1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "print-tree.h" 25 #include "locking.h" 26 27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 28 *root, struct btrfs_path *path, int level); 29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_key *ins_key, 31 struct btrfs_path *path, int data_size, int extend); 32 static int push_node_left(struct btrfs_trans_handle *trans, 33 struct btrfs_root *root, struct extent_buffer *dst, 34 struct extent_buffer *src, int empty); 35 static int balance_node_right(struct btrfs_trans_handle *trans, 36 struct btrfs_root *root, 37 struct extent_buffer *dst_buf, 38 struct extent_buffer *src_buf); 39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 40 struct btrfs_path *path, int level, int slot); 41 42 struct btrfs_path *btrfs_alloc_path(void) 43 { 44 struct btrfs_path *path; 45 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 46 return path; 47 } 48 49 /* 50 * set all locked nodes in the path to blocking locks. This should 51 * be done before scheduling 52 */ 53 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 54 { 55 int i; 56 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 57 if (p->nodes[i] && p->locks[i]) 58 btrfs_set_lock_blocking(p->nodes[i]); 59 } 60 } 61 62 /* 63 * reset all the locked nodes in the patch to spinning locks. 64 * 65 * held is used to keep lockdep happy, when lockdep is enabled 66 * we set held to a blocking lock before we go around and 67 * retake all the spinlocks in the path. You can safely use NULL 68 * for held 69 */ 70 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 71 struct extent_buffer *held) 72 { 73 int i; 74 75 #ifdef CONFIG_DEBUG_LOCK_ALLOC 76 /* lockdep really cares that we take all of these spinlocks 77 * in the right order. If any of the locks in the path are not 78 * currently blocking, it is going to complain. So, make really 79 * really sure by forcing the path to blocking before we clear 80 * the path blocking. 81 */ 82 if (held) 83 btrfs_set_lock_blocking(held); 84 btrfs_set_path_blocking(p); 85 #endif 86 87 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 88 if (p->nodes[i] && p->locks[i]) 89 btrfs_clear_lock_blocking(p->nodes[i]); 90 } 91 92 #ifdef CONFIG_DEBUG_LOCK_ALLOC 93 if (held) 94 btrfs_clear_lock_blocking(held); 95 #endif 96 } 97 98 /* this also releases the path */ 99 void btrfs_free_path(struct btrfs_path *p) 100 { 101 if (!p) 102 return; 103 btrfs_release_path(p); 104 kmem_cache_free(btrfs_path_cachep, p); 105 } 106 107 /* 108 * path release drops references on the extent buffers in the path 109 * and it drops any locks held by this path 110 * 111 * It is safe to call this on paths that no locks or extent buffers held. 112 */ 113 noinline void btrfs_release_path(struct btrfs_path *p) 114 { 115 int i; 116 117 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 118 p->slots[i] = 0; 119 if (!p->nodes[i]) 120 continue; 121 if (p->locks[i]) { 122 btrfs_tree_unlock(p->nodes[i]); 123 p->locks[i] = 0; 124 } 125 free_extent_buffer(p->nodes[i]); 126 p->nodes[i] = NULL; 127 } 128 } 129 130 /* 131 * safely gets a reference on the root node of a tree. A lock 132 * is not taken, so a concurrent writer may put a different node 133 * at the root of the tree. See btrfs_lock_root_node for the 134 * looping required. 135 * 136 * The extent buffer returned by this has a reference taken, so 137 * it won't disappear. It may stop being the root of the tree 138 * at any time because there are no locks held. 139 */ 140 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 141 { 142 struct extent_buffer *eb; 143 144 rcu_read_lock(); 145 eb = rcu_dereference(root->node); 146 extent_buffer_get(eb); 147 rcu_read_unlock(); 148 return eb; 149 } 150 151 /* loop around taking references on and locking the root node of the 152 * tree until you end up with a lock on the root. A locked buffer 153 * is returned, with a reference held. 154 */ 155 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 156 { 157 struct extent_buffer *eb; 158 159 while (1) { 160 eb = btrfs_root_node(root); 161 btrfs_tree_lock(eb); 162 if (eb == root->node) 163 break; 164 btrfs_tree_unlock(eb); 165 free_extent_buffer(eb); 166 } 167 return eb; 168 } 169 170 /* cowonly root (everything not a reference counted cow subvolume), just get 171 * put onto a simple dirty list. transaction.c walks this to make sure they 172 * get properly updated on disk. 173 */ 174 static void add_root_to_dirty_list(struct btrfs_root *root) 175 { 176 if (root->track_dirty && list_empty(&root->dirty_list)) { 177 list_add(&root->dirty_list, 178 &root->fs_info->dirty_cowonly_roots); 179 } 180 } 181 182 /* 183 * used by snapshot creation to make a copy of a root for a tree with 184 * a given objectid. The buffer with the new root node is returned in 185 * cow_ret, and this func returns zero on success or a negative error code. 186 */ 187 int btrfs_copy_root(struct btrfs_trans_handle *trans, 188 struct btrfs_root *root, 189 struct extent_buffer *buf, 190 struct extent_buffer **cow_ret, u64 new_root_objectid) 191 { 192 struct extent_buffer *cow; 193 int ret = 0; 194 int level; 195 struct btrfs_disk_key disk_key; 196 197 WARN_ON(root->ref_cows && trans->transid != 198 root->fs_info->running_transaction->transid); 199 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 200 201 level = btrfs_header_level(buf); 202 if (level == 0) 203 btrfs_item_key(buf, &disk_key, 0); 204 else 205 btrfs_node_key(buf, &disk_key, 0); 206 207 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 208 new_root_objectid, &disk_key, level, 209 buf->start, 0); 210 if (IS_ERR(cow)) 211 return PTR_ERR(cow); 212 213 copy_extent_buffer(cow, buf, 0, 0, cow->len); 214 btrfs_set_header_bytenr(cow, cow->start); 215 btrfs_set_header_generation(cow, trans->transid); 216 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 217 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 218 BTRFS_HEADER_FLAG_RELOC); 219 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 220 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 221 else 222 btrfs_set_header_owner(cow, new_root_objectid); 223 224 write_extent_buffer(cow, root->fs_info->fsid, 225 (unsigned long)btrfs_header_fsid(cow), 226 BTRFS_FSID_SIZE); 227 228 WARN_ON(btrfs_header_generation(buf) > trans->transid); 229 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 230 ret = btrfs_inc_ref(trans, root, cow, 1); 231 else 232 ret = btrfs_inc_ref(trans, root, cow, 0); 233 234 if (ret) 235 return ret; 236 237 btrfs_mark_buffer_dirty(cow); 238 *cow_ret = cow; 239 return 0; 240 } 241 242 /* 243 * check if the tree block can be shared by multiple trees 244 */ 245 int btrfs_block_can_be_shared(struct btrfs_root *root, 246 struct extent_buffer *buf) 247 { 248 /* 249 * Tree blocks not in refernece counted trees and tree roots 250 * are never shared. If a block was allocated after the last 251 * snapshot and the block was not allocated by tree relocation, 252 * we know the block is not shared. 253 */ 254 if (root->ref_cows && 255 buf != root->node && buf != root->commit_root && 256 (btrfs_header_generation(buf) <= 257 btrfs_root_last_snapshot(&root->root_item) || 258 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 259 return 1; 260 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 261 if (root->ref_cows && 262 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 263 return 1; 264 #endif 265 return 0; 266 } 267 268 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 269 struct btrfs_root *root, 270 struct extent_buffer *buf, 271 struct extent_buffer *cow, 272 int *last_ref) 273 { 274 u64 refs; 275 u64 owner; 276 u64 flags; 277 u64 new_flags = 0; 278 int ret; 279 280 /* 281 * Backrefs update rules: 282 * 283 * Always use full backrefs for extent pointers in tree block 284 * allocated by tree relocation. 285 * 286 * If a shared tree block is no longer referenced by its owner 287 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 288 * use full backrefs for extent pointers in tree block. 289 * 290 * If a tree block is been relocating 291 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 292 * use full backrefs for extent pointers in tree block. 293 * The reason for this is some operations (such as drop tree) 294 * are only allowed for blocks use full backrefs. 295 */ 296 297 if (btrfs_block_can_be_shared(root, buf)) { 298 ret = btrfs_lookup_extent_info(trans, root, buf->start, 299 buf->len, &refs, &flags); 300 BUG_ON(ret); 301 BUG_ON(refs == 0); 302 } else { 303 refs = 1; 304 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 305 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 306 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 307 else 308 flags = 0; 309 } 310 311 owner = btrfs_header_owner(buf); 312 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 313 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 314 315 if (refs > 1) { 316 if ((owner == root->root_key.objectid || 317 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 318 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 319 ret = btrfs_inc_ref(trans, root, buf, 1); 320 BUG_ON(ret); 321 322 if (root->root_key.objectid == 323 BTRFS_TREE_RELOC_OBJECTID) { 324 ret = btrfs_dec_ref(trans, root, buf, 0); 325 BUG_ON(ret); 326 ret = btrfs_inc_ref(trans, root, cow, 1); 327 BUG_ON(ret); 328 } 329 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 330 } else { 331 332 if (root->root_key.objectid == 333 BTRFS_TREE_RELOC_OBJECTID) 334 ret = btrfs_inc_ref(trans, root, cow, 1); 335 else 336 ret = btrfs_inc_ref(trans, root, cow, 0); 337 BUG_ON(ret); 338 } 339 if (new_flags != 0) { 340 ret = btrfs_set_disk_extent_flags(trans, root, 341 buf->start, 342 buf->len, 343 new_flags, 0); 344 BUG_ON(ret); 345 } 346 } else { 347 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 348 if (root->root_key.objectid == 349 BTRFS_TREE_RELOC_OBJECTID) 350 ret = btrfs_inc_ref(trans, root, cow, 1); 351 else 352 ret = btrfs_inc_ref(trans, root, cow, 0); 353 BUG_ON(ret); 354 ret = btrfs_dec_ref(trans, root, buf, 1); 355 BUG_ON(ret); 356 } 357 clean_tree_block(trans, root, buf); 358 *last_ref = 1; 359 } 360 return 0; 361 } 362 363 /* 364 * does the dirty work in cow of a single block. The parent block (if 365 * supplied) is updated to point to the new cow copy. The new buffer is marked 366 * dirty and returned locked. If you modify the block it needs to be marked 367 * dirty again. 368 * 369 * search_start -- an allocation hint for the new block 370 * 371 * empty_size -- a hint that you plan on doing more cow. This is the size in 372 * bytes the allocator should try to find free next to the block it returns. 373 * This is just a hint and may be ignored by the allocator. 374 */ 375 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 376 struct btrfs_root *root, 377 struct extent_buffer *buf, 378 struct extent_buffer *parent, int parent_slot, 379 struct extent_buffer **cow_ret, 380 u64 search_start, u64 empty_size) 381 { 382 struct btrfs_disk_key disk_key; 383 struct extent_buffer *cow; 384 int level; 385 int last_ref = 0; 386 int unlock_orig = 0; 387 u64 parent_start; 388 389 if (*cow_ret == buf) 390 unlock_orig = 1; 391 392 btrfs_assert_tree_locked(buf); 393 394 WARN_ON(root->ref_cows && trans->transid != 395 root->fs_info->running_transaction->transid); 396 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 397 398 level = btrfs_header_level(buf); 399 400 if (level == 0) 401 btrfs_item_key(buf, &disk_key, 0); 402 else 403 btrfs_node_key(buf, &disk_key, 0); 404 405 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 406 if (parent) 407 parent_start = parent->start; 408 else 409 parent_start = 0; 410 } else 411 parent_start = 0; 412 413 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 414 root->root_key.objectid, &disk_key, 415 level, search_start, empty_size); 416 if (IS_ERR(cow)) 417 return PTR_ERR(cow); 418 419 /* cow is set to blocking by btrfs_init_new_buffer */ 420 421 copy_extent_buffer(cow, buf, 0, 0, cow->len); 422 btrfs_set_header_bytenr(cow, cow->start); 423 btrfs_set_header_generation(cow, trans->transid); 424 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 425 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 426 BTRFS_HEADER_FLAG_RELOC); 427 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 428 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 429 else 430 btrfs_set_header_owner(cow, root->root_key.objectid); 431 432 write_extent_buffer(cow, root->fs_info->fsid, 433 (unsigned long)btrfs_header_fsid(cow), 434 BTRFS_FSID_SIZE); 435 436 update_ref_for_cow(trans, root, buf, cow, &last_ref); 437 438 if (root->ref_cows) 439 btrfs_reloc_cow_block(trans, root, buf, cow); 440 441 if (buf == root->node) { 442 WARN_ON(parent && parent != buf); 443 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 444 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 445 parent_start = buf->start; 446 else 447 parent_start = 0; 448 449 extent_buffer_get(cow); 450 rcu_assign_pointer(root->node, cow); 451 452 btrfs_free_tree_block(trans, root, buf, parent_start, 453 last_ref); 454 free_extent_buffer(buf); 455 add_root_to_dirty_list(root); 456 } else { 457 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 458 parent_start = parent->start; 459 else 460 parent_start = 0; 461 462 WARN_ON(trans->transid != btrfs_header_generation(parent)); 463 btrfs_set_node_blockptr(parent, parent_slot, 464 cow->start); 465 btrfs_set_node_ptr_generation(parent, parent_slot, 466 trans->transid); 467 btrfs_mark_buffer_dirty(parent); 468 btrfs_free_tree_block(trans, root, buf, parent_start, 469 last_ref); 470 } 471 if (unlock_orig) 472 btrfs_tree_unlock(buf); 473 free_extent_buffer(buf); 474 btrfs_mark_buffer_dirty(cow); 475 *cow_ret = cow; 476 return 0; 477 } 478 479 static inline int should_cow_block(struct btrfs_trans_handle *trans, 480 struct btrfs_root *root, 481 struct extent_buffer *buf) 482 { 483 if (btrfs_header_generation(buf) == trans->transid && 484 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 485 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 486 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 487 return 0; 488 return 1; 489 } 490 491 /* 492 * cows a single block, see __btrfs_cow_block for the real work. 493 * This version of it has extra checks so that a block isn't cow'd more than 494 * once per transaction, as long as it hasn't been written yet 495 */ 496 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 497 struct btrfs_root *root, struct extent_buffer *buf, 498 struct extent_buffer *parent, int parent_slot, 499 struct extent_buffer **cow_ret) 500 { 501 u64 search_start; 502 int ret; 503 504 if (trans->transaction != root->fs_info->running_transaction) { 505 printk(KERN_CRIT "trans %llu running %llu\n", 506 (unsigned long long)trans->transid, 507 (unsigned long long) 508 root->fs_info->running_transaction->transid); 509 WARN_ON(1); 510 } 511 if (trans->transid != root->fs_info->generation) { 512 printk(KERN_CRIT "trans %llu running %llu\n", 513 (unsigned long long)trans->transid, 514 (unsigned long long)root->fs_info->generation); 515 WARN_ON(1); 516 } 517 518 if (!should_cow_block(trans, root, buf)) { 519 *cow_ret = buf; 520 return 0; 521 } 522 523 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 524 525 if (parent) 526 btrfs_set_lock_blocking(parent); 527 btrfs_set_lock_blocking(buf); 528 529 ret = __btrfs_cow_block(trans, root, buf, parent, 530 parent_slot, cow_ret, search_start, 0); 531 532 trace_btrfs_cow_block(root, buf, *cow_ret); 533 534 return ret; 535 } 536 537 /* 538 * helper function for defrag to decide if two blocks pointed to by a 539 * node are actually close by 540 */ 541 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 542 { 543 if (blocknr < other && other - (blocknr + blocksize) < 32768) 544 return 1; 545 if (blocknr > other && blocknr - (other + blocksize) < 32768) 546 return 1; 547 return 0; 548 } 549 550 /* 551 * compare two keys in a memcmp fashion 552 */ 553 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 554 { 555 struct btrfs_key k1; 556 557 btrfs_disk_key_to_cpu(&k1, disk); 558 559 return btrfs_comp_cpu_keys(&k1, k2); 560 } 561 562 /* 563 * same as comp_keys only with two btrfs_key's 564 */ 565 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 566 { 567 if (k1->objectid > k2->objectid) 568 return 1; 569 if (k1->objectid < k2->objectid) 570 return -1; 571 if (k1->type > k2->type) 572 return 1; 573 if (k1->type < k2->type) 574 return -1; 575 if (k1->offset > k2->offset) 576 return 1; 577 if (k1->offset < k2->offset) 578 return -1; 579 return 0; 580 } 581 582 /* 583 * this is used by the defrag code to go through all the 584 * leaves pointed to by a node and reallocate them so that 585 * disk order is close to key order 586 */ 587 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 588 struct btrfs_root *root, struct extent_buffer *parent, 589 int start_slot, int cache_only, u64 *last_ret, 590 struct btrfs_key *progress) 591 { 592 struct extent_buffer *cur; 593 u64 blocknr; 594 u64 gen; 595 u64 search_start = *last_ret; 596 u64 last_block = 0; 597 u64 other; 598 u32 parent_nritems; 599 int end_slot; 600 int i; 601 int err = 0; 602 int parent_level; 603 int uptodate; 604 u32 blocksize; 605 int progress_passed = 0; 606 struct btrfs_disk_key disk_key; 607 608 parent_level = btrfs_header_level(parent); 609 if (cache_only && parent_level != 1) 610 return 0; 611 612 if (trans->transaction != root->fs_info->running_transaction) 613 WARN_ON(1); 614 if (trans->transid != root->fs_info->generation) 615 WARN_ON(1); 616 617 parent_nritems = btrfs_header_nritems(parent); 618 blocksize = btrfs_level_size(root, parent_level - 1); 619 end_slot = parent_nritems; 620 621 if (parent_nritems == 1) 622 return 0; 623 624 btrfs_set_lock_blocking(parent); 625 626 for (i = start_slot; i < end_slot; i++) { 627 int close = 1; 628 629 if (!parent->map_token) { 630 map_extent_buffer(parent, 631 btrfs_node_key_ptr_offset(i), 632 sizeof(struct btrfs_key_ptr), 633 &parent->map_token, &parent->kaddr, 634 &parent->map_start, &parent->map_len, 635 KM_USER1); 636 } 637 btrfs_node_key(parent, &disk_key, i); 638 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 639 continue; 640 641 progress_passed = 1; 642 blocknr = btrfs_node_blockptr(parent, i); 643 gen = btrfs_node_ptr_generation(parent, i); 644 if (last_block == 0) 645 last_block = blocknr; 646 647 if (i > 0) { 648 other = btrfs_node_blockptr(parent, i - 1); 649 close = close_blocks(blocknr, other, blocksize); 650 } 651 if (!close && i < end_slot - 2) { 652 other = btrfs_node_blockptr(parent, i + 1); 653 close = close_blocks(blocknr, other, blocksize); 654 } 655 if (close) { 656 last_block = blocknr; 657 continue; 658 } 659 if (parent->map_token) { 660 unmap_extent_buffer(parent, parent->map_token, 661 KM_USER1); 662 parent->map_token = NULL; 663 } 664 665 cur = btrfs_find_tree_block(root, blocknr, blocksize); 666 if (cur) 667 uptodate = btrfs_buffer_uptodate(cur, gen); 668 else 669 uptodate = 0; 670 if (!cur || !uptodate) { 671 if (cache_only) { 672 free_extent_buffer(cur); 673 continue; 674 } 675 if (!cur) { 676 cur = read_tree_block(root, blocknr, 677 blocksize, gen); 678 if (!cur) 679 return -EIO; 680 } else if (!uptodate) { 681 btrfs_read_buffer(cur, gen); 682 } 683 } 684 if (search_start == 0) 685 search_start = last_block; 686 687 btrfs_tree_lock(cur); 688 btrfs_set_lock_blocking(cur); 689 err = __btrfs_cow_block(trans, root, cur, parent, i, 690 &cur, search_start, 691 min(16 * blocksize, 692 (end_slot - i) * blocksize)); 693 if (err) { 694 btrfs_tree_unlock(cur); 695 free_extent_buffer(cur); 696 break; 697 } 698 search_start = cur->start; 699 last_block = cur->start; 700 *last_ret = search_start; 701 btrfs_tree_unlock(cur); 702 free_extent_buffer(cur); 703 } 704 if (parent->map_token) { 705 unmap_extent_buffer(parent, parent->map_token, 706 KM_USER1); 707 parent->map_token = NULL; 708 } 709 return err; 710 } 711 712 /* 713 * The leaf data grows from end-to-front in the node. 714 * this returns the address of the start of the last item, 715 * which is the stop of the leaf data stack 716 */ 717 static inline unsigned int leaf_data_end(struct btrfs_root *root, 718 struct extent_buffer *leaf) 719 { 720 u32 nr = btrfs_header_nritems(leaf); 721 if (nr == 0) 722 return BTRFS_LEAF_DATA_SIZE(root); 723 return btrfs_item_offset_nr(leaf, nr - 1); 724 } 725 726 727 /* 728 * search for key in the extent_buffer. The items start at offset p, 729 * and they are item_size apart. There are 'max' items in p. 730 * 731 * the slot in the array is returned via slot, and it points to 732 * the place where you would insert key if it is not found in 733 * the array. 734 * 735 * slot may point to max if the key is bigger than all of the keys 736 */ 737 static noinline int generic_bin_search(struct extent_buffer *eb, 738 unsigned long p, 739 int item_size, struct btrfs_key *key, 740 int max, int *slot) 741 { 742 int low = 0; 743 int high = max; 744 int mid; 745 int ret; 746 struct btrfs_disk_key *tmp = NULL; 747 struct btrfs_disk_key unaligned; 748 unsigned long offset; 749 char *map_token = NULL; 750 char *kaddr = NULL; 751 unsigned long map_start = 0; 752 unsigned long map_len = 0; 753 int err; 754 755 while (low < high) { 756 mid = (low + high) / 2; 757 offset = p + mid * item_size; 758 759 if (!map_token || offset < map_start || 760 (offset + sizeof(struct btrfs_disk_key)) > 761 map_start + map_len) { 762 if (map_token) { 763 unmap_extent_buffer(eb, map_token, KM_USER0); 764 map_token = NULL; 765 } 766 767 err = map_private_extent_buffer(eb, offset, 768 sizeof(struct btrfs_disk_key), 769 &map_token, &kaddr, 770 &map_start, &map_len, KM_USER0); 771 772 if (!err) { 773 tmp = (struct btrfs_disk_key *)(kaddr + offset - 774 map_start); 775 } else { 776 read_extent_buffer(eb, &unaligned, 777 offset, sizeof(unaligned)); 778 tmp = &unaligned; 779 } 780 781 } else { 782 tmp = (struct btrfs_disk_key *)(kaddr + offset - 783 map_start); 784 } 785 ret = comp_keys(tmp, key); 786 787 if (ret < 0) 788 low = mid + 1; 789 else if (ret > 0) 790 high = mid; 791 else { 792 *slot = mid; 793 if (map_token) 794 unmap_extent_buffer(eb, map_token, KM_USER0); 795 return 0; 796 } 797 } 798 *slot = low; 799 if (map_token) 800 unmap_extent_buffer(eb, map_token, KM_USER0); 801 return 1; 802 } 803 804 /* 805 * simple bin_search frontend that does the right thing for 806 * leaves vs nodes 807 */ 808 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 809 int level, int *slot) 810 { 811 if (level == 0) { 812 return generic_bin_search(eb, 813 offsetof(struct btrfs_leaf, items), 814 sizeof(struct btrfs_item), 815 key, btrfs_header_nritems(eb), 816 slot); 817 } else { 818 return generic_bin_search(eb, 819 offsetof(struct btrfs_node, ptrs), 820 sizeof(struct btrfs_key_ptr), 821 key, btrfs_header_nritems(eb), 822 slot); 823 } 824 return -1; 825 } 826 827 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 828 int level, int *slot) 829 { 830 return bin_search(eb, key, level, slot); 831 } 832 833 static void root_add_used(struct btrfs_root *root, u32 size) 834 { 835 spin_lock(&root->accounting_lock); 836 btrfs_set_root_used(&root->root_item, 837 btrfs_root_used(&root->root_item) + size); 838 spin_unlock(&root->accounting_lock); 839 } 840 841 static void root_sub_used(struct btrfs_root *root, u32 size) 842 { 843 spin_lock(&root->accounting_lock); 844 btrfs_set_root_used(&root->root_item, 845 btrfs_root_used(&root->root_item) - size); 846 spin_unlock(&root->accounting_lock); 847 } 848 849 /* given a node and slot number, this reads the blocks it points to. The 850 * extent buffer is returned with a reference taken (but unlocked). 851 * NULL is returned on error. 852 */ 853 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 854 struct extent_buffer *parent, int slot) 855 { 856 int level = btrfs_header_level(parent); 857 if (slot < 0) 858 return NULL; 859 if (slot >= btrfs_header_nritems(parent)) 860 return NULL; 861 862 BUG_ON(level == 0); 863 864 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 865 btrfs_level_size(root, level - 1), 866 btrfs_node_ptr_generation(parent, slot)); 867 } 868 869 /* 870 * node level balancing, used to make sure nodes are in proper order for 871 * item deletion. We balance from the top down, so we have to make sure 872 * that a deletion won't leave an node completely empty later on. 873 */ 874 static noinline int balance_level(struct btrfs_trans_handle *trans, 875 struct btrfs_root *root, 876 struct btrfs_path *path, int level) 877 { 878 struct extent_buffer *right = NULL; 879 struct extent_buffer *mid; 880 struct extent_buffer *left = NULL; 881 struct extent_buffer *parent = NULL; 882 int ret = 0; 883 int wret; 884 int pslot; 885 int orig_slot = path->slots[level]; 886 u64 orig_ptr; 887 888 if (level == 0) 889 return 0; 890 891 mid = path->nodes[level]; 892 893 WARN_ON(!path->locks[level]); 894 WARN_ON(btrfs_header_generation(mid) != trans->transid); 895 896 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 897 898 if (level < BTRFS_MAX_LEVEL - 1) 899 parent = path->nodes[level + 1]; 900 pslot = path->slots[level + 1]; 901 902 /* 903 * deal with the case where there is only one pointer in the root 904 * by promoting the node below to a root 905 */ 906 if (!parent) { 907 struct extent_buffer *child; 908 909 if (btrfs_header_nritems(mid) != 1) 910 return 0; 911 912 /* promote the child to a root */ 913 child = read_node_slot(root, mid, 0); 914 BUG_ON(!child); 915 btrfs_tree_lock(child); 916 btrfs_set_lock_blocking(child); 917 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 918 if (ret) { 919 btrfs_tree_unlock(child); 920 free_extent_buffer(child); 921 goto enospc; 922 } 923 924 rcu_assign_pointer(root->node, child); 925 926 add_root_to_dirty_list(root); 927 btrfs_tree_unlock(child); 928 929 path->locks[level] = 0; 930 path->nodes[level] = NULL; 931 clean_tree_block(trans, root, mid); 932 btrfs_tree_unlock(mid); 933 /* once for the path */ 934 free_extent_buffer(mid); 935 936 root_sub_used(root, mid->len); 937 btrfs_free_tree_block(trans, root, mid, 0, 1); 938 /* once for the root ptr */ 939 free_extent_buffer(mid); 940 return 0; 941 } 942 if (btrfs_header_nritems(mid) > 943 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 944 return 0; 945 946 btrfs_header_nritems(mid); 947 948 left = read_node_slot(root, parent, pslot - 1); 949 if (left) { 950 btrfs_tree_lock(left); 951 btrfs_set_lock_blocking(left); 952 wret = btrfs_cow_block(trans, root, left, 953 parent, pslot - 1, &left); 954 if (wret) { 955 ret = wret; 956 goto enospc; 957 } 958 } 959 right = read_node_slot(root, parent, pslot + 1); 960 if (right) { 961 btrfs_tree_lock(right); 962 btrfs_set_lock_blocking(right); 963 wret = btrfs_cow_block(trans, root, right, 964 parent, pslot + 1, &right); 965 if (wret) { 966 ret = wret; 967 goto enospc; 968 } 969 } 970 971 /* first, try to make some room in the middle buffer */ 972 if (left) { 973 orig_slot += btrfs_header_nritems(left); 974 wret = push_node_left(trans, root, left, mid, 1); 975 if (wret < 0) 976 ret = wret; 977 btrfs_header_nritems(mid); 978 } 979 980 /* 981 * then try to empty the right most buffer into the middle 982 */ 983 if (right) { 984 wret = push_node_left(trans, root, mid, right, 1); 985 if (wret < 0 && wret != -ENOSPC) 986 ret = wret; 987 if (btrfs_header_nritems(right) == 0) { 988 clean_tree_block(trans, root, right); 989 btrfs_tree_unlock(right); 990 wret = del_ptr(trans, root, path, level + 1, pslot + 991 1); 992 if (wret) 993 ret = wret; 994 root_sub_used(root, right->len); 995 btrfs_free_tree_block(trans, root, right, 0, 1); 996 free_extent_buffer(right); 997 right = NULL; 998 } else { 999 struct btrfs_disk_key right_key; 1000 btrfs_node_key(right, &right_key, 0); 1001 btrfs_set_node_key(parent, &right_key, pslot + 1); 1002 btrfs_mark_buffer_dirty(parent); 1003 } 1004 } 1005 if (btrfs_header_nritems(mid) == 1) { 1006 /* 1007 * we're not allowed to leave a node with one item in the 1008 * tree during a delete. A deletion from lower in the tree 1009 * could try to delete the only pointer in this node. 1010 * So, pull some keys from the left. 1011 * There has to be a left pointer at this point because 1012 * otherwise we would have pulled some pointers from the 1013 * right 1014 */ 1015 BUG_ON(!left); 1016 wret = balance_node_right(trans, root, mid, left); 1017 if (wret < 0) { 1018 ret = wret; 1019 goto enospc; 1020 } 1021 if (wret == 1) { 1022 wret = push_node_left(trans, root, left, mid, 1); 1023 if (wret < 0) 1024 ret = wret; 1025 } 1026 BUG_ON(wret == 1); 1027 } 1028 if (btrfs_header_nritems(mid) == 0) { 1029 clean_tree_block(trans, root, mid); 1030 btrfs_tree_unlock(mid); 1031 wret = del_ptr(trans, root, path, level + 1, pslot); 1032 if (wret) 1033 ret = wret; 1034 root_sub_used(root, mid->len); 1035 btrfs_free_tree_block(trans, root, mid, 0, 1); 1036 free_extent_buffer(mid); 1037 mid = NULL; 1038 } else { 1039 /* update the parent key to reflect our changes */ 1040 struct btrfs_disk_key mid_key; 1041 btrfs_node_key(mid, &mid_key, 0); 1042 btrfs_set_node_key(parent, &mid_key, pslot); 1043 btrfs_mark_buffer_dirty(parent); 1044 } 1045 1046 /* update the path */ 1047 if (left) { 1048 if (btrfs_header_nritems(left) > orig_slot) { 1049 extent_buffer_get(left); 1050 /* left was locked after cow */ 1051 path->nodes[level] = left; 1052 path->slots[level + 1] -= 1; 1053 path->slots[level] = orig_slot; 1054 if (mid) { 1055 btrfs_tree_unlock(mid); 1056 free_extent_buffer(mid); 1057 } 1058 } else { 1059 orig_slot -= btrfs_header_nritems(left); 1060 path->slots[level] = orig_slot; 1061 } 1062 } 1063 /* double check we haven't messed things up */ 1064 if (orig_ptr != 1065 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1066 BUG(); 1067 enospc: 1068 if (right) { 1069 btrfs_tree_unlock(right); 1070 free_extent_buffer(right); 1071 } 1072 if (left) { 1073 if (path->nodes[level] != left) 1074 btrfs_tree_unlock(left); 1075 free_extent_buffer(left); 1076 } 1077 return ret; 1078 } 1079 1080 /* Node balancing for insertion. Here we only split or push nodes around 1081 * when they are completely full. This is also done top down, so we 1082 * have to be pessimistic. 1083 */ 1084 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1085 struct btrfs_root *root, 1086 struct btrfs_path *path, int level) 1087 { 1088 struct extent_buffer *right = NULL; 1089 struct extent_buffer *mid; 1090 struct extent_buffer *left = NULL; 1091 struct extent_buffer *parent = NULL; 1092 int ret = 0; 1093 int wret; 1094 int pslot; 1095 int orig_slot = path->slots[level]; 1096 1097 if (level == 0) 1098 return 1; 1099 1100 mid = path->nodes[level]; 1101 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1102 1103 if (level < BTRFS_MAX_LEVEL - 1) 1104 parent = path->nodes[level + 1]; 1105 pslot = path->slots[level + 1]; 1106 1107 if (!parent) 1108 return 1; 1109 1110 left = read_node_slot(root, parent, pslot - 1); 1111 1112 /* first, try to make some room in the middle buffer */ 1113 if (left) { 1114 u32 left_nr; 1115 1116 btrfs_tree_lock(left); 1117 btrfs_set_lock_blocking(left); 1118 1119 left_nr = btrfs_header_nritems(left); 1120 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1121 wret = 1; 1122 } else { 1123 ret = btrfs_cow_block(trans, root, left, parent, 1124 pslot - 1, &left); 1125 if (ret) 1126 wret = 1; 1127 else { 1128 wret = push_node_left(trans, root, 1129 left, mid, 0); 1130 } 1131 } 1132 if (wret < 0) 1133 ret = wret; 1134 if (wret == 0) { 1135 struct btrfs_disk_key disk_key; 1136 orig_slot += left_nr; 1137 btrfs_node_key(mid, &disk_key, 0); 1138 btrfs_set_node_key(parent, &disk_key, pslot); 1139 btrfs_mark_buffer_dirty(parent); 1140 if (btrfs_header_nritems(left) > orig_slot) { 1141 path->nodes[level] = left; 1142 path->slots[level + 1] -= 1; 1143 path->slots[level] = orig_slot; 1144 btrfs_tree_unlock(mid); 1145 free_extent_buffer(mid); 1146 } else { 1147 orig_slot -= 1148 btrfs_header_nritems(left); 1149 path->slots[level] = orig_slot; 1150 btrfs_tree_unlock(left); 1151 free_extent_buffer(left); 1152 } 1153 return 0; 1154 } 1155 btrfs_tree_unlock(left); 1156 free_extent_buffer(left); 1157 } 1158 right = read_node_slot(root, parent, pslot + 1); 1159 1160 /* 1161 * then try to empty the right most buffer into the middle 1162 */ 1163 if (right) { 1164 u32 right_nr; 1165 1166 btrfs_tree_lock(right); 1167 btrfs_set_lock_blocking(right); 1168 1169 right_nr = btrfs_header_nritems(right); 1170 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1171 wret = 1; 1172 } else { 1173 ret = btrfs_cow_block(trans, root, right, 1174 parent, pslot + 1, 1175 &right); 1176 if (ret) 1177 wret = 1; 1178 else { 1179 wret = balance_node_right(trans, root, 1180 right, mid); 1181 } 1182 } 1183 if (wret < 0) 1184 ret = wret; 1185 if (wret == 0) { 1186 struct btrfs_disk_key disk_key; 1187 1188 btrfs_node_key(right, &disk_key, 0); 1189 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1190 btrfs_mark_buffer_dirty(parent); 1191 1192 if (btrfs_header_nritems(mid) <= orig_slot) { 1193 path->nodes[level] = right; 1194 path->slots[level + 1] += 1; 1195 path->slots[level] = orig_slot - 1196 btrfs_header_nritems(mid); 1197 btrfs_tree_unlock(mid); 1198 free_extent_buffer(mid); 1199 } else { 1200 btrfs_tree_unlock(right); 1201 free_extent_buffer(right); 1202 } 1203 return 0; 1204 } 1205 btrfs_tree_unlock(right); 1206 free_extent_buffer(right); 1207 } 1208 return 1; 1209 } 1210 1211 /* 1212 * readahead one full node of leaves, finding things that are close 1213 * to the block in 'slot', and triggering ra on them. 1214 */ 1215 static void reada_for_search(struct btrfs_root *root, 1216 struct btrfs_path *path, 1217 int level, int slot, u64 objectid) 1218 { 1219 struct extent_buffer *node; 1220 struct btrfs_disk_key disk_key; 1221 u32 nritems; 1222 u64 search; 1223 u64 target; 1224 u64 nread = 0; 1225 u64 gen; 1226 int direction = path->reada; 1227 struct extent_buffer *eb; 1228 u32 nr; 1229 u32 blocksize; 1230 u32 nscan = 0; 1231 1232 if (level != 1) 1233 return; 1234 1235 if (!path->nodes[level]) 1236 return; 1237 1238 node = path->nodes[level]; 1239 1240 search = btrfs_node_blockptr(node, slot); 1241 blocksize = btrfs_level_size(root, level - 1); 1242 eb = btrfs_find_tree_block(root, search, blocksize); 1243 if (eb) { 1244 free_extent_buffer(eb); 1245 return; 1246 } 1247 1248 target = search; 1249 1250 nritems = btrfs_header_nritems(node); 1251 nr = slot; 1252 while (1) { 1253 if (!node->map_token) { 1254 unsigned long offset = btrfs_node_key_ptr_offset(nr); 1255 map_private_extent_buffer(node, offset, 1256 sizeof(struct btrfs_key_ptr), 1257 &node->map_token, 1258 &node->kaddr, 1259 &node->map_start, 1260 &node->map_len, KM_USER1); 1261 } 1262 if (direction < 0) { 1263 if (nr == 0) 1264 break; 1265 nr--; 1266 } else if (direction > 0) { 1267 nr++; 1268 if (nr >= nritems) 1269 break; 1270 } 1271 if (path->reada < 0 && objectid) { 1272 btrfs_node_key(node, &disk_key, nr); 1273 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1274 break; 1275 } 1276 search = btrfs_node_blockptr(node, nr); 1277 if ((search <= target && target - search <= 65536) || 1278 (search > target && search - target <= 65536)) { 1279 gen = btrfs_node_ptr_generation(node, nr); 1280 if (node->map_token) { 1281 unmap_extent_buffer(node, node->map_token, 1282 KM_USER1); 1283 node->map_token = NULL; 1284 } 1285 readahead_tree_block(root, search, blocksize, gen); 1286 nread += blocksize; 1287 } 1288 nscan++; 1289 if ((nread > 65536 || nscan > 32)) 1290 break; 1291 } 1292 if (node->map_token) { 1293 unmap_extent_buffer(node, node->map_token, KM_USER1); 1294 node->map_token = NULL; 1295 } 1296 } 1297 1298 /* 1299 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1300 * cache 1301 */ 1302 static noinline int reada_for_balance(struct btrfs_root *root, 1303 struct btrfs_path *path, int level) 1304 { 1305 int slot; 1306 int nritems; 1307 struct extent_buffer *parent; 1308 struct extent_buffer *eb; 1309 u64 gen; 1310 u64 block1 = 0; 1311 u64 block2 = 0; 1312 int ret = 0; 1313 int blocksize; 1314 1315 parent = path->nodes[level + 1]; 1316 if (!parent) 1317 return 0; 1318 1319 nritems = btrfs_header_nritems(parent); 1320 slot = path->slots[level + 1]; 1321 blocksize = btrfs_level_size(root, level); 1322 1323 if (slot > 0) { 1324 block1 = btrfs_node_blockptr(parent, slot - 1); 1325 gen = btrfs_node_ptr_generation(parent, slot - 1); 1326 eb = btrfs_find_tree_block(root, block1, blocksize); 1327 if (eb && btrfs_buffer_uptodate(eb, gen)) 1328 block1 = 0; 1329 free_extent_buffer(eb); 1330 } 1331 if (slot + 1 < nritems) { 1332 block2 = btrfs_node_blockptr(parent, slot + 1); 1333 gen = btrfs_node_ptr_generation(parent, slot + 1); 1334 eb = btrfs_find_tree_block(root, block2, blocksize); 1335 if (eb && btrfs_buffer_uptodate(eb, gen)) 1336 block2 = 0; 1337 free_extent_buffer(eb); 1338 } 1339 if (block1 || block2) { 1340 ret = -EAGAIN; 1341 1342 /* release the whole path */ 1343 btrfs_release_path(path); 1344 1345 /* read the blocks */ 1346 if (block1) 1347 readahead_tree_block(root, block1, blocksize, 0); 1348 if (block2) 1349 readahead_tree_block(root, block2, blocksize, 0); 1350 1351 if (block1) { 1352 eb = read_tree_block(root, block1, blocksize, 0); 1353 free_extent_buffer(eb); 1354 } 1355 if (block2) { 1356 eb = read_tree_block(root, block2, blocksize, 0); 1357 free_extent_buffer(eb); 1358 } 1359 } 1360 return ret; 1361 } 1362 1363 1364 /* 1365 * when we walk down the tree, it is usually safe to unlock the higher layers 1366 * in the tree. The exceptions are when our path goes through slot 0, because 1367 * operations on the tree might require changing key pointers higher up in the 1368 * tree. 1369 * 1370 * callers might also have set path->keep_locks, which tells this code to keep 1371 * the lock if the path points to the last slot in the block. This is part of 1372 * walking through the tree, and selecting the next slot in the higher block. 1373 * 1374 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1375 * if lowest_unlock is 1, level 0 won't be unlocked 1376 */ 1377 static noinline void unlock_up(struct btrfs_path *path, int level, 1378 int lowest_unlock) 1379 { 1380 int i; 1381 int skip_level = level; 1382 int no_skips = 0; 1383 struct extent_buffer *t; 1384 1385 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1386 if (!path->nodes[i]) 1387 break; 1388 if (!path->locks[i]) 1389 break; 1390 if (!no_skips && path->slots[i] == 0) { 1391 skip_level = i + 1; 1392 continue; 1393 } 1394 if (!no_skips && path->keep_locks) { 1395 u32 nritems; 1396 t = path->nodes[i]; 1397 nritems = btrfs_header_nritems(t); 1398 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1399 skip_level = i + 1; 1400 continue; 1401 } 1402 } 1403 if (skip_level < i && i >= lowest_unlock) 1404 no_skips = 1; 1405 1406 t = path->nodes[i]; 1407 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 1408 btrfs_tree_unlock(t); 1409 path->locks[i] = 0; 1410 } 1411 } 1412 } 1413 1414 /* 1415 * This releases any locks held in the path starting at level and 1416 * going all the way up to the root. 1417 * 1418 * btrfs_search_slot will keep the lock held on higher nodes in a few 1419 * corner cases, such as COW of the block at slot zero in the node. This 1420 * ignores those rules, and it should only be called when there are no 1421 * more updates to be done higher up in the tree. 1422 */ 1423 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 1424 { 1425 int i; 1426 1427 if (path->keep_locks) 1428 return; 1429 1430 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1431 if (!path->nodes[i]) 1432 continue; 1433 if (!path->locks[i]) 1434 continue; 1435 btrfs_tree_unlock(path->nodes[i]); 1436 path->locks[i] = 0; 1437 } 1438 } 1439 1440 /* 1441 * helper function for btrfs_search_slot. The goal is to find a block 1442 * in cache without setting the path to blocking. If we find the block 1443 * we return zero and the path is unchanged. 1444 * 1445 * If we can't find the block, we set the path blocking and do some 1446 * reada. -EAGAIN is returned and the search must be repeated. 1447 */ 1448 static int 1449 read_block_for_search(struct btrfs_trans_handle *trans, 1450 struct btrfs_root *root, struct btrfs_path *p, 1451 struct extent_buffer **eb_ret, int level, int slot, 1452 struct btrfs_key *key) 1453 { 1454 u64 blocknr; 1455 u64 gen; 1456 u32 blocksize; 1457 struct extent_buffer *b = *eb_ret; 1458 struct extent_buffer *tmp; 1459 int ret; 1460 1461 blocknr = btrfs_node_blockptr(b, slot); 1462 gen = btrfs_node_ptr_generation(b, slot); 1463 blocksize = btrfs_level_size(root, level - 1); 1464 1465 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 1466 if (tmp) { 1467 if (btrfs_buffer_uptodate(tmp, 0)) { 1468 if (btrfs_buffer_uptodate(tmp, gen)) { 1469 /* 1470 * we found an up to date block without 1471 * sleeping, return 1472 * right away 1473 */ 1474 *eb_ret = tmp; 1475 return 0; 1476 } 1477 /* the pages were up to date, but we failed 1478 * the generation number check. Do a full 1479 * read for the generation number that is correct. 1480 * We must do this without dropping locks so 1481 * we can trust our generation number 1482 */ 1483 free_extent_buffer(tmp); 1484 tmp = read_tree_block(root, blocknr, blocksize, gen); 1485 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 1486 *eb_ret = tmp; 1487 return 0; 1488 } 1489 free_extent_buffer(tmp); 1490 btrfs_release_path(p); 1491 return -EIO; 1492 } 1493 } 1494 1495 /* 1496 * reduce lock contention at high levels 1497 * of the btree by dropping locks before 1498 * we read. Don't release the lock on the current 1499 * level because we need to walk this node to figure 1500 * out which blocks to read. 1501 */ 1502 btrfs_unlock_up_safe(p, level + 1); 1503 btrfs_set_path_blocking(p); 1504 1505 free_extent_buffer(tmp); 1506 if (p->reada) 1507 reada_for_search(root, p, level, slot, key->objectid); 1508 1509 btrfs_release_path(p); 1510 1511 ret = -EAGAIN; 1512 tmp = read_tree_block(root, blocknr, blocksize, 0); 1513 if (tmp) { 1514 /* 1515 * If the read above didn't mark this buffer up to date, 1516 * it will never end up being up to date. Set ret to EIO now 1517 * and give up so that our caller doesn't loop forever 1518 * on our EAGAINs. 1519 */ 1520 if (!btrfs_buffer_uptodate(tmp, 0)) 1521 ret = -EIO; 1522 free_extent_buffer(tmp); 1523 } 1524 return ret; 1525 } 1526 1527 /* 1528 * helper function for btrfs_search_slot. This does all of the checks 1529 * for node-level blocks and does any balancing required based on 1530 * the ins_len. 1531 * 1532 * If no extra work was required, zero is returned. If we had to 1533 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1534 * start over 1535 */ 1536 static int 1537 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1538 struct btrfs_root *root, struct btrfs_path *p, 1539 struct extent_buffer *b, int level, int ins_len) 1540 { 1541 int ret; 1542 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1543 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 1544 int sret; 1545 1546 sret = reada_for_balance(root, p, level); 1547 if (sret) 1548 goto again; 1549 1550 btrfs_set_path_blocking(p); 1551 sret = split_node(trans, root, p, level); 1552 btrfs_clear_path_blocking(p, NULL); 1553 1554 BUG_ON(sret > 0); 1555 if (sret) { 1556 ret = sret; 1557 goto done; 1558 } 1559 b = p->nodes[level]; 1560 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1561 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 1562 int sret; 1563 1564 sret = reada_for_balance(root, p, level); 1565 if (sret) 1566 goto again; 1567 1568 btrfs_set_path_blocking(p); 1569 sret = balance_level(trans, root, p, level); 1570 btrfs_clear_path_blocking(p, NULL); 1571 1572 if (sret) { 1573 ret = sret; 1574 goto done; 1575 } 1576 b = p->nodes[level]; 1577 if (!b) { 1578 btrfs_release_path(p); 1579 goto again; 1580 } 1581 BUG_ON(btrfs_header_nritems(b) == 1); 1582 } 1583 return 0; 1584 1585 again: 1586 ret = -EAGAIN; 1587 done: 1588 return ret; 1589 } 1590 1591 /* 1592 * look for key in the tree. path is filled in with nodes along the way 1593 * if key is found, we return zero and you can find the item in the leaf 1594 * level of the path (level 0) 1595 * 1596 * If the key isn't found, the path points to the slot where it should 1597 * be inserted, and 1 is returned. If there are other errors during the 1598 * search a negative error number is returned. 1599 * 1600 * if ins_len > 0, nodes and leaves will be split as we walk down the 1601 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 1602 * possible) 1603 */ 1604 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 1605 *root, struct btrfs_key *key, struct btrfs_path *p, int 1606 ins_len, int cow) 1607 { 1608 struct extent_buffer *b; 1609 int slot; 1610 int ret; 1611 int err; 1612 int level; 1613 int lowest_unlock = 1; 1614 u8 lowest_level = 0; 1615 1616 lowest_level = p->lowest_level; 1617 WARN_ON(lowest_level && ins_len > 0); 1618 WARN_ON(p->nodes[0] != NULL); 1619 1620 if (ins_len < 0) 1621 lowest_unlock = 2; 1622 1623 again: 1624 if (p->search_commit_root) { 1625 b = root->commit_root; 1626 extent_buffer_get(b); 1627 if (!p->skip_locking) 1628 btrfs_tree_lock(b); 1629 } else { 1630 if (p->skip_locking) 1631 b = btrfs_root_node(root); 1632 else 1633 b = btrfs_lock_root_node(root); 1634 } 1635 1636 while (b) { 1637 level = btrfs_header_level(b); 1638 1639 /* 1640 * setup the path here so we can release it under lock 1641 * contention with the cow code 1642 */ 1643 p->nodes[level] = b; 1644 if (!p->skip_locking) 1645 p->locks[level] = 1; 1646 1647 if (cow) { 1648 /* 1649 * if we don't really need to cow this block 1650 * then we don't want to set the path blocking, 1651 * so we test it here 1652 */ 1653 if (!should_cow_block(trans, root, b)) 1654 goto cow_done; 1655 1656 btrfs_set_path_blocking(p); 1657 1658 err = btrfs_cow_block(trans, root, b, 1659 p->nodes[level + 1], 1660 p->slots[level + 1], &b); 1661 if (err) { 1662 ret = err; 1663 goto done; 1664 } 1665 } 1666 cow_done: 1667 BUG_ON(!cow && ins_len); 1668 1669 p->nodes[level] = b; 1670 if (!p->skip_locking) 1671 p->locks[level] = 1; 1672 1673 btrfs_clear_path_blocking(p, NULL); 1674 1675 /* 1676 * we have a lock on b and as long as we aren't changing 1677 * the tree, there is no way to for the items in b to change. 1678 * It is safe to drop the lock on our parent before we 1679 * go through the expensive btree search on b. 1680 * 1681 * If cow is true, then we might be changing slot zero, 1682 * which may require changing the parent. So, we can't 1683 * drop the lock until after we know which slot we're 1684 * operating on. 1685 */ 1686 if (!cow) 1687 btrfs_unlock_up_safe(p, level + 1); 1688 1689 ret = bin_search(b, key, level, &slot); 1690 1691 if (level != 0) { 1692 int dec = 0; 1693 if (ret && slot > 0) { 1694 dec = 1; 1695 slot -= 1; 1696 } 1697 p->slots[level] = slot; 1698 err = setup_nodes_for_search(trans, root, p, b, level, 1699 ins_len); 1700 if (err == -EAGAIN) 1701 goto again; 1702 if (err) { 1703 ret = err; 1704 goto done; 1705 } 1706 b = p->nodes[level]; 1707 slot = p->slots[level]; 1708 1709 unlock_up(p, level, lowest_unlock); 1710 1711 if (level == lowest_level) { 1712 if (dec) 1713 p->slots[level]++; 1714 goto done; 1715 } 1716 1717 err = read_block_for_search(trans, root, p, 1718 &b, level, slot, key); 1719 if (err == -EAGAIN) 1720 goto again; 1721 if (err) { 1722 ret = err; 1723 goto done; 1724 } 1725 1726 if (!p->skip_locking) { 1727 btrfs_clear_path_blocking(p, NULL); 1728 err = btrfs_try_spin_lock(b); 1729 1730 if (!err) { 1731 btrfs_set_path_blocking(p); 1732 btrfs_tree_lock(b); 1733 btrfs_clear_path_blocking(p, b); 1734 } 1735 } 1736 } else { 1737 p->slots[level] = slot; 1738 if (ins_len > 0 && 1739 btrfs_leaf_free_space(root, b) < ins_len) { 1740 btrfs_set_path_blocking(p); 1741 err = split_leaf(trans, root, key, 1742 p, ins_len, ret == 0); 1743 btrfs_clear_path_blocking(p, NULL); 1744 1745 BUG_ON(err > 0); 1746 if (err) { 1747 ret = err; 1748 goto done; 1749 } 1750 } 1751 if (!p->search_for_split) 1752 unlock_up(p, level, lowest_unlock); 1753 goto done; 1754 } 1755 } 1756 ret = 1; 1757 done: 1758 /* 1759 * we don't really know what they plan on doing with the path 1760 * from here on, so for now just mark it as blocking 1761 */ 1762 if (!p->leave_spinning) 1763 btrfs_set_path_blocking(p); 1764 if (ret < 0) 1765 btrfs_release_path(p); 1766 return ret; 1767 } 1768 1769 /* 1770 * adjust the pointers going up the tree, starting at level 1771 * making sure the right key of each node is points to 'key'. 1772 * This is used after shifting pointers to the left, so it stops 1773 * fixing up pointers when a given leaf/node is not in slot 0 of the 1774 * higher levels 1775 * 1776 * If this fails to write a tree block, it returns -1, but continues 1777 * fixing up the blocks in ram so the tree is consistent. 1778 */ 1779 static int fixup_low_keys(struct btrfs_trans_handle *trans, 1780 struct btrfs_root *root, struct btrfs_path *path, 1781 struct btrfs_disk_key *key, int level) 1782 { 1783 int i; 1784 int ret = 0; 1785 struct extent_buffer *t; 1786 1787 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1788 int tslot = path->slots[i]; 1789 if (!path->nodes[i]) 1790 break; 1791 t = path->nodes[i]; 1792 btrfs_set_node_key(t, key, tslot); 1793 btrfs_mark_buffer_dirty(path->nodes[i]); 1794 if (tslot != 0) 1795 break; 1796 } 1797 return ret; 1798 } 1799 1800 /* 1801 * update item key. 1802 * 1803 * This function isn't completely safe. It's the caller's responsibility 1804 * that the new key won't break the order 1805 */ 1806 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 1807 struct btrfs_root *root, struct btrfs_path *path, 1808 struct btrfs_key *new_key) 1809 { 1810 struct btrfs_disk_key disk_key; 1811 struct extent_buffer *eb; 1812 int slot; 1813 1814 eb = path->nodes[0]; 1815 slot = path->slots[0]; 1816 if (slot > 0) { 1817 btrfs_item_key(eb, &disk_key, slot - 1); 1818 if (comp_keys(&disk_key, new_key) >= 0) 1819 return -1; 1820 } 1821 if (slot < btrfs_header_nritems(eb) - 1) { 1822 btrfs_item_key(eb, &disk_key, slot + 1); 1823 if (comp_keys(&disk_key, new_key) <= 0) 1824 return -1; 1825 } 1826 1827 btrfs_cpu_key_to_disk(&disk_key, new_key); 1828 btrfs_set_item_key(eb, &disk_key, slot); 1829 btrfs_mark_buffer_dirty(eb); 1830 if (slot == 0) 1831 fixup_low_keys(trans, root, path, &disk_key, 1); 1832 return 0; 1833 } 1834 1835 /* 1836 * try to push data from one node into the next node left in the 1837 * tree. 1838 * 1839 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 1840 * error, and > 0 if there was no room in the left hand block. 1841 */ 1842 static int push_node_left(struct btrfs_trans_handle *trans, 1843 struct btrfs_root *root, struct extent_buffer *dst, 1844 struct extent_buffer *src, int empty) 1845 { 1846 int push_items = 0; 1847 int src_nritems; 1848 int dst_nritems; 1849 int ret = 0; 1850 1851 src_nritems = btrfs_header_nritems(src); 1852 dst_nritems = btrfs_header_nritems(dst); 1853 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 1854 WARN_ON(btrfs_header_generation(src) != trans->transid); 1855 WARN_ON(btrfs_header_generation(dst) != trans->transid); 1856 1857 if (!empty && src_nritems <= 8) 1858 return 1; 1859 1860 if (push_items <= 0) 1861 return 1; 1862 1863 if (empty) { 1864 push_items = min(src_nritems, push_items); 1865 if (push_items < src_nritems) { 1866 /* leave at least 8 pointers in the node if 1867 * we aren't going to empty it 1868 */ 1869 if (src_nritems - push_items < 8) { 1870 if (push_items <= 8) 1871 return 1; 1872 push_items -= 8; 1873 } 1874 } 1875 } else 1876 push_items = min(src_nritems - 8, push_items); 1877 1878 copy_extent_buffer(dst, src, 1879 btrfs_node_key_ptr_offset(dst_nritems), 1880 btrfs_node_key_ptr_offset(0), 1881 push_items * sizeof(struct btrfs_key_ptr)); 1882 1883 if (push_items < src_nritems) { 1884 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 1885 btrfs_node_key_ptr_offset(push_items), 1886 (src_nritems - push_items) * 1887 sizeof(struct btrfs_key_ptr)); 1888 } 1889 btrfs_set_header_nritems(src, src_nritems - push_items); 1890 btrfs_set_header_nritems(dst, dst_nritems + push_items); 1891 btrfs_mark_buffer_dirty(src); 1892 btrfs_mark_buffer_dirty(dst); 1893 1894 return ret; 1895 } 1896 1897 /* 1898 * try to push data from one node into the next node right in the 1899 * tree. 1900 * 1901 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 1902 * error, and > 0 if there was no room in the right hand block. 1903 * 1904 * this will only push up to 1/2 the contents of the left node over 1905 */ 1906 static int balance_node_right(struct btrfs_trans_handle *trans, 1907 struct btrfs_root *root, 1908 struct extent_buffer *dst, 1909 struct extent_buffer *src) 1910 { 1911 int push_items = 0; 1912 int max_push; 1913 int src_nritems; 1914 int dst_nritems; 1915 int ret = 0; 1916 1917 WARN_ON(btrfs_header_generation(src) != trans->transid); 1918 WARN_ON(btrfs_header_generation(dst) != trans->transid); 1919 1920 src_nritems = btrfs_header_nritems(src); 1921 dst_nritems = btrfs_header_nritems(dst); 1922 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 1923 if (push_items <= 0) 1924 return 1; 1925 1926 if (src_nritems < 4) 1927 return 1; 1928 1929 max_push = src_nritems / 2 + 1; 1930 /* don't try to empty the node */ 1931 if (max_push >= src_nritems) 1932 return 1; 1933 1934 if (max_push < push_items) 1935 push_items = max_push; 1936 1937 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 1938 btrfs_node_key_ptr_offset(0), 1939 (dst_nritems) * 1940 sizeof(struct btrfs_key_ptr)); 1941 1942 copy_extent_buffer(dst, src, 1943 btrfs_node_key_ptr_offset(0), 1944 btrfs_node_key_ptr_offset(src_nritems - push_items), 1945 push_items * sizeof(struct btrfs_key_ptr)); 1946 1947 btrfs_set_header_nritems(src, src_nritems - push_items); 1948 btrfs_set_header_nritems(dst, dst_nritems + push_items); 1949 1950 btrfs_mark_buffer_dirty(src); 1951 btrfs_mark_buffer_dirty(dst); 1952 1953 return ret; 1954 } 1955 1956 /* 1957 * helper function to insert a new root level in the tree. 1958 * A new node is allocated, and a single item is inserted to 1959 * point to the existing root 1960 * 1961 * returns zero on success or < 0 on failure. 1962 */ 1963 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 1964 struct btrfs_root *root, 1965 struct btrfs_path *path, int level) 1966 { 1967 u64 lower_gen; 1968 struct extent_buffer *lower; 1969 struct extent_buffer *c; 1970 struct extent_buffer *old; 1971 struct btrfs_disk_key lower_key; 1972 1973 BUG_ON(path->nodes[level]); 1974 BUG_ON(path->nodes[level-1] != root->node); 1975 1976 lower = path->nodes[level-1]; 1977 if (level == 1) 1978 btrfs_item_key(lower, &lower_key, 0); 1979 else 1980 btrfs_node_key(lower, &lower_key, 0); 1981 1982 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 1983 root->root_key.objectid, &lower_key, 1984 level, root->node->start, 0); 1985 if (IS_ERR(c)) 1986 return PTR_ERR(c); 1987 1988 root_add_used(root, root->nodesize); 1989 1990 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 1991 btrfs_set_header_nritems(c, 1); 1992 btrfs_set_header_level(c, level); 1993 btrfs_set_header_bytenr(c, c->start); 1994 btrfs_set_header_generation(c, trans->transid); 1995 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 1996 btrfs_set_header_owner(c, root->root_key.objectid); 1997 1998 write_extent_buffer(c, root->fs_info->fsid, 1999 (unsigned long)btrfs_header_fsid(c), 2000 BTRFS_FSID_SIZE); 2001 2002 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2003 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2004 BTRFS_UUID_SIZE); 2005 2006 btrfs_set_node_key(c, &lower_key, 0); 2007 btrfs_set_node_blockptr(c, 0, lower->start); 2008 lower_gen = btrfs_header_generation(lower); 2009 WARN_ON(lower_gen != trans->transid); 2010 2011 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2012 2013 btrfs_mark_buffer_dirty(c); 2014 2015 old = root->node; 2016 rcu_assign_pointer(root->node, c); 2017 2018 /* the super has an extra ref to root->node */ 2019 free_extent_buffer(old); 2020 2021 add_root_to_dirty_list(root); 2022 extent_buffer_get(c); 2023 path->nodes[level] = c; 2024 path->locks[level] = 1; 2025 path->slots[level] = 0; 2026 return 0; 2027 } 2028 2029 /* 2030 * worker function to insert a single pointer in a node. 2031 * the node should have enough room for the pointer already 2032 * 2033 * slot and level indicate where you want the key to go, and 2034 * blocknr is the block the key points to. 2035 * 2036 * returns zero on success and < 0 on any error 2037 */ 2038 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root 2039 *root, struct btrfs_path *path, struct btrfs_disk_key 2040 *key, u64 bytenr, int slot, int level) 2041 { 2042 struct extent_buffer *lower; 2043 int nritems; 2044 2045 BUG_ON(!path->nodes[level]); 2046 btrfs_assert_tree_locked(path->nodes[level]); 2047 lower = path->nodes[level]; 2048 nritems = btrfs_header_nritems(lower); 2049 BUG_ON(slot > nritems); 2050 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) 2051 BUG(); 2052 if (slot != nritems) { 2053 memmove_extent_buffer(lower, 2054 btrfs_node_key_ptr_offset(slot + 1), 2055 btrfs_node_key_ptr_offset(slot), 2056 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2057 } 2058 btrfs_set_node_key(lower, key, slot); 2059 btrfs_set_node_blockptr(lower, slot, bytenr); 2060 WARN_ON(trans->transid == 0); 2061 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2062 btrfs_set_header_nritems(lower, nritems + 1); 2063 btrfs_mark_buffer_dirty(lower); 2064 return 0; 2065 } 2066 2067 /* 2068 * split the node at the specified level in path in two. 2069 * The path is corrected to point to the appropriate node after the split 2070 * 2071 * Before splitting this tries to make some room in the node by pushing 2072 * left and right, if either one works, it returns right away. 2073 * 2074 * returns 0 on success and < 0 on failure 2075 */ 2076 static noinline int split_node(struct btrfs_trans_handle *trans, 2077 struct btrfs_root *root, 2078 struct btrfs_path *path, int level) 2079 { 2080 struct extent_buffer *c; 2081 struct extent_buffer *split; 2082 struct btrfs_disk_key disk_key; 2083 int mid; 2084 int ret; 2085 int wret; 2086 u32 c_nritems; 2087 2088 c = path->nodes[level]; 2089 WARN_ON(btrfs_header_generation(c) != trans->transid); 2090 if (c == root->node) { 2091 /* trying to split the root, lets make a new one */ 2092 ret = insert_new_root(trans, root, path, level + 1); 2093 if (ret) 2094 return ret; 2095 } else { 2096 ret = push_nodes_for_insert(trans, root, path, level); 2097 c = path->nodes[level]; 2098 if (!ret && btrfs_header_nritems(c) < 2099 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 2100 return 0; 2101 if (ret < 0) 2102 return ret; 2103 } 2104 2105 c_nritems = btrfs_header_nritems(c); 2106 mid = (c_nritems + 1) / 2; 2107 btrfs_node_key(c, &disk_key, mid); 2108 2109 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2110 root->root_key.objectid, 2111 &disk_key, level, c->start, 0); 2112 if (IS_ERR(split)) 2113 return PTR_ERR(split); 2114 2115 root_add_used(root, root->nodesize); 2116 2117 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 2118 btrfs_set_header_level(split, btrfs_header_level(c)); 2119 btrfs_set_header_bytenr(split, split->start); 2120 btrfs_set_header_generation(split, trans->transid); 2121 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 2122 btrfs_set_header_owner(split, root->root_key.objectid); 2123 write_extent_buffer(split, root->fs_info->fsid, 2124 (unsigned long)btrfs_header_fsid(split), 2125 BTRFS_FSID_SIZE); 2126 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 2127 (unsigned long)btrfs_header_chunk_tree_uuid(split), 2128 BTRFS_UUID_SIZE); 2129 2130 2131 copy_extent_buffer(split, c, 2132 btrfs_node_key_ptr_offset(0), 2133 btrfs_node_key_ptr_offset(mid), 2134 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2135 btrfs_set_header_nritems(split, c_nritems - mid); 2136 btrfs_set_header_nritems(c, mid); 2137 ret = 0; 2138 2139 btrfs_mark_buffer_dirty(c); 2140 btrfs_mark_buffer_dirty(split); 2141 2142 wret = insert_ptr(trans, root, path, &disk_key, split->start, 2143 path->slots[level + 1] + 1, 2144 level + 1); 2145 if (wret) 2146 ret = wret; 2147 2148 if (path->slots[level] >= mid) { 2149 path->slots[level] -= mid; 2150 btrfs_tree_unlock(c); 2151 free_extent_buffer(c); 2152 path->nodes[level] = split; 2153 path->slots[level + 1] += 1; 2154 } else { 2155 btrfs_tree_unlock(split); 2156 free_extent_buffer(split); 2157 } 2158 return ret; 2159 } 2160 2161 /* 2162 * how many bytes are required to store the items in a leaf. start 2163 * and nr indicate which items in the leaf to check. This totals up the 2164 * space used both by the item structs and the item data 2165 */ 2166 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2167 { 2168 int data_len; 2169 int nritems = btrfs_header_nritems(l); 2170 int end = min(nritems, start + nr) - 1; 2171 2172 if (!nr) 2173 return 0; 2174 data_len = btrfs_item_end_nr(l, start); 2175 data_len = data_len - btrfs_item_offset_nr(l, end); 2176 data_len += sizeof(struct btrfs_item) * nr; 2177 WARN_ON(data_len < 0); 2178 return data_len; 2179 } 2180 2181 /* 2182 * The space between the end of the leaf items and 2183 * the start of the leaf data. IOW, how much room 2184 * the leaf has left for both items and data 2185 */ 2186 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 2187 struct extent_buffer *leaf) 2188 { 2189 int nritems = btrfs_header_nritems(leaf); 2190 int ret; 2191 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 2192 if (ret < 0) { 2193 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 2194 "used %d nritems %d\n", 2195 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 2196 leaf_space_used(leaf, 0, nritems), nritems); 2197 } 2198 return ret; 2199 } 2200 2201 /* 2202 * min slot controls the lowest index we're willing to push to the 2203 * right. We'll push up to and including min_slot, but no lower 2204 */ 2205 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 2206 struct btrfs_root *root, 2207 struct btrfs_path *path, 2208 int data_size, int empty, 2209 struct extent_buffer *right, 2210 int free_space, u32 left_nritems, 2211 u32 min_slot) 2212 { 2213 struct extent_buffer *left = path->nodes[0]; 2214 struct extent_buffer *upper = path->nodes[1]; 2215 struct btrfs_disk_key disk_key; 2216 int slot; 2217 u32 i; 2218 int push_space = 0; 2219 int push_items = 0; 2220 struct btrfs_item *item; 2221 u32 nr; 2222 u32 right_nritems; 2223 u32 data_end; 2224 u32 this_item_size; 2225 2226 if (empty) 2227 nr = 0; 2228 else 2229 nr = max_t(u32, 1, min_slot); 2230 2231 if (path->slots[0] >= left_nritems) 2232 push_space += data_size; 2233 2234 slot = path->slots[1]; 2235 i = left_nritems - 1; 2236 while (i >= nr) { 2237 item = btrfs_item_nr(left, i); 2238 2239 if (!empty && push_items > 0) { 2240 if (path->slots[0] > i) 2241 break; 2242 if (path->slots[0] == i) { 2243 int space = btrfs_leaf_free_space(root, left); 2244 if (space + push_space * 2 > free_space) 2245 break; 2246 } 2247 } 2248 2249 if (path->slots[0] == i) 2250 push_space += data_size; 2251 2252 if (!left->map_token) { 2253 map_extent_buffer(left, (unsigned long)item, 2254 sizeof(struct btrfs_item), 2255 &left->map_token, &left->kaddr, 2256 &left->map_start, &left->map_len, 2257 KM_USER1); 2258 } 2259 2260 this_item_size = btrfs_item_size(left, item); 2261 if (this_item_size + sizeof(*item) + push_space > free_space) 2262 break; 2263 2264 push_items++; 2265 push_space += this_item_size + sizeof(*item); 2266 if (i == 0) 2267 break; 2268 i--; 2269 } 2270 if (left->map_token) { 2271 unmap_extent_buffer(left, left->map_token, KM_USER1); 2272 left->map_token = NULL; 2273 } 2274 2275 if (push_items == 0) 2276 goto out_unlock; 2277 2278 if (!empty && push_items == left_nritems) 2279 WARN_ON(1); 2280 2281 /* push left to right */ 2282 right_nritems = btrfs_header_nritems(right); 2283 2284 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2285 push_space -= leaf_data_end(root, left); 2286 2287 /* make room in the right data area */ 2288 data_end = leaf_data_end(root, right); 2289 memmove_extent_buffer(right, 2290 btrfs_leaf_data(right) + data_end - push_space, 2291 btrfs_leaf_data(right) + data_end, 2292 BTRFS_LEAF_DATA_SIZE(root) - data_end); 2293 2294 /* copy from the left data area */ 2295 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 2296 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2297 btrfs_leaf_data(left) + leaf_data_end(root, left), 2298 push_space); 2299 2300 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2301 btrfs_item_nr_offset(0), 2302 right_nritems * sizeof(struct btrfs_item)); 2303 2304 /* copy the items from left to right */ 2305 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2306 btrfs_item_nr_offset(left_nritems - push_items), 2307 push_items * sizeof(struct btrfs_item)); 2308 2309 /* update the item pointers */ 2310 right_nritems += push_items; 2311 btrfs_set_header_nritems(right, right_nritems); 2312 push_space = BTRFS_LEAF_DATA_SIZE(root); 2313 for (i = 0; i < right_nritems; i++) { 2314 item = btrfs_item_nr(right, i); 2315 if (!right->map_token) { 2316 map_extent_buffer(right, (unsigned long)item, 2317 sizeof(struct btrfs_item), 2318 &right->map_token, &right->kaddr, 2319 &right->map_start, &right->map_len, 2320 KM_USER1); 2321 } 2322 push_space -= btrfs_item_size(right, item); 2323 btrfs_set_item_offset(right, item, push_space); 2324 } 2325 2326 if (right->map_token) { 2327 unmap_extent_buffer(right, right->map_token, KM_USER1); 2328 right->map_token = NULL; 2329 } 2330 left_nritems -= push_items; 2331 btrfs_set_header_nritems(left, left_nritems); 2332 2333 if (left_nritems) 2334 btrfs_mark_buffer_dirty(left); 2335 else 2336 clean_tree_block(trans, root, left); 2337 2338 btrfs_mark_buffer_dirty(right); 2339 2340 btrfs_item_key(right, &disk_key, 0); 2341 btrfs_set_node_key(upper, &disk_key, slot + 1); 2342 btrfs_mark_buffer_dirty(upper); 2343 2344 /* then fixup the leaf pointer in the path */ 2345 if (path->slots[0] >= left_nritems) { 2346 path->slots[0] -= left_nritems; 2347 if (btrfs_header_nritems(path->nodes[0]) == 0) 2348 clean_tree_block(trans, root, path->nodes[0]); 2349 btrfs_tree_unlock(path->nodes[0]); 2350 free_extent_buffer(path->nodes[0]); 2351 path->nodes[0] = right; 2352 path->slots[1] += 1; 2353 } else { 2354 btrfs_tree_unlock(right); 2355 free_extent_buffer(right); 2356 } 2357 return 0; 2358 2359 out_unlock: 2360 btrfs_tree_unlock(right); 2361 free_extent_buffer(right); 2362 return 1; 2363 } 2364 2365 /* 2366 * push some data in the path leaf to the right, trying to free up at 2367 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2368 * 2369 * returns 1 if the push failed because the other node didn't have enough 2370 * room, 0 if everything worked out and < 0 if there were major errors. 2371 * 2372 * this will push starting from min_slot to the end of the leaf. It won't 2373 * push any slot lower than min_slot 2374 */ 2375 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2376 *root, struct btrfs_path *path, 2377 int min_data_size, int data_size, 2378 int empty, u32 min_slot) 2379 { 2380 struct extent_buffer *left = path->nodes[0]; 2381 struct extent_buffer *right; 2382 struct extent_buffer *upper; 2383 int slot; 2384 int free_space; 2385 u32 left_nritems; 2386 int ret; 2387 2388 if (!path->nodes[1]) 2389 return 1; 2390 2391 slot = path->slots[1]; 2392 upper = path->nodes[1]; 2393 if (slot >= btrfs_header_nritems(upper) - 1) 2394 return 1; 2395 2396 btrfs_assert_tree_locked(path->nodes[1]); 2397 2398 right = read_node_slot(root, upper, slot + 1); 2399 if (right == NULL) 2400 return 1; 2401 2402 btrfs_tree_lock(right); 2403 btrfs_set_lock_blocking(right); 2404 2405 free_space = btrfs_leaf_free_space(root, right); 2406 if (free_space < data_size) 2407 goto out_unlock; 2408 2409 /* cow and double check */ 2410 ret = btrfs_cow_block(trans, root, right, upper, 2411 slot + 1, &right); 2412 if (ret) 2413 goto out_unlock; 2414 2415 free_space = btrfs_leaf_free_space(root, right); 2416 if (free_space < data_size) 2417 goto out_unlock; 2418 2419 left_nritems = btrfs_header_nritems(left); 2420 if (left_nritems == 0) 2421 goto out_unlock; 2422 2423 return __push_leaf_right(trans, root, path, min_data_size, empty, 2424 right, free_space, left_nritems, min_slot); 2425 out_unlock: 2426 btrfs_tree_unlock(right); 2427 free_extent_buffer(right); 2428 return 1; 2429 } 2430 2431 /* 2432 * push some data in the path leaf to the left, trying to free up at 2433 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2434 * 2435 * max_slot can put a limit on how far into the leaf we'll push items. The 2436 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 2437 * items 2438 */ 2439 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 2440 struct btrfs_root *root, 2441 struct btrfs_path *path, int data_size, 2442 int empty, struct extent_buffer *left, 2443 int free_space, u32 right_nritems, 2444 u32 max_slot) 2445 { 2446 struct btrfs_disk_key disk_key; 2447 struct extent_buffer *right = path->nodes[0]; 2448 int i; 2449 int push_space = 0; 2450 int push_items = 0; 2451 struct btrfs_item *item; 2452 u32 old_left_nritems; 2453 u32 nr; 2454 int ret = 0; 2455 int wret; 2456 u32 this_item_size; 2457 u32 old_left_item_size; 2458 2459 if (empty) 2460 nr = min(right_nritems, max_slot); 2461 else 2462 nr = min(right_nritems - 1, max_slot); 2463 2464 for (i = 0; i < nr; i++) { 2465 item = btrfs_item_nr(right, i); 2466 if (!right->map_token) { 2467 map_extent_buffer(right, (unsigned long)item, 2468 sizeof(struct btrfs_item), 2469 &right->map_token, &right->kaddr, 2470 &right->map_start, &right->map_len, 2471 KM_USER1); 2472 } 2473 2474 if (!empty && push_items > 0) { 2475 if (path->slots[0] < i) 2476 break; 2477 if (path->slots[0] == i) { 2478 int space = btrfs_leaf_free_space(root, right); 2479 if (space + push_space * 2 > free_space) 2480 break; 2481 } 2482 } 2483 2484 if (path->slots[0] == i) 2485 push_space += data_size; 2486 2487 this_item_size = btrfs_item_size(right, item); 2488 if (this_item_size + sizeof(*item) + push_space > free_space) 2489 break; 2490 2491 push_items++; 2492 push_space += this_item_size + sizeof(*item); 2493 } 2494 2495 if (right->map_token) { 2496 unmap_extent_buffer(right, right->map_token, KM_USER1); 2497 right->map_token = NULL; 2498 } 2499 2500 if (push_items == 0) { 2501 ret = 1; 2502 goto out; 2503 } 2504 if (!empty && push_items == btrfs_header_nritems(right)) 2505 WARN_ON(1); 2506 2507 /* push data from right to left */ 2508 copy_extent_buffer(left, right, 2509 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2510 btrfs_item_nr_offset(0), 2511 push_items * sizeof(struct btrfs_item)); 2512 2513 push_space = BTRFS_LEAF_DATA_SIZE(root) - 2514 btrfs_item_offset_nr(right, push_items - 1); 2515 2516 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 2517 leaf_data_end(root, left) - push_space, 2518 btrfs_leaf_data(right) + 2519 btrfs_item_offset_nr(right, push_items - 1), 2520 push_space); 2521 old_left_nritems = btrfs_header_nritems(left); 2522 BUG_ON(old_left_nritems <= 0); 2523 2524 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2525 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2526 u32 ioff; 2527 2528 item = btrfs_item_nr(left, i); 2529 if (!left->map_token) { 2530 map_extent_buffer(left, (unsigned long)item, 2531 sizeof(struct btrfs_item), 2532 &left->map_token, &left->kaddr, 2533 &left->map_start, &left->map_len, 2534 KM_USER1); 2535 } 2536 2537 ioff = btrfs_item_offset(left, item); 2538 btrfs_set_item_offset(left, item, 2539 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); 2540 } 2541 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2542 if (left->map_token) { 2543 unmap_extent_buffer(left, left->map_token, KM_USER1); 2544 left->map_token = NULL; 2545 } 2546 2547 /* fixup right node */ 2548 if (push_items > right_nritems) { 2549 printk(KERN_CRIT "push items %d nr %u\n", push_items, 2550 right_nritems); 2551 WARN_ON(1); 2552 } 2553 2554 if (push_items < right_nritems) { 2555 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2556 leaf_data_end(root, right); 2557 memmove_extent_buffer(right, btrfs_leaf_data(right) + 2558 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2559 btrfs_leaf_data(right) + 2560 leaf_data_end(root, right), push_space); 2561 2562 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2563 btrfs_item_nr_offset(push_items), 2564 (btrfs_header_nritems(right) - push_items) * 2565 sizeof(struct btrfs_item)); 2566 } 2567 right_nritems -= push_items; 2568 btrfs_set_header_nritems(right, right_nritems); 2569 push_space = BTRFS_LEAF_DATA_SIZE(root); 2570 for (i = 0; i < right_nritems; i++) { 2571 item = btrfs_item_nr(right, i); 2572 2573 if (!right->map_token) { 2574 map_extent_buffer(right, (unsigned long)item, 2575 sizeof(struct btrfs_item), 2576 &right->map_token, &right->kaddr, 2577 &right->map_start, &right->map_len, 2578 KM_USER1); 2579 } 2580 2581 push_space = push_space - btrfs_item_size(right, item); 2582 btrfs_set_item_offset(right, item, push_space); 2583 } 2584 if (right->map_token) { 2585 unmap_extent_buffer(right, right->map_token, KM_USER1); 2586 right->map_token = NULL; 2587 } 2588 2589 btrfs_mark_buffer_dirty(left); 2590 if (right_nritems) 2591 btrfs_mark_buffer_dirty(right); 2592 else 2593 clean_tree_block(trans, root, right); 2594 2595 btrfs_item_key(right, &disk_key, 0); 2596 wret = fixup_low_keys(trans, root, path, &disk_key, 1); 2597 if (wret) 2598 ret = wret; 2599 2600 /* then fixup the leaf pointer in the path */ 2601 if (path->slots[0] < push_items) { 2602 path->slots[0] += old_left_nritems; 2603 btrfs_tree_unlock(path->nodes[0]); 2604 free_extent_buffer(path->nodes[0]); 2605 path->nodes[0] = left; 2606 path->slots[1] -= 1; 2607 } else { 2608 btrfs_tree_unlock(left); 2609 free_extent_buffer(left); 2610 path->slots[0] -= push_items; 2611 } 2612 BUG_ON(path->slots[0] < 0); 2613 return ret; 2614 out: 2615 btrfs_tree_unlock(left); 2616 free_extent_buffer(left); 2617 return ret; 2618 } 2619 2620 /* 2621 * push some data in the path leaf to the left, trying to free up at 2622 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2623 * 2624 * max_slot can put a limit on how far into the leaf we'll push items. The 2625 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 2626 * items 2627 */ 2628 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 2629 *root, struct btrfs_path *path, int min_data_size, 2630 int data_size, int empty, u32 max_slot) 2631 { 2632 struct extent_buffer *right = path->nodes[0]; 2633 struct extent_buffer *left; 2634 int slot; 2635 int free_space; 2636 u32 right_nritems; 2637 int ret = 0; 2638 2639 slot = path->slots[1]; 2640 if (slot == 0) 2641 return 1; 2642 if (!path->nodes[1]) 2643 return 1; 2644 2645 right_nritems = btrfs_header_nritems(right); 2646 if (right_nritems == 0) 2647 return 1; 2648 2649 btrfs_assert_tree_locked(path->nodes[1]); 2650 2651 left = read_node_slot(root, path->nodes[1], slot - 1); 2652 if (left == NULL) 2653 return 1; 2654 2655 btrfs_tree_lock(left); 2656 btrfs_set_lock_blocking(left); 2657 2658 free_space = btrfs_leaf_free_space(root, left); 2659 if (free_space < data_size) { 2660 ret = 1; 2661 goto out; 2662 } 2663 2664 /* cow and double check */ 2665 ret = btrfs_cow_block(trans, root, left, 2666 path->nodes[1], slot - 1, &left); 2667 if (ret) { 2668 /* we hit -ENOSPC, but it isn't fatal here */ 2669 ret = 1; 2670 goto out; 2671 } 2672 2673 free_space = btrfs_leaf_free_space(root, left); 2674 if (free_space < data_size) { 2675 ret = 1; 2676 goto out; 2677 } 2678 2679 return __push_leaf_left(trans, root, path, min_data_size, 2680 empty, left, free_space, right_nritems, 2681 max_slot); 2682 out: 2683 btrfs_tree_unlock(left); 2684 free_extent_buffer(left); 2685 return ret; 2686 } 2687 2688 /* 2689 * split the path's leaf in two, making sure there is at least data_size 2690 * available for the resulting leaf level of the path. 2691 * 2692 * returns 0 if all went well and < 0 on failure. 2693 */ 2694 static noinline int copy_for_split(struct btrfs_trans_handle *trans, 2695 struct btrfs_root *root, 2696 struct btrfs_path *path, 2697 struct extent_buffer *l, 2698 struct extent_buffer *right, 2699 int slot, int mid, int nritems) 2700 { 2701 int data_copy_size; 2702 int rt_data_off; 2703 int i; 2704 int ret = 0; 2705 int wret; 2706 struct btrfs_disk_key disk_key; 2707 2708 nritems = nritems - mid; 2709 btrfs_set_header_nritems(right, nritems); 2710 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 2711 2712 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 2713 btrfs_item_nr_offset(mid), 2714 nritems * sizeof(struct btrfs_item)); 2715 2716 copy_extent_buffer(right, l, 2717 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 2718 data_copy_size, btrfs_leaf_data(l) + 2719 leaf_data_end(root, l), data_copy_size); 2720 2721 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 2722 btrfs_item_end_nr(l, mid); 2723 2724 for (i = 0; i < nritems; i++) { 2725 struct btrfs_item *item = btrfs_item_nr(right, i); 2726 u32 ioff; 2727 2728 if (!right->map_token) { 2729 map_extent_buffer(right, (unsigned long)item, 2730 sizeof(struct btrfs_item), 2731 &right->map_token, &right->kaddr, 2732 &right->map_start, &right->map_len, 2733 KM_USER1); 2734 } 2735 2736 ioff = btrfs_item_offset(right, item); 2737 btrfs_set_item_offset(right, item, ioff + rt_data_off); 2738 } 2739 2740 if (right->map_token) { 2741 unmap_extent_buffer(right, right->map_token, KM_USER1); 2742 right->map_token = NULL; 2743 } 2744 2745 btrfs_set_header_nritems(l, mid); 2746 ret = 0; 2747 btrfs_item_key(right, &disk_key, 0); 2748 wret = insert_ptr(trans, root, path, &disk_key, right->start, 2749 path->slots[1] + 1, 1); 2750 if (wret) 2751 ret = wret; 2752 2753 btrfs_mark_buffer_dirty(right); 2754 btrfs_mark_buffer_dirty(l); 2755 BUG_ON(path->slots[0] != slot); 2756 2757 if (mid <= slot) { 2758 btrfs_tree_unlock(path->nodes[0]); 2759 free_extent_buffer(path->nodes[0]); 2760 path->nodes[0] = right; 2761 path->slots[0] -= mid; 2762 path->slots[1] += 1; 2763 } else { 2764 btrfs_tree_unlock(right); 2765 free_extent_buffer(right); 2766 } 2767 2768 BUG_ON(path->slots[0] < 0); 2769 2770 return ret; 2771 } 2772 2773 /* 2774 * double splits happen when we need to insert a big item in the middle 2775 * of a leaf. A double split can leave us with 3 mostly empty leaves: 2776 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 2777 * A B C 2778 * 2779 * We avoid this by trying to push the items on either side of our target 2780 * into the adjacent leaves. If all goes well we can avoid the double split 2781 * completely. 2782 */ 2783 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 2784 struct btrfs_root *root, 2785 struct btrfs_path *path, 2786 int data_size) 2787 { 2788 int ret; 2789 int progress = 0; 2790 int slot; 2791 u32 nritems; 2792 2793 slot = path->slots[0]; 2794 2795 /* 2796 * try to push all the items after our slot into the 2797 * right leaf 2798 */ 2799 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 2800 if (ret < 0) 2801 return ret; 2802 2803 if (ret == 0) 2804 progress++; 2805 2806 nritems = btrfs_header_nritems(path->nodes[0]); 2807 /* 2808 * our goal is to get our slot at the start or end of a leaf. If 2809 * we've done so we're done 2810 */ 2811 if (path->slots[0] == 0 || path->slots[0] == nritems) 2812 return 0; 2813 2814 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 2815 return 0; 2816 2817 /* try to push all the items before our slot into the next leaf */ 2818 slot = path->slots[0]; 2819 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 2820 if (ret < 0) 2821 return ret; 2822 2823 if (ret == 0) 2824 progress++; 2825 2826 if (progress) 2827 return 0; 2828 return 1; 2829 } 2830 2831 /* 2832 * split the path's leaf in two, making sure there is at least data_size 2833 * available for the resulting leaf level of the path. 2834 * 2835 * returns 0 if all went well and < 0 on failure. 2836 */ 2837 static noinline int split_leaf(struct btrfs_trans_handle *trans, 2838 struct btrfs_root *root, 2839 struct btrfs_key *ins_key, 2840 struct btrfs_path *path, int data_size, 2841 int extend) 2842 { 2843 struct btrfs_disk_key disk_key; 2844 struct extent_buffer *l; 2845 u32 nritems; 2846 int mid; 2847 int slot; 2848 struct extent_buffer *right; 2849 int ret = 0; 2850 int wret; 2851 int split; 2852 int num_doubles = 0; 2853 int tried_avoid_double = 0; 2854 2855 l = path->nodes[0]; 2856 slot = path->slots[0]; 2857 if (extend && data_size + btrfs_item_size_nr(l, slot) + 2858 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 2859 return -EOVERFLOW; 2860 2861 /* first try to make some room by pushing left and right */ 2862 if (data_size) { 2863 wret = push_leaf_right(trans, root, path, data_size, 2864 data_size, 0, 0); 2865 if (wret < 0) 2866 return wret; 2867 if (wret) { 2868 wret = push_leaf_left(trans, root, path, data_size, 2869 data_size, 0, (u32)-1); 2870 if (wret < 0) 2871 return wret; 2872 } 2873 l = path->nodes[0]; 2874 2875 /* did the pushes work? */ 2876 if (btrfs_leaf_free_space(root, l) >= data_size) 2877 return 0; 2878 } 2879 2880 if (!path->nodes[1]) { 2881 ret = insert_new_root(trans, root, path, 1); 2882 if (ret) 2883 return ret; 2884 } 2885 again: 2886 split = 1; 2887 l = path->nodes[0]; 2888 slot = path->slots[0]; 2889 nritems = btrfs_header_nritems(l); 2890 mid = (nritems + 1) / 2; 2891 2892 if (mid <= slot) { 2893 if (nritems == 1 || 2894 leaf_space_used(l, mid, nritems - mid) + data_size > 2895 BTRFS_LEAF_DATA_SIZE(root)) { 2896 if (slot >= nritems) { 2897 split = 0; 2898 } else { 2899 mid = slot; 2900 if (mid != nritems && 2901 leaf_space_used(l, mid, nritems - mid) + 2902 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2903 if (data_size && !tried_avoid_double) 2904 goto push_for_double; 2905 split = 2; 2906 } 2907 } 2908 } 2909 } else { 2910 if (leaf_space_used(l, 0, mid) + data_size > 2911 BTRFS_LEAF_DATA_SIZE(root)) { 2912 if (!extend && data_size && slot == 0) { 2913 split = 0; 2914 } else if ((extend || !data_size) && slot == 0) { 2915 mid = 1; 2916 } else { 2917 mid = slot; 2918 if (mid != nritems && 2919 leaf_space_used(l, mid, nritems - mid) + 2920 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2921 if (data_size && !tried_avoid_double) 2922 goto push_for_double; 2923 split = 2 ; 2924 } 2925 } 2926 } 2927 } 2928 2929 if (split == 0) 2930 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2931 else 2932 btrfs_item_key(l, &disk_key, mid); 2933 2934 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 2935 root->root_key.objectid, 2936 &disk_key, 0, l->start, 0); 2937 if (IS_ERR(right)) 2938 return PTR_ERR(right); 2939 2940 root_add_used(root, root->leafsize); 2941 2942 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 2943 btrfs_set_header_bytenr(right, right->start); 2944 btrfs_set_header_generation(right, trans->transid); 2945 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 2946 btrfs_set_header_owner(right, root->root_key.objectid); 2947 btrfs_set_header_level(right, 0); 2948 write_extent_buffer(right, root->fs_info->fsid, 2949 (unsigned long)btrfs_header_fsid(right), 2950 BTRFS_FSID_SIZE); 2951 2952 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 2953 (unsigned long)btrfs_header_chunk_tree_uuid(right), 2954 BTRFS_UUID_SIZE); 2955 2956 if (split == 0) { 2957 if (mid <= slot) { 2958 btrfs_set_header_nritems(right, 0); 2959 wret = insert_ptr(trans, root, path, 2960 &disk_key, right->start, 2961 path->slots[1] + 1, 1); 2962 if (wret) 2963 ret = wret; 2964 2965 btrfs_tree_unlock(path->nodes[0]); 2966 free_extent_buffer(path->nodes[0]); 2967 path->nodes[0] = right; 2968 path->slots[0] = 0; 2969 path->slots[1] += 1; 2970 } else { 2971 btrfs_set_header_nritems(right, 0); 2972 wret = insert_ptr(trans, root, path, 2973 &disk_key, 2974 right->start, 2975 path->slots[1], 1); 2976 if (wret) 2977 ret = wret; 2978 btrfs_tree_unlock(path->nodes[0]); 2979 free_extent_buffer(path->nodes[0]); 2980 path->nodes[0] = right; 2981 path->slots[0] = 0; 2982 if (path->slots[1] == 0) { 2983 wret = fixup_low_keys(trans, root, 2984 path, &disk_key, 1); 2985 if (wret) 2986 ret = wret; 2987 } 2988 } 2989 btrfs_mark_buffer_dirty(right); 2990 return ret; 2991 } 2992 2993 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems); 2994 BUG_ON(ret); 2995 2996 if (split == 2) { 2997 BUG_ON(num_doubles != 0); 2998 num_doubles++; 2999 goto again; 3000 } 3001 3002 return ret; 3003 3004 push_for_double: 3005 push_for_double_split(trans, root, path, data_size); 3006 tried_avoid_double = 1; 3007 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3008 return 0; 3009 goto again; 3010 } 3011 3012 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3013 struct btrfs_root *root, 3014 struct btrfs_path *path, int ins_len) 3015 { 3016 struct btrfs_key key; 3017 struct extent_buffer *leaf; 3018 struct btrfs_file_extent_item *fi; 3019 u64 extent_len = 0; 3020 u32 item_size; 3021 int ret; 3022 3023 leaf = path->nodes[0]; 3024 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3025 3026 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3027 key.type != BTRFS_EXTENT_CSUM_KEY); 3028 3029 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 3030 return 0; 3031 3032 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3033 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3034 fi = btrfs_item_ptr(leaf, path->slots[0], 3035 struct btrfs_file_extent_item); 3036 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3037 } 3038 btrfs_release_path(path); 3039 3040 path->keep_locks = 1; 3041 path->search_for_split = 1; 3042 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3043 path->search_for_split = 0; 3044 if (ret < 0) 3045 goto err; 3046 3047 ret = -EAGAIN; 3048 leaf = path->nodes[0]; 3049 /* if our item isn't there or got smaller, return now */ 3050 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 3051 goto err; 3052 3053 /* the leaf has changed, it now has room. return now */ 3054 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 3055 goto err; 3056 3057 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3058 fi = btrfs_item_ptr(leaf, path->slots[0], 3059 struct btrfs_file_extent_item); 3060 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3061 goto err; 3062 } 3063 3064 btrfs_set_path_blocking(path); 3065 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3066 if (ret) 3067 goto err; 3068 3069 path->keep_locks = 0; 3070 btrfs_unlock_up_safe(path, 1); 3071 return 0; 3072 err: 3073 path->keep_locks = 0; 3074 return ret; 3075 } 3076 3077 static noinline int split_item(struct btrfs_trans_handle *trans, 3078 struct btrfs_root *root, 3079 struct btrfs_path *path, 3080 struct btrfs_key *new_key, 3081 unsigned long split_offset) 3082 { 3083 struct extent_buffer *leaf; 3084 struct btrfs_item *item; 3085 struct btrfs_item *new_item; 3086 int slot; 3087 char *buf; 3088 u32 nritems; 3089 u32 item_size; 3090 u32 orig_offset; 3091 struct btrfs_disk_key disk_key; 3092 3093 leaf = path->nodes[0]; 3094 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3095 3096 btrfs_set_path_blocking(path); 3097 3098 item = btrfs_item_nr(leaf, path->slots[0]); 3099 orig_offset = btrfs_item_offset(leaf, item); 3100 item_size = btrfs_item_size(leaf, item); 3101 3102 buf = kmalloc(item_size, GFP_NOFS); 3103 if (!buf) 3104 return -ENOMEM; 3105 3106 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3107 path->slots[0]), item_size); 3108 3109 slot = path->slots[0] + 1; 3110 nritems = btrfs_header_nritems(leaf); 3111 if (slot != nritems) { 3112 /* shift the items */ 3113 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3114 btrfs_item_nr_offset(slot), 3115 (nritems - slot) * sizeof(struct btrfs_item)); 3116 } 3117 3118 btrfs_cpu_key_to_disk(&disk_key, new_key); 3119 btrfs_set_item_key(leaf, &disk_key, slot); 3120 3121 new_item = btrfs_item_nr(leaf, slot); 3122 3123 btrfs_set_item_offset(leaf, new_item, orig_offset); 3124 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3125 3126 btrfs_set_item_offset(leaf, item, 3127 orig_offset + item_size - split_offset); 3128 btrfs_set_item_size(leaf, item, split_offset); 3129 3130 btrfs_set_header_nritems(leaf, nritems + 1); 3131 3132 /* write the data for the start of the original item */ 3133 write_extent_buffer(leaf, buf, 3134 btrfs_item_ptr_offset(leaf, path->slots[0]), 3135 split_offset); 3136 3137 /* write the data for the new item */ 3138 write_extent_buffer(leaf, buf + split_offset, 3139 btrfs_item_ptr_offset(leaf, slot), 3140 item_size - split_offset); 3141 btrfs_mark_buffer_dirty(leaf); 3142 3143 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 3144 kfree(buf); 3145 return 0; 3146 } 3147 3148 /* 3149 * This function splits a single item into two items, 3150 * giving 'new_key' to the new item and splitting the 3151 * old one at split_offset (from the start of the item). 3152 * 3153 * The path may be released by this operation. After 3154 * the split, the path is pointing to the old item. The 3155 * new item is going to be in the same node as the old one. 3156 * 3157 * Note, the item being split must be smaller enough to live alone on 3158 * a tree block with room for one extra struct btrfs_item 3159 * 3160 * This allows us to split the item in place, keeping a lock on the 3161 * leaf the entire time. 3162 */ 3163 int btrfs_split_item(struct btrfs_trans_handle *trans, 3164 struct btrfs_root *root, 3165 struct btrfs_path *path, 3166 struct btrfs_key *new_key, 3167 unsigned long split_offset) 3168 { 3169 int ret; 3170 ret = setup_leaf_for_split(trans, root, path, 3171 sizeof(struct btrfs_item)); 3172 if (ret) 3173 return ret; 3174 3175 ret = split_item(trans, root, path, new_key, split_offset); 3176 return ret; 3177 } 3178 3179 /* 3180 * This function duplicate a item, giving 'new_key' to the new item. 3181 * It guarantees both items live in the same tree leaf and the new item 3182 * is contiguous with the original item. 3183 * 3184 * This allows us to split file extent in place, keeping a lock on the 3185 * leaf the entire time. 3186 */ 3187 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 3188 struct btrfs_root *root, 3189 struct btrfs_path *path, 3190 struct btrfs_key *new_key) 3191 { 3192 struct extent_buffer *leaf; 3193 int ret; 3194 u32 item_size; 3195 3196 leaf = path->nodes[0]; 3197 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3198 ret = setup_leaf_for_split(trans, root, path, 3199 item_size + sizeof(struct btrfs_item)); 3200 if (ret) 3201 return ret; 3202 3203 path->slots[0]++; 3204 ret = setup_items_for_insert(trans, root, path, new_key, &item_size, 3205 item_size, item_size + 3206 sizeof(struct btrfs_item), 1); 3207 BUG_ON(ret); 3208 3209 leaf = path->nodes[0]; 3210 memcpy_extent_buffer(leaf, 3211 btrfs_item_ptr_offset(leaf, path->slots[0]), 3212 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 3213 item_size); 3214 return 0; 3215 } 3216 3217 /* 3218 * make the item pointed to by the path smaller. new_size indicates 3219 * how small to make it, and from_end tells us if we just chop bytes 3220 * off the end of the item or if we shift the item to chop bytes off 3221 * the front. 3222 */ 3223 int btrfs_truncate_item(struct btrfs_trans_handle *trans, 3224 struct btrfs_root *root, 3225 struct btrfs_path *path, 3226 u32 new_size, int from_end) 3227 { 3228 int slot; 3229 struct extent_buffer *leaf; 3230 struct btrfs_item *item; 3231 u32 nritems; 3232 unsigned int data_end; 3233 unsigned int old_data_start; 3234 unsigned int old_size; 3235 unsigned int size_diff; 3236 int i; 3237 3238 leaf = path->nodes[0]; 3239 slot = path->slots[0]; 3240 3241 old_size = btrfs_item_size_nr(leaf, slot); 3242 if (old_size == new_size) 3243 return 0; 3244 3245 nritems = btrfs_header_nritems(leaf); 3246 data_end = leaf_data_end(root, leaf); 3247 3248 old_data_start = btrfs_item_offset_nr(leaf, slot); 3249 3250 size_diff = old_size - new_size; 3251 3252 BUG_ON(slot < 0); 3253 BUG_ON(slot >= nritems); 3254 3255 /* 3256 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3257 */ 3258 /* first correct the data pointers */ 3259 for (i = slot; i < nritems; i++) { 3260 u32 ioff; 3261 item = btrfs_item_nr(leaf, i); 3262 3263 if (!leaf->map_token) { 3264 map_extent_buffer(leaf, (unsigned long)item, 3265 sizeof(struct btrfs_item), 3266 &leaf->map_token, &leaf->kaddr, 3267 &leaf->map_start, &leaf->map_len, 3268 KM_USER1); 3269 } 3270 3271 ioff = btrfs_item_offset(leaf, item); 3272 btrfs_set_item_offset(leaf, item, ioff + size_diff); 3273 } 3274 3275 if (leaf->map_token) { 3276 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3277 leaf->map_token = NULL; 3278 } 3279 3280 /* shift the data */ 3281 if (from_end) { 3282 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3283 data_end + size_diff, btrfs_leaf_data(leaf) + 3284 data_end, old_data_start + new_size - data_end); 3285 } else { 3286 struct btrfs_disk_key disk_key; 3287 u64 offset; 3288 3289 btrfs_item_key(leaf, &disk_key, slot); 3290 3291 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3292 unsigned long ptr; 3293 struct btrfs_file_extent_item *fi; 3294 3295 fi = btrfs_item_ptr(leaf, slot, 3296 struct btrfs_file_extent_item); 3297 fi = (struct btrfs_file_extent_item *)( 3298 (unsigned long)fi - size_diff); 3299 3300 if (btrfs_file_extent_type(leaf, fi) == 3301 BTRFS_FILE_EXTENT_INLINE) { 3302 ptr = btrfs_item_ptr_offset(leaf, slot); 3303 memmove_extent_buffer(leaf, ptr, 3304 (unsigned long)fi, 3305 offsetof(struct btrfs_file_extent_item, 3306 disk_bytenr)); 3307 } 3308 } 3309 3310 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3311 data_end + size_diff, btrfs_leaf_data(leaf) + 3312 data_end, old_data_start - data_end); 3313 3314 offset = btrfs_disk_key_offset(&disk_key); 3315 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3316 btrfs_set_item_key(leaf, &disk_key, slot); 3317 if (slot == 0) 3318 fixup_low_keys(trans, root, path, &disk_key, 1); 3319 } 3320 3321 item = btrfs_item_nr(leaf, slot); 3322 btrfs_set_item_size(leaf, item, new_size); 3323 btrfs_mark_buffer_dirty(leaf); 3324 3325 if (btrfs_leaf_free_space(root, leaf) < 0) { 3326 btrfs_print_leaf(root, leaf); 3327 BUG(); 3328 } 3329 return 0; 3330 } 3331 3332 /* 3333 * make the item pointed to by the path bigger, data_size is the new size. 3334 */ 3335 int btrfs_extend_item(struct btrfs_trans_handle *trans, 3336 struct btrfs_root *root, struct btrfs_path *path, 3337 u32 data_size) 3338 { 3339 int slot; 3340 struct extent_buffer *leaf; 3341 struct btrfs_item *item; 3342 u32 nritems; 3343 unsigned int data_end; 3344 unsigned int old_data; 3345 unsigned int old_size; 3346 int i; 3347 3348 leaf = path->nodes[0]; 3349 3350 nritems = btrfs_header_nritems(leaf); 3351 data_end = leaf_data_end(root, leaf); 3352 3353 if (btrfs_leaf_free_space(root, leaf) < data_size) { 3354 btrfs_print_leaf(root, leaf); 3355 BUG(); 3356 } 3357 slot = path->slots[0]; 3358 old_data = btrfs_item_end_nr(leaf, slot); 3359 3360 BUG_ON(slot < 0); 3361 if (slot >= nritems) { 3362 btrfs_print_leaf(root, leaf); 3363 printk(KERN_CRIT "slot %d too large, nritems %d\n", 3364 slot, nritems); 3365 BUG_ON(1); 3366 } 3367 3368 /* 3369 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3370 */ 3371 /* first correct the data pointers */ 3372 for (i = slot; i < nritems; i++) { 3373 u32 ioff; 3374 item = btrfs_item_nr(leaf, i); 3375 3376 if (!leaf->map_token) { 3377 map_extent_buffer(leaf, (unsigned long)item, 3378 sizeof(struct btrfs_item), 3379 &leaf->map_token, &leaf->kaddr, 3380 &leaf->map_start, &leaf->map_len, 3381 KM_USER1); 3382 } 3383 ioff = btrfs_item_offset(leaf, item); 3384 btrfs_set_item_offset(leaf, item, ioff - data_size); 3385 } 3386 3387 if (leaf->map_token) { 3388 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3389 leaf->map_token = NULL; 3390 } 3391 3392 /* shift the data */ 3393 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3394 data_end - data_size, btrfs_leaf_data(leaf) + 3395 data_end, old_data - data_end); 3396 3397 data_end = old_data; 3398 old_size = btrfs_item_size_nr(leaf, slot); 3399 item = btrfs_item_nr(leaf, slot); 3400 btrfs_set_item_size(leaf, item, old_size + data_size); 3401 btrfs_mark_buffer_dirty(leaf); 3402 3403 if (btrfs_leaf_free_space(root, leaf) < 0) { 3404 btrfs_print_leaf(root, leaf); 3405 BUG(); 3406 } 3407 return 0; 3408 } 3409 3410 /* 3411 * Given a key and some data, insert items into the tree. 3412 * This does all the path init required, making room in the tree if needed. 3413 * Returns the number of keys that were inserted. 3414 */ 3415 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 3416 struct btrfs_root *root, 3417 struct btrfs_path *path, 3418 struct btrfs_key *cpu_key, u32 *data_size, 3419 int nr) 3420 { 3421 struct extent_buffer *leaf; 3422 struct btrfs_item *item; 3423 int ret = 0; 3424 int slot; 3425 int i; 3426 u32 nritems; 3427 u32 total_data = 0; 3428 u32 total_size = 0; 3429 unsigned int data_end; 3430 struct btrfs_disk_key disk_key; 3431 struct btrfs_key found_key; 3432 3433 for (i = 0; i < nr; i++) { 3434 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 3435 BTRFS_LEAF_DATA_SIZE(root)) { 3436 break; 3437 nr = i; 3438 } 3439 total_data += data_size[i]; 3440 total_size += data_size[i] + sizeof(struct btrfs_item); 3441 } 3442 BUG_ON(nr == 0); 3443 3444 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3445 if (ret == 0) 3446 return -EEXIST; 3447 if (ret < 0) 3448 goto out; 3449 3450 leaf = path->nodes[0]; 3451 3452 nritems = btrfs_header_nritems(leaf); 3453 data_end = leaf_data_end(root, leaf); 3454 3455 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3456 for (i = nr; i >= 0; i--) { 3457 total_data -= data_size[i]; 3458 total_size -= data_size[i] + sizeof(struct btrfs_item); 3459 if (total_size < btrfs_leaf_free_space(root, leaf)) 3460 break; 3461 } 3462 nr = i; 3463 } 3464 3465 slot = path->slots[0]; 3466 BUG_ON(slot < 0); 3467 3468 if (slot != nritems) { 3469 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3470 3471 item = btrfs_item_nr(leaf, slot); 3472 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3473 3474 /* figure out how many keys we can insert in here */ 3475 total_data = data_size[0]; 3476 for (i = 1; i < nr; i++) { 3477 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0) 3478 break; 3479 total_data += data_size[i]; 3480 } 3481 nr = i; 3482 3483 if (old_data < data_end) { 3484 btrfs_print_leaf(root, leaf); 3485 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3486 slot, old_data, data_end); 3487 BUG_ON(1); 3488 } 3489 /* 3490 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3491 */ 3492 /* first correct the data pointers */ 3493 WARN_ON(leaf->map_token); 3494 for (i = slot; i < nritems; i++) { 3495 u32 ioff; 3496 3497 item = btrfs_item_nr(leaf, i); 3498 if (!leaf->map_token) { 3499 map_extent_buffer(leaf, (unsigned long)item, 3500 sizeof(struct btrfs_item), 3501 &leaf->map_token, &leaf->kaddr, 3502 &leaf->map_start, &leaf->map_len, 3503 KM_USER1); 3504 } 3505 3506 ioff = btrfs_item_offset(leaf, item); 3507 btrfs_set_item_offset(leaf, item, ioff - total_data); 3508 } 3509 if (leaf->map_token) { 3510 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3511 leaf->map_token = NULL; 3512 } 3513 3514 /* shift the items */ 3515 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3516 btrfs_item_nr_offset(slot), 3517 (nritems - slot) * sizeof(struct btrfs_item)); 3518 3519 /* shift the data */ 3520 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3521 data_end - total_data, btrfs_leaf_data(leaf) + 3522 data_end, old_data - data_end); 3523 data_end = old_data; 3524 } else { 3525 /* 3526 * this sucks but it has to be done, if we are inserting at 3527 * the end of the leaf only insert 1 of the items, since we 3528 * have no way of knowing whats on the next leaf and we'd have 3529 * to drop our current locks to figure it out 3530 */ 3531 nr = 1; 3532 } 3533 3534 /* setup the item for the new data */ 3535 for (i = 0; i < nr; i++) { 3536 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3537 btrfs_set_item_key(leaf, &disk_key, slot + i); 3538 item = btrfs_item_nr(leaf, slot + i); 3539 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3540 data_end -= data_size[i]; 3541 btrfs_set_item_size(leaf, item, data_size[i]); 3542 } 3543 btrfs_set_header_nritems(leaf, nritems + nr); 3544 btrfs_mark_buffer_dirty(leaf); 3545 3546 ret = 0; 3547 if (slot == 0) { 3548 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3549 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3550 } 3551 3552 if (btrfs_leaf_free_space(root, leaf) < 0) { 3553 btrfs_print_leaf(root, leaf); 3554 BUG(); 3555 } 3556 out: 3557 if (!ret) 3558 ret = nr; 3559 return ret; 3560 } 3561 3562 /* 3563 * this is a helper for btrfs_insert_empty_items, the main goal here is 3564 * to save stack depth by doing the bulk of the work in a function 3565 * that doesn't call btrfs_search_slot 3566 */ 3567 int setup_items_for_insert(struct btrfs_trans_handle *trans, 3568 struct btrfs_root *root, struct btrfs_path *path, 3569 struct btrfs_key *cpu_key, u32 *data_size, 3570 u32 total_data, u32 total_size, int nr) 3571 { 3572 struct btrfs_item *item; 3573 int i; 3574 u32 nritems; 3575 unsigned int data_end; 3576 struct btrfs_disk_key disk_key; 3577 int ret; 3578 struct extent_buffer *leaf; 3579 int slot; 3580 3581 leaf = path->nodes[0]; 3582 slot = path->slots[0]; 3583 3584 nritems = btrfs_header_nritems(leaf); 3585 data_end = leaf_data_end(root, leaf); 3586 3587 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3588 btrfs_print_leaf(root, leaf); 3589 printk(KERN_CRIT "not enough freespace need %u have %d\n", 3590 total_size, btrfs_leaf_free_space(root, leaf)); 3591 BUG(); 3592 } 3593 3594 if (slot != nritems) { 3595 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3596 3597 if (old_data < data_end) { 3598 btrfs_print_leaf(root, leaf); 3599 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3600 slot, old_data, data_end); 3601 BUG_ON(1); 3602 } 3603 /* 3604 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3605 */ 3606 /* first correct the data pointers */ 3607 WARN_ON(leaf->map_token); 3608 for (i = slot; i < nritems; i++) { 3609 u32 ioff; 3610 3611 item = btrfs_item_nr(leaf, i); 3612 if (!leaf->map_token) { 3613 map_extent_buffer(leaf, (unsigned long)item, 3614 sizeof(struct btrfs_item), 3615 &leaf->map_token, &leaf->kaddr, 3616 &leaf->map_start, &leaf->map_len, 3617 KM_USER1); 3618 } 3619 3620 ioff = btrfs_item_offset(leaf, item); 3621 btrfs_set_item_offset(leaf, item, ioff - total_data); 3622 } 3623 if (leaf->map_token) { 3624 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3625 leaf->map_token = NULL; 3626 } 3627 3628 /* shift the items */ 3629 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3630 btrfs_item_nr_offset(slot), 3631 (nritems - slot) * sizeof(struct btrfs_item)); 3632 3633 /* shift the data */ 3634 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3635 data_end - total_data, btrfs_leaf_data(leaf) + 3636 data_end, old_data - data_end); 3637 data_end = old_data; 3638 } 3639 3640 /* setup the item for the new data */ 3641 for (i = 0; i < nr; i++) { 3642 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3643 btrfs_set_item_key(leaf, &disk_key, slot + i); 3644 item = btrfs_item_nr(leaf, slot + i); 3645 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3646 data_end -= data_size[i]; 3647 btrfs_set_item_size(leaf, item, data_size[i]); 3648 } 3649 3650 btrfs_set_header_nritems(leaf, nritems + nr); 3651 3652 ret = 0; 3653 if (slot == 0) { 3654 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3655 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3656 } 3657 btrfs_unlock_up_safe(path, 1); 3658 btrfs_mark_buffer_dirty(leaf); 3659 3660 if (btrfs_leaf_free_space(root, leaf) < 0) { 3661 btrfs_print_leaf(root, leaf); 3662 BUG(); 3663 } 3664 return ret; 3665 } 3666 3667 /* 3668 * Given a key and some data, insert items into the tree. 3669 * This does all the path init required, making room in the tree if needed. 3670 */ 3671 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3672 struct btrfs_root *root, 3673 struct btrfs_path *path, 3674 struct btrfs_key *cpu_key, u32 *data_size, 3675 int nr) 3676 { 3677 int ret = 0; 3678 int slot; 3679 int i; 3680 u32 total_size = 0; 3681 u32 total_data = 0; 3682 3683 for (i = 0; i < nr; i++) 3684 total_data += data_size[i]; 3685 3686 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3687 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3688 if (ret == 0) 3689 return -EEXIST; 3690 if (ret < 0) 3691 goto out; 3692 3693 slot = path->slots[0]; 3694 BUG_ON(slot < 0); 3695 3696 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size, 3697 total_data, total_size, nr); 3698 3699 out: 3700 return ret; 3701 } 3702 3703 /* 3704 * Given a key and some data, insert an item into the tree. 3705 * This does all the path init required, making room in the tree if needed. 3706 */ 3707 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3708 *root, struct btrfs_key *cpu_key, void *data, u32 3709 data_size) 3710 { 3711 int ret = 0; 3712 struct btrfs_path *path; 3713 struct extent_buffer *leaf; 3714 unsigned long ptr; 3715 3716 path = btrfs_alloc_path(); 3717 if (!path) 3718 return -ENOMEM; 3719 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3720 if (!ret) { 3721 leaf = path->nodes[0]; 3722 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3723 write_extent_buffer(leaf, data, ptr, data_size); 3724 btrfs_mark_buffer_dirty(leaf); 3725 } 3726 btrfs_free_path(path); 3727 return ret; 3728 } 3729 3730 /* 3731 * delete the pointer from a given node. 3732 * 3733 * the tree should have been previously balanced so the deletion does not 3734 * empty a node. 3735 */ 3736 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3737 struct btrfs_path *path, int level, int slot) 3738 { 3739 struct extent_buffer *parent = path->nodes[level]; 3740 u32 nritems; 3741 int ret = 0; 3742 int wret; 3743 3744 nritems = btrfs_header_nritems(parent); 3745 if (slot != nritems - 1) { 3746 memmove_extent_buffer(parent, 3747 btrfs_node_key_ptr_offset(slot), 3748 btrfs_node_key_ptr_offset(slot + 1), 3749 sizeof(struct btrfs_key_ptr) * 3750 (nritems - slot - 1)); 3751 } 3752 nritems--; 3753 btrfs_set_header_nritems(parent, nritems); 3754 if (nritems == 0 && parent == root->node) { 3755 BUG_ON(btrfs_header_level(root->node) != 1); 3756 /* just turn the root into a leaf and break */ 3757 btrfs_set_header_level(root->node, 0); 3758 } else if (slot == 0) { 3759 struct btrfs_disk_key disk_key; 3760 3761 btrfs_node_key(parent, &disk_key, 0); 3762 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); 3763 if (wret) 3764 ret = wret; 3765 } 3766 btrfs_mark_buffer_dirty(parent); 3767 return ret; 3768 } 3769 3770 /* 3771 * a helper function to delete the leaf pointed to by path->slots[1] and 3772 * path->nodes[1]. 3773 * 3774 * This deletes the pointer in path->nodes[1] and frees the leaf 3775 * block extent. zero is returned if it all worked out, < 0 otherwise. 3776 * 3777 * The path must have already been setup for deleting the leaf, including 3778 * all the proper balancing. path->nodes[1] must be locked. 3779 */ 3780 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 3781 struct btrfs_root *root, 3782 struct btrfs_path *path, 3783 struct extent_buffer *leaf) 3784 { 3785 int ret; 3786 3787 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 3788 ret = del_ptr(trans, root, path, 1, path->slots[1]); 3789 if (ret) 3790 return ret; 3791 3792 /* 3793 * btrfs_free_extent is expensive, we want to make sure we 3794 * aren't holding any locks when we call it 3795 */ 3796 btrfs_unlock_up_safe(path, 0); 3797 3798 root_sub_used(root, leaf->len); 3799 3800 btrfs_free_tree_block(trans, root, leaf, 0, 1); 3801 return 0; 3802 } 3803 /* 3804 * delete the item at the leaf level in path. If that empties 3805 * the leaf, remove it from the tree 3806 */ 3807 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3808 struct btrfs_path *path, int slot, int nr) 3809 { 3810 struct extent_buffer *leaf; 3811 struct btrfs_item *item; 3812 int last_off; 3813 int dsize = 0; 3814 int ret = 0; 3815 int wret; 3816 int i; 3817 u32 nritems; 3818 3819 leaf = path->nodes[0]; 3820 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 3821 3822 for (i = 0; i < nr; i++) 3823 dsize += btrfs_item_size_nr(leaf, slot + i); 3824 3825 nritems = btrfs_header_nritems(leaf); 3826 3827 if (slot + nr != nritems) { 3828 int data_end = leaf_data_end(root, leaf); 3829 3830 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3831 data_end + dsize, 3832 btrfs_leaf_data(leaf) + data_end, 3833 last_off - data_end); 3834 3835 for (i = slot + nr; i < nritems; i++) { 3836 u32 ioff; 3837 3838 item = btrfs_item_nr(leaf, i); 3839 if (!leaf->map_token) { 3840 map_extent_buffer(leaf, (unsigned long)item, 3841 sizeof(struct btrfs_item), 3842 &leaf->map_token, &leaf->kaddr, 3843 &leaf->map_start, &leaf->map_len, 3844 KM_USER1); 3845 } 3846 ioff = btrfs_item_offset(leaf, item); 3847 btrfs_set_item_offset(leaf, item, ioff + dsize); 3848 } 3849 3850 if (leaf->map_token) { 3851 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3852 leaf->map_token = NULL; 3853 } 3854 3855 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 3856 btrfs_item_nr_offset(slot + nr), 3857 sizeof(struct btrfs_item) * 3858 (nritems - slot - nr)); 3859 } 3860 btrfs_set_header_nritems(leaf, nritems - nr); 3861 nritems -= nr; 3862 3863 /* delete the leaf if we've emptied it */ 3864 if (nritems == 0) { 3865 if (leaf == root->node) { 3866 btrfs_set_header_level(leaf, 0); 3867 } else { 3868 btrfs_set_path_blocking(path); 3869 clean_tree_block(trans, root, leaf); 3870 ret = btrfs_del_leaf(trans, root, path, leaf); 3871 BUG_ON(ret); 3872 } 3873 } else { 3874 int used = leaf_space_used(leaf, 0, nritems); 3875 if (slot == 0) { 3876 struct btrfs_disk_key disk_key; 3877 3878 btrfs_item_key(leaf, &disk_key, 0); 3879 wret = fixup_low_keys(trans, root, path, 3880 &disk_key, 1); 3881 if (wret) 3882 ret = wret; 3883 } 3884 3885 /* delete the leaf if it is mostly empty */ 3886 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 3887 /* push_leaf_left fixes the path. 3888 * make sure the path still points to our leaf 3889 * for possible call to del_ptr below 3890 */ 3891 slot = path->slots[1]; 3892 extent_buffer_get(leaf); 3893 3894 btrfs_set_path_blocking(path); 3895 wret = push_leaf_left(trans, root, path, 1, 1, 3896 1, (u32)-1); 3897 if (wret < 0 && wret != -ENOSPC) 3898 ret = wret; 3899 3900 if (path->nodes[0] == leaf && 3901 btrfs_header_nritems(leaf)) { 3902 wret = push_leaf_right(trans, root, path, 1, 3903 1, 1, 0); 3904 if (wret < 0 && wret != -ENOSPC) 3905 ret = wret; 3906 } 3907 3908 if (btrfs_header_nritems(leaf) == 0) { 3909 path->slots[1] = slot; 3910 ret = btrfs_del_leaf(trans, root, path, leaf); 3911 BUG_ON(ret); 3912 free_extent_buffer(leaf); 3913 } else { 3914 /* if we're still in the path, make sure 3915 * we're dirty. Otherwise, one of the 3916 * push_leaf functions must have already 3917 * dirtied this buffer 3918 */ 3919 if (path->nodes[0] == leaf) 3920 btrfs_mark_buffer_dirty(leaf); 3921 free_extent_buffer(leaf); 3922 } 3923 } else { 3924 btrfs_mark_buffer_dirty(leaf); 3925 } 3926 } 3927 return ret; 3928 } 3929 3930 /* 3931 * search the tree again to find a leaf with lesser keys 3932 * returns 0 if it found something or 1 if there are no lesser leaves. 3933 * returns < 0 on io errors. 3934 * 3935 * This may release the path, and so you may lose any locks held at the 3936 * time you call it. 3937 */ 3938 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 3939 { 3940 struct btrfs_key key; 3941 struct btrfs_disk_key found_key; 3942 int ret; 3943 3944 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 3945 3946 if (key.offset > 0) 3947 key.offset--; 3948 else if (key.type > 0) 3949 key.type--; 3950 else if (key.objectid > 0) 3951 key.objectid--; 3952 else 3953 return 1; 3954 3955 btrfs_release_path(path); 3956 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3957 if (ret < 0) 3958 return ret; 3959 btrfs_item_key(path->nodes[0], &found_key, 0); 3960 ret = comp_keys(&found_key, &key); 3961 if (ret < 0) 3962 return 0; 3963 return 1; 3964 } 3965 3966 /* 3967 * A helper function to walk down the tree starting at min_key, and looking 3968 * for nodes or leaves that are either in cache or have a minimum 3969 * transaction id. This is used by the btree defrag code, and tree logging 3970 * 3971 * This does not cow, but it does stuff the starting key it finds back 3972 * into min_key, so you can call btrfs_search_slot with cow=1 on the 3973 * key and get a writable path. 3974 * 3975 * This does lock as it descends, and path->keep_locks should be set 3976 * to 1 by the caller. 3977 * 3978 * This honors path->lowest_level to prevent descent past a given level 3979 * of the tree. 3980 * 3981 * min_trans indicates the oldest transaction that you are interested 3982 * in walking through. Any nodes or leaves older than min_trans are 3983 * skipped over (without reading them). 3984 * 3985 * returns zero if something useful was found, < 0 on error and 1 if there 3986 * was nothing in the tree that matched the search criteria. 3987 */ 3988 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3989 struct btrfs_key *max_key, 3990 struct btrfs_path *path, int cache_only, 3991 u64 min_trans) 3992 { 3993 struct extent_buffer *cur; 3994 struct btrfs_key found_key; 3995 int slot; 3996 int sret; 3997 u32 nritems; 3998 int level; 3999 int ret = 1; 4000 4001 WARN_ON(!path->keep_locks); 4002 again: 4003 cur = btrfs_lock_root_node(root); 4004 level = btrfs_header_level(cur); 4005 WARN_ON(path->nodes[level]); 4006 path->nodes[level] = cur; 4007 path->locks[level] = 1; 4008 4009 if (btrfs_header_generation(cur) < min_trans) { 4010 ret = 1; 4011 goto out; 4012 } 4013 while (1) { 4014 nritems = btrfs_header_nritems(cur); 4015 level = btrfs_header_level(cur); 4016 sret = bin_search(cur, min_key, level, &slot); 4017 4018 /* at the lowest level, we're done, setup the path and exit */ 4019 if (level == path->lowest_level) { 4020 if (slot >= nritems) 4021 goto find_next_key; 4022 ret = 0; 4023 path->slots[level] = slot; 4024 btrfs_item_key_to_cpu(cur, &found_key, slot); 4025 goto out; 4026 } 4027 if (sret && slot > 0) 4028 slot--; 4029 /* 4030 * check this node pointer against the cache_only and 4031 * min_trans parameters. If it isn't in cache or is too 4032 * old, skip to the next one. 4033 */ 4034 while (slot < nritems) { 4035 u64 blockptr; 4036 u64 gen; 4037 struct extent_buffer *tmp; 4038 struct btrfs_disk_key disk_key; 4039 4040 blockptr = btrfs_node_blockptr(cur, slot); 4041 gen = btrfs_node_ptr_generation(cur, slot); 4042 if (gen < min_trans) { 4043 slot++; 4044 continue; 4045 } 4046 if (!cache_only) 4047 break; 4048 4049 if (max_key) { 4050 btrfs_node_key(cur, &disk_key, slot); 4051 if (comp_keys(&disk_key, max_key) >= 0) { 4052 ret = 1; 4053 goto out; 4054 } 4055 } 4056 4057 tmp = btrfs_find_tree_block(root, blockptr, 4058 btrfs_level_size(root, level - 1)); 4059 4060 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 4061 free_extent_buffer(tmp); 4062 break; 4063 } 4064 if (tmp) 4065 free_extent_buffer(tmp); 4066 slot++; 4067 } 4068 find_next_key: 4069 /* 4070 * we didn't find a candidate key in this node, walk forward 4071 * and find another one 4072 */ 4073 if (slot >= nritems) { 4074 path->slots[level] = slot; 4075 btrfs_set_path_blocking(path); 4076 sret = btrfs_find_next_key(root, path, min_key, level, 4077 cache_only, min_trans); 4078 if (sret == 0) { 4079 btrfs_release_path(path); 4080 goto again; 4081 } else { 4082 goto out; 4083 } 4084 } 4085 /* save our key for returning back */ 4086 btrfs_node_key_to_cpu(cur, &found_key, slot); 4087 path->slots[level] = slot; 4088 if (level == path->lowest_level) { 4089 ret = 0; 4090 unlock_up(path, level, 1); 4091 goto out; 4092 } 4093 btrfs_set_path_blocking(path); 4094 cur = read_node_slot(root, cur, slot); 4095 BUG_ON(!cur); 4096 4097 btrfs_tree_lock(cur); 4098 4099 path->locks[level - 1] = 1; 4100 path->nodes[level - 1] = cur; 4101 unlock_up(path, level, 1); 4102 btrfs_clear_path_blocking(path, NULL); 4103 } 4104 out: 4105 if (ret == 0) 4106 memcpy(min_key, &found_key, sizeof(found_key)); 4107 btrfs_set_path_blocking(path); 4108 return ret; 4109 } 4110 4111 /* 4112 * this is similar to btrfs_next_leaf, but does not try to preserve 4113 * and fixup the path. It looks for and returns the next key in the 4114 * tree based on the current path and the cache_only and min_trans 4115 * parameters. 4116 * 4117 * 0 is returned if another key is found, < 0 if there are any errors 4118 * and 1 is returned if there are no higher keys in the tree 4119 * 4120 * path->keep_locks should be set to 1 on the search made before 4121 * calling this function. 4122 */ 4123 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4124 struct btrfs_key *key, int level, 4125 int cache_only, u64 min_trans) 4126 { 4127 int slot; 4128 struct extent_buffer *c; 4129 4130 WARN_ON(!path->keep_locks); 4131 while (level < BTRFS_MAX_LEVEL) { 4132 if (!path->nodes[level]) 4133 return 1; 4134 4135 slot = path->slots[level] + 1; 4136 c = path->nodes[level]; 4137 next: 4138 if (slot >= btrfs_header_nritems(c)) { 4139 int ret; 4140 int orig_lowest; 4141 struct btrfs_key cur_key; 4142 if (level + 1 >= BTRFS_MAX_LEVEL || 4143 !path->nodes[level + 1]) 4144 return 1; 4145 4146 if (path->locks[level + 1]) { 4147 level++; 4148 continue; 4149 } 4150 4151 slot = btrfs_header_nritems(c) - 1; 4152 if (level == 0) 4153 btrfs_item_key_to_cpu(c, &cur_key, slot); 4154 else 4155 btrfs_node_key_to_cpu(c, &cur_key, slot); 4156 4157 orig_lowest = path->lowest_level; 4158 btrfs_release_path(path); 4159 path->lowest_level = level; 4160 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4161 0, 0); 4162 path->lowest_level = orig_lowest; 4163 if (ret < 0) 4164 return ret; 4165 4166 c = path->nodes[level]; 4167 slot = path->slots[level]; 4168 if (ret == 0) 4169 slot++; 4170 goto next; 4171 } 4172 4173 if (level == 0) 4174 btrfs_item_key_to_cpu(c, key, slot); 4175 else { 4176 u64 blockptr = btrfs_node_blockptr(c, slot); 4177 u64 gen = btrfs_node_ptr_generation(c, slot); 4178 4179 if (cache_only) { 4180 struct extent_buffer *cur; 4181 cur = btrfs_find_tree_block(root, blockptr, 4182 btrfs_level_size(root, level - 1)); 4183 if (!cur || !btrfs_buffer_uptodate(cur, gen)) { 4184 slot++; 4185 if (cur) 4186 free_extent_buffer(cur); 4187 goto next; 4188 } 4189 free_extent_buffer(cur); 4190 } 4191 if (gen < min_trans) { 4192 slot++; 4193 goto next; 4194 } 4195 btrfs_node_key_to_cpu(c, key, slot); 4196 } 4197 return 0; 4198 } 4199 return 1; 4200 } 4201 4202 /* 4203 * search the tree again to find a leaf with greater keys 4204 * returns 0 if it found something or 1 if there are no greater leaves. 4205 * returns < 0 on io errors. 4206 */ 4207 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4208 { 4209 int slot; 4210 int level; 4211 struct extent_buffer *c; 4212 struct extent_buffer *next; 4213 struct btrfs_key key; 4214 u32 nritems; 4215 int ret; 4216 int old_spinning = path->leave_spinning; 4217 int force_blocking = 0; 4218 4219 nritems = btrfs_header_nritems(path->nodes[0]); 4220 if (nritems == 0) 4221 return 1; 4222 4223 /* 4224 * we take the blocks in an order that upsets lockdep. Using 4225 * blocking mode is the only way around it. 4226 */ 4227 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4228 force_blocking = 1; 4229 #endif 4230 4231 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4232 again: 4233 level = 1; 4234 next = NULL; 4235 btrfs_release_path(path); 4236 4237 path->keep_locks = 1; 4238 4239 if (!force_blocking) 4240 path->leave_spinning = 1; 4241 4242 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4243 path->keep_locks = 0; 4244 4245 if (ret < 0) 4246 return ret; 4247 4248 nritems = btrfs_header_nritems(path->nodes[0]); 4249 /* 4250 * by releasing the path above we dropped all our locks. A balance 4251 * could have added more items next to the key that used to be 4252 * at the very end of the block. So, check again here and 4253 * advance the path if there are now more items available. 4254 */ 4255 if (nritems > 0 && path->slots[0] < nritems - 1) { 4256 if (ret == 0) 4257 path->slots[0]++; 4258 ret = 0; 4259 goto done; 4260 } 4261 4262 while (level < BTRFS_MAX_LEVEL) { 4263 if (!path->nodes[level]) { 4264 ret = 1; 4265 goto done; 4266 } 4267 4268 slot = path->slots[level] + 1; 4269 c = path->nodes[level]; 4270 if (slot >= btrfs_header_nritems(c)) { 4271 level++; 4272 if (level == BTRFS_MAX_LEVEL) { 4273 ret = 1; 4274 goto done; 4275 } 4276 continue; 4277 } 4278 4279 if (next) { 4280 btrfs_tree_unlock(next); 4281 free_extent_buffer(next); 4282 } 4283 4284 next = c; 4285 ret = read_block_for_search(NULL, root, path, &next, level, 4286 slot, &key); 4287 if (ret == -EAGAIN) 4288 goto again; 4289 4290 if (ret < 0) { 4291 btrfs_release_path(path); 4292 goto done; 4293 } 4294 4295 if (!path->skip_locking) { 4296 ret = btrfs_try_spin_lock(next); 4297 if (!ret) { 4298 btrfs_set_path_blocking(path); 4299 btrfs_tree_lock(next); 4300 if (!force_blocking) 4301 btrfs_clear_path_blocking(path, next); 4302 } 4303 if (force_blocking) 4304 btrfs_set_lock_blocking(next); 4305 } 4306 break; 4307 } 4308 path->slots[level] = slot; 4309 while (1) { 4310 level--; 4311 c = path->nodes[level]; 4312 if (path->locks[level]) 4313 btrfs_tree_unlock(c); 4314 4315 free_extent_buffer(c); 4316 path->nodes[level] = next; 4317 path->slots[level] = 0; 4318 if (!path->skip_locking) 4319 path->locks[level] = 1; 4320 4321 if (!level) 4322 break; 4323 4324 ret = read_block_for_search(NULL, root, path, &next, level, 4325 0, &key); 4326 if (ret == -EAGAIN) 4327 goto again; 4328 4329 if (ret < 0) { 4330 btrfs_release_path(path); 4331 goto done; 4332 } 4333 4334 if (!path->skip_locking) { 4335 btrfs_assert_tree_locked(path->nodes[level]); 4336 ret = btrfs_try_spin_lock(next); 4337 if (!ret) { 4338 btrfs_set_path_blocking(path); 4339 btrfs_tree_lock(next); 4340 if (!force_blocking) 4341 btrfs_clear_path_blocking(path, next); 4342 } 4343 if (force_blocking) 4344 btrfs_set_lock_blocking(next); 4345 } 4346 } 4347 ret = 0; 4348 done: 4349 unlock_up(path, 0, 1); 4350 path->leave_spinning = old_spinning; 4351 if (!old_spinning) 4352 btrfs_set_path_blocking(path); 4353 4354 return ret; 4355 } 4356 4357 /* 4358 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4359 * searching until it gets past min_objectid or finds an item of 'type' 4360 * 4361 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4362 */ 4363 int btrfs_previous_item(struct btrfs_root *root, 4364 struct btrfs_path *path, u64 min_objectid, 4365 int type) 4366 { 4367 struct btrfs_key found_key; 4368 struct extent_buffer *leaf; 4369 u32 nritems; 4370 int ret; 4371 4372 while (1) { 4373 if (path->slots[0] == 0) { 4374 btrfs_set_path_blocking(path); 4375 ret = btrfs_prev_leaf(root, path); 4376 if (ret != 0) 4377 return ret; 4378 } else { 4379 path->slots[0]--; 4380 } 4381 leaf = path->nodes[0]; 4382 nritems = btrfs_header_nritems(leaf); 4383 if (nritems == 0) 4384 return 1; 4385 if (path->slots[0] == nritems) 4386 path->slots[0]--; 4387 4388 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4389 if (found_key.objectid < min_objectid) 4390 break; 4391 if (found_key.type == type) 4392 return 0; 4393 if (found_key.objectid == min_objectid && 4394 found_key.type < type) 4395 break; 4396 } 4397 return 1; 4398 } 4399