xref: /linux/fs/btrfs/ctree.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26 
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28 		      *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_key *ins_key,
31 		      struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33 			  struct btrfs_root *root, struct extent_buffer *dst,
34 			  struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36 			      struct btrfs_root *root,
37 			      struct extent_buffer *dst_buf,
38 			      struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40 		   struct btrfs_path *path, int level, int slot);
41 
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44 	struct btrfs_path *path;
45 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
46 	return path;
47 }
48 
49 /*
50  * set all locked nodes in the path to blocking locks.  This should
51  * be done before scheduling
52  */
53 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
54 {
55 	int i;
56 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
57 		if (p->nodes[i] && p->locks[i])
58 			btrfs_set_lock_blocking(p->nodes[i]);
59 	}
60 }
61 
62 /*
63  * reset all the locked nodes in the patch to spinning locks.
64  *
65  * held is used to keep lockdep happy, when lockdep is enabled
66  * we set held to a blocking lock before we go around and
67  * retake all the spinlocks in the path.  You can safely use NULL
68  * for held
69  */
70 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
71 					struct extent_buffer *held)
72 {
73 	int i;
74 
75 #ifdef CONFIG_DEBUG_LOCK_ALLOC
76 	/* lockdep really cares that we take all of these spinlocks
77 	 * in the right order.  If any of the locks in the path are not
78 	 * currently blocking, it is going to complain.  So, make really
79 	 * really sure by forcing the path to blocking before we clear
80 	 * the path blocking.
81 	 */
82 	if (held)
83 		btrfs_set_lock_blocking(held);
84 	btrfs_set_path_blocking(p);
85 #endif
86 
87 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
88 		if (p->nodes[i] && p->locks[i])
89 			btrfs_clear_lock_blocking(p->nodes[i]);
90 	}
91 
92 #ifdef CONFIG_DEBUG_LOCK_ALLOC
93 	if (held)
94 		btrfs_clear_lock_blocking(held);
95 #endif
96 }
97 
98 /* this also releases the path */
99 void btrfs_free_path(struct btrfs_path *p)
100 {
101 	if (!p)
102 		return;
103 	btrfs_release_path(p);
104 	kmem_cache_free(btrfs_path_cachep, p);
105 }
106 
107 /*
108  * path release drops references on the extent buffers in the path
109  * and it drops any locks held by this path
110  *
111  * It is safe to call this on paths that no locks or extent buffers held.
112  */
113 noinline void btrfs_release_path(struct btrfs_path *p)
114 {
115 	int i;
116 
117 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
118 		p->slots[i] = 0;
119 		if (!p->nodes[i])
120 			continue;
121 		if (p->locks[i]) {
122 			btrfs_tree_unlock(p->nodes[i]);
123 			p->locks[i] = 0;
124 		}
125 		free_extent_buffer(p->nodes[i]);
126 		p->nodes[i] = NULL;
127 	}
128 }
129 
130 /*
131  * safely gets a reference on the root node of a tree.  A lock
132  * is not taken, so a concurrent writer may put a different node
133  * at the root of the tree.  See btrfs_lock_root_node for the
134  * looping required.
135  *
136  * The extent buffer returned by this has a reference taken, so
137  * it won't disappear.  It may stop being the root of the tree
138  * at any time because there are no locks held.
139  */
140 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
141 {
142 	struct extent_buffer *eb;
143 
144 	rcu_read_lock();
145 	eb = rcu_dereference(root->node);
146 	extent_buffer_get(eb);
147 	rcu_read_unlock();
148 	return eb;
149 }
150 
151 /* loop around taking references on and locking the root node of the
152  * tree until you end up with a lock on the root.  A locked buffer
153  * is returned, with a reference held.
154  */
155 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
156 {
157 	struct extent_buffer *eb;
158 
159 	while (1) {
160 		eb = btrfs_root_node(root);
161 		btrfs_tree_lock(eb);
162 		if (eb == root->node)
163 			break;
164 		btrfs_tree_unlock(eb);
165 		free_extent_buffer(eb);
166 	}
167 	return eb;
168 }
169 
170 /* cowonly root (everything not a reference counted cow subvolume), just get
171  * put onto a simple dirty list.  transaction.c walks this to make sure they
172  * get properly updated on disk.
173  */
174 static void add_root_to_dirty_list(struct btrfs_root *root)
175 {
176 	if (root->track_dirty && list_empty(&root->dirty_list)) {
177 		list_add(&root->dirty_list,
178 			 &root->fs_info->dirty_cowonly_roots);
179 	}
180 }
181 
182 /*
183  * used by snapshot creation to make a copy of a root for a tree with
184  * a given objectid.  The buffer with the new root node is returned in
185  * cow_ret, and this func returns zero on success or a negative error code.
186  */
187 int btrfs_copy_root(struct btrfs_trans_handle *trans,
188 		      struct btrfs_root *root,
189 		      struct extent_buffer *buf,
190 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
191 {
192 	struct extent_buffer *cow;
193 	int ret = 0;
194 	int level;
195 	struct btrfs_disk_key disk_key;
196 
197 	WARN_ON(root->ref_cows && trans->transid !=
198 		root->fs_info->running_transaction->transid);
199 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
200 
201 	level = btrfs_header_level(buf);
202 	if (level == 0)
203 		btrfs_item_key(buf, &disk_key, 0);
204 	else
205 		btrfs_node_key(buf, &disk_key, 0);
206 
207 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
208 				     new_root_objectid, &disk_key, level,
209 				     buf->start, 0);
210 	if (IS_ERR(cow))
211 		return PTR_ERR(cow);
212 
213 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
214 	btrfs_set_header_bytenr(cow, cow->start);
215 	btrfs_set_header_generation(cow, trans->transid);
216 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
217 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
218 				     BTRFS_HEADER_FLAG_RELOC);
219 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
220 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
221 	else
222 		btrfs_set_header_owner(cow, new_root_objectid);
223 
224 	write_extent_buffer(cow, root->fs_info->fsid,
225 			    (unsigned long)btrfs_header_fsid(cow),
226 			    BTRFS_FSID_SIZE);
227 
228 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
229 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
230 		ret = btrfs_inc_ref(trans, root, cow, 1);
231 	else
232 		ret = btrfs_inc_ref(trans, root, cow, 0);
233 
234 	if (ret)
235 		return ret;
236 
237 	btrfs_mark_buffer_dirty(cow);
238 	*cow_ret = cow;
239 	return 0;
240 }
241 
242 /*
243  * check if the tree block can be shared by multiple trees
244  */
245 int btrfs_block_can_be_shared(struct btrfs_root *root,
246 			      struct extent_buffer *buf)
247 {
248 	/*
249 	 * Tree blocks not in refernece counted trees and tree roots
250 	 * are never shared. If a block was allocated after the last
251 	 * snapshot and the block was not allocated by tree relocation,
252 	 * we know the block is not shared.
253 	 */
254 	if (root->ref_cows &&
255 	    buf != root->node && buf != root->commit_root &&
256 	    (btrfs_header_generation(buf) <=
257 	     btrfs_root_last_snapshot(&root->root_item) ||
258 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
259 		return 1;
260 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
261 	if (root->ref_cows &&
262 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
263 		return 1;
264 #endif
265 	return 0;
266 }
267 
268 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
269 				       struct btrfs_root *root,
270 				       struct extent_buffer *buf,
271 				       struct extent_buffer *cow,
272 				       int *last_ref)
273 {
274 	u64 refs;
275 	u64 owner;
276 	u64 flags;
277 	u64 new_flags = 0;
278 	int ret;
279 
280 	/*
281 	 * Backrefs update rules:
282 	 *
283 	 * Always use full backrefs for extent pointers in tree block
284 	 * allocated by tree relocation.
285 	 *
286 	 * If a shared tree block is no longer referenced by its owner
287 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
288 	 * use full backrefs for extent pointers in tree block.
289 	 *
290 	 * If a tree block is been relocating
291 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
292 	 * use full backrefs for extent pointers in tree block.
293 	 * The reason for this is some operations (such as drop tree)
294 	 * are only allowed for blocks use full backrefs.
295 	 */
296 
297 	if (btrfs_block_can_be_shared(root, buf)) {
298 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
299 					       buf->len, &refs, &flags);
300 		BUG_ON(ret);
301 		BUG_ON(refs == 0);
302 	} else {
303 		refs = 1;
304 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
305 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
306 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
307 		else
308 			flags = 0;
309 	}
310 
311 	owner = btrfs_header_owner(buf);
312 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
313 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
314 
315 	if (refs > 1) {
316 		if ((owner == root->root_key.objectid ||
317 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
318 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
319 			ret = btrfs_inc_ref(trans, root, buf, 1);
320 			BUG_ON(ret);
321 
322 			if (root->root_key.objectid ==
323 			    BTRFS_TREE_RELOC_OBJECTID) {
324 				ret = btrfs_dec_ref(trans, root, buf, 0);
325 				BUG_ON(ret);
326 				ret = btrfs_inc_ref(trans, root, cow, 1);
327 				BUG_ON(ret);
328 			}
329 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
330 		} else {
331 
332 			if (root->root_key.objectid ==
333 			    BTRFS_TREE_RELOC_OBJECTID)
334 				ret = btrfs_inc_ref(trans, root, cow, 1);
335 			else
336 				ret = btrfs_inc_ref(trans, root, cow, 0);
337 			BUG_ON(ret);
338 		}
339 		if (new_flags != 0) {
340 			ret = btrfs_set_disk_extent_flags(trans, root,
341 							  buf->start,
342 							  buf->len,
343 							  new_flags, 0);
344 			BUG_ON(ret);
345 		}
346 	} else {
347 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
348 			if (root->root_key.objectid ==
349 			    BTRFS_TREE_RELOC_OBJECTID)
350 				ret = btrfs_inc_ref(trans, root, cow, 1);
351 			else
352 				ret = btrfs_inc_ref(trans, root, cow, 0);
353 			BUG_ON(ret);
354 			ret = btrfs_dec_ref(trans, root, buf, 1);
355 			BUG_ON(ret);
356 		}
357 		clean_tree_block(trans, root, buf);
358 		*last_ref = 1;
359 	}
360 	return 0;
361 }
362 
363 /*
364  * does the dirty work in cow of a single block.  The parent block (if
365  * supplied) is updated to point to the new cow copy.  The new buffer is marked
366  * dirty and returned locked.  If you modify the block it needs to be marked
367  * dirty again.
368  *
369  * search_start -- an allocation hint for the new block
370  *
371  * empty_size -- a hint that you plan on doing more cow.  This is the size in
372  * bytes the allocator should try to find free next to the block it returns.
373  * This is just a hint and may be ignored by the allocator.
374  */
375 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
376 			     struct btrfs_root *root,
377 			     struct extent_buffer *buf,
378 			     struct extent_buffer *parent, int parent_slot,
379 			     struct extent_buffer **cow_ret,
380 			     u64 search_start, u64 empty_size)
381 {
382 	struct btrfs_disk_key disk_key;
383 	struct extent_buffer *cow;
384 	int level;
385 	int last_ref = 0;
386 	int unlock_orig = 0;
387 	u64 parent_start;
388 
389 	if (*cow_ret == buf)
390 		unlock_orig = 1;
391 
392 	btrfs_assert_tree_locked(buf);
393 
394 	WARN_ON(root->ref_cows && trans->transid !=
395 		root->fs_info->running_transaction->transid);
396 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
397 
398 	level = btrfs_header_level(buf);
399 
400 	if (level == 0)
401 		btrfs_item_key(buf, &disk_key, 0);
402 	else
403 		btrfs_node_key(buf, &disk_key, 0);
404 
405 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
406 		if (parent)
407 			parent_start = parent->start;
408 		else
409 			parent_start = 0;
410 	} else
411 		parent_start = 0;
412 
413 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
414 				     root->root_key.objectid, &disk_key,
415 				     level, search_start, empty_size);
416 	if (IS_ERR(cow))
417 		return PTR_ERR(cow);
418 
419 	/* cow is set to blocking by btrfs_init_new_buffer */
420 
421 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
422 	btrfs_set_header_bytenr(cow, cow->start);
423 	btrfs_set_header_generation(cow, trans->transid);
424 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
425 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
426 				     BTRFS_HEADER_FLAG_RELOC);
427 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
428 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
429 	else
430 		btrfs_set_header_owner(cow, root->root_key.objectid);
431 
432 	write_extent_buffer(cow, root->fs_info->fsid,
433 			    (unsigned long)btrfs_header_fsid(cow),
434 			    BTRFS_FSID_SIZE);
435 
436 	update_ref_for_cow(trans, root, buf, cow, &last_ref);
437 
438 	if (root->ref_cows)
439 		btrfs_reloc_cow_block(trans, root, buf, cow);
440 
441 	if (buf == root->node) {
442 		WARN_ON(parent && parent != buf);
443 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
444 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
445 			parent_start = buf->start;
446 		else
447 			parent_start = 0;
448 
449 		extent_buffer_get(cow);
450 		rcu_assign_pointer(root->node, cow);
451 
452 		btrfs_free_tree_block(trans, root, buf, parent_start,
453 				      last_ref);
454 		free_extent_buffer(buf);
455 		add_root_to_dirty_list(root);
456 	} else {
457 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
458 			parent_start = parent->start;
459 		else
460 			parent_start = 0;
461 
462 		WARN_ON(trans->transid != btrfs_header_generation(parent));
463 		btrfs_set_node_blockptr(parent, parent_slot,
464 					cow->start);
465 		btrfs_set_node_ptr_generation(parent, parent_slot,
466 					      trans->transid);
467 		btrfs_mark_buffer_dirty(parent);
468 		btrfs_free_tree_block(trans, root, buf, parent_start,
469 				      last_ref);
470 	}
471 	if (unlock_orig)
472 		btrfs_tree_unlock(buf);
473 	free_extent_buffer(buf);
474 	btrfs_mark_buffer_dirty(cow);
475 	*cow_ret = cow;
476 	return 0;
477 }
478 
479 static inline int should_cow_block(struct btrfs_trans_handle *trans,
480 				   struct btrfs_root *root,
481 				   struct extent_buffer *buf)
482 {
483 	if (btrfs_header_generation(buf) == trans->transid &&
484 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
485 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
486 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
487 		return 0;
488 	return 1;
489 }
490 
491 /*
492  * cows a single block, see __btrfs_cow_block for the real work.
493  * This version of it has extra checks so that a block isn't cow'd more than
494  * once per transaction, as long as it hasn't been written yet
495  */
496 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
497 		    struct btrfs_root *root, struct extent_buffer *buf,
498 		    struct extent_buffer *parent, int parent_slot,
499 		    struct extent_buffer **cow_ret)
500 {
501 	u64 search_start;
502 	int ret;
503 
504 	if (trans->transaction != root->fs_info->running_transaction) {
505 		printk(KERN_CRIT "trans %llu running %llu\n",
506 		       (unsigned long long)trans->transid,
507 		       (unsigned long long)
508 		       root->fs_info->running_transaction->transid);
509 		WARN_ON(1);
510 	}
511 	if (trans->transid != root->fs_info->generation) {
512 		printk(KERN_CRIT "trans %llu running %llu\n",
513 		       (unsigned long long)trans->transid,
514 		       (unsigned long long)root->fs_info->generation);
515 		WARN_ON(1);
516 	}
517 
518 	if (!should_cow_block(trans, root, buf)) {
519 		*cow_ret = buf;
520 		return 0;
521 	}
522 
523 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
524 
525 	if (parent)
526 		btrfs_set_lock_blocking(parent);
527 	btrfs_set_lock_blocking(buf);
528 
529 	ret = __btrfs_cow_block(trans, root, buf, parent,
530 				 parent_slot, cow_ret, search_start, 0);
531 
532 	trace_btrfs_cow_block(root, buf, *cow_ret);
533 
534 	return ret;
535 }
536 
537 /*
538  * helper function for defrag to decide if two blocks pointed to by a
539  * node are actually close by
540  */
541 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
542 {
543 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
544 		return 1;
545 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
546 		return 1;
547 	return 0;
548 }
549 
550 /*
551  * compare two keys in a memcmp fashion
552  */
553 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
554 {
555 	struct btrfs_key k1;
556 
557 	btrfs_disk_key_to_cpu(&k1, disk);
558 
559 	return btrfs_comp_cpu_keys(&k1, k2);
560 }
561 
562 /*
563  * same as comp_keys only with two btrfs_key's
564  */
565 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
566 {
567 	if (k1->objectid > k2->objectid)
568 		return 1;
569 	if (k1->objectid < k2->objectid)
570 		return -1;
571 	if (k1->type > k2->type)
572 		return 1;
573 	if (k1->type < k2->type)
574 		return -1;
575 	if (k1->offset > k2->offset)
576 		return 1;
577 	if (k1->offset < k2->offset)
578 		return -1;
579 	return 0;
580 }
581 
582 /*
583  * this is used by the defrag code to go through all the
584  * leaves pointed to by a node and reallocate them so that
585  * disk order is close to key order
586  */
587 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
588 		       struct btrfs_root *root, struct extent_buffer *parent,
589 		       int start_slot, int cache_only, u64 *last_ret,
590 		       struct btrfs_key *progress)
591 {
592 	struct extent_buffer *cur;
593 	u64 blocknr;
594 	u64 gen;
595 	u64 search_start = *last_ret;
596 	u64 last_block = 0;
597 	u64 other;
598 	u32 parent_nritems;
599 	int end_slot;
600 	int i;
601 	int err = 0;
602 	int parent_level;
603 	int uptodate;
604 	u32 blocksize;
605 	int progress_passed = 0;
606 	struct btrfs_disk_key disk_key;
607 
608 	parent_level = btrfs_header_level(parent);
609 	if (cache_only && parent_level != 1)
610 		return 0;
611 
612 	if (trans->transaction != root->fs_info->running_transaction)
613 		WARN_ON(1);
614 	if (trans->transid != root->fs_info->generation)
615 		WARN_ON(1);
616 
617 	parent_nritems = btrfs_header_nritems(parent);
618 	blocksize = btrfs_level_size(root, parent_level - 1);
619 	end_slot = parent_nritems;
620 
621 	if (parent_nritems == 1)
622 		return 0;
623 
624 	btrfs_set_lock_blocking(parent);
625 
626 	for (i = start_slot; i < end_slot; i++) {
627 		int close = 1;
628 
629 		if (!parent->map_token) {
630 			map_extent_buffer(parent,
631 					btrfs_node_key_ptr_offset(i),
632 					sizeof(struct btrfs_key_ptr),
633 					&parent->map_token, &parent->kaddr,
634 					&parent->map_start, &parent->map_len,
635 					KM_USER1);
636 		}
637 		btrfs_node_key(parent, &disk_key, i);
638 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
639 			continue;
640 
641 		progress_passed = 1;
642 		blocknr = btrfs_node_blockptr(parent, i);
643 		gen = btrfs_node_ptr_generation(parent, i);
644 		if (last_block == 0)
645 			last_block = blocknr;
646 
647 		if (i > 0) {
648 			other = btrfs_node_blockptr(parent, i - 1);
649 			close = close_blocks(blocknr, other, blocksize);
650 		}
651 		if (!close && i < end_slot - 2) {
652 			other = btrfs_node_blockptr(parent, i + 1);
653 			close = close_blocks(blocknr, other, blocksize);
654 		}
655 		if (close) {
656 			last_block = blocknr;
657 			continue;
658 		}
659 		if (parent->map_token) {
660 			unmap_extent_buffer(parent, parent->map_token,
661 					    KM_USER1);
662 			parent->map_token = NULL;
663 		}
664 
665 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
666 		if (cur)
667 			uptodate = btrfs_buffer_uptodate(cur, gen);
668 		else
669 			uptodate = 0;
670 		if (!cur || !uptodate) {
671 			if (cache_only) {
672 				free_extent_buffer(cur);
673 				continue;
674 			}
675 			if (!cur) {
676 				cur = read_tree_block(root, blocknr,
677 							 blocksize, gen);
678 				if (!cur)
679 					return -EIO;
680 			} else if (!uptodate) {
681 				btrfs_read_buffer(cur, gen);
682 			}
683 		}
684 		if (search_start == 0)
685 			search_start = last_block;
686 
687 		btrfs_tree_lock(cur);
688 		btrfs_set_lock_blocking(cur);
689 		err = __btrfs_cow_block(trans, root, cur, parent, i,
690 					&cur, search_start,
691 					min(16 * blocksize,
692 					    (end_slot - i) * blocksize));
693 		if (err) {
694 			btrfs_tree_unlock(cur);
695 			free_extent_buffer(cur);
696 			break;
697 		}
698 		search_start = cur->start;
699 		last_block = cur->start;
700 		*last_ret = search_start;
701 		btrfs_tree_unlock(cur);
702 		free_extent_buffer(cur);
703 	}
704 	if (parent->map_token) {
705 		unmap_extent_buffer(parent, parent->map_token,
706 				    KM_USER1);
707 		parent->map_token = NULL;
708 	}
709 	return err;
710 }
711 
712 /*
713  * The leaf data grows from end-to-front in the node.
714  * this returns the address of the start of the last item,
715  * which is the stop of the leaf data stack
716  */
717 static inline unsigned int leaf_data_end(struct btrfs_root *root,
718 					 struct extent_buffer *leaf)
719 {
720 	u32 nr = btrfs_header_nritems(leaf);
721 	if (nr == 0)
722 		return BTRFS_LEAF_DATA_SIZE(root);
723 	return btrfs_item_offset_nr(leaf, nr - 1);
724 }
725 
726 
727 /*
728  * search for key in the extent_buffer.  The items start at offset p,
729  * and they are item_size apart.  There are 'max' items in p.
730  *
731  * the slot in the array is returned via slot, and it points to
732  * the place where you would insert key if it is not found in
733  * the array.
734  *
735  * slot may point to max if the key is bigger than all of the keys
736  */
737 static noinline int generic_bin_search(struct extent_buffer *eb,
738 				       unsigned long p,
739 				       int item_size, struct btrfs_key *key,
740 				       int max, int *slot)
741 {
742 	int low = 0;
743 	int high = max;
744 	int mid;
745 	int ret;
746 	struct btrfs_disk_key *tmp = NULL;
747 	struct btrfs_disk_key unaligned;
748 	unsigned long offset;
749 	char *map_token = NULL;
750 	char *kaddr = NULL;
751 	unsigned long map_start = 0;
752 	unsigned long map_len = 0;
753 	int err;
754 
755 	while (low < high) {
756 		mid = (low + high) / 2;
757 		offset = p + mid * item_size;
758 
759 		if (!map_token || offset < map_start ||
760 		    (offset + sizeof(struct btrfs_disk_key)) >
761 		    map_start + map_len) {
762 			if (map_token) {
763 				unmap_extent_buffer(eb, map_token, KM_USER0);
764 				map_token = NULL;
765 			}
766 
767 			err = map_private_extent_buffer(eb, offset,
768 						sizeof(struct btrfs_disk_key),
769 						&map_token, &kaddr,
770 						&map_start, &map_len, KM_USER0);
771 
772 			if (!err) {
773 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
774 							map_start);
775 			} else {
776 				read_extent_buffer(eb, &unaligned,
777 						   offset, sizeof(unaligned));
778 				tmp = &unaligned;
779 			}
780 
781 		} else {
782 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
783 							map_start);
784 		}
785 		ret = comp_keys(tmp, key);
786 
787 		if (ret < 0)
788 			low = mid + 1;
789 		else if (ret > 0)
790 			high = mid;
791 		else {
792 			*slot = mid;
793 			if (map_token)
794 				unmap_extent_buffer(eb, map_token, KM_USER0);
795 			return 0;
796 		}
797 	}
798 	*slot = low;
799 	if (map_token)
800 		unmap_extent_buffer(eb, map_token, KM_USER0);
801 	return 1;
802 }
803 
804 /*
805  * simple bin_search frontend that does the right thing for
806  * leaves vs nodes
807  */
808 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
809 		      int level, int *slot)
810 {
811 	if (level == 0) {
812 		return generic_bin_search(eb,
813 					  offsetof(struct btrfs_leaf, items),
814 					  sizeof(struct btrfs_item),
815 					  key, btrfs_header_nritems(eb),
816 					  slot);
817 	} else {
818 		return generic_bin_search(eb,
819 					  offsetof(struct btrfs_node, ptrs),
820 					  sizeof(struct btrfs_key_ptr),
821 					  key, btrfs_header_nritems(eb),
822 					  slot);
823 	}
824 	return -1;
825 }
826 
827 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
828 		     int level, int *slot)
829 {
830 	return bin_search(eb, key, level, slot);
831 }
832 
833 static void root_add_used(struct btrfs_root *root, u32 size)
834 {
835 	spin_lock(&root->accounting_lock);
836 	btrfs_set_root_used(&root->root_item,
837 			    btrfs_root_used(&root->root_item) + size);
838 	spin_unlock(&root->accounting_lock);
839 }
840 
841 static void root_sub_used(struct btrfs_root *root, u32 size)
842 {
843 	spin_lock(&root->accounting_lock);
844 	btrfs_set_root_used(&root->root_item,
845 			    btrfs_root_used(&root->root_item) - size);
846 	spin_unlock(&root->accounting_lock);
847 }
848 
849 /* given a node and slot number, this reads the blocks it points to.  The
850  * extent buffer is returned with a reference taken (but unlocked).
851  * NULL is returned on error.
852  */
853 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
854 				   struct extent_buffer *parent, int slot)
855 {
856 	int level = btrfs_header_level(parent);
857 	if (slot < 0)
858 		return NULL;
859 	if (slot >= btrfs_header_nritems(parent))
860 		return NULL;
861 
862 	BUG_ON(level == 0);
863 
864 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
865 		       btrfs_level_size(root, level - 1),
866 		       btrfs_node_ptr_generation(parent, slot));
867 }
868 
869 /*
870  * node level balancing, used to make sure nodes are in proper order for
871  * item deletion.  We balance from the top down, so we have to make sure
872  * that a deletion won't leave an node completely empty later on.
873  */
874 static noinline int balance_level(struct btrfs_trans_handle *trans,
875 			 struct btrfs_root *root,
876 			 struct btrfs_path *path, int level)
877 {
878 	struct extent_buffer *right = NULL;
879 	struct extent_buffer *mid;
880 	struct extent_buffer *left = NULL;
881 	struct extent_buffer *parent = NULL;
882 	int ret = 0;
883 	int wret;
884 	int pslot;
885 	int orig_slot = path->slots[level];
886 	u64 orig_ptr;
887 
888 	if (level == 0)
889 		return 0;
890 
891 	mid = path->nodes[level];
892 
893 	WARN_ON(!path->locks[level]);
894 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
895 
896 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
897 
898 	if (level < BTRFS_MAX_LEVEL - 1)
899 		parent = path->nodes[level + 1];
900 	pslot = path->slots[level + 1];
901 
902 	/*
903 	 * deal with the case where there is only one pointer in the root
904 	 * by promoting the node below to a root
905 	 */
906 	if (!parent) {
907 		struct extent_buffer *child;
908 
909 		if (btrfs_header_nritems(mid) != 1)
910 			return 0;
911 
912 		/* promote the child to a root */
913 		child = read_node_slot(root, mid, 0);
914 		BUG_ON(!child);
915 		btrfs_tree_lock(child);
916 		btrfs_set_lock_blocking(child);
917 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
918 		if (ret) {
919 			btrfs_tree_unlock(child);
920 			free_extent_buffer(child);
921 			goto enospc;
922 		}
923 
924 		rcu_assign_pointer(root->node, child);
925 
926 		add_root_to_dirty_list(root);
927 		btrfs_tree_unlock(child);
928 
929 		path->locks[level] = 0;
930 		path->nodes[level] = NULL;
931 		clean_tree_block(trans, root, mid);
932 		btrfs_tree_unlock(mid);
933 		/* once for the path */
934 		free_extent_buffer(mid);
935 
936 		root_sub_used(root, mid->len);
937 		btrfs_free_tree_block(trans, root, mid, 0, 1);
938 		/* once for the root ptr */
939 		free_extent_buffer(mid);
940 		return 0;
941 	}
942 	if (btrfs_header_nritems(mid) >
943 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
944 		return 0;
945 
946 	btrfs_header_nritems(mid);
947 
948 	left = read_node_slot(root, parent, pslot - 1);
949 	if (left) {
950 		btrfs_tree_lock(left);
951 		btrfs_set_lock_blocking(left);
952 		wret = btrfs_cow_block(trans, root, left,
953 				       parent, pslot - 1, &left);
954 		if (wret) {
955 			ret = wret;
956 			goto enospc;
957 		}
958 	}
959 	right = read_node_slot(root, parent, pslot + 1);
960 	if (right) {
961 		btrfs_tree_lock(right);
962 		btrfs_set_lock_blocking(right);
963 		wret = btrfs_cow_block(trans, root, right,
964 				       parent, pslot + 1, &right);
965 		if (wret) {
966 			ret = wret;
967 			goto enospc;
968 		}
969 	}
970 
971 	/* first, try to make some room in the middle buffer */
972 	if (left) {
973 		orig_slot += btrfs_header_nritems(left);
974 		wret = push_node_left(trans, root, left, mid, 1);
975 		if (wret < 0)
976 			ret = wret;
977 		btrfs_header_nritems(mid);
978 	}
979 
980 	/*
981 	 * then try to empty the right most buffer into the middle
982 	 */
983 	if (right) {
984 		wret = push_node_left(trans, root, mid, right, 1);
985 		if (wret < 0 && wret != -ENOSPC)
986 			ret = wret;
987 		if (btrfs_header_nritems(right) == 0) {
988 			clean_tree_block(trans, root, right);
989 			btrfs_tree_unlock(right);
990 			wret = del_ptr(trans, root, path, level + 1, pslot +
991 				       1);
992 			if (wret)
993 				ret = wret;
994 			root_sub_used(root, right->len);
995 			btrfs_free_tree_block(trans, root, right, 0, 1);
996 			free_extent_buffer(right);
997 			right = NULL;
998 		} else {
999 			struct btrfs_disk_key right_key;
1000 			btrfs_node_key(right, &right_key, 0);
1001 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1002 			btrfs_mark_buffer_dirty(parent);
1003 		}
1004 	}
1005 	if (btrfs_header_nritems(mid) == 1) {
1006 		/*
1007 		 * we're not allowed to leave a node with one item in the
1008 		 * tree during a delete.  A deletion from lower in the tree
1009 		 * could try to delete the only pointer in this node.
1010 		 * So, pull some keys from the left.
1011 		 * There has to be a left pointer at this point because
1012 		 * otherwise we would have pulled some pointers from the
1013 		 * right
1014 		 */
1015 		BUG_ON(!left);
1016 		wret = balance_node_right(trans, root, mid, left);
1017 		if (wret < 0) {
1018 			ret = wret;
1019 			goto enospc;
1020 		}
1021 		if (wret == 1) {
1022 			wret = push_node_left(trans, root, left, mid, 1);
1023 			if (wret < 0)
1024 				ret = wret;
1025 		}
1026 		BUG_ON(wret == 1);
1027 	}
1028 	if (btrfs_header_nritems(mid) == 0) {
1029 		clean_tree_block(trans, root, mid);
1030 		btrfs_tree_unlock(mid);
1031 		wret = del_ptr(trans, root, path, level + 1, pslot);
1032 		if (wret)
1033 			ret = wret;
1034 		root_sub_used(root, mid->len);
1035 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1036 		free_extent_buffer(mid);
1037 		mid = NULL;
1038 	} else {
1039 		/* update the parent key to reflect our changes */
1040 		struct btrfs_disk_key mid_key;
1041 		btrfs_node_key(mid, &mid_key, 0);
1042 		btrfs_set_node_key(parent, &mid_key, pslot);
1043 		btrfs_mark_buffer_dirty(parent);
1044 	}
1045 
1046 	/* update the path */
1047 	if (left) {
1048 		if (btrfs_header_nritems(left) > orig_slot) {
1049 			extent_buffer_get(left);
1050 			/* left was locked after cow */
1051 			path->nodes[level] = left;
1052 			path->slots[level + 1] -= 1;
1053 			path->slots[level] = orig_slot;
1054 			if (mid) {
1055 				btrfs_tree_unlock(mid);
1056 				free_extent_buffer(mid);
1057 			}
1058 		} else {
1059 			orig_slot -= btrfs_header_nritems(left);
1060 			path->slots[level] = orig_slot;
1061 		}
1062 	}
1063 	/* double check we haven't messed things up */
1064 	if (orig_ptr !=
1065 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1066 		BUG();
1067 enospc:
1068 	if (right) {
1069 		btrfs_tree_unlock(right);
1070 		free_extent_buffer(right);
1071 	}
1072 	if (left) {
1073 		if (path->nodes[level] != left)
1074 			btrfs_tree_unlock(left);
1075 		free_extent_buffer(left);
1076 	}
1077 	return ret;
1078 }
1079 
1080 /* Node balancing for insertion.  Here we only split or push nodes around
1081  * when they are completely full.  This is also done top down, so we
1082  * have to be pessimistic.
1083  */
1084 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1085 					  struct btrfs_root *root,
1086 					  struct btrfs_path *path, int level)
1087 {
1088 	struct extent_buffer *right = NULL;
1089 	struct extent_buffer *mid;
1090 	struct extent_buffer *left = NULL;
1091 	struct extent_buffer *parent = NULL;
1092 	int ret = 0;
1093 	int wret;
1094 	int pslot;
1095 	int orig_slot = path->slots[level];
1096 
1097 	if (level == 0)
1098 		return 1;
1099 
1100 	mid = path->nodes[level];
1101 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1102 
1103 	if (level < BTRFS_MAX_LEVEL - 1)
1104 		parent = path->nodes[level + 1];
1105 	pslot = path->slots[level + 1];
1106 
1107 	if (!parent)
1108 		return 1;
1109 
1110 	left = read_node_slot(root, parent, pslot - 1);
1111 
1112 	/* first, try to make some room in the middle buffer */
1113 	if (left) {
1114 		u32 left_nr;
1115 
1116 		btrfs_tree_lock(left);
1117 		btrfs_set_lock_blocking(left);
1118 
1119 		left_nr = btrfs_header_nritems(left);
1120 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1121 			wret = 1;
1122 		} else {
1123 			ret = btrfs_cow_block(trans, root, left, parent,
1124 					      pslot - 1, &left);
1125 			if (ret)
1126 				wret = 1;
1127 			else {
1128 				wret = push_node_left(trans, root,
1129 						      left, mid, 0);
1130 			}
1131 		}
1132 		if (wret < 0)
1133 			ret = wret;
1134 		if (wret == 0) {
1135 			struct btrfs_disk_key disk_key;
1136 			orig_slot += left_nr;
1137 			btrfs_node_key(mid, &disk_key, 0);
1138 			btrfs_set_node_key(parent, &disk_key, pslot);
1139 			btrfs_mark_buffer_dirty(parent);
1140 			if (btrfs_header_nritems(left) > orig_slot) {
1141 				path->nodes[level] = left;
1142 				path->slots[level + 1] -= 1;
1143 				path->slots[level] = orig_slot;
1144 				btrfs_tree_unlock(mid);
1145 				free_extent_buffer(mid);
1146 			} else {
1147 				orig_slot -=
1148 					btrfs_header_nritems(left);
1149 				path->slots[level] = orig_slot;
1150 				btrfs_tree_unlock(left);
1151 				free_extent_buffer(left);
1152 			}
1153 			return 0;
1154 		}
1155 		btrfs_tree_unlock(left);
1156 		free_extent_buffer(left);
1157 	}
1158 	right = read_node_slot(root, parent, pslot + 1);
1159 
1160 	/*
1161 	 * then try to empty the right most buffer into the middle
1162 	 */
1163 	if (right) {
1164 		u32 right_nr;
1165 
1166 		btrfs_tree_lock(right);
1167 		btrfs_set_lock_blocking(right);
1168 
1169 		right_nr = btrfs_header_nritems(right);
1170 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1171 			wret = 1;
1172 		} else {
1173 			ret = btrfs_cow_block(trans, root, right,
1174 					      parent, pslot + 1,
1175 					      &right);
1176 			if (ret)
1177 				wret = 1;
1178 			else {
1179 				wret = balance_node_right(trans, root,
1180 							  right, mid);
1181 			}
1182 		}
1183 		if (wret < 0)
1184 			ret = wret;
1185 		if (wret == 0) {
1186 			struct btrfs_disk_key disk_key;
1187 
1188 			btrfs_node_key(right, &disk_key, 0);
1189 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1190 			btrfs_mark_buffer_dirty(parent);
1191 
1192 			if (btrfs_header_nritems(mid) <= orig_slot) {
1193 				path->nodes[level] = right;
1194 				path->slots[level + 1] += 1;
1195 				path->slots[level] = orig_slot -
1196 					btrfs_header_nritems(mid);
1197 				btrfs_tree_unlock(mid);
1198 				free_extent_buffer(mid);
1199 			} else {
1200 				btrfs_tree_unlock(right);
1201 				free_extent_buffer(right);
1202 			}
1203 			return 0;
1204 		}
1205 		btrfs_tree_unlock(right);
1206 		free_extent_buffer(right);
1207 	}
1208 	return 1;
1209 }
1210 
1211 /*
1212  * readahead one full node of leaves, finding things that are close
1213  * to the block in 'slot', and triggering ra on them.
1214  */
1215 static void reada_for_search(struct btrfs_root *root,
1216 			     struct btrfs_path *path,
1217 			     int level, int slot, u64 objectid)
1218 {
1219 	struct extent_buffer *node;
1220 	struct btrfs_disk_key disk_key;
1221 	u32 nritems;
1222 	u64 search;
1223 	u64 target;
1224 	u64 nread = 0;
1225 	u64 gen;
1226 	int direction = path->reada;
1227 	struct extent_buffer *eb;
1228 	u32 nr;
1229 	u32 blocksize;
1230 	u32 nscan = 0;
1231 
1232 	if (level != 1)
1233 		return;
1234 
1235 	if (!path->nodes[level])
1236 		return;
1237 
1238 	node = path->nodes[level];
1239 
1240 	search = btrfs_node_blockptr(node, slot);
1241 	blocksize = btrfs_level_size(root, level - 1);
1242 	eb = btrfs_find_tree_block(root, search, blocksize);
1243 	if (eb) {
1244 		free_extent_buffer(eb);
1245 		return;
1246 	}
1247 
1248 	target = search;
1249 
1250 	nritems = btrfs_header_nritems(node);
1251 	nr = slot;
1252 	while (1) {
1253 		if (!node->map_token) {
1254 			unsigned long offset = btrfs_node_key_ptr_offset(nr);
1255 			map_private_extent_buffer(node, offset,
1256 						  sizeof(struct btrfs_key_ptr),
1257 						  &node->map_token,
1258 						  &node->kaddr,
1259 						  &node->map_start,
1260 						  &node->map_len, KM_USER1);
1261 		}
1262 		if (direction < 0) {
1263 			if (nr == 0)
1264 				break;
1265 			nr--;
1266 		} else if (direction > 0) {
1267 			nr++;
1268 			if (nr >= nritems)
1269 				break;
1270 		}
1271 		if (path->reada < 0 && objectid) {
1272 			btrfs_node_key(node, &disk_key, nr);
1273 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1274 				break;
1275 		}
1276 		search = btrfs_node_blockptr(node, nr);
1277 		if ((search <= target && target - search <= 65536) ||
1278 		    (search > target && search - target <= 65536)) {
1279 			gen = btrfs_node_ptr_generation(node, nr);
1280 			if (node->map_token) {
1281 				unmap_extent_buffer(node, node->map_token,
1282 						    KM_USER1);
1283 				node->map_token = NULL;
1284 			}
1285 			readahead_tree_block(root, search, blocksize, gen);
1286 			nread += blocksize;
1287 		}
1288 		nscan++;
1289 		if ((nread > 65536 || nscan > 32))
1290 			break;
1291 	}
1292 	if (node->map_token) {
1293 		unmap_extent_buffer(node, node->map_token, KM_USER1);
1294 		node->map_token = NULL;
1295 	}
1296 }
1297 
1298 /*
1299  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1300  * cache
1301  */
1302 static noinline int reada_for_balance(struct btrfs_root *root,
1303 				      struct btrfs_path *path, int level)
1304 {
1305 	int slot;
1306 	int nritems;
1307 	struct extent_buffer *parent;
1308 	struct extent_buffer *eb;
1309 	u64 gen;
1310 	u64 block1 = 0;
1311 	u64 block2 = 0;
1312 	int ret = 0;
1313 	int blocksize;
1314 
1315 	parent = path->nodes[level + 1];
1316 	if (!parent)
1317 		return 0;
1318 
1319 	nritems = btrfs_header_nritems(parent);
1320 	slot = path->slots[level + 1];
1321 	blocksize = btrfs_level_size(root, level);
1322 
1323 	if (slot > 0) {
1324 		block1 = btrfs_node_blockptr(parent, slot - 1);
1325 		gen = btrfs_node_ptr_generation(parent, slot - 1);
1326 		eb = btrfs_find_tree_block(root, block1, blocksize);
1327 		if (eb && btrfs_buffer_uptodate(eb, gen))
1328 			block1 = 0;
1329 		free_extent_buffer(eb);
1330 	}
1331 	if (slot + 1 < nritems) {
1332 		block2 = btrfs_node_blockptr(parent, slot + 1);
1333 		gen = btrfs_node_ptr_generation(parent, slot + 1);
1334 		eb = btrfs_find_tree_block(root, block2, blocksize);
1335 		if (eb && btrfs_buffer_uptodate(eb, gen))
1336 			block2 = 0;
1337 		free_extent_buffer(eb);
1338 	}
1339 	if (block1 || block2) {
1340 		ret = -EAGAIN;
1341 
1342 		/* release the whole path */
1343 		btrfs_release_path(path);
1344 
1345 		/* read the blocks */
1346 		if (block1)
1347 			readahead_tree_block(root, block1, blocksize, 0);
1348 		if (block2)
1349 			readahead_tree_block(root, block2, blocksize, 0);
1350 
1351 		if (block1) {
1352 			eb = read_tree_block(root, block1, blocksize, 0);
1353 			free_extent_buffer(eb);
1354 		}
1355 		if (block2) {
1356 			eb = read_tree_block(root, block2, blocksize, 0);
1357 			free_extent_buffer(eb);
1358 		}
1359 	}
1360 	return ret;
1361 }
1362 
1363 
1364 /*
1365  * when we walk down the tree, it is usually safe to unlock the higher layers
1366  * in the tree.  The exceptions are when our path goes through slot 0, because
1367  * operations on the tree might require changing key pointers higher up in the
1368  * tree.
1369  *
1370  * callers might also have set path->keep_locks, which tells this code to keep
1371  * the lock if the path points to the last slot in the block.  This is part of
1372  * walking through the tree, and selecting the next slot in the higher block.
1373  *
1374  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1375  * if lowest_unlock is 1, level 0 won't be unlocked
1376  */
1377 static noinline void unlock_up(struct btrfs_path *path, int level,
1378 			       int lowest_unlock)
1379 {
1380 	int i;
1381 	int skip_level = level;
1382 	int no_skips = 0;
1383 	struct extent_buffer *t;
1384 
1385 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1386 		if (!path->nodes[i])
1387 			break;
1388 		if (!path->locks[i])
1389 			break;
1390 		if (!no_skips && path->slots[i] == 0) {
1391 			skip_level = i + 1;
1392 			continue;
1393 		}
1394 		if (!no_skips && path->keep_locks) {
1395 			u32 nritems;
1396 			t = path->nodes[i];
1397 			nritems = btrfs_header_nritems(t);
1398 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1399 				skip_level = i + 1;
1400 				continue;
1401 			}
1402 		}
1403 		if (skip_level < i && i >= lowest_unlock)
1404 			no_skips = 1;
1405 
1406 		t = path->nodes[i];
1407 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1408 			btrfs_tree_unlock(t);
1409 			path->locks[i] = 0;
1410 		}
1411 	}
1412 }
1413 
1414 /*
1415  * This releases any locks held in the path starting at level and
1416  * going all the way up to the root.
1417  *
1418  * btrfs_search_slot will keep the lock held on higher nodes in a few
1419  * corner cases, such as COW of the block at slot zero in the node.  This
1420  * ignores those rules, and it should only be called when there are no
1421  * more updates to be done higher up in the tree.
1422  */
1423 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1424 {
1425 	int i;
1426 
1427 	if (path->keep_locks)
1428 		return;
1429 
1430 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1431 		if (!path->nodes[i])
1432 			continue;
1433 		if (!path->locks[i])
1434 			continue;
1435 		btrfs_tree_unlock(path->nodes[i]);
1436 		path->locks[i] = 0;
1437 	}
1438 }
1439 
1440 /*
1441  * helper function for btrfs_search_slot.  The goal is to find a block
1442  * in cache without setting the path to blocking.  If we find the block
1443  * we return zero and the path is unchanged.
1444  *
1445  * If we can't find the block, we set the path blocking and do some
1446  * reada.  -EAGAIN is returned and the search must be repeated.
1447  */
1448 static int
1449 read_block_for_search(struct btrfs_trans_handle *trans,
1450 		       struct btrfs_root *root, struct btrfs_path *p,
1451 		       struct extent_buffer **eb_ret, int level, int slot,
1452 		       struct btrfs_key *key)
1453 {
1454 	u64 blocknr;
1455 	u64 gen;
1456 	u32 blocksize;
1457 	struct extent_buffer *b = *eb_ret;
1458 	struct extent_buffer *tmp;
1459 	int ret;
1460 
1461 	blocknr = btrfs_node_blockptr(b, slot);
1462 	gen = btrfs_node_ptr_generation(b, slot);
1463 	blocksize = btrfs_level_size(root, level - 1);
1464 
1465 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1466 	if (tmp) {
1467 		if (btrfs_buffer_uptodate(tmp, 0)) {
1468 			if (btrfs_buffer_uptodate(tmp, gen)) {
1469 				/*
1470 				 * we found an up to date block without
1471 				 * sleeping, return
1472 				 * right away
1473 				 */
1474 				*eb_ret = tmp;
1475 				return 0;
1476 			}
1477 			/* the pages were up to date, but we failed
1478 			 * the generation number check.  Do a full
1479 			 * read for the generation number that is correct.
1480 			 * We must do this without dropping locks so
1481 			 * we can trust our generation number
1482 			 */
1483 			free_extent_buffer(tmp);
1484 			tmp = read_tree_block(root, blocknr, blocksize, gen);
1485 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1486 				*eb_ret = tmp;
1487 				return 0;
1488 			}
1489 			free_extent_buffer(tmp);
1490 			btrfs_release_path(p);
1491 			return -EIO;
1492 		}
1493 	}
1494 
1495 	/*
1496 	 * reduce lock contention at high levels
1497 	 * of the btree by dropping locks before
1498 	 * we read.  Don't release the lock on the current
1499 	 * level because we need to walk this node to figure
1500 	 * out which blocks to read.
1501 	 */
1502 	btrfs_unlock_up_safe(p, level + 1);
1503 	btrfs_set_path_blocking(p);
1504 
1505 	free_extent_buffer(tmp);
1506 	if (p->reada)
1507 		reada_for_search(root, p, level, slot, key->objectid);
1508 
1509 	btrfs_release_path(p);
1510 
1511 	ret = -EAGAIN;
1512 	tmp = read_tree_block(root, blocknr, blocksize, 0);
1513 	if (tmp) {
1514 		/*
1515 		 * If the read above didn't mark this buffer up to date,
1516 		 * it will never end up being up to date.  Set ret to EIO now
1517 		 * and give up so that our caller doesn't loop forever
1518 		 * on our EAGAINs.
1519 		 */
1520 		if (!btrfs_buffer_uptodate(tmp, 0))
1521 			ret = -EIO;
1522 		free_extent_buffer(tmp);
1523 	}
1524 	return ret;
1525 }
1526 
1527 /*
1528  * helper function for btrfs_search_slot.  This does all of the checks
1529  * for node-level blocks and does any balancing required based on
1530  * the ins_len.
1531  *
1532  * If no extra work was required, zero is returned.  If we had to
1533  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1534  * start over
1535  */
1536 static int
1537 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1538 		       struct btrfs_root *root, struct btrfs_path *p,
1539 		       struct extent_buffer *b, int level, int ins_len)
1540 {
1541 	int ret;
1542 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1543 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1544 		int sret;
1545 
1546 		sret = reada_for_balance(root, p, level);
1547 		if (sret)
1548 			goto again;
1549 
1550 		btrfs_set_path_blocking(p);
1551 		sret = split_node(trans, root, p, level);
1552 		btrfs_clear_path_blocking(p, NULL);
1553 
1554 		BUG_ON(sret > 0);
1555 		if (sret) {
1556 			ret = sret;
1557 			goto done;
1558 		}
1559 		b = p->nodes[level];
1560 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1561 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1562 		int sret;
1563 
1564 		sret = reada_for_balance(root, p, level);
1565 		if (sret)
1566 			goto again;
1567 
1568 		btrfs_set_path_blocking(p);
1569 		sret = balance_level(trans, root, p, level);
1570 		btrfs_clear_path_blocking(p, NULL);
1571 
1572 		if (sret) {
1573 			ret = sret;
1574 			goto done;
1575 		}
1576 		b = p->nodes[level];
1577 		if (!b) {
1578 			btrfs_release_path(p);
1579 			goto again;
1580 		}
1581 		BUG_ON(btrfs_header_nritems(b) == 1);
1582 	}
1583 	return 0;
1584 
1585 again:
1586 	ret = -EAGAIN;
1587 done:
1588 	return ret;
1589 }
1590 
1591 /*
1592  * look for key in the tree.  path is filled in with nodes along the way
1593  * if key is found, we return zero and you can find the item in the leaf
1594  * level of the path (level 0)
1595  *
1596  * If the key isn't found, the path points to the slot where it should
1597  * be inserted, and 1 is returned.  If there are other errors during the
1598  * search a negative error number is returned.
1599  *
1600  * if ins_len > 0, nodes and leaves will be split as we walk down the
1601  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1602  * possible)
1603  */
1604 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1605 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1606 		      ins_len, int cow)
1607 {
1608 	struct extent_buffer *b;
1609 	int slot;
1610 	int ret;
1611 	int err;
1612 	int level;
1613 	int lowest_unlock = 1;
1614 	u8 lowest_level = 0;
1615 
1616 	lowest_level = p->lowest_level;
1617 	WARN_ON(lowest_level && ins_len > 0);
1618 	WARN_ON(p->nodes[0] != NULL);
1619 
1620 	if (ins_len < 0)
1621 		lowest_unlock = 2;
1622 
1623 again:
1624 	if (p->search_commit_root) {
1625 		b = root->commit_root;
1626 		extent_buffer_get(b);
1627 		if (!p->skip_locking)
1628 			btrfs_tree_lock(b);
1629 	} else {
1630 		if (p->skip_locking)
1631 			b = btrfs_root_node(root);
1632 		else
1633 			b = btrfs_lock_root_node(root);
1634 	}
1635 
1636 	while (b) {
1637 		level = btrfs_header_level(b);
1638 
1639 		/*
1640 		 * setup the path here so we can release it under lock
1641 		 * contention with the cow code
1642 		 */
1643 		p->nodes[level] = b;
1644 		if (!p->skip_locking)
1645 			p->locks[level] = 1;
1646 
1647 		if (cow) {
1648 			/*
1649 			 * if we don't really need to cow this block
1650 			 * then we don't want to set the path blocking,
1651 			 * so we test it here
1652 			 */
1653 			if (!should_cow_block(trans, root, b))
1654 				goto cow_done;
1655 
1656 			btrfs_set_path_blocking(p);
1657 
1658 			err = btrfs_cow_block(trans, root, b,
1659 					      p->nodes[level + 1],
1660 					      p->slots[level + 1], &b);
1661 			if (err) {
1662 				ret = err;
1663 				goto done;
1664 			}
1665 		}
1666 cow_done:
1667 		BUG_ON(!cow && ins_len);
1668 
1669 		p->nodes[level] = b;
1670 		if (!p->skip_locking)
1671 			p->locks[level] = 1;
1672 
1673 		btrfs_clear_path_blocking(p, NULL);
1674 
1675 		/*
1676 		 * we have a lock on b and as long as we aren't changing
1677 		 * the tree, there is no way to for the items in b to change.
1678 		 * It is safe to drop the lock on our parent before we
1679 		 * go through the expensive btree search on b.
1680 		 *
1681 		 * If cow is true, then we might be changing slot zero,
1682 		 * which may require changing the parent.  So, we can't
1683 		 * drop the lock until after we know which slot we're
1684 		 * operating on.
1685 		 */
1686 		if (!cow)
1687 			btrfs_unlock_up_safe(p, level + 1);
1688 
1689 		ret = bin_search(b, key, level, &slot);
1690 
1691 		if (level != 0) {
1692 			int dec = 0;
1693 			if (ret && slot > 0) {
1694 				dec = 1;
1695 				slot -= 1;
1696 			}
1697 			p->slots[level] = slot;
1698 			err = setup_nodes_for_search(trans, root, p, b, level,
1699 						     ins_len);
1700 			if (err == -EAGAIN)
1701 				goto again;
1702 			if (err) {
1703 				ret = err;
1704 				goto done;
1705 			}
1706 			b = p->nodes[level];
1707 			slot = p->slots[level];
1708 
1709 			unlock_up(p, level, lowest_unlock);
1710 
1711 			if (level == lowest_level) {
1712 				if (dec)
1713 					p->slots[level]++;
1714 				goto done;
1715 			}
1716 
1717 			err = read_block_for_search(trans, root, p,
1718 						    &b, level, slot, key);
1719 			if (err == -EAGAIN)
1720 				goto again;
1721 			if (err) {
1722 				ret = err;
1723 				goto done;
1724 			}
1725 
1726 			if (!p->skip_locking) {
1727 				btrfs_clear_path_blocking(p, NULL);
1728 				err = btrfs_try_spin_lock(b);
1729 
1730 				if (!err) {
1731 					btrfs_set_path_blocking(p);
1732 					btrfs_tree_lock(b);
1733 					btrfs_clear_path_blocking(p, b);
1734 				}
1735 			}
1736 		} else {
1737 			p->slots[level] = slot;
1738 			if (ins_len > 0 &&
1739 			    btrfs_leaf_free_space(root, b) < ins_len) {
1740 				btrfs_set_path_blocking(p);
1741 				err = split_leaf(trans, root, key,
1742 						 p, ins_len, ret == 0);
1743 				btrfs_clear_path_blocking(p, NULL);
1744 
1745 				BUG_ON(err > 0);
1746 				if (err) {
1747 					ret = err;
1748 					goto done;
1749 				}
1750 			}
1751 			if (!p->search_for_split)
1752 				unlock_up(p, level, lowest_unlock);
1753 			goto done;
1754 		}
1755 	}
1756 	ret = 1;
1757 done:
1758 	/*
1759 	 * we don't really know what they plan on doing with the path
1760 	 * from here on, so for now just mark it as blocking
1761 	 */
1762 	if (!p->leave_spinning)
1763 		btrfs_set_path_blocking(p);
1764 	if (ret < 0)
1765 		btrfs_release_path(p);
1766 	return ret;
1767 }
1768 
1769 /*
1770  * adjust the pointers going up the tree, starting at level
1771  * making sure the right key of each node is points to 'key'.
1772  * This is used after shifting pointers to the left, so it stops
1773  * fixing up pointers when a given leaf/node is not in slot 0 of the
1774  * higher levels
1775  *
1776  * If this fails to write a tree block, it returns -1, but continues
1777  * fixing up the blocks in ram so the tree is consistent.
1778  */
1779 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1780 			  struct btrfs_root *root, struct btrfs_path *path,
1781 			  struct btrfs_disk_key *key, int level)
1782 {
1783 	int i;
1784 	int ret = 0;
1785 	struct extent_buffer *t;
1786 
1787 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1788 		int tslot = path->slots[i];
1789 		if (!path->nodes[i])
1790 			break;
1791 		t = path->nodes[i];
1792 		btrfs_set_node_key(t, key, tslot);
1793 		btrfs_mark_buffer_dirty(path->nodes[i]);
1794 		if (tslot != 0)
1795 			break;
1796 	}
1797 	return ret;
1798 }
1799 
1800 /*
1801  * update item key.
1802  *
1803  * This function isn't completely safe. It's the caller's responsibility
1804  * that the new key won't break the order
1805  */
1806 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1807 			    struct btrfs_root *root, struct btrfs_path *path,
1808 			    struct btrfs_key *new_key)
1809 {
1810 	struct btrfs_disk_key disk_key;
1811 	struct extent_buffer *eb;
1812 	int slot;
1813 
1814 	eb = path->nodes[0];
1815 	slot = path->slots[0];
1816 	if (slot > 0) {
1817 		btrfs_item_key(eb, &disk_key, slot - 1);
1818 		if (comp_keys(&disk_key, new_key) >= 0)
1819 			return -1;
1820 	}
1821 	if (slot < btrfs_header_nritems(eb) - 1) {
1822 		btrfs_item_key(eb, &disk_key, slot + 1);
1823 		if (comp_keys(&disk_key, new_key) <= 0)
1824 			return -1;
1825 	}
1826 
1827 	btrfs_cpu_key_to_disk(&disk_key, new_key);
1828 	btrfs_set_item_key(eb, &disk_key, slot);
1829 	btrfs_mark_buffer_dirty(eb);
1830 	if (slot == 0)
1831 		fixup_low_keys(trans, root, path, &disk_key, 1);
1832 	return 0;
1833 }
1834 
1835 /*
1836  * try to push data from one node into the next node left in the
1837  * tree.
1838  *
1839  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1840  * error, and > 0 if there was no room in the left hand block.
1841  */
1842 static int push_node_left(struct btrfs_trans_handle *trans,
1843 			  struct btrfs_root *root, struct extent_buffer *dst,
1844 			  struct extent_buffer *src, int empty)
1845 {
1846 	int push_items = 0;
1847 	int src_nritems;
1848 	int dst_nritems;
1849 	int ret = 0;
1850 
1851 	src_nritems = btrfs_header_nritems(src);
1852 	dst_nritems = btrfs_header_nritems(dst);
1853 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1854 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1855 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1856 
1857 	if (!empty && src_nritems <= 8)
1858 		return 1;
1859 
1860 	if (push_items <= 0)
1861 		return 1;
1862 
1863 	if (empty) {
1864 		push_items = min(src_nritems, push_items);
1865 		if (push_items < src_nritems) {
1866 			/* leave at least 8 pointers in the node if
1867 			 * we aren't going to empty it
1868 			 */
1869 			if (src_nritems - push_items < 8) {
1870 				if (push_items <= 8)
1871 					return 1;
1872 				push_items -= 8;
1873 			}
1874 		}
1875 	} else
1876 		push_items = min(src_nritems - 8, push_items);
1877 
1878 	copy_extent_buffer(dst, src,
1879 			   btrfs_node_key_ptr_offset(dst_nritems),
1880 			   btrfs_node_key_ptr_offset(0),
1881 			   push_items * sizeof(struct btrfs_key_ptr));
1882 
1883 	if (push_items < src_nritems) {
1884 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1885 				      btrfs_node_key_ptr_offset(push_items),
1886 				      (src_nritems - push_items) *
1887 				      sizeof(struct btrfs_key_ptr));
1888 	}
1889 	btrfs_set_header_nritems(src, src_nritems - push_items);
1890 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1891 	btrfs_mark_buffer_dirty(src);
1892 	btrfs_mark_buffer_dirty(dst);
1893 
1894 	return ret;
1895 }
1896 
1897 /*
1898  * try to push data from one node into the next node right in the
1899  * tree.
1900  *
1901  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1902  * error, and > 0 if there was no room in the right hand block.
1903  *
1904  * this will  only push up to 1/2 the contents of the left node over
1905  */
1906 static int balance_node_right(struct btrfs_trans_handle *trans,
1907 			      struct btrfs_root *root,
1908 			      struct extent_buffer *dst,
1909 			      struct extent_buffer *src)
1910 {
1911 	int push_items = 0;
1912 	int max_push;
1913 	int src_nritems;
1914 	int dst_nritems;
1915 	int ret = 0;
1916 
1917 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1918 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1919 
1920 	src_nritems = btrfs_header_nritems(src);
1921 	dst_nritems = btrfs_header_nritems(dst);
1922 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1923 	if (push_items <= 0)
1924 		return 1;
1925 
1926 	if (src_nritems < 4)
1927 		return 1;
1928 
1929 	max_push = src_nritems / 2 + 1;
1930 	/* don't try to empty the node */
1931 	if (max_push >= src_nritems)
1932 		return 1;
1933 
1934 	if (max_push < push_items)
1935 		push_items = max_push;
1936 
1937 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
1938 				      btrfs_node_key_ptr_offset(0),
1939 				      (dst_nritems) *
1940 				      sizeof(struct btrfs_key_ptr));
1941 
1942 	copy_extent_buffer(dst, src,
1943 			   btrfs_node_key_ptr_offset(0),
1944 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
1945 			   push_items * sizeof(struct btrfs_key_ptr));
1946 
1947 	btrfs_set_header_nritems(src, src_nritems - push_items);
1948 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1949 
1950 	btrfs_mark_buffer_dirty(src);
1951 	btrfs_mark_buffer_dirty(dst);
1952 
1953 	return ret;
1954 }
1955 
1956 /*
1957  * helper function to insert a new root level in the tree.
1958  * A new node is allocated, and a single item is inserted to
1959  * point to the existing root
1960  *
1961  * returns zero on success or < 0 on failure.
1962  */
1963 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
1964 			   struct btrfs_root *root,
1965 			   struct btrfs_path *path, int level)
1966 {
1967 	u64 lower_gen;
1968 	struct extent_buffer *lower;
1969 	struct extent_buffer *c;
1970 	struct extent_buffer *old;
1971 	struct btrfs_disk_key lower_key;
1972 
1973 	BUG_ON(path->nodes[level]);
1974 	BUG_ON(path->nodes[level-1] != root->node);
1975 
1976 	lower = path->nodes[level-1];
1977 	if (level == 1)
1978 		btrfs_item_key(lower, &lower_key, 0);
1979 	else
1980 		btrfs_node_key(lower, &lower_key, 0);
1981 
1982 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
1983 				   root->root_key.objectid, &lower_key,
1984 				   level, root->node->start, 0);
1985 	if (IS_ERR(c))
1986 		return PTR_ERR(c);
1987 
1988 	root_add_used(root, root->nodesize);
1989 
1990 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
1991 	btrfs_set_header_nritems(c, 1);
1992 	btrfs_set_header_level(c, level);
1993 	btrfs_set_header_bytenr(c, c->start);
1994 	btrfs_set_header_generation(c, trans->transid);
1995 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
1996 	btrfs_set_header_owner(c, root->root_key.objectid);
1997 
1998 	write_extent_buffer(c, root->fs_info->fsid,
1999 			    (unsigned long)btrfs_header_fsid(c),
2000 			    BTRFS_FSID_SIZE);
2001 
2002 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2003 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2004 			    BTRFS_UUID_SIZE);
2005 
2006 	btrfs_set_node_key(c, &lower_key, 0);
2007 	btrfs_set_node_blockptr(c, 0, lower->start);
2008 	lower_gen = btrfs_header_generation(lower);
2009 	WARN_ON(lower_gen != trans->transid);
2010 
2011 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2012 
2013 	btrfs_mark_buffer_dirty(c);
2014 
2015 	old = root->node;
2016 	rcu_assign_pointer(root->node, c);
2017 
2018 	/* the super has an extra ref to root->node */
2019 	free_extent_buffer(old);
2020 
2021 	add_root_to_dirty_list(root);
2022 	extent_buffer_get(c);
2023 	path->nodes[level] = c;
2024 	path->locks[level] = 1;
2025 	path->slots[level] = 0;
2026 	return 0;
2027 }
2028 
2029 /*
2030  * worker function to insert a single pointer in a node.
2031  * the node should have enough room for the pointer already
2032  *
2033  * slot and level indicate where you want the key to go, and
2034  * blocknr is the block the key points to.
2035  *
2036  * returns zero on success and < 0 on any error
2037  */
2038 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2039 		      *root, struct btrfs_path *path, struct btrfs_disk_key
2040 		      *key, u64 bytenr, int slot, int level)
2041 {
2042 	struct extent_buffer *lower;
2043 	int nritems;
2044 
2045 	BUG_ON(!path->nodes[level]);
2046 	btrfs_assert_tree_locked(path->nodes[level]);
2047 	lower = path->nodes[level];
2048 	nritems = btrfs_header_nritems(lower);
2049 	BUG_ON(slot > nritems);
2050 	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2051 		BUG();
2052 	if (slot != nritems) {
2053 		memmove_extent_buffer(lower,
2054 			      btrfs_node_key_ptr_offset(slot + 1),
2055 			      btrfs_node_key_ptr_offset(slot),
2056 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2057 	}
2058 	btrfs_set_node_key(lower, key, slot);
2059 	btrfs_set_node_blockptr(lower, slot, bytenr);
2060 	WARN_ON(trans->transid == 0);
2061 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2062 	btrfs_set_header_nritems(lower, nritems + 1);
2063 	btrfs_mark_buffer_dirty(lower);
2064 	return 0;
2065 }
2066 
2067 /*
2068  * split the node at the specified level in path in two.
2069  * The path is corrected to point to the appropriate node after the split
2070  *
2071  * Before splitting this tries to make some room in the node by pushing
2072  * left and right, if either one works, it returns right away.
2073  *
2074  * returns 0 on success and < 0 on failure
2075  */
2076 static noinline int split_node(struct btrfs_trans_handle *trans,
2077 			       struct btrfs_root *root,
2078 			       struct btrfs_path *path, int level)
2079 {
2080 	struct extent_buffer *c;
2081 	struct extent_buffer *split;
2082 	struct btrfs_disk_key disk_key;
2083 	int mid;
2084 	int ret;
2085 	int wret;
2086 	u32 c_nritems;
2087 
2088 	c = path->nodes[level];
2089 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2090 	if (c == root->node) {
2091 		/* trying to split the root, lets make a new one */
2092 		ret = insert_new_root(trans, root, path, level + 1);
2093 		if (ret)
2094 			return ret;
2095 	} else {
2096 		ret = push_nodes_for_insert(trans, root, path, level);
2097 		c = path->nodes[level];
2098 		if (!ret && btrfs_header_nritems(c) <
2099 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2100 			return 0;
2101 		if (ret < 0)
2102 			return ret;
2103 	}
2104 
2105 	c_nritems = btrfs_header_nritems(c);
2106 	mid = (c_nritems + 1) / 2;
2107 	btrfs_node_key(c, &disk_key, mid);
2108 
2109 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2110 					root->root_key.objectid,
2111 					&disk_key, level, c->start, 0);
2112 	if (IS_ERR(split))
2113 		return PTR_ERR(split);
2114 
2115 	root_add_used(root, root->nodesize);
2116 
2117 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2118 	btrfs_set_header_level(split, btrfs_header_level(c));
2119 	btrfs_set_header_bytenr(split, split->start);
2120 	btrfs_set_header_generation(split, trans->transid);
2121 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2122 	btrfs_set_header_owner(split, root->root_key.objectid);
2123 	write_extent_buffer(split, root->fs_info->fsid,
2124 			    (unsigned long)btrfs_header_fsid(split),
2125 			    BTRFS_FSID_SIZE);
2126 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2127 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2128 			    BTRFS_UUID_SIZE);
2129 
2130 
2131 	copy_extent_buffer(split, c,
2132 			   btrfs_node_key_ptr_offset(0),
2133 			   btrfs_node_key_ptr_offset(mid),
2134 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2135 	btrfs_set_header_nritems(split, c_nritems - mid);
2136 	btrfs_set_header_nritems(c, mid);
2137 	ret = 0;
2138 
2139 	btrfs_mark_buffer_dirty(c);
2140 	btrfs_mark_buffer_dirty(split);
2141 
2142 	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2143 			  path->slots[level + 1] + 1,
2144 			  level + 1);
2145 	if (wret)
2146 		ret = wret;
2147 
2148 	if (path->slots[level] >= mid) {
2149 		path->slots[level] -= mid;
2150 		btrfs_tree_unlock(c);
2151 		free_extent_buffer(c);
2152 		path->nodes[level] = split;
2153 		path->slots[level + 1] += 1;
2154 	} else {
2155 		btrfs_tree_unlock(split);
2156 		free_extent_buffer(split);
2157 	}
2158 	return ret;
2159 }
2160 
2161 /*
2162  * how many bytes are required to store the items in a leaf.  start
2163  * and nr indicate which items in the leaf to check.  This totals up the
2164  * space used both by the item structs and the item data
2165  */
2166 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2167 {
2168 	int data_len;
2169 	int nritems = btrfs_header_nritems(l);
2170 	int end = min(nritems, start + nr) - 1;
2171 
2172 	if (!nr)
2173 		return 0;
2174 	data_len = btrfs_item_end_nr(l, start);
2175 	data_len = data_len - btrfs_item_offset_nr(l, end);
2176 	data_len += sizeof(struct btrfs_item) * nr;
2177 	WARN_ON(data_len < 0);
2178 	return data_len;
2179 }
2180 
2181 /*
2182  * The space between the end of the leaf items and
2183  * the start of the leaf data.  IOW, how much room
2184  * the leaf has left for both items and data
2185  */
2186 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2187 				   struct extent_buffer *leaf)
2188 {
2189 	int nritems = btrfs_header_nritems(leaf);
2190 	int ret;
2191 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2192 	if (ret < 0) {
2193 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2194 		       "used %d nritems %d\n",
2195 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2196 		       leaf_space_used(leaf, 0, nritems), nritems);
2197 	}
2198 	return ret;
2199 }
2200 
2201 /*
2202  * min slot controls the lowest index we're willing to push to the
2203  * right.  We'll push up to and including min_slot, but no lower
2204  */
2205 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2206 				      struct btrfs_root *root,
2207 				      struct btrfs_path *path,
2208 				      int data_size, int empty,
2209 				      struct extent_buffer *right,
2210 				      int free_space, u32 left_nritems,
2211 				      u32 min_slot)
2212 {
2213 	struct extent_buffer *left = path->nodes[0];
2214 	struct extent_buffer *upper = path->nodes[1];
2215 	struct btrfs_disk_key disk_key;
2216 	int slot;
2217 	u32 i;
2218 	int push_space = 0;
2219 	int push_items = 0;
2220 	struct btrfs_item *item;
2221 	u32 nr;
2222 	u32 right_nritems;
2223 	u32 data_end;
2224 	u32 this_item_size;
2225 
2226 	if (empty)
2227 		nr = 0;
2228 	else
2229 		nr = max_t(u32, 1, min_slot);
2230 
2231 	if (path->slots[0] >= left_nritems)
2232 		push_space += data_size;
2233 
2234 	slot = path->slots[1];
2235 	i = left_nritems - 1;
2236 	while (i >= nr) {
2237 		item = btrfs_item_nr(left, i);
2238 
2239 		if (!empty && push_items > 0) {
2240 			if (path->slots[0] > i)
2241 				break;
2242 			if (path->slots[0] == i) {
2243 				int space = btrfs_leaf_free_space(root, left);
2244 				if (space + push_space * 2 > free_space)
2245 					break;
2246 			}
2247 		}
2248 
2249 		if (path->slots[0] == i)
2250 			push_space += data_size;
2251 
2252 		if (!left->map_token) {
2253 			map_extent_buffer(left, (unsigned long)item,
2254 					sizeof(struct btrfs_item),
2255 					&left->map_token, &left->kaddr,
2256 					&left->map_start, &left->map_len,
2257 					KM_USER1);
2258 		}
2259 
2260 		this_item_size = btrfs_item_size(left, item);
2261 		if (this_item_size + sizeof(*item) + push_space > free_space)
2262 			break;
2263 
2264 		push_items++;
2265 		push_space += this_item_size + sizeof(*item);
2266 		if (i == 0)
2267 			break;
2268 		i--;
2269 	}
2270 	if (left->map_token) {
2271 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2272 		left->map_token = NULL;
2273 	}
2274 
2275 	if (push_items == 0)
2276 		goto out_unlock;
2277 
2278 	if (!empty && push_items == left_nritems)
2279 		WARN_ON(1);
2280 
2281 	/* push left to right */
2282 	right_nritems = btrfs_header_nritems(right);
2283 
2284 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2285 	push_space -= leaf_data_end(root, left);
2286 
2287 	/* make room in the right data area */
2288 	data_end = leaf_data_end(root, right);
2289 	memmove_extent_buffer(right,
2290 			      btrfs_leaf_data(right) + data_end - push_space,
2291 			      btrfs_leaf_data(right) + data_end,
2292 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2293 
2294 	/* copy from the left data area */
2295 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2296 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2297 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2298 		     push_space);
2299 
2300 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2301 			      btrfs_item_nr_offset(0),
2302 			      right_nritems * sizeof(struct btrfs_item));
2303 
2304 	/* copy the items from left to right */
2305 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2306 		   btrfs_item_nr_offset(left_nritems - push_items),
2307 		   push_items * sizeof(struct btrfs_item));
2308 
2309 	/* update the item pointers */
2310 	right_nritems += push_items;
2311 	btrfs_set_header_nritems(right, right_nritems);
2312 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2313 	for (i = 0; i < right_nritems; i++) {
2314 		item = btrfs_item_nr(right, i);
2315 		if (!right->map_token) {
2316 			map_extent_buffer(right, (unsigned long)item,
2317 					sizeof(struct btrfs_item),
2318 					&right->map_token, &right->kaddr,
2319 					&right->map_start, &right->map_len,
2320 					KM_USER1);
2321 		}
2322 		push_space -= btrfs_item_size(right, item);
2323 		btrfs_set_item_offset(right, item, push_space);
2324 	}
2325 
2326 	if (right->map_token) {
2327 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2328 		right->map_token = NULL;
2329 	}
2330 	left_nritems -= push_items;
2331 	btrfs_set_header_nritems(left, left_nritems);
2332 
2333 	if (left_nritems)
2334 		btrfs_mark_buffer_dirty(left);
2335 	else
2336 		clean_tree_block(trans, root, left);
2337 
2338 	btrfs_mark_buffer_dirty(right);
2339 
2340 	btrfs_item_key(right, &disk_key, 0);
2341 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2342 	btrfs_mark_buffer_dirty(upper);
2343 
2344 	/* then fixup the leaf pointer in the path */
2345 	if (path->slots[0] >= left_nritems) {
2346 		path->slots[0] -= left_nritems;
2347 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2348 			clean_tree_block(trans, root, path->nodes[0]);
2349 		btrfs_tree_unlock(path->nodes[0]);
2350 		free_extent_buffer(path->nodes[0]);
2351 		path->nodes[0] = right;
2352 		path->slots[1] += 1;
2353 	} else {
2354 		btrfs_tree_unlock(right);
2355 		free_extent_buffer(right);
2356 	}
2357 	return 0;
2358 
2359 out_unlock:
2360 	btrfs_tree_unlock(right);
2361 	free_extent_buffer(right);
2362 	return 1;
2363 }
2364 
2365 /*
2366  * push some data in the path leaf to the right, trying to free up at
2367  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2368  *
2369  * returns 1 if the push failed because the other node didn't have enough
2370  * room, 0 if everything worked out and < 0 if there were major errors.
2371  *
2372  * this will push starting from min_slot to the end of the leaf.  It won't
2373  * push any slot lower than min_slot
2374  */
2375 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2376 			   *root, struct btrfs_path *path,
2377 			   int min_data_size, int data_size,
2378 			   int empty, u32 min_slot)
2379 {
2380 	struct extent_buffer *left = path->nodes[0];
2381 	struct extent_buffer *right;
2382 	struct extent_buffer *upper;
2383 	int slot;
2384 	int free_space;
2385 	u32 left_nritems;
2386 	int ret;
2387 
2388 	if (!path->nodes[1])
2389 		return 1;
2390 
2391 	slot = path->slots[1];
2392 	upper = path->nodes[1];
2393 	if (slot >= btrfs_header_nritems(upper) - 1)
2394 		return 1;
2395 
2396 	btrfs_assert_tree_locked(path->nodes[1]);
2397 
2398 	right = read_node_slot(root, upper, slot + 1);
2399 	if (right == NULL)
2400 		return 1;
2401 
2402 	btrfs_tree_lock(right);
2403 	btrfs_set_lock_blocking(right);
2404 
2405 	free_space = btrfs_leaf_free_space(root, right);
2406 	if (free_space < data_size)
2407 		goto out_unlock;
2408 
2409 	/* cow and double check */
2410 	ret = btrfs_cow_block(trans, root, right, upper,
2411 			      slot + 1, &right);
2412 	if (ret)
2413 		goto out_unlock;
2414 
2415 	free_space = btrfs_leaf_free_space(root, right);
2416 	if (free_space < data_size)
2417 		goto out_unlock;
2418 
2419 	left_nritems = btrfs_header_nritems(left);
2420 	if (left_nritems == 0)
2421 		goto out_unlock;
2422 
2423 	return __push_leaf_right(trans, root, path, min_data_size, empty,
2424 				right, free_space, left_nritems, min_slot);
2425 out_unlock:
2426 	btrfs_tree_unlock(right);
2427 	free_extent_buffer(right);
2428 	return 1;
2429 }
2430 
2431 /*
2432  * push some data in the path leaf to the left, trying to free up at
2433  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2434  *
2435  * max_slot can put a limit on how far into the leaf we'll push items.  The
2436  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2437  * items
2438  */
2439 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2440 				     struct btrfs_root *root,
2441 				     struct btrfs_path *path, int data_size,
2442 				     int empty, struct extent_buffer *left,
2443 				     int free_space, u32 right_nritems,
2444 				     u32 max_slot)
2445 {
2446 	struct btrfs_disk_key disk_key;
2447 	struct extent_buffer *right = path->nodes[0];
2448 	int i;
2449 	int push_space = 0;
2450 	int push_items = 0;
2451 	struct btrfs_item *item;
2452 	u32 old_left_nritems;
2453 	u32 nr;
2454 	int ret = 0;
2455 	int wret;
2456 	u32 this_item_size;
2457 	u32 old_left_item_size;
2458 
2459 	if (empty)
2460 		nr = min(right_nritems, max_slot);
2461 	else
2462 		nr = min(right_nritems - 1, max_slot);
2463 
2464 	for (i = 0; i < nr; i++) {
2465 		item = btrfs_item_nr(right, i);
2466 		if (!right->map_token) {
2467 			map_extent_buffer(right, (unsigned long)item,
2468 					sizeof(struct btrfs_item),
2469 					&right->map_token, &right->kaddr,
2470 					&right->map_start, &right->map_len,
2471 					KM_USER1);
2472 		}
2473 
2474 		if (!empty && push_items > 0) {
2475 			if (path->slots[0] < i)
2476 				break;
2477 			if (path->slots[0] == i) {
2478 				int space = btrfs_leaf_free_space(root, right);
2479 				if (space + push_space * 2 > free_space)
2480 					break;
2481 			}
2482 		}
2483 
2484 		if (path->slots[0] == i)
2485 			push_space += data_size;
2486 
2487 		this_item_size = btrfs_item_size(right, item);
2488 		if (this_item_size + sizeof(*item) + push_space > free_space)
2489 			break;
2490 
2491 		push_items++;
2492 		push_space += this_item_size + sizeof(*item);
2493 	}
2494 
2495 	if (right->map_token) {
2496 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2497 		right->map_token = NULL;
2498 	}
2499 
2500 	if (push_items == 0) {
2501 		ret = 1;
2502 		goto out;
2503 	}
2504 	if (!empty && push_items == btrfs_header_nritems(right))
2505 		WARN_ON(1);
2506 
2507 	/* push data from right to left */
2508 	copy_extent_buffer(left, right,
2509 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2510 			   btrfs_item_nr_offset(0),
2511 			   push_items * sizeof(struct btrfs_item));
2512 
2513 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2514 		     btrfs_item_offset_nr(right, push_items - 1);
2515 
2516 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2517 		     leaf_data_end(root, left) - push_space,
2518 		     btrfs_leaf_data(right) +
2519 		     btrfs_item_offset_nr(right, push_items - 1),
2520 		     push_space);
2521 	old_left_nritems = btrfs_header_nritems(left);
2522 	BUG_ON(old_left_nritems <= 0);
2523 
2524 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2525 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2526 		u32 ioff;
2527 
2528 		item = btrfs_item_nr(left, i);
2529 		if (!left->map_token) {
2530 			map_extent_buffer(left, (unsigned long)item,
2531 					sizeof(struct btrfs_item),
2532 					&left->map_token, &left->kaddr,
2533 					&left->map_start, &left->map_len,
2534 					KM_USER1);
2535 		}
2536 
2537 		ioff = btrfs_item_offset(left, item);
2538 		btrfs_set_item_offset(left, item,
2539 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2540 	}
2541 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2542 	if (left->map_token) {
2543 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2544 		left->map_token = NULL;
2545 	}
2546 
2547 	/* fixup right node */
2548 	if (push_items > right_nritems) {
2549 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2550 		       right_nritems);
2551 		WARN_ON(1);
2552 	}
2553 
2554 	if (push_items < right_nritems) {
2555 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2556 						  leaf_data_end(root, right);
2557 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2558 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2559 				      btrfs_leaf_data(right) +
2560 				      leaf_data_end(root, right), push_space);
2561 
2562 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2563 			      btrfs_item_nr_offset(push_items),
2564 			     (btrfs_header_nritems(right) - push_items) *
2565 			     sizeof(struct btrfs_item));
2566 	}
2567 	right_nritems -= push_items;
2568 	btrfs_set_header_nritems(right, right_nritems);
2569 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2570 	for (i = 0; i < right_nritems; i++) {
2571 		item = btrfs_item_nr(right, i);
2572 
2573 		if (!right->map_token) {
2574 			map_extent_buffer(right, (unsigned long)item,
2575 					sizeof(struct btrfs_item),
2576 					&right->map_token, &right->kaddr,
2577 					&right->map_start, &right->map_len,
2578 					KM_USER1);
2579 		}
2580 
2581 		push_space = push_space - btrfs_item_size(right, item);
2582 		btrfs_set_item_offset(right, item, push_space);
2583 	}
2584 	if (right->map_token) {
2585 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2586 		right->map_token = NULL;
2587 	}
2588 
2589 	btrfs_mark_buffer_dirty(left);
2590 	if (right_nritems)
2591 		btrfs_mark_buffer_dirty(right);
2592 	else
2593 		clean_tree_block(trans, root, right);
2594 
2595 	btrfs_item_key(right, &disk_key, 0);
2596 	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2597 	if (wret)
2598 		ret = wret;
2599 
2600 	/* then fixup the leaf pointer in the path */
2601 	if (path->slots[0] < push_items) {
2602 		path->slots[0] += old_left_nritems;
2603 		btrfs_tree_unlock(path->nodes[0]);
2604 		free_extent_buffer(path->nodes[0]);
2605 		path->nodes[0] = left;
2606 		path->slots[1] -= 1;
2607 	} else {
2608 		btrfs_tree_unlock(left);
2609 		free_extent_buffer(left);
2610 		path->slots[0] -= push_items;
2611 	}
2612 	BUG_ON(path->slots[0] < 0);
2613 	return ret;
2614 out:
2615 	btrfs_tree_unlock(left);
2616 	free_extent_buffer(left);
2617 	return ret;
2618 }
2619 
2620 /*
2621  * push some data in the path leaf to the left, trying to free up at
2622  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2623  *
2624  * max_slot can put a limit on how far into the leaf we'll push items.  The
2625  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2626  * items
2627  */
2628 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2629 			  *root, struct btrfs_path *path, int min_data_size,
2630 			  int data_size, int empty, u32 max_slot)
2631 {
2632 	struct extent_buffer *right = path->nodes[0];
2633 	struct extent_buffer *left;
2634 	int slot;
2635 	int free_space;
2636 	u32 right_nritems;
2637 	int ret = 0;
2638 
2639 	slot = path->slots[1];
2640 	if (slot == 0)
2641 		return 1;
2642 	if (!path->nodes[1])
2643 		return 1;
2644 
2645 	right_nritems = btrfs_header_nritems(right);
2646 	if (right_nritems == 0)
2647 		return 1;
2648 
2649 	btrfs_assert_tree_locked(path->nodes[1]);
2650 
2651 	left = read_node_slot(root, path->nodes[1], slot - 1);
2652 	if (left == NULL)
2653 		return 1;
2654 
2655 	btrfs_tree_lock(left);
2656 	btrfs_set_lock_blocking(left);
2657 
2658 	free_space = btrfs_leaf_free_space(root, left);
2659 	if (free_space < data_size) {
2660 		ret = 1;
2661 		goto out;
2662 	}
2663 
2664 	/* cow and double check */
2665 	ret = btrfs_cow_block(trans, root, left,
2666 			      path->nodes[1], slot - 1, &left);
2667 	if (ret) {
2668 		/* we hit -ENOSPC, but it isn't fatal here */
2669 		ret = 1;
2670 		goto out;
2671 	}
2672 
2673 	free_space = btrfs_leaf_free_space(root, left);
2674 	if (free_space < data_size) {
2675 		ret = 1;
2676 		goto out;
2677 	}
2678 
2679 	return __push_leaf_left(trans, root, path, min_data_size,
2680 			       empty, left, free_space, right_nritems,
2681 			       max_slot);
2682 out:
2683 	btrfs_tree_unlock(left);
2684 	free_extent_buffer(left);
2685 	return ret;
2686 }
2687 
2688 /*
2689  * split the path's leaf in two, making sure there is at least data_size
2690  * available for the resulting leaf level of the path.
2691  *
2692  * returns 0 if all went well and < 0 on failure.
2693  */
2694 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2695 			       struct btrfs_root *root,
2696 			       struct btrfs_path *path,
2697 			       struct extent_buffer *l,
2698 			       struct extent_buffer *right,
2699 			       int slot, int mid, int nritems)
2700 {
2701 	int data_copy_size;
2702 	int rt_data_off;
2703 	int i;
2704 	int ret = 0;
2705 	int wret;
2706 	struct btrfs_disk_key disk_key;
2707 
2708 	nritems = nritems - mid;
2709 	btrfs_set_header_nritems(right, nritems);
2710 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2711 
2712 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2713 			   btrfs_item_nr_offset(mid),
2714 			   nritems * sizeof(struct btrfs_item));
2715 
2716 	copy_extent_buffer(right, l,
2717 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2718 		     data_copy_size, btrfs_leaf_data(l) +
2719 		     leaf_data_end(root, l), data_copy_size);
2720 
2721 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2722 		      btrfs_item_end_nr(l, mid);
2723 
2724 	for (i = 0; i < nritems; i++) {
2725 		struct btrfs_item *item = btrfs_item_nr(right, i);
2726 		u32 ioff;
2727 
2728 		if (!right->map_token) {
2729 			map_extent_buffer(right, (unsigned long)item,
2730 					sizeof(struct btrfs_item),
2731 					&right->map_token, &right->kaddr,
2732 					&right->map_start, &right->map_len,
2733 					KM_USER1);
2734 		}
2735 
2736 		ioff = btrfs_item_offset(right, item);
2737 		btrfs_set_item_offset(right, item, ioff + rt_data_off);
2738 	}
2739 
2740 	if (right->map_token) {
2741 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2742 		right->map_token = NULL;
2743 	}
2744 
2745 	btrfs_set_header_nritems(l, mid);
2746 	ret = 0;
2747 	btrfs_item_key(right, &disk_key, 0);
2748 	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2749 			  path->slots[1] + 1, 1);
2750 	if (wret)
2751 		ret = wret;
2752 
2753 	btrfs_mark_buffer_dirty(right);
2754 	btrfs_mark_buffer_dirty(l);
2755 	BUG_ON(path->slots[0] != slot);
2756 
2757 	if (mid <= slot) {
2758 		btrfs_tree_unlock(path->nodes[0]);
2759 		free_extent_buffer(path->nodes[0]);
2760 		path->nodes[0] = right;
2761 		path->slots[0] -= mid;
2762 		path->slots[1] += 1;
2763 	} else {
2764 		btrfs_tree_unlock(right);
2765 		free_extent_buffer(right);
2766 	}
2767 
2768 	BUG_ON(path->slots[0] < 0);
2769 
2770 	return ret;
2771 }
2772 
2773 /*
2774  * double splits happen when we need to insert a big item in the middle
2775  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2776  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2777  *          A                 B                 C
2778  *
2779  * We avoid this by trying to push the items on either side of our target
2780  * into the adjacent leaves.  If all goes well we can avoid the double split
2781  * completely.
2782  */
2783 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2784 					  struct btrfs_root *root,
2785 					  struct btrfs_path *path,
2786 					  int data_size)
2787 {
2788 	int ret;
2789 	int progress = 0;
2790 	int slot;
2791 	u32 nritems;
2792 
2793 	slot = path->slots[0];
2794 
2795 	/*
2796 	 * try to push all the items after our slot into the
2797 	 * right leaf
2798 	 */
2799 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2800 	if (ret < 0)
2801 		return ret;
2802 
2803 	if (ret == 0)
2804 		progress++;
2805 
2806 	nritems = btrfs_header_nritems(path->nodes[0]);
2807 	/*
2808 	 * our goal is to get our slot at the start or end of a leaf.  If
2809 	 * we've done so we're done
2810 	 */
2811 	if (path->slots[0] == 0 || path->slots[0] == nritems)
2812 		return 0;
2813 
2814 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2815 		return 0;
2816 
2817 	/* try to push all the items before our slot into the next leaf */
2818 	slot = path->slots[0];
2819 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2820 	if (ret < 0)
2821 		return ret;
2822 
2823 	if (ret == 0)
2824 		progress++;
2825 
2826 	if (progress)
2827 		return 0;
2828 	return 1;
2829 }
2830 
2831 /*
2832  * split the path's leaf in two, making sure there is at least data_size
2833  * available for the resulting leaf level of the path.
2834  *
2835  * returns 0 if all went well and < 0 on failure.
2836  */
2837 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2838 			       struct btrfs_root *root,
2839 			       struct btrfs_key *ins_key,
2840 			       struct btrfs_path *path, int data_size,
2841 			       int extend)
2842 {
2843 	struct btrfs_disk_key disk_key;
2844 	struct extent_buffer *l;
2845 	u32 nritems;
2846 	int mid;
2847 	int slot;
2848 	struct extent_buffer *right;
2849 	int ret = 0;
2850 	int wret;
2851 	int split;
2852 	int num_doubles = 0;
2853 	int tried_avoid_double = 0;
2854 
2855 	l = path->nodes[0];
2856 	slot = path->slots[0];
2857 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
2858 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2859 		return -EOVERFLOW;
2860 
2861 	/* first try to make some room by pushing left and right */
2862 	if (data_size) {
2863 		wret = push_leaf_right(trans, root, path, data_size,
2864 				       data_size, 0, 0);
2865 		if (wret < 0)
2866 			return wret;
2867 		if (wret) {
2868 			wret = push_leaf_left(trans, root, path, data_size,
2869 					      data_size, 0, (u32)-1);
2870 			if (wret < 0)
2871 				return wret;
2872 		}
2873 		l = path->nodes[0];
2874 
2875 		/* did the pushes work? */
2876 		if (btrfs_leaf_free_space(root, l) >= data_size)
2877 			return 0;
2878 	}
2879 
2880 	if (!path->nodes[1]) {
2881 		ret = insert_new_root(trans, root, path, 1);
2882 		if (ret)
2883 			return ret;
2884 	}
2885 again:
2886 	split = 1;
2887 	l = path->nodes[0];
2888 	slot = path->slots[0];
2889 	nritems = btrfs_header_nritems(l);
2890 	mid = (nritems + 1) / 2;
2891 
2892 	if (mid <= slot) {
2893 		if (nritems == 1 ||
2894 		    leaf_space_used(l, mid, nritems - mid) + data_size >
2895 			BTRFS_LEAF_DATA_SIZE(root)) {
2896 			if (slot >= nritems) {
2897 				split = 0;
2898 			} else {
2899 				mid = slot;
2900 				if (mid != nritems &&
2901 				    leaf_space_used(l, mid, nritems - mid) +
2902 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2903 					if (data_size && !tried_avoid_double)
2904 						goto push_for_double;
2905 					split = 2;
2906 				}
2907 			}
2908 		}
2909 	} else {
2910 		if (leaf_space_used(l, 0, mid) + data_size >
2911 			BTRFS_LEAF_DATA_SIZE(root)) {
2912 			if (!extend && data_size && slot == 0) {
2913 				split = 0;
2914 			} else if ((extend || !data_size) && slot == 0) {
2915 				mid = 1;
2916 			} else {
2917 				mid = slot;
2918 				if (mid != nritems &&
2919 				    leaf_space_used(l, mid, nritems - mid) +
2920 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2921 					if (data_size && !tried_avoid_double)
2922 						goto push_for_double;
2923 					split = 2 ;
2924 				}
2925 			}
2926 		}
2927 	}
2928 
2929 	if (split == 0)
2930 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
2931 	else
2932 		btrfs_item_key(l, &disk_key, mid);
2933 
2934 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2935 					root->root_key.objectid,
2936 					&disk_key, 0, l->start, 0);
2937 	if (IS_ERR(right))
2938 		return PTR_ERR(right);
2939 
2940 	root_add_used(root, root->leafsize);
2941 
2942 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2943 	btrfs_set_header_bytenr(right, right->start);
2944 	btrfs_set_header_generation(right, trans->transid);
2945 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2946 	btrfs_set_header_owner(right, root->root_key.objectid);
2947 	btrfs_set_header_level(right, 0);
2948 	write_extent_buffer(right, root->fs_info->fsid,
2949 			    (unsigned long)btrfs_header_fsid(right),
2950 			    BTRFS_FSID_SIZE);
2951 
2952 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2953 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
2954 			    BTRFS_UUID_SIZE);
2955 
2956 	if (split == 0) {
2957 		if (mid <= slot) {
2958 			btrfs_set_header_nritems(right, 0);
2959 			wret = insert_ptr(trans, root, path,
2960 					  &disk_key, right->start,
2961 					  path->slots[1] + 1, 1);
2962 			if (wret)
2963 				ret = wret;
2964 
2965 			btrfs_tree_unlock(path->nodes[0]);
2966 			free_extent_buffer(path->nodes[0]);
2967 			path->nodes[0] = right;
2968 			path->slots[0] = 0;
2969 			path->slots[1] += 1;
2970 		} else {
2971 			btrfs_set_header_nritems(right, 0);
2972 			wret = insert_ptr(trans, root, path,
2973 					  &disk_key,
2974 					  right->start,
2975 					  path->slots[1], 1);
2976 			if (wret)
2977 				ret = wret;
2978 			btrfs_tree_unlock(path->nodes[0]);
2979 			free_extent_buffer(path->nodes[0]);
2980 			path->nodes[0] = right;
2981 			path->slots[0] = 0;
2982 			if (path->slots[1] == 0) {
2983 				wret = fixup_low_keys(trans, root,
2984 						path, &disk_key, 1);
2985 				if (wret)
2986 					ret = wret;
2987 			}
2988 		}
2989 		btrfs_mark_buffer_dirty(right);
2990 		return ret;
2991 	}
2992 
2993 	ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2994 	BUG_ON(ret);
2995 
2996 	if (split == 2) {
2997 		BUG_ON(num_doubles != 0);
2998 		num_doubles++;
2999 		goto again;
3000 	}
3001 
3002 	return ret;
3003 
3004 push_for_double:
3005 	push_for_double_split(trans, root, path, data_size);
3006 	tried_avoid_double = 1;
3007 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3008 		return 0;
3009 	goto again;
3010 }
3011 
3012 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3013 					 struct btrfs_root *root,
3014 					 struct btrfs_path *path, int ins_len)
3015 {
3016 	struct btrfs_key key;
3017 	struct extent_buffer *leaf;
3018 	struct btrfs_file_extent_item *fi;
3019 	u64 extent_len = 0;
3020 	u32 item_size;
3021 	int ret;
3022 
3023 	leaf = path->nodes[0];
3024 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3025 
3026 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3027 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3028 
3029 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3030 		return 0;
3031 
3032 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3033 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3034 		fi = btrfs_item_ptr(leaf, path->slots[0],
3035 				    struct btrfs_file_extent_item);
3036 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3037 	}
3038 	btrfs_release_path(path);
3039 
3040 	path->keep_locks = 1;
3041 	path->search_for_split = 1;
3042 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3043 	path->search_for_split = 0;
3044 	if (ret < 0)
3045 		goto err;
3046 
3047 	ret = -EAGAIN;
3048 	leaf = path->nodes[0];
3049 	/* if our item isn't there or got smaller, return now */
3050 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3051 		goto err;
3052 
3053 	/* the leaf has  changed, it now has room.  return now */
3054 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3055 		goto err;
3056 
3057 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3058 		fi = btrfs_item_ptr(leaf, path->slots[0],
3059 				    struct btrfs_file_extent_item);
3060 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3061 			goto err;
3062 	}
3063 
3064 	btrfs_set_path_blocking(path);
3065 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3066 	if (ret)
3067 		goto err;
3068 
3069 	path->keep_locks = 0;
3070 	btrfs_unlock_up_safe(path, 1);
3071 	return 0;
3072 err:
3073 	path->keep_locks = 0;
3074 	return ret;
3075 }
3076 
3077 static noinline int split_item(struct btrfs_trans_handle *trans,
3078 			       struct btrfs_root *root,
3079 			       struct btrfs_path *path,
3080 			       struct btrfs_key *new_key,
3081 			       unsigned long split_offset)
3082 {
3083 	struct extent_buffer *leaf;
3084 	struct btrfs_item *item;
3085 	struct btrfs_item *new_item;
3086 	int slot;
3087 	char *buf;
3088 	u32 nritems;
3089 	u32 item_size;
3090 	u32 orig_offset;
3091 	struct btrfs_disk_key disk_key;
3092 
3093 	leaf = path->nodes[0];
3094 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3095 
3096 	btrfs_set_path_blocking(path);
3097 
3098 	item = btrfs_item_nr(leaf, path->slots[0]);
3099 	orig_offset = btrfs_item_offset(leaf, item);
3100 	item_size = btrfs_item_size(leaf, item);
3101 
3102 	buf = kmalloc(item_size, GFP_NOFS);
3103 	if (!buf)
3104 		return -ENOMEM;
3105 
3106 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3107 			    path->slots[0]), item_size);
3108 
3109 	slot = path->slots[0] + 1;
3110 	nritems = btrfs_header_nritems(leaf);
3111 	if (slot != nritems) {
3112 		/* shift the items */
3113 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3114 				btrfs_item_nr_offset(slot),
3115 				(nritems - slot) * sizeof(struct btrfs_item));
3116 	}
3117 
3118 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3119 	btrfs_set_item_key(leaf, &disk_key, slot);
3120 
3121 	new_item = btrfs_item_nr(leaf, slot);
3122 
3123 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3124 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3125 
3126 	btrfs_set_item_offset(leaf, item,
3127 			      orig_offset + item_size - split_offset);
3128 	btrfs_set_item_size(leaf, item, split_offset);
3129 
3130 	btrfs_set_header_nritems(leaf, nritems + 1);
3131 
3132 	/* write the data for the start of the original item */
3133 	write_extent_buffer(leaf, buf,
3134 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3135 			    split_offset);
3136 
3137 	/* write the data for the new item */
3138 	write_extent_buffer(leaf, buf + split_offset,
3139 			    btrfs_item_ptr_offset(leaf, slot),
3140 			    item_size - split_offset);
3141 	btrfs_mark_buffer_dirty(leaf);
3142 
3143 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3144 	kfree(buf);
3145 	return 0;
3146 }
3147 
3148 /*
3149  * This function splits a single item into two items,
3150  * giving 'new_key' to the new item and splitting the
3151  * old one at split_offset (from the start of the item).
3152  *
3153  * The path may be released by this operation.  After
3154  * the split, the path is pointing to the old item.  The
3155  * new item is going to be in the same node as the old one.
3156  *
3157  * Note, the item being split must be smaller enough to live alone on
3158  * a tree block with room for one extra struct btrfs_item
3159  *
3160  * This allows us to split the item in place, keeping a lock on the
3161  * leaf the entire time.
3162  */
3163 int btrfs_split_item(struct btrfs_trans_handle *trans,
3164 		     struct btrfs_root *root,
3165 		     struct btrfs_path *path,
3166 		     struct btrfs_key *new_key,
3167 		     unsigned long split_offset)
3168 {
3169 	int ret;
3170 	ret = setup_leaf_for_split(trans, root, path,
3171 				   sizeof(struct btrfs_item));
3172 	if (ret)
3173 		return ret;
3174 
3175 	ret = split_item(trans, root, path, new_key, split_offset);
3176 	return ret;
3177 }
3178 
3179 /*
3180  * This function duplicate a item, giving 'new_key' to the new item.
3181  * It guarantees both items live in the same tree leaf and the new item
3182  * is contiguous with the original item.
3183  *
3184  * This allows us to split file extent in place, keeping a lock on the
3185  * leaf the entire time.
3186  */
3187 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3188 			 struct btrfs_root *root,
3189 			 struct btrfs_path *path,
3190 			 struct btrfs_key *new_key)
3191 {
3192 	struct extent_buffer *leaf;
3193 	int ret;
3194 	u32 item_size;
3195 
3196 	leaf = path->nodes[0];
3197 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3198 	ret = setup_leaf_for_split(trans, root, path,
3199 				   item_size + sizeof(struct btrfs_item));
3200 	if (ret)
3201 		return ret;
3202 
3203 	path->slots[0]++;
3204 	ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3205 				     item_size, item_size +
3206 				     sizeof(struct btrfs_item), 1);
3207 	BUG_ON(ret);
3208 
3209 	leaf = path->nodes[0];
3210 	memcpy_extent_buffer(leaf,
3211 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3212 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3213 			     item_size);
3214 	return 0;
3215 }
3216 
3217 /*
3218  * make the item pointed to by the path smaller.  new_size indicates
3219  * how small to make it, and from_end tells us if we just chop bytes
3220  * off the end of the item or if we shift the item to chop bytes off
3221  * the front.
3222  */
3223 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3224 			struct btrfs_root *root,
3225 			struct btrfs_path *path,
3226 			u32 new_size, int from_end)
3227 {
3228 	int slot;
3229 	struct extent_buffer *leaf;
3230 	struct btrfs_item *item;
3231 	u32 nritems;
3232 	unsigned int data_end;
3233 	unsigned int old_data_start;
3234 	unsigned int old_size;
3235 	unsigned int size_diff;
3236 	int i;
3237 
3238 	leaf = path->nodes[0];
3239 	slot = path->slots[0];
3240 
3241 	old_size = btrfs_item_size_nr(leaf, slot);
3242 	if (old_size == new_size)
3243 		return 0;
3244 
3245 	nritems = btrfs_header_nritems(leaf);
3246 	data_end = leaf_data_end(root, leaf);
3247 
3248 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3249 
3250 	size_diff = old_size - new_size;
3251 
3252 	BUG_ON(slot < 0);
3253 	BUG_ON(slot >= nritems);
3254 
3255 	/*
3256 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3257 	 */
3258 	/* first correct the data pointers */
3259 	for (i = slot; i < nritems; i++) {
3260 		u32 ioff;
3261 		item = btrfs_item_nr(leaf, i);
3262 
3263 		if (!leaf->map_token) {
3264 			map_extent_buffer(leaf, (unsigned long)item,
3265 					sizeof(struct btrfs_item),
3266 					&leaf->map_token, &leaf->kaddr,
3267 					&leaf->map_start, &leaf->map_len,
3268 					KM_USER1);
3269 		}
3270 
3271 		ioff = btrfs_item_offset(leaf, item);
3272 		btrfs_set_item_offset(leaf, item, ioff + size_diff);
3273 	}
3274 
3275 	if (leaf->map_token) {
3276 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3277 		leaf->map_token = NULL;
3278 	}
3279 
3280 	/* shift the data */
3281 	if (from_end) {
3282 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3283 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3284 			      data_end, old_data_start + new_size - data_end);
3285 	} else {
3286 		struct btrfs_disk_key disk_key;
3287 		u64 offset;
3288 
3289 		btrfs_item_key(leaf, &disk_key, slot);
3290 
3291 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3292 			unsigned long ptr;
3293 			struct btrfs_file_extent_item *fi;
3294 
3295 			fi = btrfs_item_ptr(leaf, slot,
3296 					    struct btrfs_file_extent_item);
3297 			fi = (struct btrfs_file_extent_item *)(
3298 			     (unsigned long)fi - size_diff);
3299 
3300 			if (btrfs_file_extent_type(leaf, fi) ==
3301 			    BTRFS_FILE_EXTENT_INLINE) {
3302 				ptr = btrfs_item_ptr_offset(leaf, slot);
3303 				memmove_extent_buffer(leaf, ptr,
3304 				      (unsigned long)fi,
3305 				      offsetof(struct btrfs_file_extent_item,
3306 						 disk_bytenr));
3307 			}
3308 		}
3309 
3310 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3311 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3312 			      data_end, old_data_start - data_end);
3313 
3314 		offset = btrfs_disk_key_offset(&disk_key);
3315 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3316 		btrfs_set_item_key(leaf, &disk_key, slot);
3317 		if (slot == 0)
3318 			fixup_low_keys(trans, root, path, &disk_key, 1);
3319 	}
3320 
3321 	item = btrfs_item_nr(leaf, slot);
3322 	btrfs_set_item_size(leaf, item, new_size);
3323 	btrfs_mark_buffer_dirty(leaf);
3324 
3325 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3326 		btrfs_print_leaf(root, leaf);
3327 		BUG();
3328 	}
3329 	return 0;
3330 }
3331 
3332 /*
3333  * make the item pointed to by the path bigger, data_size is the new size.
3334  */
3335 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3336 		      struct btrfs_root *root, struct btrfs_path *path,
3337 		      u32 data_size)
3338 {
3339 	int slot;
3340 	struct extent_buffer *leaf;
3341 	struct btrfs_item *item;
3342 	u32 nritems;
3343 	unsigned int data_end;
3344 	unsigned int old_data;
3345 	unsigned int old_size;
3346 	int i;
3347 
3348 	leaf = path->nodes[0];
3349 
3350 	nritems = btrfs_header_nritems(leaf);
3351 	data_end = leaf_data_end(root, leaf);
3352 
3353 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3354 		btrfs_print_leaf(root, leaf);
3355 		BUG();
3356 	}
3357 	slot = path->slots[0];
3358 	old_data = btrfs_item_end_nr(leaf, slot);
3359 
3360 	BUG_ON(slot < 0);
3361 	if (slot >= nritems) {
3362 		btrfs_print_leaf(root, leaf);
3363 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3364 		       slot, nritems);
3365 		BUG_ON(1);
3366 	}
3367 
3368 	/*
3369 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3370 	 */
3371 	/* first correct the data pointers */
3372 	for (i = slot; i < nritems; i++) {
3373 		u32 ioff;
3374 		item = btrfs_item_nr(leaf, i);
3375 
3376 		if (!leaf->map_token) {
3377 			map_extent_buffer(leaf, (unsigned long)item,
3378 					sizeof(struct btrfs_item),
3379 					&leaf->map_token, &leaf->kaddr,
3380 					&leaf->map_start, &leaf->map_len,
3381 					KM_USER1);
3382 		}
3383 		ioff = btrfs_item_offset(leaf, item);
3384 		btrfs_set_item_offset(leaf, item, ioff - data_size);
3385 	}
3386 
3387 	if (leaf->map_token) {
3388 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3389 		leaf->map_token = NULL;
3390 	}
3391 
3392 	/* shift the data */
3393 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3394 		      data_end - data_size, btrfs_leaf_data(leaf) +
3395 		      data_end, old_data - data_end);
3396 
3397 	data_end = old_data;
3398 	old_size = btrfs_item_size_nr(leaf, slot);
3399 	item = btrfs_item_nr(leaf, slot);
3400 	btrfs_set_item_size(leaf, item, old_size + data_size);
3401 	btrfs_mark_buffer_dirty(leaf);
3402 
3403 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3404 		btrfs_print_leaf(root, leaf);
3405 		BUG();
3406 	}
3407 	return 0;
3408 }
3409 
3410 /*
3411  * Given a key and some data, insert items into the tree.
3412  * This does all the path init required, making room in the tree if needed.
3413  * Returns the number of keys that were inserted.
3414  */
3415 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3416 			    struct btrfs_root *root,
3417 			    struct btrfs_path *path,
3418 			    struct btrfs_key *cpu_key, u32 *data_size,
3419 			    int nr)
3420 {
3421 	struct extent_buffer *leaf;
3422 	struct btrfs_item *item;
3423 	int ret = 0;
3424 	int slot;
3425 	int i;
3426 	u32 nritems;
3427 	u32 total_data = 0;
3428 	u32 total_size = 0;
3429 	unsigned int data_end;
3430 	struct btrfs_disk_key disk_key;
3431 	struct btrfs_key found_key;
3432 
3433 	for (i = 0; i < nr; i++) {
3434 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3435 		    BTRFS_LEAF_DATA_SIZE(root)) {
3436 			break;
3437 			nr = i;
3438 		}
3439 		total_data += data_size[i];
3440 		total_size += data_size[i] + sizeof(struct btrfs_item);
3441 	}
3442 	BUG_ON(nr == 0);
3443 
3444 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3445 	if (ret == 0)
3446 		return -EEXIST;
3447 	if (ret < 0)
3448 		goto out;
3449 
3450 	leaf = path->nodes[0];
3451 
3452 	nritems = btrfs_header_nritems(leaf);
3453 	data_end = leaf_data_end(root, leaf);
3454 
3455 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3456 		for (i = nr; i >= 0; i--) {
3457 			total_data -= data_size[i];
3458 			total_size -= data_size[i] + sizeof(struct btrfs_item);
3459 			if (total_size < btrfs_leaf_free_space(root, leaf))
3460 				break;
3461 		}
3462 		nr = i;
3463 	}
3464 
3465 	slot = path->slots[0];
3466 	BUG_ON(slot < 0);
3467 
3468 	if (slot != nritems) {
3469 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3470 
3471 		item = btrfs_item_nr(leaf, slot);
3472 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3473 
3474 		/* figure out how many keys we can insert in here */
3475 		total_data = data_size[0];
3476 		for (i = 1; i < nr; i++) {
3477 			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3478 				break;
3479 			total_data += data_size[i];
3480 		}
3481 		nr = i;
3482 
3483 		if (old_data < data_end) {
3484 			btrfs_print_leaf(root, leaf);
3485 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3486 			       slot, old_data, data_end);
3487 			BUG_ON(1);
3488 		}
3489 		/*
3490 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3491 		 */
3492 		/* first correct the data pointers */
3493 		WARN_ON(leaf->map_token);
3494 		for (i = slot; i < nritems; i++) {
3495 			u32 ioff;
3496 
3497 			item = btrfs_item_nr(leaf, i);
3498 			if (!leaf->map_token) {
3499 				map_extent_buffer(leaf, (unsigned long)item,
3500 					sizeof(struct btrfs_item),
3501 					&leaf->map_token, &leaf->kaddr,
3502 					&leaf->map_start, &leaf->map_len,
3503 					KM_USER1);
3504 			}
3505 
3506 			ioff = btrfs_item_offset(leaf, item);
3507 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3508 		}
3509 		if (leaf->map_token) {
3510 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3511 			leaf->map_token = NULL;
3512 		}
3513 
3514 		/* shift the items */
3515 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3516 			      btrfs_item_nr_offset(slot),
3517 			      (nritems - slot) * sizeof(struct btrfs_item));
3518 
3519 		/* shift the data */
3520 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3521 			      data_end - total_data, btrfs_leaf_data(leaf) +
3522 			      data_end, old_data - data_end);
3523 		data_end = old_data;
3524 	} else {
3525 		/*
3526 		 * this sucks but it has to be done, if we are inserting at
3527 		 * the end of the leaf only insert 1 of the items, since we
3528 		 * have no way of knowing whats on the next leaf and we'd have
3529 		 * to drop our current locks to figure it out
3530 		 */
3531 		nr = 1;
3532 	}
3533 
3534 	/* setup the item for the new data */
3535 	for (i = 0; i < nr; i++) {
3536 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3537 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3538 		item = btrfs_item_nr(leaf, slot + i);
3539 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3540 		data_end -= data_size[i];
3541 		btrfs_set_item_size(leaf, item, data_size[i]);
3542 	}
3543 	btrfs_set_header_nritems(leaf, nritems + nr);
3544 	btrfs_mark_buffer_dirty(leaf);
3545 
3546 	ret = 0;
3547 	if (slot == 0) {
3548 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3549 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3550 	}
3551 
3552 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3553 		btrfs_print_leaf(root, leaf);
3554 		BUG();
3555 	}
3556 out:
3557 	if (!ret)
3558 		ret = nr;
3559 	return ret;
3560 }
3561 
3562 /*
3563  * this is a helper for btrfs_insert_empty_items, the main goal here is
3564  * to save stack depth by doing the bulk of the work in a function
3565  * that doesn't call btrfs_search_slot
3566  */
3567 int setup_items_for_insert(struct btrfs_trans_handle *trans,
3568 			   struct btrfs_root *root, struct btrfs_path *path,
3569 			   struct btrfs_key *cpu_key, u32 *data_size,
3570 			   u32 total_data, u32 total_size, int nr)
3571 {
3572 	struct btrfs_item *item;
3573 	int i;
3574 	u32 nritems;
3575 	unsigned int data_end;
3576 	struct btrfs_disk_key disk_key;
3577 	int ret;
3578 	struct extent_buffer *leaf;
3579 	int slot;
3580 
3581 	leaf = path->nodes[0];
3582 	slot = path->slots[0];
3583 
3584 	nritems = btrfs_header_nritems(leaf);
3585 	data_end = leaf_data_end(root, leaf);
3586 
3587 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3588 		btrfs_print_leaf(root, leaf);
3589 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3590 		       total_size, btrfs_leaf_free_space(root, leaf));
3591 		BUG();
3592 	}
3593 
3594 	if (slot != nritems) {
3595 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3596 
3597 		if (old_data < data_end) {
3598 			btrfs_print_leaf(root, leaf);
3599 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3600 			       slot, old_data, data_end);
3601 			BUG_ON(1);
3602 		}
3603 		/*
3604 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3605 		 */
3606 		/* first correct the data pointers */
3607 		WARN_ON(leaf->map_token);
3608 		for (i = slot; i < nritems; i++) {
3609 			u32 ioff;
3610 
3611 			item = btrfs_item_nr(leaf, i);
3612 			if (!leaf->map_token) {
3613 				map_extent_buffer(leaf, (unsigned long)item,
3614 					sizeof(struct btrfs_item),
3615 					&leaf->map_token, &leaf->kaddr,
3616 					&leaf->map_start, &leaf->map_len,
3617 					KM_USER1);
3618 			}
3619 
3620 			ioff = btrfs_item_offset(leaf, item);
3621 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3622 		}
3623 		if (leaf->map_token) {
3624 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3625 			leaf->map_token = NULL;
3626 		}
3627 
3628 		/* shift the items */
3629 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3630 			      btrfs_item_nr_offset(slot),
3631 			      (nritems - slot) * sizeof(struct btrfs_item));
3632 
3633 		/* shift the data */
3634 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3635 			      data_end - total_data, btrfs_leaf_data(leaf) +
3636 			      data_end, old_data - data_end);
3637 		data_end = old_data;
3638 	}
3639 
3640 	/* setup the item for the new data */
3641 	for (i = 0; i < nr; i++) {
3642 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3643 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3644 		item = btrfs_item_nr(leaf, slot + i);
3645 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3646 		data_end -= data_size[i];
3647 		btrfs_set_item_size(leaf, item, data_size[i]);
3648 	}
3649 
3650 	btrfs_set_header_nritems(leaf, nritems + nr);
3651 
3652 	ret = 0;
3653 	if (slot == 0) {
3654 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3655 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3656 	}
3657 	btrfs_unlock_up_safe(path, 1);
3658 	btrfs_mark_buffer_dirty(leaf);
3659 
3660 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3661 		btrfs_print_leaf(root, leaf);
3662 		BUG();
3663 	}
3664 	return ret;
3665 }
3666 
3667 /*
3668  * Given a key and some data, insert items into the tree.
3669  * This does all the path init required, making room in the tree if needed.
3670  */
3671 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3672 			    struct btrfs_root *root,
3673 			    struct btrfs_path *path,
3674 			    struct btrfs_key *cpu_key, u32 *data_size,
3675 			    int nr)
3676 {
3677 	int ret = 0;
3678 	int slot;
3679 	int i;
3680 	u32 total_size = 0;
3681 	u32 total_data = 0;
3682 
3683 	for (i = 0; i < nr; i++)
3684 		total_data += data_size[i];
3685 
3686 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3687 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3688 	if (ret == 0)
3689 		return -EEXIST;
3690 	if (ret < 0)
3691 		goto out;
3692 
3693 	slot = path->slots[0];
3694 	BUG_ON(slot < 0);
3695 
3696 	ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3697 			       total_data, total_size, nr);
3698 
3699 out:
3700 	return ret;
3701 }
3702 
3703 /*
3704  * Given a key and some data, insert an item into the tree.
3705  * This does all the path init required, making room in the tree if needed.
3706  */
3707 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3708 		      *root, struct btrfs_key *cpu_key, void *data, u32
3709 		      data_size)
3710 {
3711 	int ret = 0;
3712 	struct btrfs_path *path;
3713 	struct extent_buffer *leaf;
3714 	unsigned long ptr;
3715 
3716 	path = btrfs_alloc_path();
3717 	if (!path)
3718 		return -ENOMEM;
3719 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3720 	if (!ret) {
3721 		leaf = path->nodes[0];
3722 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3723 		write_extent_buffer(leaf, data, ptr, data_size);
3724 		btrfs_mark_buffer_dirty(leaf);
3725 	}
3726 	btrfs_free_path(path);
3727 	return ret;
3728 }
3729 
3730 /*
3731  * delete the pointer from a given node.
3732  *
3733  * the tree should have been previously balanced so the deletion does not
3734  * empty a node.
3735  */
3736 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3737 		   struct btrfs_path *path, int level, int slot)
3738 {
3739 	struct extent_buffer *parent = path->nodes[level];
3740 	u32 nritems;
3741 	int ret = 0;
3742 	int wret;
3743 
3744 	nritems = btrfs_header_nritems(parent);
3745 	if (slot != nritems - 1) {
3746 		memmove_extent_buffer(parent,
3747 			      btrfs_node_key_ptr_offset(slot),
3748 			      btrfs_node_key_ptr_offset(slot + 1),
3749 			      sizeof(struct btrfs_key_ptr) *
3750 			      (nritems - slot - 1));
3751 	}
3752 	nritems--;
3753 	btrfs_set_header_nritems(parent, nritems);
3754 	if (nritems == 0 && parent == root->node) {
3755 		BUG_ON(btrfs_header_level(root->node) != 1);
3756 		/* just turn the root into a leaf and break */
3757 		btrfs_set_header_level(root->node, 0);
3758 	} else if (slot == 0) {
3759 		struct btrfs_disk_key disk_key;
3760 
3761 		btrfs_node_key(parent, &disk_key, 0);
3762 		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3763 		if (wret)
3764 			ret = wret;
3765 	}
3766 	btrfs_mark_buffer_dirty(parent);
3767 	return ret;
3768 }
3769 
3770 /*
3771  * a helper function to delete the leaf pointed to by path->slots[1] and
3772  * path->nodes[1].
3773  *
3774  * This deletes the pointer in path->nodes[1] and frees the leaf
3775  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3776  *
3777  * The path must have already been setup for deleting the leaf, including
3778  * all the proper balancing.  path->nodes[1] must be locked.
3779  */
3780 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3781 				   struct btrfs_root *root,
3782 				   struct btrfs_path *path,
3783 				   struct extent_buffer *leaf)
3784 {
3785 	int ret;
3786 
3787 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3788 	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3789 	if (ret)
3790 		return ret;
3791 
3792 	/*
3793 	 * btrfs_free_extent is expensive, we want to make sure we
3794 	 * aren't holding any locks when we call it
3795 	 */
3796 	btrfs_unlock_up_safe(path, 0);
3797 
3798 	root_sub_used(root, leaf->len);
3799 
3800 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
3801 	return 0;
3802 }
3803 /*
3804  * delete the item at the leaf level in path.  If that empties
3805  * the leaf, remove it from the tree
3806  */
3807 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3808 		    struct btrfs_path *path, int slot, int nr)
3809 {
3810 	struct extent_buffer *leaf;
3811 	struct btrfs_item *item;
3812 	int last_off;
3813 	int dsize = 0;
3814 	int ret = 0;
3815 	int wret;
3816 	int i;
3817 	u32 nritems;
3818 
3819 	leaf = path->nodes[0];
3820 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3821 
3822 	for (i = 0; i < nr; i++)
3823 		dsize += btrfs_item_size_nr(leaf, slot + i);
3824 
3825 	nritems = btrfs_header_nritems(leaf);
3826 
3827 	if (slot + nr != nritems) {
3828 		int data_end = leaf_data_end(root, leaf);
3829 
3830 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3831 			      data_end + dsize,
3832 			      btrfs_leaf_data(leaf) + data_end,
3833 			      last_off - data_end);
3834 
3835 		for (i = slot + nr; i < nritems; i++) {
3836 			u32 ioff;
3837 
3838 			item = btrfs_item_nr(leaf, i);
3839 			if (!leaf->map_token) {
3840 				map_extent_buffer(leaf, (unsigned long)item,
3841 					sizeof(struct btrfs_item),
3842 					&leaf->map_token, &leaf->kaddr,
3843 					&leaf->map_start, &leaf->map_len,
3844 					KM_USER1);
3845 			}
3846 			ioff = btrfs_item_offset(leaf, item);
3847 			btrfs_set_item_offset(leaf, item, ioff + dsize);
3848 		}
3849 
3850 		if (leaf->map_token) {
3851 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3852 			leaf->map_token = NULL;
3853 		}
3854 
3855 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3856 			      btrfs_item_nr_offset(slot + nr),
3857 			      sizeof(struct btrfs_item) *
3858 			      (nritems - slot - nr));
3859 	}
3860 	btrfs_set_header_nritems(leaf, nritems - nr);
3861 	nritems -= nr;
3862 
3863 	/* delete the leaf if we've emptied it */
3864 	if (nritems == 0) {
3865 		if (leaf == root->node) {
3866 			btrfs_set_header_level(leaf, 0);
3867 		} else {
3868 			btrfs_set_path_blocking(path);
3869 			clean_tree_block(trans, root, leaf);
3870 			ret = btrfs_del_leaf(trans, root, path, leaf);
3871 			BUG_ON(ret);
3872 		}
3873 	} else {
3874 		int used = leaf_space_used(leaf, 0, nritems);
3875 		if (slot == 0) {
3876 			struct btrfs_disk_key disk_key;
3877 
3878 			btrfs_item_key(leaf, &disk_key, 0);
3879 			wret = fixup_low_keys(trans, root, path,
3880 					      &disk_key, 1);
3881 			if (wret)
3882 				ret = wret;
3883 		}
3884 
3885 		/* delete the leaf if it is mostly empty */
3886 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3887 			/* push_leaf_left fixes the path.
3888 			 * make sure the path still points to our leaf
3889 			 * for possible call to del_ptr below
3890 			 */
3891 			slot = path->slots[1];
3892 			extent_buffer_get(leaf);
3893 
3894 			btrfs_set_path_blocking(path);
3895 			wret = push_leaf_left(trans, root, path, 1, 1,
3896 					      1, (u32)-1);
3897 			if (wret < 0 && wret != -ENOSPC)
3898 				ret = wret;
3899 
3900 			if (path->nodes[0] == leaf &&
3901 			    btrfs_header_nritems(leaf)) {
3902 				wret = push_leaf_right(trans, root, path, 1,
3903 						       1, 1, 0);
3904 				if (wret < 0 && wret != -ENOSPC)
3905 					ret = wret;
3906 			}
3907 
3908 			if (btrfs_header_nritems(leaf) == 0) {
3909 				path->slots[1] = slot;
3910 				ret = btrfs_del_leaf(trans, root, path, leaf);
3911 				BUG_ON(ret);
3912 				free_extent_buffer(leaf);
3913 			} else {
3914 				/* if we're still in the path, make sure
3915 				 * we're dirty.  Otherwise, one of the
3916 				 * push_leaf functions must have already
3917 				 * dirtied this buffer
3918 				 */
3919 				if (path->nodes[0] == leaf)
3920 					btrfs_mark_buffer_dirty(leaf);
3921 				free_extent_buffer(leaf);
3922 			}
3923 		} else {
3924 			btrfs_mark_buffer_dirty(leaf);
3925 		}
3926 	}
3927 	return ret;
3928 }
3929 
3930 /*
3931  * search the tree again to find a leaf with lesser keys
3932  * returns 0 if it found something or 1 if there are no lesser leaves.
3933  * returns < 0 on io errors.
3934  *
3935  * This may release the path, and so you may lose any locks held at the
3936  * time you call it.
3937  */
3938 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3939 {
3940 	struct btrfs_key key;
3941 	struct btrfs_disk_key found_key;
3942 	int ret;
3943 
3944 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3945 
3946 	if (key.offset > 0)
3947 		key.offset--;
3948 	else if (key.type > 0)
3949 		key.type--;
3950 	else if (key.objectid > 0)
3951 		key.objectid--;
3952 	else
3953 		return 1;
3954 
3955 	btrfs_release_path(path);
3956 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3957 	if (ret < 0)
3958 		return ret;
3959 	btrfs_item_key(path->nodes[0], &found_key, 0);
3960 	ret = comp_keys(&found_key, &key);
3961 	if (ret < 0)
3962 		return 0;
3963 	return 1;
3964 }
3965 
3966 /*
3967  * A helper function to walk down the tree starting at min_key, and looking
3968  * for nodes or leaves that are either in cache or have a minimum
3969  * transaction id.  This is used by the btree defrag code, and tree logging
3970  *
3971  * This does not cow, but it does stuff the starting key it finds back
3972  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3973  * key and get a writable path.
3974  *
3975  * This does lock as it descends, and path->keep_locks should be set
3976  * to 1 by the caller.
3977  *
3978  * This honors path->lowest_level to prevent descent past a given level
3979  * of the tree.
3980  *
3981  * min_trans indicates the oldest transaction that you are interested
3982  * in walking through.  Any nodes or leaves older than min_trans are
3983  * skipped over (without reading them).
3984  *
3985  * returns zero if something useful was found, < 0 on error and 1 if there
3986  * was nothing in the tree that matched the search criteria.
3987  */
3988 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3989 			 struct btrfs_key *max_key,
3990 			 struct btrfs_path *path, int cache_only,
3991 			 u64 min_trans)
3992 {
3993 	struct extent_buffer *cur;
3994 	struct btrfs_key found_key;
3995 	int slot;
3996 	int sret;
3997 	u32 nritems;
3998 	int level;
3999 	int ret = 1;
4000 
4001 	WARN_ON(!path->keep_locks);
4002 again:
4003 	cur = btrfs_lock_root_node(root);
4004 	level = btrfs_header_level(cur);
4005 	WARN_ON(path->nodes[level]);
4006 	path->nodes[level] = cur;
4007 	path->locks[level] = 1;
4008 
4009 	if (btrfs_header_generation(cur) < min_trans) {
4010 		ret = 1;
4011 		goto out;
4012 	}
4013 	while (1) {
4014 		nritems = btrfs_header_nritems(cur);
4015 		level = btrfs_header_level(cur);
4016 		sret = bin_search(cur, min_key, level, &slot);
4017 
4018 		/* at the lowest level, we're done, setup the path and exit */
4019 		if (level == path->lowest_level) {
4020 			if (slot >= nritems)
4021 				goto find_next_key;
4022 			ret = 0;
4023 			path->slots[level] = slot;
4024 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4025 			goto out;
4026 		}
4027 		if (sret && slot > 0)
4028 			slot--;
4029 		/*
4030 		 * check this node pointer against the cache_only and
4031 		 * min_trans parameters.  If it isn't in cache or is too
4032 		 * old, skip to the next one.
4033 		 */
4034 		while (slot < nritems) {
4035 			u64 blockptr;
4036 			u64 gen;
4037 			struct extent_buffer *tmp;
4038 			struct btrfs_disk_key disk_key;
4039 
4040 			blockptr = btrfs_node_blockptr(cur, slot);
4041 			gen = btrfs_node_ptr_generation(cur, slot);
4042 			if (gen < min_trans) {
4043 				slot++;
4044 				continue;
4045 			}
4046 			if (!cache_only)
4047 				break;
4048 
4049 			if (max_key) {
4050 				btrfs_node_key(cur, &disk_key, slot);
4051 				if (comp_keys(&disk_key, max_key) >= 0) {
4052 					ret = 1;
4053 					goto out;
4054 				}
4055 			}
4056 
4057 			tmp = btrfs_find_tree_block(root, blockptr,
4058 					    btrfs_level_size(root, level - 1));
4059 
4060 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4061 				free_extent_buffer(tmp);
4062 				break;
4063 			}
4064 			if (tmp)
4065 				free_extent_buffer(tmp);
4066 			slot++;
4067 		}
4068 find_next_key:
4069 		/*
4070 		 * we didn't find a candidate key in this node, walk forward
4071 		 * and find another one
4072 		 */
4073 		if (slot >= nritems) {
4074 			path->slots[level] = slot;
4075 			btrfs_set_path_blocking(path);
4076 			sret = btrfs_find_next_key(root, path, min_key, level,
4077 						  cache_only, min_trans);
4078 			if (sret == 0) {
4079 				btrfs_release_path(path);
4080 				goto again;
4081 			} else {
4082 				goto out;
4083 			}
4084 		}
4085 		/* save our key for returning back */
4086 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4087 		path->slots[level] = slot;
4088 		if (level == path->lowest_level) {
4089 			ret = 0;
4090 			unlock_up(path, level, 1);
4091 			goto out;
4092 		}
4093 		btrfs_set_path_blocking(path);
4094 		cur = read_node_slot(root, cur, slot);
4095 		BUG_ON(!cur);
4096 
4097 		btrfs_tree_lock(cur);
4098 
4099 		path->locks[level - 1] = 1;
4100 		path->nodes[level - 1] = cur;
4101 		unlock_up(path, level, 1);
4102 		btrfs_clear_path_blocking(path, NULL);
4103 	}
4104 out:
4105 	if (ret == 0)
4106 		memcpy(min_key, &found_key, sizeof(found_key));
4107 	btrfs_set_path_blocking(path);
4108 	return ret;
4109 }
4110 
4111 /*
4112  * this is similar to btrfs_next_leaf, but does not try to preserve
4113  * and fixup the path.  It looks for and returns the next key in the
4114  * tree based on the current path and the cache_only and min_trans
4115  * parameters.
4116  *
4117  * 0 is returned if another key is found, < 0 if there are any errors
4118  * and 1 is returned if there are no higher keys in the tree
4119  *
4120  * path->keep_locks should be set to 1 on the search made before
4121  * calling this function.
4122  */
4123 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4124 			struct btrfs_key *key, int level,
4125 			int cache_only, u64 min_trans)
4126 {
4127 	int slot;
4128 	struct extent_buffer *c;
4129 
4130 	WARN_ON(!path->keep_locks);
4131 	while (level < BTRFS_MAX_LEVEL) {
4132 		if (!path->nodes[level])
4133 			return 1;
4134 
4135 		slot = path->slots[level] + 1;
4136 		c = path->nodes[level];
4137 next:
4138 		if (slot >= btrfs_header_nritems(c)) {
4139 			int ret;
4140 			int orig_lowest;
4141 			struct btrfs_key cur_key;
4142 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4143 			    !path->nodes[level + 1])
4144 				return 1;
4145 
4146 			if (path->locks[level + 1]) {
4147 				level++;
4148 				continue;
4149 			}
4150 
4151 			slot = btrfs_header_nritems(c) - 1;
4152 			if (level == 0)
4153 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4154 			else
4155 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4156 
4157 			orig_lowest = path->lowest_level;
4158 			btrfs_release_path(path);
4159 			path->lowest_level = level;
4160 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4161 						0, 0);
4162 			path->lowest_level = orig_lowest;
4163 			if (ret < 0)
4164 				return ret;
4165 
4166 			c = path->nodes[level];
4167 			slot = path->slots[level];
4168 			if (ret == 0)
4169 				slot++;
4170 			goto next;
4171 		}
4172 
4173 		if (level == 0)
4174 			btrfs_item_key_to_cpu(c, key, slot);
4175 		else {
4176 			u64 blockptr = btrfs_node_blockptr(c, slot);
4177 			u64 gen = btrfs_node_ptr_generation(c, slot);
4178 
4179 			if (cache_only) {
4180 				struct extent_buffer *cur;
4181 				cur = btrfs_find_tree_block(root, blockptr,
4182 					    btrfs_level_size(root, level - 1));
4183 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4184 					slot++;
4185 					if (cur)
4186 						free_extent_buffer(cur);
4187 					goto next;
4188 				}
4189 				free_extent_buffer(cur);
4190 			}
4191 			if (gen < min_trans) {
4192 				slot++;
4193 				goto next;
4194 			}
4195 			btrfs_node_key_to_cpu(c, key, slot);
4196 		}
4197 		return 0;
4198 	}
4199 	return 1;
4200 }
4201 
4202 /*
4203  * search the tree again to find a leaf with greater keys
4204  * returns 0 if it found something or 1 if there are no greater leaves.
4205  * returns < 0 on io errors.
4206  */
4207 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4208 {
4209 	int slot;
4210 	int level;
4211 	struct extent_buffer *c;
4212 	struct extent_buffer *next;
4213 	struct btrfs_key key;
4214 	u32 nritems;
4215 	int ret;
4216 	int old_spinning = path->leave_spinning;
4217 	int force_blocking = 0;
4218 
4219 	nritems = btrfs_header_nritems(path->nodes[0]);
4220 	if (nritems == 0)
4221 		return 1;
4222 
4223 	/*
4224 	 * we take the blocks in an order that upsets lockdep.  Using
4225 	 * blocking mode is the only way around it.
4226 	 */
4227 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4228 	force_blocking = 1;
4229 #endif
4230 
4231 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4232 again:
4233 	level = 1;
4234 	next = NULL;
4235 	btrfs_release_path(path);
4236 
4237 	path->keep_locks = 1;
4238 
4239 	if (!force_blocking)
4240 		path->leave_spinning = 1;
4241 
4242 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4243 	path->keep_locks = 0;
4244 
4245 	if (ret < 0)
4246 		return ret;
4247 
4248 	nritems = btrfs_header_nritems(path->nodes[0]);
4249 	/*
4250 	 * by releasing the path above we dropped all our locks.  A balance
4251 	 * could have added more items next to the key that used to be
4252 	 * at the very end of the block.  So, check again here and
4253 	 * advance the path if there are now more items available.
4254 	 */
4255 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4256 		if (ret == 0)
4257 			path->slots[0]++;
4258 		ret = 0;
4259 		goto done;
4260 	}
4261 
4262 	while (level < BTRFS_MAX_LEVEL) {
4263 		if (!path->nodes[level]) {
4264 			ret = 1;
4265 			goto done;
4266 		}
4267 
4268 		slot = path->slots[level] + 1;
4269 		c = path->nodes[level];
4270 		if (slot >= btrfs_header_nritems(c)) {
4271 			level++;
4272 			if (level == BTRFS_MAX_LEVEL) {
4273 				ret = 1;
4274 				goto done;
4275 			}
4276 			continue;
4277 		}
4278 
4279 		if (next) {
4280 			btrfs_tree_unlock(next);
4281 			free_extent_buffer(next);
4282 		}
4283 
4284 		next = c;
4285 		ret = read_block_for_search(NULL, root, path, &next, level,
4286 					    slot, &key);
4287 		if (ret == -EAGAIN)
4288 			goto again;
4289 
4290 		if (ret < 0) {
4291 			btrfs_release_path(path);
4292 			goto done;
4293 		}
4294 
4295 		if (!path->skip_locking) {
4296 			ret = btrfs_try_spin_lock(next);
4297 			if (!ret) {
4298 				btrfs_set_path_blocking(path);
4299 				btrfs_tree_lock(next);
4300 				if (!force_blocking)
4301 					btrfs_clear_path_blocking(path, next);
4302 			}
4303 			if (force_blocking)
4304 				btrfs_set_lock_blocking(next);
4305 		}
4306 		break;
4307 	}
4308 	path->slots[level] = slot;
4309 	while (1) {
4310 		level--;
4311 		c = path->nodes[level];
4312 		if (path->locks[level])
4313 			btrfs_tree_unlock(c);
4314 
4315 		free_extent_buffer(c);
4316 		path->nodes[level] = next;
4317 		path->slots[level] = 0;
4318 		if (!path->skip_locking)
4319 			path->locks[level] = 1;
4320 
4321 		if (!level)
4322 			break;
4323 
4324 		ret = read_block_for_search(NULL, root, path, &next, level,
4325 					    0, &key);
4326 		if (ret == -EAGAIN)
4327 			goto again;
4328 
4329 		if (ret < 0) {
4330 			btrfs_release_path(path);
4331 			goto done;
4332 		}
4333 
4334 		if (!path->skip_locking) {
4335 			btrfs_assert_tree_locked(path->nodes[level]);
4336 			ret = btrfs_try_spin_lock(next);
4337 			if (!ret) {
4338 				btrfs_set_path_blocking(path);
4339 				btrfs_tree_lock(next);
4340 				if (!force_blocking)
4341 					btrfs_clear_path_blocking(path, next);
4342 			}
4343 			if (force_blocking)
4344 				btrfs_set_lock_blocking(next);
4345 		}
4346 	}
4347 	ret = 0;
4348 done:
4349 	unlock_up(path, 0, 1);
4350 	path->leave_spinning = old_spinning;
4351 	if (!old_spinning)
4352 		btrfs_set_path_blocking(path);
4353 
4354 	return ret;
4355 }
4356 
4357 /*
4358  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4359  * searching until it gets past min_objectid or finds an item of 'type'
4360  *
4361  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4362  */
4363 int btrfs_previous_item(struct btrfs_root *root,
4364 			struct btrfs_path *path, u64 min_objectid,
4365 			int type)
4366 {
4367 	struct btrfs_key found_key;
4368 	struct extent_buffer *leaf;
4369 	u32 nritems;
4370 	int ret;
4371 
4372 	while (1) {
4373 		if (path->slots[0] == 0) {
4374 			btrfs_set_path_blocking(path);
4375 			ret = btrfs_prev_leaf(root, path);
4376 			if (ret != 0)
4377 				return ret;
4378 		} else {
4379 			path->slots[0]--;
4380 		}
4381 		leaf = path->nodes[0];
4382 		nritems = btrfs_header_nritems(leaf);
4383 		if (nritems == 0)
4384 			return 1;
4385 		if (path->slots[0] == nritems)
4386 			path->slots[0]--;
4387 
4388 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4389 		if (found_key.objectid < min_objectid)
4390 			break;
4391 		if (found_key.type == type)
4392 			return 0;
4393 		if (found_key.objectid == min_objectid &&
4394 		    found_key.type < type)
4395 			break;
4396 	}
4397 	return 1;
4398 }
4399