xref: /linux/fs/btrfs/ctree.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17 
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 		      *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
22 		      int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24 			  struct extent_buffer *dst,
25 			  struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27 			      struct extent_buffer *dst_buf,
28 			      struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 		    int level, int slot);
31 
32 static const struct btrfs_csums {
33 	u16		size;
34 	const char	*name;
35 	const char	*driver;
36 } btrfs_csums[] = {
37 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
41 				     .driver = "blake2b-256" },
42 };
43 
44 int btrfs_super_csum_size(const struct btrfs_super_block *s)
45 {
46 	u16 t = btrfs_super_csum_type(s);
47 	/*
48 	 * csum type is validated at mount time
49 	 */
50 	return btrfs_csums[t].size;
51 }
52 
53 const char *btrfs_super_csum_name(u16 csum_type)
54 {
55 	/* csum type is validated at mount time */
56 	return btrfs_csums[csum_type].name;
57 }
58 
59 /*
60  * Return driver name if defined, otherwise the name that's also a valid driver
61  * name
62  */
63 const char *btrfs_super_csum_driver(u16 csum_type)
64 {
65 	/* csum type is validated at mount time */
66 	return btrfs_csums[csum_type].driver ?:
67 		btrfs_csums[csum_type].name;
68 }
69 
70 size_t __const btrfs_get_num_csums(void)
71 {
72 	return ARRAY_SIZE(btrfs_csums);
73 }
74 
75 struct btrfs_path *btrfs_alloc_path(void)
76 {
77 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
78 }
79 
80 /* this also releases the path */
81 void btrfs_free_path(struct btrfs_path *p)
82 {
83 	if (!p)
84 		return;
85 	btrfs_release_path(p);
86 	kmem_cache_free(btrfs_path_cachep, p);
87 }
88 
89 /*
90  * path release drops references on the extent buffers in the path
91  * and it drops any locks held by this path
92  *
93  * It is safe to call this on paths that no locks or extent buffers held.
94  */
95 noinline void btrfs_release_path(struct btrfs_path *p)
96 {
97 	int i;
98 
99 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
100 		p->slots[i] = 0;
101 		if (!p->nodes[i])
102 			continue;
103 		if (p->locks[i]) {
104 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
105 			p->locks[i] = 0;
106 		}
107 		free_extent_buffer(p->nodes[i]);
108 		p->nodes[i] = NULL;
109 	}
110 }
111 
112 /*
113  * safely gets a reference on the root node of a tree.  A lock
114  * is not taken, so a concurrent writer may put a different node
115  * at the root of the tree.  See btrfs_lock_root_node for the
116  * looping required.
117  *
118  * The extent buffer returned by this has a reference taken, so
119  * it won't disappear.  It may stop being the root of the tree
120  * at any time because there are no locks held.
121  */
122 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
123 {
124 	struct extent_buffer *eb;
125 
126 	while (1) {
127 		rcu_read_lock();
128 		eb = rcu_dereference(root->node);
129 
130 		/*
131 		 * RCU really hurts here, we could free up the root node because
132 		 * it was COWed but we may not get the new root node yet so do
133 		 * the inc_not_zero dance and if it doesn't work then
134 		 * synchronize_rcu and try again.
135 		 */
136 		if (atomic_inc_not_zero(&eb->refs)) {
137 			rcu_read_unlock();
138 			break;
139 		}
140 		rcu_read_unlock();
141 		synchronize_rcu();
142 	}
143 	return eb;
144 }
145 
146 /* loop around taking references on and locking the root node of the
147  * tree until you end up with a lock on the root.  A locked buffer
148  * is returned, with a reference held.
149  */
150 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
151 {
152 	struct extent_buffer *eb;
153 
154 	while (1) {
155 		eb = btrfs_root_node(root);
156 		btrfs_tree_lock(eb);
157 		if (eb == root->node)
158 			break;
159 		btrfs_tree_unlock(eb);
160 		free_extent_buffer(eb);
161 	}
162 	return eb;
163 }
164 
165 /* loop around taking references on and locking the root node of the
166  * tree until you end up with a lock on the root.  A locked buffer
167  * is returned, with a reference held.
168  */
169 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
170 {
171 	struct extent_buffer *eb;
172 
173 	while (1) {
174 		eb = btrfs_root_node(root);
175 		btrfs_tree_read_lock(eb);
176 		if (eb == root->node)
177 			break;
178 		btrfs_tree_read_unlock(eb);
179 		free_extent_buffer(eb);
180 	}
181 	return eb;
182 }
183 
184 /* cowonly root (everything not a reference counted cow subvolume), just get
185  * put onto a simple dirty list.  transaction.c walks this to make sure they
186  * get properly updated on disk.
187  */
188 static void add_root_to_dirty_list(struct btrfs_root *root)
189 {
190 	struct btrfs_fs_info *fs_info = root->fs_info;
191 
192 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
193 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
194 		return;
195 
196 	spin_lock(&fs_info->trans_lock);
197 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
198 		/* Want the extent tree to be the last on the list */
199 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
200 			list_move_tail(&root->dirty_list,
201 				       &fs_info->dirty_cowonly_roots);
202 		else
203 			list_move(&root->dirty_list,
204 				  &fs_info->dirty_cowonly_roots);
205 	}
206 	spin_unlock(&fs_info->trans_lock);
207 }
208 
209 /*
210  * used by snapshot creation to make a copy of a root for a tree with
211  * a given objectid.  The buffer with the new root node is returned in
212  * cow_ret, and this func returns zero on success or a negative error code.
213  */
214 int btrfs_copy_root(struct btrfs_trans_handle *trans,
215 		      struct btrfs_root *root,
216 		      struct extent_buffer *buf,
217 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
218 {
219 	struct btrfs_fs_info *fs_info = root->fs_info;
220 	struct extent_buffer *cow;
221 	int ret = 0;
222 	int level;
223 	struct btrfs_disk_key disk_key;
224 
225 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
226 		trans->transid != fs_info->running_transaction->transid);
227 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
228 		trans->transid != root->last_trans);
229 
230 	level = btrfs_header_level(buf);
231 	if (level == 0)
232 		btrfs_item_key(buf, &disk_key, 0);
233 	else
234 		btrfs_node_key(buf, &disk_key, 0);
235 
236 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
237 			&disk_key, level, buf->start, 0);
238 	if (IS_ERR(cow))
239 		return PTR_ERR(cow);
240 
241 	copy_extent_buffer_full(cow, buf);
242 	btrfs_set_header_bytenr(cow, cow->start);
243 	btrfs_set_header_generation(cow, trans->transid);
244 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
245 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
246 				     BTRFS_HEADER_FLAG_RELOC);
247 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
248 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
249 	else
250 		btrfs_set_header_owner(cow, new_root_objectid);
251 
252 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
253 
254 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
255 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
256 		ret = btrfs_inc_ref(trans, root, cow, 1);
257 	else
258 		ret = btrfs_inc_ref(trans, root, cow, 0);
259 
260 	if (ret)
261 		return ret;
262 
263 	btrfs_mark_buffer_dirty(cow);
264 	*cow_ret = cow;
265 	return 0;
266 }
267 
268 enum mod_log_op {
269 	MOD_LOG_KEY_REPLACE,
270 	MOD_LOG_KEY_ADD,
271 	MOD_LOG_KEY_REMOVE,
272 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
273 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
274 	MOD_LOG_MOVE_KEYS,
275 	MOD_LOG_ROOT_REPLACE,
276 };
277 
278 struct tree_mod_root {
279 	u64 logical;
280 	u8 level;
281 };
282 
283 struct tree_mod_elem {
284 	struct rb_node node;
285 	u64 logical;
286 	u64 seq;
287 	enum mod_log_op op;
288 
289 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
290 	int slot;
291 
292 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
293 	u64 generation;
294 
295 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
296 	struct btrfs_disk_key key;
297 	u64 blockptr;
298 
299 	/* this is used for op == MOD_LOG_MOVE_KEYS */
300 	struct {
301 		int dst_slot;
302 		int nr_items;
303 	} move;
304 
305 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
306 	struct tree_mod_root old_root;
307 };
308 
309 /*
310  * Pull a new tree mod seq number for our operation.
311  */
312 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
313 {
314 	return atomic64_inc_return(&fs_info->tree_mod_seq);
315 }
316 
317 /*
318  * This adds a new blocker to the tree mod log's blocker list if the @elem
319  * passed does not already have a sequence number set. So when a caller expects
320  * to record tree modifications, it should ensure to set elem->seq to zero
321  * before calling btrfs_get_tree_mod_seq.
322  * Returns a fresh, unused tree log modification sequence number, even if no new
323  * blocker was added.
324  */
325 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
326 			   struct seq_list *elem)
327 {
328 	write_lock(&fs_info->tree_mod_log_lock);
329 	if (!elem->seq) {
330 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
331 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
332 	}
333 	write_unlock(&fs_info->tree_mod_log_lock);
334 
335 	return elem->seq;
336 }
337 
338 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
339 			    struct seq_list *elem)
340 {
341 	struct rb_root *tm_root;
342 	struct rb_node *node;
343 	struct rb_node *next;
344 	struct seq_list *cur_elem;
345 	struct tree_mod_elem *tm;
346 	u64 min_seq = (u64)-1;
347 	u64 seq_putting = elem->seq;
348 
349 	if (!seq_putting)
350 		return;
351 
352 	write_lock(&fs_info->tree_mod_log_lock);
353 	list_del(&elem->list);
354 	elem->seq = 0;
355 
356 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
357 		if (cur_elem->seq < min_seq) {
358 			if (seq_putting > cur_elem->seq) {
359 				/*
360 				 * blocker with lower sequence number exists, we
361 				 * cannot remove anything from the log
362 				 */
363 				write_unlock(&fs_info->tree_mod_log_lock);
364 				return;
365 			}
366 			min_seq = cur_elem->seq;
367 		}
368 	}
369 
370 	/*
371 	 * anything that's lower than the lowest existing (read: blocked)
372 	 * sequence number can be removed from the tree.
373 	 */
374 	tm_root = &fs_info->tree_mod_log;
375 	for (node = rb_first(tm_root); node; node = next) {
376 		next = rb_next(node);
377 		tm = rb_entry(node, struct tree_mod_elem, node);
378 		if (tm->seq >= min_seq)
379 			continue;
380 		rb_erase(node, tm_root);
381 		kfree(tm);
382 	}
383 	write_unlock(&fs_info->tree_mod_log_lock);
384 }
385 
386 /*
387  * key order of the log:
388  *       node/leaf start address -> sequence
389  *
390  * The 'start address' is the logical address of the *new* root node
391  * for root replace operations, or the logical address of the affected
392  * block for all other operations.
393  */
394 static noinline int
395 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
396 {
397 	struct rb_root *tm_root;
398 	struct rb_node **new;
399 	struct rb_node *parent = NULL;
400 	struct tree_mod_elem *cur;
401 
402 	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
403 
404 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
405 
406 	tm_root = &fs_info->tree_mod_log;
407 	new = &tm_root->rb_node;
408 	while (*new) {
409 		cur = rb_entry(*new, struct tree_mod_elem, node);
410 		parent = *new;
411 		if (cur->logical < tm->logical)
412 			new = &((*new)->rb_left);
413 		else if (cur->logical > tm->logical)
414 			new = &((*new)->rb_right);
415 		else if (cur->seq < tm->seq)
416 			new = &((*new)->rb_left);
417 		else if (cur->seq > tm->seq)
418 			new = &((*new)->rb_right);
419 		else
420 			return -EEXIST;
421 	}
422 
423 	rb_link_node(&tm->node, parent, new);
424 	rb_insert_color(&tm->node, tm_root);
425 	return 0;
426 }
427 
428 /*
429  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
430  * returns zero with the tree_mod_log_lock acquired. The caller must hold
431  * this until all tree mod log insertions are recorded in the rb tree and then
432  * write unlock fs_info::tree_mod_log_lock.
433  */
434 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
435 				    struct extent_buffer *eb) {
436 	smp_mb();
437 	if (list_empty(&(fs_info)->tree_mod_seq_list))
438 		return 1;
439 	if (eb && btrfs_header_level(eb) == 0)
440 		return 1;
441 
442 	write_lock(&fs_info->tree_mod_log_lock);
443 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
444 		write_unlock(&fs_info->tree_mod_log_lock);
445 		return 1;
446 	}
447 
448 	return 0;
449 }
450 
451 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
452 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
453 				    struct extent_buffer *eb)
454 {
455 	smp_mb();
456 	if (list_empty(&(fs_info)->tree_mod_seq_list))
457 		return 0;
458 	if (eb && btrfs_header_level(eb) == 0)
459 		return 0;
460 
461 	return 1;
462 }
463 
464 static struct tree_mod_elem *
465 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
466 		    enum mod_log_op op, gfp_t flags)
467 {
468 	struct tree_mod_elem *tm;
469 
470 	tm = kzalloc(sizeof(*tm), flags);
471 	if (!tm)
472 		return NULL;
473 
474 	tm->logical = eb->start;
475 	if (op != MOD_LOG_KEY_ADD) {
476 		btrfs_node_key(eb, &tm->key, slot);
477 		tm->blockptr = btrfs_node_blockptr(eb, slot);
478 	}
479 	tm->op = op;
480 	tm->slot = slot;
481 	tm->generation = btrfs_node_ptr_generation(eb, slot);
482 	RB_CLEAR_NODE(&tm->node);
483 
484 	return tm;
485 }
486 
487 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
488 		enum mod_log_op op, gfp_t flags)
489 {
490 	struct tree_mod_elem *tm;
491 	int ret;
492 
493 	if (!tree_mod_need_log(eb->fs_info, eb))
494 		return 0;
495 
496 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
497 	if (!tm)
498 		return -ENOMEM;
499 
500 	if (tree_mod_dont_log(eb->fs_info, eb)) {
501 		kfree(tm);
502 		return 0;
503 	}
504 
505 	ret = __tree_mod_log_insert(eb->fs_info, tm);
506 	write_unlock(&eb->fs_info->tree_mod_log_lock);
507 	if (ret)
508 		kfree(tm);
509 
510 	return ret;
511 }
512 
513 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
514 		int dst_slot, int src_slot, int nr_items)
515 {
516 	struct tree_mod_elem *tm = NULL;
517 	struct tree_mod_elem **tm_list = NULL;
518 	int ret = 0;
519 	int i;
520 	int locked = 0;
521 
522 	if (!tree_mod_need_log(eb->fs_info, eb))
523 		return 0;
524 
525 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
526 	if (!tm_list)
527 		return -ENOMEM;
528 
529 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
530 	if (!tm) {
531 		ret = -ENOMEM;
532 		goto free_tms;
533 	}
534 
535 	tm->logical = eb->start;
536 	tm->slot = src_slot;
537 	tm->move.dst_slot = dst_slot;
538 	tm->move.nr_items = nr_items;
539 	tm->op = MOD_LOG_MOVE_KEYS;
540 
541 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
542 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
543 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
544 		if (!tm_list[i]) {
545 			ret = -ENOMEM;
546 			goto free_tms;
547 		}
548 	}
549 
550 	if (tree_mod_dont_log(eb->fs_info, eb))
551 		goto free_tms;
552 	locked = 1;
553 
554 	/*
555 	 * When we override something during the move, we log these removals.
556 	 * This can only happen when we move towards the beginning of the
557 	 * buffer, i.e. dst_slot < src_slot.
558 	 */
559 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
560 		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
561 		if (ret)
562 			goto free_tms;
563 	}
564 
565 	ret = __tree_mod_log_insert(eb->fs_info, tm);
566 	if (ret)
567 		goto free_tms;
568 	write_unlock(&eb->fs_info->tree_mod_log_lock);
569 	kfree(tm_list);
570 
571 	return 0;
572 free_tms:
573 	for (i = 0; i < nr_items; i++) {
574 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
575 			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
576 		kfree(tm_list[i]);
577 	}
578 	if (locked)
579 		write_unlock(&eb->fs_info->tree_mod_log_lock);
580 	kfree(tm_list);
581 	kfree(tm);
582 
583 	return ret;
584 }
585 
586 static inline int
587 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
588 		       struct tree_mod_elem **tm_list,
589 		       int nritems)
590 {
591 	int i, j;
592 	int ret;
593 
594 	for (i = nritems - 1; i >= 0; i--) {
595 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
596 		if (ret) {
597 			for (j = nritems - 1; j > i; j--)
598 				rb_erase(&tm_list[j]->node,
599 					 &fs_info->tree_mod_log);
600 			return ret;
601 		}
602 	}
603 
604 	return 0;
605 }
606 
607 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
608 			 struct extent_buffer *new_root, int log_removal)
609 {
610 	struct btrfs_fs_info *fs_info = old_root->fs_info;
611 	struct tree_mod_elem *tm = NULL;
612 	struct tree_mod_elem **tm_list = NULL;
613 	int nritems = 0;
614 	int ret = 0;
615 	int i;
616 
617 	if (!tree_mod_need_log(fs_info, NULL))
618 		return 0;
619 
620 	if (log_removal && btrfs_header_level(old_root) > 0) {
621 		nritems = btrfs_header_nritems(old_root);
622 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
623 				  GFP_NOFS);
624 		if (!tm_list) {
625 			ret = -ENOMEM;
626 			goto free_tms;
627 		}
628 		for (i = 0; i < nritems; i++) {
629 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
630 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
631 			if (!tm_list[i]) {
632 				ret = -ENOMEM;
633 				goto free_tms;
634 			}
635 		}
636 	}
637 
638 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
639 	if (!tm) {
640 		ret = -ENOMEM;
641 		goto free_tms;
642 	}
643 
644 	tm->logical = new_root->start;
645 	tm->old_root.logical = old_root->start;
646 	tm->old_root.level = btrfs_header_level(old_root);
647 	tm->generation = btrfs_header_generation(old_root);
648 	tm->op = MOD_LOG_ROOT_REPLACE;
649 
650 	if (tree_mod_dont_log(fs_info, NULL))
651 		goto free_tms;
652 
653 	if (tm_list)
654 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
655 	if (!ret)
656 		ret = __tree_mod_log_insert(fs_info, tm);
657 
658 	write_unlock(&fs_info->tree_mod_log_lock);
659 	if (ret)
660 		goto free_tms;
661 	kfree(tm_list);
662 
663 	return ret;
664 
665 free_tms:
666 	if (tm_list) {
667 		for (i = 0; i < nritems; i++)
668 			kfree(tm_list[i]);
669 		kfree(tm_list);
670 	}
671 	kfree(tm);
672 
673 	return ret;
674 }
675 
676 static struct tree_mod_elem *
677 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
678 		      int smallest)
679 {
680 	struct rb_root *tm_root;
681 	struct rb_node *node;
682 	struct tree_mod_elem *cur = NULL;
683 	struct tree_mod_elem *found = NULL;
684 
685 	read_lock(&fs_info->tree_mod_log_lock);
686 	tm_root = &fs_info->tree_mod_log;
687 	node = tm_root->rb_node;
688 	while (node) {
689 		cur = rb_entry(node, struct tree_mod_elem, node);
690 		if (cur->logical < start) {
691 			node = node->rb_left;
692 		} else if (cur->logical > start) {
693 			node = node->rb_right;
694 		} else if (cur->seq < min_seq) {
695 			node = node->rb_left;
696 		} else if (!smallest) {
697 			/* we want the node with the highest seq */
698 			if (found)
699 				BUG_ON(found->seq > cur->seq);
700 			found = cur;
701 			node = node->rb_left;
702 		} else if (cur->seq > min_seq) {
703 			/* we want the node with the smallest seq */
704 			if (found)
705 				BUG_ON(found->seq < cur->seq);
706 			found = cur;
707 			node = node->rb_right;
708 		} else {
709 			found = cur;
710 			break;
711 		}
712 	}
713 	read_unlock(&fs_info->tree_mod_log_lock);
714 
715 	return found;
716 }
717 
718 /*
719  * this returns the element from the log with the smallest time sequence
720  * value that's in the log (the oldest log item). any element with a time
721  * sequence lower than min_seq will be ignored.
722  */
723 static struct tree_mod_elem *
724 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
725 			   u64 min_seq)
726 {
727 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
728 }
729 
730 /*
731  * this returns the element from the log with the largest time sequence
732  * value that's in the log (the most recent log item). any element with
733  * a time sequence lower than min_seq will be ignored.
734  */
735 static struct tree_mod_elem *
736 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
737 {
738 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
739 }
740 
741 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
742 		     struct extent_buffer *src, unsigned long dst_offset,
743 		     unsigned long src_offset, int nr_items)
744 {
745 	struct btrfs_fs_info *fs_info = dst->fs_info;
746 	int ret = 0;
747 	struct tree_mod_elem **tm_list = NULL;
748 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
749 	int i;
750 	int locked = 0;
751 
752 	if (!tree_mod_need_log(fs_info, NULL))
753 		return 0;
754 
755 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
756 		return 0;
757 
758 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
759 			  GFP_NOFS);
760 	if (!tm_list)
761 		return -ENOMEM;
762 
763 	tm_list_add = tm_list;
764 	tm_list_rem = tm_list + nr_items;
765 	for (i = 0; i < nr_items; i++) {
766 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
767 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
768 		if (!tm_list_rem[i]) {
769 			ret = -ENOMEM;
770 			goto free_tms;
771 		}
772 
773 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
774 		    MOD_LOG_KEY_ADD, GFP_NOFS);
775 		if (!tm_list_add[i]) {
776 			ret = -ENOMEM;
777 			goto free_tms;
778 		}
779 	}
780 
781 	if (tree_mod_dont_log(fs_info, NULL))
782 		goto free_tms;
783 	locked = 1;
784 
785 	for (i = 0; i < nr_items; i++) {
786 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
787 		if (ret)
788 			goto free_tms;
789 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
790 		if (ret)
791 			goto free_tms;
792 	}
793 
794 	write_unlock(&fs_info->tree_mod_log_lock);
795 	kfree(tm_list);
796 
797 	return 0;
798 
799 free_tms:
800 	for (i = 0; i < nr_items * 2; i++) {
801 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
802 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
803 		kfree(tm_list[i]);
804 	}
805 	if (locked)
806 		write_unlock(&fs_info->tree_mod_log_lock);
807 	kfree(tm_list);
808 
809 	return ret;
810 }
811 
812 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
813 {
814 	struct tree_mod_elem **tm_list = NULL;
815 	int nritems = 0;
816 	int i;
817 	int ret = 0;
818 
819 	if (btrfs_header_level(eb) == 0)
820 		return 0;
821 
822 	if (!tree_mod_need_log(eb->fs_info, NULL))
823 		return 0;
824 
825 	nritems = btrfs_header_nritems(eb);
826 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
827 	if (!tm_list)
828 		return -ENOMEM;
829 
830 	for (i = 0; i < nritems; i++) {
831 		tm_list[i] = alloc_tree_mod_elem(eb, i,
832 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
833 		if (!tm_list[i]) {
834 			ret = -ENOMEM;
835 			goto free_tms;
836 		}
837 	}
838 
839 	if (tree_mod_dont_log(eb->fs_info, eb))
840 		goto free_tms;
841 
842 	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
843 	write_unlock(&eb->fs_info->tree_mod_log_lock);
844 	if (ret)
845 		goto free_tms;
846 	kfree(tm_list);
847 
848 	return 0;
849 
850 free_tms:
851 	for (i = 0; i < nritems; i++)
852 		kfree(tm_list[i]);
853 	kfree(tm_list);
854 
855 	return ret;
856 }
857 
858 /*
859  * check if the tree block can be shared by multiple trees
860  */
861 int btrfs_block_can_be_shared(struct btrfs_root *root,
862 			      struct extent_buffer *buf)
863 {
864 	/*
865 	 * Tree blocks not in reference counted trees and tree roots
866 	 * are never shared. If a block was allocated after the last
867 	 * snapshot and the block was not allocated by tree relocation,
868 	 * we know the block is not shared.
869 	 */
870 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
871 	    buf != root->node && buf != root->commit_root &&
872 	    (btrfs_header_generation(buf) <=
873 	     btrfs_root_last_snapshot(&root->root_item) ||
874 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
875 		return 1;
876 
877 	return 0;
878 }
879 
880 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
881 				       struct btrfs_root *root,
882 				       struct extent_buffer *buf,
883 				       struct extent_buffer *cow,
884 				       int *last_ref)
885 {
886 	struct btrfs_fs_info *fs_info = root->fs_info;
887 	u64 refs;
888 	u64 owner;
889 	u64 flags;
890 	u64 new_flags = 0;
891 	int ret;
892 
893 	/*
894 	 * Backrefs update rules:
895 	 *
896 	 * Always use full backrefs for extent pointers in tree block
897 	 * allocated by tree relocation.
898 	 *
899 	 * If a shared tree block is no longer referenced by its owner
900 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
901 	 * use full backrefs for extent pointers in tree block.
902 	 *
903 	 * If a tree block is been relocating
904 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
905 	 * use full backrefs for extent pointers in tree block.
906 	 * The reason for this is some operations (such as drop tree)
907 	 * are only allowed for blocks use full backrefs.
908 	 */
909 
910 	if (btrfs_block_can_be_shared(root, buf)) {
911 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
912 					       btrfs_header_level(buf), 1,
913 					       &refs, &flags);
914 		if (ret)
915 			return ret;
916 		if (refs == 0) {
917 			ret = -EROFS;
918 			btrfs_handle_fs_error(fs_info, ret, NULL);
919 			return ret;
920 		}
921 	} else {
922 		refs = 1;
923 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
924 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
925 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
926 		else
927 			flags = 0;
928 	}
929 
930 	owner = btrfs_header_owner(buf);
931 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
932 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
933 
934 	if (refs > 1) {
935 		if ((owner == root->root_key.objectid ||
936 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
937 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
938 			ret = btrfs_inc_ref(trans, root, buf, 1);
939 			if (ret)
940 				return ret;
941 
942 			if (root->root_key.objectid ==
943 			    BTRFS_TREE_RELOC_OBJECTID) {
944 				ret = btrfs_dec_ref(trans, root, buf, 0);
945 				if (ret)
946 					return ret;
947 				ret = btrfs_inc_ref(trans, root, cow, 1);
948 				if (ret)
949 					return ret;
950 			}
951 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
952 		} else {
953 
954 			if (root->root_key.objectid ==
955 			    BTRFS_TREE_RELOC_OBJECTID)
956 				ret = btrfs_inc_ref(trans, root, cow, 1);
957 			else
958 				ret = btrfs_inc_ref(trans, root, cow, 0);
959 			if (ret)
960 				return ret;
961 		}
962 		if (new_flags != 0) {
963 			int level = btrfs_header_level(buf);
964 
965 			ret = btrfs_set_disk_extent_flags(trans,
966 							  buf->start,
967 							  buf->len,
968 							  new_flags, level, 0);
969 			if (ret)
970 				return ret;
971 		}
972 	} else {
973 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
974 			if (root->root_key.objectid ==
975 			    BTRFS_TREE_RELOC_OBJECTID)
976 				ret = btrfs_inc_ref(trans, root, cow, 1);
977 			else
978 				ret = btrfs_inc_ref(trans, root, cow, 0);
979 			if (ret)
980 				return ret;
981 			ret = btrfs_dec_ref(trans, root, buf, 1);
982 			if (ret)
983 				return ret;
984 		}
985 		btrfs_clean_tree_block(buf);
986 		*last_ref = 1;
987 	}
988 	return 0;
989 }
990 
991 static struct extent_buffer *alloc_tree_block_no_bg_flush(
992 					  struct btrfs_trans_handle *trans,
993 					  struct btrfs_root *root,
994 					  u64 parent_start,
995 					  const struct btrfs_disk_key *disk_key,
996 					  int level,
997 					  u64 hint,
998 					  u64 empty_size)
999 {
1000 	struct btrfs_fs_info *fs_info = root->fs_info;
1001 	struct extent_buffer *ret;
1002 
1003 	/*
1004 	 * If we are COWing a node/leaf from the extent, chunk, device or free
1005 	 * space trees, make sure that we do not finish block group creation of
1006 	 * pending block groups. We do this to avoid a deadlock.
1007 	 * COWing can result in allocation of a new chunk, and flushing pending
1008 	 * block groups (btrfs_create_pending_block_groups()) can be triggered
1009 	 * when finishing allocation of a new chunk. Creation of a pending block
1010 	 * group modifies the extent, chunk, device and free space trees,
1011 	 * therefore we could deadlock with ourselves since we are holding a
1012 	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
1013 	 * try to COW later.
1014 	 * For similar reasons, we also need to delay flushing pending block
1015 	 * groups when splitting a leaf or node, from one of those trees, since
1016 	 * we are holding a write lock on it and its parent or when inserting a
1017 	 * new root node for one of those trees.
1018 	 */
1019 	if (root == fs_info->extent_root ||
1020 	    root == fs_info->chunk_root ||
1021 	    root == fs_info->dev_root ||
1022 	    root == fs_info->free_space_root)
1023 		trans->can_flush_pending_bgs = false;
1024 
1025 	ret = btrfs_alloc_tree_block(trans, root, parent_start,
1026 				     root->root_key.objectid, disk_key, level,
1027 				     hint, empty_size);
1028 	trans->can_flush_pending_bgs = true;
1029 
1030 	return ret;
1031 }
1032 
1033 /*
1034  * does the dirty work in cow of a single block.  The parent block (if
1035  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1036  * dirty and returned locked.  If you modify the block it needs to be marked
1037  * dirty again.
1038  *
1039  * search_start -- an allocation hint for the new block
1040  *
1041  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1042  * bytes the allocator should try to find free next to the block it returns.
1043  * This is just a hint and may be ignored by the allocator.
1044  */
1045 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1046 			     struct btrfs_root *root,
1047 			     struct extent_buffer *buf,
1048 			     struct extent_buffer *parent, int parent_slot,
1049 			     struct extent_buffer **cow_ret,
1050 			     u64 search_start, u64 empty_size)
1051 {
1052 	struct btrfs_fs_info *fs_info = root->fs_info;
1053 	struct btrfs_disk_key disk_key;
1054 	struct extent_buffer *cow;
1055 	int level, ret;
1056 	int last_ref = 0;
1057 	int unlock_orig = 0;
1058 	u64 parent_start = 0;
1059 
1060 	if (*cow_ret == buf)
1061 		unlock_orig = 1;
1062 
1063 	btrfs_assert_tree_locked(buf);
1064 
1065 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1066 		trans->transid != fs_info->running_transaction->transid);
1067 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1068 		trans->transid != root->last_trans);
1069 
1070 	level = btrfs_header_level(buf);
1071 
1072 	if (level == 0)
1073 		btrfs_item_key(buf, &disk_key, 0);
1074 	else
1075 		btrfs_node_key(buf, &disk_key, 0);
1076 
1077 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1078 		parent_start = parent->start;
1079 
1080 	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1081 					   level, search_start, empty_size);
1082 	if (IS_ERR(cow))
1083 		return PTR_ERR(cow);
1084 
1085 	/* cow is set to blocking by btrfs_init_new_buffer */
1086 
1087 	copy_extent_buffer_full(cow, buf);
1088 	btrfs_set_header_bytenr(cow, cow->start);
1089 	btrfs_set_header_generation(cow, trans->transid);
1090 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1091 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1092 				     BTRFS_HEADER_FLAG_RELOC);
1093 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1094 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1095 	else
1096 		btrfs_set_header_owner(cow, root->root_key.objectid);
1097 
1098 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1099 
1100 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1101 	if (ret) {
1102 		btrfs_abort_transaction(trans, ret);
1103 		return ret;
1104 	}
1105 
1106 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1107 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1108 		if (ret) {
1109 			btrfs_abort_transaction(trans, ret);
1110 			return ret;
1111 		}
1112 	}
1113 
1114 	if (buf == root->node) {
1115 		WARN_ON(parent && parent != buf);
1116 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1117 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1118 			parent_start = buf->start;
1119 
1120 		atomic_inc(&cow->refs);
1121 		ret = tree_mod_log_insert_root(root->node, cow, 1);
1122 		BUG_ON(ret < 0);
1123 		rcu_assign_pointer(root->node, cow);
1124 
1125 		btrfs_free_tree_block(trans, root, buf, parent_start,
1126 				      last_ref);
1127 		free_extent_buffer(buf);
1128 		add_root_to_dirty_list(root);
1129 	} else {
1130 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1131 		tree_mod_log_insert_key(parent, parent_slot,
1132 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1133 		btrfs_set_node_blockptr(parent, parent_slot,
1134 					cow->start);
1135 		btrfs_set_node_ptr_generation(parent, parent_slot,
1136 					      trans->transid);
1137 		btrfs_mark_buffer_dirty(parent);
1138 		if (last_ref) {
1139 			ret = tree_mod_log_free_eb(buf);
1140 			if (ret) {
1141 				btrfs_abort_transaction(trans, ret);
1142 				return ret;
1143 			}
1144 		}
1145 		btrfs_free_tree_block(trans, root, buf, parent_start,
1146 				      last_ref);
1147 	}
1148 	if (unlock_orig)
1149 		btrfs_tree_unlock(buf);
1150 	free_extent_buffer_stale(buf);
1151 	btrfs_mark_buffer_dirty(cow);
1152 	*cow_ret = cow;
1153 	return 0;
1154 }
1155 
1156 /*
1157  * returns the logical address of the oldest predecessor of the given root.
1158  * entries older than time_seq are ignored.
1159  */
1160 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1161 		struct extent_buffer *eb_root, u64 time_seq)
1162 {
1163 	struct tree_mod_elem *tm;
1164 	struct tree_mod_elem *found = NULL;
1165 	u64 root_logical = eb_root->start;
1166 	int looped = 0;
1167 
1168 	if (!time_seq)
1169 		return NULL;
1170 
1171 	/*
1172 	 * the very last operation that's logged for a root is the
1173 	 * replacement operation (if it is replaced at all). this has
1174 	 * the logical address of the *new* root, making it the very
1175 	 * first operation that's logged for this root.
1176 	 */
1177 	while (1) {
1178 		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1179 						time_seq);
1180 		if (!looped && !tm)
1181 			return NULL;
1182 		/*
1183 		 * if there are no tree operation for the oldest root, we simply
1184 		 * return it. this should only happen if that (old) root is at
1185 		 * level 0.
1186 		 */
1187 		if (!tm)
1188 			break;
1189 
1190 		/*
1191 		 * if there's an operation that's not a root replacement, we
1192 		 * found the oldest version of our root. normally, we'll find a
1193 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1194 		 */
1195 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1196 			break;
1197 
1198 		found = tm;
1199 		root_logical = tm->old_root.logical;
1200 		looped = 1;
1201 	}
1202 
1203 	/* if there's no old root to return, return what we found instead */
1204 	if (!found)
1205 		found = tm;
1206 
1207 	return found;
1208 }
1209 
1210 /*
1211  * tm is a pointer to the first operation to rewind within eb. then, all
1212  * previous operations will be rewound (until we reach something older than
1213  * time_seq).
1214  */
1215 static void
1216 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1217 		      u64 time_seq, struct tree_mod_elem *first_tm)
1218 {
1219 	u32 n;
1220 	struct rb_node *next;
1221 	struct tree_mod_elem *tm = first_tm;
1222 	unsigned long o_dst;
1223 	unsigned long o_src;
1224 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1225 
1226 	n = btrfs_header_nritems(eb);
1227 	read_lock(&fs_info->tree_mod_log_lock);
1228 	while (tm && tm->seq >= time_seq) {
1229 		/*
1230 		 * all the operations are recorded with the operator used for
1231 		 * the modification. as we're going backwards, we do the
1232 		 * opposite of each operation here.
1233 		 */
1234 		switch (tm->op) {
1235 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1236 			BUG_ON(tm->slot < n);
1237 			/* Fallthrough */
1238 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1239 		case MOD_LOG_KEY_REMOVE:
1240 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1241 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1242 			btrfs_set_node_ptr_generation(eb, tm->slot,
1243 						      tm->generation);
1244 			n++;
1245 			break;
1246 		case MOD_LOG_KEY_REPLACE:
1247 			BUG_ON(tm->slot >= n);
1248 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1249 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1250 			btrfs_set_node_ptr_generation(eb, tm->slot,
1251 						      tm->generation);
1252 			break;
1253 		case MOD_LOG_KEY_ADD:
1254 			/* if a move operation is needed it's in the log */
1255 			n--;
1256 			break;
1257 		case MOD_LOG_MOVE_KEYS:
1258 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1259 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1260 			memmove_extent_buffer(eb, o_dst, o_src,
1261 					      tm->move.nr_items * p_size);
1262 			break;
1263 		case MOD_LOG_ROOT_REPLACE:
1264 			/*
1265 			 * this operation is special. for roots, this must be
1266 			 * handled explicitly before rewinding.
1267 			 * for non-roots, this operation may exist if the node
1268 			 * was a root: root A -> child B; then A gets empty and
1269 			 * B is promoted to the new root. in the mod log, we'll
1270 			 * have a root-replace operation for B, a tree block
1271 			 * that is no root. we simply ignore that operation.
1272 			 */
1273 			break;
1274 		}
1275 		next = rb_next(&tm->node);
1276 		if (!next)
1277 			break;
1278 		tm = rb_entry(next, struct tree_mod_elem, node);
1279 		if (tm->logical != first_tm->logical)
1280 			break;
1281 	}
1282 	read_unlock(&fs_info->tree_mod_log_lock);
1283 	btrfs_set_header_nritems(eb, n);
1284 }
1285 
1286 /*
1287  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1288  * is returned. If rewind operations happen, a fresh buffer is returned. The
1289  * returned buffer is always read-locked. If the returned buffer is not the
1290  * input buffer, the lock on the input buffer is released and the input buffer
1291  * is freed (its refcount is decremented).
1292  */
1293 static struct extent_buffer *
1294 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1295 		    struct extent_buffer *eb, u64 time_seq)
1296 {
1297 	struct extent_buffer *eb_rewin;
1298 	struct tree_mod_elem *tm;
1299 
1300 	if (!time_seq)
1301 		return eb;
1302 
1303 	if (btrfs_header_level(eb) == 0)
1304 		return eb;
1305 
1306 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1307 	if (!tm)
1308 		return eb;
1309 
1310 	btrfs_set_path_blocking(path);
1311 	btrfs_set_lock_blocking_read(eb);
1312 
1313 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1314 		BUG_ON(tm->slot != 0);
1315 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1316 		if (!eb_rewin) {
1317 			btrfs_tree_read_unlock_blocking(eb);
1318 			free_extent_buffer(eb);
1319 			return NULL;
1320 		}
1321 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1322 		btrfs_set_header_backref_rev(eb_rewin,
1323 					     btrfs_header_backref_rev(eb));
1324 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1325 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1326 	} else {
1327 		eb_rewin = btrfs_clone_extent_buffer(eb);
1328 		if (!eb_rewin) {
1329 			btrfs_tree_read_unlock_blocking(eb);
1330 			free_extent_buffer(eb);
1331 			return NULL;
1332 		}
1333 	}
1334 
1335 	btrfs_tree_read_unlock_blocking(eb);
1336 	free_extent_buffer(eb);
1337 
1338 	btrfs_tree_read_lock(eb_rewin);
1339 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1340 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1341 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1342 
1343 	return eb_rewin;
1344 }
1345 
1346 /*
1347  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1348  * value. If there are no changes, the current root->root_node is returned. If
1349  * anything changed in between, there's a fresh buffer allocated on which the
1350  * rewind operations are done. In any case, the returned buffer is read locked.
1351  * Returns NULL on error (with no locks held).
1352  */
1353 static inline struct extent_buffer *
1354 get_old_root(struct btrfs_root *root, u64 time_seq)
1355 {
1356 	struct btrfs_fs_info *fs_info = root->fs_info;
1357 	struct tree_mod_elem *tm;
1358 	struct extent_buffer *eb = NULL;
1359 	struct extent_buffer *eb_root;
1360 	u64 eb_root_owner = 0;
1361 	struct extent_buffer *old;
1362 	struct tree_mod_root *old_root = NULL;
1363 	u64 old_generation = 0;
1364 	u64 logical;
1365 	int level;
1366 
1367 	eb_root = btrfs_read_lock_root_node(root);
1368 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1369 	if (!tm)
1370 		return eb_root;
1371 
1372 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1373 		old_root = &tm->old_root;
1374 		old_generation = tm->generation;
1375 		logical = old_root->logical;
1376 		level = old_root->level;
1377 	} else {
1378 		logical = eb_root->start;
1379 		level = btrfs_header_level(eb_root);
1380 	}
1381 
1382 	tm = tree_mod_log_search(fs_info, logical, time_seq);
1383 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1384 		btrfs_tree_read_unlock(eb_root);
1385 		free_extent_buffer(eb_root);
1386 		old = read_tree_block(fs_info, logical, 0, level, NULL);
1387 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1388 			if (!IS_ERR(old))
1389 				free_extent_buffer(old);
1390 			btrfs_warn(fs_info,
1391 				   "failed to read tree block %llu from get_old_root",
1392 				   logical);
1393 		} else {
1394 			eb = btrfs_clone_extent_buffer(old);
1395 			free_extent_buffer(old);
1396 		}
1397 	} else if (old_root) {
1398 		eb_root_owner = btrfs_header_owner(eb_root);
1399 		btrfs_tree_read_unlock(eb_root);
1400 		free_extent_buffer(eb_root);
1401 		eb = alloc_dummy_extent_buffer(fs_info, logical);
1402 	} else {
1403 		btrfs_set_lock_blocking_read(eb_root);
1404 		eb = btrfs_clone_extent_buffer(eb_root);
1405 		btrfs_tree_read_unlock_blocking(eb_root);
1406 		free_extent_buffer(eb_root);
1407 	}
1408 
1409 	if (!eb)
1410 		return NULL;
1411 	btrfs_tree_read_lock(eb);
1412 	if (old_root) {
1413 		btrfs_set_header_bytenr(eb, eb->start);
1414 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1415 		btrfs_set_header_owner(eb, eb_root_owner);
1416 		btrfs_set_header_level(eb, old_root->level);
1417 		btrfs_set_header_generation(eb, old_generation);
1418 	}
1419 	if (tm)
1420 		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1421 	else
1422 		WARN_ON(btrfs_header_level(eb) != 0);
1423 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1424 
1425 	return eb;
1426 }
1427 
1428 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1429 {
1430 	struct tree_mod_elem *tm;
1431 	int level;
1432 	struct extent_buffer *eb_root = btrfs_root_node(root);
1433 
1434 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1435 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1436 		level = tm->old_root.level;
1437 	} else {
1438 		level = btrfs_header_level(eb_root);
1439 	}
1440 	free_extent_buffer(eb_root);
1441 
1442 	return level;
1443 }
1444 
1445 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1446 				   struct btrfs_root *root,
1447 				   struct extent_buffer *buf)
1448 {
1449 	if (btrfs_is_testing(root->fs_info))
1450 		return 0;
1451 
1452 	/* Ensure we can see the FORCE_COW bit */
1453 	smp_mb__before_atomic();
1454 
1455 	/*
1456 	 * We do not need to cow a block if
1457 	 * 1) this block is not created or changed in this transaction;
1458 	 * 2) this block does not belong to TREE_RELOC tree;
1459 	 * 3) the root is not forced COW.
1460 	 *
1461 	 * What is forced COW:
1462 	 *    when we create snapshot during committing the transaction,
1463 	 *    after we've finished copying src root, we must COW the shared
1464 	 *    block to ensure the metadata consistency.
1465 	 */
1466 	if (btrfs_header_generation(buf) == trans->transid &&
1467 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1468 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1469 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1470 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1471 		return 0;
1472 	return 1;
1473 }
1474 
1475 /*
1476  * cows a single block, see __btrfs_cow_block for the real work.
1477  * This version of it has extra checks so that a block isn't COWed more than
1478  * once per transaction, as long as it hasn't been written yet
1479  */
1480 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1481 		    struct btrfs_root *root, struct extent_buffer *buf,
1482 		    struct extent_buffer *parent, int parent_slot,
1483 		    struct extent_buffer **cow_ret)
1484 {
1485 	struct btrfs_fs_info *fs_info = root->fs_info;
1486 	u64 search_start;
1487 	int ret;
1488 
1489 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1490 		btrfs_err(fs_info,
1491 			"COW'ing blocks on a fs root that's being dropped");
1492 
1493 	if (trans->transaction != fs_info->running_transaction)
1494 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1495 		       trans->transid,
1496 		       fs_info->running_transaction->transid);
1497 
1498 	if (trans->transid != fs_info->generation)
1499 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1500 		       trans->transid, fs_info->generation);
1501 
1502 	if (!should_cow_block(trans, root, buf)) {
1503 		trans->dirty = true;
1504 		*cow_ret = buf;
1505 		return 0;
1506 	}
1507 
1508 	search_start = buf->start & ~((u64)SZ_1G - 1);
1509 
1510 	if (parent)
1511 		btrfs_set_lock_blocking_write(parent);
1512 	btrfs_set_lock_blocking_write(buf);
1513 
1514 	/*
1515 	 * Before CoWing this block for later modification, check if it's
1516 	 * the subtree root and do the delayed subtree trace if needed.
1517 	 *
1518 	 * Also We don't care about the error, as it's handled internally.
1519 	 */
1520 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1521 	ret = __btrfs_cow_block(trans, root, buf, parent,
1522 				 parent_slot, cow_ret, search_start, 0);
1523 
1524 	trace_btrfs_cow_block(root, buf, *cow_ret);
1525 
1526 	return ret;
1527 }
1528 
1529 /*
1530  * helper function for defrag to decide if two blocks pointed to by a
1531  * node are actually close by
1532  */
1533 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1534 {
1535 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1536 		return 1;
1537 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1538 		return 1;
1539 	return 0;
1540 }
1541 
1542 /*
1543  * compare two keys in a memcmp fashion
1544  */
1545 static int comp_keys(const struct btrfs_disk_key *disk,
1546 		     const struct btrfs_key *k2)
1547 {
1548 	struct btrfs_key k1;
1549 
1550 	btrfs_disk_key_to_cpu(&k1, disk);
1551 
1552 	return btrfs_comp_cpu_keys(&k1, k2);
1553 }
1554 
1555 /*
1556  * same as comp_keys only with two btrfs_key's
1557  */
1558 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1559 {
1560 	if (k1->objectid > k2->objectid)
1561 		return 1;
1562 	if (k1->objectid < k2->objectid)
1563 		return -1;
1564 	if (k1->type > k2->type)
1565 		return 1;
1566 	if (k1->type < k2->type)
1567 		return -1;
1568 	if (k1->offset > k2->offset)
1569 		return 1;
1570 	if (k1->offset < k2->offset)
1571 		return -1;
1572 	return 0;
1573 }
1574 
1575 /*
1576  * this is used by the defrag code to go through all the
1577  * leaves pointed to by a node and reallocate them so that
1578  * disk order is close to key order
1579  */
1580 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1581 		       struct btrfs_root *root, struct extent_buffer *parent,
1582 		       int start_slot, u64 *last_ret,
1583 		       struct btrfs_key *progress)
1584 {
1585 	struct btrfs_fs_info *fs_info = root->fs_info;
1586 	struct extent_buffer *cur;
1587 	u64 blocknr;
1588 	u64 gen;
1589 	u64 search_start = *last_ret;
1590 	u64 last_block = 0;
1591 	u64 other;
1592 	u32 parent_nritems;
1593 	int end_slot;
1594 	int i;
1595 	int err = 0;
1596 	int parent_level;
1597 	int uptodate;
1598 	u32 blocksize;
1599 	int progress_passed = 0;
1600 	struct btrfs_disk_key disk_key;
1601 
1602 	parent_level = btrfs_header_level(parent);
1603 
1604 	WARN_ON(trans->transaction != fs_info->running_transaction);
1605 	WARN_ON(trans->transid != fs_info->generation);
1606 
1607 	parent_nritems = btrfs_header_nritems(parent);
1608 	blocksize = fs_info->nodesize;
1609 	end_slot = parent_nritems - 1;
1610 
1611 	if (parent_nritems <= 1)
1612 		return 0;
1613 
1614 	btrfs_set_lock_blocking_write(parent);
1615 
1616 	for (i = start_slot; i <= end_slot; i++) {
1617 		struct btrfs_key first_key;
1618 		int close = 1;
1619 
1620 		btrfs_node_key(parent, &disk_key, i);
1621 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1622 			continue;
1623 
1624 		progress_passed = 1;
1625 		blocknr = btrfs_node_blockptr(parent, i);
1626 		gen = btrfs_node_ptr_generation(parent, i);
1627 		btrfs_node_key_to_cpu(parent, &first_key, i);
1628 		if (last_block == 0)
1629 			last_block = blocknr;
1630 
1631 		if (i > 0) {
1632 			other = btrfs_node_blockptr(parent, i - 1);
1633 			close = close_blocks(blocknr, other, blocksize);
1634 		}
1635 		if (!close && i < end_slot) {
1636 			other = btrfs_node_blockptr(parent, i + 1);
1637 			close = close_blocks(blocknr, other, blocksize);
1638 		}
1639 		if (close) {
1640 			last_block = blocknr;
1641 			continue;
1642 		}
1643 
1644 		cur = find_extent_buffer(fs_info, blocknr);
1645 		if (cur)
1646 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1647 		else
1648 			uptodate = 0;
1649 		if (!cur || !uptodate) {
1650 			if (!cur) {
1651 				cur = read_tree_block(fs_info, blocknr, gen,
1652 						      parent_level - 1,
1653 						      &first_key);
1654 				if (IS_ERR(cur)) {
1655 					return PTR_ERR(cur);
1656 				} else if (!extent_buffer_uptodate(cur)) {
1657 					free_extent_buffer(cur);
1658 					return -EIO;
1659 				}
1660 			} else if (!uptodate) {
1661 				err = btrfs_read_buffer(cur, gen,
1662 						parent_level - 1,&first_key);
1663 				if (err) {
1664 					free_extent_buffer(cur);
1665 					return err;
1666 				}
1667 			}
1668 		}
1669 		if (search_start == 0)
1670 			search_start = last_block;
1671 
1672 		btrfs_tree_lock(cur);
1673 		btrfs_set_lock_blocking_write(cur);
1674 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1675 					&cur, search_start,
1676 					min(16 * blocksize,
1677 					    (end_slot - i) * blocksize));
1678 		if (err) {
1679 			btrfs_tree_unlock(cur);
1680 			free_extent_buffer(cur);
1681 			break;
1682 		}
1683 		search_start = cur->start;
1684 		last_block = cur->start;
1685 		*last_ret = search_start;
1686 		btrfs_tree_unlock(cur);
1687 		free_extent_buffer(cur);
1688 	}
1689 	return err;
1690 }
1691 
1692 /*
1693  * search for key in the extent_buffer.  The items start at offset p,
1694  * and they are item_size apart.  There are 'max' items in p.
1695  *
1696  * the slot in the array is returned via slot, and it points to
1697  * the place where you would insert key if it is not found in
1698  * the array.
1699  *
1700  * slot may point to max if the key is bigger than all of the keys
1701  */
1702 static noinline int generic_bin_search(struct extent_buffer *eb,
1703 				       unsigned long p, int item_size,
1704 				       const struct btrfs_key *key,
1705 				       int max, int *slot)
1706 {
1707 	int low = 0;
1708 	int high = max;
1709 	int mid;
1710 	int ret;
1711 	struct btrfs_disk_key *tmp = NULL;
1712 	struct btrfs_disk_key unaligned;
1713 	unsigned long offset;
1714 	char *kaddr = NULL;
1715 	unsigned long map_start = 0;
1716 	unsigned long map_len = 0;
1717 	int err;
1718 
1719 	if (low > high) {
1720 		btrfs_err(eb->fs_info,
1721 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1722 			  __func__, low, high, eb->start,
1723 			  btrfs_header_owner(eb), btrfs_header_level(eb));
1724 		return -EINVAL;
1725 	}
1726 
1727 	while (low < high) {
1728 		mid = (low + high) / 2;
1729 		offset = p + mid * item_size;
1730 
1731 		if (!kaddr || offset < map_start ||
1732 		    (offset + sizeof(struct btrfs_disk_key)) >
1733 		    map_start + map_len) {
1734 
1735 			err = map_private_extent_buffer(eb, offset,
1736 						sizeof(struct btrfs_disk_key),
1737 						&kaddr, &map_start, &map_len);
1738 
1739 			if (!err) {
1740 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1741 							map_start);
1742 			} else if (err == 1) {
1743 				read_extent_buffer(eb, &unaligned,
1744 						   offset, sizeof(unaligned));
1745 				tmp = &unaligned;
1746 			} else {
1747 				return err;
1748 			}
1749 
1750 		} else {
1751 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1752 							map_start);
1753 		}
1754 		ret = comp_keys(tmp, key);
1755 
1756 		if (ret < 0)
1757 			low = mid + 1;
1758 		else if (ret > 0)
1759 			high = mid;
1760 		else {
1761 			*slot = mid;
1762 			return 0;
1763 		}
1764 	}
1765 	*slot = low;
1766 	return 1;
1767 }
1768 
1769 /*
1770  * simple bin_search frontend that does the right thing for
1771  * leaves vs nodes
1772  */
1773 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1774 		     int level, int *slot)
1775 {
1776 	if (level == 0)
1777 		return generic_bin_search(eb,
1778 					  offsetof(struct btrfs_leaf, items),
1779 					  sizeof(struct btrfs_item),
1780 					  key, btrfs_header_nritems(eb),
1781 					  slot);
1782 	else
1783 		return generic_bin_search(eb,
1784 					  offsetof(struct btrfs_node, ptrs),
1785 					  sizeof(struct btrfs_key_ptr),
1786 					  key, btrfs_header_nritems(eb),
1787 					  slot);
1788 }
1789 
1790 static void root_add_used(struct btrfs_root *root, u32 size)
1791 {
1792 	spin_lock(&root->accounting_lock);
1793 	btrfs_set_root_used(&root->root_item,
1794 			    btrfs_root_used(&root->root_item) + size);
1795 	spin_unlock(&root->accounting_lock);
1796 }
1797 
1798 static void root_sub_used(struct btrfs_root *root, u32 size)
1799 {
1800 	spin_lock(&root->accounting_lock);
1801 	btrfs_set_root_used(&root->root_item,
1802 			    btrfs_root_used(&root->root_item) - size);
1803 	spin_unlock(&root->accounting_lock);
1804 }
1805 
1806 /* given a node and slot number, this reads the blocks it points to.  The
1807  * extent buffer is returned with a reference taken (but unlocked).
1808  */
1809 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1810 					   int slot)
1811 {
1812 	int level = btrfs_header_level(parent);
1813 	struct extent_buffer *eb;
1814 	struct btrfs_key first_key;
1815 
1816 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1817 		return ERR_PTR(-ENOENT);
1818 
1819 	BUG_ON(level == 0);
1820 
1821 	btrfs_node_key_to_cpu(parent, &first_key, slot);
1822 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1823 			     btrfs_node_ptr_generation(parent, slot),
1824 			     level - 1, &first_key);
1825 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1826 		free_extent_buffer(eb);
1827 		eb = ERR_PTR(-EIO);
1828 	}
1829 
1830 	return eb;
1831 }
1832 
1833 /*
1834  * node level balancing, used to make sure nodes are in proper order for
1835  * item deletion.  We balance from the top down, so we have to make sure
1836  * that a deletion won't leave an node completely empty later on.
1837  */
1838 static noinline int balance_level(struct btrfs_trans_handle *trans,
1839 			 struct btrfs_root *root,
1840 			 struct btrfs_path *path, int level)
1841 {
1842 	struct btrfs_fs_info *fs_info = root->fs_info;
1843 	struct extent_buffer *right = NULL;
1844 	struct extent_buffer *mid;
1845 	struct extent_buffer *left = NULL;
1846 	struct extent_buffer *parent = NULL;
1847 	int ret = 0;
1848 	int wret;
1849 	int pslot;
1850 	int orig_slot = path->slots[level];
1851 	u64 orig_ptr;
1852 
1853 	ASSERT(level > 0);
1854 
1855 	mid = path->nodes[level];
1856 
1857 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1858 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1859 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1860 
1861 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1862 
1863 	if (level < BTRFS_MAX_LEVEL - 1) {
1864 		parent = path->nodes[level + 1];
1865 		pslot = path->slots[level + 1];
1866 	}
1867 
1868 	/*
1869 	 * deal with the case where there is only one pointer in the root
1870 	 * by promoting the node below to a root
1871 	 */
1872 	if (!parent) {
1873 		struct extent_buffer *child;
1874 
1875 		if (btrfs_header_nritems(mid) != 1)
1876 			return 0;
1877 
1878 		/* promote the child to a root */
1879 		child = btrfs_read_node_slot(mid, 0);
1880 		if (IS_ERR(child)) {
1881 			ret = PTR_ERR(child);
1882 			btrfs_handle_fs_error(fs_info, ret, NULL);
1883 			goto enospc;
1884 		}
1885 
1886 		btrfs_tree_lock(child);
1887 		btrfs_set_lock_blocking_write(child);
1888 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1889 		if (ret) {
1890 			btrfs_tree_unlock(child);
1891 			free_extent_buffer(child);
1892 			goto enospc;
1893 		}
1894 
1895 		ret = tree_mod_log_insert_root(root->node, child, 1);
1896 		BUG_ON(ret < 0);
1897 		rcu_assign_pointer(root->node, child);
1898 
1899 		add_root_to_dirty_list(root);
1900 		btrfs_tree_unlock(child);
1901 
1902 		path->locks[level] = 0;
1903 		path->nodes[level] = NULL;
1904 		btrfs_clean_tree_block(mid);
1905 		btrfs_tree_unlock(mid);
1906 		/* once for the path */
1907 		free_extent_buffer(mid);
1908 
1909 		root_sub_used(root, mid->len);
1910 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1911 		/* once for the root ptr */
1912 		free_extent_buffer_stale(mid);
1913 		return 0;
1914 	}
1915 	if (btrfs_header_nritems(mid) >
1916 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1917 		return 0;
1918 
1919 	left = btrfs_read_node_slot(parent, pslot - 1);
1920 	if (IS_ERR(left))
1921 		left = NULL;
1922 
1923 	if (left) {
1924 		btrfs_tree_lock(left);
1925 		btrfs_set_lock_blocking_write(left);
1926 		wret = btrfs_cow_block(trans, root, left,
1927 				       parent, pslot - 1, &left);
1928 		if (wret) {
1929 			ret = wret;
1930 			goto enospc;
1931 		}
1932 	}
1933 
1934 	right = btrfs_read_node_slot(parent, pslot + 1);
1935 	if (IS_ERR(right))
1936 		right = NULL;
1937 
1938 	if (right) {
1939 		btrfs_tree_lock(right);
1940 		btrfs_set_lock_blocking_write(right);
1941 		wret = btrfs_cow_block(trans, root, right,
1942 				       parent, pslot + 1, &right);
1943 		if (wret) {
1944 			ret = wret;
1945 			goto enospc;
1946 		}
1947 	}
1948 
1949 	/* first, try to make some room in the middle buffer */
1950 	if (left) {
1951 		orig_slot += btrfs_header_nritems(left);
1952 		wret = push_node_left(trans, left, mid, 1);
1953 		if (wret < 0)
1954 			ret = wret;
1955 	}
1956 
1957 	/*
1958 	 * then try to empty the right most buffer into the middle
1959 	 */
1960 	if (right) {
1961 		wret = push_node_left(trans, mid, right, 1);
1962 		if (wret < 0 && wret != -ENOSPC)
1963 			ret = wret;
1964 		if (btrfs_header_nritems(right) == 0) {
1965 			btrfs_clean_tree_block(right);
1966 			btrfs_tree_unlock(right);
1967 			del_ptr(root, path, level + 1, pslot + 1);
1968 			root_sub_used(root, right->len);
1969 			btrfs_free_tree_block(trans, root, right, 0, 1);
1970 			free_extent_buffer_stale(right);
1971 			right = NULL;
1972 		} else {
1973 			struct btrfs_disk_key right_key;
1974 			btrfs_node_key(right, &right_key, 0);
1975 			ret = tree_mod_log_insert_key(parent, pslot + 1,
1976 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1977 			BUG_ON(ret < 0);
1978 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1979 			btrfs_mark_buffer_dirty(parent);
1980 		}
1981 	}
1982 	if (btrfs_header_nritems(mid) == 1) {
1983 		/*
1984 		 * we're not allowed to leave a node with one item in the
1985 		 * tree during a delete.  A deletion from lower in the tree
1986 		 * could try to delete the only pointer in this node.
1987 		 * So, pull some keys from the left.
1988 		 * There has to be a left pointer at this point because
1989 		 * otherwise we would have pulled some pointers from the
1990 		 * right
1991 		 */
1992 		if (!left) {
1993 			ret = -EROFS;
1994 			btrfs_handle_fs_error(fs_info, ret, NULL);
1995 			goto enospc;
1996 		}
1997 		wret = balance_node_right(trans, mid, left);
1998 		if (wret < 0) {
1999 			ret = wret;
2000 			goto enospc;
2001 		}
2002 		if (wret == 1) {
2003 			wret = push_node_left(trans, left, mid, 1);
2004 			if (wret < 0)
2005 				ret = wret;
2006 		}
2007 		BUG_ON(wret == 1);
2008 	}
2009 	if (btrfs_header_nritems(mid) == 0) {
2010 		btrfs_clean_tree_block(mid);
2011 		btrfs_tree_unlock(mid);
2012 		del_ptr(root, path, level + 1, pslot);
2013 		root_sub_used(root, mid->len);
2014 		btrfs_free_tree_block(trans, root, mid, 0, 1);
2015 		free_extent_buffer_stale(mid);
2016 		mid = NULL;
2017 	} else {
2018 		/* update the parent key to reflect our changes */
2019 		struct btrfs_disk_key mid_key;
2020 		btrfs_node_key(mid, &mid_key, 0);
2021 		ret = tree_mod_log_insert_key(parent, pslot,
2022 				MOD_LOG_KEY_REPLACE, GFP_NOFS);
2023 		BUG_ON(ret < 0);
2024 		btrfs_set_node_key(parent, &mid_key, pslot);
2025 		btrfs_mark_buffer_dirty(parent);
2026 	}
2027 
2028 	/* update the path */
2029 	if (left) {
2030 		if (btrfs_header_nritems(left) > orig_slot) {
2031 			atomic_inc(&left->refs);
2032 			/* left was locked after cow */
2033 			path->nodes[level] = left;
2034 			path->slots[level + 1] -= 1;
2035 			path->slots[level] = orig_slot;
2036 			if (mid) {
2037 				btrfs_tree_unlock(mid);
2038 				free_extent_buffer(mid);
2039 			}
2040 		} else {
2041 			orig_slot -= btrfs_header_nritems(left);
2042 			path->slots[level] = orig_slot;
2043 		}
2044 	}
2045 	/* double check we haven't messed things up */
2046 	if (orig_ptr !=
2047 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2048 		BUG();
2049 enospc:
2050 	if (right) {
2051 		btrfs_tree_unlock(right);
2052 		free_extent_buffer(right);
2053 	}
2054 	if (left) {
2055 		if (path->nodes[level] != left)
2056 			btrfs_tree_unlock(left);
2057 		free_extent_buffer(left);
2058 	}
2059 	return ret;
2060 }
2061 
2062 /* Node balancing for insertion.  Here we only split or push nodes around
2063  * when they are completely full.  This is also done top down, so we
2064  * have to be pessimistic.
2065  */
2066 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2067 					  struct btrfs_root *root,
2068 					  struct btrfs_path *path, int level)
2069 {
2070 	struct btrfs_fs_info *fs_info = root->fs_info;
2071 	struct extent_buffer *right = NULL;
2072 	struct extent_buffer *mid;
2073 	struct extent_buffer *left = NULL;
2074 	struct extent_buffer *parent = NULL;
2075 	int ret = 0;
2076 	int wret;
2077 	int pslot;
2078 	int orig_slot = path->slots[level];
2079 
2080 	if (level == 0)
2081 		return 1;
2082 
2083 	mid = path->nodes[level];
2084 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2085 
2086 	if (level < BTRFS_MAX_LEVEL - 1) {
2087 		parent = path->nodes[level + 1];
2088 		pslot = path->slots[level + 1];
2089 	}
2090 
2091 	if (!parent)
2092 		return 1;
2093 
2094 	left = btrfs_read_node_slot(parent, pslot - 1);
2095 	if (IS_ERR(left))
2096 		left = NULL;
2097 
2098 	/* first, try to make some room in the middle buffer */
2099 	if (left) {
2100 		u32 left_nr;
2101 
2102 		btrfs_tree_lock(left);
2103 		btrfs_set_lock_blocking_write(left);
2104 
2105 		left_nr = btrfs_header_nritems(left);
2106 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2107 			wret = 1;
2108 		} else {
2109 			ret = btrfs_cow_block(trans, root, left, parent,
2110 					      pslot - 1, &left);
2111 			if (ret)
2112 				wret = 1;
2113 			else {
2114 				wret = push_node_left(trans, left, mid, 0);
2115 			}
2116 		}
2117 		if (wret < 0)
2118 			ret = wret;
2119 		if (wret == 0) {
2120 			struct btrfs_disk_key disk_key;
2121 			orig_slot += left_nr;
2122 			btrfs_node_key(mid, &disk_key, 0);
2123 			ret = tree_mod_log_insert_key(parent, pslot,
2124 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2125 			BUG_ON(ret < 0);
2126 			btrfs_set_node_key(parent, &disk_key, pslot);
2127 			btrfs_mark_buffer_dirty(parent);
2128 			if (btrfs_header_nritems(left) > orig_slot) {
2129 				path->nodes[level] = left;
2130 				path->slots[level + 1] -= 1;
2131 				path->slots[level] = orig_slot;
2132 				btrfs_tree_unlock(mid);
2133 				free_extent_buffer(mid);
2134 			} else {
2135 				orig_slot -=
2136 					btrfs_header_nritems(left);
2137 				path->slots[level] = orig_slot;
2138 				btrfs_tree_unlock(left);
2139 				free_extent_buffer(left);
2140 			}
2141 			return 0;
2142 		}
2143 		btrfs_tree_unlock(left);
2144 		free_extent_buffer(left);
2145 	}
2146 	right = btrfs_read_node_slot(parent, pslot + 1);
2147 	if (IS_ERR(right))
2148 		right = NULL;
2149 
2150 	/*
2151 	 * then try to empty the right most buffer into the middle
2152 	 */
2153 	if (right) {
2154 		u32 right_nr;
2155 
2156 		btrfs_tree_lock(right);
2157 		btrfs_set_lock_blocking_write(right);
2158 
2159 		right_nr = btrfs_header_nritems(right);
2160 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2161 			wret = 1;
2162 		} else {
2163 			ret = btrfs_cow_block(trans, root, right,
2164 					      parent, pslot + 1,
2165 					      &right);
2166 			if (ret)
2167 				wret = 1;
2168 			else {
2169 				wret = balance_node_right(trans, right, mid);
2170 			}
2171 		}
2172 		if (wret < 0)
2173 			ret = wret;
2174 		if (wret == 0) {
2175 			struct btrfs_disk_key disk_key;
2176 
2177 			btrfs_node_key(right, &disk_key, 0);
2178 			ret = tree_mod_log_insert_key(parent, pslot + 1,
2179 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2180 			BUG_ON(ret < 0);
2181 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2182 			btrfs_mark_buffer_dirty(parent);
2183 
2184 			if (btrfs_header_nritems(mid) <= orig_slot) {
2185 				path->nodes[level] = right;
2186 				path->slots[level + 1] += 1;
2187 				path->slots[level] = orig_slot -
2188 					btrfs_header_nritems(mid);
2189 				btrfs_tree_unlock(mid);
2190 				free_extent_buffer(mid);
2191 			} else {
2192 				btrfs_tree_unlock(right);
2193 				free_extent_buffer(right);
2194 			}
2195 			return 0;
2196 		}
2197 		btrfs_tree_unlock(right);
2198 		free_extent_buffer(right);
2199 	}
2200 	return 1;
2201 }
2202 
2203 /*
2204  * readahead one full node of leaves, finding things that are close
2205  * to the block in 'slot', and triggering ra on them.
2206  */
2207 static void reada_for_search(struct btrfs_fs_info *fs_info,
2208 			     struct btrfs_path *path,
2209 			     int level, int slot, u64 objectid)
2210 {
2211 	struct extent_buffer *node;
2212 	struct btrfs_disk_key disk_key;
2213 	u32 nritems;
2214 	u64 search;
2215 	u64 target;
2216 	u64 nread = 0;
2217 	struct extent_buffer *eb;
2218 	u32 nr;
2219 	u32 blocksize;
2220 	u32 nscan = 0;
2221 
2222 	if (level != 1)
2223 		return;
2224 
2225 	if (!path->nodes[level])
2226 		return;
2227 
2228 	node = path->nodes[level];
2229 
2230 	search = btrfs_node_blockptr(node, slot);
2231 	blocksize = fs_info->nodesize;
2232 	eb = find_extent_buffer(fs_info, search);
2233 	if (eb) {
2234 		free_extent_buffer(eb);
2235 		return;
2236 	}
2237 
2238 	target = search;
2239 
2240 	nritems = btrfs_header_nritems(node);
2241 	nr = slot;
2242 
2243 	while (1) {
2244 		if (path->reada == READA_BACK) {
2245 			if (nr == 0)
2246 				break;
2247 			nr--;
2248 		} else if (path->reada == READA_FORWARD) {
2249 			nr++;
2250 			if (nr >= nritems)
2251 				break;
2252 		}
2253 		if (path->reada == READA_BACK && objectid) {
2254 			btrfs_node_key(node, &disk_key, nr);
2255 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2256 				break;
2257 		}
2258 		search = btrfs_node_blockptr(node, nr);
2259 		if ((search <= target && target - search <= 65536) ||
2260 		    (search > target && search - target <= 65536)) {
2261 			readahead_tree_block(fs_info, search);
2262 			nread += blocksize;
2263 		}
2264 		nscan++;
2265 		if ((nread > 65536 || nscan > 32))
2266 			break;
2267 	}
2268 }
2269 
2270 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2271 				       struct btrfs_path *path, int level)
2272 {
2273 	int slot;
2274 	int nritems;
2275 	struct extent_buffer *parent;
2276 	struct extent_buffer *eb;
2277 	u64 gen;
2278 	u64 block1 = 0;
2279 	u64 block2 = 0;
2280 
2281 	parent = path->nodes[level + 1];
2282 	if (!parent)
2283 		return;
2284 
2285 	nritems = btrfs_header_nritems(parent);
2286 	slot = path->slots[level + 1];
2287 
2288 	if (slot > 0) {
2289 		block1 = btrfs_node_blockptr(parent, slot - 1);
2290 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2291 		eb = find_extent_buffer(fs_info, block1);
2292 		/*
2293 		 * if we get -eagain from btrfs_buffer_uptodate, we
2294 		 * don't want to return eagain here.  That will loop
2295 		 * forever
2296 		 */
2297 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2298 			block1 = 0;
2299 		free_extent_buffer(eb);
2300 	}
2301 	if (slot + 1 < nritems) {
2302 		block2 = btrfs_node_blockptr(parent, slot + 1);
2303 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2304 		eb = find_extent_buffer(fs_info, block2);
2305 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2306 			block2 = 0;
2307 		free_extent_buffer(eb);
2308 	}
2309 
2310 	if (block1)
2311 		readahead_tree_block(fs_info, block1);
2312 	if (block2)
2313 		readahead_tree_block(fs_info, block2);
2314 }
2315 
2316 
2317 /*
2318  * when we walk down the tree, it is usually safe to unlock the higher layers
2319  * in the tree.  The exceptions are when our path goes through slot 0, because
2320  * operations on the tree might require changing key pointers higher up in the
2321  * tree.
2322  *
2323  * callers might also have set path->keep_locks, which tells this code to keep
2324  * the lock if the path points to the last slot in the block.  This is part of
2325  * walking through the tree, and selecting the next slot in the higher block.
2326  *
2327  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2328  * if lowest_unlock is 1, level 0 won't be unlocked
2329  */
2330 static noinline void unlock_up(struct btrfs_path *path, int level,
2331 			       int lowest_unlock, int min_write_lock_level,
2332 			       int *write_lock_level)
2333 {
2334 	int i;
2335 	int skip_level = level;
2336 	int no_skips = 0;
2337 	struct extent_buffer *t;
2338 
2339 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2340 		if (!path->nodes[i])
2341 			break;
2342 		if (!path->locks[i])
2343 			break;
2344 		if (!no_skips && path->slots[i] == 0) {
2345 			skip_level = i + 1;
2346 			continue;
2347 		}
2348 		if (!no_skips && path->keep_locks) {
2349 			u32 nritems;
2350 			t = path->nodes[i];
2351 			nritems = btrfs_header_nritems(t);
2352 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2353 				skip_level = i + 1;
2354 				continue;
2355 			}
2356 		}
2357 		if (skip_level < i && i >= lowest_unlock)
2358 			no_skips = 1;
2359 
2360 		t = path->nodes[i];
2361 		if (i >= lowest_unlock && i > skip_level) {
2362 			btrfs_tree_unlock_rw(t, path->locks[i]);
2363 			path->locks[i] = 0;
2364 			if (write_lock_level &&
2365 			    i > min_write_lock_level &&
2366 			    i <= *write_lock_level) {
2367 				*write_lock_level = i - 1;
2368 			}
2369 		}
2370 	}
2371 }
2372 
2373 /*
2374  * helper function for btrfs_search_slot.  The goal is to find a block
2375  * in cache without setting the path to blocking.  If we find the block
2376  * we return zero and the path is unchanged.
2377  *
2378  * If we can't find the block, we set the path blocking and do some
2379  * reada.  -EAGAIN is returned and the search must be repeated.
2380  */
2381 static int
2382 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2383 		      struct extent_buffer **eb_ret, int level, int slot,
2384 		      const struct btrfs_key *key)
2385 {
2386 	struct btrfs_fs_info *fs_info = root->fs_info;
2387 	u64 blocknr;
2388 	u64 gen;
2389 	struct extent_buffer *b = *eb_ret;
2390 	struct extent_buffer *tmp;
2391 	struct btrfs_key first_key;
2392 	int ret;
2393 	int parent_level;
2394 
2395 	blocknr = btrfs_node_blockptr(b, slot);
2396 	gen = btrfs_node_ptr_generation(b, slot);
2397 	parent_level = btrfs_header_level(b);
2398 	btrfs_node_key_to_cpu(b, &first_key, slot);
2399 
2400 	tmp = find_extent_buffer(fs_info, blocknr);
2401 	if (tmp) {
2402 		/* first we do an atomic uptodate check */
2403 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2404 			/*
2405 			 * Do extra check for first_key, eb can be stale due to
2406 			 * being cached, read from scrub, or have multiple
2407 			 * parents (shared tree blocks).
2408 			 */
2409 			if (btrfs_verify_level_key(tmp,
2410 					parent_level - 1, &first_key, gen)) {
2411 				free_extent_buffer(tmp);
2412 				return -EUCLEAN;
2413 			}
2414 			*eb_ret = tmp;
2415 			return 0;
2416 		}
2417 
2418 		/* the pages were up to date, but we failed
2419 		 * the generation number check.  Do a full
2420 		 * read for the generation number that is correct.
2421 		 * We must do this without dropping locks so
2422 		 * we can trust our generation number
2423 		 */
2424 		btrfs_set_path_blocking(p);
2425 
2426 		/* now we're allowed to do a blocking uptodate check */
2427 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2428 		if (!ret) {
2429 			*eb_ret = tmp;
2430 			return 0;
2431 		}
2432 		free_extent_buffer(tmp);
2433 		btrfs_release_path(p);
2434 		return -EIO;
2435 	}
2436 
2437 	/*
2438 	 * reduce lock contention at high levels
2439 	 * of the btree by dropping locks before
2440 	 * we read.  Don't release the lock on the current
2441 	 * level because we need to walk this node to figure
2442 	 * out which blocks to read.
2443 	 */
2444 	btrfs_unlock_up_safe(p, level + 1);
2445 	btrfs_set_path_blocking(p);
2446 
2447 	if (p->reada != READA_NONE)
2448 		reada_for_search(fs_info, p, level, slot, key->objectid);
2449 
2450 	ret = -EAGAIN;
2451 	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2452 			      &first_key);
2453 	if (!IS_ERR(tmp)) {
2454 		/*
2455 		 * If the read above didn't mark this buffer up to date,
2456 		 * it will never end up being up to date.  Set ret to EIO now
2457 		 * and give up so that our caller doesn't loop forever
2458 		 * on our EAGAINs.
2459 		 */
2460 		if (!extent_buffer_uptodate(tmp))
2461 			ret = -EIO;
2462 		free_extent_buffer(tmp);
2463 	} else {
2464 		ret = PTR_ERR(tmp);
2465 	}
2466 
2467 	btrfs_release_path(p);
2468 	return ret;
2469 }
2470 
2471 /*
2472  * helper function for btrfs_search_slot.  This does all of the checks
2473  * for node-level blocks and does any balancing required based on
2474  * the ins_len.
2475  *
2476  * If no extra work was required, zero is returned.  If we had to
2477  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2478  * start over
2479  */
2480 static int
2481 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2482 		       struct btrfs_root *root, struct btrfs_path *p,
2483 		       struct extent_buffer *b, int level, int ins_len,
2484 		       int *write_lock_level)
2485 {
2486 	struct btrfs_fs_info *fs_info = root->fs_info;
2487 	int ret;
2488 
2489 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2490 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2491 		int sret;
2492 
2493 		if (*write_lock_level < level + 1) {
2494 			*write_lock_level = level + 1;
2495 			btrfs_release_path(p);
2496 			goto again;
2497 		}
2498 
2499 		btrfs_set_path_blocking(p);
2500 		reada_for_balance(fs_info, p, level);
2501 		sret = split_node(trans, root, p, level);
2502 
2503 		BUG_ON(sret > 0);
2504 		if (sret) {
2505 			ret = sret;
2506 			goto done;
2507 		}
2508 		b = p->nodes[level];
2509 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2510 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2511 		int sret;
2512 
2513 		if (*write_lock_level < level + 1) {
2514 			*write_lock_level = level + 1;
2515 			btrfs_release_path(p);
2516 			goto again;
2517 		}
2518 
2519 		btrfs_set_path_blocking(p);
2520 		reada_for_balance(fs_info, p, level);
2521 		sret = balance_level(trans, root, p, level);
2522 
2523 		if (sret) {
2524 			ret = sret;
2525 			goto done;
2526 		}
2527 		b = p->nodes[level];
2528 		if (!b) {
2529 			btrfs_release_path(p);
2530 			goto again;
2531 		}
2532 		BUG_ON(btrfs_header_nritems(b) == 1);
2533 	}
2534 	return 0;
2535 
2536 again:
2537 	ret = -EAGAIN;
2538 done:
2539 	return ret;
2540 }
2541 
2542 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2543 		      int level, int *prev_cmp, int *slot)
2544 {
2545 	if (*prev_cmp != 0) {
2546 		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2547 		return *prev_cmp;
2548 	}
2549 
2550 	*slot = 0;
2551 
2552 	return 0;
2553 }
2554 
2555 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2556 		u64 iobjectid, u64 ioff, u8 key_type,
2557 		struct btrfs_key *found_key)
2558 {
2559 	int ret;
2560 	struct btrfs_key key;
2561 	struct extent_buffer *eb;
2562 
2563 	ASSERT(path);
2564 	ASSERT(found_key);
2565 
2566 	key.type = key_type;
2567 	key.objectid = iobjectid;
2568 	key.offset = ioff;
2569 
2570 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2571 	if (ret < 0)
2572 		return ret;
2573 
2574 	eb = path->nodes[0];
2575 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2576 		ret = btrfs_next_leaf(fs_root, path);
2577 		if (ret)
2578 			return ret;
2579 		eb = path->nodes[0];
2580 	}
2581 
2582 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2583 	if (found_key->type != key.type ||
2584 			found_key->objectid != key.objectid)
2585 		return 1;
2586 
2587 	return 0;
2588 }
2589 
2590 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2591 							struct btrfs_path *p,
2592 							int write_lock_level)
2593 {
2594 	struct btrfs_fs_info *fs_info = root->fs_info;
2595 	struct extent_buffer *b;
2596 	int root_lock;
2597 	int level = 0;
2598 
2599 	/* We try very hard to do read locks on the root */
2600 	root_lock = BTRFS_READ_LOCK;
2601 
2602 	if (p->search_commit_root) {
2603 		/*
2604 		 * The commit roots are read only so we always do read locks,
2605 		 * and we always must hold the commit_root_sem when doing
2606 		 * searches on them, the only exception is send where we don't
2607 		 * want to block transaction commits for a long time, so
2608 		 * we need to clone the commit root in order to avoid races
2609 		 * with transaction commits that create a snapshot of one of
2610 		 * the roots used by a send operation.
2611 		 */
2612 		if (p->need_commit_sem) {
2613 			down_read(&fs_info->commit_root_sem);
2614 			b = btrfs_clone_extent_buffer(root->commit_root);
2615 			up_read(&fs_info->commit_root_sem);
2616 			if (!b)
2617 				return ERR_PTR(-ENOMEM);
2618 
2619 		} else {
2620 			b = root->commit_root;
2621 			atomic_inc(&b->refs);
2622 		}
2623 		level = btrfs_header_level(b);
2624 		/*
2625 		 * Ensure that all callers have set skip_locking when
2626 		 * p->search_commit_root = 1.
2627 		 */
2628 		ASSERT(p->skip_locking == 1);
2629 
2630 		goto out;
2631 	}
2632 
2633 	if (p->skip_locking) {
2634 		b = btrfs_root_node(root);
2635 		level = btrfs_header_level(b);
2636 		goto out;
2637 	}
2638 
2639 	/*
2640 	 * If the level is set to maximum, we can skip trying to get the read
2641 	 * lock.
2642 	 */
2643 	if (write_lock_level < BTRFS_MAX_LEVEL) {
2644 		/*
2645 		 * We don't know the level of the root node until we actually
2646 		 * have it read locked
2647 		 */
2648 		b = btrfs_read_lock_root_node(root);
2649 		level = btrfs_header_level(b);
2650 		if (level > write_lock_level)
2651 			goto out;
2652 
2653 		/* Whoops, must trade for write lock */
2654 		btrfs_tree_read_unlock(b);
2655 		free_extent_buffer(b);
2656 	}
2657 
2658 	b = btrfs_lock_root_node(root);
2659 	root_lock = BTRFS_WRITE_LOCK;
2660 
2661 	/* The level might have changed, check again */
2662 	level = btrfs_header_level(b);
2663 
2664 out:
2665 	p->nodes[level] = b;
2666 	if (!p->skip_locking)
2667 		p->locks[level] = root_lock;
2668 	/*
2669 	 * Callers are responsible for dropping b's references.
2670 	 */
2671 	return b;
2672 }
2673 
2674 
2675 /*
2676  * btrfs_search_slot - look for a key in a tree and perform necessary
2677  * modifications to preserve tree invariants.
2678  *
2679  * @trans:	Handle of transaction, used when modifying the tree
2680  * @p:		Holds all btree nodes along the search path
2681  * @root:	The root node of the tree
2682  * @key:	The key we are looking for
2683  * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2684  *		deletions it's -1. 0 for plain searches
2685  * @cow:	boolean should CoW operations be performed. Must always be 1
2686  *		when modifying the tree.
2687  *
2688  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2689  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2690  *
2691  * If @key is found, 0 is returned and you can find the item in the leaf level
2692  * of the path (level 0)
2693  *
2694  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2695  * points to the slot where it should be inserted
2696  *
2697  * If an error is encountered while searching the tree a negative error number
2698  * is returned
2699  */
2700 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2701 		      const struct btrfs_key *key, struct btrfs_path *p,
2702 		      int ins_len, int cow)
2703 {
2704 	struct extent_buffer *b;
2705 	int slot;
2706 	int ret;
2707 	int err;
2708 	int level;
2709 	int lowest_unlock = 1;
2710 	/* everything at write_lock_level or lower must be write locked */
2711 	int write_lock_level = 0;
2712 	u8 lowest_level = 0;
2713 	int min_write_lock_level;
2714 	int prev_cmp;
2715 
2716 	lowest_level = p->lowest_level;
2717 	WARN_ON(lowest_level && ins_len > 0);
2718 	WARN_ON(p->nodes[0] != NULL);
2719 	BUG_ON(!cow && ins_len);
2720 
2721 	if (ins_len < 0) {
2722 		lowest_unlock = 2;
2723 
2724 		/* when we are removing items, we might have to go up to level
2725 		 * two as we update tree pointers  Make sure we keep write
2726 		 * for those levels as well
2727 		 */
2728 		write_lock_level = 2;
2729 	} else if (ins_len > 0) {
2730 		/*
2731 		 * for inserting items, make sure we have a write lock on
2732 		 * level 1 so we can update keys
2733 		 */
2734 		write_lock_level = 1;
2735 	}
2736 
2737 	if (!cow)
2738 		write_lock_level = -1;
2739 
2740 	if (cow && (p->keep_locks || p->lowest_level))
2741 		write_lock_level = BTRFS_MAX_LEVEL;
2742 
2743 	min_write_lock_level = write_lock_level;
2744 
2745 again:
2746 	prev_cmp = -1;
2747 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2748 	if (IS_ERR(b)) {
2749 		ret = PTR_ERR(b);
2750 		goto done;
2751 	}
2752 
2753 	while (b) {
2754 		int dec = 0;
2755 
2756 		level = btrfs_header_level(b);
2757 
2758 		if (cow) {
2759 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2760 
2761 			/*
2762 			 * if we don't really need to cow this block
2763 			 * then we don't want to set the path blocking,
2764 			 * so we test it here
2765 			 */
2766 			if (!should_cow_block(trans, root, b)) {
2767 				trans->dirty = true;
2768 				goto cow_done;
2769 			}
2770 
2771 			/*
2772 			 * must have write locks on this node and the
2773 			 * parent
2774 			 */
2775 			if (level > write_lock_level ||
2776 			    (level + 1 > write_lock_level &&
2777 			    level + 1 < BTRFS_MAX_LEVEL &&
2778 			    p->nodes[level + 1])) {
2779 				write_lock_level = level + 1;
2780 				btrfs_release_path(p);
2781 				goto again;
2782 			}
2783 
2784 			btrfs_set_path_blocking(p);
2785 			if (last_level)
2786 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2787 						      &b);
2788 			else
2789 				err = btrfs_cow_block(trans, root, b,
2790 						      p->nodes[level + 1],
2791 						      p->slots[level + 1], &b);
2792 			if (err) {
2793 				ret = err;
2794 				goto done;
2795 			}
2796 		}
2797 cow_done:
2798 		p->nodes[level] = b;
2799 		/*
2800 		 * Leave path with blocking locks to avoid massive
2801 		 * lock context switch, this is made on purpose.
2802 		 */
2803 
2804 		/*
2805 		 * we have a lock on b and as long as we aren't changing
2806 		 * the tree, there is no way to for the items in b to change.
2807 		 * It is safe to drop the lock on our parent before we
2808 		 * go through the expensive btree search on b.
2809 		 *
2810 		 * If we're inserting or deleting (ins_len != 0), then we might
2811 		 * be changing slot zero, which may require changing the parent.
2812 		 * So, we can't drop the lock until after we know which slot
2813 		 * we're operating on.
2814 		 */
2815 		if (!ins_len && !p->keep_locks) {
2816 			int u = level + 1;
2817 
2818 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2819 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2820 				p->locks[u] = 0;
2821 			}
2822 		}
2823 
2824 		ret = key_search(b, key, level, &prev_cmp, &slot);
2825 		if (ret < 0)
2826 			goto done;
2827 
2828 		if (level == 0) {
2829 			p->slots[level] = slot;
2830 			if (ins_len > 0 &&
2831 			    btrfs_leaf_free_space(b) < ins_len) {
2832 				if (write_lock_level < 1) {
2833 					write_lock_level = 1;
2834 					btrfs_release_path(p);
2835 					goto again;
2836 				}
2837 
2838 				btrfs_set_path_blocking(p);
2839 				err = split_leaf(trans, root, key,
2840 						 p, ins_len, ret == 0);
2841 
2842 				BUG_ON(err > 0);
2843 				if (err) {
2844 					ret = err;
2845 					goto done;
2846 				}
2847 			}
2848 			if (!p->search_for_split)
2849 				unlock_up(p, level, lowest_unlock,
2850 					  min_write_lock_level, NULL);
2851 			goto done;
2852 		}
2853 		if (ret && slot > 0) {
2854 			dec = 1;
2855 			slot--;
2856 		}
2857 		p->slots[level] = slot;
2858 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2859 					     &write_lock_level);
2860 		if (err == -EAGAIN)
2861 			goto again;
2862 		if (err) {
2863 			ret = err;
2864 			goto done;
2865 		}
2866 		b = p->nodes[level];
2867 		slot = p->slots[level];
2868 
2869 		/*
2870 		 * Slot 0 is special, if we change the key we have to update
2871 		 * the parent pointer which means we must have a write lock on
2872 		 * the parent
2873 		 */
2874 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2875 			write_lock_level = level + 1;
2876 			btrfs_release_path(p);
2877 			goto again;
2878 		}
2879 
2880 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2881 			  &write_lock_level);
2882 
2883 		if (level == lowest_level) {
2884 			if (dec)
2885 				p->slots[level]++;
2886 			goto done;
2887 		}
2888 
2889 		err = read_block_for_search(root, p, &b, level, slot, key);
2890 		if (err == -EAGAIN)
2891 			goto again;
2892 		if (err) {
2893 			ret = err;
2894 			goto done;
2895 		}
2896 
2897 		if (!p->skip_locking) {
2898 			level = btrfs_header_level(b);
2899 			if (level <= write_lock_level) {
2900 				if (!btrfs_try_tree_write_lock(b)) {
2901 					btrfs_set_path_blocking(p);
2902 					btrfs_tree_lock(b);
2903 				}
2904 				p->locks[level] = BTRFS_WRITE_LOCK;
2905 			} else {
2906 				if (!btrfs_tree_read_lock_atomic(b)) {
2907 					btrfs_set_path_blocking(p);
2908 					btrfs_tree_read_lock(b);
2909 				}
2910 				p->locks[level] = BTRFS_READ_LOCK;
2911 			}
2912 			p->nodes[level] = b;
2913 		}
2914 	}
2915 	ret = 1;
2916 done:
2917 	/*
2918 	 * we don't really know what they plan on doing with the path
2919 	 * from here on, so for now just mark it as blocking
2920 	 */
2921 	if (!p->leave_spinning)
2922 		btrfs_set_path_blocking(p);
2923 	if (ret < 0 && !p->skip_release_on_error)
2924 		btrfs_release_path(p);
2925 	return ret;
2926 }
2927 
2928 /*
2929  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2930  * current state of the tree together with the operations recorded in the tree
2931  * modification log to search for the key in a previous version of this tree, as
2932  * denoted by the time_seq parameter.
2933  *
2934  * Naturally, there is no support for insert, delete or cow operations.
2935  *
2936  * The resulting path and return value will be set up as if we called
2937  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2938  */
2939 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2940 			  struct btrfs_path *p, u64 time_seq)
2941 {
2942 	struct btrfs_fs_info *fs_info = root->fs_info;
2943 	struct extent_buffer *b;
2944 	int slot;
2945 	int ret;
2946 	int err;
2947 	int level;
2948 	int lowest_unlock = 1;
2949 	u8 lowest_level = 0;
2950 	int prev_cmp = -1;
2951 
2952 	lowest_level = p->lowest_level;
2953 	WARN_ON(p->nodes[0] != NULL);
2954 
2955 	if (p->search_commit_root) {
2956 		BUG_ON(time_seq);
2957 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2958 	}
2959 
2960 again:
2961 	b = get_old_root(root, time_seq);
2962 	if (!b) {
2963 		ret = -EIO;
2964 		goto done;
2965 	}
2966 	level = btrfs_header_level(b);
2967 	p->locks[level] = BTRFS_READ_LOCK;
2968 
2969 	while (b) {
2970 		int dec = 0;
2971 
2972 		level = btrfs_header_level(b);
2973 		p->nodes[level] = b;
2974 
2975 		/*
2976 		 * we have a lock on b and as long as we aren't changing
2977 		 * the tree, there is no way to for the items in b to change.
2978 		 * It is safe to drop the lock on our parent before we
2979 		 * go through the expensive btree search on b.
2980 		 */
2981 		btrfs_unlock_up_safe(p, level + 1);
2982 
2983 		/*
2984 		 * Since we can unwind ebs we want to do a real search every
2985 		 * time.
2986 		 */
2987 		prev_cmp = -1;
2988 		ret = key_search(b, key, level, &prev_cmp, &slot);
2989 		if (ret < 0)
2990 			goto done;
2991 
2992 		if (level == 0) {
2993 			p->slots[level] = slot;
2994 			unlock_up(p, level, lowest_unlock, 0, NULL);
2995 			goto done;
2996 		}
2997 
2998 		if (ret && slot > 0) {
2999 			dec = 1;
3000 			slot--;
3001 		}
3002 		p->slots[level] = slot;
3003 		unlock_up(p, level, lowest_unlock, 0, NULL);
3004 
3005 		if (level == lowest_level) {
3006 			if (dec)
3007 				p->slots[level]++;
3008 			goto done;
3009 		}
3010 
3011 		err = read_block_for_search(root, p, &b, level, slot, key);
3012 		if (err == -EAGAIN)
3013 			goto again;
3014 		if (err) {
3015 			ret = err;
3016 			goto done;
3017 		}
3018 
3019 		level = btrfs_header_level(b);
3020 		if (!btrfs_tree_read_lock_atomic(b)) {
3021 			btrfs_set_path_blocking(p);
3022 			btrfs_tree_read_lock(b);
3023 		}
3024 		b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3025 		if (!b) {
3026 			ret = -ENOMEM;
3027 			goto done;
3028 		}
3029 		p->locks[level] = BTRFS_READ_LOCK;
3030 		p->nodes[level] = b;
3031 	}
3032 	ret = 1;
3033 done:
3034 	if (!p->leave_spinning)
3035 		btrfs_set_path_blocking(p);
3036 	if (ret < 0)
3037 		btrfs_release_path(p);
3038 
3039 	return ret;
3040 }
3041 
3042 /*
3043  * helper to use instead of search slot if no exact match is needed but
3044  * instead the next or previous item should be returned.
3045  * When find_higher is true, the next higher item is returned, the next lower
3046  * otherwise.
3047  * When return_any and find_higher are both true, and no higher item is found,
3048  * return the next lower instead.
3049  * When return_any is true and find_higher is false, and no lower item is found,
3050  * return the next higher instead.
3051  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3052  * < 0 on error
3053  */
3054 int btrfs_search_slot_for_read(struct btrfs_root *root,
3055 			       const struct btrfs_key *key,
3056 			       struct btrfs_path *p, int find_higher,
3057 			       int return_any)
3058 {
3059 	int ret;
3060 	struct extent_buffer *leaf;
3061 
3062 again:
3063 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3064 	if (ret <= 0)
3065 		return ret;
3066 	/*
3067 	 * a return value of 1 means the path is at the position where the
3068 	 * item should be inserted. Normally this is the next bigger item,
3069 	 * but in case the previous item is the last in a leaf, path points
3070 	 * to the first free slot in the previous leaf, i.e. at an invalid
3071 	 * item.
3072 	 */
3073 	leaf = p->nodes[0];
3074 
3075 	if (find_higher) {
3076 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3077 			ret = btrfs_next_leaf(root, p);
3078 			if (ret <= 0)
3079 				return ret;
3080 			if (!return_any)
3081 				return 1;
3082 			/*
3083 			 * no higher item found, return the next
3084 			 * lower instead
3085 			 */
3086 			return_any = 0;
3087 			find_higher = 0;
3088 			btrfs_release_path(p);
3089 			goto again;
3090 		}
3091 	} else {
3092 		if (p->slots[0] == 0) {
3093 			ret = btrfs_prev_leaf(root, p);
3094 			if (ret < 0)
3095 				return ret;
3096 			if (!ret) {
3097 				leaf = p->nodes[0];
3098 				if (p->slots[0] == btrfs_header_nritems(leaf))
3099 					p->slots[0]--;
3100 				return 0;
3101 			}
3102 			if (!return_any)
3103 				return 1;
3104 			/*
3105 			 * no lower item found, return the next
3106 			 * higher instead
3107 			 */
3108 			return_any = 0;
3109 			find_higher = 1;
3110 			btrfs_release_path(p);
3111 			goto again;
3112 		} else {
3113 			--p->slots[0];
3114 		}
3115 	}
3116 	return 0;
3117 }
3118 
3119 /*
3120  * adjust the pointers going up the tree, starting at level
3121  * making sure the right key of each node is points to 'key'.
3122  * This is used after shifting pointers to the left, so it stops
3123  * fixing up pointers when a given leaf/node is not in slot 0 of the
3124  * higher levels
3125  *
3126  */
3127 static void fixup_low_keys(struct btrfs_path *path,
3128 			   struct btrfs_disk_key *key, int level)
3129 {
3130 	int i;
3131 	struct extent_buffer *t;
3132 	int ret;
3133 
3134 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3135 		int tslot = path->slots[i];
3136 
3137 		if (!path->nodes[i])
3138 			break;
3139 		t = path->nodes[i];
3140 		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3141 				GFP_ATOMIC);
3142 		BUG_ON(ret < 0);
3143 		btrfs_set_node_key(t, key, tslot);
3144 		btrfs_mark_buffer_dirty(path->nodes[i]);
3145 		if (tslot != 0)
3146 			break;
3147 	}
3148 }
3149 
3150 /*
3151  * update item key.
3152  *
3153  * This function isn't completely safe. It's the caller's responsibility
3154  * that the new key won't break the order
3155  */
3156 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3157 			     struct btrfs_path *path,
3158 			     const struct btrfs_key *new_key)
3159 {
3160 	struct btrfs_disk_key disk_key;
3161 	struct extent_buffer *eb;
3162 	int slot;
3163 
3164 	eb = path->nodes[0];
3165 	slot = path->slots[0];
3166 	if (slot > 0) {
3167 		btrfs_item_key(eb, &disk_key, slot - 1);
3168 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3169 			btrfs_crit(fs_info,
3170 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3171 				   slot, btrfs_disk_key_objectid(&disk_key),
3172 				   btrfs_disk_key_type(&disk_key),
3173 				   btrfs_disk_key_offset(&disk_key),
3174 				   new_key->objectid, new_key->type,
3175 				   new_key->offset);
3176 			btrfs_print_leaf(eb);
3177 			BUG();
3178 		}
3179 	}
3180 	if (slot < btrfs_header_nritems(eb) - 1) {
3181 		btrfs_item_key(eb, &disk_key, slot + 1);
3182 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3183 			btrfs_crit(fs_info,
3184 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3185 				   slot, btrfs_disk_key_objectid(&disk_key),
3186 				   btrfs_disk_key_type(&disk_key),
3187 				   btrfs_disk_key_offset(&disk_key),
3188 				   new_key->objectid, new_key->type,
3189 				   new_key->offset);
3190 			btrfs_print_leaf(eb);
3191 			BUG();
3192 		}
3193 	}
3194 
3195 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3196 	btrfs_set_item_key(eb, &disk_key, slot);
3197 	btrfs_mark_buffer_dirty(eb);
3198 	if (slot == 0)
3199 		fixup_low_keys(path, &disk_key, 1);
3200 }
3201 
3202 /*
3203  * try to push data from one node into the next node left in the
3204  * tree.
3205  *
3206  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3207  * error, and > 0 if there was no room in the left hand block.
3208  */
3209 static int push_node_left(struct btrfs_trans_handle *trans,
3210 			  struct extent_buffer *dst,
3211 			  struct extent_buffer *src, int empty)
3212 {
3213 	struct btrfs_fs_info *fs_info = trans->fs_info;
3214 	int push_items = 0;
3215 	int src_nritems;
3216 	int dst_nritems;
3217 	int ret = 0;
3218 
3219 	src_nritems = btrfs_header_nritems(src);
3220 	dst_nritems = btrfs_header_nritems(dst);
3221 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3222 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3223 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3224 
3225 	if (!empty && src_nritems <= 8)
3226 		return 1;
3227 
3228 	if (push_items <= 0)
3229 		return 1;
3230 
3231 	if (empty) {
3232 		push_items = min(src_nritems, push_items);
3233 		if (push_items < src_nritems) {
3234 			/* leave at least 8 pointers in the node if
3235 			 * we aren't going to empty it
3236 			 */
3237 			if (src_nritems - push_items < 8) {
3238 				if (push_items <= 8)
3239 					return 1;
3240 				push_items -= 8;
3241 			}
3242 		}
3243 	} else
3244 		push_items = min(src_nritems - 8, push_items);
3245 
3246 	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3247 	if (ret) {
3248 		btrfs_abort_transaction(trans, ret);
3249 		return ret;
3250 	}
3251 	copy_extent_buffer(dst, src,
3252 			   btrfs_node_key_ptr_offset(dst_nritems),
3253 			   btrfs_node_key_ptr_offset(0),
3254 			   push_items * sizeof(struct btrfs_key_ptr));
3255 
3256 	if (push_items < src_nritems) {
3257 		/*
3258 		 * Don't call tree_mod_log_insert_move here, key removal was
3259 		 * already fully logged by tree_mod_log_eb_copy above.
3260 		 */
3261 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3262 				      btrfs_node_key_ptr_offset(push_items),
3263 				      (src_nritems - push_items) *
3264 				      sizeof(struct btrfs_key_ptr));
3265 	}
3266 	btrfs_set_header_nritems(src, src_nritems - push_items);
3267 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3268 	btrfs_mark_buffer_dirty(src);
3269 	btrfs_mark_buffer_dirty(dst);
3270 
3271 	return ret;
3272 }
3273 
3274 /*
3275  * try to push data from one node into the next node right in the
3276  * tree.
3277  *
3278  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3279  * error, and > 0 if there was no room in the right hand block.
3280  *
3281  * this will  only push up to 1/2 the contents of the left node over
3282  */
3283 static int balance_node_right(struct btrfs_trans_handle *trans,
3284 			      struct extent_buffer *dst,
3285 			      struct extent_buffer *src)
3286 {
3287 	struct btrfs_fs_info *fs_info = trans->fs_info;
3288 	int push_items = 0;
3289 	int max_push;
3290 	int src_nritems;
3291 	int dst_nritems;
3292 	int ret = 0;
3293 
3294 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3295 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3296 
3297 	src_nritems = btrfs_header_nritems(src);
3298 	dst_nritems = btrfs_header_nritems(dst);
3299 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3300 	if (push_items <= 0)
3301 		return 1;
3302 
3303 	if (src_nritems < 4)
3304 		return 1;
3305 
3306 	max_push = src_nritems / 2 + 1;
3307 	/* don't try to empty the node */
3308 	if (max_push >= src_nritems)
3309 		return 1;
3310 
3311 	if (max_push < push_items)
3312 		push_items = max_push;
3313 
3314 	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3315 	BUG_ON(ret < 0);
3316 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3317 				      btrfs_node_key_ptr_offset(0),
3318 				      (dst_nritems) *
3319 				      sizeof(struct btrfs_key_ptr));
3320 
3321 	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3322 				   push_items);
3323 	if (ret) {
3324 		btrfs_abort_transaction(trans, ret);
3325 		return ret;
3326 	}
3327 	copy_extent_buffer(dst, src,
3328 			   btrfs_node_key_ptr_offset(0),
3329 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3330 			   push_items * sizeof(struct btrfs_key_ptr));
3331 
3332 	btrfs_set_header_nritems(src, src_nritems - push_items);
3333 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3334 
3335 	btrfs_mark_buffer_dirty(src);
3336 	btrfs_mark_buffer_dirty(dst);
3337 
3338 	return ret;
3339 }
3340 
3341 /*
3342  * helper function to insert a new root level in the tree.
3343  * A new node is allocated, and a single item is inserted to
3344  * point to the existing root
3345  *
3346  * returns zero on success or < 0 on failure.
3347  */
3348 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3349 			   struct btrfs_root *root,
3350 			   struct btrfs_path *path, int level)
3351 {
3352 	struct btrfs_fs_info *fs_info = root->fs_info;
3353 	u64 lower_gen;
3354 	struct extent_buffer *lower;
3355 	struct extent_buffer *c;
3356 	struct extent_buffer *old;
3357 	struct btrfs_disk_key lower_key;
3358 	int ret;
3359 
3360 	BUG_ON(path->nodes[level]);
3361 	BUG_ON(path->nodes[level-1] != root->node);
3362 
3363 	lower = path->nodes[level-1];
3364 	if (level == 1)
3365 		btrfs_item_key(lower, &lower_key, 0);
3366 	else
3367 		btrfs_node_key(lower, &lower_key, 0);
3368 
3369 	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3370 					 root->node->start, 0);
3371 	if (IS_ERR(c))
3372 		return PTR_ERR(c);
3373 
3374 	root_add_used(root, fs_info->nodesize);
3375 
3376 	btrfs_set_header_nritems(c, 1);
3377 	btrfs_set_node_key(c, &lower_key, 0);
3378 	btrfs_set_node_blockptr(c, 0, lower->start);
3379 	lower_gen = btrfs_header_generation(lower);
3380 	WARN_ON(lower_gen != trans->transid);
3381 
3382 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3383 
3384 	btrfs_mark_buffer_dirty(c);
3385 
3386 	old = root->node;
3387 	ret = tree_mod_log_insert_root(root->node, c, 0);
3388 	BUG_ON(ret < 0);
3389 	rcu_assign_pointer(root->node, c);
3390 
3391 	/* the super has an extra ref to root->node */
3392 	free_extent_buffer(old);
3393 
3394 	add_root_to_dirty_list(root);
3395 	atomic_inc(&c->refs);
3396 	path->nodes[level] = c;
3397 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3398 	path->slots[level] = 0;
3399 	return 0;
3400 }
3401 
3402 /*
3403  * worker function to insert a single pointer in a node.
3404  * the node should have enough room for the pointer already
3405  *
3406  * slot and level indicate where you want the key to go, and
3407  * blocknr is the block the key points to.
3408  */
3409 static void insert_ptr(struct btrfs_trans_handle *trans,
3410 		       struct btrfs_path *path,
3411 		       struct btrfs_disk_key *key, u64 bytenr,
3412 		       int slot, int level)
3413 {
3414 	struct extent_buffer *lower;
3415 	int nritems;
3416 	int ret;
3417 
3418 	BUG_ON(!path->nodes[level]);
3419 	btrfs_assert_tree_locked(path->nodes[level]);
3420 	lower = path->nodes[level];
3421 	nritems = btrfs_header_nritems(lower);
3422 	BUG_ON(slot > nritems);
3423 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3424 	if (slot != nritems) {
3425 		if (level) {
3426 			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3427 					nritems - slot);
3428 			BUG_ON(ret < 0);
3429 		}
3430 		memmove_extent_buffer(lower,
3431 			      btrfs_node_key_ptr_offset(slot + 1),
3432 			      btrfs_node_key_ptr_offset(slot),
3433 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3434 	}
3435 	if (level) {
3436 		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3437 				GFP_NOFS);
3438 		BUG_ON(ret < 0);
3439 	}
3440 	btrfs_set_node_key(lower, key, slot);
3441 	btrfs_set_node_blockptr(lower, slot, bytenr);
3442 	WARN_ON(trans->transid == 0);
3443 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3444 	btrfs_set_header_nritems(lower, nritems + 1);
3445 	btrfs_mark_buffer_dirty(lower);
3446 }
3447 
3448 /*
3449  * split the node at the specified level in path in two.
3450  * The path is corrected to point to the appropriate node after the split
3451  *
3452  * Before splitting this tries to make some room in the node by pushing
3453  * left and right, if either one works, it returns right away.
3454  *
3455  * returns 0 on success and < 0 on failure
3456  */
3457 static noinline int split_node(struct btrfs_trans_handle *trans,
3458 			       struct btrfs_root *root,
3459 			       struct btrfs_path *path, int level)
3460 {
3461 	struct btrfs_fs_info *fs_info = root->fs_info;
3462 	struct extent_buffer *c;
3463 	struct extent_buffer *split;
3464 	struct btrfs_disk_key disk_key;
3465 	int mid;
3466 	int ret;
3467 	u32 c_nritems;
3468 
3469 	c = path->nodes[level];
3470 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3471 	if (c == root->node) {
3472 		/*
3473 		 * trying to split the root, lets make a new one
3474 		 *
3475 		 * tree mod log: We don't log_removal old root in
3476 		 * insert_new_root, because that root buffer will be kept as a
3477 		 * normal node. We are going to log removal of half of the
3478 		 * elements below with tree_mod_log_eb_copy. We're holding a
3479 		 * tree lock on the buffer, which is why we cannot race with
3480 		 * other tree_mod_log users.
3481 		 */
3482 		ret = insert_new_root(trans, root, path, level + 1);
3483 		if (ret)
3484 			return ret;
3485 	} else {
3486 		ret = push_nodes_for_insert(trans, root, path, level);
3487 		c = path->nodes[level];
3488 		if (!ret && btrfs_header_nritems(c) <
3489 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3490 			return 0;
3491 		if (ret < 0)
3492 			return ret;
3493 	}
3494 
3495 	c_nritems = btrfs_header_nritems(c);
3496 	mid = (c_nritems + 1) / 2;
3497 	btrfs_node_key(c, &disk_key, mid);
3498 
3499 	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3500 					     c->start, 0);
3501 	if (IS_ERR(split))
3502 		return PTR_ERR(split);
3503 
3504 	root_add_used(root, fs_info->nodesize);
3505 	ASSERT(btrfs_header_level(c) == level);
3506 
3507 	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3508 	if (ret) {
3509 		btrfs_abort_transaction(trans, ret);
3510 		return ret;
3511 	}
3512 	copy_extent_buffer(split, c,
3513 			   btrfs_node_key_ptr_offset(0),
3514 			   btrfs_node_key_ptr_offset(mid),
3515 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3516 	btrfs_set_header_nritems(split, c_nritems - mid);
3517 	btrfs_set_header_nritems(c, mid);
3518 	ret = 0;
3519 
3520 	btrfs_mark_buffer_dirty(c);
3521 	btrfs_mark_buffer_dirty(split);
3522 
3523 	insert_ptr(trans, path, &disk_key, split->start,
3524 		   path->slots[level + 1] + 1, level + 1);
3525 
3526 	if (path->slots[level] >= mid) {
3527 		path->slots[level] -= mid;
3528 		btrfs_tree_unlock(c);
3529 		free_extent_buffer(c);
3530 		path->nodes[level] = split;
3531 		path->slots[level + 1] += 1;
3532 	} else {
3533 		btrfs_tree_unlock(split);
3534 		free_extent_buffer(split);
3535 	}
3536 	return ret;
3537 }
3538 
3539 /*
3540  * how many bytes are required to store the items in a leaf.  start
3541  * and nr indicate which items in the leaf to check.  This totals up the
3542  * space used both by the item structs and the item data
3543  */
3544 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3545 {
3546 	struct btrfs_item *start_item;
3547 	struct btrfs_item *end_item;
3548 	struct btrfs_map_token token;
3549 	int data_len;
3550 	int nritems = btrfs_header_nritems(l);
3551 	int end = min(nritems, start + nr) - 1;
3552 
3553 	if (!nr)
3554 		return 0;
3555 	btrfs_init_map_token(&token, l);
3556 	start_item = btrfs_item_nr(start);
3557 	end_item = btrfs_item_nr(end);
3558 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3559 		btrfs_token_item_size(l, start_item, &token);
3560 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3561 	data_len += sizeof(struct btrfs_item) * nr;
3562 	WARN_ON(data_len < 0);
3563 	return data_len;
3564 }
3565 
3566 /*
3567  * The space between the end of the leaf items and
3568  * the start of the leaf data.  IOW, how much room
3569  * the leaf has left for both items and data
3570  */
3571 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3572 {
3573 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3574 	int nritems = btrfs_header_nritems(leaf);
3575 	int ret;
3576 
3577 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3578 	if (ret < 0) {
3579 		btrfs_crit(fs_info,
3580 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3581 			   ret,
3582 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3583 			   leaf_space_used(leaf, 0, nritems), nritems);
3584 	}
3585 	return ret;
3586 }
3587 
3588 /*
3589  * min slot controls the lowest index we're willing to push to the
3590  * right.  We'll push up to and including min_slot, but no lower
3591  */
3592 static noinline int __push_leaf_right(struct btrfs_path *path,
3593 				      int data_size, int empty,
3594 				      struct extent_buffer *right,
3595 				      int free_space, u32 left_nritems,
3596 				      u32 min_slot)
3597 {
3598 	struct btrfs_fs_info *fs_info = right->fs_info;
3599 	struct extent_buffer *left = path->nodes[0];
3600 	struct extent_buffer *upper = path->nodes[1];
3601 	struct btrfs_map_token token;
3602 	struct btrfs_disk_key disk_key;
3603 	int slot;
3604 	u32 i;
3605 	int push_space = 0;
3606 	int push_items = 0;
3607 	struct btrfs_item *item;
3608 	u32 nr;
3609 	u32 right_nritems;
3610 	u32 data_end;
3611 	u32 this_item_size;
3612 
3613 	if (empty)
3614 		nr = 0;
3615 	else
3616 		nr = max_t(u32, 1, min_slot);
3617 
3618 	if (path->slots[0] >= left_nritems)
3619 		push_space += data_size;
3620 
3621 	slot = path->slots[1];
3622 	i = left_nritems - 1;
3623 	while (i >= nr) {
3624 		item = btrfs_item_nr(i);
3625 
3626 		if (!empty && push_items > 0) {
3627 			if (path->slots[0] > i)
3628 				break;
3629 			if (path->slots[0] == i) {
3630 				int space = btrfs_leaf_free_space(left);
3631 
3632 				if (space + push_space * 2 > free_space)
3633 					break;
3634 			}
3635 		}
3636 
3637 		if (path->slots[0] == i)
3638 			push_space += data_size;
3639 
3640 		this_item_size = btrfs_item_size(left, item);
3641 		if (this_item_size + sizeof(*item) + push_space > free_space)
3642 			break;
3643 
3644 		push_items++;
3645 		push_space += this_item_size + sizeof(*item);
3646 		if (i == 0)
3647 			break;
3648 		i--;
3649 	}
3650 
3651 	if (push_items == 0)
3652 		goto out_unlock;
3653 
3654 	WARN_ON(!empty && push_items == left_nritems);
3655 
3656 	/* push left to right */
3657 	right_nritems = btrfs_header_nritems(right);
3658 
3659 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3660 	push_space -= leaf_data_end(left);
3661 
3662 	/* make room in the right data area */
3663 	data_end = leaf_data_end(right);
3664 	memmove_extent_buffer(right,
3665 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3666 			      BTRFS_LEAF_DATA_OFFSET + data_end,
3667 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3668 
3669 	/* copy from the left data area */
3670 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3671 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3672 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3673 		     push_space);
3674 
3675 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3676 			      btrfs_item_nr_offset(0),
3677 			      right_nritems * sizeof(struct btrfs_item));
3678 
3679 	/* copy the items from left to right */
3680 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3681 		   btrfs_item_nr_offset(left_nritems - push_items),
3682 		   push_items * sizeof(struct btrfs_item));
3683 
3684 	/* update the item pointers */
3685 	btrfs_init_map_token(&token, right);
3686 	right_nritems += push_items;
3687 	btrfs_set_header_nritems(right, right_nritems);
3688 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3689 	for (i = 0; i < right_nritems; i++) {
3690 		item = btrfs_item_nr(i);
3691 		push_space -= btrfs_token_item_size(right, item, &token);
3692 		btrfs_set_token_item_offset(right, item, push_space, &token);
3693 	}
3694 
3695 	left_nritems -= push_items;
3696 	btrfs_set_header_nritems(left, left_nritems);
3697 
3698 	if (left_nritems)
3699 		btrfs_mark_buffer_dirty(left);
3700 	else
3701 		btrfs_clean_tree_block(left);
3702 
3703 	btrfs_mark_buffer_dirty(right);
3704 
3705 	btrfs_item_key(right, &disk_key, 0);
3706 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3707 	btrfs_mark_buffer_dirty(upper);
3708 
3709 	/* then fixup the leaf pointer in the path */
3710 	if (path->slots[0] >= left_nritems) {
3711 		path->slots[0] -= left_nritems;
3712 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3713 			btrfs_clean_tree_block(path->nodes[0]);
3714 		btrfs_tree_unlock(path->nodes[0]);
3715 		free_extent_buffer(path->nodes[0]);
3716 		path->nodes[0] = right;
3717 		path->slots[1] += 1;
3718 	} else {
3719 		btrfs_tree_unlock(right);
3720 		free_extent_buffer(right);
3721 	}
3722 	return 0;
3723 
3724 out_unlock:
3725 	btrfs_tree_unlock(right);
3726 	free_extent_buffer(right);
3727 	return 1;
3728 }
3729 
3730 /*
3731  * push some data in the path leaf to the right, trying to free up at
3732  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3733  *
3734  * returns 1 if the push failed because the other node didn't have enough
3735  * room, 0 if everything worked out and < 0 if there were major errors.
3736  *
3737  * this will push starting from min_slot to the end of the leaf.  It won't
3738  * push any slot lower than min_slot
3739  */
3740 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3741 			   *root, struct btrfs_path *path,
3742 			   int min_data_size, int data_size,
3743 			   int empty, u32 min_slot)
3744 {
3745 	struct extent_buffer *left = path->nodes[0];
3746 	struct extent_buffer *right;
3747 	struct extent_buffer *upper;
3748 	int slot;
3749 	int free_space;
3750 	u32 left_nritems;
3751 	int ret;
3752 
3753 	if (!path->nodes[1])
3754 		return 1;
3755 
3756 	slot = path->slots[1];
3757 	upper = path->nodes[1];
3758 	if (slot >= btrfs_header_nritems(upper) - 1)
3759 		return 1;
3760 
3761 	btrfs_assert_tree_locked(path->nodes[1]);
3762 
3763 	right = btrfs_read_node_slot(upper, slot + 1);
3764 	/*
3765 	 * slot + 1 is not valid or we fail to read the right node,
3766 	 * no big deal, just return.
3767 	 */
3768 	if (IS_ERR(right))
3769 		return 1;
3770 
3771 	btrfs_tree_lock(right);
3772 	btrfs_set_lock_blocking_write(right);
3773 
3774 	free_space = btrfs_leaf_free_space(right);
3775 	if (free_space < data_size)
3776 		goto out_unlock;
3777 
3778 	/* cow and double check */
3779 	ret = btrfs_cow_block(trans, root, right, upper,
3780 			      slot + 1, &right);
3781 	if (ret)
3782 		goto out_unlock;
3783 
3784 	free_space = btrfs_leaf_free_space(right);
3785 	if (free_space < data_size)
3786 		goto out_unlock;
3787 
3788 	left_nritems = btrfs_header_nritems(left);
3789 	if (left_nritems == 0)
3790 		goto out_unlock;
3791 
3792 	if (path->slots[0] == left_nritems && !empty) {
3793 		/* Key greater than all keys in the leaf, right neighbor has
3794 		 * enough room for it and we're not emptying our leaf to delete
3795 		 * it, therefore use right neighbor to insert the new item and
3796 		 * no need to touch/dirty our left leaf. */
3797 		btrfs_tree_unlock(left);
3798 		free_extent_buffer(left);
3799 		path->nodes[0] = right;
3800 		path->slots[0] = 0;
3801 		path->slots[1]++;
3802 		return 0;
3803 	}
3804 
3805 	return __push_leaf_right(path, min_data_size, empty,
3806 				right, free_space, left_nritems, min_slot);
3807 out_unlock:
3808 	btrfs_tree_unlock(right);
3809 	free_extent_buffer(right);
3810 	return 1;
3811 }
3812 
3813 /*
3814  * push some data in the path leaf to the left, trying to free up at
3815  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3816  *
3817  * max_slot can put a limit on how far into the leaf we'll push items.  The
3818  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3819  * items
3820  */
3821 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3822 				     int empty, struct extent_buffer *left,
3823 				     int free_space, u32 right_nritems,
3824 				     u32 max_slot)
3825 {
3826 	struct btrfs_fs_info *fs_info = left->fs_info;
3827 	struct btrfs_disk_key disk_key;
3828 	struct extent_buffer *right = path->nodes[0];
3829 	int i;
3830 	int push_space = 0;
3831 	int push_items = 0;
3832 	struct btrfs_item *item;
3833 	u32 old_left_nritems;
3834 	u32 nr;
3835 	int ret = 0;
3836 	u32 this_item_size;
3837 	u32 old_left_item_size;
3838 	struct btrfs_map_token token;
3839 
3840 	if (empty)
3841 		nr = min(right_nritems, max_slot);
3842 	else
3843 		nr = min(right_nritems - 1, max_slot);
3844 
3845 	for (i = 0; i < nr; i++) {
3846 		item = btrfs_item_nr(i);
3847 
3848 		if (!empty && push_items > 0) {
3849 			if (path->slots[0] < i)
3850 				break;
3851 			if (path->slots[0] == i) {
3852 				int space = btrfs_leaf_free_space(right);
3853 
3854 				if (space + push_space * 2 > free_space)
3855 					break;
3856 			}
3857 		}
3858 
3859 		if (path->slots[0] == i)
3860 			push_space += data_size;
3861 
3862 		this_item_size = btrfs_item_size(right, item);
3863 		if (this_item_size + sizeof(*item) + push_space > free_space)
3864 			break;
3865 
3866 		push_items++;
3867 		push_space += this_item_size + sizeof(*item);
3868 	}
3869 
3870 	if (push_items == 0) {
3871 		ret = 1;
3872 		goto out;
3873 	}
3874 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3875 
3876 	/* push data from right to left */
3877 	copy_extent_buffer(left, right,
3878 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3879 			   btrfs_item_nr_offset(0),
3880 			   push_items * sizeof(struct btrfs_item));
3881 
3882 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3883 		     btrfs_item_offset_nr(right, push_items - 1);
3884 
3885 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3886 		     leaf_data_end(left) - push_space,
3887 		     BTRFS_LEAF_DATA_OFFSET +
3888 		     btrfs_item_offset_nr(right, push_items - 1),
3889 		     push_space);
3890 	old_left_nritems = btrfs_header_nritems(left);
3891 	BUG_ON(old_left_nritems <= 0);
3892 
3893 	btrfs_init_map_token(&token, left);
3894 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3895 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3896 		u32 ioff;
3897 
3898 		item = btrfs_item_nr(i);
3899 
3900 		ioff = btrfs_token_item_offset(left, item, &token);
3901 		btrfs_set_token_item_offset(left, item,
3902 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3903 		      &token);
3904 	}
3905 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3906 
3907 	/* fixup right node */
3908 	if (push_items > right_nritems)
3909 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3910 		       right_nritems);
3911 
3912 	if (push_items < right_nritems) {
3913 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3914 						  leaf_data_end(right);
3915 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3916 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3917 				      BTRFS_LEAF_DATA_OFFSET +
3918 				      leaf_data_end(right), push_space);
3919 
3920 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3921 			      btrfs_item_nr_offset(push_items),
3922 			     (btrfs_header_nritems(right) - push_items) *
3923 			     sizeof(struct btrfs_item));
3924 	}
3925 
3926 	btrfs_init_map_token(&token, right);
3927 	right_nritems -= push_items;
3928 	btrfs_set_header_nritems(right, right_nritems);
3929 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3930 	for (i = 0; i < right_nritems; i++) {
3931 		item = btrfs_item_nr(i);
3932 
3933 		push_space = push_space - btrfs_token_item_size(right,
3934 								item, &token);
3935 		btrfs_set_token_item_offset(right, item, push_space, &token);
3936 	}
3937 
3938 	btrfs_mark_buffer_dirty(left);
3939 	if (right_nritems)
3940 		btrfs_mark_buffer_dirty(right);
3941 	else
3942 		btrfs_clean_tree_block(right);
3943 
3944 	btrfs_item_key(right, &disk_key, 0);
3945 	fixup_low_keys(path, &disk_key, 1);
3946 
3947 	/* then fixup the leaf pointer in the path */
3948 	if (path->slots[0] < push_items) {
3949 		path->slots[0] += old_left_nritems;
3950 		btrfs_tree_unlock(path->nodes[0]);
3951 		free_extent_buffer(path->nodes[0]);
3952 		path->nodes[0] = left;
3953 		path->slots[1] -= 1;
3954 	} else {
3955 		btrfs_tree_unlock(left);
3956 		free_extent_buffer(left);
3957 		path->slots[0] -= push_items;
3958 	}
3959 	BUG_ON(path->slots[0] < 0);
3960 	return ret;
3961 out:
3962 	btrfs_tree_unlock(left);
3963 	free_extent_buffer(left);
3964 	return ret;
3965 }
3966 
3967 /*
3968  * push some data in the path leaf to the left, trying to free up at
3969  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3970  *
3971  * max_slot can put a limit on how far into the leaf we'll push items.  The
3972  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3973  * items
3974  */
3975 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3976 			  *root, struct btrfs_path *path, int min_data_size,
3977 			  int data_size, int empty, u32 max_slot)
3978 {
3979 	struct extent_buffer *right = path->nodes[0];
3980 	struct extent_buffer *left;
3981 	int slot;
3982 	int free_space;
3983 	u32 right_nritems;
3984 	int ret = 0;
3985 
3986 	slot = path->slots[1];
3987 	if (slot == 0)
3988 		return 1;
3989 	if (!path->nodes[1])
3990 		return 1;
3991 
3992 	right_nritems = btrfs_header_nritems(right);
3993 	if (right_nritems == 0)
3994 		return 1;
3995 
3996 	btrfs_assert_tree_locked(path->nodes[1]);
3997 
3998 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3999 	/*
4000 	 * slot - 1 is not valid or we fail to read the left node,
4001 	 * no big deal, just return.
4002 	 */
4003 	if (IS_ERR(left))
4004 		return 1;
4005 
4006 	btrfs_tree_lock(left);
4007 	btrfs_set_lock_blocking_write(left);
4008 
4009 	free_space = btrfs_leaf_free_space(left);
4010 	if (free_space < data_size) {
4011 		ret = 1;
4012 		goto out;
4013 	}
4014 
4015 	/* cow and double check */
4016 	ret = btrfs_cow_block(trans, root, left,
4017 			      path->nodes[1], slot - 1, &left);
4018 	if (ret) {
4019 		/* we hit -ENOSPC, but it isn't fatal here */
4020 		if (ret == -ENOSPC)
4021 			ret = 1;
4022 		goto out;
4023 	}
4024 
4025 	free_space = btrfs_leaf_free_space(left);
4026 	if (free_space < data_size) {
4027 		ret = 1;
4028 		goto out;
4029 	}
4030 
4031 	return __push_leaf_left(path, min_data_size,
4032 			       empty, left, free_space, right_nritems,
4033 			       max_slot);
4034 out:
4035 	btrfs_tree_unlock(left);
4036 	free_extent_buffer(left);
4037 	return ret;
4038 }
4039 
4040 /*
4041  * split the path's leaf in two, making sure there is at least data_size
4042  * available for the resulting leaf level of the path.
4043  */
4044 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4045 				    struct btrfs_path *path,
4046 				    struct extent_buffer *l,
4047 				    struct extent_buffer *right,
4048 				    int slot, int mid, int nritems)
4049 {
4050 	struct btrfs_fs_info *fs_info = trans->fs_info;
4051 	int data_copy_size;
4052 	int rt_data_off;
4053 	int i;
4054 	struct btrfs_disk_key disk_key;
4055 	struct btrfs_map_token token;
4056 
4057 	nritems = nritems - mid;
4058 	btrfs_set_header_nritems(right, nritems);
4059 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4060 
4061 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4062 			   btrfs_item_nr_offset(mid),
4063 			   nritems * sizeof(struct btrfs_item));
4064 
4065 	copy_extent_buffer(right, l,
4066 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4067 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4068 		     leaf_data_end(l), data_copy_size);
4069 
4070 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4071 
4072 	btrfs_init_map_token(&token, right);
4073 	for (i = 0; i < nritems; i++) {
4074 		struct btrfs_item *item = btrfs_item_nr(i);
4075 		u32 ioff;
4076 
4077 		ioff = btrfs_token_item_offset(right, item, &token);
4078 		btrfs_set_token_item_offset(right, item,
4079 					    ioff + rt_data_off, &token);
4080 	}
4081 
4082 	btrfs_set_header_nritems(l, mid);
4083 	btrfs_item_key(right, &disk_key, 0);
4084 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4085 
4086 	btrfs_mark_buffer_dirty(right);
4087 	btrfs_mark_buffer_dirty(l);
4088 	BUG_ON(path->slots[0] != slot);
4089 
4090 	if (mid <= slot) {
4091 		btrfs_tree_unlock(path->nodes[0]);
4092 		free_extent_buffer(path->nodes[0]);
4093 		path->nodes[0] = right;
4094 		path->slots[0] -= mid;
4095 		path->slots[1] += 1;
4096 	} else {
4097 		btrfs_tree_unlock(right);
4098 		free_extent_buffer(right);
4099 	}
4100 
4101 	BUG_ON(path->slots[0] < 0);
4102 }
4103 
4104 /*
4105  * double splits happen when we need to insert a big item in the middle
4106  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4107  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4108  *          A                 B                 C
4109  *
4110  * We avoid this by trying to push the items on either side of our target
4111  * into the adjacent leaves.  If all goes well we can avoid the double split
4112  * completely.
4113  */
4114 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4115 					  struct btrfs_root *root,
4116 					  struct btrfs_path *path,
4117 					  int data_size)
4118 {
4119 	int ret;
4120 	int progress = 0;
4121 	int slot;
4122 	u32 nritems;
4123 	int space_needed = data_size;
4124 
4125 	slot = path->slots[0];
4126 	if (slot < btrfs_header_nritems(path->nodes[0]))
4127 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4128 
4129 	/*
4130 	 * try to push all the items after our slot into the
4131 	 * right leaf
4132 	 */
4133 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4134 	if (ret < 0)
4135 		return ret;
4136 
4137 	if (ret == 0)
4138 		progress++;
4139 
4140 	nritems = btrfs_header_nritems(path->nodes[0]);
4141 	/*
4142 	 * our goal is to get our slot at the start or end of a leaf.  If
4143 	 * we've done so we're done
4144 	 */
4145 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4146 		return 0;
4147 
4148 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4149 		return 0;
4150 
4151 	/* try to push all the items before our slot into the next leaf */
4152 	slot = path->slots[0];
4153 	space_needed = data_size;
4154 	if (slot > 0)
4155 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4156 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4157 	if (ret < 0)
4158 		return ret;
4159 
4160 	if (ret == 0)
4161 		progress++;
4162 
4163 	if (progress)
4164 		return 0;
4165 	return 1;
4166 }
4167 
4168 /*
4169  * split the path's leaf in two, making sure there is at least data_size
4170  * available for the resulting leaf level of the path.
4171  *
4172  * returns 0 if all went well and < 0 on failure.
4173  */
4174 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4175 			       struct btrfs_root *root,
4176 			       const struct btrfs_key *ins_key,
4177 			       struct btrfs_path *path, int data_size,
4178 			       int extend)
4179 {
4180 	struct btrfs_disk_key disk_key;
4181 	struct extent_buffer *l;
4182 	u32 nritems;
4183 	int mid;
4184 	int slot;
4185 	struct extent_buffer *right;
4186 	struct btrfs_fs_info *fs_info = root->fs_info;
4187 	int ret = 0;
4188 	int wret;
4189 	int split;
4190 	int num_doubles = 0;
4191 	int tried_avoid_double = 0;
4192 
4193 	l = path->nodes[0];
4194 	slot = path->slots[0];
4195 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4196 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4197 		return -EOVERFLOW;
4198 
4199 	/* first try to make some room by pushing left and right */
4200 	if (data_size && path->nodes[1]) {
4201 		int space_needed = data_size;
4202 
4203 		if (slot < btrfs_header_nritems(l))
4204 			space_needed -= btrfs_leaf_free_space(l);
4205 
4206 		wret = push_leaf_right(trans, root, path, space_needed,
4207 				       space_needed, 0, 0);
4208 		if (wret < 0)
4209 			return wret;
4210 		if (wret) {
4211 			space_needed = data_size;
4212 			if (slot > 0)
4213 				space_needed -= btrfs_leaf_free_space(l);
4214 			wret = push_leaf_left(trans, root, path, space_needed,
4215 					      space_needed, 0, (u32)-1);
4216 			if (wret < 0)
4217 				return wret;
4218 		}
4219 		l = path->nodes[0];
4220 
4221 		/* did the pushes work? */
4222 		if (btrfs_leaf_free_space(l) >= data_size)
4223 			return 0;
4224 	}
4225 
4226 	if (!path->nodes[1]) {
4227 		ret = insert_new_root(trans, root, path, 1);
4228 		if (ret)
4229 			return ret;
4230 	}
4231 again:
4232 	split = 1;
4233 	l = path->nodes[0];
4234 	slot = path->slots[0];
4235 	nritems = btrfs_header_nritems(l);
4236 	mid = (nritems + 1) / 2;
4237 
4238 	if (mid <= slot) {
4239 		if (nritems == 1 ||
4240 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4241 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4242 			if (slot >= nritems) {
4243 				split = 0;
4244 			} else {
4245 				mid = slot;
4246 				if (mid != nritems &&
4247 				    leaf_space_used(l, mid, nritems - mid) +
4248 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4249 					if (data_size && !tried_avoid_double)
4250 						goto push_for_double;
4251 					split = 2;
4252 				}
4253 			}
4254 		}
4255 	} else {
4256 		if (leaf_space_used(l, 0, mid) + data_size >
4257 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4258 			if (!extend && data_size && slot == 0) {
4259 				split = 0;
4260 			} else if ((extend || !data_size) && slot == 0) {
4261 				mid = 1;
4262 			} else {
4263 				mid = slot;
4264 				if (mid != nritems &&
4265 				    leaf_space_used(l, mid, nritems - mid) +
4266 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4267 					if (data_size && !tried_avoid_double)
4268 						goto push_for_double;
4269 					split = 2;
4270 				}
4271 			}
4272 		}
4273 	}
4274 
4275 	if (split == 0)
4276 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4277 	else
4278 		btrfs_item_key(l, &disk_key, mid);
4279 
4280 	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4281 					     l->start, 0);
4282 	if (IS_ERR(right))
4283 		return PTR_ERR(right);
4284 
4285 	root_add_used(root, fs_info->nodesize);
4286 
4287 	if (split == 0) {
4288 		if (mid <= slot) {
4289 			btrfs_set_header_nritems(right, 0);
4290 			insert_ptr(trans, path, &disk_key,
4291 				   right->start, path->slots[1] + 1, 1);
4292 			btrfs_tree_unlock(path->nodes[0]);
4293 			free_extent_buffer(path->nodes[0]);
4294 			path->nodes[0] = right;
4295 			path->slots[0] = 0;
4296 			path->slots[1] += 1;
4297 		} else {
4298 			btrfs_set_header_nritems(right, 0);
4299 			insert_ptr(trans, path, &disk_key,
4300 				   right->start, path->slots[1], 1);
4301 			btrfs_tree_unlock(path->nodes[0]);
4302 			free_extent_buffer(path->nodes[0]);
4303 			path->nodes[0] = right;
4304 			path->slots[0] = 0;
4305 			if (path->slots[1] == 0)
4306 				fixup_low_keys(path, &disk_key, 1);
4307 		}
4308 		/*
4309 		 * We create a new leaf 'right' for the required ins_len and
4310 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4311 		 * the content of ins_len to 'right'.
4312 		 */
4313 		return ret;
4314 	}
4315 
4316 	copy_for_split(trans, path, l, right, slot, mid, nritems);
4317 
4318 	if (split == 2) {
4319 		BUG_ON(num_doubles != 0);
4320 		num_doubles++;
4321 		goto again;
4322 	}
4323 
4324 	return 0;
4325 
4326 push_for_double:
4327 	push_for_double_split(trans, root, path, data_size);
4328 	tried_avoid_double = 1;
4329 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4330 		return 0;
4331 	goto again;
4332 }
4333 
4334 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4335 					 struct btrfs_root *root,
4336 					 struct btrfs_path *path, int ins_len)
4337 {
4338 	struct btrfs_key key;
4339 	struct extent_buffer *leaf;
4340 	struct btrfs_file_extent_item *fi;
4341 	u64 extent_len = 0;
4342 	u32 item_size;
4343 	int ret;
4344 
4345 	leaf = path->nodes[0];
4346 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4347 
4348 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4349 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4350 
4351 	if (btrfs_leaf_free_space(leaf) >= ins_len)
4352 		return 0;
4353 
4354 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4355 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4356 		fi = btrfs_item_ptr(leaf, path->slots[0],
4357 				    struct btrfs_file_extent_item);
4358 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4359 	}
4360 	btrfs_release_path(path);
4361 
4362 	path->keep_locks = 1;
4363 	path->search_for_split = 1;
4364 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4365 	path->search_for_split = 0;
4366 	if (ret > 0)
4367 		ret = -EAGAIN;
4368 	if (ret < 0)
4369 		goto err;
4370 
4371 	ret = -EAGAIN;
4372 	leaf = path->nodes[0];
4373 	/* if our item isn't there, return now */
4374 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4375 		goto err;
4376 
4377 	/* the leaf has  changed, it now has room.  return now */
4378 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4379 		goto err;
4380 
4381 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4382 		fi = btrfs_item_ptr(leaf, path->slots[0],
4383 				    struct btrfs_file_extent_item);
4384 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4385 			goto err;
4386 	}
4387 
4388 	btrfs_set_path_blocking(path);
4389 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4390 	if (ret)
4391 		goto err;
4392 
4393 	path->keep_locks = 0;
4394 	btrfs_unlock_up_safe(path, 1);
4395 	return 0;
4396 err:
4397 	path->keep_locks = 0;
4398 	return ret;
4399 }
4400 
4401 static noinline int split_item(struct btrfs_path *path,
4402 			       const struct btrfs_key *new_key,
4403 			       unsigned long split_offset)
4404 {
4405 	struct extent_buffer *leaf;
4406 	struct btrfs_item *item;
4407 	struct btrfs_item *new_item;
4408 	int slot;
4409 	char *buf;
4410 	u32 nritems;
4411 	u32 item_size;
4412 	u32 orig_offset;
4413 	struct btrfs_disk_key disk_key;
4414 
4415 	leaf = path->nodes[0];
4416 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4417 
4418 	btrfs_set_path_blocking(path);
4419 
4420 	item = btrfs_item_nr(path->slots[0]);
4421 	orig_offset = btrfs_item_offset(leaf, item);
4422 	item_size = btrfs_item_size(leaf, item);
4423 
4424 	buf = kmalloc(item_size, GFP_NOFS);
4425 	if (!buf)
4426 		return -ENOMEM;
4427 
4428 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4429 			    path->slots[0]), item_size);
4430 
4431 	slot = path->slots[0] + 1;
4432 	nritems = btrfs_header_nritems(leaf);
4433 	if (slot != nritems) {
4434 		/* shift the items */
4435 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4436 				btrfs_item_nr_offset(slot),
4437 				(nritems - slot) * sizeof(struct btrfs_item));
4438 	}
4439 
4440 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4441 	btrfs_set_item_key(leaf, &disk_key, slot);
4442 
4443 	new_item = btrfs_item_nr(slot);
4444 
4445 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4446 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4447 
4448 	btrfs_set_item_offset(leaf, item,
4449 			      orig_offset + item_size - split_offset);
4450 	btrfs_set_item_size(leaf, item, split_offset);
4451 
4452 	btrfs_set_header_nritems(leaf, nritems + 1);
4453 
4454 	/* write the data for the start of the original item */
4455 	write_extent_buffer(leaf, buf,
4456 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4457 			    split_offset);
4458 
4459 	/* write the data for the new item */
4460 	write_extent_buffer(leaf, buf + split_offset,
4461 			    btrfs_item_ptr_offset(leaf, slot),
4462 			    item_size - split_offset);
4463 	btrfs_mark_buffer_dirty(leaf);
4464 
4465 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4466 	kfree(buf);
4467 	return 0;
4468 }
4469 
4470 /*
4471  * This function splits a single item into two items,
4472  * giving 'new_key' to the new item and splitting the
4473  * old one at split_offset (from the start of the item).
4474  *
4475  * The path may be released by this operation.  After
4476  * the split, the path is pointing to the old item.  The
4477  * new item is going to be in the same node as the old one.
4478  *
4479  * Note, the item being split must be smaller enough to live alone on
4480  * a tree block with room for one extra struct btrfs_item
4481  *
4482  * This allows us to split the item in place, keeping a lock on the
4483  * leaf the entire time.
4484  */
4485 int btrfs_split_item(struct btrfs_trans_handle *trans,
4486 		     struct btrfs_root *root,
4487 		     struct btrfs_path *path,
4488 		     const struct btrfs_key *new_key,
4489 		     unsigned long split_offset)
4490 {
4491 	int ret;
4492 	ret = setup_leaf_for_split(trans, root, path,
4493 				   sizeof(struct btrfs_item));
4494 	if (ret)
4495 		return ret;
4496 
4497 	ret = split_item(path, new_key, split_offset);
4498 	return ret;
4499 }
4500 
4501 /*
4502  * This function duplicate a item, giving 'new_key' to the new item.
4503  * It guarantees both items live in the same tree leaf and the new item
4504  * is contiguous with the original item.
4505  *
4506  * This allows us to split file extent in place, keeping a lock on the
4507  * leaf the entire time.
4508  */
4509 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4510 			 struct btrfs_root *root,
4511 			 struct btrfs_path *path,
4512 			 const struct btrfs_key *new_key)
4513 {
4514 	struct extent_buffer *leaf;
4515 	int ret;
4516 	u32 item_size;
4517 
4518 	leaf = path->nodes[0];
4519 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4520 	ret = setup_leaf_for_split(trans, root, path,
4521 				   item_size + sizeof(struct btrfs_item));
4522 	if (ret)
4523 		return ret;
4524 
4525 	path->slots[0]++;
4526 	setup_items_for_insert(root, path, new_key, &item_size,
4527 			       item_size, item_size +
4528 			       sizeof(struct btrfs_item), 1);
4529 	leaf = path->nodes[0];
4530 	memcpy_extent_buffer(leaf,
4531 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4532 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4533 			     item_size);
4534 	return 0;
4535 }
4536 
4537 /*
4538  * make the item pointed to by the path smaller.  new_size indicates
4539  * how small to make it, and from_end tells us if we just chop bytes
4540  * off the end of the item or if we shift the item to chop bytes off
4541  * the front.
4542  */
4543 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4544 {
4545 	int slot;
4546 	struct extent_buffer *leaf;
4547 	struct btrfs_item *item;
4548 	u32 nritems;
4549 	unsigned int data_end;
4550 	unsigned int old_data_start;
4551 	unsigned int old_size;
4552 	unsigned int size_diff;
4553 	int i;
4554 	struct btrfs_map_token token;
4555 
4556 	leaf = path->nodes[0];
4557 	slot = path->slots[0];
4558 
4559 	old_size = btrfs_item_size_nr(leaf, slot);
4560 	if (old_size == new_size)
4561 		return;
4562 
4563 	nritems = btrfs_header_nritems(leaf);
4564 	data_end = leaf_data_end(leaf);
4565 
4566 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4567 
4568 	size_diff = old_size - new_size;
4569 
4570 	BUG_ON(slot < 0);
4571 	BUG_ON(slot >= nritems);
4572 
4573 	/*
4574 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4575 	 */
4576 	/* first correct the data pointers */
4577 	btrfs_init_map_token(&token, leaf);
4578 	for (i = slot; i < nritems; i++) {
4579 		u32 ioff;
4580 		item = btrfs_item_nr(i);
4581 
4582 		ioff = btrfs_token_item_offset(leaf, item, &token);
4583 		btrfs_set_token_item_offset(leaf, item,
4584 					    ioff + size_diff, &token);
4585 	}
4586 
4587 	/* shift the data */
4588 	if (from_end) {
4589 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4590 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4591 			      data_end, old_data_start + new_size - data_end);
4592 	} else {
4593 		struct btrfs_disk_key disk_key;
4594 		u64 offset;
4595 
4596 		btrfs_item_key(leaf, &disk_key, slot);
4597 
4598 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4599 			unsigned long ptr;
4600 			struct btrfs_file_extent_item *fi;
4601 
4602 			fi = btrfs_item_ptr(leaf, slot,
4603 					    struct btrfs_file_extent_item);
4604 			fi = (struct btrfs_file_extent_item *)(
4605 			     (unsigned long)fi - size_diff);
4606 
4607 			if (btrfs_file_extent_type(leaf, fi) ==
4608 			    BTRFS_FILE_EXTENT_INLINE) {
4609 				ptr = btrfs_item_ptr_offset(leaf, slot);
4610 				memmove_extent_buffer(leaf, ptr,
4611 				      (unsigned long)fi,
4612 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4613 			}
4614 		}
4615 
4616 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4617 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4618 			      data_end, old_data_start - data_end);
4619 
4620 		offset = btrfs_disk_key_offset(&disk_key);
4621 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4622 		btrfs_set_item_key(leaf, &disk_key, slot);
4623 		if (slot == 0)
4624 			fixup_low_keys(path, &disk_key, 1);
4625 	}
4626 
4627 	item = btrfs_item_nr(slot);
4628 	btrfs_set_item_size(leaf, item, new_size);
4629 	btrfs_mark_buffer_dirty(leaf);
4630 
4631 	if (btrfs_leaf_free_space(leaf) < 0) {
4632 		btrfs_print_leaf(leaf);
4633 		BUG();
4634 	}
4635 }
4636 
4637 /*
4638  * make the item pointed to by the path bigger, data_size is the added size.
4639  */
4640 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4641 {
4642 	int slot;
4643 	struct extent_buffer *leaf;
4644 	struct btrfs_item *item;
4645 	u32 nritems;
4646 	unsigned int data_end;
4647 	unsigned int old_data;
4648 	unsigned int old_size;
4649 	int i;
4650 	struct btrfs_map_token token;
4651 
4652 	leaf = path->nodes[0];
4653 
4654 	nritems = btrfs_header_nritems(leaf);
4655 	data_end = leaf_data_end(leaf);
4656 
4657 	if (btrfs_leaf_free_space(leaf) < data_size) {
4658 		btrfs_print_leaf(leaf);
4659 		BUG();
4660 	}
4661 	slot = path->slots[0];
4662 	old_data = btrfs_item_end_nr(leaf, slot);
4663 
4664 	BUG_ON(slot < 0);
4665 	if (slot >= nritems) {
4666 		btrfs_print_leaf(leaf);
4667 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4668 			   slot, nritems);
4669 		BUG();
4670 	}
4671 
4672 	/*
4673 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4674 	 */
4675 	/* first correct the data pointers */
4676 	btrfs_init_map_token(&token, leaf);
4677 	for (i = slot; i < nritems; i++) {
4678 		u32 ioff;
4679 		item = btrfs_item_nr(i);
4680 
4681 		ioff = btrfs_token_item_offset(leaf, item, &token);
4682 		btrfs_set_token_item_offset(leaf, item,
4683 					    ioff - data_size, &token);
4684 	}
4685 
4686 	/* shift the data */
4687 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4688 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4689 		      data_end, old_data - data_end);
4690 
4691 	data_end = old_data;
4692 	old_size = btrfs_item_size_nr(leaf, slot);
4693 	item = btrfs_item_nr(slot);
4694 	btrfs_set_item_size(leaf, item, old_size + data_size);
4695 	btrfs_mark_buffer_dirty(leaf);
4696 
4697 	if (btrfs_leaf_free_space(leaf) < 0) {
4698 		btrfs_print_leaf(leaf);
4699 		BUG();
4700 	}
4701 }
4702 
4703 /*
4704  * this is a helper for btrfs_insert_empty_items, the main goal here is
4705  * to save stack depth by doing the bulk of the work in a function
4706  * that doesn't call btrfs_search_slot
4707  */
4708 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4709 			    const struct btrfs_key *cpu_key, u32 *data_size,
4710 			    u32 total_data, u32 total_size, int nr)
4711 {
4712 	struct btrfs_fs_info *fs_info = root->fs_info;
4713 	struct btrfs_item *item;
4714 	int i;
4715 	u32 nritems;
4716 	unsigned int data_end;
4717 	struct btrfs_disk_key disk_key;
4718 	struct extent_buffer *leaf;
4719 	int slot;
4720 	struct btrfs_map_token token;
4721 
4722 	if (path->slots[0] == 0) {
4723 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4724 		fixup_low_keys(path, &disk_key, 1);
4725 	}
4726 	btrfs_unlock_up_safe(path, 1);
4727 
4728 	leaf = path->nodes[0];
4729 	slot = path->slots[0];
4730 
4731 	nritems = btrfs_header_nritems(leaf);
4732 	data_end = leaf_data_end(leaf);
4733 
4734 	if (btrfs_leaf_free_space(leaf) < total_size) {
4735 		btrfs_print_leaf(leaf);
4736 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4737 			   total_size, btrfs_leaf_free_space(leaf));
4738 		BUG();
4739 	}
4740 
4741 	btrfs_init_map_token(&token, leaf);
4742 	if (slot != nritems) {
4743 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4744 
4745 		if (old_data < data_end) {
4746 			btrfs_print_leaf(leaf);
4747 			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4748 				   slot, old_data, data_end);
4749 			BUG();
4750 		}
4751 		/*
4752 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4753 		 */
4754 		/* first correct the data pointers */
4755 		for (i = slot; i < nritems; i++) {
4756 			u32 ioff;
4757 
4758 			item = btrfs_item_nr(i);
4759 			ioff = btrfs_token_item_offset(leaf, item, &token);
4760 			btrfs_set_token_item_offset(leaf, item,
4761 						    ioff - total_data, &token);
4762 		}
4763 		/* shift the items */
4764 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4765 			      btrfs_item_nr_offset(slot),
4766 			      (nritems - slot) * sizeof(struct btrfs_item));
4767 
4768 		/* shift the data */
4769 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4770 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4771 			      data_end, old_data - data_end);
4772 		data_end = old_data;
4773 	}
4774 
4775 	/* setup the item for the new data */
4776 	for (i = 0; i < nr; i++) {
4777 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4778 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4779 		item = btrfs_item_nr(slot + i);
4780 		btrfs_set_token_item_offset(leaf, item,
4781 					    data_end - data_size[i], &token);
4782 		data_end -= data_size[i];
4783 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4784 	}
4785 
4786 	btrfs_set_header_nritems(leaf, nritems + nr);
4787 	btrfs_mark_buffer_dirty(leaf);
4788 
4789 	if (btrfs_leaf_free_space(leaf) < 0) {
4790 		btrfs_print_leaf(leaf);
4791 		BUG();
4792 	}
4793 }
4794 
4795 /*
4796  * Given a key and some data, insert items into the tree.
4797  * This does all the path init required, making room in the tree if needed.
4798  */
4799 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4800 			    struct btrfs_root *root,
4801 			    struct btrfs_path *path,
4802 			    const struct btrfs_key *cpu_key, u32 *data_size,
4803 			    int nr)
4804 {
4805 	int ret = 0;
4806 	int slot;
4807 	int i;
4808 	u32 total_size = 0;
4809 	u32 total_data = 0;
4810 
4811 	for (i = 0; i < nr; i++)
4812 		total_data += data_size[i];
4813 
4814 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4815 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4816 	if (ret == 0)
4817 		return -EEXIST;
4818 	if (ret < 0)
4819 		return ret;
4820 
4821 	slot = path->slots[0];
4822 	BUG_ON(slot < 0);
4823 
4824 	setup_items_for_insert(root, path, cpu_key, data_size,
4825 			       total_data, total_size, nr);
4826 	return 0;
4827 }
4828 
4829 /*
4830  * Given a key and some data, insert an item into the tree.
4831  * This does all the path init required, making room in the tree if needed.
4832  */
4833 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4834 		      const struct btrfs_key *cpu_key, void *data,
4835 		      u32 data_size)
4836 {
4837 	int ret = 0;
4838 	struct btrfs_path *path;
4839 	struct extent_buffer *leaf;
4840 	unsigned long ptr;
4841 
4842 	path = btrfs_alloc_path();
4843 	if (!path)
4844 		return -ENOMEM;
4845 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4846 	if (!ret) {
4847 		leaf = path->nodes[0];
4848 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4849 		write_extent_buffer(leaf, data, ptr, data_size);
4850 		btrfs_mark_buffer_dirty(leaf);
4851 	}
4852 	btrfs_free_path(path);
4853 	return ret;
4854 }
4855 
4856 /*
4857  * delete the pointer from a given node.
4858  *
4859  * the tree should have been previously balanced so the deletion does not
4860  * empty a node.
4861  */
4862 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4863 		    int level, int slot)
4864 {
4865 	struct extent_buffer *parent = path->nodes[level];
4866 	u32 nritems;
4867 	int ret;
4868 
4869 	nritems = btrfs_header_nritems(parent);
4870 	if (slot != nritems - 1) {
4871 		if (level) {
4872 			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4873 					nritems - slot - 1);
4874 			BUG_ON(ret < 0);
4875 		}
4876 		memmove_extent_buffer(parent,
4877 			      btrfs_node_key_ptr_offset(slot),
4878 			      btrfs_node_key_ptr_offset(slot + 1),
4879 			      sizeof(struct btrfs_key_ptr) *
4880 			      (nritems - slot - 1));
4881 	} else if (level) {
4882 		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4883 				GFP_NOFS);
4884 		BUG_ON(ret < 0);
4885 	}
4886 
4887 	nritems--;
4888 	btrfs_set_header_nritems(parent, nritems);
4889 	if (nritems == 0 && parent == root->node) {
4890 		BUG_ON(btrfs_header_level(root->node) != 1);
4891 		/* just turn the root into a leaf and break */
4892 		btrfs_set_header_level(root->node, 0);
4893 	} else if (slot == 0) {
4894 		struct btrfs_disk_key disk_key;
4895 
4896 		btrfs_node_key(parent, &disk_key, 0);
4897 		fixup_low_keys(path, &disk_key, level + 1);
4898 	}
4899 	btrfs_mark_buffer_dirty(parent);
4900 }
4901 
4902 /*
4903  * a helper function to delete the leaf pointed to by path->slots[1] and
4904  * path->nodes[1].
4905  *
4906  * This deletes the pointer in path->nodes[1] and frees the leaf
4907  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4908  *
4909  * The path must have already been setup for deleting the leaf, including
4910  * all the proper balancing.  path->nodes[1] must be locked.
4911  */
4912 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4913 				    struct btrfs_root *root,
4914 				    struct btrfs_path *path,
4915 				    struct extent_buffer *leaf)
4916 {
4917 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4918 	del_ptr(root, path, 1, path->slots[1]);
4919 
4920 	/*
4921 	 * btrfs_free_extent is expensive, we want to make sure we
4922 	 * aren't holding any locks when we call it
4923 	 */
4924 	btrfs_unlock_up_safe(path, 0);
4925 
4926 	root_sub_used(root, leaf->len);
4927 
4928 	atomic_inc(&leaf->refs);
4929 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4930 	free_extent_buffer_stale(leaf);
4931 }
4932 /*
4933  * delete the item at the leaf level in path.  If that empties
4934  * the leaf, remove it from the tree
4935  */
4936 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4937 		    struct btrfs_path *path, int slot, int nr)
4938 {
4939 	struct btrfs_fs_info *fs_info = root->fs_info;
4940 	struct extent_buffer *leaf;
4941 	struct btrfs_item *item;
4942 	u32 last_off;
4943 	u32 dsize = 0;
4944 	int ret = 0;
4945 	int wret;
4946 	int i;
4947 	u32 nritems;
4948 
4949 	leaf = path->nodes[0];
4950 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4951 
4952 	for (i = 0; i < nr; i++)
4953 		dsize += btrfs_item_size_nr(leaf, slot + i);
4954 
4955 	nritems = btrfs_header_nritems(leaf);
4956 
4957 	if (slot + nr != nritems) {
4958 		int data_end = leaf_data_end(leaf);
4959 		struct btrfs_map_token token;
4960 
4961 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4962 			      data_end + dsize,
4963 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4964 			      last_off - data_end);
4965 
4966 		btrfs_init_map_token(&token, leaf);
4967 		for (i = slot + nr; i < nritems; i++) {
4968 			u32 ioff;
4969 
4970 			item = btrfs_item_nr(i);
4971 			ioff = btrfs_token_item_offset(leaf, item, &token);
4972 			btrfs_set_token_item_offset(leaf, item,
4973 						    ioff + dsize, &token);
4974 		}
4975 
4976 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4977 			      btrfs_item_nr_offset(slot + nr),
4978 			      sizeof(struct btrfs_item) *
4979 			      (nritems - slot - nr));
4980 	}
4981 	btrfs_set_header_nritems(leaf, nritems - nr);
4982 	nritems -= nr;
4983 
4984 	/* delete the leaf if we've emptied it */
4985 	if (nritems == 0) {
4986 		if (leaf == root->node) {
4987 			btrfs_set_header_level(leaf, 0);
4988 		} else {
4989 			btrfs_set_path_blocking(path);
4990 			btrfs_clean_tree_block(leaf);
4991 			btrfs_del_leaf(trans, root, path, leaf);
4992 		}
4993 	} else {
4994 		int used = leaf_space_used(leaf, 0, nritems);
4995 		if (slot == 0) {
4996 			struct btrfs_disk_key disk_key;
4997 
4998 			btrfs_item_key(leaf, &disk_key, 0);
4999 			fixup_low_keys(path, &disk_key, 1);
5000 		}
5001 
5002 		/* delete the leaf if it is mostly empty */
5003 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5004 			/* push_leaf_left fixes the path.
5005 			 * make sure the path still points to our leaf
5006 			 * for possible call to del_ptr below
5007 			 */
5008 			slot = path->slots[1];
5009 			atomic_inc(&leaf->refs);
5010 
5011 			btrfs_set_path_blocking(path);
5012 			wret = push_leaf_left(trans, root, path, 1, 1,
5013 					      1, (u32)-1);
5014 			if (wret < 0 && wret != -ENOSPC)
5015 				ret = wret;
5016 
5017 			if (path->nodes[0] == leaf &&
5018 			    btrfs_header_nritems(leaf)) {
5019 				wret = push_leaf_right(trans, root, path, 1,
5020 						       1, 1, 0);
5021 				if (wret < 0 && wret != -ENOSPC)
5022 					ret = wret;
5023 			}
5024 
5025 			if (btrfs_header_nritems(leaf) == 0) {
5026 				path->slots[1] = slot;
5027 				btrfs_del_leaf(trans, root, path, leaf);
5028 				free_extent_buffer(leaf);
5029 				ret = 0;
5030 			} else {
5031 				/* if we're still in the path, make sure
5032 				 * we're dirty.  Otherwise, one of the
5033 				 * push_leaf functions must have already
5034 				 * dirtied this buffer
5035 				 */
5036 				if (path->nodes[0] == leaf)
5037 					btrfs_mark_buffer_dirty(leaf);
5038 				free_extent_buffer(leaf);
5039 			}
5040 		} else {
5041 			btrfs_mark_buffer_dirty(leaf);
5042 		}
5043 	}
5044 	return ret;
5045 }
5046 
5047 /*
5048  * search the tree again to find a leaf with lesser keys
5049  * returns 0 if it found something or 1 if there are no lesser leaves.
5050  * returns < 0 on io errors.
5051  *
5052  * This may release the path, and so you may lose any locks held at the
5053  * time you call it.
5054  */
5055 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5056 {
5057 	struct btrfs_key key;
5058 	struct btrfs_disk_key found_key;
5059 	int ret;
5060 
5061 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5062 
5063 	if (key.offset > 0) {
5064 		key.offset--;
5065 	} else if (key.type > 0) {
5066 		key.type--;
5067 		key.offset = (u64)-1;
5068 	} else if (key.objectid > 0) {
5069 		key.objectid--;
5070 		key.type = (u8)-1;
5071 		key.offset = (u64)-1;
5072 	} else {
5073 		return 1;
5074 	}
5075 
5076 	btrfs_release_path(path);
5077 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5078 	if (ret < 0)
5079 		return ret;
5080 	btrfs_item_key(path->nodes[0], &found_key, 0);
5081 	ret = comp_keys(&found_key, &key);
5082 	/*
5083 	 * We might have had an item with the previous key in the tree right
5084 	 * before we released our path. And after we released our path, that
5085 	 * item might have been pushed to the first slot (0) of the leaf we
5086 	 * were holding due to a tree balance. Alternatively, an item with the
5087 	 * previous key can exist as the only element of a leaf (big fat item).
5088 	 * Therefore account for these 2 cases, so that our callers (like
5089 	 * btrfs_previous_item) don't miss an existing item with a key matching
5090 	 * the previous key we computed above.
5091 	 */
5092 	if (ret <= 0)
5093 		return 0;
5094 	return 1;
5095 }
5096 
5097 /*
5098  * A helper function to walk down the tree starting at min_key, and looking
5099  * for nodes or leaves that are have a minimum transaction id.
5100  * This is used by the btree defrag code, and tree logging
5101  *
5102  * This does not cow, but it does stuff the starting key it finds back
5103  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5104  * key and get a writable path.
5105  *
5106  * This honors path->lowest_level to prevent descent past a given level
5107  * of the tree.
5108  *
5109  * min_trans indicates the oldest transaction that you are interested
5110  * in walking through.  Any nodes or leaves older than min_trans are
5111  * skipped over (without reading them).
5112  *
5113  * returns zero if something useful was found, < 0 on error and 1 if there
5114  * was nothing in the tree that matched the search criteria.
5115  */
5116 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5117 			 struct btrfs_path *path,
5118 			 u64 min_trans)
5119 {
5120 	struct extent_buffer *cur;
5121 	struct btrfs_key found_key;
5122 	int slot;
5123 	int sret;
5124 	u32 nritems;
5125 	int level;
5126 	int ret = 1;
5127 	int keep_locks = path->keep_locks;
5128 
5129 	path->keep_locks = 1;
5130 again:
5131 	cur = btrfs_read_lock_root_node(root);
5132 	level = btrfs_header_level(cur);
5133 	WARN_ON(path->nodes[level]);
5134 	path->nodes[level] = cur;
5135 	path->locks[level] = BTRFS_READ_LOCK;
5136 
5137 	if (btrfs_header_generation(cur) < min_trans) {
5138 		ret = 1;
5139 		goto out;
5140 	}
5141 	while (1) {
5142 		nritems = btrfs_header_nritems(cur);
5143 		level = btrfs_header_level(cur);
5144 		sret = btrfs_bin_search(cur, min_key, level, &slot);
5145 		if (sret < 0) {
5146 			ret = sret;
5147 			goto out;
5148 		}
5149 
5150 		/* at the lowest level, we're done, setup the path and exit */
5151 		if (level == path->lowest_level) {
5152 			if (slot >= nritems)
5153 				goto find_next_key;
5154 			ret = 0;
5155 			path->slots[level] = slot;
5156 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5157 			goto out;
5158 		}
5159 		if (sret && slot > 0)
5160 			slot--;
5161 		/*
5162 		 * check this node pointer against the min_trans parameters.
5163 		 * If it is too old, old, skip to the next one.
5164 		 */
5165 		while (slot < nritems) {
5166 			u64 gen;
5167 
5168 			gen = btrfs_node_ptr_generation(cur, slot);
5169 			if (gen < min_trans) {
5170 				slot++;
5171 				continue;
5172 			}
5173 			break;
5174 		}
5175 find_next_key:
5176 		/*
5177 		 * we didn't find a candidate key in this node, walk forward
5178 		 * and find another one
5179 		 */
5180 		if (slot >= nritems) {
5181 			path->slots[level] = slot;
5182 			btrfs_set_path_blocking(path);
5183 			sret = btrfs_find_next_key(root, path, min_key, level,
5184 						  min_trans);
5185 			if (sret == 0) {
5186 				btrfs_release_path(path);
5187 				goto again;
5188 			} else {
5189 				goto out;
5190 			}
5191 		}
5192 		/* save our key for returning back */
5193 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5194 		path->slots[level] = slot;
5195 		if (level == path->lowest_level) {
5196 			ret = 0;
5197 			goto out;
5198 		}
5199 		btrfs_set_path_blocking(path);
5200 		cur = btrfs_read_node_slot(cur, slot);
5201 		if (IS_ERR(cur)) {
5202 			ret = PTR_ERR(cur);
5203 			goto out;
5204 		}
5205 
5206 		btrfs_tree_read_lock(cur);
5207 
5208 		path->locks[level - 1] = BTRFS_READ_LOCK;
5209 		path->nodes[level - 1] = cur;
5210 		unlock_up(path, level, 1, 0, NULL);
5211 	}
5212 out:
5213 	path->keep_locks = keep_locks;
5214 	if (ret == 0) {
5215 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5216 		btrfs_set_path_blocking(path);
5217 		memcpy(min_key, &found_key, sizeof(found_key));
5218 	}
5219 	return ret;
5220 }
5221 
5222 /*
5223  * this is similar to btrfs_next_leaf, but does not try to preserve
5224  * and fixup the path.  It looks for and returns the next key in the
5225  * tree based on the current path and the min_trans parameters.
5226  *
5227  * 0 is returned if another key is found, < 0 if there are any errors
5228  * and 1 is returned if there are no higher keys in the tree
5229  *
5230  * path->keep_locks should be set to 1 on the search made before
5231  * calling this function.
5232  */
5233 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5234 			struct btrfs_key *key, int level, u64 min_trans)
5235 {
5236 	int slot;
5237 	struct extent_buffer *c;
5238 
5239 	WARN_ON(!path->keep_locks && !path->skip_locking);
5240 	while (level < BTRFS_MAX_LEVEL) {
5241 		if (!path->nodes[level])
5242 			return 1;
5243 
5244 		slot = path->slots[level] + 1;
5245 		c = path->nodes[level];
5246 next:
5247 		if (slot >= btrfs_header_nritems(c)) {
5248 			int ret;
5249 			int orig_lowest;
5250 			struct btrfs_key cur_key;
5251 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5252 			    !path->nodes[level + 1])
5253 				return 1;
5254 
5255 			if (path->locks[level + 1] || path->skip_locking) {
5256 				level++;
5257 				continue;
5258 			}
5259 
5260 			slot = btrfs_header_nritems(c) - 1;
5261 			if (level == 0)
5262 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5263 			else
5264 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5265 
5266 			orig_lowest = path->lowest_level;
5267 			btrfs_release_path(path);
5268 			path->lowest_level = level;
5269 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5270 						0, 0);
5271 			path->lowest_level = orig_lowest;
5272 			if (ret < 0)
5273 				return ret;
5274 
5275 			c = path->nodes[level];
5276 			slot = path->slots[level];
5277 			if (ret == 0)
5278 				slot++;
5279 			goto next;
5280 		}
5281 
5282 		if (level == 0)
5283 			btrfs_item_key_to_cpu(c, key, slot);
5284 		else {
5285 			u64 gen = btrfs_node_ptr_generation(c, slot);
5286 
5287 			if (gen < min_trans) {
5288 				slot++;
5289 				goto next;
5290 			}
5291 			btrfs_node_key_to_cpu(c, key, slot);
5292 		}
5293 		return 0;
5294 	}
5295 	return 1;
5296 }
5297 
5298 /*
5299  * search the tree again to find a leaf with greater keys
5300  * returns 0 if it found something or 1 if there are no greater leaves.
5301  * returns < 0 on io errors.
5302  */
5303 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5304 {
5305 	return btrfs_next_old_leaf(root, path, 0);
5306 }
5307 
5308 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5309 			u64 time_seq)
5310 {
5311 	int slot;
5312 	int level;
5313 	struct extent_buffer *c;
5314 	struct extent_buffer *next;
5315 	struct btrfs_key key;
5316 	u32 nritems;
5317 	int ret;
5318 	int old_spinning = path->leave_spinning;
5319 	int next_rw_lock = 0;
5320 
5321 	nritems = btrfs_header_nritems(path->nodes[0]);
5322 	if (nritems == 0)
5323 		return 1;
5324 
5325 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5326 again:
5327 	level = 1;
5328 	next = NULL;
5329 	next_rw_lock = 0;
5330 	btrfs_release_path(path);
5331 
5332 	path->keep_locks = 1;
5333 	path->leave_spinning = 1;
5334 
5335 	if (time_seq)
5336 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5337 	else
5338 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5339 	path->keep_locks = 0;
5340 
5341 	if (ret < 0)
5342 		return ret;
5343 
5344 	nritems = btrfs_header_nritems(path->nodes[0]);
5345 	/*
5346 	 * by releasing the path above we dropped all our locks.  A balance
5347 	 * could have added more items next to the key that used to be
5348 	 * at the very end of the block.  So, check again here and
5349 	 * advance the path if there are now more items available.
5350 	 */
5351 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5352 		if (ret == 0)
5353 			path->slots[0]++;
5354 		ret = 0;
5355 		goto done;
5356 	}
5357 	/*
5358 	 * So the above check misses one case:
5359 	 * - after releasing the path above, someone has removed the item that
5360 	 *   used to be at the very end of the block, and balance between leafs
5361 	 *   gets another one with bigger key.offset to replace it.
5362 	 *
5363 	 * This one should be returned as well, or we can get leaf corruption
5364 	 * later(esp. in __btrfs_drop_extents()).
5365 	 *
5366 	 * And a bit more explanation about this check,
5367 	 * with ret > 0, the key isn't found, the path points to the slot
5368 	 * where it should be inserted, so the path->slots[0] item must be the
5369 	 * bigger one.
5370 	 */
5371 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5372 		ret = 0;
5373 		goto done;
5374 	}
5375 
5376 	while (level < BTRFS_MAX_LEVEL) {
5377 		if (!path->nodes[level]) {
5378 			ret = 1;
5379 			goto done;
5380 		}
5381 
5382 		slot = path->slots[level] + 1;
5383 		c = path->nodes[level];
5384 		if (slot >= btrfs_header_nritems(c)) {
5385 			level++;
5386 			if (level == BTRFS_MAX_LEVEL) {
5387 				ret = 1;
5388 				goto done;
5389 			}
5390 			continue;
5391 		}
5392 
5393 		if (next) {
5394 			btrfs_tree_unlock_rw(next, next_rw_lock);
5395 			free_extent_buffer(next);
5396 		}
5397 
5398 		next = c;
5399 		next_rw_lock = path->locks[level];
5400 		ret = read_block_for_search(root, path, &next, level,
5401 					    slot, &key);
5402 		if (ret == -EAGAIN)
5403 			goto again;
5404 
5405 		if (ret < 0) {
5406 			btrfs_release_path(path);
5407 			goto done;
5408 		}
5409 
5410 		if (!path->skip_locking) {
5411 			ret = btrfs_try_tree_read_lock(next);
5412 			if (!ret && time_seq) {
5413 				/*
5414 				 * If we don't get the lock, we may be racing
5415 				 * with push_leaf_left, holding that lock while
5416 				 * itself waiting for the leaf we've currently
5417 				 * locked. To solve this situation, we give up
5418 				 * on our lock and cycle.
5419 				 */
5420 				free_extent_buffer(next);
5421 				btrfs_release_path(path);
5422 				cond_resched();
5423 				goto again;
5424 			}
5425 			if (!ret) {
5426 				btrfs_set_path_blocking(path);
5427 				btrfs_tree_read_lock(next);
5428 			}
5429 			next_rw_lock = BTRFS_READ_LOCK;
5430 		}
5431 		break;
5432 	}
5433 	path->slots[level] = slot;
5434 	while (1) {
5435 		level--;
5436 		c = path->nodes[level];
5437 		if (path->locks[level])
5438 			btrfs_tree_unlock_rw(c, path->locks[level]);
5439 
5440 		free_extent_buffer(c);
5441 		path->nodes[level] = next;
5442 		path->slots[level] = 0;
5443 		if (!path->skip_locking)
5444 			path->locks[level] = next_rw_lock;
5445 		if (!level)
5446 			break;
5447 
5448 		ret = read_block_for_search(root, path, &next, level,
5449 					    0, &key);
5450 		if (ret == -EAGAIN)
5451 			goto again;
5452 
5453 		if (ret < 0) {
5454 			btrfs_release_path(path);
5455 			goto done;
5456 		}
5457 
5458 		if (!path->skip_locking) {
5459 			ret = btrfs_try_tree_read_lock(next);
5460 			if (!ret) {
5461 				btrfs_set_path_blocking(path);
5462 				btrfs_tree_read_lock(next);
5463 			}
5464 			next_rw_lock = BTRFS_READ_LOCK;
5465 		}
5466 	}
5467 	ret = 0;
5468 done:
5469 	unlock_up(path, 0, 1, 0, NULL);
5470 	path->leave_spinning = old_spinning;
5471 	if (!old_spinning)
5472 		btrfs_set_path_blocking(path);
5473 
5474 	return ret;
5475 }
5476 
5477 /*
5478  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5479  * searching until it gets past min_objectid or finds an item of 'type'
5480  *
5481  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5482  */
5483 int btrfs_previous_item(struct btrfs_root *root,
5484 			struct btrfs_path *path, u64 min_objectid,
5485 			int type)
5486 {
5487 	struct btrfs_key found_key;
5488 	struct extent_buffer *leaf;
5489 	u32 nritems;
5490 	int ret;
5491 
5492 	while (1) {
5493 		if (path->slots[0] == 0) {
5494 			btrfs_set_path_blocking(path);
5495 			ret = btrfs_prev_leaf(root, path);
5496 			if (ret != 0)
5497 				return ret;
5498 		} else {
5499 			path->slots[0]--;
5500 		}
5501 		leaf = path->nodes[0];
5502 		nritems = btrfs_header_nritems(leaf);
5503 		if (nritems == 0)
5504 			return 1;
5505 		if (path->slots[0] == nritems)
5506 			path->slots[0]--;
5507 
5508 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5509 		if (found_key.objectid < min_objectid)
5510 			break;
5511 		if (found_key.type == type)
5512 			return 0;
5513 		if (found_key.objectid == min_objectid &&
5514 		    found_key.type < type)
5515 			break;
5516 	}
5517 	return 1;
5518 }
5519 
5520 /*
5521  * search in extent tree to find a previous Metadata/Data extent item with
5522  * min objecitd.
5523  *
5524  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5525  */
5526 int btrfs_previous_extent_item(struct btrfs_root *root,
5527 			struct btrfs_path *path, u64 min_objectid)
5528 {
5529 	struct btrfs_key found_key;
5530 	struct extent_buffer *leaf;
5531 	u32 nritems;
5532 	int ret;
5533 
5534 	while (1) {
5535 		if (path->slots[0] == 0) {
5536 			btrfs_set_path_blocking(path);
5537 			ret = btrfs_prev_leaf(root, path);
5538 			if (ret != 0)
5539 				return ret;
5540 		} else {
5541 			path->slots[0]--;
5542 		}
5543 		leaf = path->nodes[0];
5544 		nritems = btrfs_header_nritems(leaf);
5545 		if (nritems == 0)
5546 			return 1;
5547 		if (path->slots[0] == nritems)
5548 			path->slots[0]--;
5549 
5550 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5551 		if (found_key.objectid < min_objectid)
5552 			break;
5553 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5554 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5555 			return 0;
5556 		if (found_key.objectid == min_objectid &&
5557 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5558 			break;
5559 	}
5560 	return 1;
5561 }
5562