xref: /linux/fs/btrfs/ctree.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/mm.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
33 		      int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct btrfs_fs_info *fs_info,
36 			  struct extent_buffer *dst,
37 			  struct extent_buffer *src, int empty);
38 static int balance_node_right(struct btrfs_trans_handle *trans,
39 			      struct btrfs_fs_info *fs_info,
40 			      struct extent_buffer *dst_buf,
41 			      struct extent_buffer *src_buf);
42 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 		    int level, int slot);
44 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
45 				 struct extent_buffer *eb);
46 
47 struct btrfs_path *btrfs_alloc_path(void)
48 {
49 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 }
51 
52 /*
53  * set all locked nodes in the path to blocking locks.  This should
54  * be done before scheduling
55  */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58 	int i;
59 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 		if (!p->nodes[i] || !p->locks[i])
61 			continue;
62 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 		if (p->locks[i] == BTRFS_READ_LOCK)
64 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 	}
68 }
69 
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  *
73  * held is used to keep lockdep happy, when lockdep is enabled
74  * we set held to a blocking lock before we go around and
75  * retake all the spinlocks in the path.  You can safely use NULL
76  * for held
77  */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 					struct extent_buffer *held, int held_rw)
80 {
81 	int i;
82 
83 	if (held) {
84 		btrfs_set_lock_blocking_rw(held, held_rw);
85 		if (held_rw == BTRFS_WRITE_LOCK)
86 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 		else if (held_rw == BTRFS_READ_LOCK)
88 			held_rw = BTRFS_READ_LOCK_BLOCKING;
89 	}
90 	btrfs_set_path_blocking(p);
91 
92 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 		if (p->nodes[i] && p->locks[i]) {
94 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 				p->locks[i] = BTRFS_WRITE_LOCK;
97 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 				p->locks[i] = BTRFS_READ_LOCK;
99 		}
100 	}
101 
102 	if (held)
103 		btrfs_clear_lock_blocking_rw(held, held_rw);
104 }
105 
106 /* this also releases the path */
107 void btrfs_free_path(struct btrfs_path *p)
108 {
109 	if (!p)
110 		return;
111 	btrfs_release_path(p);
112 	kmem_cache_free(btrfs_path_cachep, p);
113 }
114 
115 /*
116  * path release drops references on the extent buffers in the path
117  * and it drops any locks held by this path
118  *
119  * It is safe to call this on paths that no locks or extent buffers held.
120  */
121 noinline void btrfs_release_path(struct btrfs_path *p)
122 {
123 	int i;
124 
125 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126 		p->slots[i] = 0;
127 		if (!p->nodes[i])
128 			continue;
129 		if (p->locks[i]) {
130 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131 			p->locks[i] = 0;
132 		}
133 		free_extent_buffer(p->nodes[i]);
134 		p->nodes[i] = NULL;
135 	}
136 }
137 
138 /*
139  * safely gets a reference on the root node of a tree.  A lock
140  * is not taken, so a concurrent writer may put a different node
141  * at the root of the tree.  See btrfs_lock_root_node for the
142  * looping required.
143  *
144  * The extent buffer returned by this has a reference taken, so
145  * it won't disappear.  It may stop being the root of the tree
146  * at any time because there are no locks held.
147  */
148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149 {
150 	struct extent_buffer *eb;
151 
152 	while (1) {
153 		rcu_read_lock();
154 		eb = rcu_dereference(root->node);
155 
156 		/*
157 		 * RCU really hurts here, we could free up the root node because
158 		 * it was COWed but we may not get the new root node yet so do
159 		 * the inc_not_zero dance and if it doesn't work then
160 		 * synchronize_rcu and try again.
161 		 */
162 		if (atomic_inc_not_zero(&eb->refs)) {
163 			rcu_read_unlock();
164 			break;
165 		}
166 		rcu_read_unlock();
167 		synchronize_rcu();
168 	}
169 	return eb;
170 }
171 
172 /* loop around taking references on and locking the root node of the
173  * tree until you end up with a lock on the root.  A locked buffer
174  * is returned, with a reference held.
175  */
176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177 {
178 	struct extent_buffer *eb;
179 
180 	while (1) {
181 		eb = btrfs_root_node(root);
182 		btrfs_tree_lock(eb);
183 		if (eb == root->node)
184 			break;
185 		btrfs_tree_unlock(eb);
186 		free_extent_buffer(eb);
187 	}
188 	return eb;
189 }
190 
191 /* loop around taking references on and locking the root node of the
192  * tree until you end up with a lock on the root.  A locked buffer
193  * is returned, with a reference held.
194  */
195 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 {
197 	struct extent_buffer *eb;
198 
199 	while (1) {
200 		eb = btrfs_root_node(root);
201 		btrfs_tree_read_lock(eb);
202 		if (eb == root->node)
203 			break;
204 		btrfs_tree_read_unlock(eb);
205 		free_extent_buffer(eb);
206 	}
207 	return eb;
208 }
209 
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211  * put onto a simple dirty list.  transaction.c walks this to make sure they
212  * get properly updated on disk.
213  */
214 static void add_root_to_dirty_list(struct btrfs_root *root)
215 {
216 	struct btrfs_fs_info *fs_info = root->fs_info;
217 
218 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
219 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
220 		return;
221 
222 	spin_lock(&fs_info->trans_lock);
223 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
224 		/* Want the extent tree to be the last on the list */
225 		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
226 			list_move_tail(&root->dirty_list,
227 				       &fs_info->dirty_cowonly_roots);
228 		else
229 			list_move(&root->dirty_list,
230 				  &fs_info->dirty_cowonly_roots);
231 	}
232 	spin_unlock(&fs_info->trans_lock);
233 }
234 
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 		      struct btrfs_root *root,
242 		      struct extent_buffer *buf,
243 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245 	struct btrfs_fs_info *fs_info = root->fs_info;
246 	struct extent_buffer *cow;
247 	int ret = 0;
248 	int level;
249 	struct btrfs_disk_key disk_key;
250 
251 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 		trans->transid != fs_info->running_transaction->transid);
253 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
254 		trans->transid != root->last_trans);
255 
256 	level = btrfs_header_level(buf);
257 	if (level == 0)
258 		btrfs_item_key(buf, &disk_key, 0);
259 	else
260 		btrfs_node_key(buf, &disk_key, 0);
261 
262 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
263 			&disk_key, level, buf->start, 0);
264 	if (IS_ERR(cow))
265 		return PTR_ERR(cow);
266 
267 	copy_extent_buffer_full(cow, buf);
268 	btrfs_set_header_bytenr(cow, cow->start);
269 	btrfs_set_header_generation(cow, trans->transid);
270 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272 				     BTRFS_HEADER_FLAG_RELOC);
273 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275 	else
276 		btrfs_set_header_owner(cow, new_root_objectid);
277 
278 	write_extent_buffer_fsid(cow, fs_info->fsid);
279 
280 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
281 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282 		ret = btrfs_inc_ref(trans, root, cow, 1);
283 	else
284 		ret = btrfs_inc_ref(trans, root, cow, 0);
285 
286 	if (ret)
287 		return ret;
288 
289 	btrfs_mark_buffer_dirty(cow);
290 	*cow_ret = cow;
291 	return 0;
292 }
293 
294 enum mod_log_op {
295 	MOD_LOG_KEY_REPLACE,
296 	MOD_LOG_KEY_ADD,
297 	MOD_LOG_KEY_REMOVE,
298 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 	MOD_LOG_MOVE_KEYS,
301 	MOD_LOG_ROOT_REPLACE,
302 };
303 
304 struct tree_mod_move {
305 	int dst_slot;
306 	int nr_items;
307 };
308 
309 struct tree_mod_root {
310 	u64 logical;
311 	u8 level;
312 };
313 
314 struct tree_mod_elem {
315 	struct rb_node node;
316 	u64 logical;
317 	u64 seq;
318 	enum mod_log_op op;
319 
320 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 	int slot;
322 
323 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 	u64 generation;
325 
326 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 	struct btrfs_disk_key key;
328 	u64 blockptr;
329 
330 	/* this is used for op == MOD_LOG_MOVE_KEYS */
331 	struct tree_mod_move move;
332 
333 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
334 	struct tree_mod_root old_root;
335 };
336 
337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338 {
339 	read_lock(&fs_info->tree_mod_log_lock);
340 }
341 
342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343 {
344 	read_unlock(&fs_info->tree_mod_log_lock);
345 }
346 
347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348 {
349 	write_lock(&fs_info->tree_mod_log_lock);
350 }
351 
352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353 {
354 	write_unlock(&fs_info->tree_mod_log_lock);
355 }
356 
357 /*
358  * Pull a new tree mod seq number for our operation.
359  */
360 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
361 {
362 	return atomic64_inc_return(&fs_info->tree_mod_seq);
363 }
364 
365 /*
366  * This adds a new blocker to the tree mod log's blocker list if the @elem
367  * passed does not already have a sequence number set. So when a caller expects
368  * to record tree modifications, it should ensure to set elem->seq to zero
369  * before calling btrfs_get_tree_mod_seq.
370  * Returns a fresh, unused tree log modification sequence number, even if no new
371  * blocker was added.
372  */
373 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
374 			   struct seq_list *elem)
375 {
376 	tree_mod_log_write_lock(fs_info);
377 	spin_lock(&fs_info->tree_mod_seq_lock);
378 	if (!elem->seq) {
379 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 	}
382 	spin_unlock(&fs_info->tree_mod_seq_lock);
383 	tree_mod_log_write_unlock(fs_info);
384 
385 	return elem->seq;
386 }
387 
388 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
389 			    struct seq_list *elem)
390 {
391 	struct rb_root *tm_root;
392 	struct rb_node *node;
393 	struct rb_node *next;
394 	struct seq_list *cur_elem;
395 	struct tree_mod_elem *tm;
396 	u64 min_seq = (u64)-1;
397 	u64 seq_putting = elem->seq;
398 
399 	if (!seq_putting)
400 		return;
401 
402 	spin_lock(&fs_info->tree_mod_seq_lock);
403 	list_del(&elem->list);
404 	elem->seq = 0;
405 
406 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
407 		if (cur_elem->seq < min_seq) {
408 			if (seq_putting > cur_elem->seq) {
409 				/*
410 				 * blocker with lower sequence number exists, we
411 				 * cannot remove anything from the log
412 				 */
413 				spin_unlock(&fs_info->tree_mod_seq_lock);
414 				return;
415 			}
416 			min_seq = cur_elem->seq;
417 		}
418 	}
419 	spin_unlock(&fs_info->tree_mod_seq_lock);
420 
421 	/*
422 	 * anything that's lower than the lowest existing (read: blocked)
423 	 * sequence number can be removed from the tree.
424 	 */
425 	tree_mod_log_write_lock(fs_info);
426 	tm_root = &fs_info->tree_mod_log;
427 	for (node = rb_first(tm_root); node; node = next) {
428 		next = rb_next(node);
429 		tm = rb_entry(node, struct tree_mod_elem, node);
430 		if (tm->seq > min_seq)
431 			continue;
432 		rb_erase(node, tm_root);
433 		kfree(tm);
434 	}
435 	tree_mod_log_write_unlock(fs_info);
436 }
437 
438 /*
439  * key order of the log:
440  *       node/leaf start address -> sequence
441  *
442  * The 'start address' is the logical address of the *new* root node
443  * for root replace operations, or the logical address of the affected
444  * block for all other operations.
445  *
446  * Note: must be called with write lock (tree_mod_log_write_lock).
447  */
448 static noinline int
449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450 {
451 	struct rb_root *tm_root;
452 	struct rb_node **new;
453 	struct rb_node *parent = NULL;
454 	struct tree_mod_elem *cur;
455 
456 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
457 
458 	tm_root = &fs_info->tree_mod_log;
459 	new = &tm_root->rb_node;
460 	while (*new) {
461 		cur = rb_entry(*new, struct tree_mod_elem, node);
462 		parent = *new;
463 		if (cur->logical < tm->logical)
464 			new = &((*new)->rb_left);
465 		else if (cur->logical > tm->logical)
466 			new = &((*new)->rb_right);
467 		else if (cur->seq < tm->seq)
468 			new = &((*new)->rb_left);
469 		else if (cur->seq > tm->seq)
470 			new = &((*new)->rb_right);
471 		else
472 			return -EEXIST;
473 	}
474 
475 	rb_link_node(&tm->node, parent, new);
476 	rb_insert_color(&tm->node, tm_root);
477 	return 0;
478 }
479 
480 /*
481  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482  * returns zero with the tree_mod_log_lock acquired. The caller must hold
483  * this until all tree mod log insertions are recorded in the rb tree and then
484  * call tree_mod_log_write_unlock() to release.
485  */
486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487 				    struct extent_buffer *eb) {
488 	smp_mb();
489 	if (list_empty(&(fs_info)->tree_mod_seq_list))
490 		return 1;
491 	if (eb && btrfs_header_level(eb) == 0)
492 		return 1;
493 
494 	tree_mod_log_write_lock(fs_info);
495 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496 		tree_mod_log_write_unlock(fs_info);
497 		return 1;
498 	}
499 
500 	return 0;
501 }
502 
503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505 				    struct extent_buffer *eb)
506 {
507 	smp_mb();
508 	if (list_empty(&(fs_info)->tree_mod_seq_list))
509 		return 0;
510 	if (eb && btrfs_header_level(eb) == 0)
511 		return 0;
512 
513 	return 1;
514 }
515 
516 static struct tree_mod_elem *
517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518 		    enum mod_log_op op, gfp_t flags)
519 {
520 	struct tree_mod_elem *tm;
521 
522 	tm = kzalloc(sizeof(*tm), flags);
523 	if (!tm)
524 		return NULL;
525 
526 	tm->logical = eb->start;
527 	if (op != MOD_LOG_KEY_ADD) {
528 		btrfs_node_key(eb, &tm->key, slot);
529 		tm->blockptr = btrfs_node_blockptr(eb, slot);
530 	}
531 	tm->op = op;
532 	tm->slot = slot;
533 	tm->generation = btrfs_node_ptr_generation(eb, slot);
534 	RB_CLEAR_NODE(&tm->node);
535 
536 	return tm;
537 }
538 
539 static noinline int
540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541 			struct extent_buffer *eb, int slot,
542 			enum mod_log_op op, gfp_t flags)
543 {
544 	struct tree_mod_elem *tm;
545 	int ret;
546 
547 	if (!tree_mod_need_log(fs_info, eb))
548 		return 0;
549 
550 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
551 	if (!tm)
552 		return -ENOMEM;
553 
554 	if (tree_mod_dont_log(fs_info, eb)) {
555 		kfree(tm);
556 		return 0;
557 	}
558 
559 	ret = __tree_mod_log_insert(fs_info, tm);
560 	tree_mod_log_write_unlock(fs_info);
561 	if (ret)
562 		kfree(tm);
563 
564 	return ret;
565 }
566 
567 static noinline int
568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569 			 struct extent_buffer *eb, int dst_slot, int src_slot,
570 			 int nr_items)
571 {
572 	struct tree_mod_elem *tm = NULL;
573 	struct tree_mod_elem **tm_list = NULL;
574 	int ret = 0;
575 	int i;
576 	int locked = 0;
577 
578 	if (!tree_mod_need_log(fs_info, eb))
579 		return 0;
580 
581 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
582 	if (!tm_list)
583 		return -ENOMEM;
584 
585 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
586 	if (!tm) {
587 		ret = -ENOMEM;
588 		goto free_tms;
589 	}
590 
591 	tm->logical = eb->start;
592 	tm->slot = src_slot;
593 	tm->move.dst_slot = dst_slot;
594 	tm->move.nr_items = nr_items;
595 	tm->op = MOD_LOG_MOVE_KEYS;
596 
597 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
599 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
600 		if (!tm_list[i]) {
601 			ret = -ENOMEM;
602 			goto free_tms;
603 		}
604 	}
605 
606 	if (tree_mod_dont_log(fs_info, eb))
607 		goto free_tms;
608 	locked = 1;
609 
610 	/*
611 	 * When we override something during the move, we log these removals.
612 	 * This can only happen when we move towards the beginning of the
613 	 * buffer, i.e. dst_slot < src_slot.
614 	 */
615 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
616 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
617 		if (ret)
618 			goto free_tms;
619 	}
620 
621 	ret = __tree_mod_log_insert(fs_info, tm);
622 	if (ret)
623 		goto free_tms;
624 	tree_mod_log_write_unlock(fs_info);
625 	kfree(tm_list);
626 
627 	return 0;
628 free_tms:
629 	for (i = 0; i < nr_items; i++) {
630 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
632 		kfree(tm_list[i]);
633 	}
634 	if (locked)
635 		tree_mod_log_write_unlock(fs_info);
636 	kfree(tm_list);
637 	kfree(tm);
638 
639 	return ret;
640 }
641 
642 static inline int
643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644 		       struct tree_mod_elem **tm_list,
645 		       int nritems)
646 {
647 	int i, j;
648 	int ret;
649 
650 	for (i = nritems - 1; i >= 0; i--) {
651 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
652 		if (ret) {
653 			for (j = nritems - 1; j > i; j--)
654 				rb_erase(&tm_list[j]->node,
655 					 &fs_info->tree_mod_log);
656 			return ret;
657 		}
658 	}
659 
660 	return 0;
661 }
662 
663 static noinline int
664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665 			 struct extent_buffer *old_root,
666 			 struct extent_buffer *new_root,
667 			 int log_removal)
668 {
669 	struct tree_mod_elem *tm = NULL;
670 	struct tree_mod_elem **tm_list = NULL;
671 	int nritems = 0;
672 	int ret = 0;
673 	int i;
674 
675 	if (!tree_mod_need_log(fs_info, NULL))
676 		return 0;
677 
678 	if (log_removal && btrfs_header_level(old_root) > 0) {
679 		nritems = btrfs_header_nritems(old_root);
680 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
681 				  GFP_NOFS);
682 		if (!tm_list) {
683 			ret = -ENOMEM;
684 			goto free_tms;
685 		}
686 		for (i = 0; i < nritems; i++) {
687 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
688 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
689 			if (!tm_list[i]) {
690 				ret = -ENOMEM;
691 				goto free_tms;
692 			}
693 		}
694 	}
695 
696 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
697 	if (!tm) {
698 		ret = -ENOMEM;
699 		goto free_tms;
700 	}
701 
702 	tm->logical = new_root->start;
703 	tm->old_root.logical = old_root->start;
704 	tm->old_root.level = btrfs_header_level(old_root);
705 	tm->generation = btrfs_header_generation(old_root);
706 	tm->op = MOD_LOG_ROOT_REPLACE;
707 
708 	if (tree_mod_dont_log(fs_info, NULL))
709 		goto free_tms;
710 
711 	if (tm_list)
712 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
713 	if (!ret)
714 		ret = __tree_mod_log_insert(fs_info, tm);
715 
716 	tree_mod_log_write_unlock(fs_info);
717 	if (ret)
718 		goto free_tms;
719 	kfree(tm_list);
720 
721 	return ret;
722 
723 free_tms:
724 	if (tm_list) {
725 		for (i = 0; i < nritems; i++)
726 			kfree(tm_list[i]);
727 		kfree(tm_list);
728 	}
729 	kfree(tm);
730 
731 	return ret;
732 }
733 
734 static struct tree_mod_elem *
735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736 		      int smallest)
737 {
738 	struct rb_root *tm_root;
739 	struct rb_node *node;
740 	struct tree_mod_elem *cur = NULL;
741 	struct tree_mod_elem *found = NULL;
742 
743 	tree_mod_log_read_lock(fs_info);
744 	tm_root = &fs_info->tree_mod_log;
745 	node = tm_root->rb_node;
746 	while (node) {
747 		cur = rb_entry(node, struct tree_mod_elem, node);
748 		if (cur->logical < start) {
749 			node = node->rb_left;
750 		} else if (cur->logical > start) {
751 			node = node->rb_right;
752 		} else if (cur->seq < min_seq) {
753 			node = node->rb_left;
754 		} else if (!smallest) {
755 			/* we want the node with the highest seq */
756 			if (found)
757 				BUG_ON(found->seq > cur->seq);
758 			found = cur;
759 			node = node->rb_left;
760 		} else if (cur->seq > min_seq) {
761 			/* we want the node with the smallest seq */
762 			if (found)
763 				BUG_ON(found->seq < cur->seq);
764 			found = cur;
765 			node = node->rb_right;
766 		} else {
767 			found = cur;
768 			break;
769 		}
770 	}
771 	tree_mod_log_read_unlock(fs_info);
772 
773 	return found;
774 }
775 
776 /*
777  * this returns the element from the log with the smallest time sequence
778  * value that's in the log (the oldest log item). any element with a time
779  * sequence lower than min_seq will be ignored.
780  */
781 static struct tree_mod_elem *
782 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
783 			   u64 min_seq)
784 {
785 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
786 }
787 
788 /*
789  * this returns the element from the log with the largest time sequence
790  * value that's in the log (the most recent log item). any element with
791  * a time sequence lower than min_seq will be ignored.
792  */
793 static struct tree_mod_elem *
794 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
795 {
796 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
797 }
798 
799 static noinline int
800 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
801 		     struct extent_buffer *src, unsigned long dst_offset,
802 		     unsigned long src_offset, int nr_items)
803 {
804 	int ret = 0;
805 	struct tree_mod_elem **tm_list = NULL;
806 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
807 	int i;
808 	int locked = 0;
809 
810 	if (!tree_mod_need_log(fs_info, NULL))
811 		return 0;
812 
813 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
814 		return 0;
815 
816 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
817 			  GFP_NOFS);
818 	if (!tm_list)
819 		return -ENOMEM;
820 
821 	tm_list_add = tm_list;
822 	tm_list_rem = tm_list + nr_items;
823 	for (i = 0; i < nr_items; i++) {
824 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
825 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
826 		if (!tm_list_rem[i]) {
827 			ret = -ENOMEM;
828 			goto free_tms;
829 		}
830 
831 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
832 		    MOD_LOG_KEY_ADD, GFP_NOFS);
833 		if (!tm_list_add[i]) {
834 			ret = -ENOMEM;
835 			goto free_tms;
836 		}
837 	}
838 
839 	if (tree_mod_dont_log(fs_info, NULL))
840 		goto free_tms;
841 	locked = 1;
842 
843 	for (i = 0; i < nr_items; i++) {
844 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
845 		if (ret)
846 			goto free_tms;
847 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
848 		if (ret)
849 			goto free_tms;
850 	}
851 
852 	tree_mod_log_write_unlock(fs_info);
853 	kfree(tm_list);
854 
855 	return 0;
856 
857 free_tms:
858 	for (i = 0; i < nr_items * 2; i++) {
859 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
860 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
861 		kfree(tm_list[i]);
862 	}
863 	if (locked)
864 		tree_mod_log_write_unlock(fs_info);
865 	kfree(tm_list);
866 
867 	return ret;
868 }
869 
870 static inline void
871 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
872 		     int dst_offset, int src_offset, int nr_items)
873 {
874 	int ret;
875 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
876 				       nr_items);
877 	BUG_ON(ret < 0);
878 }
879 
880 static noinline void
881 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
882 			  struct extent_buffer *eb, int slot, int atomic)
883 {
884 	int ret;
885 
886 	ret = tree_mod_log_insert_key(fs_info, eb, slot,
887 					MOD_LOG_KEY_REPLACE,
888 					atomic ? GFP_ATOMIC : GFP_NOFS);
889 	BUG_ON(ret < 0);
890 }
891 
892 static noinline int
893 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
894 {
895 	struct tree_mod_elem **tm_list = NULL;
896 	int nritems = 0;
897 	int i;
898 	int ret = 0;
899 
900 	if (btrfs_header_level(eb) == 0)
901 		return 0;
902 
903 	if (!tree_mod_need_log(fs_info, NULL))
904 		return 0;
905 
906 	nritems = btrfs_header_nritems(eb);
907 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
908 	if (!tm_list)
909 		return -ENOMEM;
910 
911 	for (i = 0; i < nritems; i++) {
912 		tm_list[i] = alloc_tree_mod_elem(eb, i,
913 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
914 		if (!tm_list[i]) {
915 			ret = -ENOMEM;
916 			goto free_tms;
917 		}
918 	}
919 
920 	if (tree_mod_dont_log(fs_info, eb))
921 		goto free_tms;
922 
923 	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
924 	tree_mod_log_write_unlock(fs_info);
925 	if (ret)
926 		goto free_tms;
927 	kfree(tm_list);
928 
929 	return 0;
930 
931 free_tms:
932 	for (i = 0; i < nritems; i++)
933 		kfree(tm_list[i]);
934 	kfree(tm_list);
935 
936 	return ret;
937 }
938 
939 static noinline void
940 tree_mod_log_set_root_pointer(struct btrfs_root *root,
941 			      struct extent_buffer *new_root_node,
942 			      int log_removal)
943 {
944 	int ret;
945 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
946 				       new_root_node, log_removal);
947 	BUG_ON(ret < 0);
948 }
949 
950 /*
951  * check if the tree block can be shared by multiple trees
952  */
953 int btrfs_block_can_be_shared(struct btrfs_root *root,
954 			      struct extent_buffer *buf)
955 {
956 	/*
957 	 * Tree blocks not in reference counted trees and tree roots
958 	 * are never shared. If a block was allocated after the last
959 	 * snapshot and the block was not allocated by tree relocation,
960 	 * we know the block is not shared.
961 	 */
962 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
963 	    buf != root->node && buf != root->commit_root &&
964 	    (btrfs_header_generation(buf) <=
965 	     btrfs_root_last_snapshot(&root->root_item) ||
966 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
967 		return 1;
968 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
969 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
970 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
971 		return 1;
972 #endif
973 	return 0;
974 }
975 
976 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
977 				       struct btrfs_root *root,
978 				       struct extent_buffer *buf,
979 				       struct extent_buffer *cow,
980 				       int *last_ref)
981 {
982 	struct btrfs_fs_info *fs_info = root->fs_info;
983 	u64 refs;
984 	u64 owner;
985 	u64 flags;
986 	u64 new_flags = 0;
987 	int ret;
988 
989 	/*
990 	 * Backrefs update rules:
991 	 *
992 	 * Always use full backrefs for extent pointers in tree block
993 	 * allocated by tree relocation.
994 	 *
995 	 * If a shared tree block is no longer referenced by its owner
996 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 	 * use full backrefs for extent pointers in tree block.
998 	 *
999 	 * If a tree block is been relocating
1000 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 	 * use full backrefs for extent pointers in tree block.
1002 	 * The reason for this is some operations (such as drop tree)
1003 	 * are only allowed for blocks use full backrefs.
1004 	 */
1005 
1006 	if (btrfs_block_can_be_shared(root, buf)) {
1007 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
1008 					       btrfs_header_level(buf), 1,
1009 					       &refs, &flags);
1010 		if (ret)
1011 			return ret;
1012 		if (refs == 0) {
1013 			ret = -EROFS;
1014 			btrfs_handle_fs_error(fs_info, ret, NULL);
1015 			return ret;
1016 		}
1017 	} else {
1018 		refs = 1;
1019 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 		else
1023 			flags = 0;
1024 	}
1025 
1026 	owner = btrfs_header_owner(buf);
1027 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029 
1030 	if (refs > 1) {
1031 		if ((owner == root->root_key.objectid ||
1032 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 			ret = btrfs_inc_ref(trans, root, buf, 1);
1035 			if (ret)
1036 				return ret;
1037 
1038 			if (root->root_key.objectid ==
1039 			    BTRFS_TREE_RELOC_OBJECTID) {
1040 				ret = btrfs_dec_ref(trans, root, buf, 0);
1041 				if (ret)
1042 					return ret;
1043 				ret = btrfs_inc_ref(trans, root, cow, 1);
1044 				if (ret)
1045 					return ret;
1046 			}
1047 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1048 		} else {
1049 
1050 			if (root->root_key.objectid ==
1051 			    BTRFS_TREE_RELOC_OBJECTID)
1052 				ret = btrfs_inc_ref(trans, root, cow, 1);
1053 			else
1054 				ret = btrfs_inc_ref(trans, root, cow, 0);
1055 			if (ret)
1056 				return ret;
1057 		}
1058 		if (new_flags != 0) {
1059 			int level = btrfs_header_level(buf);
1060 
1061 			ret = btrfs_set_disk_extent_flags(trans, fs_info,
1062 							  buf->start,
1063 							  buf->len,
1064 							  new_flags, level, 0);
1065 			if (ret)
1066 				return ret;
1067 		}
1068 	} else {
1069 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1070 			if (root->root_key.objectid ==
1071 			    BTRFS_TREE_RELOC_OBJECTID)
1072 				ret = btrfs_inc_ref(trans, root, cow, 1);
1073 			else
1074 				ret = btrfs_inc_ref(trans, root, cow, 0);
1075 			if (ret)
1076 				return ret;
1077 			ret = btrfs_dec_ref(trans, root, buf, 1);
1078 			if (ret)
1079 				return ret;
1080 		}
1081 		clean_tree_block(fs_info, buf);
1082 		*last_ref = 1;
1083 	}
1084 	return 0;
1085 }
1086 
1087 /*
1088  * does the dirty work in cow of a single block.  The parent block (if
1089  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1090  * dirty and returned locked.  If you modify the block it needs to be marked
1091  * dirty again.
1092  *
1093  * search_start -- an allocation hint for the new block
1094  *
1095  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1096  * bytes the allocator should try to find free next to the block it returns.
1097  * This is just a hint and may be ignored by the allocator.
1098  */
1099 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1100 			     struct btrfs_root *root,
1101 			     struct extent_buffer *buf,
1102 			     struct extent_buffer *parent, int parent_slot,
1103 			     struct extent_buffer **cow_ret,
1104 			     u64 search_start, u64 empty_size)
1105 {
1106 	struct btrfs_fs_info *fs_info = root->fs_info;
1107 	struct btrfs_disk_key disk_key;
1108 	struct extent_buffer *cow;
1109 	int level, ret;
1110 	int last_ref = 0;
1111 	int unlock_orig = 0;
1112 	u64 parent_start = 0;
1113 
1114 	if (*cow_ret == buf)
1115 		unlock_orig = 1;
1116 
1117 	btrfs_assert_tree_locked(buf);
1118 
1119 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1120 		trans->transid != fs_info->running_transaction->transid);
1121 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1122 		trans->transid != root->last_trans);
1123 
1124 	level = btrfs_header_level(buf);
1125 
1126 	if (level == 0)
1127 		btrfs_item_key(buf, &disk_key, 0);
1128 	else
1129 		btrfs_node_key(buf, &disk_key, 0);
1130 
1131 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1132 		parent_start = parent->start;
1133 
1134 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1135 			root->root_key.objectid, &disk_key, level,
1136 			search_start, empty_size);
1137 	if (IS_ERR(cow))
1138 		return PTR_ERR(cow);
1139 
1140 	/* cow is set to blocking by btrfs_init_new_buffer */
1141 
1142 	copy_extent_buffer_full(cow, buf);
1143 	btrfs_set_header_bytenr(cow, cow->start);
1144 	btrfs_set_header_generation(cow, trans->transid);
1145 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1146 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1147 				     BTRFS_HEADER_FLAG_RELOC);
1148 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1149 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1150 	else
1151 		btrfs_set_header_owner(cow, root->root_key.objectid);
1152 
1153 	write_extent_buffer_fsid(cow, fs_info->fsid);
1154 
1155 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1156 	if (ret) {
1157 		btrfs_abort_transaction(trans, ret);
1158 		return ret;
1159 	}
1160 
1161 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1162 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1163 		if (ret) {
1164 			btrfs_abort_transaction(trans, ret);
1165 			return ret;
1166 		}
1167 	}
1168 
1169 	if (buf == root->node) {
1170 		WARN_ON(parent && parent != buf);
1171 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1172 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1173 			parent_start = buf->start;
1174 
1175 		extent_buffer_get(cow);
1176 		tree_mod_log_set_root_pointer(root, cow, 1);
1177 		rcu_assign_pointer(root->node, cow);
1178 
1179 		btrfs_free_tree_block(trans, root, buf, parent_start,
1180 				      last_ref);
1181 		free_extent_buffer(buf);
1182 		add_root_to_dirty_list(root);
1183 	} else {
1184 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1185 		tree_mod_log_insert_key(fs_info, parent, parent_slot,
1186 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1187 		btrfs_set_node_blockptr(parent, parent_slot,
1188 					cow->start);
1189 		btrfs_set_node_ptr_generation(parent, parent_slot,
1190 					      trans->transid);
1191 		btrfs_mark_buffer_dirty(parent);
1192 		if (last_ref) {
1193 			ret = tree_mod_log_free_eb(fs_info, buf);
1194 			if (ret) {
1195 				btrfs_abort_transaction(trans, ret);
1196 				return ret;
1197 			}
1198 		}
1199 		btrfs_free_tree_block(trans, root, buf, parent_start,
1200 				      last_ref);
1201 	}
1202 	if (unlock_orig)
1203 		btrfs_tree_unlock(buf);
1204 	free_extent_buffer_stale(buf);
1205 	btrfs_mark_buffer_dirty(cow);
1206 	*cow_ret = cow;
1207 	return 0;
1208 }
1209 
1210 /*
1211  * returns the logical address of the oldest predecessor of the given root.
1212  * entries older than time_seq are ignored.
1213  */
1214 static struct tree_mod_elem *
1215 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1216 			   struct extent_buffer *eb_root, u64 time_seq)
1217 {
1218 	struct tree_mod_elem *tm;
1219 	struct tree_mod_elem *found = NULL;
1220 	u64 root_logical = eb_root->start;
1221 	int looped = 0;
1222 
1223 	if (!time_seq)
1224 		return NULL;
1225 
1226 	/*
1227 	 * the very last operation that's logged for a root is the
1228 	 * replacement operation (if it is replaced at all). this has
1229 	 * the logical address of the *new* root, making it the very
1230 	 * first operation that's logged for this root.
1231 	 */
1232 	while (1) {
1233 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1234 						time_seq);
1235 		if (!looped && !tm)
1236 			return NULL;
1237 		/*
1238 		 * if there are no tree operation for the oldest root, we simply
1239 		 * return it. this should only happen if that (old) root is at
1240 		 * level 0.
1241 		 */
1242 		if (!tm)
1243 			break;
1244 
1245 		/*
1246 		 * if there's an operation that's not a root replacement, we
1247 		 * found the oldest version of our root. normally, we'll find a
1248 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1249 		 */
1250 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1251 			break;
1252 
1253 		found = tm;
1254 		root_logical = tm->old_root.logical;
1255 		looped = 1;
1256 	}
1257 
1258 	/* if there's no old root to return, return what we found instead */
1259 	if (!found)
1260 		found = tm;
1261 
1262 	return found;
1263 }
1264 
1265 /*
1266  * tm is a pointer to the first operation to rewind within eb. then, all
1267  * previous operations will be rewound (until we reach something older than
1268  * time_seq).
1269  */
1270 static void
1271 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1272 		      u64 time_seq, struct tree_mod_elem *first_tm)
1273 {
1274 	u32 n;
1275 	struct rb_node *next;
1276 	struct tree_mod_elem *tm = first_tm;
1277 	unsigned long o_dst;
1278 	unsigned long o_src;
1279 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1280 
1281 	n = btrfs_header_nritems(eb);
1282 	tree_mod_log_read_lock(fs_info);
1283 	while (tm && tm->seq >= time_seq) {
1284 		/*
1285 		 * all the operations are recorded with the operator used for
1286 		 * the modification. as we're going backwards, we do the
1287 		 * opposite of each operation here.
1288 		 */
1289 		switch (tm->op) {
1290 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1291 			BUG_ON(tm->slot < n);
1292 			/* Fallthrough */
1293 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1294 		case MOD_LOG_KEY_REMOVE:
1295 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1296 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1297 			btrfs_set_node_ptr_generation(eb, tm->slot,
1298 						      tm->generation);
1299 			n++;
1300 			break;
1301 		case MOD_LOG_KEY_REPLACE:
1302 			BUG_ON(tm->slot >= n);
1303 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1304 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1305 			btrfs_set_node_ptr_generation(eb, tm->slot,
1306 						      tm->generation);
1307 			break;
1308 		case MOD_LOG_KEY_ADD:
1309 			/* if a move operation is needed it's in the log */
1310 			n--;
1311 			break;
1312 		case MOD_LOG_MOVE_KEYS:
1313 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1314 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1315 			memmove_extent_buffer(eb, o_dst, o_src,
1316 					      tm->move.nr_items * p_size);
1317 			break;
1318 		case MOD_LOG_ROOT_REPLACE:
1319 			/*
1320 			 * this operation is special. for roots, this must be
1321 			 * handled explicitly before rewinding.
1322 			 * for non-roots, this operation may exist if the node
1323 			 * was a root: root A -> child B; then A gets empty and
1324 			 * B is promoted to the new root. in the mod log, we'll
1325 			 * have a root-replace operation for B, a tree block
1326 			 * that is no root. we simply ignore that operation.
1327 			 */
1328 			break;
1329 		}
1330 		next = rb_next(&tm->node);
1331 		if (!next)
1332 			break;
1333 		tm = rb_entry(next, struct tree_mod_elem, node);
1334 		if (tm->logical != first_tm->logical)
1335 			break;
1336 	}
1337 	tree_mod_log_read_unlock(fs_info);
1338 	btrfs_set_header_nritems(eb, n);
1339 }
1340 
1341 /*
1342  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1343  * is returned. If rewind operations happen, a fresh buffer is returned. The
1344  * returned buffer is always read-locked. If the returned buffer is not the
1345  * input buffer, the lock on the input buffer is released and the input buffer
1346  * is freed (its refcount is decremented).
1347  */
1348 static struct extent_buffer *
1349 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1350 		    struct extent_buffer *eb, u64 time_seq)
1351 {
1352 	struct extent_buffer *eb_rewin;
1353 	struct tree_mod_elem *tm;
1354 
1355 	if (!time_seq)
1356 		return eb;
1357 
1358 	if (btrfs_header_level(eb) == 0)
1359 		return eb;
1360 
1361 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1362 	if (!tm)
1363 		return eb;
1364 
1365 	btrfs_set_path_blocking(path);
1366 	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1367 
1368 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1369 		BUG_ON(tm->slot != 0);
1370 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1371 		if (!eb_rewin) {
1372 			btrfs_tree_read_unlock_blocking(eb);
1373 			free_extent_buffer(eb);
1374 			return NULL;
1375 		}
1376 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1377 		btrfs_set_header_backref_rev(eb_rewin,
1378 					     btrfs_header_backref_rev(eb));
1379 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1380 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1381 	} else {
1382 		eb_rewin = btrfs_clone_extent_buffer(eb);
1383 		if (!eb_rewin) {
1384 			btrfs_tree_read_unlock_blocking(eb);
1385 			free_extent_buffer(eb);
1386 			return NULL;
1387 		}
1388 	}
1389 
1390 	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1391 	btrfs_tree_read_unlock_blocking(eb);
1392 	free_extent_buffer(eb);
1393 
1394 	extent_buffer_get(eb_rewin);
1395 	btrfs_tree_read_lock(eb_rewin);
1396 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1397 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1398 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1399 
1400 	return eb_rewin;
1401 }
1402 
1403 /*
1404  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1405  * value. If there are no changes, the current root->root_node is returned. If
1406  * anything changed in between, there's a fresh buffer allocated on which the
1407  * rewind operations are done. In any case, the returned buffer is read locked.
1408  * Returns NULL on error (with no locks held).
1409  */
1410 static inline struct extent_buffer *
1411 get_old_root(struct btrfs_root *root, u64 time_seq)
1412 {
1413 	struct btrfs_fs_info *fs_info = root->fs_info;
1414 	struct tree_mod_elem *tm;
1415 	struct extent_buffer *eb = NULL;
1416 	struct extent_buffer *eb_root;
1417 	struct extent_buffer *old;
1418 	struct tree_mod_root *old_root = NULL;
1419 	u64 old_generation = 0;
1420 	u64 logical;
1421 
1422 	eb_root = btrfs_read_lock_root_node(root);
1423 	tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
1424 	if (!tm)
1425 		return eb_root;
1426 
1427 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1428 		old_root = &tm->old_root;
1429 		old_generation = tm->generation;
1430 		logical = old_root->logical;
1431 	} else {
1432 		logical = eb_root->start;
1433 	}
1434 
1435 	tm = tree_mod_log_search(fs_info, logical, time_seq);
1436 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1437 		btrfs_tree_read_unlock(eb_root);
1438 		free_extent_buffer(eb_root);
1439 		old = read_tree_block(fs_info, logical, 0);
1440 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1441 			if (!IS_ERR(old))
1442 				free_extent_buffer(old);
1443 			btrfs_warn(fs_info,
1444 				   "failed to read tree block %llu from get_old_root",
1445 				   logical);
1446 		} else {
1447 			eb = btrfs_clone_extent_buffer(old);
1448 			free_extent_buffer(old);
1449 		}
1450 	} else if (old_root) {
1451 		btrfs_tree_read_unlock(eb_root);
1452 		free_extent_buffer(eb_root);
1453 		eb = alloc_dummy_extent_buffer(fs_info, logical);
1454 	} else {
1455 		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1456 		eb = btrfs_clone_extent_buffer(eb_root);
1457 		btrfs_tree_read_unlock_blocking(eb_root);
1458 		free_extent_buffer(eb_root);
1459 	}
1460 
1461 	if (!eb)
1462 		return NULL;
1463 	extent_buffer_get(eb);
1464 	btrfs_tree_read_lock(eb);
1465 	if (old_root) {
1466 		btrfs_set_header_bytenr(eb, eb->start);
1467 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1468 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1469 		btrfs_set_header_level(eb, old_root->level);
1470 		btrfs_set_header_generation(eb, old_generation);
1471 	}
1472 	if (tm)
1473 		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1474 	else
1475 		WARN_ON(btrfs_header_level(eb) != 0);
1476 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1477 
1478 	return eb;
1479 }
1480 
1481 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1482 {
1483 	struct tree_mod_elem *tm;
1484 	int level;
1485 	struct extent_buffer *eb_root = btrfs_root_node(root);
1486 
1487 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1488 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1489 		level = tm->old_root.level;
1490 	} else {
1491 		level = btrfs_header_level(eb_root);
1492 	}
1493 	free_extent_buffer(eb_root);
1494 
1495 	return level;
1496 }
1497 
1498 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1499 				   struct btrfs_root *root,
1500 				   struct extent_buffer *buf)
1501 {
1502 	if (btrfs_is_testing(root->fs_info))
1503 		return 0;
1504 
1505 	/* ensure we can see the force_cow */
1506 	smp_rmb();
1507 
1508 	/*
1509 	 * We do not need to cow a block if
1510 	 * 1) this block is not created or changed in this transaction;
1511 	 * 2) this block does not belong to TREE_RELOC tree;
1512 	 * 3) the root is not forced COW.
1513 	 *
1514 	 * What is forced COW:
1515 	 *    when we create snapshot during committing the transaction,
1516 	 *    after we've finished coping src root, we must COW the shared
1517 	 *    block to ensure the metadata consistency.
1518 	 */
1519 	if (btrfs_header_generation(buf) == trans->transid &&
1520 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1521 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1522 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1523 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1524 		return 0;
1525 	return 1;
1526 }
1527 
1528 /*
1529  * cows a single block, see __btrfs_cow_block for the real work.
1530  * This version of it has extra checks so that a block isn't COWed more than
1531  * once per transaction, as long as it hasn't been written yet
1532  */
1533 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1534 		    struct btrfs_root *root, struct extent_buffer *buf,
1535 		    struct extent_buffer *parent, int parent_slot,
1536 		    struct extent_buffer **cow_ret)
1537 {
1538 	struct btrfs_fs_info *fs_info = root->fs_info;
1539 	u64 search_start;
1540 	int ret;
1541 
1542 	if (trans->transaction != fs_info->running_transaction)
1543 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1544 		       trans->transid,
1545 		       fs_info->running_transaction->transid);
1546 
1547 	if (trans->transid != fs_info->generation)
1548 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549 		       trans->transid, fs_info->generation);
1550 
1551 	if (!should_cow_block(trans, root, buf)) {
1552 		trans->dirty = true;
1553 		*cow_ret = buf;
1554 		return 0;
1555 	}
1556 
1557 	search_start = buf->start & ~((u64)SZ_1G - 1);
1558 
1559 	if (parent)
1560 		btrfs_set_lock_blocking(parent);
1561 	btrfs_set_lock_blocking(buf);
1562 
1563 	ret = __btrfs_cow_block(trans, root, buf, parent,
1564 				 parent_slot, cow_ret, search_start, 0);
1565 
1566 	trace_btrfs_cow_block(root, buf, *cow_ret);
1567 
1568 	return ret;
1569 }
1570 
1571 /*
1572  * helper function for defrag to decide if two blocks pointed to by a
1573  * node are actually close by
1574  */
1575 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1576 {
1577 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1578 		return 1;
1579 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1580 		return 1;
1581 	return 0;
1582 }
1583 
1584 /*
1585  * compare two keys in a memcmp fashion
1586  */
1587 static int comp_keys(const struct btrfs_disk_key *disk,
1588 		     const struct btrfs_key *k2)
1589 {
1590 	struct btrfs_key k1;
1591 
1592 	btrfs_disk_key_to_cpu(&k1, disk);
1593 
1594 	return btrfs_comp_cpu_keys(&k1, k2);
1595 }
1596 
1597 /*
1598  * same as comp_keys only with two btrfs_key's
1599  */
1600 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1601 {
1602 	if (k1->objectid > k2->objectid)
1603 		return 1;
1604 	if (k1->objectid < k2->objectid)
1605 		return -1;
1606 	if (k1->type > k2->type)
1607 		return 1;
1608 	if (k1->type < k2->type)
1609 		return -1;
1610 	if (k1->offset > k2->offset)
1611 		return 1;
1612 	if (k1->offset < k2->offset)
1613 		return -1;
1614 	return 0;
1615 }
1616 
1617 /*
1618  * this is used by the defrag code to go through all the
1619  * leaves pointed to by a node and reallocate them so that
1620  * disk order is close to key order
1621  */
1622 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1623 		       struct btrfs_root *root, struct extent_buffer *parent,
1624 		       int start_slot, u64 *last_ret,
1625 		       struct btrfs_key *progress)
1626 {
1627 	struct btrfs_fs_info *fs_info = root->fs_info;
1628 	struct extent_buffer *cur;
1629 	u64 blocknr;
1630 	u64 gen;
1631 	u64 search_start = *last_ret;
1632 	u64 last_block = 0;
1633 	u64 other;
1634 	u32 parent_nritems;
1635 	int end_slot;
1636 	int i;
1637 	int err = 0;
1638 	int parent_level;
1639 	int uptodate;
1640 	u32 blocksize;
1641 	int progress_passed = 0;
1642 	struct btrfs_disk_key disk_key;
1643 
1644 	parent_level = btrfs_header_level(parent);
1645 
1646 	WARN_ON(trans->transaction != fs_info->running_transaction);
1647 	WARN_ON(trans->transid != fs_info->generation);
1648 
1649 	parent_nritems = btrfs_header_nritems(parent);
1650 	blocksize = fs_info->nodesize;
1651 	end_slot = parent_nritems - 1;
1652 
1653 	if (parent_nritems <= 1)
1654 		return 0;
1655 
1656 	btrfs_set_lock_blocking(parent);
1657 
1658 	for (i = start_slot; i <= end_slot; i++) {
1659 		int close = 1;
1660 
1661 		btrfs_node_key(parent, &disk_key, i);
1662 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1663 			continue;
1664 
1665 		progress_passed = 1;
1666 		blocknr = btrfs_node_blockptr(parent, i);
1667 		gen = btrfs_node_ptr_generation(parent, i);
1668 		if (last_block == 0)
1669 			last_block = blocknr;
1670 
1671 		if (i > 0) {
1672 			other = btrfs_node_blockptr(parent, i - 1);
1673 			close = close_blocks(blocknr, other, blocksize);
1674 		}
1675 		if (!close && i < end_slot) {
1676 			other = btrfs_node_blockptr(parent, i + 1);
1677 			close = close_blocks(blocknr, other, blocksize);
1678 		}
1679 		if (close) {
1680 			last_block = blocknr;
1681 			continue;
1682 		}
1683 
1684 		cur = find_extent_buffer(fs_info, blocknr);
1685 		if (cur)
1686 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1687 		else
1688 			uptodate = 0;
1689 		if (!cur || !uptodate) {
1690 			if (!cur) {
1691 				cur = read_tree_block(fs_info, blocknr, gen);
1692 				if (IS_ERR(cur)) {
1693 					return PTR_ERR(cur);
1694 				} else if (!extent_buffer_uptodate(cur)) {
1695 					free_extent_buffer(cur);
1696 					return -EIO;
1697 				}
1698 			} else if (!uptodate) {
1699 				err = btrfs_read_buffer(cur, gen);
1700 				if (err) {
1701 					free_extent_buffer(cur);
1702 					return err;
1703 				}
1704 			}
1705 		}
1706 		if (search_start == 0)
1707 			search_start = last_block;
1708 
1709 		btrfs_tree_lock(cur);
1710 		btrfs_set_lock_blocking(cur);
1711 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1712 					&cur, search_start,
1713 					min(16 * blocksize,
1714 					    (end_slot - i) * blocksize));
1715 		if (err) {
1716 			btrfs_tree_unlock(cur);
1717 			free_extent_buffer(cur);
1718 			break;
1719 		}
1720 		search_start = cur->start;
1721 		last_block = cur->start;
1722 		*last_ret = search_start;
1723 		btrfs_tree_unlock(cur);
1724 		free_extent_buffer(cur);
1725 	}
1726 	return err;
1727 }
1728 
1729 /*
1730  * search for key in the extent_buffer.  The items start at offset p,
1731  * and they are item_size apart.  There are 'max' items in p.
1732  *
1733  * the slot in the array is returned via slot, and it points to
1734  * the place where you would insert key if it is not found in
1735  * the array.
1736  *
1737  * slot may point to max if the key is bigger than all of the keys
1738  */
1739 static noinline int generic_bin_search(struct extent_buffer *eb,
1740 				       unsigned long p, int item_size,
1741 				       const struct btrfs_key *key,
1742 				       int max, int *slot)
1743 {
1744 	int low = 0;
1745 	int high = max;
1746 	int mid;
1747 	int ret;
1748 	struct btrfs_disk_key *tmp = NULL;
1749 	struct btrfs_disk_key unaligned;
1750 	unsigned long offset;
1751 	char *kaddr = NULL;
1752 	unsigned long map_start = 0;
1753 	unsigned long map_len = 0;
1754 	int err;
1755 
1756 	if (low > high) {
1757 		btrfs_err(eb->fs_info,
1758 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1759 			  __func__, low, high, eb->start,
1760 			  btrfs_header_owner(eb), btrfs_header_level(eb));
1761 		return -EINVAL;
1762 	}
1763 
1764 	while (low < high) {
1765 		mid = (low + high) / 2;
1766 		offset = p + mid * item_size;
1767 
1768 		if (!kaddr || offset < map_start ||
1769 		    (offset + sizeof(struct btrfs_disk_key)) >
1770 		    map_start + map_len) {
1771 
1772 			err = map_private_extent_buffer(eb, offset,
1773 						sizeof(struct btrfs_disk_key),
1774 						&kaddr, &map_start, &map_len);
1775 
1776 			if (!err) {
1777 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1778 							map_start);
1779 			} else if (err == 1) {
1780 				read_extent_buffer(eb, &unaligned,
1781 						   offset, sizeof(unaligned));
1782 				tmp = &unaligned;
1783 			} else {
1784 				return err;
1785 			}
1786 
1787 		} else {
1788 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1789 							map_start);
1790 		}
1791 		ret = comp_keys(tmp, key);
1792 
1793 		if (ret < 0)
1794 			low = mid + 1;
1795 		else if (ret > 0)
1796 			high = mid;
1797 		else {
1798 			*slot = mid;
1799 			return 0;
1800 		}
1801 	}
1802 	*slot = low;
1803 	return 1;
1804 }
1805 
1806 /*
1807  * simple bin_search frontend that does the right thing for
1808  * leaves vs nodes
1809  */
1810 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1811 		     int level, int *slot)
1812 {
1813 	if (level == 0)
1814 		return generic_bin_search(eb,
1815 					  offsetof(struct btrfs_leaf, items),
1816 					  sizeof(struct btrfs_item),
1817 					  key, btrfs_header_nritems(eb),
1818 					  slot);
1819 	else
1820 		return generic_bin_search(eb,
1821 					  offsetof(struct btrfs_node, ptrs),
1822 					  sizeof(struct btrfs_key_ptr),
1823 					  key, btrfs_header_nritems(eb),
1824 					  slot);
1825 }
1826 
1827 static void root_add_used(struct btrfs_root *root, u32 size)
1828 {
1829 	spin_lock(&root->accounting_lock);
1830 	btrfs_set_root_used(&root->root_item,
1831 			    btrfs_root_used(&root->root_item) + size);
1832 	spin_unlock(&root->accounting_lock);
1833 }
1834 
1835 static void root_sub_used(struct btrfs_root *root, u32 size)
1836 {
1837 	spin_lock(&root->accounting_lock);
1838 	btrfs_set_root_used(&root->root_item,
1839 			    btrfs_root_used(&root->root_item) - size);
1840 	spin_unlock(&root->accounting_lock);
1841 }
1842 
1843 /* given a node and slot number, this reads the blocks it points to.  The
1844  * extent buffer is returned with a reference taken (but unlocked).
1845  */
1846 static noinline struct extent_buffer *
1847 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1848 	       int slot)
1849 {
1850 	int level = btrfs_header_level(parent);
1851 	struct extent_buffer *eb;
1852 
1853 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1854 		return ERR_PTR(-ENOENT);
1855 
1856 	BUG_ON(level == 0);
1857 
1858 	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1859 			     btrfs_node_ptr_generation(parent, slot));
1860 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1861 		free_extent_buffer(eb);
1862 		eb = ERR_PTR(-EIO);
1863 	}
1864 
1865 	return eb;
1866 }
1867 
1868 /*
1869  * node level balancing, used to make sure nodes are in proper order for
1870  * item deletion.  We balance from the top down, so we have to make sure
1871  * that a deletion won't leave an node completely empty later on.
1872  */
1873 static noinline int balance_level(struct btrfs_trans_handle *trans,
1874 			 struct btrfs_root *root,
1875 			 struct btrfs_path *path, int level)
1876 {
1877 	struct btrfs_fs_info *fs_info = root->fs_info;
1878 	struct extent_buffer *right = NULL;
1879 	struct extent_buffer *mid;
1880 	struct extent_buffer *left = NULL;
1881 	struct extent_buffer *parent = NULL;
1882 	int ret = 0;
1883 	int wret;
1884 	int pslot;
1885 	int orig_slot = path->slots[level];
1886 	u64 orig_ptr;
1887 
1888 	if (level == 0)
1889 		return 0;
1890 
1891 	mid = path->nodes[level];
1892 
1893 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1894 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1895 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1896 
1897 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1898 
1899 	if (level < BTRFS_MAX_LEVEL - 1) {
1900 		parent = path->nodes[level + 1];
1901 		pslot = path->slots[level + 1];
1902 	}
1903 
1904 	/*
1905 	 * deal with the case where there is only one pointer in the root
1906 	 * by promoting the node below to a root
1907 	 */
1908 	if (!parent) {
1909 		struct extent_buffer *child;
1910 
1911 		if (btrfs_header_nritems(mid) != 1)
1912 			return 0;
1913 
1914 		/* promote the child to a root */
1915 		child = read_node_slot(fs_info, mid, 0);
1916 		if (IS_ERR(child)) {
1917 			ret = PTR_ERR(child);
1918 			btrfs_handle_fs_error(fs_info, ret, NULL);
1919 			goto enospc;
1920 		}
1921 
1922 		btrfs_tree_lock(child);
1923 		btrfs_set_lock_blocking(child);
1924 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1925 		if (ret) {
1926 			btrfs_tree_unlock(child);
1927 			free_extent_buffer(child);
1928 			goto enospc;
1929 		}
1930 
1931 		tree_mod_log_set_root_pointer(root, child, 1);
1932 		rcu_assign_pointer(root->node, child);
1933 
1934 		add_root_to_dirty_list(root);
1935 		btrfs_tree_unlock(child);
1936 
1937 		path->locks[level] = 0;
1938 		path->nodes[level] = NULL;
1939 		clean_tree_block(fs_info, mid);
1940 		btrfs_tree_unlock(mid);
1941 		/* once for the path */
1942 		free_extent_buffer(mid);
1943 
1944 		root_sub_used(root, mid->len);
1945 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1946 		/* once for the root ptr */
1947 		free_extent_buffer_stale(mid);
1948 		return 0;
1949 	}
1950 	if (btrfs_header_nritems(mid) >
1951 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1952 		return 0;
1953 
1954 	left = read_node_slot(fs_info, parent, pslot - 1);
1955 	if (IS_ERR(left))
1956 		left = NULL;
1957 
1958 	if (left) {
1959 		btrfs_tree_lock(left);
1960 		btrfs_set_lock_blocking(left);
1961 		wret = btrfs_cow_block(trans, root, left,
1962 				       parent, pslot - 1, &left);
1963 		if (wret) {
1964 			ret = wret;
1965 			goto enospc;
1966 		}
1967 	}
1968 
1969 	right = read_node_slot(fs_info, parent, pslot + 1);
1970 	if (IS_ERR(right))
1971 		right = NULL;
1972 
1973 	if (right) {
1974 		btrfs_tree_lock(right);
1975 		btrfs_set_lock_blocking(right);
1976 		wret = btrfs_cow_block(trans, root, right,
1977 				       parent, pslot + 1, &right);
1978 		if (wret) {
1979 			ret = wret;
1980 			goto enospc;
1981 		}
1982 	}
1983 
1984 	/* first, try to make some room in the middle buffer */
1985 	if (left) {
1986 		orig_slot += btrfs_header_nritems(left);
1987 		wret = push_node_left(trans, fs_info, left, mid, 1);
1988 		if (wret < 0)
1989 			ret = wret;
1990 	}
1991 
1992 	/*
1993 	 * then try to empty the right most buffer into the middle
1994 	 */
1995 	if (right) {
1996 		wret = push_node_left(trans, fs_info, mid, right, 1);
1997 		if (wret < 0 && wret != -ENOSPC)
1998 			ret = wret;
1999 		if (btrfs_header_nritems(right) == 0) {
2000 			clean_tree_block(fs_info, right);
2001 			btrfs_tree_unlock(right);
2002 			del_ptr(root, path, level + 1, pslot + 1);
2003 			root_sub_used(root, right->len);
2004 			btrfs_free_tree_block(trans, root, right, 0, 1);
2005 			free_extent_buffer_stale(right);
2006 			right = NULL;
2007 		} else {
2008 			struct btrfs_disk_key right_key;
2009 			btrfs_node_key(right, &right_key, 0);
2010 			tree_mod_log_set_node_key(fs_info, parent,
2011 						  pslot + 1, 0);
2012 			btrfs_set_node_key(parent, &right_key, pslot + 1);
2013 			btrfs_mark_buffer_dirty(parent);
2014 		}
2015 	}
2016 	if (btrfs_header_nritems(mid) == 1) {
2017 		/*
2018 		 * we're not allowed to leave a node with one item in the
2019 		 * tree during a delete.  A deletion from lower in the tree
2020 		 * could try to delete the only pointer in this node.
2021 		 * So, pull some keys from the left.
2022 		 * There has to be a left pointer at this point because
2023 		 * otherwise we would have pulled some pointers from the
2024 		 * right
2025 		 */
2026 		if (!left) {
2027 			ret = -EROFS;
2028 			btrfs_handle_fs_error(fs_info, ret, NULL);
2029 			goto enospc;
2030 		}
2031 		wret = balance_node_right(trans, fs_info, mid, left);
2032 		if (wret < 0) {
2033 			ret = wret;
2034 			goto enospc;
2035 		}
2036 		if (wret == 1) {
2037 			wret = push_node_left(trans, fs_info, left, mid, 1);
2038 			if (wret < 0)
2039 				ret = wret;
2040 		}
2041 		BUG_ON(wret == 1);
2042 	}
2043 	if (btrfs_header_nritems(mid) == 0) {
2044 		clean_tree_block(fs_info, mid);
2045 		btrfs_tree_unlock(mid);
2046 		del_ptr(root, path, level + 1, pslot);
2047 		root_sub_used(root, mid->len);
2048 		btrfs_free_tree_block(trans, root, mid, 0, 1);
2049 		free_extent_buffer_stale(mid);
2050 		mid = NULL;
2051 	} else {
2052 		/* update the parent key to reflect our changes */
2053 		struct btrfs_disk_key mid_key;
2054 		btrfs_node_key(mid, &mid_key, 0);
2055 		tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2056 		btrfs_set_node_key(parent, &mid_key, pslot);
2057 		btrfs_mark_buffer_dirty(parent);
2058 	}
2059 
2060 	/* update the path */
2061 	if (left) {
2062 		if (btrfs_header_nritems(left) > orig_slot) {
2063 			extent_buffer_get(left);
2064 			/* left was locked after cow */
2065 			path->nodes[level] = left;
2066 			path->slots[level + 1] -= 1;
2067 			path->slots[level] = orig_slot;
2068 			if (mid) {
2069 				btrfs_tree_unlock(mid);
2070 				free_extent_buffer(mid);
2071 			}
2072 		} else {
2073 			orig_slot -= btrfs_header_nritems(left);
2074 			path->slots[level] = orig_slot;
2075 		}
2076 	}
2077 	/* double check we haven't messed things up */
2078 	if (orig_ptr !=
2079 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2080 		BUG();
2081 enospc:
2082 	if (right) {
2083 		btrfs_tree_unlock(right);
2084 		free_extent_buffer(right);
2085 	}
2086 	if (left) {
2087 		if (path->nodes[level] != left)
2088 			btrfs_tree_unlock(left);
2089 		free_extent_buffer(left);
2090 	}
2091 	return ret;
2092 }
2093 
2094 /* Node balancing for insertion.  Here we only split or push nodes around
2095  * when they are completely full.  This is also done top down, so we
2096  * have to be pessimistic.
2097  */
2098 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2099 					  struct btrfs_root *root,
2100 					  struct btrfs_path *path, int level)
2101 {
2102 	struct btrfs_fs_info *fs_info = root->fs_info;
2103 	struct extent_buffer *right = NULL;
2104 	struct extent_buffer *mid;
2105 	struct extent_buffer *left = NULL;
2106 	struct extent_buffer *parent = NULL;
2107 	int ret = 0;
2108 	int wret;
2109 	int pslot;
2110 	int orig_slot = path->slots[level];
2111 
2112 	if (level == 0)
2113 		return 1;
2114 
2115 	mid = path->nodes[level];
2116 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2117 
2118 	if (level < BTRFS_MAX_LEVEL - 1) {
2119 		parent = path->nodes[level + 1];
2120 		pslot = path->slots[level + 1];
2121 	}
2122 
2123 	if (!parent)
2124 		return 1;
2125 
2126 	left = read_node_slot(fs_info, parent, pslot - 1);
2127 	if (IS_ERR(left))
2128 		left = NULL;
2129 
2130 	/* first, try to make some room in the middle buffer */
2131 	if (left) {
2132 		u32 left_nr;
2133 
2134 		btrfs_tree_lock(left);
2135 		btrfs_set_lock_blocking(left);
2136 
2137 		left_nr = btrfs_header_nritems(left);
2138 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2139 			wret = 1;
2140 		} else {
2141 			ret = btrfs_cow_block(trans, root, left, parent,
2142 					      pslot - 1, &left);
2143 			if (ret)
2144 				wret = 1;
2145 			else {
2146 				wret = push_node_left(trans, fs_info,
2147 						      left, mid, 0);
2148 			}
2149 		}
2150 		if (wret < 0)
2151 			ret = wret;
2152 		if (wret == 0) {
2153 			struct btrfs_disk_key disk_key;
2154 			orig_slot += left_nr;
2155 			btrfs_node_key(mid, &disk_key, 0);
2156 			tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2157 			btrfs_set_node_key(parent, &disk_key, pslot);
2158 			btrfs_mark_buffer_dirty(parent);
2159 			if (btrfs_header_nritems(left) > orig_slot) {
2160 				path->nodes[level] = left;
2161 				path->slots[level + 1] -= 1;
2162 				path->slots[level] = orig_slot;
2163 				btrfs_tree_unlock(mid);
2164 				free_extent_buffer(mid);
2165 			} else {
2166 				orig_slot -=
2167 					btrfs_header_nritems(left);
2168 				path->slots[level] = orig_slot;
2169 				btrfs_tree_unlock(left);
2170 				free_extent_buffer(left);
2171 			}
2172 			return 0;
2173 		}
2174 		btrfs_tree_unlock(left);
2175 		free_extent_buffer(left);
2176 	}
2177 	right = read_node_slot(fs_info, parent, pslot + 1);
2178 	if (IS_ERR(right))
2179 		right = NULL;
2180 
2181 	/*
2182 	 * then try to empty the right most buffer into the middle
2183 	 */
2184 	if (right) {
2185 		u32 right_nr;
2186 
2187 		btrfs_tree_lock(right);
2188 		btrfs_set_lock_blocking(right);
2189 
2190 		right_nr = btrfs_header_nritems(right);
2191 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2192 			wret = 1;
2193 		} else {
2194 			ret = btrfs_cow_block(trans, root, right,
2195 					      parent, pslot + 1,
2196 					      &right);
2197 			if (ret)
2198 				wret = 1;
2199 			else {
2200 				wret = balance_node_right(trans, fs_info,
2201 							  right, mid);
2202 			}
2203 		}
2204 		if (wret < 0)
2205 			ret = wret;
2206 		if (wret == 0) {
2207 			struct btrfs_disk_key disk_key;
2208 
2209 			btrfs_node_key(right, &disk_key, 0);
2210 			tree_mod_log_set_node_key(fs_info, parent,
2211 						  pslot + 1, 0);
2212 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2213 			btrfs_mark_buffer_dirty(parent);
2214 
2215 			if (btrfs_header_nritems(mid) <= orig_slot) {
2216 				path->nodes[level] = right;
2217 				path->slots[level + 1] += 1;
2218 				path->slots[level] = orig_slot -
2219 					btrfs_header_nritems(mid);
2220 				btrfs_tree_unlock(mid);
2221 				free_extent_buffer(mid);
2222 			} else {
2223 				btrfs_tree_unlock(right);
2224 				free_extent_buffer(right);
2225 			}
2226 			return 0;
2227 		}
2228 		btrfs_tree_unlock(right);
2229 		free_extent_buffer(right);
2230 	}
2231 	return 1;
2232 }
2233 
2234 /*
2235  * readahead one full node of leaves, finding things that are close
2236  * to the block in 'slot', and triggering ra on them.
2237  */
2238 static void reada_for_search(struct btrfs_fs_info *fs_info,
2239 			     struct btrfs_path *path,
2240 			     int level, int slot, u64 objectid)
2241 {
2242 	struct extent_buffer *node;
2243 	struct btrfs_disk_key disk_key;
2244 	u32 nritems;
2245 	u64 search;
2246 	u64 target;
2247 	u64 nread = 0;
2248 	struct extent_buffer *eb;
2249 	u32 nr;
2250 	u32 blocksize;
2251 	u32 nscan = 0;
2252 
2253 	if (level != 1)
2254 		return;
2255 
2256 	if (!path->nodes[level])
2257 		return;
2258 
2259 	node = path->nodes[level];
2260 
2261 	search = btrfs_node_blockptr(node, slot);
2262 	blocksize = fs_info->nodesize;
2263 	eb = find_extent_buffer(fs_info, search);
2264 	if (eb) {
2265 		free_extent_buffer(eb);
2266 		return;
2267 	}
2268 
2269 	target = search;
2270 
2271 	nritems = btrfs_header_nritems(node);
2272 	nr = slot;
2273 
2274 	while (1) {
2275 		if (path->reada == READA_BACK) {
2276 			if (nr == 0)
2277 				break;
2278 			nr--;
2279 		} else if (path->reada == READA_FORWARD) {
2280 			nr++;
2281 			if (nr >= nritems)
2282 				break;
2283 		}
2284 		if (path->reada == READA_BACK && objectid) {
2285 			btrfs_node_key(node, &disk_key, nr);
2286 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2287 				break;
2288 		}
2289 		search = btrfs_node_blockptr(node, nr);
2290 		if ((search <= target && target - search <= 65536) ||
2291 		    (search > target && search - target <= 65536)) {
2292 			readahead_tree_block(fs_info, search);
2293 			nread += blocksize;
2294 		}
2295 		nscan++;
2296 		if ((nread > 65536 || nscan > 32))
2297 			break;
2298 	}
2299 }
2300 
2301 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2302 				       struct btrfs_path *path, int level)
2303 {
2304 	int slot;
2305 	int nritems;
2306 	struct extent_buffer *parent;
2307 	struct extent_buffer *eb;
2308 	u64 gen;
2309 	u64 block1 = 0;
2310 	u64 block2 = 0;
2311 
2312 	parent = path->nodes[level + 1];
2313 	if (!parent)
2314 		return;
2315 
2316 	nritems = btrfs_header_nritems(parent);
2317 	slot = path->slots[level + 1];
2318 
2319 	if (slot > 0) {
2320 		block1 = btrfs_node_blockptr(parent, slot - 1);
2321 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2322 		eb = find_extent_buffer(fs_info, block1);
2323 		/*
2324 		 * if we get -eagain from btrfs_buffer_uptodate, we
2325 		 * don't want to return eagain here.  That will loop
2326 		 * forever
2327 		 */
2328 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2329 			block1 = 0;
2330 		free_extent_buffer(eb);
2331 	}
2332 	if (slot + 1 < nritems) {
2333 		block2 = btrfs_node_blockptr(parent, slot + 1);
2334 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2335 		eb = find_extent_buffer(fs_info, block2);
2336 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2337 			block2 = 0;
2338 		free_extent_buffer(eb);
2339 	}
2340 
2341 	if (block1)
2342 		readahead_tree_block(fs_info, block1);
2343 	if (block2)
2344 		readahead_tree_block(fs_info, block2);
2345 }
2346 
2347 
2348 /*
2349  * when we walk down the tree, it is usually safe to unlock the higher layers
2350  * in the tree.  The exceptions are when our path goes through slot 0, because
2351  * operations on the tree might require changing key pointers higher up in the
2352  * tree.
2353  *
2354  * callers might also have set path->keep_locks, which tells this code to keep
2355  * the lock if the path points to the last slot in the block.  This is part of
2356  * walking through the tree, and selecting the next slot in the higher block.
2357  *
2358  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2359  * if lowest_unlock is 1, level 0 won't be unlocked
2360  */
2361 static noinline void unlock_up(struct btrfs_path *path, int level,
2362 			       int lowest_unlock, int min_write_lock_level,
2363 			       int *write_lock_level)
2364 {
2365 	int i;
2366 	int skip_level = level;
2367 	int no_skips = 0;
2368 	struct extent_buffer *t;
2369 
2370 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2371 		if (!path->nodes[i])
2372 			break;
2373 		if (!path->locks[i])
2374 			break;
2375 		if (!no_skips && path->slots[i] == 0) {
2376 			skip_level = i + 1;
2377 			continue;
2378 		}
2379 		if (!no_skips && path->keep_locks) {
2380 			u32 nritems;
2381 			t = path->nodes[i];
2382 			nritems = btrfs_header_nritems(t);
2383 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2384 				skip_level = i + 1;
2385 				continue;
2386 			}
2387 		}
2388 		if (skip_level < i && i >= lowest_unlock)
2389 			no_skips = 1;
2390 
2391 		t = path->nodes[i];
2392 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2393 			btrfs_tree_unlock_rw(t, path->locks[i]);
2394 			path->locks[i] = 0;
2395 			if (write_lock_level &&
2396 			    i > min_write_lock_level &&
2397 			    i <= *write_lock_level) {
2398 				*write_lock_level = i - 1;
2399 			}
2400 		}
2401 	}
2402 }
2403 
2404 /*
2405  * This releases any locks held in the path starting at level and
2406  * going all the way up to the root.
2407  *
2408  * btrfs_search_slot will keep the lock held on higher nodes in a few
2409  * corner cases, such as COW of the block at slot zero in the node.  This
2410  * ignores those rules, and it should only be called when there are no
2411  * more updates to be done higher up in the tree.
2412  */
2413 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2414 {
2415 	int i;
2416 
2417 	if (path->keep_locks)
2418 		return;
2419 
2420 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2421 		if (!path->nodes[i])
2422 			continue;
2423 		if (!path->locks[i])
2424 			continue;
2425 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2426 		path->locks[i] = 0;
2427 	}
2428 }
2429 
2430 /*
2431  * helper function for btrfs_search_slot.  The goal is to find a block
2432  * in cache without setting the path to blocking.  If we find the block
2433  * we return zero and the path is unchanged.
2434  *
2435  * If we can't find the block, we set the path blocking and do some
2436  * reada.  -EAGAIN is returned and the search must be repeated.
2437  */
2438 static int
2439 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2440 		      struct extent_buffer **eb_ret, int level, int slot,
2441 		      const struct btrfs_key *key)
2442 {
2443 	struct btrfs_fs_info *fs_info = root->fs_info;
2444 	u64 blocknr;
2445 	u64 gen;
2446 	struct extent_buffer *b = *eb_ret;
2447 	struct extent_buffer *tmp;
2448 	int ret;
2449 
2450 	blocknr = btrfs_node_blockptr(b, slot);
2451 	gen = btrfs_node_ptr_generation(b, slot);
2452 
2453 	tmp = find_extent_buffer(fs_info, blocknr);
2454 	if (tmp) {
2455 		/* first we do an atomic uptodate check */
2456 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2457 			*eb_ret = tmp;
2458 			return 0;
2459 		}
2460 
2461 		/* the pages were up to date, but we failed
2462 		 * the generation number check.  Do a full
2463 		 * read for the generation number that is correct.
2464 		 * We must do this without dropping locks so
2465 		 * we can trust our generation number
2466 		 */
2467 		btrfs_set_path_blocking(p);
2468 
2469 		/* now we're allowed to do a blocking uptodate check */
2470 		ret = btrfs_read_buffer(tmp, gen);
2471 		if (!ret) {
2472 			*eb_ret = tmp;
2473 			return 0;
2474 		}
2475 		free_extent_buffer(tmp);
2476 		btrfs_release_path(p);
2477 		return -EIO;
2478 	}
2479 
2480 	/*
2481 	 * reduce lock contention at high levels
2482 	 * of the btree by dropping locks before
2483 	 * we read.  Don't release the lock on the current
2484 	 * level because we need to walk this node to figure
2485 	 * out which blocks to read.
2486 	 */
2487 	btrfs_unlock_up_safe(p, level + 1);
2488 	btrfs_set_path_blocking(p);
2489 
2490 	free_extent_buffer(tmp);
2491 	if (p->reada != READA_NONE)
2492 		reada_for_search(fs_info, p, level, slot, key->objectid);
2493 
2494 	btrfs_release_path(p);
2495 
2496 	ret = -EAGAIN;
2497 	tmp = read_tree_block(fs_info, blocknr, 0);
2498 	if (!IS_ERR(tmp)) {
2499 		/*
2500 		 * If the read above didn't mark this buffer up to date,
2501 		 * it will never end up being up to date.  Set ret to EIO now
2502 		 * and give up so that our caller doesn't loop forever
2503 		 * on our EAGAINs.
2504 		 */
2505 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2506 			ret = -EIO;
2507 		free_extent_buffer(tmp);
2508 	} else {
2509 		ret = PTR_ERR(tmp);
2510 	}
2511 	return ret;
2512 }
2513 
2514 /*
2515  * helper function for btrfs_search_slot.  This does all of the checks
2516  * for node-level blocks and does any balancing required based on
2517  * the ins_len.
2518  *
2519  * If no extra work was required, zero is returned.  If we had to
2520  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2521  * start over
2522  */
2523 static int
2524 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2525 		       struct btrfs_root *root, struct btrfs_path *p,
2526 		       struct extent_buffer *b, int level, int ins_len,
2527 		       int *write_lock_level)
2528 {
2529 	struct btrfs_fs_info *fs_info = root->fs_info;
2530 	int ret;
2531 
2532 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2533 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2534 		int sret;
2535 
2536 		if (*write_lock_level < level + 1) {
2537 			*write_lock_level = level + 1;
2538 			btrfs_release_path(p);
2539 			goto again;
2540 		}
2541 
2542 		btrfs_set_path_blocking(p);
2543 		reada_for_balance(fs_info, p, level);
2544 		sret = split_node(trans, root, p, level);
2545 		btrfs_clear_path_blocking(p, NULL, 0);
2546 
2547 		BUG_ON(sret > 0);
2548 		if (sret) {
2549 			ret = sret;
2550 			goto done;
2551 		}
2552 		b = p->nodes[level];
2553 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2554 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2555 		int sret;
2556 
2557 		if (*write_lock_level < level + 1) {
2558 			*write_lock_level = level + 1;
2559 			btrfs_release_path(p);
2560 			goto again;
2561 		}
2562 
2563 		btrfs_set_path_blocking(p);
2564 		reada_for_balance(fs_info, p, level);
2565 		sret = balance_level(trans, root, p, level);
2566 		btrfs_clear_path_blocking(p, NULL, 0);
2567 
2568 		if (sret) {
2569 			ret = sret;
2570 			goto done;
2571 		}
2572 		b = p->nodes[level];
2573 		if (!b) {
2574 			btrfs_release_path(p);
2575 			goto again;
2576 		}
2577 		BUG_ON(btrfs_header_nritems(b) == 1);
2578 	}
2579 	return 0;
2580 
2581 again:
2582 	ret = -EAGAIN;
2583 done:
2584 	return ret;
2585 }
2586 
2587 static void key_search_validate(struct extent_buffer *b,
2588 				const struct btrfs_key *key,
2589 				int level)
2590 {
2591 #ifdef CONFIG_BTRFS_ASSERT
2592 	struct btrfs_disk_key disk_key;
2593 
2594 	btrfs_cpu_key_to_disk(&disk_key, key);
2595 
2596 	if (level == 0)
2597 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2598 		    offsetof(struct btrfs_leaf, items[0].key),
2599 		    sizeof(disk_key)));
2600 	else
2601 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2602 		    offsetof(struct btrfs_node, ptrs[0].key),
2603 		    sizeof(disk_key)));
2604 #endif
2605 }
2606 
2607 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2608 		      int level, int *prev_cmp, int *slot)
2609 {
2610 	if (*prev_cmp != 0) {
2611 		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2612 		return *prev_cmp;
2613 	}
2614 
2615 	key_search_validate(b, key, level);
2616 	*slot = 0;
2617 
2618 	return 0;
2619 }
2620 
2621 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2622 		u64 iobjectid, u64 ioff, u8 key_type,
2623 		struct btrfs_key *found_key)
2624 {
2625 	int ret;
2626 	struct btrfs_key key;
2627 	struct extent_buffer *eb;
2628 
2629 	ASSERT(path);
2630 	ASSERT(found_key);
2631 
2632 	key.type = key_type;
2633 	key.objectid = iobjectid;
2634 	key.offset = ioff;
2635 
2636 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2637 	if (ret < 0)
2638 		return ret;
2639 
2640 	eb = path->nodes[0];
2641 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2642 		ret = btrfs_next_leaf(fs_root, path);
2643 		if (ret)
2644 			return ret;
2645 		eb = path->nodes[0];
2646 	}
2647 
2648 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2649 	if (found_key->type != key.type ||
2650 			found_key->objectid != key.objectid)
2651 		return 1;
2652 
2653 	return 0;
2654 }
2655 
2656 /*
2657  * btrfs_search_slot - look for a key in a tree and perform necessary
2658  * modifications to preserve tree invariants.
2659  *
2660  * @trans:	Handle of transaction, used when modifying the tree
2661  * @p:		Holds all btree nodes along the search path
2662  * @root:	The root node of the tree
2663  * @key:	The key we are looking for
2664  * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2665  *		deletions it's -1. 0 for plain searches
2666  * @cow:	boolean should CoW operations be performed. Must always be 1
2667  *		when modifying the tree.
2668  *
2669  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2670  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2671  *
2672  * If @key is found, 0 is returned and you can find the item in the leaf level
2673  * of the path (level 0)
2674  *
2675  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2676  * points to the slot where it should be inserted
2677  *
2678  * If an error is encountered while searching the tree a negative error number
2679  * is returned
2680  */
2681 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2682 		      const struct btrfs_key *key, struct btrfs_path *p,
2683 		      int ins_len, int cow)
2684 {
2685 	struct btrfs_fs_info *fs_info = root->fs_info;
2686 	struct extent_buffer *b;
2687 	int slot;
2688 	int ret;
2689 	int err;
2690 	int level;
2691 	int lowest_unlock = 1;
2692 	int root_lock;
2693 	/* everything at write_lock_level or lower must be write locked */
2694 	int write_lock_level = 0;
2695 	u8 lowest_level = 0;
2696 	int min_write_lock_level;
2697 	int prev_cmp;
2698 
2699 	lowest_level = p->lowest_level;
2700 	WARN_ON(lowest_level && ins_len > 0);
2701 	WARN_ON(p->nodes[0] != NULL);
2702 	BUG_ON(!cow && ins_len);
2703 
2704 	if (ins_len < 0) {
2705 		lowest_unlock = 2;
2706 
2707 		/* when we are removing items, we might have to go up to level
2708 		 * two as we update tree pointers  Make sure we keep write
2709 		 * for those levels as well
2710 		 */
2711 		write_lock_level = 2;
2712 	} else if (ins_len > 0) {
2713 		/*
2714 		 * for inserting items, make sure we have a write lock on
2715 		 * level 1 so we can update keys
2716 		 */
2717 		write_lock_level = 1;
2718 	}
2719 
2720 	if (!cow)
2721 		write_lock_level = -1;
2722 
2723 	if (cow && (p->keep_locks || p->lowest_level))
2724 		write_lock_level = BTRFS_MAX_LEVEL;
2725 
2726 	min_write_lock_level = write_lock_level;
2727 
2728 again:
2729 	prev_cmp = -1;
2730 	/*
2731 	 * we try very hard to do read locks on the root
2732 	 */
2733 	root_lock = BTRFS_READ_LOCK;
2734 	level = 0;
2735 	if (p->search_commit_root) {
2736 		/*
2737 		 * the commit roots are read only
2738 		 * so we always do read locks
2739 		 */
2740 		if (p->need_commit_sem)
2741 			down_read(&fs_info->commit_root_sem);
2742 		b = root->commit_root;
2743 		extent_buffer_get(b);
2744 		level = btrfs_header_level(b);
2745 		if (p->need_commit_sem)
2746 			up_read(&fs_info->commit_root_sem);
2747 		if (!p->skip_locking)
2748 			btrfs_tree_read_lock(b);
2749 	} else {
2750 		if (p->skip_locking) {
2751 			b = btrfs_root_node(root);
2752 			level = btrfs_header_level(b);
2753 		} else {
2754 			/* we don't know the level of the root node
2755 			 * until we actually have it read locked
2756 			 */
2757 			b = btrfs_read_lock_root_node(root);
2758 			level = btrfs_header_level(b);
2759 			if (level <= write_lock_level) {
2760 				/* whoops, must trade for write lock */
2761 				btrfs_tree_read_unlock(b);
2762 				free_extent_buffer(b);
2763 				b = btrfs_lock_root_node(root);
2764 				root_lock = BTRFS_WRITE_LOCK;
2765 
2766 				/* the level might have changed, check again */
2767 				level = btrfs_header_level(b);
2768 			}
2769 		}
2770 	}
2771 	p->nodes[level] = b;
2772 	if (!p->skip_locking)
2773 		p->locks[level] = root_lock;
2774 
2775 	while (b) {
2776 		level = btrfs_header_level(b);
2777 
2778 		/*
2779 		 * setup the path here so we can release it under lock
2780 		 * contention with the cow code
2781 		 */
2782 		if (cow) {
2783 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2784 
2785 			/*
2786 			 * if we don't really need to cow this block
2787 			 * then we don't want to set the path blocking,
2788 			 * so we test it here
2789 			 */
2790 			if (!should_cow_block(trans, root, b)) {
2791 				trans->dirty = true;
2792 				goto cow_done;
2793 			}
2794 
2795 			/*
2796 			 * must have write locks on this node and the
2797 			 * parent
2798 			 */
2799 			if (level > write_lock_level ||
2800 			    (level + 1 > write_lock_level &&
2801 			    level + 1 < BTRFS_MAX_LEVEL &&
2802 			    p->nodes[level + 1])) {
2803 				write_lock_level = level + 1;
2804 				btrfs_release_path(p);
2805 				goto again;
2806 			}
2807 
2808 			btrfs_set_path_blocking(p);
2809 			if (last_level)
2810 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2811 						      &b);
2812 			else
2813 				err = btrfs_cow_block(trans, root, b,
2814 						      p->nodes[level + 1],
2815 						      p->slots[level + 1], &b);
2816 			if (err) {
2817 				ret = err;
2818 				goto done;
2819 			}
2820 		}
2821 cow_done:
2822 		p->nodes[level] = b;
2823 		btrfs_clear_path_blocking(p, NULL, 0);
2824 
2825 		/*
2826 		 * we have a lock on b and as long as we aren't changing
2827 		 * the tree, there is no way to for the items in b to change.
2828 		 * It is safe to drop the lock on our parent before we
2829 		 * go through the expensive btree search on b.
2830 		 *
2831 		 * If we're inserting or deleting (ins_len != 0), then we might
2832 		 * be changing slot zero, which may require changing the parent.
2833 		 * So, we can't drop the lock until after we know which slot
2834 		 * we're operating on.
2835 		 */
2836 		if (!ins_len && !p->keep_locks) {
2837 			int u = level + 1;
2838 
2839 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2840 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2841 				p->locks[u] = 0;
2842 			}
2843 		}
2844 
2845 		ret = key_search(b, key, level, &prev_cmp, &slot);
2846 		if (ret < 0)
2847 			goto done;
2848 
2849 		if (level != 0) {
2850 			int dec = 0;
2851 			if (ret && slot > 0) {
2852 				dec = 1;
2853 				slot -= 1;
2854 			}
2855 			p->slots[level] = slot;
2856 			err = setup_nodes_for_search(trans, root, p, b, level,
2857 					     ins_len, &write_lock_level);
2858 			if (err == -EAGAIN)
2859 				goto again;
2860 			if (err) {
2861 				ret = err;
2862 				goto done;
2863 			}
2864 			b = p->nodes[level];
2865 			slot = p->slots[level];
2866 
2867 			/*
2868 			 * slot 0 is special, if we change the key
2869 			 * we have to update the parent pointer
2870 			 * which means we must have a write lock
2871 			 * on the parent
2872 			 */
2873 			if (slot == 0 && ins_len &&
2874 			    write_lock_level < level + 1) {
2875 				write_lock_level = level + 1;
2876 				btrfs_release_path(p);
2877 				goto again;
2878 			}
2879 
2880 			unlock_up(p, level, lowest_unlock,
2881 				  min_write_lock_level, &write_lock_level);
2882 
2883 			if (level == lowest_level) {
2884 				if (dec)
2885 					p->slots[level]++;
2886 				goto done;
2887 			}
2888 
2889 			err = read_block_for_search(root, p, &b, level,
2890 						    slot, key);
2891 			if (err == -EAGAIN)
2892 				goto again;
2893 			if (err) {
2894 				ret = err;
2895 				goto done;
2896 			}
2897 
2898 			if (!p->skip_locking) {
2899 				level = btrfs_header_level(b);
2900 				if (level <= write_lock_level) {
2901 					err = btrfs_try_tree_write_lock(b);
2902 					if (!err) {
2903 						btrfs_set_path_blocking(p);
2904 						btrfs_tree_lock(b);
2905 						btrfs_clear_path_blocking(p, b,
2906 								  BTRFS_WRITE_LOCK);
2907 					}
2908 					p->locks[level] = BTRFS_WRITE_LOCK;
2909 				} else {
2910 					err = btrfs_tree_read_lock_atomic(b);
2911 					if (!err) {
2912 						btrfs_set_path_blocking(p);
2913 						btrfs_tree_read_lock(b);
2914 						btrfs_clear_path_blocking(p, b,
2915 								  BTRFS_READ_LOCK);
2916 					}
2917 					p->locks[level] = BTRFS_READ_LOCK;
2918 				}
2919 				p->nodes[level] = b;
2920 			}
2921 		} else {
2922 			p->slots[level] = slot;
2923 			if (ins_len > 0 &&
2924 			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2925 				if (write_lock_level < 1) {
2926 					write_lock_level = 1;
2927 					btrfs_release_path(p);
2928 					goto again;
2929 				}
2930 
2931 				btrfs_set_path_blocking(p);
2932 				err = split_leaf(trans, root, key,
2933 						 p, ins_len, ret == 0);
2934 				btrfs_clear_path_blocking(p, NULL, 0);
2935 
2936 				BUG_ON(err > 0);
2937 				if (err) {
2938 					ret = err;
2939 					goto done;
2940 				}
2941 			}
2942 			if (!p->search_for_split)
2943 				unlock_up(p, level, lowest_unlock,
2944 					  min_write_lock_level, &write_lock_level);
2945 			goto done;
2946 		}
2947 	}
2948 	ret = 1;
2949 done:
2950 	/*
2951 	 * we don't really know what they plan on doing with the path
2952 	 * from here on, so for now just mark it as blocking
2953 	 */
2954 	if (!p->leave_spinning)
2955 		btrfs_set_path_blocking(p);
2956 	if (ret < 0 && !p->skip_release_on_error)
2957 		btrfs_release_path(p);
2958 	return ret;
2959 }
2960 
2961 /*
2962  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2963  * current state of the tree together with the operations recorded in the tree
2964  * modification log to search for the key in a previous version of this tree, as
2965  * denoted by the time_seq parameter.
2966  *
2967  * Naturally, there is no support for insert, delete or cow operations.
2968  *
2969  * The resulting path and return value will be set up as if we called
2970  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2971  */
2972 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2973 			  struct btrfs_path *p, u64 time_seq)
2974 {
2975 	struct btrfs_fs_info *fs_info = root->fs_info;
2976 	struct extent_buffer *b;
2977 	int slot;
2978 	int ret;
2979 	int err;
2980 	int level;
2981 	int lowest_unlock = 1;
2982 	u8 lowest_level = 0;
2983 	int prev_cmp = -1;
2984 
2985 	lowest_level = p->lowest_level;
2986 	WARN_ON(p->nodes[0] != NULL);
2987 
2988 	if (p->search_commit_root) {
2989 		BUG_ON(time_seq);
2990 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2991 	}
2992 
2993 again:
2994 	b = get_old_root(root, time_seq);
2995 	level = btrfs_header_level(b);
2996 	p->locks[level] = BTRFS_READ_LOCK;
2997 
2998 	while (b) {
2999 		level = btrfs_header_level(b);
3000 		p->nodes[level] = b;
3001 		btrfs_clear_path_blocking(p, NULL, 0);
3002 
3003 		/*
3004 		 * we have a lock on b and as long as we aren't changing
3005 		 * the tree, there is no way to for the items in b to change.
3006 		 * It is safe to drop the lock on our parent before we
3007 		 * go through the expensive btree search on b.
3008 		 */
3009 		btrfs_unlock_up_safe(p, level + 1);
3010 
3011 		/*
3012 		 * Since we can unwind ebs we want to do a real search every
3013 		 * time.
3014 		 */
3015 		prev_cmp = -1;
3016 		ret = key_search(b, key, level, &prev_cmp, &slot);
3017 
3018 		if (level != 0) {
3019 			int dec = 0;
3020 			if (ret && slot > 0) {
3021 				dec = 1;
3022 				slot -= 1;
3023 			}
3024 			p->slots[level] = slot;
3025 			unlock_up(p, level, lowest_unlock, 0, NULL);
3026 
3027 			if (level == lowest_level) {
3028 				if (dec)
3029 					p->slots[level]++;
3030 				goto done;
3031 			}
3032 
3033 			err = read_block_for_search(root, p, &b, level,
3034 						    slot, key);
3035 			if (err == -EAGAIN)
3036 				goto again;
3037 			if (err) {
3038 				ret = err;
3039 				goto done;
3040 			}
3041 
3042 			level = btrfs_header_level(b);
3043 			err = btrfs_tree_read_lock_atomic(b);
3044 			if (!err) {
3045 				btrfs_set_path_blocking(p);
3046 				btrfs_tree_read_lock(b);
3047 				btrfs_clear_path_blocking(p, b,
3048 							  BTRFS_READ_LOCK);
3049 			}
3050 			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3051 			if (!b) {
3052 				ret = -ENOMEM;
3053 				goto done;
3054 			}
3055 			p->locks[level] = BTRFS_READ_LOCK;
3056 			p->nodes[level] = b;
3057 		} else {
3058 			p->slots[level] = slot;
3059 			unlock_up(p, level, lowest_unlock, 0, NULL);
3060 			goto done;
3061 		}
3062 	}
3063 	ret = 1;
3064 done:
3065 	if (!p->leave_spinning)
3066 		btrfs_set_path_blocking(p);
3067 	if (ret < 0)
3068 		btrfs_release_path(p);
3069 
3070 	return ret;
3071 }
3072 
3073 /*
3074  * helper to use instead of search slot if no exact match is needed but
3075  * instead the next or previous item should be returned.
3076  * When find_higher is true, the next higher item is returned, the next lower
3077  * otherwise.
3078  * When return_any and find_higher are both true, and no higher item is found,
3079  * return the next lower instead.
3080  * When return_any is true and find_higher is false, and no lower item is found,
3081  * return the next higher instead.
3082  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3083  * < 0 on error
3084  */
3085 int btrfs_search_slot_for_read(struct btrfs_root *root,
3086 			       const struct btrfs_key *key,
3087 			       struct btrfs_path *p, int find_higher,
3088 			       int return_any)
3089 {
3090 	int ret;
3091 	struct extent_buffer *leaf;
3092 
3093 again:
3094 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3095 	if (ret <= 0)
3096 		return ret;
3097 	/*
3098 	 * a return value of 1 means the path is at the position where the
3099 	 * item should be inserted. Normally this is the next bigger item,
3100 	 * but in case the previous item is the last in a leaf, path points
3101 	 * to the first free slot in the previous leaf, i.e. at an invalid
3102 	 * item.
3103 	 */
3104 	leaf = p->nodes[0];
3105 
3106 	if (find_higher) {
3107 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3108 			ret = btrfs_next_leaf(root, p);
3109 			if (ret <= 0)
3110 				return ret;
3111 			if (!return_any)
3112 				return 1;
3113 			/*
3114 			 * no higher item found, return the next
3115 			 * lower instead
3116 			 */
3117 			return_any = 0;
3118 			find_higher = 0;
3119 			btrfs_release_path(p);
3120 			goto again;
3121 		}
3122 	} else {
3123 		if (p->slots[0] == 0) {
3124 			ret = btrfs_prev_leaf(root, p);
3125 			if (ret < 0)
3126 				return ret;
3127 			if (!ret) {
3128 				leaf = p->nodes[0];
3129 				if (p->slots[0] == btrfs_header_nritems(leaf))
3130 					p->slots[0]--;
3131 				return 0;
3132 			}
3133 			if (!return_any)
3134 				return 1;
3135 			/*
3136 			 * no lower item found, return the next
3137 			 * higher instead
3138 			 */
3139 			return_any = 0;
3140 			find_higher = 1;
3141 			btrfs_release_path(p);
3142 			goto again;
3143 		} else {
3144 			--p->slots[0];
3145 		}
3146 	}
3147 	return 0;
3148 }
3149 
3150 /*
3151  * adjust the pointers going up the tree, starting at level
3152  * making sure the right key of each node is points to 'key'.
3153  * This is used after shifting pointers to the left, so it stops
3154  * fixing up pointers when a given leaf/node is not in slot 0 of the
3155  * higher levels
3156  *
3157  */
3158 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3159 			   struct btrfs_path *path,
3160 			   struct btrfs_disk_key *key, int level)
3161 {
3162 	int i;
3163 	struct extent_buffer *t;
3164 
3165 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3166 		int tslot = path->slots[i];
3167 		if (!path->nodes[i])
3168 			break;
3169 		t = path->nodes[i];
3170 		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3171 		btrfs_set_node_key(t, key, tslot);
3172 		btrfs_mark_buffer_dirty(path->nodes[i]);
3173 		if (tslot != 0)
3174 			break;
3175 	}
3176 }
3177 
3178 /*
3179  * update item key.
3180  *
3181  * This function isn't completely safe. It's the caller's responsibility
3182  * that the new key won't break the order
3183  */
3184 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3185 			     struct btrfs_path *path,
3186 			     const struct btrfs_key *new_key)
3187 {
3188 	struct btrfs_disk_key disk_key;
3189 	struct extent_buffer *eb;
3190 	int slot;
3191 
3192 	eb = path->nodes[0];
3193 	slot = path->slots[0];
3194 	if (slot > 0) {
3195 		btrfs_item_key(eb, &disk_key, slot - 1);
3196 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3197 	}
3198 	if (slot < btrfs_header_nritems(eb) - 1) {
3199 		btrfs_item_key(eb, &disk_key, slot + 1);
3200 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3201 	}
3202 
3203 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3204 	btrfs_set_item_key(eb, &disk_key, slot);
3205 	btrfs_mark_buffer_dirty(eb);
3206 	if (slot == 0)
3207 		fixup_low_keys(fs_info, path, &disk_key, 1);
3208 }
3209 
3210 /*
3211  * try to push data from one node into the next node left in the
3212  * tree.
3213  *
3214  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3215  * error, and > 0 if there was no room in the left hand block.
3216  */
3217 static int push_node_left(struct btrfs_trans_handle *trans,
3218 			  struct btrfs_fs_info *fs_info,
3219 			  struct extent_buffer *dst,
3220 			  struct extent_buffer *src, int empty)
3221 {
3222 	int push_items = 0;
3223 	int src_nritems;
3224 	int dst_nritems;
3225 	int ret = 0;
3226 
3227 	src_nritems = btrfs_header_nritems(src);
3228 	dst_nritems = btrfs_header_nritems(dst);
3229 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3230 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3231 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3232 
3233 	if (!empty && src_nritems <= 8)
3234 		return 1;
3235 
3236 	if (push_items <= 0)
3237 		return 1;
3238 
3239 	if (empty) {
3240 		push_items = min(src_nritems, push_items);
3241 		if (push_items < src_nritems) {
3242 			/* leave at least 8 pointers in the node if
3243 			 * we aren't going to empty it
3244 			 */
3245 			if (src_nritems - push_items < 8) {
3246 				if (push_items <= 8)
3247 					return 1;
3248 				push_items -= 8;
3249 			}
3250 		}
3251 	} else
3252 		push_items = min(src_nritems - 8, push_items);
3253 
3254 	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3255 				   push_items);
3256 	if (ret) {
3257 		btrfs_abort_transaction(trans, ret);
3258 		return ret;
3259 	}
3260 	copy_extent_buffer(dst, src,
3261 			   btrfs_node_key_ptr_offset(dst_nritems),
3262 			   btrfs_node_key_ptr_offset(0),
3263 			   push_items * sizeof(struct btrfs_key_ptr));
3264 
3265 	if (push_items < src_nritems) {
3266 		/*
3267 		 * don't call tree_mod_log_eb_move here, key removal was already
3268 		 * fully logged by tree_mod_log_eb_copy above.
3269 		 */
3270 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3271 				      btrfs_node_key_ptr_offset(push_items),
3272 				      (src_nritems - push_items) *
3273 				      sizeof(struct btrfs_key_ptr));
3274 	}
3275 	btrfs_set_header_nritems(src, src_nritems - push_items);
3276 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3277 	btrfs_mark_buffer_dirty(src);
3278 	btrfs_mark_buffer_dirty(dst);
3279 
3280 	return ret;
3281 }
3282 
3283 /*
3284  * try to push data from one node into the next node right in the
3285  * tree.
3286  *
3287  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3288  * error, and > 0 if there was no room in the right hand block.
3289  *
3290  * this will  only push up to 1/2 the contents of the left node over
3291  */
3292 static int balance_node_right(struct btrfs_trans_handle *trans,
3293 			      struct btrfs_fs_info *fs_info,
3294 			      struct extent_buffer *dst,
3295 			      struct extent_buffer *src)
3296 {
3297 	int push_items = 0;
3298 	int max_push;
3299 	int src_nritems;
3300 	int dst_nritems;
3301 	int ret = 0;
3302 
3303 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3304 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3305 
3306 	src_nritems = btrfs_header_nritems(src);
3307 	dst_nritems = btrfs_header_nritems(dst);
3308 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3309 	if (push_items <= 0)
3310 		return 1;
3311 
3312 	if (src_nritems < 4)
3313 		return 1;
3314 
3315 	max_push = src_nritems / 2 + 1;
3316 	/* don't try to empty the node */
3317 	if (max_push >= src_nritems)
3318 		return 1;
3319 
3320 	if (max_push < push_items)
3321 		push_items = max_push;
3322 
3323 	tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
3324 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3325 				      btrfs_node_key_ptr_offset(0),
3326 				      (dst_nritems) *
3327 				      sizeof(struct btrfs_key_ptr));
3328 
3329 	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3330 				   src_nritems - push_items, push_items);
3331 	if (ret) {
3332 		btrfs_abort_transaction(trans, ret);
3333 		return ret;
3334 	}
3335 	copy_extent_buffer(dst, src,
3336 			   btrfs_node_key_ptr_offset(0),
3337 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3338 			   push_items * sizeof(struct btrfs_key_ptr));
3339 
3340 	btrfs_set_header_nritems(src, src_nritems - push_items);
3341 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3342 
3343 	btrfs_mark_buffer_dirty(src);
3344 	btrfs_mark_buffer_dirty(dst);
3345 
3346 	return ret;
3347 }
3348 
3349 /*
3350  * helper function to insert a new root level in the tree.
3351  * A new node is allocated, and a single item is inserted to
3352  * point to the existing root
3353  *
3354  * returns zero on success or < 0 on failure.
3355  */
3356 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3357 			   struct btrfs_root *root,
3358 			   struct btrfs_path *path, int level)
3359 {
3360 	struct btrfs_fs_info *fs_info = root->fs_info;
3361 	u64 lower_gen;
3362 	struct extent_buffer *lower;
3363 	struct extent_buffer *c;
3364 	struct extent_buffer *old;
3365 	struct btrfs_disk_key lower_key;
3366 
3367 	BUG_ON(path->nodes[level]);
3368 	BUG_ON(path->nodes[level-1] != root->node);
3369 
3370 	lower = path->nodes[level-1];
3371 	if (level == 1)
3372 		btrfs_item_key(lower, &lower_key, 0);
3373 	else
3374 		btrfs_node_key(lower, &lower_key, 0);
3375 
3376 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3377 				   &lower_key, level, root->node->start, 0);
3378 	if (IS_ERR(c))
3379 		return PTR_ERR(c);
3380 
3381 	root_add_used(root, fs_info->nodesize);
3382 
3383 	memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3384 	btrfs_set_header_nritems(c, 1);
3385 	btrfs_set_header_level(c, level);
3386 	btrfs_set_header_bytenr(c, c->start);
3387 	btrfs_set_header_generation(c, trans->transid);
3388 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3389 	btrfs_set_header_owner(c, root->root_key.objectid);
3390 
3391 	write_extent_buffer_fsid(c, fs_info->fsid);
3392 	write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3393 
3394 	btrfs_set_node_key(c, &lower_key, 0);
3395 	btrfs_set_node_blockptr(c, 0, lower->start);
3396 	lower_gen = btrfs_header_generation(lower);
3397 	WARN_ON(lower_gen != trans->transid);
3398 
3399 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3400 
3401 	btrfs_mark_buffer_dirty(c);
3402 
3403 	old = root->node;
3404 	tree_mod_log_set_root_pointer(root, c, 0);
3405 	rcu_assign_pointer(root->node, c);
3406 
3407 	/* the super has an extra ref to root->node */
3408 	free_extent_buffer(old);
3409 
3410 	add_root_to_dirty_list(root);
3411 	extent_buffer_get(c);
3412 	path->nodes[level] = c;
3413 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3414 	path->slots[level] = 0;
3415 	return 0;
3416 }
3417 
3418 /*
3419  * worker function to insert a single pointer in a node.
3420  * the node should have enough room for the pointer already
3421  *
3422  * slot and level indicate where you want the key to go, and
3423  * blocknr is the block the key points to.
3424  */
3425 static void insert_ptr(struct btrfs_trans_handle *trans,
3426 		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3427 		       struct btrfs_disk_key *key, u64 bytenr,
3428 		       int slot, int level)
3429 {
3430 	struct extent_buffer *lower;
3431 	int nritems;
3432 	int ret;
3433 
3434 	BUG_ON(!path->nodes[level]);
3435 	btrfs_assert_tree_locked(path->nodes[level]);
3436 	lower = path->nodes[level];
3437 	nritems = btrfs_header_nritems(lower);
3438 	BUG_ON(slot > nritems);
3439 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3440 	if (slot != nritems) {
3441 		if (level)
3442 			tree_mod_log_eb_move(fs_info, lower, slot + 1,
3443 					     slot, nritems - slot);
3444 		memmove_extent_buffer(lower,
3445 			      btrfs_node_key_ptr_offset(slot + 1),
3446 			      btrfs_node_key_ptr_offset(slot),
3447 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3448 	}
3449 	if (level) {
3450 		ret = tree_mod_log_insert_key(fs_info, lower, slot,
3451 					      MOD_LOG_KEY_ADD, GFP_NOFS);
3452 		BUG_ON(ret < 0);
3453 	}
3454 	btrfs_set_node_key(lower, key, slot);
3455 	btrfs_set_node_blockptr(lower, slot, bytenr);
3456 	WARN_ON(trans->transid == 0);
3457 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3458 	btrfs_set_header_nritems(lower, nritems + 1);
3459 	btrfs_mark_buffer_dirty(lower);
3460 }
3461 
3462 /*
3463  * split the node at the specified level in path in two.
3464  * The path is corrected to point to the appropriate node after the split
3465  *
3466  * Before splitting this tries to make some room in the node by pushing
3467  * left and right, if either one works, it returns right away.
3468  *
3469  * returns 0 on success and < 0 on failure
3470  */
3471 static noinline int split_node(struct btrfs_trans_handle *trans,
3472 			       struct btrfs_root *root,
3473 			       struct btrfs_path *path, int level)
3474 {
3475 	struct btrfs_fs_info *fs_info = root->fs_info;
3476 	struct extent_buffer *c;
3477 	struct extent_buffer *split;
3478 	struct btrfs_disk_key disk_key;
3479 	int mid;
3480 	int ret;
3481 	u32 c_nritems;
3482 
3483 	c = path->nodes[level];
3484 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3485 	if (c == root->node) {
3486 		/*
3487 		 * trying to split the root, lets make a new one
3488 		 *
3489 		 * tree mod log: We don't log_removal old root in
3490 		 * insert_new_root, because that root buffer will be kept as a
3491 		 * normal node. We are going to log removal of half of the
3492 		 * elements below with tree_mod_log_eb_copy. We're holding a
3493 		 * tree lock on the buffer, which is why we cannot race with
3494 		 * other tree_mod_log users.
3495 		 */
3496 		ret = insert_new_root(trans, root, path, level + 1);
3497 		if (ret)
3498 			return ret;
3499 	} else {
3500 		ret = push_nodes_for_insert(trans, root, path, level);
3501 		c = path->nodes[level];
3502 		if (!ret && btrfs_header_nritems(c) <
3503 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3504 			return 0;
3505 		if (ret < 0)
3506 			return ret;
3507 	}
3508 
3509 	c_nritems = btrfs_header_nritems(c);
3510 	mid = (c_nritems + 1) / 2;
3511 	btrfs_node_key(c, &disk_key, mid);
3512 
3513 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3514 			&disk_key, level, c->start, 0);
3515 	if (IS_ERR(split))
3516 		return PTR_ERR(split);
3517 
3518 	root_add_used(root, fs_info->nodesize);
3519 
3520 	memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3521 	btrfs_set_header_level(split, btrfs_header_level(c));
3522 	btrfs_set_header_bytenr(split, split->start);
3523 	btrfs_set_header_generation(split, trans->transid);
3524 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3525 	btrfs_set_header_owner(split, root->root_key.objectid);
3526 	write_extent_buffer_fsid(split, fs_info->fsid);
3527 	write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3528 
3529 	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3530 	if (ret) {
3531 		btrfs_abort_transaction(trans, ret);
3532 		return ret;
3533 	}
3534 	copy_extent_buffer(split, c,
3535 			   btrfs_node_key_ptr_offset(0),
3536 			   btrfs_node_key_ptr_offset(mid),
3537 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3538 	btrfs_set_header_nritems(split, c_nritems - mid);
3539 	btrfs_set_header_nritems(c, mid);
3540 	ret = 0;
3541 
3542 	btrfs_mark_buffer_dirty(c);
3543 	btrfs_mark_buffer_dirty(split);
3544 
3545 	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3546 		   path->slots[level + 1] + 1, level + 1);
3547 
3548 	if (path->slots[level] >= mid) {
3549 		path->slots[level] -= mid;
3550 		btrfs_tree_unlock(c);
3551 		free_extent_buffer(c);
3552 		path->nodes[level] = split;
3553 		path->slots[level + 1] += 1;
3554 	} else {
3555 		btrfs_tree_unlock(split);
3556 		free_extent_buffer(split);
3557 	}
3558 	return ret;
3559 }
3560 
3561 /*
3562  * how many bytes are required to store the items in a leaf.  start
3563  * and nr indicate which items in the leaf to check.  This totals up the
3564  * space used both by the item structs and the item data
3565  */
3566 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3567 {
3568 	struct btrfs_item *start_item;
3569 	struct btrfs_item *end_item;
3570 	struct btrfs_map_token token;
3571 	int data_len;
3572 	int nritems = btrfs_header_nritems(l);
3573 	int end = min(nritems, start + nr) - 1;
3574 
3575 	if (!nr)
3576 		return 0;
3577 	btrfs_init_map_token(&token);
3578 	start_item = btrfs_item_nr(start);
3579 	end_item = btrfs_item_nr(end);
3580 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3581 		btrfs_token_item_size(l, start_item, &token);
3582 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3583 	data_len += sizeof(struct btrfs_item) * nr;
3584 	WARN_ON(data_len < 0);
3585 	return data_len;
3586 }
3587 
3588 /*
3589  * The space between the end of the leaf items and
3590  * the start of the leaf data.  IOW, how much room
3591  * the leaf has left for both items and data
3592  */
3593 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3594 				   struct extent_buffer *leaf)
3595 {
3596 	int nritems = btrfs_header_nritems(leaf);
3597 	int ret;
3598 
3599 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3600 	if (ret < 0) {
3601 		btrfs_crit(fs_info,
3602 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3603 			   ret,
3604 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3605 			   leaf_space_used(leaf, 0, nritems), nritems);
3606 	}
3607 	return ret;
3608 }
3609 
3610 /*
3611  * min slot controls the lowest index we're willing to push to the
3612  * right.  We'll push up to and including min_slot, but no lower
3613  */
3614 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3615 				      struct btrfs_path *path,
3616 				      int data_size, int empty,
3617 				      struct extent_buffer *right,
3618 				      int free_space, u32 left_nritems,
3619 				      u32 min_slot)
3620 {
3621 	struct extent_buffer *left = path->nodes[0];
3622 	struct extent_buffer *upper = path->nodes[1];
3623 	struct btrfs_map_token token;
3624 	struct btrfs_disk_key disk_key;
3625 	int slot;
3626 	u32 i;
3627 	int push_space = 0;
3628 	int push_items = 0;
3629 	struct btrfs_item *item;
3630 	u32 nr;
3631 	u32 right_nritems;
3632 	u32 data_end;
3633 	u32 this_item_size;
3634 
3635 	btrfs_init_map_token(&token);
3636 
3637 	if (empty)
3638 		nr = 0;
3639 	else
3640 		nr = max_t(u32, 1, min_slot);
3641 
3642 	if (path->slots[0] >= left_nritems)
3643 		push_space += data_size;
3644 
3645 	slot = path->slots[1];
3646 	i = left_nritems - 1;
3647 	while (i >= nr) {
3648 		item = btrfs_item_nr(i);
3649 
3650 		if (!empty && push_items > 0) {
3651 			if (path->slots[0] > i)
3652 				break;
3653 			if (path->slots[0] == i) {
3654 				int space = btrfs_leaf_free_space(fs_info, left);
3655 				if (space + push_space * 2 > free_space)
3656 					break;
3657 			}
3658 		}
3659 
3660 		if (path->slots[0] == i)
3661 			push_space += data_size;
3662 
3663 		this_item_size = btrfs_item_size(left, item);
3664 		if (this_item_size + sizeof(*item) + push_space > free_space)
3665 			break;
3666 
3667 		push_items++;
3668 		push_space += this_item_size + sizeof(*item);
3669 		if (i == 0)
3670 			break;
3671 		i--;
3672 	}
3673 
3674 	if (push_items == 0)
3675 		goto out_unlock;
3676 
3677 	WARN_ON(!empty && push_items == left_nritems);
3678 
3679 	/* push left to right */
3680 	right_nritems = btrfs_header_nritems(right);
3681 
3682 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3683 	push_space -= leaf_data_end(fs_info, left);
3684 
3685 	/* make room in the right data area */
3686 	data_end = leaf_data_end(fs_info, right);
3687 	memmove_extent_buffer(right,
3688 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3689 			      BTRFS_LEAF_DATA_OFFSET + data_end,
3690 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3691 
3692 	/* copy from the left data area */
3693 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3694 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3695 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3696 		     push_space);
3697 
3698 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3699 			      btrfs_item_nr_offset(0),
3700 			      right_nritems * sizeof(struct btrfs_item));
3701 
3702 	/* copy the items from left to right */
3703 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3704 		   btrfs_item_nr_offset(left_nritems - push_items),
3705 		   push_items * sizeof(struct btrfs_item));
3706 
3707 	/* update the item pointers */
3708 	right_nritems += push_items;
3709 	btrfs_set_header_nritems(right, right_nritems);
3710 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3711 	for (i = 0; i < right_nritems; i++) {
3712 		item = btrfs_item_nr(i);
3713 		push_space -= btrfs_token_item_size(right, item, &token);
3714 		btrfs_set_token_item_offset(right, item, push_space, &token);
3715 	}
3716 
3717 	left_nritems -= push_items;
3718 	btrfs_set_header_nritems(left, left_nritems);
3719 
3720 	if (left_nritems)
3721 		btrfs_mark_buffer_dirty(left);
3722 	else
3723 		clean_tree_block(fs_info, left);
3724 
3725 	btrfs_mark_buffer_dirty(right);
3726 
3727 	btrfs_item_key(right, &disk_key, 0);
3728 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3729 	btrfs_mark_buffer_dirty(upper);
3730 
3731 	/* then fixup the leaf pointer in the path */
3732 	if (path->slots[0] >= left_nritems) {
3733 		path->slots[0] -= left_nritems;
3734 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3735 			clean_tree_block(fs_info, path->nodes[0]);
3736 		btrfs_tree_unlock(path->nodes[0]);
3737 		free_extent_buffer(path->nodes[0]);
3738 		path->nodes[0] = right;
3739 		path->slots[1] += 1;
3740 	} else {
3741 		btrfs_tree_unlock(right);
3742 		free_extent_buffer(right);
3743 	}
3744 	return 0;
3745 
3746 out_unlock:
3747 	btrfs_tree_unlock(right);
3748 	free_extent_buffer(right);
3749 	return 1;
3750 }
3751 
3752 /*
3753  * push some data in the path leaf to the right, trying to free up at
3754  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3755  *
3756  * returns 1 if the push failed because the other node didn't have enough
3757  * room, 0 if everything worked out and < 0 if there were major errors.
3758  *
3759  * this will push starting from min_slot to the end of the leaf.  It won't
3760  * push any slot lower than min_slot
3761  */
3762 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3763 			   *root, struct btrfs_path *path,
3764 			   int min_data_size, int data_size,
3765 			   int empty, u32 min_slot)
3766 {
3767 	struct btrfs_fs_info *fs_info = root->fs_info;
3768 	struct extent_buffer *left = path->nodes[0];
3769 	struct extent_buffer *right;
3770 	struct extent_buffer *upper;
3771 	int slot;
3772 	int free_space;
3773 	u32 left_nritems;
3774 	int ret;
3775 
3776 	if (!path->nodes[1])
3777 		return 1;
3778 
3779 	slot = path->slots[1];
3780 	upper = path->nodes[1];
3781 	if (slot >= btrfs_header_nritems(upper) - 1)
3782 		return 1;
3783 
3784 	btrfs_assert_tree_locked(path->nodes[1]);
3785 
3786 	right = read_node_slot(fs_info, upper, slot + 1);
3787 	/*
3788 	 * slot + 1 is not valid or we fail to read the right node,
3789 	 * no big deal, just return.
3790 	 */
3791 	if (IS_ERR(right))
3792 		return 1;
3793 
3794 	btrfs_tree_lock(right);
3795 	btrfs_set_lock_blocking(right);
3796 
3797 	free_space = btrfs_leaf_free_space(fs_info, right);
3798 	if (free_space < data_size)
3799 		goto out_unlock;
3800 
3801 	/* cow and double check */
3802 	ret = btrfs_cow_block(trans, root, right, upper,
3803 			      slot + 1, &right);
3804 	if (ret)
3805 		goto out_unlock;
3806 
3807 	free_space = btrfs_leaf_free_space(fs_info, right);
3808 	if (free_space < data_size)
3809 		goto out_unlock;
3810 
3811 	left_nritems = btrfs_header_nritems(left);
3812 	if (left_nritems == 0)
3813 		goto out_unlock;
3814 
3815 	if (path->slots[0] == left_nritems && !empty) {
3816 		/* Key greater than all keys in the leaf, right neighbor has
3817 		 * enough room for it and we're not emptying our leaf to delete
3818 		 * it, therefore use right neighbor to insert the new item and
3819 		 * no need to touch/dirty our left leaft. */
3820 		btrfs_tree_unlock(left);
3821 		free_extent_buffer(left);
3822 		path->nodes[0] = right;
3823 		path->slots[0] = 0;
3824 		path->slots[1]++;
3825 		return 0;
3826 	}
3827 
3828 	return __push_leaf_right(fs_info, path, min_data_size, empty,
3829 				right, free_space, left_nritems, min_slot);
3830 out_unlock:
3831 	btrfs_tree_unlock(right);
3832 	free_extent_buffer(right);
3833 	return 1;
3834 }
3835 
3836 /*
3837  * push some data in the path leaf to the left, trying to free up at
3838  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3839  *
3840  * max_slot can put a limit on how far into the leaf we'll push items.  The
3841  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3842  * items
3843  */
3844 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3845 				     struct btrfs_path *path, int data_size,
3846 				     int empty, struct extent_buffer *left,
3847 				     int free_space, u32 right_nritems,
3848 				     u32 max_slot)
3849 {
3850 	struct btrfs_disk_key disk_key;
3851 	struct extent_buffer *right = path->nodes[0];
3852 	int i;
3853 	int push_space = 0;
3854 	int push_items = 0;
3855 	struct btrfs_item *item;
3856 	u32 old_left_nritems;
3857 	u32 nr;
3858 	int ret = 0;
3859 	u32 this_item_size;
3860 	u32 old_left_item_size;
3861 	struct btrfs_map_token token;
3862 
3863 	btrfs_init_map_token(&token);
3864 
3865 	if (empty)
3866 		nr = min(right_nritems, max_slot);
3867 	else
3868 		nr = min(right_nritems - 1, max_slot);
3869 
3870 	for (i = 0; i < nr; i++) {
3871 		item = btrfs_item_nr(i);
3872 
3873 		if (!empty && push_items > 0) {
3874 			if (path->slots[0] < i)
3875 				break;
3876 			if (path->slots[0] == i) {
3877 				int space = btrfs_leaf_free_space(fs_info, right);
3878 				if (space + push_space * 2 > free_space)
3879 					break;
3880 			}
3881 		}
3882 
3883 		if (path->slots[0] == i)
3884 			push_space += data_size;
3885 
3886 		this_item_size = btrfs_item_size(right, item);
3887 		if (this_item_size + sizeof(*item) + push_space > free_space)
3888 			break;
3889 
3890 		push_items++;
3891 		push_space += this_item_size + sizeof(*item);
3892 	}
3893 
3894 	if (push_items == 0) {
3895 		ret = 1;
3896 		goto out;
3897 	}
3898 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3899 
3900 	/* push data from right to left */
3901 	copy_extent_buffer(left, right,
3902 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3903 			   btrfs_item_nr_offset(0),
3904 			   push_items * sizeof(struct btrfs_item));
3905 
3906 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3907 		     btrfs_item_offset_nr(right, push_items - 1);
3908 
3909 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3910 		     leaf_data_end(fs_info, left) - push_space,
3911 		     BTRFS_LEAF_DATA_OFFSET +
3912 		     btrfs_item_offset_nr(right, push_items - 1),
3913 		     push_space);
3914 	old_left_nritems = btrfs_header_nritems(left);
3915 	BUG_ON(old_left_nritems <= 0);
3916 
3917 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3918 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3919 		u32 ioff;
3920 
3921 		item = btrfs_item_nr(i);
3922 
3923 		ioff = btrfs_token_item_offset(left, item, &token);
3924 		btrfs_set_token_item_offset(left, item,
3925 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3926 		      &token);
3927 	}
3928 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3929 
3930 	/* fixup right node */
3931 	if (push_items > right_nritems)
3932 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3933 		       right_nritems);
3934 
3935 	if (push_items < right_nritems) {
3936 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3937 						  leaf_data_end(fs_info, right);
3938 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3939 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3940 				      BTRFS_LEAF_DATA_OFFSET +
3941 				      leaf_data_end(fs_info, right), push_space);
3942 
3943 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3944 			      btrfs_item_nr_offset(push_items),
3945 			     (btrfs_header_nritems(right) - push_items) *
3946 			     sizeof(struct btrfs_item));
3947 	}
3948 	right_nritems -= push_items;
3949 	btrfs_set_header_nritems(right, right_nritems);
3950 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3951 	for (i = 0; i < right_nritems; i++) {
3952 		item = btrfs_item_nr(i);
3953 
3954 		push_space = push_space - btrfs_token_item_size(right,
3955 								item, &token);
3956 		btrfs_set_token_item_offset(right, item, push_space, &token);
3957 	}
3958 
3959 	btrfs_mark_buffer_dirty(left);
3960 	if (right_nritems)
3961 		btrfs_mark_buffer_dirty(right);
3962 	else
3963 		clean_tree_block(fs_info, right);
3964 
3965 	btrfs_item_key(right, &disk_key, 0);
3966 	fixup_low_keys(fs_info, path, &disk_key, 1);
3967 
3968 	/* then fixup the leaf pointer in the path */
3969 	if (path->slots[0] < push_items) {
3970 		path->slots[0] += old_left_nritems;
3971 		btrfs_tree_unlock(path->nodes[0]);
3972 		free_extent_buffer(path->nodes[0]);
3973 		path->nodes[0] = left;
3974 		path->slots[1] -= 1;
3975 	} else {
3976 		btrfs_tree_unlock(left);
3977 		free_extent_buffer(left);
3978 		path->slots[0] -= push_items;
3979 	}
3980 	BUG_ON(path->slots[0] < 0);
3981 	return ret;
3982 out:
3983 	btrfs_tree_unlock(left);
3984 	free_extent_buffer(left);
3985 	return ret;
3986 }
3987 
3988 /*
3989  * push some data in the path leaf to the left, trying to free up at
3990  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3991  *
3992  * max_slot can put a limit on how far into the leaf we'll push items.  The
3993  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3994  * items
3995  */
3996 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3997 			  *root, struct btrfs_path *path, int min_data_size,
3998 			  int data_size, int empty, u32 max_slot)
3999 {
4000 	struct btrfs_fs_info *fs_info = root->fs_info;
4001 	struct extent_buffer *right = path->nodes[0];
4002 	struct extent_buffer *left;
4003 	int slot;
4004 	int free_space;
4005 	u32 right_nritems;
4006 	int ret = 0;
4007 
4008 	slot = path->slots[1];
4009 	if (slot == 0)
4010 		return 1;
4011 	if (!path->nodes[1])
4012 		return 1;
4013 
4014 	right_nritems = btrfs_header_nritems(right);
4015 	if (right_nritems == 0)
4016 		return 1;
4017 
4018 	btrfs_assert_tree_locked(path->nodes[1]);
4019 
4020 	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4021 	/*
4022 	 * slot - 1 is not valid or we fail to read the left node,
4023 	 * no big deal, just return.
4024 	 */
4025 	if (IS_ERR(left))
4026 		return 1;
4027 
4028 	btrfs_tree_lock(left);
4029 	btrfs_set_lock_blocking(left);
4030 
4031 	free_space = btrfs_leaf_free_space(fs_info, left);
4032 	if (free_space < data_size) {
4033 		ret = 1;
4034 		goto out;
4035 	}
4036 
4037 	/* cow and double check */
4038 	ret = btrfs_cow_block(trans, root, left,
4039 			      path->nodes[1], slot - 1, &left);
4040 	if (ret) {
4041 		/* we hit -ENOSPC, but it isn't fatal here */
4042 		if (ret == -ENOSPC)
4043 			ret = 1;
4044 		goto out;
4045 	}
4046 
4047 	free_space = btrfs_leaf_free_space(fs_info, left);
4048 	if (free_space < data_size) {
4049 		ret = 1;
4050 		goto out;
4051 	}
4052 
4053 	return __push_leaf_left(fs_info, path, min_data_size,
4054 			       empty, left, free_space, right_nritems,
4055 			       max_slot);
4056 out:
4057 	btrfs_tree_unlock(left);
4058 	free_extent_buffer(left);
4059 	return ret;
4060 }
4061 
4062 /*
4063  * split the path's leaf in two, making sure there is at least data_size
4064  * available for the resulting leaf level of the path.
4065  */
4066 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4067 				    struct btrfs_fs_info *fs_info,
4068 				    struct btrfs_path *path,
4069 				    struct extent_buffer *l,
4070 				    struct extent_buffer *right,
4071 				    int slot, int mid, int nritems)
4072 {
4073 	int data_copy_size;
4074 	int rt_data_off;
4075 	int i;
4076 	struct btrfs_disk_key disk_key;
4077 	struct btrfs_map_token token;
4078 
4079 	btrfs_init_map_token(&token);
4080 
4081 	nritems = nritems - mid;
4082 	btrfs_set_header_nritems(right, nritems);
4083 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4084 
4085 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4086 			   btrfs_item_nr_offset(mid),
4087 			   nritems * sizeof(struct btrfs_item));
4088 
4089 	copy_extent_buffer(right, l,
4090 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4091 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4092 		     leaf_data_end(fs_info, l), data_copy_size);
4093 
4094 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4095 
4096 	for (i = 0; i < nritems; i++) {
4097 		struct btrfs_item *item = btrfs_item_nr(i);
4098 		u32 ioff;
4099 
4100 		ioff = btrfs_token_item_offset(right, item, &token);
4101 		btrfs_set_token_item_offset(right, item,
4102 					    ioff + rt_data_off, &token);
4103 	}
4104 
4105 	btrfs_set_header_nritems(l, mid);
4106 	btrfs_item_key(right, &disk_key, 0);
4107 	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4108 		   path->slots[1] + 1, 1);
4109 
4110 	btrfs_mark_buffer_dirty(right);
4111 	btrfs_mark_buffer_dirty(l);
4112 	BUG_ON(path->slots[0] != slot);
4113 
4114 	if (mid <= slot) {
4115 		btrfs_tree_unlock(path->nodes[0]);
4116 		free_extent_buffer(path->nodes[0]);
4117 		path->nodes[0] = right;
4118 		path->slots[0] -= mid;
4119 		path->slots[1] += 1;
4120 	} else {
4121 		btrfs_tree_unlock(right);
4122 		free_extent_buffer(right);
4123 	}
4124 
4125 	BUG_ON(path->slots[0] < 0);
4126 }
4127 
4128 /*
4129  * double splits happen when we need to insert a big item in the middle
4130  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4131  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4132  *          A                 B                 C
4133  *
4134  * We avoid this by trying to push the items on either side of our target
4135  * into the adjacent leaves.  If all goes well we can avoid the double split
4136  * completely.
4137  */
4138 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4139 					  struct btrfs_root *root,
4140 					  struct btrfs_path *path,
4141 					  int data_size)
4142 {
4143 	struct btrfs_fs_info *fs_info = root->fs_info;
4144 	int ret;
4145 	int progress = 0;
4146 	int slot;
4147 	u32 nritems;
4148 	int space_needed = data_size;
4149 
4150 	slot = path->slots[0];
4151 	if (slot < btrfs_header_nritems(path->nodes[0]))
4152 		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4153 
4154 	/*
4155 	 * try to push all the items after our slot into the
4156 	 * right leaf
4157 	 */
4158 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4159 	if (ret < 0)
4160 		return ret;
4161 
4162 	if (ret == 0)
4163 		progress++;
4164 
4165 	nritems = btrfs_header_nritems(path->nodes[0]);
4166 	/*
4167 	 * our goal is to get our slot at the start or end of a leaf.  If
4168 	 * we've done so we're done
4169 	 */
4170 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4171 		return 0;
4172 
4173 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4174 		return 0;
4175 
4176 	/* try to push all the items before our slot into the next leaf */
4177 	slot = path->slots[0];
4178 	space_needed = data_size;
4179 	if (slot > 0)
4180 		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4181 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4182 	if (ret < 0)
4183 		return ret;
4184 
4185 	if (ret == 0)
4186 		progress++;
4187 
4188 	if (progress)
4189 		return 0;
4190 	return 1;
4191 }
4192 
4193 /*
4194  * split the path's leaf in two, making sure there is at least data_size
4195  * available for the resulting leaf level of the path.
4196  *
4197  * returns 0 if all went well and < 0 on failure.
4198  */
4199 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4200 			       struct btrfs_root *root,
4201 			       const struct btrfs_key *ins_key,
4202 			       struct btrfs_path *path, int data_size,
4203 			       int extend)
4204 {
4205 	struct btrfs_disk_key disk_key;
4206 	struct extent_buffer *l;
4207 	u32 nritems;
4208 	int mid;
4209 	int slot;
4210 	struct extent_buffer *right;
4211 	struct btrfs_fs_info *fs_info = root->fs_info;
4212 	int ret = 0;
4213 	int wret;
4214 	int split;
4215 	int num_doubles = 0;
4216 	int tried_avoid_double = 0;
4217 
4218 	l = path->nodes[0];
4219 	slot = path->slots[0];
4220 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4221 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4222 		return -EOVERFLOW;
4223 
4224 	/* first try to make some room by pushing left and right */
4225 	if (data_size && path->nodes[1]) {
4226 		int space_needed = data_size;
4227 
4228 		if (slot < btrfs_header_nritems(l))
4229 			space_needed -= btrfs_leaf_free_space(fs_info, l);
4230 
4231 		wret = push_leaf_right(trans, root, path, space_needed,
4232 				       space_needed, 0, 0);
4233 		if (wret < 0)
4234 			return wret;
4235 		if (wret) {
4236 			space_needed = data_size;
4237 			if (slot > 0)
4238 				space_needed -= btrfs_leaf_free_space(fs_info,
4239 								      l);
4240 			wret = push_leaf_left(trans, root, path, space_needed,
4241 					      space_needed, 0, (u32)-1);
4242 			if (wret < 0)
4243 				return wret;
4244 		}
4245 		l = path->nodes[0];
4246 
4247 		/* did the pushes work? */
4248 		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4249 			return 0;
4250 	}
4251 
4252 	if (!path->nodes[1]) {
4253 		ret = insert_new_root(trans, root, path, 1);
4254 		if (ret)
4255 			return ret;
4256 	}
4257 again:
4258 	split = 1;
4259 	l = path->nodes[0];
4260 	slot = path->slots[0];
4261 	nritems = btrfs_header_nritems(l);
4262 	mid = (nritems + 1) / 2;
4263 
4264 	if (mid <= slot) {
4265 		if (nritems == 1 ||
4266 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4267 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4268 			if (slot >= nritems) {
4269 				split = 0;
4270 			} else {
4271 				mid = slot;
4272 				if (mid != nritems &&
4273 				    leaf_space_used(l, mid, nritems - mid) +
4274 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4275 					if (data_size && !tried_avoid_double)
4276 						goto push_for_double;
4277 					split = 2;
4278 				}
4279 			}
4280 		}
4281 	} else {
4282 		if (leaf_space_used(l, 0, mid) + data_size >
4283 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4284 			if (!extend && data_size && slot == 0) {
4285 				split = 0;
4286 			} else if ((extend || !data_size) && slot == 0) {
4287 				mid = 1;
4288 			} else {
4289 				mid = slot;
4290 				if (mid != nritems &&
4291 				    leaf_space_used(l, mid, nritems - mid) +
4292 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4293 					if (data_size && !tried_avoid_double)
4294 						goto push_for_double;
4295 					split = 2;
4296 				}
4297 			}
4298 		}
4299 	}
4300 
4301 	if (split == 0)
4302 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4303 	else
4304 		btrfs_item_key(l, &disk_key, mid);
4305 
4306 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4307 			&disk_key, 0, l->start, 0);
4308 	if (IS_ERR(right))
4309 		return PTR_ERR(right);
4310 
4311 	root_add_used(root, fs_info->nodesize);
4312 
4313 	memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4314 	btrfs_set_header_bytenr(right, right->start);
4315 	btrfs_set_header_generation(right, trans->transid);
4316 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4317 	btrfs_set_header_owner(right, root->root_key.objectid);
4318 	btrfs_set_header_level(right, 0);
4319 	write_extent_buffer_fsid(right, fs_info->fsid);
4320 	write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4321 
4322 	if (split == 0) {
4323 		if (mid <= slot) {
4324 			btrfs_set_header_nritems(right, 0);
4325 			insert_ptr(trans, fs_info, path, &disk_key,
4326 				   right->start, path->slots[1] + 1, 1);
4327 			btrfs_tree_unlock(path->nodes[0]);
4328 			free_extent_buffer(path->nodes[0]);
4329 			path->nodes[0] = right;
4330 			path->slots[0] = 0;
4331 			path->slots[1] += 1;
4332 		} else {
4333 			btrfs_set_header_nritems(right, 0);
4334 			insert_ptr(trans, fs_info, path, &disk_key,
4335 				   right->start, path->slots[1], 1);
4336 			btrfs_tree_unlock(path->nodes[0]);
4337 			free_extent_buffer(path->nodes[0]);
4338 			path->nodes[0] = right;
4339 			path->slots[0] = 0;
4340 			if (path->slots[1] == 0)
4341 				fixup_low_keys(fs_info, path, &disk_key, 1);
4342 		}
4343 		/*
4344 		 * We create a new leaf 'right' for the required ins_len and
4345 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4346 		 * the content of ins_len to 'right'.
4347 		 */
4348 		return ret;
4349 	}
4350 
4351 	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4352 
4353 	if (split == 2) {
4354 		BUG_ON(num_doubles != 0);
4355 		num_doubles++;
4356 		goto again;
4357 	}
4358 
4359 	return 0;
4360 
4361 push_for_double:
4362 	push_for_double_split(trans, root, path, data_size);
4363 	tried_avoid_double = 1;
4364 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4365 		return 0;
4366 	goto again;
4367 }
4368 
4369 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4370 					 struct btrfs_root *root,
4371 					 struct btrfs_path *path, int ins_len)
4372 {
4373 	struct btrfs_fs_info *fs_info = root->fs_info;
4374 	struct btrfs_key key;
4375 	struct extent_buffer *leaf;
4376 	struct btrfs_file_extent_item *fi;
4377 	u64 extent_len = 0;
4378 	u32 item_size;
4379 	int ret;
4380 
4381 	leaf = path->nodes[0];
4382 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4383 
4384 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4385 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4386 
4387 	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4388 		return 0;
4389 
4390 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4391 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4392 		fi = btrfs_item_ptr(leaf, path->slots[0],
4393 				    struct btrfs_file_extent_item);
4394 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4395 	}
4396 	btrfs_release_path(path);
4397 
4398 	path->keep_locks = 1;
4399 	path->search_for_split = 1;
4400 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4401 	path->search_for_split = 0;
4402 	if (ret > 0)
4403 		ret = -EAGAIN;
4404 	if (ret < 0)
4405 		goto err;
4406 
4407 	ret = -EAGAIN;
4408 	leaf = path->nodes[0];
4409 	/* if our item isn't there, return now */
4410 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4411 		goto err;
4412 
4413 	/* the leaf has  changed, it now has room.  return now */
4414 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4415 		goto err;
4416 
4417 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4418 		fi = btrfs_item_ptr(leaf, path->slots[0],
4419 				    struct btrfs_file_extent_item);
4420 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4421 			goto err;
4422 	}
4423 
4424 	btrfs_set_path_blocking(path);
4425 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4426 	if (ret)
4427 		goto err;
4428 
4429 	path->keep_locks = 0;
4430 	btrfs_unlock_up_safe(path, 1);
4431 	return 0;
4432 err:
4433 	path->keep_locks = 0;
4434 	return ret;
4435 }
4436 
4437 static noinline int split_item(struct btrfs_fs_info *fs_info,
4438 			       struct btrfs_path *path,
4439 			       const struct btrfs_key *new_key,
4440 			       unsigned long split_offset)
4441 {
4442 	struct extent_buffer *leaf;
4443 	struct btrfs_item *item;
4444 	struct btrfs_item *new_item;
4445 	int slot;
4446 	char *buf;
4447 	u32 nritems;
4448 	u32 item_size;
4449 	u32 orig_offset;
4450 	struct btrfs_disk_key disk_key;
4451 
4452 	leaf = path->nodes[0];
4453 	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4454 
4455 	btrfs_set_path_blocking(path);
4456 
4457 	item = btrfs_item_nr(path->slots[0]);
4458 	orig_offset = btrfs_item_offset(leaf, item);
4459 	item_size = btrfs_item_size(leaf, item);
4460 
4461 	buf = kmalloc(item_size, GFP_NOFS);
4462 	if (!buf)
4463 		return -ENOMEM;
4464 
4465 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4466 			    path->slots[0]), item_size);
4467 
4468 	slot = path->slots[0] + 1;
4469 	nritems = btrfs_header_nritems(leaf);
4470 	if (slot != nritems) {
4471 		/* shift the items */
4472 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4473 				btrfs_item_nr_offset(slot),
4474 				(nritems - slot) * sizeof(struct btrfs_item));
4475 	}
4476 
4477 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4478 	btrfs_set_item_key(leaf, &disk_key, slot);
4479 
4480 	new_item = btrfs_item_nr(slot);
4481 
4482 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4483 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4484 
4485 	btrfs_set_item_offset(leaf, item,
4486 			      orig_offset + item_size - split_offset);
4487 	btrfs_set_item_size(leaf, item, split_offset);
4488 
4489 	btrfs_set_header_nritems(leaf, nritems + 1);
4490 
4491 	/* write the data for the start of the original item */
4492 	write_extent_buffer(leaf, buf,
4493 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4494 			    split_offset);
4495 
4496 	/* write the data for the new item */
4497 	write_extent_buffer(leaf, buf + split_offset,
4498 			    btrfs_item_ptr_offset(leaf, slot),
4499 			    item_size - split_offset);
4500 	btrfs_mark_buffer_dirty(leaf);
4501 
4502 	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4503 	kfree(buf);
4504 	return 0;
4505 }
4506 
4507 /*
4508  * This function splits a single item into two items,
4509  * giving 'new_key' to the new item and splitting the
4510  * old one at split_offset (from the start of the item).
4511  *
4512  * The path may be released by this operation.  After
4513  * the split, the path is pointing to the old item.  The
4514  * new item is going to be in the same node as the old one.
4515  *
4516  * Note, the item being split must be smaller enough to live alone on
4517  * a tree block with room for one extra struct btrfs_item
4518  *
4519  * This allows us to split the item in place, keeping a lock on the
4520  * leaf the entire time.
4521  */
4522 int btrfs_split_item(struct btrfs_trans_handle *trans,
4523 		     struct btrfs_root *root,
4524 		     struct btrfs_path *path,
4525 		     const struct btrfs_key *new_key,
4526 		     unsigned long split_offset)
4527 {
4528 	int ret;
4529 	ret = setup_leaf_for_split(trans, root, path,
4530 				   sizeof(struct btrfs_item));
4531 	if (ret)
4532 		return ret;
4533 
4534 	ret = split_item(root->fs_info, path, new_key, split_offset);
4535 	return ret;
4536 }
4537 
4538 /*
4539  * This function duplicate a item, giving 'new_key' to the new item.
4540  * It guarantees both items live in the same tree leaf and the new item
4541  * is contiguous with the original item.
4542  *
4543  * This allows us to split file extent in place, keeping a lock on the
4544  * leaf the entire time.
4545  */
4546 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4547 			 struct btrfs_root *root,
4548 			 struct btrfs_path *path,
4549 			 const struct btrfs_key *new_key)
4550 {
4551 	struct extent_buffer *leaf;
4552 	int ret;
4553 	u32 item_size;
4554 
4555 	leaf = path->nodes[0];
4556 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4557 	ret = setup_leaf_for_split(trans, root, path,
4558 				   item_size + sizeof(struct btrfs_item));
4559 	if (ret)
4560 		return ret;
4561 
4562 	path->slots[0]++;
4563 	setup_items_for_insert(root, path, new_key, &item_size,
4564 			       item_size, item_size +
4565 			       sizeof(struct btrfs_item), 1);
4566 	leaf = path->nodes[0];
4567 	memcpy_extent_buffer(leaf,
4568 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4569 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4570 			     item_size);
4571 	return 0;
4572 }
4573 
4574 /*
4575  * make the item pointed to by the path smaller.  new_size indicates
4576  * how small to make it, and from_end tells us if we just chop bytes
4577  * off the end of the item or if we shift the item to chop bytes off
4578  * the front.
4579  */
4580 void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4581 			 struct btrfs_path *path, u32 new_size, int from_end)
4582 {
4583 	int slot;
4584 	struct extent_buffer *leaf;
4585 	struct btrfs_item *item;
4586 	u32 nritems;
4587 	unsigned int data_end;
4588 	unsigned int old_data_start;
4589 	unsigned int old_size;
4590 	unsigned int size_diff;
4591 	int i;
4592 	struct btrfs_map_token token;
4593 
4594 	btrfs_init_map_token(&token);
4595 
4596 	leaf = path->nodes[0];
4597 	slot = path->slots[0];
4598 
4599 	old_size = btrfs_item_size_nr(leaf, slot);
4600 	if (old_size == new_size)
4601 		return;
4602 
4603 	nritems = btrfs_header_nritems(leaf);
4604 	data_end = leaf_data_end(fs_info, leaf);
4605 
4606 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4607 
4608 	size_diff = old_size - new_size;
4609 
4610 	BUG_ON(slot < 0);
4611 	BUG_ON(slot >= nritems);
4612 
4613 	/*
4614 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4615 	 */
4616 	/* first correct the data pointers */
4617 	for (i = slot; i < nritems; i++) {
4618 		u32 ioff;
4619 		item = btrfs_item_nr(i);
4620 
4621 		ioff = btrfs_token_item_offset(leaf, item, &token);
4622 		btrfs_set_token_item_offset(leaf, item,
4623 					    ioff + size_diff, &token);
4624 	}
4625 
4626 	/* shift the data */
4627 	if (from_end) {
4628 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4629 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4630 			      data_end, old_data_start + new_size - data_end);
4631 	} else {
4632 		struct btrfs_disk_key disk_key;
4633 		u64 offset;
4634 
4635 		btrfs_item_key(leaf, &disk_key, slot);
4636 
4637 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4638 			unsigned long ptr;
4639 			struct btrfs_file_extent_item *fi;
4640 
4641 			fi = btrfs_item_ptr(leaf, slot,
4642 					    struct btrfs_file_extent_item);
4643 			fi = (struct btrfs_file_extent_item *)(
4644 			     (unsigned long)fi - size_diff);
4645 
4646 			if (btrfs_file_extent_type(leaf, fi) ==
4647 			    BTRFS_FILE_EXTENT_INLINE) {
4648 				ptr = btrfs_item_ptr_offset(leaf, slot);
4649 				memmove_extent_buffer(leaf, ptr,
4650 				      (unsigned long)fi,
4651 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4652 			}
4653 		}
4654 
4655 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4656 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4657 			      data_end, old_data_start - data_end);
4658 
4659 		offset = btrfs_disk_key_offset(&disk_key);
4660 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4661 		btrfs_set_item_key(leaf, &disk_key, slot);
4662 		if (slot == 0)
4663 			fixup_low_keys(fs_info, path, &disk_key, 1);
4664 	}
4665 
4666 	item = btrfs_item_nr(slot);
4667 	btrfs_set_item_size(leaf, item, new_size);
4668 	btrfs_mark_buffer_dirty(leaf);
4669 
4670 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4671 		btrfs_print_leaf(leaf);
4672 		BUG();
4673 	}
4674 }
4675 
4676 /*
4677  * make the item pointed to by the path bigger, data_size is the added size.
4678  */
4679 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4680 		       u32 data_size)
4681 {
4682 	int slot;
4683 	struct extent_buffer *leaf;
4684 	struct btrfs_item *item;
4685 	u32 nritems;
4686 	unsigned int data_end;
4687 	unsigned int old_data;
4688 	unsigned int old_size;
4689 	int i;
4690 	struct btrfs_map_token token;
4691 
4692 	btrfs_init_map_token(&token);
4693 
4694 	leaf = path->nodes[0];
4695 
4696 	nritems = btrfs_header_nritems(leaf);
4697 	data_end = leaf_data_end(fs_info, leaf);
4698 
4699 	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4700 		btrfs_print_leaf(leaf);
4701 		BUG();
4702 	}
4703 	slot = path->slots[0];
4704 	old_data = btrfs_item_end_nr(leaf, slot);
4705 
4706 	BUG_ON(slot < 0);
4707 	if (slot >= nritems) {
4708 		btrfs_print_leaf(leaf);
4709 		btrfs_crit(fs_info, "slot %d too large, nritems %d",
4710 			   slot, nritems);
4711 		BUG_ON(1);
4712 	}
4713 
4714 	/*
4715 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4716 	 */
4717 	/* first correct the data pointers */
4718 	for (i = slot; i < nritems; i++) {
4719 		u32 ioff;
4720 		item = btrfs_item_nr(i);
4721 
4722 		ioff = btrfs_token_item_offset(leaf, item, &token);
4723 		btrfs_set_token_item_offset(leaf, item,
4724 					    ioff - data_size, &token);
4725 	}
4726 
4727 	/* shift the data */
4728 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4729 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4730 		      data_end, old_data - data_end);
4731 
4732 	data_end = old_data;
4733 	old_size = btrfs_item_size_nr(leaf, slot);
4734 	item = btrfs_item_nr(slot);
4735 	btrfs_set_item_size(leaf, item, old_size + data_size);
4736 	btrfs_mark_buffer_dirty(leaf);
4737 
4738 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4739 		btrfs_print_leaf(leaf);
4740 		BUG();
4741 	}
4742 }
4743 
4744 /*
4745  * this is a helper for btrfs_insert_empty_items, the main goal here is
4746  * to save stack depth by doing the bulk of the work in a function
4747  * that doesn't call btrfs_search_slot
4748  */
4749 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4750 			    const struct btrfs_key *cpu_key, u32 *data_size,
4751 			    u32 total_data, u32 total_size, int nr)
4752 {
4753 	struct btrfs_fs_info *fs_info = root->fs_info;
4754 	struct btrfs_item *item;
4755 	int i;
4756 	u32 nritems;
4757 	unsigned int data_end;
4758 	struct btrfs_disk_key disk_key;
4759 	struct extent_buffer *leaf;
4760 	int slot;
4761 	struct btrfs_map_token token;
4762 
4763 	if (path->slots[0] == 0) {
4764 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4765 		fixup_low_keys(fs_info, path, &disk_key, 1);
4766 	}
4767 	btrfs_unlock_up_safe(path, 1);
4768 
4769 	btrfs_init_map_token(&token);
4770 
4771 	leaf = path->nodes[0];
4772 	slot = path->slots[0];
4773 
4774 	nritems = btrfs_header_nritems(leaf);
4775 	data_end = leaf_data_end(fs_info, leaf);
4776 
4777 	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4778 		btrfs_print_leaf(leaf);
4779 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4780 			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4781 		BUG();
4782 	}
4783 
4784 	if (slot != nritems) {
4785 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4786 
4787 		if (old_data < data_end) {
4788 			btrfs_print_leaf(leaf);
4789 			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4790 				   slot, old_data, data_end);
4791 			BUG_ON(1);
4792 		}
4793 		/*
4794 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4795 		 */
4796 		/* first correct the data pointers */
4797 		for (i = slot; i < nritems; i++) {
4798 			u32 ioff;
4799 
4800 			item = btrfs_item_nr(i);
4801 			ioff = btrfs_token_item_offset(leaf, item, &token);
4802 			btrfs_set_token_item_offset(leaf, item,
4803 						    ioff - total_data, &token);
4804 		}
4805 		/* shift the items */
4806 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4807 			      btrfs_item_nr_offset(slot),
4808 			      (nritems - slot) * sizeof(struct btrfs_item));
4809 
4810 		/* shift the data */
4811 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4812 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4813 			      data_end, old_data - data_end);
4814 		data_end = old_data;
4815 	}
4816 
4817 	/* setup the item for the new data */
4818 	for (i = 0; i < nr; i++) {
4819 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4820 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4821 		item = btrfs_item_nr(slot + i);
4822 		btrfs_set_token_item_offset(leaf, item,
4823 					    data_end - data_size[i], &token);
4824 		data_end -= data_size[i];
4825 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4826 	}
4827 
4828 	btrfs_set_header_nritems(leaf, nritems + nr);
4829 	btrfs_mark_buffer_dirty(leaf);
4830 
4831 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4832 		btrfs_print_leaf(leaf);
4833 		BUG();
4834 	}
4835 }
4836 
4837 /*
4838  * Given a key and some data, insert items into the tree.
4839  * This does all the path init required, making room in the tree if needed.
4840  */
4841 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4842 			    struct btrfs_root *root,
4843 			    struct btrfs_path *path,
4844 			    const struct btrfs_key *cpu_key, u32 *data_size,
4845 			    int nr)
4846 {
4847 	int ret = 0;
4848 	int slot;
4849 	int i;
4850 	u32 total_size = 0;
4851 	u32 total_data = 0;
4852 
4853 	for (i = 0; i < nr; i++)
4854 		total_data += data_size[i];
4855 
4856 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4857 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4858 	if (ret == 0)
4859 		return -EEXIST;
4860 	if (ret < 0)
4861 		return ret;
4862 
4863 	slot = path->slots[0];
4864 	BUG_ON(slot < 0);
4865 
4866 	setup_items_for_insert(root, path, cpu_key, data_size,
4867 			       total_data, total_size, nr);
4868 	return 0;
4869 }
4870 
4871 /*
4872  * Given a key and some data, insert an item into the tree.
4873  * This does all the path init required, making room in the tree if needed.
4874  */
4875 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4876 		      const struct btrfs_key *cpu_key, void *data,
4877 		      u32 data_size)
4878 {
4879 	int ret = 0;
4880 	struct btrfs_path *path;
4881 	struct extent_buffer *leaf;
4882 	unsigned long ptr;
4883 
4884 	path = btrfs_alloc_path();
4885 	if (!path)
4886 		return -ENOMEM;
4887 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4888 	if (!ret) {
4889 		leaf = path->nodes[0];
4890 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4891 		write_extent_buffer(leaf, data, ptr, data_size);
4892 		btrfs_mark_buffer_dirty(leaf);
4893 	}
4894 	btrfs_free_path(path);
4895 	return ret;
4896 }
4897 
4898 /*
4899  * delete the pointer from a given node.
4900  *
4901  * the tree should have been previously balanced so the deletion does not
4902  * empty a node.
4903  */
4904 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4905 		    int level, int slot)
4906 {
4907 	struct btrfs_fs_info *fs_info = root->fs_info;
4908 	struct extent_buffer *parent = path->nodes[level];
4909 	u32 nritems;
4910 	int ret;
4911 
4912 	nritems = btrfs_header_nritems(parent);
4913 	if (slot != nritems - 1) {
4914 		if (level)
4915 			tree_mod_log_eb_move(fs_info, parent, slot,
4916 					     slot + 1, nritems - slot - 1);
4917 		memmove_extent_buffer(parent,
4918 			      btrfs_node_key_ptr_offset(slot),
4919 			      btrfs_node_key_ptr_offset(slot + 1),
4920 			      sizeof(struct btrfs_key_ptr) *
4921 			      (nritems - slot - 1));
4922 	} else if (level) {
4923 		ret = tree_mod_log_insert_key(fs_info, parent, slot,
4924 					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4925 		BUG_ON(ret < 0);
4926 	}
4927 
4928 	nritems--;
4929 	btrfs_set_header_nritems(parent, nritems);
4930 	if (nritems == 0 && parent == root->node) {
4931 		BUG_ON(btrfs_header_level(root->node) != 1);
4932 		/* just turn the root into a leaf and break */
4933 		btrfs_set_header_level(root->node, 0);
4934 	} else if (slot == 0) {
4935 		struct btrfs_disk_key disk_key;
4936 
4937 		btrfs_node_key(parent, &disk_key, 0);
4938 		fixup_low_keys(fs_info, path, &disk_key, level + 1);
4939 	}
4940 	btrfs_mark_buffer_dirty(parent);
4941 }
4942 
4943 /*
4944  * a helper function to delete the leaf pointed to by path->slots[1] and
4945  * path->nodes[1].
4946  *
4947  * This deletes the pointer in path->nodes[1] and frees the leaf
4948  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4949  *
4950  * The path must have already been setup for deleting the leaf, including
4951  * all the proper balancing.  path->nodes[1] must be locked.
4952  */
4953 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4954 				    struct btrfs_root *root,
4955 				    struct btrfs_path *path,
4956 				    struct extent_buffer *leaf)
4957 {
4958 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4959 	del_ptr(root, path, 1, path->slots[1]);
4960 
4961 	/*
4962 	 * btrfs_free_extent is expensive, we want to make sure we
4963 	 * aren't holding any locks when we call it
4964 	 */
4965 	btrfs_unlock_up_safe(path, 0);
4966 
4967 	root_sub_used(root, leaf->len);
4968 
4969 	extent_buffer_get(leaf);
4970 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4971 	free_extent_buffer_stale(leaf);
4972 }
4973 /*
4974  * delete the item at the leaf level in path.  If that empties
4975  * the leaf, remove it from the tree
4976  */
4977 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4978 		    struct btrfs_path *path, int slot, int nr)
4979 {
4980 	struct btrfs_fs_info *fs_info = root->fs_info;
4981 	struct extent_buffer *leaf;
4982 	struct btrfs_item *item;
4983 	u32 last_off;
4984 	u32 dsize = 0;
4985 	int ret = 0;
4986 	int wret;
4987 	int i;
4988 	u32 nritems;
4989 	struct btrfs_map_token token;
4990 
4991 	btrfs_init_map_token(&token);
4992 
4993 	leaf = path->nodes[0];
4994 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4995 
4996 	for (i = 0; i < nr; i++)
4997 		dsize += btrfs_item_size_nr(leaf, slot + i);
4998 
4999 	nritems = btrfs_header_nritems(leaf);
5000 
5001 	if (slot + nr != nritems) {
5002 		int data_end = leaf_data_end(fs_info, leaf);
5003 
5004 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
5005 			      data_end + dsize,
5006 			      BTRFS_LEAF_DATA_OFFSET + data_end,
5007 			      last_off - data_end);
5008 
5009 		for (i = slot + nr; i < nritems; i++) {
5010 			u32 ioff;
5011 
5012 			item = btrfs_item_nr(i);
5013 			ioff = btrfs_token_item_offset(leaf, item, &token);
5014 			btrfs_set_token_item_offset(leaf, item,
5015 						    ioff + dsize, &token);
5016 		}
5017 
5018 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5019 			      btrfs_item_nr_offset(slot + nr),
5020 			      sizeof(struct btrfs_item) *
5021 			      (nritems - slot - nr));
5022 	}
5023 	btrfs_set_header_nritems(leaf, nritems - nr);
5024 	nritems -= nr;
5025 
5026 	/* delete the leaf if we've emptied it */
5027 	if (nritems == 0) {
5028 		if (leaf == root->node) {
5029 			btrfs_set_header_level(leaf, 0);
5030 		} else {
5031 			btrfs_set_path_blocking(path);
5032 			clean_tree_block(fs_info, leaf);
5033 			btrfs_del_leaf(trans, root, path, leaf);
5034 		}
5035 	} else {
5036 		int used = leaf_space_used(leaf, 0, nritems);
5037 		if (slot == 0) {
5038 			struct btrfs_disk_key disk_key;
5039 
5040 			btrfs_item_key(leaf, &disk_key, 0);
5041 			fixup_low_keys(fs_info, path, &disk_key, 1);
5042 		}
5043 
5044 		/* delete the leaf if it is mostly empty */
5045 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5046 			/* push_leaf_left fixes the path.
5047 			 * make sure the path still points to our leaf
5048 			 * for possible call to del_ptr below
5049 			 */
5050 			slot = path->slots[1];
5051 			extent_buffer_get(leaf);
5052 
5053 			btrfs_set_path_blocking(path);
5054 			wret = push_leaf_left(trans, root, path, 1, 1,
5055 					      1, (u32)-1);
5056 			if (wret < 0 && wret != -ENOSPC)
5057 				ret = wret;
5058 
5059 			if (path->nodes[0] == leaf &&
5060 			    btrfs_header_nritems(leaf)) {
5061 				wret = push_leaf_right(trans, root, path, 1,
5062 						       1, 1, 0);
5063 				if (wret < 0 && wret != -ENOSPC)
5064 					ret = wret;
5065 			}
5066 
5067 			if (btrfs_header_nritems(leaf) == 0) {
5068 				path->slots[1] = slot;
5069 				btrfs_del_leaf(trans, root, path, leaf);
5070 				free_extent_buffer(leaf);
5071 				ret = 0;
5072 			} else {
5073 				/* if we're still in the path, make sure
5074 				 * we're dirty.  Otherwise, one of the
5075 				 * push_leaf functions must have already
5076 				 * dirtied this buffer
5077 				 */
5078 				if (path->nodes[0] == leaf)
5079 					btrfs_mark_buffer_dirty(leaf);
5080 				free_extent_buffer(leaf);
5081 			}
5082 		} else {
5083 			btrfs_mark_buffer_dirty(leaf);
5084 		}
5085 	}
5086 	return ret;
5087 }
5088 
5089 /*
5090  * search the tree again to find a leaf with lesser keys
5091  * returns 0 if it found something or 1 if there are no lesser leaves.
5092  * returns < 0 on io errors.
5093  *
5094  * This may release the path, and so you may lose any locks held at the
5095  * time you call it.
5096  */
5097 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5098 {
5099 	struct btrfs_key key;
5100 	struct btrfs_disk_key found_key;
5101 	int ret;
5102 
5103 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5104 
5105 	if (key.offset > 0) {
5106 		key.offset--;
5107 	} else if (key.type > 0) {
5108 		key.type--;
5109 		key.offset = (u64)-1;
5110 	} else if (key.objectid > 0) {
5111 		key.objectid--;
5112 		key.type = (u8)-1;
5113 		key.offset = (u64)-1;
5114 	} else {
5115 		return 1;
5116 	}
5117 
5118 	btrfs_release_path(path);
5119 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5120 	if (ret < 0)
5121 		return ret;
5122 	btrfs_item_key(path->nodes[0], &found_key, 0);
5123 	ret = comp_keys(&found_key, &key);
5124 	/*
5125 	 * We might have had an item with the previous key in the tree right
5126 	 * before we released our path. And after we released our path, that
5127 	 * item might have been pushed to the first slot (0) of the leaf we
5128 	 * were holding due to a tree balance. Alternatively, an item with the
5129 	 * previous key can exist as the only element of a leaf (big fat item).
5130 	 * Therefore account for these 2 cases, so that our callers (like
5131 	 * btrfs_previous_item) don't miss an existing item with a key matching
5132 	 * the previous key we computed above.
5133 	 */
5134 	if (ret <= 0)
5135 		return 0;
5136 	return 1;
5137 }
5138 
5139 /*
5140  * A helper function to walk down the tree starting at min_key, and looking
5141  * for nodes or leaves that are have a minimum transaction id.
5142  * This is used by the btree defrag code, and tree logging
5143  *
5144  * This does not cow, but it does stuff the starting key it finds back
5145  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5146  * key and get a writable path.
5147  *
5148  * This does lock as it descends, and path->keep_locks should be set
5149  * to 1 by the caller.
5150  *
5151  * This honors path->lowest_level to prevent descent past a given level
5152  * of the tree.
5153  *
5154  * min_trans indicates the oldest transaction that you are interested
5155  * in walking through.  Any nodes or leaves older than min_trans are
5156  * skipped over (without reading them).
5157  *
5158  * returns zero if something useful was found, < 0 on error and 1 if there
5159  * was nothing in the tree that matched the search criteria.
5160  */
5161 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5162 			 struct btrfs_path *path,
5163 			 u64 min_trans)
5164 {
5165 	struct btrfs_fs_info *fs_info = root->fs_info;
5166 	struct extent_buffer *cur;
5167 	struct btrfs_key found_key;
5168 	int slot;
5169 	int sret;
5170 	u32 nritems;
5171 	int level;
5172 	int ret = 1;
5173 	int keep_locks = path->keep_locks;
5174 
5175 	path->keep_locks = 1;
5176 again:
5177 	cur = btrfs_read_lock_root_node(root);
5178 	level = btrfs_header_level(cur);
5179 	WARN_ON(path->nodes[level]);
5180 	path->nodes[level] = cur;
5181 	path->locks[level] = BTRFS_READ_LOCK;
5182 
5183 	if (btrfs_header_generation(cur) < min_trans) {
5184 		ret = 1;
5185 		goto out;
5186 	}
5187 	while (1) {
5188 		nritems = btrfs_header_nritems(cur);
5189 		level = btrfs_header_level(cur);
5190 		sret = btrfs_bin_search(cur, min_key, level, &slot);
5191 
5192 		/* at the lowest level, we're done, setup the path and exit */
5193 		if (level == path->lowest_level) {
5194 			if (slot >= nritems)
5195 				goto find_next_key;
5196 			ret = 0;
5197 			path->slots[level] = slot;
5198 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5199 			goto out;
5200 		}
5201 		if (sret && slot > 0)
5202 			slot--;
5203 		/*
5204 		 * check this node pointer against the min_trans parameters.
5205 		 * If it is too old, old, skip to the next one.
5206 		 */
5207 		while (slot < nritems) {
5208 			u64 gen;
5209 
5210 			gen = btrfs_node_ptr_generation(cur, slot);
5211 			if (gen < min_trans) {
5212 				slot++;
5213 				continue;
5214 			}
5215 			break;
5216 		}
5217 find_next_key:
5218 		/*
5219 		 * we didn't find a candidate key in this node, walk forward
5220 		 * and find another one
5221 		 */
5222 		if (slot >= nritems) {
5223 			path->slots[level] = slot;
5224 			btrfs_set_path_blocking(path);
5225 			sret = btrfs_find_next_key(root, path, min_key, level,
5226 						  min_trans);
5227 			if (sret == 0) {
5228 				btrfs_release_path(path);
5229 				goto again;
5230 			} else {
5231 				goto out;
5232 			}
5233 		}
5234 		/* save our key for returning back */
5235 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5236 		path->slots[level] = slot;
5237 		if (level == path->lowest_level) {
5238 			ret = 0;
5239 			goto out;
5240 		}
5241 		btrfs_set_path_blocking(path);
5242 		cur = read_node_slot(fs_info, cur, slot);
5243 		if (IS_ERR(cur)) {
5244 			ret = PTR_ERR(cur);
5245 			goto out;
5246 		}
5247 
5248 		btrfs_tree_read_lock(cur);
5249 
5250 		path->locks[level - 1] = BTRFS_READ_LOCK;
5251 		path->nodes[level - 1] = cur;
5252 		unlock_up(path, level, 1, 0, NULL);
5253 		btrfs_clear_path_blocking(path, NULL, 0);
5254 	}
5255 out:
5256 	path->keep_locks = keep_locks;
5257 	if (ret == 0) {
5258 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5259 		btrfs_set_path_blocking(path);
5260 		memcpy(min_key, &found_key, sizeof(found_key));
5261 	}
5262 	return ret;
5263 }
5264 
5265 static int tree_move_down(struct btrfs_fs_info *fs_info,
5266 			   struct btrfs_path *path,
5267 			   int *level)
5268 {
5269 	struct extent_buffer *eb;
5270 
5271 	BUG_ON(*level == 0);
5272 	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5273 	if (IS_ERR(eb))
5274 		return PTR_ERR(eb);
5275 
5276 	path->nodes[*level - 1] = eb;
5277 	path->slots[*level - 1] = 0;
5278 	(*level)--;
5279 	return 0;
5280 }
5281 
5282 static int tree_move_next_or_upnext(struct btrfs_path *path,
5283 				    int *level, int root_level)
5284 {
5285 	int ret = 0;
5286 	int nritems;
5287 	nritems = btrfs_header_nritems(path->nodes[*level]);
5288 
5289 	path->slots[*level]++;
5290 
5291 	while (path->slots[*level] >= nritems) {
5292 		if (*level == root_level)
5293 			return -1;
5294 
5295 		/* move upnext */
5296 		path->slots[*level] = 0;
5297 		free_extent_buffer(path->nodes[*level]);
5298 		path->nodes[*level] = NULL;
5299 		(*level)++;
5300 		path->slots[*level]++;
5301 
5302 		nritems = btrfs_header_nritems(path->nodes[*level]);
5303 		ret = 1;
5304 	}
5305 	return ret;
5306 }
5307 
5308 /*
5309  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5310  * or down.
5311  */
5312 static int tree_advance(struct btrfs_fs_info *fs_info,
5313 			struct btrfs_path *path,
5314 			int *level, int root_level,
5315 			int allow_down,
5316 			struct btrfs_key *key)
5317 {
5318 	int ret;
5319 
5320 	if (*level == 0 || !allow_down) {
5321 		ret = tree_move_next_or_upnext(path, level, root_level);
5322 	} else {
5323 		ret = tree_move_down(fs_info, path, level);
5324 	}
5325 	if (ret >= 0) {
5326 		if (*level == 0)
5327 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5328 					path->slots[*level]);
5329 		else
5330 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5331 					path->slots[*level]);
5332 	}
5333 	return ret;
5334 }
5335 
5336 static int tree_compare_item(struct btrfs_path *left_path,
5337 			     struct btrfs_path *right_path,
5338 			     char *tmp_buf)
5339 {
5340 	int cmp;
5341 	int len1, len2;
5342 	unsigned long off1, off2;
5343 
5344 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5345 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5346 	if (len1 != len2)
5347 		return 1;
5348 
5349 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5350 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5351 				right_path->slots[0]);
5352 
5353 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5354 
5355 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5356 	if (cmp)
5357 		return 1;
5358 	return 0;
5359 }
5360 
5361 #define ADVANCE 1
5362 #define ADVANCE_ONLY_NEXT -1
5363 
5364 /*
5365  * This function compares two trees and calls the provided callback for
5366  * every changed/new/deleted item it finds.
5367  * If shared tree blocks are encountered, whole subtrees are skipped, making
5368  * the compare pretty fast on snapshotted subvolumes.
5369  *
5370  * This currently works on commit roots only. As commit roots are read only,
5371  * we don't do any locking. The commit roots are protected with transactions.
5372  * Transactions are ended and rejoined when a commit is tried in between.
5373  *
5374  * This function checks for modifications done to the trees while comparing.
5375  * If it detects a change, it aborts immediately.
5376  */
5377 int btrfs_compare_trees(struct btrfs_root *left_root,
5378 			struct btrfs_root *right_root,
5379 			btrfs_changed_cb_t changed_cb, void *ctx)
5380 {
5381 	struct btrfs_fs_info *fs_info = left_root->fs_info;
5382 	int ret;
5383 	int cmp;
5384 	struct btrfs_path *left_path = NULL;
5385 	struct btrfs_path *right_path = NULL;
5386 	struct btrfs_key left_key;
5387 	struct btrfs_key right_key;
5388 	char *tmp_buf = NULL;
5389 	int left_root_level;
5390 	int right_root_level;
5391 	int left_level;
5392 	int right_level;
5393 	int left_end_reached;
5394 	int right_end_reached;
5395 	int advance_left;
5396 	int advance_right;
5397 	u64 left_blockptr;
5398 	u64 right_blockptr;
5399 	u64 left_gen;
5400 	u64 right_gen;
5401 
5402 	left_path = btrfs_alloc_path();
5403 	if (!left_path) {
5404 		ret = -ENOMEM;
5405 		goto out;
5406 	}
5407 	right_path = btrfs_alloc_path();
5408 	if (!right_path) {
5409 		ret = -ENOMEM;
5410 		goto out;
5411 	}
5412 
5413 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5414 	if (!tmp_buf) {
5415 		ret = -ENOMEM;
5416 		goto out;
5417 	}
5418 
5419 	left_path->search_commit_root = 1;
5420 	left_path->skip_locking = 1;
5421 	right_path->search_commit_root = 1;
5422 	right_path->skip_locking = 1;
5423 
5424 	/*
5425 	 * Strategy: Go to the first items of both trees. Then do
5426 	 *
5427 	 * If both trees are at level 0
5428 	 *   Compare keys of current items
5429 	 *     If left < right treat left item as new, advance left tree
5430 	 *       and repeat
5431 	 *     If left > right treat right item as deleted, advance right tree
5432 	 *       and repeat
5433 	 *     If left == right do deep compare of items, treat as changed if
5434 	 *       needed, advance both trees and repeat
5435 	 * If both trees are at the same level but not at level 0
5436 	 *   Compare keys of current nodes/leafs
5437 	 *     If left < right advance left tree and repeat
5438 	 *     If left > right advance right tree and repeat
5439 	 *     If left == right compare blockptrs of the next nodes/leafs
5440 	 *       If they match advance both trees but stay at the same level
5441 	 *         and repeat
5442 	 *       If they don't match advance both trees while allowing to go
5443 	 *         deeper and repeat
5444 	 * If tree levels are different
5445 	 *   Advance the tree that needs it and repeat
5446 	 *
5447 	 * Advancing a tree means:
5448 	 *   If we are at level 0, try to go to the next slot. If that's not
5449 	 *   possible, go one level up and repeat. Stop when we found a level
5450 	 *   where we could go to the next slot. We may at this point be on a
5451 	 *   node or a leaf.
5452 	 *
5453 	 *   If we are not at level 0 and not on shared tree blocks, go one
5454 	 *   level deeper.
5455 	 *
5456 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5457 	 *   the right if possible or go up and right.
5458 	 */
5459 
5460 	down_read(&fs_info->commit_root_sem);
5461 	left_level = btrfs_header_level(left_root->commit_root);
5462 	left_root_level = left_level;
5463 	left_path->nodes[left_level] = left_root->commit_root;
5464 	extent_buffer_get(left_path->nodes[left_level]);
5465 
5466 	right_level = btrfs_header_level(right_root->commit_root);
5467 	right_root_level = right_level;
5468 	right_path->nodes[right_level] = right_root->commit_root;
5469 	extent_buffer_get(right_path->nodes[right_level]);
5470 	up_read(&fs_info->commit_root_sem);
5471 
5472 	if (left_level == 0)
5473 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5474 				&left_key, left_path->slots[left_level]);
5475 	else
5476 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5477 				&left_key, left_path->slots[left_level]);
5478 	if (right_level == 0)
5479 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5480 				&right_key, right_path->slots[right_level]);
5481 	else
5482 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5483 				&right_key, right_path->slots[right_level]);
5484 
5485 	left_end_reached = right_end_reached = 0;
5486 	advance_left = advance_right = 0;
5487 
5488 	while (1) {
5489 		if (advance_left && !left_end_reached) {
5490 			ret = tree_advance(fs_info, left_path, &left_level,
5491 					left_root_level,
5492 					advance_left != ADVANCE_ONLY_NEXT,
5493 					&left_key);
5494 			if (ret == -1)
5495 				left_end_reached = ADVANCE;
5496 			else if (ret < 0)
5497 				goto out;
5498 			advance_left = 0;
5499 		}
5500 		if (advance_right && !right_end_reached) {
5501 			ret = tree_advance(fs_info, right_path, &right_level,
5502 					right_root_level,
5503 					advance_right != ADVANCE_ONLY_NEXT,
5504 					&right_key);
5505 			if (ret == -1)
5506 				right_end_reached = ADVANCE;
5507 			else if (ret < 0)
5508 				goto out;
5509 			advance_right = 0;
5510 		}
5511 
5512 		if (left_end_reached && right_end_reached) {
5513 			ret = 0;
5514 			goto out;
5515 		} else if (left_end_reached) {
5516 			if (right_level == 0) {
5517 				ret = changed_cb(left_path, right_path,
5518 						&right_key,
5519 						BTRFS_COMPARE_TREE_DELETED,
5520 						ctx);
5521 				if (ret < 0)
5522 					goto out;
5523 			}
5524 			advance_right = ADVANCE;
5525 			continue;
5526 		} else if (right_end_reached) {
5527 			if (left_level == 0) {
5528 				ret = changed_cb(left_path, right_path,
5529 						&left_key,
5530 						BTRFS_COMPARE_TREE_NEW,
5531 						ctx);
5532 				if (ret < 0)
5533 					goto out;
5534 			}
5535 			advance_left = ADVANCE;
5536 			continue;
5537 		}
5538 
5539 		if (left_level == 0 && right_level == 0) {
5540 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5541 			if (cmp < 0) {
5542 				ret = changed_cb(left_path, right_path,
5543 						&left_key,
5544 						BTRFS_COMPARE_TREE_NEW,
5545 						ctx);
5546 				if (ret < 0)
5547 					goto out;
5548 				advance_left = ADVANCE;
5549 			} else if (cmp > 0) {
5550 				ret = changed_cb(left_path, right_path,
5551 						&right_key,
5552 						BTRFS_COMPARE_TREE_DELETED,
5553 						ctx);
5554 				if (ret < 0)
5555 					goto out;
5556 				advance_right = ADVANCE;
5557 			} else {
5558 				enum btrfs_compare_tree_result result;
5559 
5560 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5561 				ret = tree_compare_item(left_path, right_path,
5562 							tmp_buf);
5563 				if (ret)
5564 					result = BTRFS_COMPARE_TREE_CHANGED;
5565 				else
5566 					result = BTRFS_COMPARE_TREE_SAME;
5567 				ret = changed_cb(left_path, right_path,
5568 						 &left_key, result, ctx);
5569 				if (ret < 0)
5570 					goto out;
5571 				advance_left = ADVANCE;
5572 				advance_right = ADVANCE;
5573 			}
5574 		} else if (left_level == right_level) {
5575 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5576 			if (cmp < 0) {
5577 				advance_left = ADVANCE;
5578 			} else if (cmp > 0) {
5579 				advance_right = ADVANCE;
5580 			} else {
5581 				left_blockptr = btrfs_node_blockptr(
5582 						left_path->nodes[left_level],
5583 						left_path->slots[left_level]);
5584 				right_blockptr = btrfs_node_blockptr(
5585 						right_path->nodes[right_level],
5586 						right_path->slots[right_level]);
5587 				left_gen = btrfs_node_ptr_generation(
5588 						left_path->nodes[left_level],
5589 						left_path->slots[left_level]);
5590 				right_gen = btrfs_node_ptr_generation(
5591 						right_path->nodes[right_level],
5592 						right_path->slots[right_level]);
5593 				if (left_blockptr == right_blockptr &&
5594 				    left_gen == right_gen) {
5595 					/*
5596 					 * As we're on a shared block, don't
5597 					 * allow to go deeper.
5598 					 */
5599 					advance_left = ADVANCE_ONLY_NEXT;
5600 					advance_right = ADVANCE_ONLY_NEXT;
5601 				} else {
5602 					advance_left = ADVANCE;
5603 					advance_right = ADVANCE;
5604 				}
5605 			}
5606 		} else if (left_level < right_level) {
5607 			advance_right = ADVANCE;
5608 		} else {
5609 			advance_left = ADVANCE;
5610 		}
5611 	}
5612 
5613 out:
5614 	btrfs_free_path(left_path);
5615 	btrfs_free_path(right_path);
5616 	kvfree(tmp_buf);
5617 	return ret;
5618 }
5619 
5620 /*
5621  * this is similar to btrfs_next_leaf, but does not try to preserve
5622  * and fixup the path.  It looks for and returns the next key in the
5623  * tree based on the current path and the min_trans parameters.
5624  *
5625  * 0 is returned if another key is found, < 0 if there are any errors
5626  * and 1 is returned if there are no higher keys in the tree
5627  *
5628  * path->keep_locks should be set to 1 on the search made before
5629  * calling this function.
5630  */
5631 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5632 			struct btrfs_key *key, int level, u64 min_trans)
5633 {
5634 	int slot;
5635 	struct extent_buffer *c;
5636 
5637 	WARN_ON(!path->keep_locks);
5638 	while (level < BTRFS_MAX_LEVEL) {
5639 		if (!path->nodes[level])
5640 			return 1;
5641 
5642 		slot = path->slots[level] + 1;
5643 		c = path->nodes[level];
5644 next:
5645 		if (slot >= btrfs_header_nritems(c)) {
5646 			int ret;
5647 			int orig_lowest;
5648 			struct btrfs_key cur_key;
5649 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5650 			    !path->nodes[level + 1])
5651 				return 1;
5652 
5653 			if (path->locks[level + 1]) {
5654 				level++;
5655 				continue;
5656 			}
5657 
5658 			slot = btrfs_header_nritems(c) - 1;
5659 			if (level == 0)
5660 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5661 			else
5662 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5663 
5664 			orig_lowest = path->lowest_level;
5665 			btrfs_release_path(path);
5666 			path->lowest_level = level;
5667 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5668 						0, 0);
5669 			path->lowest_level = orig_lowest;
5670 			if (ret < 0)
5671 				return ret;
5672 
5673 			c = path->nodes[level];
5674 			slot = path->slots[level];
5675 			if (ret == 0)
5676 				slot++;
5677 			goto next;
5678 		}
5679 
5680 		if (level == 0)
5681 			btrfs_item_key_to_cpu(c, key, slot);
5682 		else {
5683 			u64 gen = btrfs_node_ptr_generation(c, slot);
5684 
5685 			if (gen < min_trans) {
5686 				slot++;
5687 				goto next;
5688 			}
5689 			btrfs_node_key_to_cpu(c, key, slot);
5690 		}
5691 		return 0;
5692 	}
5693 	return 1;
5694 }
5695 
5696 /*
5697  * search the tree again to find a leaf with greater keys
5698  * returns 0 if it found something or 1 if there are no greater leaves.
5699  * returns < 0 on io errors.
5700  */
5701 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5702 {
5703 	return btrfs_next_old_leaf(root, path, 0);
5704 }
5705 
5706 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5707 			u64 time_seq)
5708 {
5709 	int slot;
5710 	int level;
5711 	struct extent_buffer *c;
5712 	struct extent_buffer *next;
5713 	struct btrfs_key key;
5714 	u32 nritems;
5715 	int ret;
5716 	int old_spinning = path->leave_spinning;
5717 	int next_rw_lock = 0;
5718 
5719 	nritems = btrfs_header_nritems(path->nodes[0]);
5720 	if (nritems == 0)
5721 		return 1;
5722 
5723 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5724 again:
5725 	level = 1;
5726 	next = NULL;
5727 	next_rw_lock = 0;
5728 	btrfs_release_path(path);
5729 
5730 	path->keep_locks = 1;
5731 	path->leave_spinning = 1;
5732 
5733 	if (time_seq)
5734 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5735 	else
5736 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5737 	path->keep_locks = 0;
5738 
5739 	if (ret < 0)
5740 		return ret;
5741 
5742 	nritems = btrfs_header_nritems(path->nodes[0]);
5743 	/*
5744 	 * by releasing the path above we dropped all our locks.  A balance
5745 	 * could have added more items next to the key that used to be
5746 	 * at the very end of the block.  So, check again here and
5747 	 * advance the path if there are now more items available.
5748 	 */
5749 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5750 		if (ret == 0)
5751 			path->slots[0]++;
5752 		ret = 0;
5753 		goto done;
5754 	}
5755 	/*
5756 	 * So the above check misses one case:
5757 	 * - after releasing the path above, someone has removed the item that
5758 	 *   used to be at the very end of the block, and balance between leafs
5759 	 *   gets another one with bigger key.offset to replace it.
5760 	 *
5761 	 * This one should be returned as well, or we can get leaf corruption
5762 	 * later(esp. in __btrfs_drop_extents()).
5763 	 *
5764 	 * And a bit more explanation about this check,
5765 	 * with ret > 0, the key isn't found, the path points to the slot
5766 	 * where it should be inserted, so the path->slots[0] item must be the
5767 	 * bigger one.
5768 	 */
5769 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5770 		ret = 0;
5771 		goto done;
5772 	}
5773 
5774 	while (level < BTRFS_MAX_LEVEL) {
5775 		if (!path->nodes[level]) {
5776 			ret = 1;
5777 			goto done;
5778 		}
5779 
5780 		slot = path->slots[level] + 1;
5781 		c = path->nodes[level];
5782 		if (slot >= btrfs_header_nritems(c)) {
5783 			level++;
5784 			if (level == BTRFS_MAX_LEVEL) {
5785 				ret = 1;
5786 				goto done;
5787 			}
5788 			continue;
5789 		}
5790 
5791 		if (next) {
5792 			btrfs_tree_unlock_rw(next, next_rw_lock);
5793 			free_extent_buffer(next);
5794 		}
5795 
5796 		next = c;
5797 		next_rw_lock = path->locks[level];
5798 		ret = read_block_for_search(root, path, &next, level,
5799 					    slot, &key);
5800 		if (ret == -EAGAIN)
5801 			goto again;
5802 
5803 		if (ret < 0) {
5804 			btrfs_release_path(path);
5805 			goto done;
5806 		}
5807 
5808 		if (!path->skip_locking) {
5809 			ret = btrfs_try_tree_read_lock(next);
5810 			if (!ret && time_seq) {
5811 				/*
5812 				 * If we don't get the lock, we may be racing
5813 				 * with push_leaf_left, holding that lock while
5814 				 * itself waiting for the leaf we've currently
5815 				 * locked. To solve this situation, we give up
5816 				 * on our lock and cycle.
5817 				 */
5818 				free_extent_buffer(next);
5819 				btrfs_release_path(path);
5820 				cond_resched();
5821 				goto again;
5822 			}
5823 			if (!ret) {
5824 				btrfs_set_path_blocking(path);
5825 				btrfs_tree_read_lock(next);
5826 				btrfs_clear_path_blocking(path, next,
5827 							  BTRFS_READ_LOCK);
5828 			}
5829 			next_rw_lock = BTRFS_READ_LOCK;
5830 		}
5831 		break;
5832 	}
5833 	path->slots[level] = slot;
5834 	while (1) {
5835 		level--;
5836 		c = path->nodes[level];
5837 		if (path->locks[level])
5838 			btrfs_tree_unlock_rw(c, path->locks[level]);
5839 
5840 		free_extent_buffer(c);
5841 		path->nodes[level] = next;
5842 		path->slots[level] = 0;
5843 		if (!path->skip_locking)
5844 			path->locks[level] = next_rw_lock;
5845 		if (!level)
5846 			break;
5847 
5848 		ret = read_block_for_search(root, path, &next, level,
5849 					    0, &key);
5850 		if (ret == -EAGAIN)
5851 			goto again;
5852 
5853 		if (ret < 0) {
5854 			btrfs_release_path(path);
5855 			goto done;
5856 		}
5857 
5858 		if (!path->skip_locking) {
5859 			ret = btrfs_try_tree_read_lock(next);
5860 			if (!ret) {
5861 				btrfs_set_path_blocking(path);
5862 				btrfs_tree_read_lock(next);
5863 				btrfs_clear_path_blocking(path, next,
5864 							  BTRFS_READ_LOCK);
5865 			}
5866 			next_rw_lock = BTRFS_READ_LOCK;
5867 		}
5868 	}
5869 	ret = 0;
5870 done:
5871 	unlock_up(path, 0, 1, 0, NULL);
5872 	path->leave_spinning = old_spinning;
5873 	if (!old_spinning)
5874 		btrfs_set_path_blocking(path);
5875 
5876 	return ret;
5877 }
5878 
5879 /*
5880  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5881  * searching until it gets past min_objectid or finds an item of 'type'
5882  *
5883  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5884  */
5885 int btrfs_previous_item(struct btrfs_root *root,
5886 			struct btrfs_path *path, u64 min_objectid,
5887 			int type)
5888 {
5889 	struct btrfs_key found_key;
5890 	struct extent_buffer *leaf;
5891 	u32 nritems;
5892 	int ret;
5893 
5894 	while (1) {
5895 		if (path->slots[0] == 0) {
5896 			btrfs_set_path_blocking(path);
5897 			ret = btrfs_prev_leaf(root, path);
5898 			if (ret != 0)
5899 				return ret;
5900 		} else {
5901 			path->slots[0]--;
5902 		}
5903 		leaf = path->nodes[0];
5904 		nritems = btrfs_header_nritems(leaf);
5905 		if (nritems == 0)
5906 			return 1;
5907 		if (path->slots[0] == nritems)
5908 			path->slots[0]--;
5909 
5910 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5911 		if (found_key.objectid < min_objectid)
5912 			break;
5913 		if (found_key.type == type)
5914 			return 0;
5915 		if (found_key.objectid == min_objectid &&
5916 		    found_key.type < type)
5917 			break;
5918 	}
5919 	return 1;
5920 }
5921 
5922 /*
5923  * search in extent tree to find a previous Metadata/Data extent item with
5924  * min objecitd.
5925  *
5926  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5927  */
5928 int btrfs_previous_extent_item(struct btrfs_root *root,
5929 			struct btrfs_path *path, u64 min_objectid)
5930 {
5931 	struct btrfs_key found_key;
5932 	struct extent_buffer *leaf;
5933 	u32 nritems;
5934 	int ret;
5935 
5936 	while (1) {
5937 		if (path->slots[0] == 0) {
5938 			btrfs_set_path_blocking(path);
5939 			ret = btrfs_prev_leaf(root, path);
5940 			if (ret != 0)
5941 				return ret;
5942 		} else {
5943 			path->slots[0]--;
5944 		}
5945 		leaf = path->nodes[0];
5946 		nritems = btrfs_header_nritems(leaf);
5947 		if (nritems == 0)
5948 			return 1;
5949 		if (path->slots[0] == nritems)
5950 			path->slots[0]--;
5951 
5952 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5953 		if (found_key.objectid < min_objectid)
5954 			break;
5955 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5956 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5957 			return 0;
5958 		if (found_key.objectid == min_objectid &&
5959 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5960 			break;
5961 	}
5962 	return 1;
5963 }
5964