3687 
3688 		/* did the pushes work? */
3689 		if (btrfs_leaf_free_space(l) >= data_size)
3690 			return 0;
3691 	}
3692 
3693 	if (!path->nodes[1]) {
3694 		ret = insert_new_root(trans, root, path, 1);
3695 		if (ret)
3696 			return ret;
3697 	}
3698 again:
3699 	split = 1;
3700 	l = path->nodes[0];
3701 	slot = path->slots[0];
3702 	nritems = btrfs_header_nritems(l);
3703 	mid = (nritems + 1) / 2;
3704 
3705 	if (mid <= slot) {
3706 		if (nritems == 1 ||
3707 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3708 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3709 			if (slot >= nritems) {
3710 				split = 0;
3711 			} else {
3712 				mid = slot;
3713 				if (mid != nritems &&
3714 				    leaf_space_used(l, mid, nritems - mid) +
3715 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3716 					if (data_size && !tried_avoid_double)
3717 						goto push_for_double;
3718 					split = 2;
3719 				}
3720 			}
3721 		}
3722 	} else {
3723 		if (leaf_space_used(l, 0, mid) + data_size >
3724 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3725 			if (!extend && data_size && slot == 0) {
3726 				split = 0;
3727 			} else if ((extend || !data_size) && slot == 0) {
3728 				mid = 1;
3729 			} else {
3730 				mid = slot;
3731 				if (mid != nritems &&
3732 				    leaf_space_used(l, mid, nritems - mid) +
3733 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3734 					if (data_size && !tried_avoid_double)
3735 						goto push_for_double;
3736 					split = 2;
3737 				}
3738 			}
3739 		}
3740 	}
3741 
3742 	if (split == 0)
3743 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3744 	else
3745 		btrfs_item_key(l, &disk_key, mid);
3746 
3747 	/*
3748 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3749 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3750 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3751 	 * out.  In the future we could add a
3752 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3753 	 * use BTRFS_NESTING_NEW_ROOT.
3754 	 */
3755 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3756 				       &disk_key, 0, l->start, 0, 0,
3757 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3758 				       BTRFS_NESTING_SPLIT);
3759 	if (IS_ERR(right))
3760 		return PTR_ERR(right);
3761 
3762 	root_add_used_bytes(root);
3763 
3764 	if (split == 0) {
3765 		if (mid <= slot) {
3766 			btrfs_set_header_nritems(right, 0);
3767 			ret = insert_ptr(trans, path, &disk_key,
3768 					 right->start, path->slots[1] + 1, 1);
3769 			if (ret < 0) {
3770 				btrfs_tree_unlock(right);
3771 				free_extent_buffer(right);
3772 				return ret;
3773 			}
3774 			btrfs_tree_unlock(path->nodes[0]);
3775 			free_extent_buffer(path->nodes[0]);
3776 			path->nodes[0] = right;
3777 			path->slots[0] = 0;
3778 			path->slots[1] += 1;
3779 		} else {
3780 			btrfs_set_header_nritems(right, 0);
3781 			ret = insert_ptr(trans, path, &disk_key,
3782 					 right->start, path->slots[1], 1);
3783 			if (ret < 0) {
3784 				btrfs_tree_unlock(right);
3785 				free_extent_buffer(right);
3786 				return ret;
3787 			}
3788 			btrfs_tree_unlock(path->nodes[0]);
3789 			free_extent_buffer(path->nodes[0]);
3790 			path->nodes[0] = right;
3791 			path->slots[0] = 0;
3792 			if (path->slots[1] == 0)
3793 				fixup_low_keys(trans, path, &disk_key, 1);
3794 		}
3795 		/*
3796 		 * We create a new leaf 'right' for the required ins_len and
3797 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3798 		 * the content of ins_len to 'right'.
3799 		 */
3800 		return ret;
3801 	}
3802 
3803 	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3804 	if (ret < 0) {
3805 		btrfs_tree_unlock(right);
3806 		free_extent_buffer(right);
3807 		return ret;
3808 	}
3809 
3810 	if (split == 2) {
3811 		BUG_ON(num_doubles != 0);
3812 		num_doubles++;
3813 		goto again;
3814 	}
3815 
3816 	return 0;
3817 
3818 push_for_double:
3819 	push_for_double_split(trans, root, path, data_size);
3820 	tried_avoid_double = 1;
3821 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3822 		return 0;
3823 	goto again;
3824 }
3825 
3826 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3827 					 struct btrfs_root *root,
3828 					 struct btrfs_path *path, int ins_len)
3829 {
3830 	struct btrfs_key key;
3831 	struct extent_buffer *leaf;
3832 	struct btrfs_file_extent_item *fi;
3833 	u64 extent_len = 0;
3834 	u32 item_size;
3835 	int ret;
3836 
3837 	leaf = path->nodes[0];
3838 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3839 
3840 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3841 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3842 
3843 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3844 		return 0;
3845 
3846 	item_size = btrfs_item_size(leaf, path->slots[0]);
3847 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3848 		fi = btrfs_item_ptr(leaf, path->slots[0],
3849 				    struct btrfs_file_extent_item);
3850 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3851 	}
3852 	btrfs_release_path(path);
3853 
3854 	path->keep_locks = 1;
3855 	path->search_for_split = 1;
3856 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3857 	path->search_for_split = 0;
3858 	if (ret > 0)
3859 		ret = -EAGAIN;
3860 	if (ret < 0)
3861 		goto err;
3862 
3863 	ret = -EAGAIN;
3864 	leaf = path->nodes[0];
3865 	/* if our item isn't there, return now */
3866 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3867 		goto err;
3868 
3869 	/* the leaf has  changed, it now has room.  return now */
3870 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3871 		goto err;
3872 
3873 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3874 		fi = btrfs_item_ptr(leaf, path->slots[0],
3875 				    struct btrfs_file_extent_item);
3876 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3877 			goto err;
3878 	}
3879 
3880 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3881 	if (ret)
3882 		goto err;
3883 
3884 	path->keep_locks = 0;
3885 	btrfs_unlock_up_safe(path, 1);
3886 	return 0;
3887 err:
3888 	path->keep_locks = 0;
3889 	return ret;
3890 }
3891 
3892 static noinline int split_item(struct btrfs_trans_handle *trans,
3893 			       struct btrfs_path *path,
3894 			       const struct btrfs_key *new_key,
3895 			       unsigned long split_offset)
3896 {
3897 	struct extent_buffer *leaf;
3898 	int orig_slot, slot;
3899 	char *buf;
3900 	u32 nritems;
3901 	u32 item_size;
3902 	u32 orig_offset;
3903 	struct btrfs_disk_key disk_key;
3904 
3905 	leaf = path->nodes[0];
3906 	/*
3907 	 * Shouldn't happen because the caller must have previously called
3908 	 * setup_leaf_for_split() to make room for the new item in the leaf.
3909 	 */
3910 	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
3911 		return -ENOSPC;
3912 
3913 	orig_slot = path->slots[0];
3914 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3915 	item_size = btrfs_item_size(leaf, path->slots[0]);
3916 
3917 	buf = kmalloc(item_size, GFP_NOFS);
3918 	if (!buf)
3919 		return -ENOMEM;
3920 
3921 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3922 			    path->slots[0]), item_size);
3923 
3924 	slot = path->slots[0] + 1;
3925 	nritems = btrfs_header_nritems(leaf);
3926 	if (slot != nritems) {
3927 		/* shift the items */
3928 		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3929 	}
3930 
3931 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3932 	btrfs_set_item_key(leaf, &disk_key, slot);
3933 
3934 	btrfs_set_item_offset(leaf, slot, orig_offset);
3935 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
3936 
3937 	btrfs_set_item_offset(leaf, orig_slot,
3938 				 orig_offset + item_size - split_offset);
3939 	btrfs_set_item_size(leaf, orig_slot, split_offset);
3940 
3941 	btrfs_set_header_nritems(leaf, nritems + 1);
3942 
3943 	/* write the data for the start of the original item */
3944 	write_extent_buffer(leaf, buf,
3945 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3946 			    split_offset);
3947 
3948 	/* write the data for the new item */
3949 	write_extent_buffer(leaf, buf + split_offset,
3950 			    btrfs_item_ptr_offset(leaf, slot),
3951 			    item_size - split_offset);
3952 	btrfs_mark_buffer_dirty(trans, leaf);
3953 
3954 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3955 	kfree(buf);
3956 	return 0;
3957 }
3958 
3959 /*
3960  * This function splits a single item into two items,
3961  * giving 'new_key' to the new item and splitting the
3962  * old one at split_offset (from the start of the item).
3963  *
3964  * The path may be released by this operation.  After
3965  * the split, the path is pointing to the old item.  The
3966  * new item is going to be in the same node as the old one.
3967  *
3968  * Note, the item being split must be smaller enough to live alone on
3969  * a tree block with room for one extra struct btrfs_item
3970  *
3971  * This allows us to split the item in place, keeping a lock on the
3972  * leaf the entire time.
3973  */
3974 int btrfs_split_item(struct btrfs_trans_handle *trans,
3975 		     struct btrfs_root *root,
3976 		     struct btrfs_path *path,
3977 		     const struct btrfs_key *new_key,
3978 		     unsigned long split_offset)
3979 {
3980 	int ret;
3981 	ret = setup_leaf_for_split(trans, root, path,
3982 				   sizeof(struct btrfs_item));
3983 	if (ret)
3984 		return ret;
3985 
3986 	ret = split_item(trans, path, new_key, split_offset);
3987 	return ret;
3988 }
3989 
3990 /*
3991  * make the item pointed to by the path smaller.  new_size indicates
3992  * how small to make it, and from_end tells us if we just chop bytes
3993  * off the end of the item or if we shift the item to chop bytes off
3994  * the front.
3995  */
3996 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
3997 			 struct btrfs_path *path, u32 new_size, int from_end)
3998 {
3999 	int slot;
4000 	struct extent_buffer *leaf;
4001 	u32 nritems;
4002 	unsigned int data_end;
4003 	unsigned int old_data_start;
4004 	unsigned int old_size;
4005 	unsigned int size_diff;
4006 	int i;
4007 	struct btrfs_map_token token;
4008 
4009 	leaf = path->nodes[0];
4010 	slot = path->slots[0];
4011 
4012 	old_size = btrfs_item_size(leaf, slot);
4013 	if (old_size == new_size)
4014 		return;
4015 
4016 	nritems = btrfs_header_nritems(leaf);
4017 	data_end = leaf_data_end(leaf);
4018 
4019 	old_data_start = btrfs_item_offset(leaf, slot);
4020 
4021 	size_diff = old_size - new_size;
4022 
4023 	BUG_ON(slot < 0);
4024 	BUG_ON(slot >= nritems);
4025 
4026 	/*
4027 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4028 	 */
4029 	/* first correct the data pointers */
4030 	btrfs_init_map_token(&token, leaf);
4031 	for (i = slot; i < nritems; i++) {
4032 		u32 ioff;
4033 
4034 		ioff = btrfs_token_item_offset(&token, i);
4035 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4036 	}
4037 
4038 	/* shift the data */
4039 	if (from_end) {
4040 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4041 				  old_data_start + new_size - data_end);
4042 	} else {
4043 		struct btrfs_disk_key disk_key;
4044 		u64 offset;
4045 
4046 		btrfs_item_key(leaf, &disk_key, slot);
4047 
4048 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4049 			unsigned long ptr;
4050 			struct btrfs_file_extent_item *fi;
4051 
4052 			fi = btrfs_item_ptr(leaf, slot,
4053 					    struct btrfs_file_extent_item);
4054 			fi = (struct btrfs_file_extent_item *)(
4055 			     (unsigned long)fi - size_diff);
4056 
4057 			if (btrfs_file_extent_type(leaf, fi) ==
4058 			    BTRFS_FILE_EXTENT_INLINE) {
4059 				ptr = btrfs_item_ptr_offset(leaf, slot);
4060 				memmove_extent_buffer(leaf, ptr,
4061 				      (unsigned long)fi,
4062 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4063 			}
4064 		}
4065 
4066 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4067 				  old_data_start - data_end);
4068 
4069 		offset = btrfs_disk_key_offset(&disk_key);
4070 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4071 		btrfs_set_item_key(leaf, &disk_key, slot);
4072 		if (slot == 0)
4073 			fixup_low_keys(trans, path, &disk_key, 1);
4074 	}
4075 
4076 	btrfs_set_item_size(leaf, slot, new_size);
4077 	btrfs_mark_buffer_dirty(trans, leaf);
4078 
4079 	if (btrfs_leaf_free_space(leaf) < 0) {
4080 		btrfs_print_leaf(leaf);
4081 		BUG();
4082 	}
4083 }
4084 
4085 /*
4086  * make the item pointed to by the path bigger, data_size is the added size.
4087  */
4088 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4089 		       struct btrfs_path *path, u32 data_size)
4090 {
4091 	int slot;
4092 	struct extent_buffer *leaf;
4093 	u32 nritems;
4094 	unsigned int data_end;
4095 	unsigned int old_data;
4096 	unsigned int old_size;
4097 	int i;
4098 	struct btrfs_map_token token;
4099 
4100 	leaf = path->nodes[0];
4101 
4102 	nritems = btrfs_header_nritems(leaf);
4103 	data_end = leaf_data_end(leaf);
4104 
4105 	if (btrfs_leaf_free_space(leaf) < data_size) {
4106 		btrfs_print_leaf(leaf);
4107 		BUG();
4108 	}
4109 	slot = path->slots[0];
4110 	old_data = btrfs_item_data_end(leaf, slot);
4111 
4112 	BUG_ON(slot < 0);
4113 	if (slot >= nritems) {
4114 		btrfs_print_leaf(leaf);
4115 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4116 			   slot, nritems);
4117 		BUG();
4118 	}
4119 
4120 	/*
4121 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4122 	 */
4123 	/* first correct the data pointers */
4124 	btrfs_init_map_token(&token, leaf);
4125 	for (i = slot; i < nritems; i++) {
4126 		u32 ioff;
4127 
4128 		ioff = btrfs_token_item_offset(&token, i);
4129 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4130 	}
4131 
4132 	/* shift the data */
4133 	memmove_leaf_data(leaf, data_end - data_size, data_end,
4134 			  old_data - data_end);
4135 
4136 	data_end = old_data;
4137 	old_size = btrfs_item_size(leaf, slot);
4138 	btrfs_set_item_size(leaf, slot, old_size + data_size);
4139 	btrfs_mark_buffer_dirty(trans, leaf);
4140 
4141 	if (btrfs_leaf_free_space(leaf) < 0) {
4142 		btrfs_print_leaf(leaf);
4143 		BUG();
4144 	}
4145 }
4146 
4147 /*
4148  * Make space in the node before inserting one or more items.
4149  *
4150  * @trans:	transaction handle
4151  * @root:	root we are inserting items to
4152  * @path:	points to the leaf/slot where we are going to insert new items
4153  * @batch:      information about the batch of items to insert
4154  *
4155  * Main purpose is to save stack depth by doing the bulk of the work in a
4156  * function that doesn't call btrfs_search_slot
4157  */
4158 static void setup_items_for_insert(struct btrfs_trans_handle *trans,
4159 				   struct btrfs_root *root, struct btrfs_path *path,
4160 				   const struct btrfs_item_batch *batch)
4161 {
4162 	struct btrfs_fs_info *fs_info = root->fs_info;
4163 	int i;
4164 	u32 nritems;
4165 	unsigned int data_end;
4166 	struct btrfs_disk_key disk_key;
4167 	struct extent_buffer *leaf;
4168 	int slot;
4169 	struct btrfs_map_token token;
4170 	u32 total_size;
4171 
4172 	/*
4173 	 * Before anything else, update keys in the parent and other ancestors
4174 	 * if needed, then release the write locks on them, so that other tasks
4175 	 * can use them while we modify the leaf.
4176 	 */
4177 	if (path->slots[0] == 0) {
4178 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4179 		fixup_low_keys(trans, path, &disk_key, 1);
4180 	}
4181 	btrfs_unlock_up_safe(path, 1);
4182 
4183 	leaf = path->nodes[0];
4184 	slot = path->slots[0];
4185 
4186 	nritems = btrfs_header_nritems(leaf);
4187 	data_end = leaf_data_end(leaf);
4188 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4189 
4190 	if (btrfs_leaf_free_space(leaf) < total_size) {
4191 		btrfs_print_leaf(leaf);
4192 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4193 			   total_size, btrfs_leaf_free_space(leaf));
4194 		BUG();
4195 	}
4196 
4197 	btrfs_init_map_token(&token, leaf);
4198 	if (slot != nritems) {
4199 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4200 
4201 		if (old_data < data_end) {
4202 			btrfs_print_leaf(leaf);
4203 			btrfs_crit(fs_info,
4204 		"item at slot %d with data offset %u beyond data end of leaf %u",
4205 				   slot, old_data, data_end);
4206 			BUG();
4207 		}
4208 		/*
4209 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4210 		 */
4211 		/* first correct the data pointers */
4212 		for (i = slot; i < nritems; i++) {
4213 			u32 ioff;
4214 
4215 			ioff = btrfs_token_item_offset(&token, i);
4216 			btrfs_set_token_item_offset(&token, i,
4217 						       ioff - batch->total_data_size);
4218 		}
4219 		/* shift the items */
4220 		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4221 
4222 		/* shift the data */
4223 		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4224 				  data_end, old_data - data_end);
4225 		data_end = old_data;
4226 	}
4227 
4228 	/* setup the item for the new data */
4229 	for (i = 0; i < batch->nr; i++) {
4230 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4231 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4232 		data_end -= batch->data_sizes[i];
4233 		btrfs_set_token_item_offset(&token, slot + i, data_end);
4234 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4235 	}
4236 
4237 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4238 	btrfs_mark_buffer_dirty(trans, leaf);
4239 
4240 	if (btrfs_leaf_free_space(leaf) < 0) {
4241 		btrfs_print_leaf(leaf);
4242 		BUG();
4243 	}
4244 }
4245 
4246 /*
4247  * Insert a new item into a leaf.
4248  *
4249  * @trans:     Transaction handle.
4250  * @root:      The root of the btree.
4251  * @path:      A path pointing to the target leaf and slot.
4252  * @key:       The key of the new item.
4253  * @data_size: The size of the data associated with the new key.
4254  */
4255 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
4256 				 struct btrfs_root *root,
4257 				 struct btrfs_path *path,
4258 				 const struct btrfs_key *key,
4259 				 u32 data_size)
4260 {
4261 	struct btrfs_item_batch batch;
4262 
4263 	batch.keys = key;
4264 	batch.data_sizes = &data_size;
4265 	batch.total_data_size = data_size;
4266 	batch.nr = 1;
4267 
4268 	setup_items_for_insert(trans, root, path, &batch);
4269 }
4270 
4271 /*
4272  * Given a key and some data, insert items into the tree.
4273  * This does all the path init required, making room in the tree if needed.
4274  */
4275 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4276 			    struct btrfs_root *root,
4277 			    struct btrfs_path *path,
4278 			    const struct btrfs_item_batch *batch)
4279 {
4280 	int ret = 0;
4281 	int slot;
4282 	u32 total_size;
4283 
4284 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4285 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4286 	if (ret == 0)
4287 		return -EEXIST;
4288 	if (ret < 0)
4289 		return ret;
4290 
4291 	slot = path->slots[0];
4292 	BUG_ON(slot < 0);
4293 
4294 	setup_items_for_insert(trans, root, path, batch);
4295 	return 0;
4296 }
4297 
4298 /*
4299  * Given a key and some data, insert an item into the tree.
4300  * This does all the path init required, making room in the tree if needed.
4301  */
4302 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4303 		      const struct btrfs_key *cpu_key, void *data,
4304 		      u32 data_size)
4305 {
4306 	int ret = 0;
4307 	struct btrfs_path *path;
4308 	struct extent_buffer *leaf;
4309 	unsigned long ptr;
4310 
4311 	path = btrfs_alloc_path();
4312 	if (!path)
4313 		return -ENOMEM;
4314 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4315 	if (!ret) {
4316 		leaf = path->nodes[0];
4317 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4318 		write_extent_buffer(leaf, data, ptr, data_size);
4319 		btrfs_mark_buffer_dirty(trans, leaf);
4320 	}
4321 	btrfs_free_path(path);
4322 	return ret;
4323 }
4324 
4325 /*
4326  * This function duplicates an item, giving 'new_key' to the new item.
4327  * It guarantees both items live in the same tree leaf and the new item is
4328  * contiguous with the original item.
4329  *
4330  * This allows us to split a file extent in place, keeping a lock on the leaf
4331  * the entire time.
4332  */
4333 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4334 			 struct btrfs_root *root,
4335 			 struct btrfs_path *path,
4336 			 const struct btrfs_key *new_key)
4337 {
4338 	struct extent_buffer *leaf;
4339 	int ret;
4340 	u32 item_size;
4341 
4342 	leaf = path->nodes[0];
4343 	item_size = btrfs_item_size(leaf, path->slots[0]);
4344 	ret = setup_leaf_for_split(trans, root, path,
4345 				   item_size + sizeof(struct btrfs_item));
4346 	if (ret)
4347 		return ret;
4348 
4349 	path->slots[0]++;
4350 	btrfs_setup_item_for_insert(trans, root, path, new_key, item_size);
4351 	leaf = path->nodes[0];
4352 	memcpy_extent_buffer(leaf,
4353 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4354 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4355 			     item_size);
4356 	return 0;
4357 }
4358 
4359 /*
4360  * delete the pointer from a given node.
4361  *
4362  * the tree should have been previously balanced so the deletion does not
4363  * empty a node.
4364  *
4365  * This is exported for use inside btrfs-progs, don't un-export it.
4366  */
4367 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4368 		  struct btrfs_path *path, int level, int slot)
4369 {
4370 	struct extent_buffer *parent = path->nodes[level];
4371 	u32 nritems;
4372 	int ret;
4373 
4374 	nritems = btrfs_header_nritems(parent);
4375 	if (slot != nritems - 1) {
4376 		if (level) {
4377 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4378 					slot + 1, nritems - slot - 1);
4379 			if (ret < 0) {
4380 				btrfs_abort_transaction(trans, ret);
4381 				return ret;
4382 			}
4383 		}
4384 		memmove_extent_buffer(parent,
4385 			      btrfs_node_key_ptr_offset(parent, slot),
4386 			      btrfs_node_key_ptr_offset(parent, slot + 1),
4387 			      sizeof(struct btrfs_key_ptr) *
4388 			      (nritems - slot - 1));
4389 	} else if (level) {
4390 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4391 						    BTRFS_MOD_LOG_KEY_REMOVE);
4392 		if (ret < 0) {
4393 			btrfs_abort_transaction(trans, ret);
4394 			return ret;
4395 		}
4396 	}
4397 
4398 	nritems--;
4399 	btrfs_set_header_nritems(parent, nritems);
4400 	if (nritems == 0 && parent == root->node) {
4401 		BUG_ON(btrfs_header_level(root->node) != 1);
4402 		/* just turn the root into a leaf and break */
4403 		btrfs_set_header_level(root->node, 0);
4404 	} else if (slot == 0) {
4405 		struct btrfs_disk_key disk_key;
4406 
4407 		btrfs_node_key(parent, &disk_key, 0);
4408 		fixup_low_keys(trans, path, &disk_key, level + 1);
4409 	}
4410 	btrfs_mark_buffer_dirty(trans, parent);
4411 	return 0;
4412 }
4413 
4414 /*
4415  * a helper function to delete the leaf pointed to by path->slots[1] and
4416  * path->nodes[1].
4417  *
4418  * This deletes the pointer in path->nodes[1] and frees the leaf
4419  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4420  *
4421  * The path must have already been setup for deleting the leaf, including
4422  * all the proper balancing.  path->nodes[1] must be locked.
4423  */
4424 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4425 				   struct btrfs_root *root,
4426 				   struct btrfs_path *path,
4427 				   struct extent_buffer *leaf)
4428 {
4429 	int ret;
4430 
4431 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4432 	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4433 	if (ret < 0)
4434 		return ret;
4435 
4436 	/*
4437 	 * btrfs_free_extent is expensive, we want to make sure we
4438 	 * aren't holding any locks when we call it
4439 	 */
4440 	btrfs_unlock_up_safe(path, 0);
4441 
4442 	root_sub_used_bytes(root);
4443 
4444 	atomic_inc(&leaf->refs);
4445 	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4446 	free_extent_buffer_stale(leaf);
4447 	return 0;
4448 }
4449 /*
4450  * delete the item at the leaf level in path.  If that empties
4451  * the leaf, remove it from the tree
4452  */
4453 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4454 		    struct btrfs_path *path, int slot, int nr)
4455 {
4456 	struct btrfs_fs_info *fs_info = root->fs_info;
4457 	struct extent_buffer *leaf;
4458 	int ret = 0;
4459 	int wret;
4460 	u32 nritems;
4461 
4462 	leaf = path->nodes[0];
4463 	nritems = btrfs_header_nritems(leaf);
4464 
4465 	if (slot + nr != nritems) {
4466 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4467 		const int data_end = leaf_data_end(leaf);
4468 		struct btrfs_map_token token;
4469 		u32 dsize = 0;
4470 		int i;
4471 
4472 		for (i = 0; i < nr; i++)
4473 			dsize += btrfs_item_size(leaf, slot + i);
4474 
4475 		memmove_leaf_data(leaf, data_end + dsize, data_end,
4476 				  last_off - data_end);
4477 
4478 		btrfs_init_map_token(&token, leaf);
4479 		for (i = slot + nr; i < nritems; i++) {
4480 			u32 ioff;
4481 
4482 			ioff = btrfs_token_item_offset(&token, i);
4483 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4484 		}
4485 
4486 		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4487 	}
4488 	btrfs_set_header_nritems(leaf, nritems - nr);
4489 	nritems -= nr;
4490 
4491 	/* delete the leaf if we've emptied it */
4492 	if (nritems == 0) {
4493 		if (leaf == root->node) {
4494 			btrfs_set_header_level(leaf, 0);
4495 		} else {
4496 			btrfs_clear_buffer_dirty(trans, leaf);
4497 			ret = btrfs_del_leaf(trans, root, path, leaf);
4498 			if (ret < 0)
4499 				return ret;
4500 		}
4501 	} else {
4502 		int used = leaf_space_used(leaf, 0, nritems);
4503 		if (slot == 0) {
4504 			struct btrfs_disk_key disk_key;
4505 
4506 			btrfs_item_key(leaf, &disk_key, 0);
4507 			fixup_low_keys(trans, path, &disk_key, 1);
4508 		}
4509 
4510 		/*
4511 		 * Try to delete the leaf if it is mostly empty. We do this by
4512 		 * trying to move all its items into its left and right neighbours.
4513 		 * If we can't move all the items, then we don't delete it - it's
4514 		 * not ideal, but future insertions might fill the leaf with more
4515 		 * items, or items from other leaves might be moved later into our
4516 		 * leaf due to deletions on those leaves.
4517 		 */
4518 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4519 			u32 min_push_space;
4520 
4521 			/* push_leaf_left fixes the path.
4522 			 * make sure the path still points to our leaf
4523 			 * for possible call to btrfs_del_ptr below
4524 			 */
4525 			slot = path->slots[1];
4526 			atomic_inc(&leaf->refs);
4527 			/*
4528 			 * We want to be able to at least push one item to the
4529 			 * left neighbour leaf, and that's the first item.
4530 			 */
4531 			min_push_space = sizeof(struct btrfs_item) +
4532 				btrfs_item_size(leaf, 0);
4533 			wret = push_leaf_left(trans, root, path, 0,
4534 					      min_push_space, 1, (u32)-1);
4535 			if (wret < 0 && wret != -ENOSPC)
4536 				ret = wret;
4537 
4538 			if (path->nodes[0] == leaf &&
4539 			    btrfs_header_nritems(leaf)) {
4540 				/*
4541 				 * If we were not able to push all items from our
4542 				 * leaf to its left neighbour, then attempt to
4543 				 * either push all the remaining items to the
4544 				 * right neighbour or none. There's no advantage
4545 				 * in pushing only some items, instead of all, as
4546 				 * it's pointless to end up with a leaf having
4547 				 * too few items while the neighbours can be full
4548 				 * or nearly full.
4549 				 */
4550 				nritems = btrfs_header_nritems(leaf);
4551 				min_push_space = leaf_space_used(leaf, 0, nritems);
4552 				wret = push_leaf_right(trans, root, path, 0,
4553 						       min_push_space, 1, 0);
4554 				if (wret < 0 && wret != -ENOSPC)
4555 					ret = wret;
4556 			}
4557 
4558 			if (btrfs_header_nritems(leaf) == 0) {
4559 				path->slots[1] = slot;
4560 				ret = btrfs_del_leaf(trans, root, path, leaf);
4561 				if (ret < 0)
4562 					return ret;
4563 				free_extent_buffer(leaf);
4564 				ret = 0;
4565 			} else {
4566 				/* if we're still in the path, make sure
4567 				 * we're dirty.  Otherwise, one of the
4568 				 * push_leaf functions must have already
4569 				 * dirtied this buffer
4570 				 */
4571 				if (path->nodes[0] == leaf)
4572 					btrfs_mark_buffer_dirty(trans, leaf);
4573 				free_extent_buffer(leaf);
4574 			}
4575 		} else {
4576 			btrfs_mark_buffer_dirty(trans, leaf);
4577 		}
4578 	}
4579 	return ret;
4580 }
4581 
4582 /*
4583  * A helper function to walk down the tree starting at min_key, and looking
4584  * for nodes or leaves that are have a minimum transaction id.
4585  * This is used by the btree defrag code, and tree logging
4586  *
4587  * This does not cow, but it does stuff the starting key it finds back
4588  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4589  * key and get a writable path.
4590  *
4591  * This honors path->lowest_level to prevent descent past a given level
4592  * of the tree.
4593  *
4594  * min_trans indicates the oldest transaction that you are interested
4595  * in walking through.  Any nodes or leaves older than min_trans are
4596  * skipped over (without reading them).
4597  *
4598  * returns zero if something useful was found, < 0 on error and 1 if there
4599  * was nothing in the tree that matched the search criteria.
4600  */
4601 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4602 			 struct btrfs_path *path,
4603 			 u64 min_trans)
4604 {
4605 	struct extent_buffer *cur;
4606 	struct btrfs_key found_key;
4607 	int slot;
4608 	int sret;
4609 	u32 nritems;
4610 	int level;
4611 	int ret = 1;
4612 	int keep_locks = path->keep_locks;
4613 
4614 	ASSERT(!path->nowait);
4615 	path->keep_locks = 1;
4616 again:
4617 	cur = btrfs_read_lock_root_node(root);
4618 	level = btrfs_header_level(cur);
4619 	WARN_ON(path->nodes[level]);
4620 	path->nodes[level] = cur;
4621 	path->locks[level] = BTRFS_READ_LOCK;
4622 
4623 	if (btrfs_header_generation(cur) < min_trans) {
4624 		ret = 1;
4625 		goto out;
4626 	}
4627 	while (1) {
4628 		nritems = btrfs_header_nritems(cur);
4629 		level = btrfs_header_level(cur);
4630 		sret = btrfs_bin_search(cur, 0, min_key, &slot);
4631 		if (sret < 0) {
4632 			ret = sret;
4633 			goto out;
4634 		}
4635 
4636 		/* at the lowest level, we're done, setup the path and exit */
4637 		if (level == path->lowest_level) {
4638 			if (slot >= nritems)
4639 				goto find_next_key;
4640 			ret = 0;
4641 			path->slots[level] = slot;
4642 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4643 			goto out;
4644 		}
4645 		if (sret && slot > 0)
4646 			slot--;
4647 		/*
4648 		 * check this node pointer against the min_trans parameters.
4649 		 * If it is too old, skip to the next one.
4650 		 */
4651 		while (slot < nritems) {
4652 			u64 gen;
4653 
4654 			gen = btrfs_node_ptr_generation(cur, slot);
4655 			if (gen < min_trans) {
4656 				slot++;
4657 				continue;
4658 			}
4659 			break;
4660 		}
4661 find_next_key:
4662 		/*
4663 		 * we didn't find a candidate key in this node, walk forward
4664 		 * and find another one
4665 		 */
4666 		if (slot >= nritems) {
4667 			path->slots[level] = slot;
4668 			sret = btrfs_find_next_key(root, path, min_key, level,
4669 						  min_trans);
4670 			if (sret == 0) {
4671 				btrfs_release_path(path);
4672 				goto again;
4673 			} else {
4674 				goto out;
4675 			}
4676 		}
4677 		/* save our key for returning back */
4678 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4679 		path->slots[level] = slot;
4680 		if (level == path->lowest_level) {
4681 			ret = 0;
4682 			goto out;
4683 		}
4684 		cur = btrfs_read_node_slot(cur, slot);
4685 		if (IS_ERR(cur)) {
4686 			ret = PTR_ERR(cur);
4687 			goto out;
4688 		}
4689 
4690 		btrfs_tree_read_lock(cur);
4691 
4692 		path->locks[level - 1] = BTRFS_READ_LOCK;
4693 		path->nodes[level - 1] = cur;
4694 		unlock_up(path, level, 1, 0, NULL);
4695 	}
4696 out:
4697 	path->keep_locks = keep_locks;
4698 	if (ret == 0) {
4699 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4700 		memcpy(min_key, &found_key, sizeof(found_key));
4701 	}
4702 	return ret;
4703 }
4704 
4705 /*
4706  * this is similar to btrfs_next_leaf, but does not try to preserve
4707  * and fixup the path.  It looks for and returns the next key in the
4708  * tree based on the current path and the min_trans parameters.
4709  *
4710  * 0 is returned if another key is found, < 0 if there are any errors
4711  * and 1 is returned if there are no higher keys in the tree
4712  *
4713  * path->keep_locks should be set to 1 on the search made before
4714  * calling this function.
4715  */
4716 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4717 			struct btrfs_key *key, int level, u64 min_trans)
4718 {
4719 	int slot;
4720 	struct extent_buffer *c;
4721 
4722 	WARN_ON(!path->keep_locks && !path->skip_locking);
4723 	while (level < BTRFS_MAX_LEVEL) {
4724 		if (!path->nodes[level])
4725 			return 1;
4726 
4727 		slot = path->slots[level] + 1;
4728 		c = path->nodes[level];
4729 next:
4730 		if (slot >= btrfs_header_nritems(c)) {
4731 			int ret;
4732 			int orig_lowest;
4733 			struct btrfs_key cur_key;
4734 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4735 			    !path->nodes[level + 1])
4736 				return 1;
4737 
4738 			if (path->locks[level + 1] || path->skip_locking) {
4739 				level++;
4740 				continue;
4741 			}
4742 
4743 			slot = btrfs_header_nritems(c) - 1;
4744 			if (level == 0)
4745 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4746 			else
4747 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4748 
4749 			orig_lowest = path->lowest_level;
4750 			btrfs_release_path(path);
4751 			path->lowest_level = level;
4752 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4753 						0, 0);
4754 			path->lowest_level = orig_lowest;
4755 			if (ret < 0)
4756 				return ret;
4757 
4758 			c = path->nodes[level];
4759 			slot = path->slots[level];
4760 			if (ret == 0)
4761 				slot++;
4762 			goto next;
4763 		}
4764 
4765 		if (level == 0)
4766 			btrfs_item_key_to_cpu(c, key, slot);
4767 		else {
4768 			u64 gen = btrfs_node_ptr_generation(c, slot);
4769 
4770 			if (gen < min_trans) {
4771 				slot++;
4772 				goto next;
4773 			}
4774 			btrfs_node_key_to_cpu(c, key, slot);
4775 		}
4776 		return 0;
4777 	}
4778 	return 1;
4779 }
4780 
4781 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4782 			u64 time_seq)
4783 {
4784 	int slot;
4785 	int level;
4786 	struct extent_buffer *c;
4787 	struct extent_buffer *next;
4788 	struct btrfs_fs_info *fs_info = root->fs_info;
4789 	struct btrfs_key key;
4790 	bool need_commit_sem = false;
4791 	u32 nritems;
4792 	int ret;
4793 	int i;
4794 
4795 	/*
4796 	 * The nowait semantics are used only for write paths, where we don't
4797 	 * use the tree mod log and sequence numbers.
4798 	 */
4799 	if (time_seq)
4800 		ASSERT(!path->nowait);
4801 
4802 	nritems = btrfs_header_nritems(path->nodes[0]);
4803 	if (nritems == 0)
4804 		return 1;
4805 
4806 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4807 again:
4808 	level = 1;
4809 	next = NULL;
4810 	btrfs_release_path(path);
4811 
4812 	path->keep_locks = 1;
4813 
4814 	if (time_seq) {
4815 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4816 	} else {
4817 		if (path->need_commit_sem) {
4818 			path->need_commit_sem = 0;
4819 			need_commit_sem = true;
4820 			if (path->nowait) {
4821 				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4822 					ret = -EAGAIN;
4823 					goto done;
4824 				}
4825 			} else {
4826 				down_read(&fs_info->commit_root_sem);
4827 			}
4828 		}
4829 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4830 	}
4831 	path->keep_locks = 0;
4832 
4833 	if (ret < 0)
4834 		goto done;
4835 
4836 	nritems = btrfs_header_nritems(path->nodes[0]);
4837 	/*
4838 	 * by releasing the path above we dropped all our locks.  A balance
4839 	 * could have added more items next to the key that used to be
4840 	 * at the very end of the block.  So, check again here and
4841 	 * advance the path if there are now more items available.
4842 	 */
4843 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4844 		if (ret == 0)
4845 			path->slots[0]++;
4846 		ret = 0;
4847 		goto done;
4848 	}
4849 	/*
4850 	 * So the above check misses one case:
4851 	 * - after releasing the path above, someone has removed the item that
4852 	 *   used to be at the very end of the block, and balance between leafs
4853 	 *   gets another one with bigger key.offset to replace it.
4854 	 *
4855 	 * This one should be returned as well, or we can get leaf corruption
4856 	 * later(esp. in __btrfs_drop_extents()).
4857 	 *
4858 	 * And a bit more explanation about this check,
4859 	 * with ret > 0, the key isn't found, the path points to the slot
4860 	 * where it should be inserted, so the path->slots[0] item must be the
4861 	 * bigger one.
4862 	 */
4863 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4864 		ret = 0;
4865 		goto done;
4866 	}
4867 
4868 	while (level < BTRFS_MAX_LEVEL) {
4869 		if (!path->nodes[level]) {
4870 			ret = 1;
4871 			goto done;
4872 		}
4873 
4874 		slot = path->slots[level] + 1;
4875 		c = path->nodes[level];
4876 		if (slot >= btrfs_header_nritems(c)) {
4877 			level++;
4878 			if (level == BTRFS_MAX_LEVEL) {
4879 				ret = 1;
4880 				goto done;
4881 			}
4882 			continue;
4883 		}
4884 
4885 
4886 		/*
4887 		 * Our current level is where we're going to start from, and to
4888 		 * make sure lockdep doesn't complain we need to drop our locks
4889 		 * and nodes from 0 to our current level.
4890 		 */
4891 		for (i = 0; i < level; i++) {
4892 			if (path->locks[level]) {
4893 				btrfs_tree_read_unlock(path->nodes[i]);
4894 				path->locks[i] = 0;
4895 			}
4896 			free_extent_buffer(path->nodes[i]);
4897 			path->nodes[i] = NULL;
4898 		}
4899 
4900 		next = c;
4901 		ret = read_block_for_search(root, path, &next, level,
4902 					    slot, &key);
4903 		if (ret == -EAGAIN && !path->nowait)
4904 			goto again;
4905 
4906 		if (ret < 0) {
4907 			btrfs_release_path(path);
4908 			goto done;
4909 		}
4910 
4911 		if (!path->skip_locking) {
4912 			ret = btrfs_try_tree_read_lock(next);
4913 			if (!ret && path->nowait) {
4914 				ret = -EAGAIN;
4915 				goto done;
4916 			}
4917 			if (!ret && time_seq) {
4918 				/*
4919 				 * If we don't get the lock, we may be racing
4920 				 * with push_leaf_left, holding that lock while
4921 				 * itself waiting for the leaf we've currently
4922 				 * locked. To solve this situation, we give up
4923 				 * on our lock and cycle.
4924 				 */
4925 				free_extent_buffer(next);
4926 				btrfs_release_path(path);
4927 				cond_resched();
4928 				goto again;
4929 			}
4930 			if (!ret)
4931 				btrfs_tree_read_lock(next);
4932 		}
4933 		break;
4934 	}
4935 	path->slots[level] = slot;
4936 	while (1) {
4937 		level--;
4938 		path->nodes[level] = next;
4939 		path->slots[level] = 0;
4940 		if (!path->skip_locking)
4941 			path->locks[level] = BTRFS_READ_LOCK;
4942 		if (!level)
4943 			break;
4944 
4945 		ret = read_block_for_search(root, path, &next, level,
4946 					    0, &key);
4947 		if (ret == -EAGAIN && !path->nowait)
4948 			goto again;
4949 
4950 		if (ret < 0) {
4951 			btrfs_release_path(path);
4952 			goto done;
4953 		}
4954 
4955 		if (!path->skip_locking) {
4956 			if (path->nowait) {
4957 				if (!btrfs_try_tree_read_lock(next)) {
4958 					ret = -EAGAIN;
4959 					goto done;
4960 				}
4961 			} else {
4962 				btrfs_tree_read_lock(next);
4963 			}
4964 		}
4965 	}
4966 	ret = 0;
4967 done:
4968 	unlock_up(path, 0, 1, 0, NULL);
4969 	if (need_commit_sem) {
4970 		int ret2;
4971 
4972 		path->need_commit_sem = 1;
4973 		ret2 = finish_need_commit_sem_search(path);
4974 		up_read(&fs_info->commit_root_sem);
4975 		if (ret2)
4976 			ret = ret2;
4977 	}
4978 
4979 	return ret;
4980 }
4981 
4982 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4983 {
4984 	path->slots[0]++;
4985 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4986 		return btrfs_next_old_leaf(root, path, time_seq);
4987 	return 0;
4988 }
4989 
4990 /*
4991  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4992  * searching until it gets past min_objectid or finds an item of 'type'
4993  *
4994  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4995  */
4996 int btrfs_previous_item(struct btrfs_root *root,
4997 			struct btrfs_path *path, u64 min_objectid,
4998 			int type)
4999 {
5000 	struct btrfs_key found_key;
5001 	struct extent_buffer *leaf;
5002 	u32 nritems;
5003 	int ret;
5004 
5005 	while (1) {
5006 		if (path->slots[0] == 0) {
5007 			ret = btrfs_prev_leaf(root, path);
5008 			if (ret != 0)
5009 				return ret;
5010 		} else {
5011 			path->slots[0]--;
5012 		}
5013 		leaf = path->nodes[0];
5014 		nritems = btrfs_header_nritems(leaf);
5015 		if (nritems == 0)
5016 			return 1;
5017 		if (path->slots[0] == nritems)
5018 			path->slots[0]--;
5019 
5020 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5021 		if (found_key.objectid < min_objectid)
5022 			break;
5023 		if (found_key.type == type)
5024 			return 0;
5025 		if (found_key.objectid == min_objectid &&
5026 		    found_key.type < type)
5027 			break;
5028 	}
5029 	return 1;
5030 }
5031 
5032 /*
5033  * search in extent tree to find a previous Metadata/Data extent item with
5034  * min objecitd.
5035  *
5036  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5037  */
5038 int btrfs_previous_extent_item(struct btrfs_root *root,
5039 			struct btrfs_path *path, u64 min_objectid)
5040 {
5041 	struct btrfs_key found_key;
5042 	struct extent_buffer *leaf;
5043 	u32 nritems;
5044 	int ret;
5045 
5046 	while (1) {
5047 		if (path->slots[0] == 0) {
5048 			ret = btrfs_prev_leaf(root, path);
5049 			if (ret != 0)
5050 				return ret;
5051 		} else {
5052 			path->slots[0]--;
5053 		}
5054 		leaf = path->nodes[0];
5055 		nritems = btrfs_header_nritems(leaf);
5056 		if (nritems == 0)
5057 			return 1;
5058 		if (path->slots[0] == nritems)
5059 			path->slots[0]--;
5060 
5061 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5062 		if (found_key.objectid < min_objectid)
5063 			break;
5064 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5065 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5066 			return 0;
5067 		if (found_key.objectid == min_objectid &&
5068 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5069 			break;
5070 	}
5071 	return 1;
5072 }
5073 
5074 int __init btrfs_ctree_init(void)
5075 {
5076 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
5077 			sizeof(struct btrfs_path), 0,
5078 			SLAB_MEM_SPREAD, NULL);
5079 	if (!btrfs_path_cachep)
5080 		return -ENOMEM;
5081 	return 0;
5082 }
5083 
5084 void __cold btrfs_ctree_exit(void)
5085 {
5086 	kmem_cache_destroy(btrfs_path_cachep);
5087 }
5088