1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "print-tree.h" 24 #include "locking.h" 25 26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 27 *root, struct btrfs_path *path, int level); 28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_key *ins_key, 30 struct btrfs_path *path, int data_size, int extend); 31 static int push_node_left(struct btrfs_trans_handle *trans, 32 struct btrfs_root *root, struct extent_buffer *dst, 33 struct extent_buffer *src, int empty); 34 static int balance_node_right(struct btrfs_trans_handle *trans, 35 struct btrfs_root *root, 36 struct extent_buffer *dst_buf, 37 struct extent_buffer *src_buf); 38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 39 struct btrfs_path *path, int level, int slot); 40 41 struct btrfs_path *btrfs_alloc_path(void) 42 { 43 struct btrfs_path *path; 44 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 45 if (path) 46 path->reada = 1; 47 return path; 48 } 49 50 /* 51 * set all locked nodes in the path to blocking locks. This should 52 * be done before scheduling 53 */ 54 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 55 { 56 int i; 57 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 58 if (p->nodes[i] && p->locks[i]) 59 btrfs_set_lock_blocking(p->nodes[i]); 60 } 61 } 62 63 /* 64 * reset all the locked nodes in the patch to spinning locks. 65 * 66 * held is used to keep lockdep happy, when lockdep is enabled 67 * we set held to a blocking lock before we go around and 68 * retake all the spinlocks in the path. You can safely use NULL 69 * for held 70 */ 71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 72 struct extent_buffer *held) 73 { 74 int i; 75 76 #ifdef CONFIG_DEBUG_LOCK_ALLOC 77 /* lockdep really cares that we take all of these spinlocks 78 * in the right order. If any of the locks in the path are not 79 * currently blocking, it is going to complain. So, make really 80 * really sure by forcing the path to blocking before we clear 81 * the path blocking. 82 */ 83 if (held) 84 btrfs_set_lock_blocking(held); 85 btrfs_set_path_blocking(p); 86 #endif 87 88 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 89 if (p->nodes[i] && p->locks[i]) 90 btrfs_clear_lock_blocking(p->nodes[i]); 91 } 92 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 if (held) 95 btrfs_clear_lock_blocking(held); 96 #endif 97 } 98 99 /* this also releases the path */ 100 void btrfs_free_path(struct btrfs_path *p) 101 { 102 btrfs_release_path(NULL, p); 103 kmem_cache_free(btrfs_path_cachep, p); 104 } 105 106 /* 107 * path release drops references on the extent buffers in the path 108 * and it drops any locks held by this path 109 * 110 * It is safe to call this on paths that no locks or extent buffers held. 111 */ 112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p) 113 { 114 int i; 115 116 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 117 p->slots[i] = 0; 118 if (!p->nodes[i]) 119 continue; 120 if (p->locks[i]) { 121 btrfs_tree_unlock(p->nodes[i]); 122 p->locks[i] = 0; 123 } 124 free_extent_buffer(p->nodes[i]); 125 p->nodes[i] = NULL; 126 } 127 } 128 129 /* 130 * safely gets a reference on the root node of a tree. A lock 131 * is not taken, so a concurrent writer may put a different node 132 * at the root of the tree. See btrfs_lock_root_node for the 133 * looping required. 134 * 135 * The extent buffer returned by this has a reference taken, so 136 * it won't disappear. It may stop being the root of the tree 137 * at any time because there are no locks held. 138 */ 139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 140 { 141 struct extent_buffer *eb; 142 spin_lock(&root->node_lock); 143 eb = root->node; 144 extent_buffer_get(eb); 145 spin_unlock(&root->node_lock); 146 return eb; 147 } 148 149 /* loop around taking references on and locking the root node of the 150 * tree until you end up with a lock on the root. A locked buffer 151 * is returned, with a reference held. 152 */ 153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 154 { 155 struct extent_buffer *eb; 156 157 while (1) { 158 eb = btrfs_root_node(root); 159 btrfs_tree_lock(eb); 160 161 spin_lock(&root->node_lock); 162 if (eb == root->node) { 163 spin_unlock(&root->node_lock); 164 break; 165 } 166 spin_unlock(&root->node_lock); 167 168 btrfs_tree_unlock(eb); 169 free_extent_buffer(eb); 170 } 171 return eb; 172 } 173 174 /* cowonly root (everything not a reference counted cow subvolume), just get 175 * put onto a simple dirty list. transaction.c walks this to make sure they 176 * get properly updated on disk. 177 */ 178 static void add_root_to_dirty_list(struct btrfs_root *root) 179 { 180 if (root->track_dirty && list_empty(&root->dirty_list)) { 181 list_add(&root->dirty_list, 182 &root->fs_info->dirty_cowonly_roots); 183 } 184 } 185 186 /* 187 * used by snapshot creation to make a copy of a root for a tree with 188 * a given objectid. The buffer with the new root node is returned in 189 * cow_ret, and this func returns zero on success or a negative error code. 190 */ 191 int btrfs_copy_root(struct btrfs_trans_handle *trans, 192 struct btrfs_root *root, 193 struct extent_buffer *buf, 194 struct extent_buffer **cow_ret, u64 new_root_objectid) 195 { 196 struct extent_buffer *cow; 197 u32 nritems; 198 int ret = 0; 199 int level; 200 struct btrfs_root *new_root; 201 202 new_root = kmalloc(sizeof(*new_root), GFP_NOFS); 203 if (!new_root) 204 return -ENOMEM; 205 206 memcpy(new_root, root, sizeof(*new_root)); 207 new_root->root_key.objectid = new_root_objectid; 208 209 WARN_ON(root->ref_cows && trans->transid != 210 root->fs_info->running_transaction->transid); 211 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 212 213 level = btrfs_header_level(buf); 214 nritems = btrfs_header_nritems(buf); 215 216 cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0, 217 new_root_objectid, trans->transid, 218 level, buf->start, 0); 219 if (IS_ERR(cow)) { 220 kfree(new_root); 221 return PTR_ERR(cow); 222 } 223 224 copy_extent_buffer(cow, buf, 0, 0, cow->len); 225 btrfs_set_header_bytenr(cow, cow->start); 226 btrfs_set_header_generation(cow, trans->transid); 227 btrfs_set_header_owner(cow, new_root_objectid); 228 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); 229 230 write_extent_buffer(cow, root->fs_info->fsid, 231 (unsigned long)btrfs_header_fsid(cow), 232 BTRFS_FSID_SIZE); 233 234 WARN_ON(btrfs_header_generation(buf) > trans->transid); 235 ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL); 236 kfree(new_root); 237 238 if (ret) 239 return ret; 240 241 btrfs_mark_buffer_dirty(cow); 242 *cow_ret = cow; 243 return 0; 244 } 245 246 /* 247 * does the dirty work in cow of a single block. The parent block (if 248 * supplied) is updated to point to the new cow copy. The new buffer is marked 249 * dirty and returned locked. If you modify the block it needs to be marked 250 * dirty again. 251 * 252 * search_start -- an allocation hint for the new block 253 * 254 * empty_size -- a hint that you plan on doing more cow. This is the size in 255 * bytes the allocator should try to find free next to the block it returns. 256 * This is just a hint and may be ignored by the allocator. 257 * 258 * prealloc_dest -- if you have already reserved a destination for the cow, 259 * this uses that block instead of allocating a new one. 260 * btrfs_alloc_reserved_extent is used to finish the allocation. 261 */ 262 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 263 struct btrfs_root *root, 264 struct extent_buffer *buf, 265 struct extent_buffer *parent, int parent_slot, 266 struct extent_buffer **cow_ret, 267 u64 search_start, u64 empty_size, 268 u64 prealloc_dest) 269 { 270 u64 parent_start; 271 struct extent_buffer *cow; 272 u32 nritems; 273 int ret = 0; 274 int level; 275 int unlock_orig = 0; 276 277 if (*cow_ret == buf) 278 unlock_orig = 1; 279 280 btrfs_assert_tree_locked(buf); 281 282 if (parent) 283 parent_start = parent->start; 284 else 285 parent_start = 0; 286 287 WARN_ON(root->ref_cows && trans->transid != 288 root->fs_info->running_transaction->transid); 289 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 290 291 level = btrfs_header_level(buf); 292 nritems = btrfs_header_nritems(buf); 293 294 if (prealloc_dest) { 295 struct btrfs_key ins; 296 297 ins.objectid = prealloc_dest; 298 ins.offset = buf->len; 299 ins.type = BTRFS_EXTENT_ITEM_KEY; 300 301 ret = btrfs_alloc_reserved_extent(trans, root, parent_start, 302 root->root_key.objectid, 303 trans->transid, level, &ins); 304 BUG_ON(ret); 305 cow = btrfs_init_new_buffer(trans, root, prealloc_dest, 306 buf->len, level); 307 } else { 308 cow = btrfs_alloc_free_block(trans, root, buf->len, 309 parent_start, 310 root->root_key.objectid, 311 trans->transid, level, 312 search_start, empty_size); 313 } 314 if (IS_ERR(cow)) 315 return PTR_ERR(cow); 316 317 /* cow is set to blocking by btrfs_init_new_buffer */ 318 319 copy_extent_buffer(cow, buf, 0, 0, cow->len); 320 btrfs_set_header_bytenr(cow, cow->start); 321 btrfs_set_header_generation(cow, trans->transid); 322 btrfs_set_header_owner(cow, root->root_key.objectid); 323 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); 324 325 write_extent_buffer(cow, root->fs_info->fsid, 326 (unsigned long)btrfs_header_fsid(cow), 327 BTRFS_FSID_SIZE); 328 329 WARN_ON(btrfs_header_generation(buf) > trans->transid); 330 if (btrfs_header_generation(buf) != trans->transid) { 331 u32 nr_extents; 332 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents); 333 if (ret) 334 return ret; 335 336 ret = btrfs_cache_ref(trans, root, buf, nr_extents); 337 WARN_ON(ret); 338 } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) { 339 /* 340 * There are only two places that can drop reference to 341 * tree blocks owned by living reloc trees, one is here, 342 * the other place is btrfs_drop_subtree. In both places, 343 * we check reference count while tree block is locked. 344 * Furthermore, if reference count is one, it won't get 345 * increased by someone else. 346 */ 347 u32 refs; 348 ret = btrfs_lookup_extent_ref(trans, root, buf->start, 349 buf->len, &refs); 350 BUG_ON(ret); 351 if (refs == 1) { 352 ret = btrfs_update_ref(trans, root, buf, cow, 353 0, nritems); 354 clean_tree_block(trans, root, buf); 355 } else { 356 ret = btrfs_inc_ref(trans, root, buf, cow, NULL); 357 } 358 BUG_ON(ret); 359 } else { 360 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems); 361 if (ret) 362 return ret; 363 clean_tree_block(trans, root, buf); 364 } 365 366 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 367 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start); 368 WARN_ON(ret); 369 } 370 371 if (buf == root->node) { 372 WARN_ON(parent && parent != buf); 373 374 spin_lock(&root->node_lock); 375 root->node = cow; 376 extent_buffer_get(cow); 377 spin_unlock(&root->node_lock); 378 379 if (buf != root->commit_root) { 380 btrfs_free_extent(trans, root, buf->start, 381 buf->len, buf->start, 382 root->root_key.objectid, 383 btrfs_header_generation(buf), 384 level, 1); 385 } 386 free_extent_buffer(buf); 387 add_root_to_dirty_list(root); 388 } else { 389 btrfs_set_node_blockptr(parent, parent_slot, 390 cow->start); 391 WARN_ON(trans->transid == 0); 392 btrfs_set_node_ptr_generation(parent, parent_slot, 393 trans->transid); 394 btrfs_mark_buffer_dirty(parent); 395 WARN_ON(btrfs_header_generation(parent) != trans->transid); 396 btrfs_free_extent(trans, root, buf->start, buf->len, 397 parent_start, btrfs_header_owner(parent), 398 btrfs_header_generation(parent), level, 1); 399 } 400 if (unlock_orig) 401 btrfs_tree_unlock(buf); 402 free_extent_buffer(buf); 403 btrfs_mark_buffer_dirty(cow); 404 *cow_ret = cow; 405 return 0; 406 } 407 408 /* 409 * cows a single block, see __btrfs_cow_block for the real work. 410 * This version of it has extra checks so that a block isn't cow'd more than 411 * once per transaction, as long as it hasn't been written yet 412 */ 413 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 414 struct btrfs_root *root, struct extent_buffer *buf, 415 struct extent_buffer *parent, int parent_slot, 416 struct extent_buffer **cow_ret, u64 prealloc_dest) 417 { 418 u64 search_start; 419 int ret; 420 421 if (trans->transaction != root->fs_info->running_transaction) { 422 printk(KERN_CRIT "trans %llu running %llu\n", 423 (unsigned long long)trans->transid, 424 (unsigned long long) 425 root->fs_info->running_transaction->transid); 426 WARN_ON(1); 427 } 428 if (trans->transid != root->fs_info->generation) { 429 printk(KERN_CRIT "trans %llu running %llu\n", 430 (unsigned long long)trans->transid, 431 (unsigned long long)root->fs_info->generation); 432 WARN_ON(1); 433 } 434 435 if (btrfs_header_generation(buf) == trans->transid && 436 btrfs_header_owner(buf) == root->root_key.objectid && 437 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 438 *cow_ret = buf; 439 WARN_ON(prealloc_dest); 440 return 0; 441 } 442 443 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 444 445 if (parent) 446 btrfs_set_lock_blocking(parent); 447 btrfs_set_lock_blocking(buf); 448 449 ret = __btrfs_cow_block(trans, root, buf, parent, 450 parent_slot, cow_ret, search_start, 0, 451 prealloc_dest); 452 return ret; 453 } 454 455 /* 456 * helper function for defrag to decide if two blocks pointed to by a 457 * node are actually close by 458 */ 459 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 460 { 461 if (blocknr < other && other - (blocknr + blocksize) < 32768) 462 return 1; 463 if (blocknr > other && blocknr - (other + blocksize) < 32768) 464 return 1; 465 return 0; 466 } 467 468 /* 469 * compare two keys in a memcmp fashion 470 */ 471 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 472 { 473 struct btrfs_key k1; 474 475 btrfs_disk_key_to_cpu(&k1, disk); 476 477 if (k1.objectid > k2->objectid) 478 return 1; 479 if (k1.objectid < k2->objectid) 480 return -1; 481 if (k1.type > k2->type) 482 return 1; 483 if (k1.type < k2->type) 484 return -1; 485 if (k1.offset > k2->offset) 486 return 1; 487 if (k1.offset < k2->offset) 488 return -1; 489 return 0; 490 } 491 492 /* 493 * same as comp_keys only with two btrfs_key's 494 */ 495 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 496 { 497 if (k1->objectid > k2->objectid) 498 return 1; 499 if (k1->objectid < k2->objectid) 500 return -1; 501 if (k1->type > k2->type) 502 return 1; 503 if (k1->type < k2->type) 504 return -1; 505 if (k1->offset > k2->offset) 506 return 1; 507 if (k1->offset < k2->offset) 508 return -1; 509 return 0; 510 } 511 512 /* 513 * this is used by the defrag code to go through all the 514 * leaves pointed to by a node and reallocate them so that 515 * disk order is close to key order 516 */ 517 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 518 struct btrfs_root *root, struct extent_buffer *parent, 519 int start_slot, int cache_only, u64 *last_ret, 520 struct btrfs_key *progress) 521 { 522 struct extent_buffer *cur; 523 u64 blocknr; 524 u64 gen; 525 u64 search_start = *last_ret; 526 u64 last_block = 0; 527 u64 other; 528 u32 parent_nritems; 529 int end_slot; 530 int i; 531 int err = 0; 532 int parent_level; 533 int uptodate; 534 u32 blocksize; 535 int progress_passed = 0; 536 struct btrfs_disk_key disk_key; 537 538 parent_level = btrfs_header_level(parent); 539 if (cache_only && parent_level != 1) 540 return 0; 541 542 if (trans->transaction != root->fs_info->running_transaction) 543 WARN_ON(1); 544 if (trans->transid != root->fs_info->generation) 545 WARN_ON(1); 546 547 parent_nritems = btrfs_header_nritems(parent); 548 blocksize = btrfs_level_size(root, parent_level - 1); 549 end_slot = parent_nritems; 550 551 if (parent_nritems == 1) 552 return 0; 553 554 btrfs_set_lock_blocking(parent); 555 556 for (i = start_slot; i < end_slot; i++) { 557 int close = 1; 558 559 if (!parent->map_token) { 560 map_extent_buffer(parent, 561 btrfs_node_key_ptr_offset(i), 562 sizeof(struct btrfs_key_ptr), 563 &parent->map_token, &parent->kaddr, 564 &parent->map_start, &parent->map_len, 565 KM_USER1); 566 } 567 btrfs_node_key(parent, &disk_key, i); 568 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 569 continue; 570 571 progress_passed = 1; 572 blocknr = btrfs_node_blockptr(parent, i); 573 gen = btrfs_node_ptr_generation(parent, i); 574 if (last_block == 0) 575 last_block = blocknr; 576 577 if (i > 0) { 578 other = btrfs_node_blockptr(parent, i - 1); 579 close = close_blocks(blocknr, other, blocksize); 580 } 581 if (!close && i < end_slot - 2) { 582 other = btrfs_node_blockptr(parent, i + 1); 583 close = close_blocks(blocknr, other, blocksize); 584 } 585 if (close) { 586 last_block = blocknr; 587 continue; 588 } 589 if (parent->map_token) { 590 unmap_extent_buffer(parent, parent->map_token, 591 KM_USER1); 592 parent->map_token = NULL; 593 } 594 595 cur = btrfs_find_tree_block(root, blocknr, blocksize); 596 if (cur) 597 uptodate = btrfs_buffer_uptodate(cur, gen); 598 else 599 uptodate = 0; 600 if (!cur || !uptodate) { 601 if (cache_only) { 602 free_extent_buffer(cur); 603 continue; 604 } 605 if (!cur) { 606 cur = read_tree_block(root, blocknr, 607 blocksize, gen); 608 } else if (!uptodate) { 609 btrfs_read_buffer(cur, gen); 610 } 611 } 612 if (search_start == 0) 613 search_start = last_block; 614 615 btrfs_tree_lock(cur); 616 btrfs_set_lock_blocking(cur); 617 err = __btrfs_cow_block(trans, root, cur, parent, i, 618 &cur, search_start, 619 min(16 * blocksize, 620 (end_slot - i) * blocksize), 0); 621 if (err) { 622 btrfs_tree_unlock(cur); 623 free_extent_buffer(cur); 624 break; 625 } 626 search_start = cur->start; 627 last_block = cur->start; 628 *last_ret = search_start; 629 btrfs_tree_unlock(cur); 630 free_extent_buffer(cur); 631 } 632 if (parent->map_token) { 633 unmap_extent_buffer(parent, parent->map_token, 634 KM_USER1); 635 parent->map_token = NULL; 636 } 637 return err; 638 } 639 640 /* 641 * The leaf data grows from end-to-front in the node. 642 * this returns the address of the start of the last item, 643 * which is the stop of the leaf data stack 644 */ 645 static inline unsigned int leaf_data_end(struct btrfs_root *root, 646 struct extent_buffer *leaf) 647 { 648 u32 nr = btrfs_header_nritems(leaf); 649 if (nr == 0) 650 return BTRFS_LEAF_DATA_SIZE(root); 651 return btrfs_item_offset_nr(leaf, nr - 1); 652 } 653 654 /* 655 * extra debugging checks to make sure all the items in a key are 656 * well formed and in the proper order 657 */ 658 static int check_node(struct btrfs_root *root, struct btrfs_path *path, 659 int level) 660 { 661 struct extent_buffer *parent = NULL; 662 struct extent_buffer *node = path->nodes[level]; 663 struct btrfs_disk_key parent_key; 664 struct btrfs_disk_key node_key; 665 int parent_slot; 666 int slot; 667 struct btrfs_key cpukey; 668 u32 nritems = btrfs_header_nritems(node); 669 670 if (path->nodes[level + 1]) 671 parent = path->nodes[level + 1]; 672 673 slot = path->slots[level]; 674 BUG_ON(nritems == 0); 675 if (parent) { 676 parent_slot = path->slots[level + 1]; 677 btrfs_node_key(parent, &parent_key, parent_slot); 678 btrfs_node_key(node, &node_key, 0); 679 BUG_ON(memcmp(&parent_key, &node_key, 680 sizeof(struct btrfs_disk_key))); 681 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 682 btrfs_header_bytenr(node)); 683 } 684 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root)); 685 if (slot != 0) { 686 btrfs_node_key_to_cpu(node, &cpukey, slot - 1); 687 btrfs_node_key(node, &node_key, slot); 688 BUG_ON(comp_keys(&node_key, &cpukey) <= 0); 689 } 690 if (slot < nritems - 1) { 691 btrfs_node_key_to_cpu(node, &cpukey, slot + 1); 692 btrfs_node_key(node, &node_key, slot); 693 BUG_ON(comp_keys(&node_key, &cpukey) >= 0); 694 } 695 return 0; 696 } 697 698 /* 699 * extra checking to make sure all the items in a leaf are 700 * well formed and in the proper order 701 */ 702 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path, 703 int level) 704 { 705 struct extent_buffer *leaf = path->nodes[level]; 706 struct extent_buffer *parent = NULL; 707 int parent_slot; 708 struct btrfs_key cpukey; 709 struct btrfs_disk_key parent_key; 710 struct btrfs_disk_key leaf_key; 711 int slot = path->slots[0]; 712 713 u32 nritems = btrfs_header_nritems(leaf); 714 715 if (path->nodes[level + 1]) 716 parent = path->nodes[level + 1]; 717 718 if (nritems == 0) 719 return 0; 720 721 if (parent) { 722 parent_slot = path->slots[level + 1]; 723 btrfs_node_key(parent, &parent_key, parent_slot); 724 btrfs_item_key(leaf, &leaf_key, 0); 725 726 BUG_ON(memcmp(&parent_key, &leaf_key, 727 sizeof(struct btrfs_disk_key))); 728 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 729 btrfs_header_bytenr(leaf)); 730 } 731 if (slot != 0 && slot < nritems - 1) { 732 btrfs_item_key(leaf, &leaf_key, slot); 733 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1); 734 if (comp_keys(&leaf_key, &cpukey) <= 0) { 735 btrfs_print_leaf(root, leaf); 736 printk(KERN_CRIT "slot %d offset bad key\n", slot); 737 BUG_ON(1); 738 } 739 if (btrfs_item_offset_nr(leaf, slot - 1) != 740 btrfs_item_end_nr(leaf, slot)) { 741 btrfs_print_leaf(root, leaf); 742 printk(KERN_CRIT "slot %d offset bad\n", slot); 743 BUG_ON(1); 744 } 745 } 746 if (slot < nritems - 1) { 747 btrfs_item_key(leaf, &leaf_key, slot); 748 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1); 749 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0); 750 if (btrfs_item_offset_nr(leaf, slot) != 751 btrfs_item_end_nr(leaf, slot + 1)) { 752 btrfs_print_leaf(root, leaf); 753 printk(KERN_CRIT "slot %d offset bad\n", slot); 754 BUG_ON(1); 755 } 756 } 757 BUG_ON(btrfs_item_offset_nr(leaf, 0) + 758 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root)); 759 return 0; 760 } 761 762 static noinline int check_block(struct btrfs_root *root, 763 struct btrfs_path *path, int level) 764 { 765 return 0; 766 if (level == 0) 767 return check_leaf(root, path, level); 768 return check_node(root, path, level); 769 } 770 771 /* 772 * search for key in the extent_buffer. The items start at offset p, 773 * and they are item_size apart. There are 'max' items in p. 774 * 775 * the slot in the array is returned via slot, and it points to 776 * the place where you would insert key if it is not found in 777 * the array. 778 * 779 * slot may point to max if the key is bigger than all of the keys 780 */ 781 static noinline int generic_bin_search(struct extent_buffer *eb, 782 unsigned long p, 783 int item_size, struct btrfs_key *key, 784 int max, int *slot) 785 { 786 int low = 0; 787 int high = max; 788 int mid; 789 int ret; 790 struct btrfs_disk_key *tmp = NULL; 791 struct btrfs_disk_key unaligned; 792 unsigned long offset; 793 char *map_token = NULL; 794 char *kaddr = NULL; 795 unsigned long map_start = 0; 796 unsigned long map_len = 0; 797 int err; 798 799 while (low < high) { 800 mid = (low + high) / 2; 801 offset = p + mid * item_size; 802 803 if (!map_token || offset < map_start || 804 (offset + sizeof(struct btrfs_disk_key)) > 805 map_start + map_len) { 806 if (map_token) { 807 unmap_extent_buffer(eb, map_token, KM_USER0); 808 map_token = NULL; 809 } 810 811 err = map_private_extent_buffer(eb, offset, 812 sizeof(struct btrfs_disk_key), 813 &map_token, &kaddr, 814 &map_start, &map_len, KM_USER0); 815 816 if (!err) { 817 tmp = (struct btrfs_disk_key *)(kaddr + offset - 818 map_start); 819 } else { 820 read_extent_buffer(eb, &unaligned, 821 offset, sizeof(unaligned)); 822 tmp = &unaligned; 823 } 824 825 } else { 826 tmp = (struct btrfs_disk_key *)(kaddr + offset - 827 map_start); 828 } 829 ret = comp_keys(tmp, key); 830 831 if (ret < 0) 832 low = mid + 1; 833 else if (ret > 0) 834 high = mid; 835 else { 836 *slot = mid; 837 if (map_token) 838 unmap_extent_buffer(eb, map_token, KM_USER0); 839 return 0; 840 } 841 } 842 *slot = low; 843 if (map_token) 844 unmap_extent_buffer(eb, map_token, KM_USER0); 845 return 1; 846 } 847 848 /* 849 * simple bin_search frontend that does the right thing for 850 * leaves vs nodes 851 */ 852 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 853 int level, int *slot) 854 { 855 if (level == 0) { 856 return generic_bin_search(eb, 857 offsetof(struct btrfs_leaf, items), 858 sizeof(struct btrfs_item), 859 key, btrfs_header_nritems(eb), 860 slot); 861 } else { 862 return generic_bin_search(eb, 863 offsetof(struct btrfs_node, ptrs), 864 sizeof(struct btrfs_key_ptr), 865 key, btrfs_header_nritems(eb), 866 slot); 867 } 868 return -1; 869 } 870 871 /* given a node and slot number, this reads the blocks it points to. The 872 * extent buffer is returned with a reference taken (but unlocked). 873 * NULL is returned on error. 874 */ 875 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 876 struct extent_buffer *parent, int slot) 877 { 878 int level = btrfs_header_level(parent); 879 if (slot < 0) 880 return NULL; 881 if (slot >= btrfs_header_nritems(parent)) 882 return NULL; 883 884 BUG_ON(level == 0); 885 886 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 887 btrfs_level_size(root, level - 1), 888 btrfs_node_ptr_generation(parent, slot)); 889 } 890 891 /* 892 * node level balancing, used to make sure nodes are in proper order for 893 * item deletion. We balance from the top down, so we have to make sure 894 * that a deletion won't leave an node completely empty later on. 895 */ 896 static noinline int balance_level(struct btrfs_trans_handle *trans, 897 struct btrfs_root *root, 898 struct btrfs_path *path, int level) 899 { 900 struct extent_buffer *right = NULL; 901 struct extent_buffer *mid; 902 struct extent_buffer *left = NULL; 903 struct extent_buffer *parent = NULL; 904 int ret = 0; 905 int wret; 906 int pslot; 907 int orig_slot = path->slots[level]; 908 int err_on_enospc = 0; 909 u64 orig_ptr; 910 911 if (level == 0) 912 return 0; 913 914 mid = path->nodes[level]; 915 916 WARN_ON(!path->locks[level]); 917 WARN_ON(btrfs_header_generation(mid) != trans->transid); 918 919 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 920 921 if (level < BTRFS_MAX_LEVEL - 1) 922 parent = path->nodes[level + 1]; 923 pslot = path->slots[level + 1]; 924 925 /* 926 * deal with the case where there is only one pointer in the root 927 * by promoting the node below to a root 928 */ 929 if (!parent) { 930 struct extent_buffer *child; 931 932 if (btrfs_header_nritems(mid) != 1) 933 return 0; 934 935 /* promote the child to a root */ 936 child = read_node_slot(root, mid, 0); 937 BUG_ON(!child); 938 btrfs_tree_lock(child); 939 btrfs_set_lock_blocking(child); 940 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0); 941 BUG_ON(ret); 942 943 spin_lock(&root->node_lock); 944 root->node = child; 945 spin_unlock(&root->node_lock); 946 947 ret = btrfs_update_extent_ref(trans, root, child->start, 948 mid->start, child->start, 949 root->root_key.objectid, 950 trans->transid, level - 1); 951 BUG_ON(ret); 952 953 add_root_to_dirty_list(root); 954 btrfs_tree_unlock(child); 955 956 path->locks[level] = 0; 957 path->nodes[level] = NULL; 958 clean_tree_block(trans, root, mid); 959 btrfs_tree_unlock(mid); 960 /* once for the path */ 961 free_extent_buffer(mid); 962 ret = btrfs_free_extent(trans, root, mid->start, mid->len, 963 mid->start, root->root_key.objectid, 964 btrfs_header_generation(mid), 965 level, 1); 966 /* once for the root ptr */ 967 free_extent_buffer(mid); 968 return ret; 969 } 970 if (btrfs_header_nritems(mid) > 971 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 972 return 0; 973 974 if (btrfs_header_nritems(mid) < 2) 975 err_on_enospc = 1; 976 977 left = read_node_slot(root, parent, pslot - 1); 978 if (left) { 979 btrfs_tree_lock(left); 980 btrfs_set_lock_blocking(left); 981 wret = btrfs_cow_block(trans, root, left, 982 parent, pslot - 1, &left, 0); 983 if (wret) { 984 ret = wret; 985 goto enospc; 986 } 987 } 988 right = read_node_slot(root, parent, pslot + 1); 989 if (right) { 990 btrfs_tree_lock(right); 991 btrfs_set_lock_blocking(right); 992 wret = btrfs_cow_block(trans, root, right, 993 parent, pslot + 1, &right, 0); 994 if (wret) { 995 ret = wret; 996 goto enospc; 997 } 998 } 999 1000 /* first, try to make some room in the middle buffer */ 1001 if (left) { 1002 orig_slot += btrfs_header_nritems(left); 1003 wret = push_node_left(trans, root, left, mid, 1); 1004 if (wret < 0) 1005 ret = wret; 1006 if (btrfs_header_nritems(mid) < 2) 1007 err_on_enospc = 1; 1008 } 1009 1010 /* 1011 * then try to empty the right most buffer into the middle 1012 */ 1013 if (right) { 1014 wret = push_node_left(trans, root, mid, right, 1); 1015 if (wret < 0 && wret != -ENOSPC) 1016 ret = wret; 1017 if (btrfs_header_nritems(right) == 0) { 1018 u64 bytenr = right->start; 1019 u64 generation = btrfs_header_generation(parent); 1020 u32 blocksize = right->len; 1021 1022 clean_tree_block(trans, root, right); 1023 btrfs_tree_unlock(right); 1024 free_extent_buffer(right); 1025 right = NULL; 1026 wret = del_ptr(trans, root, path, level + 1, pslot + 1027 1); 1028 if (wret) 1029 ret = wret; 1030 wret = btrfs_free_extent(trans, root, bytenr, 1031 blocksize, parent->start, 1032 btrfs_header_owner(parent), 1033 generation, level, 1); 1034 if (wret) 1035 ret = wret; 1036 } else { 1037 struct btrfs_disk_key right_key; 1038 btrfs_node_key(right, &right_key, 0); 1039 btrfs_set_node_key(parent, &right_key, pslot + 1); 1040 btrfs_mark_buffer_dirty(parent); 1041 } 1042 } 1043 if (btrfs_header_nritems(mid) == 1) { 1044 /* 1045 * we're not allowed to leave a node with one item in the 1046 * tree during a delete. A deletion from lower in the tree 1047 * could try to delete the only pointer in this node. 1048 * So, pull some keys from the left. 1049 * There has to be a left pointer at this point because 1050 * otherwise we would have pulled some pointers from the 1051 * right 1052 */ 1053 BUG_ON(!left); 1054 wret = balance_node_right(trans, root, mid, left); 1055 if (wret < 0) { 1056 ret = wret; 1057 goto enospc; 1058 } 1059 if (wret == 1) { 1060 wret = push_node_left(trans, root, left, mid, 1); 1061 if (wret < 0) 1062 ret = wret; 1063 } 1064 BUG_ON(wret == 1); 1065 } 1066 if (btrfs_header_nritems(mid) == 0) { 1067 /* we've managed to empty the middle node, drop it */ 1068 u64 root_gen = btrfs_header_generation(parent); 1069 u64 bytenr = mid->start; 1070 u32 blocksize = mid->len; 1071 1072 clean_tree_block(trans, root, mid); 1073 btrfs_tree_unlock(mid); 1074 free_extent_buffer(mid); 1075 mid = NULL; 1076 wret = del_ptr(trans, root, path, level + 1, pslot); 1077 if (wret) 1078 ret = wret; 1079 wret = btrfs_free_extent(trans, root, bytenr, blocksize, 1080 parent->start, 1081 btrfs_header_owner(parent), 1082 root_gen, level, 1); 1083 if (wret) 1084 ret = wret; 1085 } else { 1086 /* update the parent key to reflect our changes */ 1087 struct btrfs_disk_key mid_key; 1088 btrfs_node_key(mid, &mid_key, 0); 1089 btrfs_set_node_key(parent, &mid_key, pslot); 1090 btrfs_mark_buffer_dirty(parent); 1091 } 1092 1093 /* update the path */ 1094 if (left) { 1095 if (btrfs_header_nritems(left) > orig_slot) { 1096 extent_buffer_get(left); 1097 /* left was locked after cow */ 1098 path->nodes[level] = left; 1099 path->slots[level + 1] -= 1; 1100 path->slots[level] = orig_slot; 1101 if (mid) { 1102 btrfs_tree_unlock(mid); 1103 free_extent_buffer(mid); 1104 } 1105 } else { 1106 orig_slot -= btrfs_header_nritems(left); 1107 path->slots[level] = orig_slot; 1108 } 1109 } 1110 /* double check we haven't messed things up */ 1111 check_block(root, path, level); 1112 if (orig_ptr != 1113 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1114 BUG(); 1115 enospc: 1116 if (right) { 1117 btrfs_tree_unlock(right); 1118 free_extent_buffer(right); 1119 } 1120 if (left) { 1121 if (path->nodes[level] != left) 1122 btrfs_tree_unlock(left); 1123 free_extent_buffer(left); 1124 } 1125 return ret; 1126 } 1127 1128 /* Node balancing for insertion. Here we only split or push nodes around 1129 * when they are completely full. This is also done top down, so we 1130 * have to be pessimistic. 1131 */ 1132 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1133 struct btrfs_root *root, 1134 struct btrfs_path *path, int level) 1135 { 1136 struct extent_buffer *right = NULL; 1137 struct extent_buffer *mid; 1138 struct extent_buffer *left = NULL; 1139 struct extent_buffer *parent = NULL; 1140 int ret = 0; 1141 int wret; 1142 int pslot; 1143 int orig_slot = path->slots[level]; 1144 u64 orig_ptr; 1145 1146 if (level == 0) 1147 return 1; 1148 1149 mid = path->nodes[level]; 1150 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1151 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1152 1153 if (level < BTRFS_MAX_LEVEL - 1) 1154 parent = path->nodes[level + 1]; 1155 pslot = path->slots[level + 1]; 1156 1157 if (!parent) 1158 return 1; 1159 1160 left = read_node_slot(root, parent, pslot - 1); 1161 1162 /* first, try to make some room in the middle buffer */ 1163 if (left) { 1164 u32 left_nr; 1165 1166 btrfs_tree_lock(left); 1167 btrfs_set_lock_blocking(left); 1168 1169 left_nr = btrfs_header_nritems(left); 1170 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1171 wret = 1; 1172 } else { 1173 ret = btrfs_cow_block(trans, root, left, parent, 1174 pslot - 1, &left, 0); 1175 if (ret) 1176 wret = 1; 1177 else { 1178 wret = push_node_left(trans, root, 1179 left, mid, 0); 1180 } 1181 } 1182 if (wret < 0) 1183 ret = wret; 1184 if (wret == 0) { 1185 struct btrfs_disk_key disk_key; 1186 orig_slot += left_nr; 1187 btrfs_node_key(mid, &disk_key, 0); 1188 btrfs_set_node_key(parent, &disk_key, pslot); 1189 btrfs_mark_buffer_dirty(parent); 1190 if (btrfs_header_nritems(left) > orig_slot) { 1191 path->nodes[level] = left; 1192 path->slots[level + 1] -= 1; 1193 path->slots[level] = orig_slot; 1194 btrfs_tree_unlock(mid); 1195 free_extent_buffer(mid); 1196 } else { 1197 orig_slot -= 1198 btrfs_header_nritems(left); 1199 path->slots[level] = orig_slot; 1200 btrfs_tree_unlock(left); 1201 free_extent_buffer(left); 1202 } 1203 return 0; 1204 } 1205 btrfs_tree_unlock(left); 1206 free_extent_buffer(left); 1207 } 1208 right = read_node_slot(root, parent, pslot + 1); 1209 1210 /* 1211 * then try to empty the right most buffer into the middle 1212 */ 1213 if (right) { 1214 u32 right_nr; 1215 1216 btrfs_tree_lock(right); 1217 btrfs_set_lock_blocking(right); 1218 1219 right_nr = btrfs_header_nritems(right); 1220 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1221 wret = 1; 1222 } else { 1223 ret = btrfs_cow_block(trans, root, right, 1224 parent, pslot + 1, 1225 &right, 0); 1226 if (ret) 1227 wret = 1; 1228 else { 1229 wret = balance_node_right(trans, root, 1230 right, mid); 1231 } 1232 } 1233 if (wret < 0) 1234 ret = wret; 1235 if (wret == 0) { 1236 struct btrfs_disk_key disk_key; 1237 1238 btrfs_node_key(right, &disk_key, 0); 1239 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1240 btrfs_mark_buffer_dirty(parent); 1241 1242 if (btrfs_header_nritems(mid) <= orig_slot) { 1243 path->nodes[level] = right; 1244 path->slots[level + 1] += 1; 1245 path->slots[level] = orig_slot - 1246 btrfs_header_nritems(mid); 1247 btrfs_tree_unlock(mid); 1248 free_extent_buffer(mid); 1249 } else { 1250 btrfs_tree_unlock(right); 1251 free_extent_buffer(right); 1252 } 1253 return 0; 1254 } 1255 btrfs_tree_unlock(right); 1256 free_extent_buffer(right); 1257 } 1258 return 1; 1259 } 1260 1261 /* 1262 * readahead one full node of leaves, finding things that are close 1263 * to the block in 'slot', and triggering ra on them. 1264 */ 1265 static noinline void reada_for_search(struct btrfs_root *root, 1266 struct btrfs_path *path, 1267 int level, int slot, u64 objectid) 1268 { 1269 struct extent_buffer *node; 1270 struct btrfs_disk_key disk_key; 1271 u32 nritems; 1272 u64 search; 1273 u64 target; 1274 u64 nread = 0; 1275 int direction = path->reada; 1276 struct extent_buffer *eb; 1277 u32 nr; 1278 u32 blocksize; 1279 u32 nscan = 0; 1280 1281 if (level != 1) 1282 return; 1283 1284 if (!path->nodes[level]) 1285 return; 1286 1287 node = path->nodes[level]; 1288 1289 search = btrfs_node_blockptr(node, slot); 1290 blocksize = btrfs_level_size(root, level - 1); 1291 eb = btrfs_find_tree_block(root, search, blocksize); 1292 if (eb) { 1293 free_extent_buffer(eb); 1294 return; 1295 } 1296 1297 target = search; 1298 1299 nritems = btrfs_header_nritems(node); 1300 nr = slot; 1301 while (1) { 1302 if (direction < 0) { 1303 if (nr == 0) 1304 break; 1305 nr--; 1306 } else if (direction > 0) { 1307 nr++; 1308 if (nr >= nritems) 1309 break; 1310 } 1311 if (path->reada < 0 && objectid) { 1312 btrfs_node_key(node, &disk_key, nr); 1313 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1314 break; 1315 } 1316 search = btrfs_node_blockptr(node, nr); 1317 if ((search <= target && target - search <= 65536) || 1318 (search > target && search - target <= 65536)) { 1319 readahead_tree_block(root, search, blocksize, 1320 btrfs_node_ptr_generation(node, nr)); 1321 nread += blocksize; 1322 } 1323 nscan++; 1324 if ((nread > 65536 || nscan > 32)) 1325 break; 1326 } 1327 } 1328 1329 /* 1330 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1331 * cache 1332 */ 1333 static noinline int reada_for_balance(struct btrfs_root *root, 1334 struct btrfs_path *path, int level) 1335 { 1336 int slot; 1337 int nritems; 1338 struct extent_buffer *parent; 1339 struct extent_buffer *eb; 1340 u64 gen; 1341 u64 block1 = 0; 1342 u64 block2 = 0; 1343 int ret = 0; 1344 int blocksize; 1345 1346 parent = path->nodes[level - 1]; 1347 if (!parent) 1348 return 0; 1349 1350 nritems = btrfs_header_nritems(parent); 1351 slot = path->slots[level]; 1352 blocksize = btrfs_level_size(root, level); 1353 1354 if (slot > 0) { 1355 block1 = btrfs_node_blockptr(parent, slot - 1); 1356 gen = btrfs_node_ptr_generation(parent, slot - 1); 1357 eb = btrfs_find_tree_block(root, block1, blocksize); 1358 if (eb && btrfs_buffer_uptodate(eb, gen)) 1359 block1 = 0; 1360 free_extent_buffer(eb); 1361 } 1362 if (slot < nritems) { 1363 block2 = btrfs_node_blockptr(parent, slot + 1); 1364 gen = btrfs_node_ptr_generation(parent, slot + 1); 1365 eb = btrfs_find_tree_block(root, block2, blocksize); 1366 if (eb && btrfs_buffer_uptodate(eb, gen)) 1367 block2 = 0; 1368 free_extent_buffer(eb); 1369 } 1370 if (block1 || block2) { 1371 ret = -EAGAIN; 1372 btrfs_release_path(root, path); 1373 if (block1) 1374 readahead_tree_block(root, block1, blocksize, 0); 1375 if (block2) 1376 readahead_tree_block(root, block2, blocksize, 0); 1377 1378 if (block1) { 1379 eb = read_tree_block(root, block1, blocksize, 0); 1380 free_extent_buffer(eb); 1381 } 1382 if (block1) { 1383 eb = read_tree_block(root, block2, blocksize, 0); 1384 free_extent_buffer(eb); 1385 } 1386 } 1387 return ret; 1388 } 1389 1390 1391 /* 1392 * when we walk down the tree, it is usually safe to unlock the higher layers 1393 * in the tree. The exceptions are when our path goes through slot 0, because 1394 * operations on the tree might require changing key pointers higher up in the 1395 * tree. 1396 * 1397 * callers might also have set path->keep_locks, which tells this code to keep 1398 * the lock if the path points to the last slot in the block. This is part of 1399 * walking through the tree, and selecting the next slot in the higher block. 1400 * 1401 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1402 * if lowest_unlock is 1, level 0 won't be unlocked 1403 */ 1404 static noinline void unlock_up(struct btrfs_path *path, int level, 1405 int lowest_unlock) 1406 { 1407 int i; 1408 int skip_level = level; 1409 int no_skips = 0; 1410 struct extent_buffer *t; 1411 1412 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1413 if (!path->nodes[i]) 1414 break; 1415 if (!path->locks[i]) 1416 break; 1417 if (!no_skips && path->slots[i] == 0) { 1418 skip_level = i + 1; 1419 continue; 1420 } 1421 if (!no_skips && path->keep_locks) { 1422 u32 nritems; 1423 t = path->nodes[i]; 1424 nritems = btrfs_header_nritems(t); 1425 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1426 skip_level = i + 1; 1427 continue; 1428 } 1429 } 1430 if (skip_level < i && i >= lowest_unlock) 1431 no_skips = 1; 1432 1433 t = path->nodes[i]; 1434 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 1435 btrfs_tree_unlock(t); 1436 path->locks[i] = 0; 1437 } 1438 } 1439 } 1440 1441 /* 1442 * This releases any locks held in the path starting at level and 1443 * going all the way up to the root. 1444 * 1445 * btrfs_search_slot will keep the lock held on higher nodes in a few 1446 * corner cases, such as COW of the block at slot zero in the node. This 1447 * ignores those rules, and it should only be called when there are no 1448 * more updates to be done higher up in the tree. 1449 */ 1450 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 1451 { 1452 int i; 1453 1454 if (path->keep_locks || path->lowest_level) 1455 return; 1456 1457 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1458 if (!path->nodes[i]) 1459 continue; 1460 if (!path->locks[i]) 1461 continue; 1462 btrfs_tree_unlock(path->nodes[i]); 1463 path->locks[i] = 0; 1464 } 1465 } 1466 1467 /* 1468 * look for key in the tree. path is filled in with nodes along the way 1469 * if key is found, we return zero and you can find the item in the leaf 1470 * level of the path (level 0) 1471 * 1472 * If the key isn't found, the path points to the slot where it should 1473 * be inserted, and 1 is returned. If there are other errors during the 1474 * search a negative error number is returned. 1475 * 1476 * if ins_len > 0, nodes and leaves will be split as we walk down the 1477 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 1478 * possible) 1479 */ 1480 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 1481 *root, struct btrfs_key *key, struct btrfs_path *p, int 1482 ins_len, int cow) 1483 { 1484 struct extent_buffer *b; 1485 struct extent_buffer *tmp; 1486 int slot; 1487 int ret; 1488 int level; 1489 int should_reada = p->reada; 1490 int lowest_unlock = 1; 1491 int blocksize; 1492 u8 lowest_level = 0; 1493 u64 blocknr; 1494 u64 gen; 1495 struct btrfs_key prealloc_block; 1496 1497 lowest_level = p->lowest_level; 1498 WARN_ON(lowest_level && ins_len > 0); 1499 WARN_ON(p->nodes[0] != NULL); 1500 1501 if (ins_len < 0) 1502 lowest_unlock = 2; 1503 1504 prealloc_block.objectid = 0; 1505 1506 again: 1507 if (p->skip_locking) 1508 b = btrfs_root_node(root); 1509 else 1510 b = btrfs_lock_root_node(root); 1511 1512 while (b) { 1513 level = btrfs_header_level(b); 1514 1515 /* 1516 * setup the path here so we can release it under lock 1517 * contention with the cow code 1518 */ 1519 p->nodes[level] = b; 1520 if (!p->skip_locking) 1521 p->locks[level] = 1; 1522 1523 if (cow) { 1524 int wret; 1525 1526 /* is a cow on this block not required */ 1527 if (btrfs_header_generation(b) == trans->transid && 1528 btrfs_header_owner(b) == root->root_key.objectid && 1529 !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) { 1530 goto cow_done; 1531 } 1532 1533 /* ok, we have to cow, is our old prealloc the right 1534 * size? 1535 */ 1536 if (prealloc_block.objectid && 1537 prealloc_block.offset != b->len) { 1538 btrfs_release_path(root, p); 1539 btrfs_free_reserved_extent(root, 1540 prealloc_block.objectid, 1541 prealloc_block.offset); 1542 prealloc_block.objectid = 0; 1543 goto again; 1544 } 1545 1546 /* 1547 * for higher level blocks, try not to allocate blocks 1548 * with the block and the parent locks held. 1549 */ 1550 if (level > 0 && !prealloc_block.objectid) { 1551 u32 size = b->len; 1552 u64 hint = b->start; 1553 1554 btrfs_release_path(root, p); 1555 ret = btrfs_reserve_extent(trans, root, 1556 size, size, 0, 1557 hint, (u64)-1, 1558 &prealloc_block, 0); 1559 BUG_ON(ret); 1560 goto again; 1561 } 1562 1563 btrfs_set_path_blocking(p); 1564 1565 wret = btrfs_cow_block(trans, root, b, 1566 p->nodes[level + 1], 1567 p->slots[level + 1], 1568 &b, prealloc_block.objectid); 1569 prealloc_block.objectid = 0; 1570 if (wret) { 1571 free_extent_buffer(b); 1572 ret = wret; 1573 goto done; 1574 } 1575 } 1576 cow_done: 1577 BUG_ON(!cow && ins_len); 1578 if (level != btrfs_header_level(b)) 1579 WARN_ON(1); 1580 level = btrfs_header_level(b); 1581 1582 p->nodes[level] = b; 1583 if (!p->skip_locking) 1584 p->locks[level] = 1; 1585 1586 btrfs_clear_path_blocking(p, NULL); 1587 1588 /* 1589 * we have a lock on b and as long as we aren't changing 1590 * the tree, there is no way to for the items in b to change. 1591 * It is safe to drop the lock on our parent before we 1592 * go through the expensive btree search on b. 1593 * 1594 * If cow is true, then we might be changing slot zero, 1595 * which may require changing the parent. So, we can't 1596 * drop the lock until after we know which slot we're 1597 * operating on. 1598 */ 1599 if (!cow) 1600 btrfs_unlock_up_safe(p, level + 1); 1601 1602 ret = check_block(root, p, level); 1603 if (ret) { 1604 ret = -1; 1605 goto done; 1606 } 1607 1608 ret = bin_search(b, key, level, &slot); 1609 1610 if (level != 0) { 1611 if (ret && slot > 0) 1612 slot -= 1; 1613 p->slots[level] = slot; 1614 if ((p->search_for_split || ins_len > 0) && 1615 btrfs_header_nritems(b) >= 1616 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 1617 int sret; 1618 1619 sret = reada_for_balance(root, p, level); 1620 if (sret) 1621 goto again; 1622 1623 btrfs_set_path_blocking(p); 1624 sret = split_node(trans, root, p, level); 1625 btrfs_clear_path_blocking(p, NULL); 1626 1627 BUG_ON(sret > 0); 1628 if (sret) { 1629 ret = sret; 1630 goto done; 1631 } 1632 b = p->nodes[level]; 1633 slot = p->slots[level]; 1634 } else if (ins_len < 0 && 1635 btrfs_header_nritems(b) < 1636 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) { 1637 int sret; 1638 1639 sret = reada_for_balance(root, p, level); 1640 if (sret) 1641 goto again; 1642 1643 btrfs_set_path_blocking(p); 1644 sret = balance_level(trans, root, p, level); 1645 btrfs_clear_path_blocking(p, NULL); 1646 1647 if (sret) { 1648 ret = sret; 1649 goto done; 1650 } 1651 b = p->nodes[level]; 1652 if (!b) { 1653 btrfs_release_path(NULL, p); 1654 goto again; 1655 } 1656 slot = p->slots[level]; 1657 BUG_ON(btrfs_header_nritems(b) == 1); 1658 } 1659 unlock_up(p, level, lowest_unlock); 1660 1661 /* this is only true while dropping a snapshot */ 1662 if (level == lowest_level) { 1663 ret = 0; 1664 goto done; 1665 } 1666 1667 blocknr = btrfs_node_blockptr(b, slot); 1668 gen = btrfs_node_ptr_generation(b, slot); 1669 blocksize = btrfs_level_size(root, level - 1); 1670 1671 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 1672 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 1673 b = tmp; 1674 } else { 1675 /* 1676 * reduce lock contention at high levels 1677 * of the btree by dropping locks before 1678 * we read. 1679 */ 1680 if (level > 0) { 1681 btrfs_release_path(NULL, p); 1682 if (tmp) 1683 free_extent_buffer(tmp); 1684 if (should_reada) 1685 reada_for_search(root, p, 1686 level, slot, 1687 key->objectid); 1688 1689 tmp = read_tree_block(root, blocknr, 1690 blocksize, gen); 1691 if (tmp) 1692 free_extent_buffer(tmp); 1693 goto again; 1694 } else { 1695 btrfs_set_path_blocking(p); 1696 if (tmp) 1697 free_extent_buffer(tmp); 1698 if (should_reada) 1699 reada_for_search(root, p, 1700 level, slot, 1701 key->objectid); 1702 b = read_node_slot(root, b, slot); 1703 } 1704 } 1705 if (!p->skip_locking) { 1706 int lret; 1707 1708 btrfs_clear_path_blocking(p, NULL); 1709 lret = btrfs_try_spin_lock(b); 1710 1711 if (!lret) { 1712 btrfs_set_path_blocking(p); 1713 btrfs_tree_lock(b); 1714 btrfs_clear_path_blocking(p, b); 1715 } 1716 } 1717 } else { 1718 p->slots[level] = slot; 1719 if (ins_len > 0 && 1720 btrfs_leaf_free_space(root, b) < ins_len) { 1721 int sret; 1722 1723 btrfs_set_path_blocking(p); 1724 sret = split_leaf(trans, root, key, 1725 p, ins_len, ret == 0); 1726 btrfs_clear_path_blocking(p, NULL); 1727 1728 BUG_ON(sret > 0); 1729 if (sret) { 1730 ret = sret; 1731 goto done; 1732 } 1733 } 1734 if (!p->search_for_split) 1735 unlock_up(p, level, lowest_unlock); 1736 goto done; 1737 } 1738 } 1739 ret = 1; 1740 done: 1741 /* 1742 * we don't really know what they plan on doing with the path 1743 * from here on, so for now just mark it as blocking 1744 */ 1745 btrfs_set_path_blocking(p); 1746 if (prealloc_block.objectid) { 1747 btrfs_free_reserved_extent(root, 1748 prealloc_block.objectid, 1749 prealloc_block.offset); 1750 } 1751 return ret; 1752 } 1753 1754 int btrfs_merge_path(struct btrfs_trans_handle *trans, 1755 struct btrfs_root *root, 1756 struct btrfs_key *node_keys, 1757 u64 *nodes, int lowest_level) 1758 { 1759 struct extent_buffer *eb; 1760 struct extent_buffer *parent; 1761 struct btrfs_key key; 1762 u64 bytenr; 1763 u64 generation; 1764 u32 blocksize; 1765 int level; 1766 int slot; 1767 int key_match; 1768 int ret; 1769 1770 eb = btrfs_lock_root_node(root); 1771 ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0); 1772 BUG_ON(ret); 1773 1774 btrfs_set_lock_blocking(eb); 1775 1776 parent = eb; 1777 while (1) { 1778 level = btrfs_header_level(parent); 1779 if (level == 0 || level <= lowest_level) 1780 break; 1781 1782 ret = bin_search(parent, &node_keys[lowest_level], level, 1783 &slot); 1784 if (ret && slot > 0) 1785 slot--; 1786 1787 bytenr = btrfs_node_blockptr(parent, slot); 1788 if (nodes[level - 1] == bytenr) 1789 break; 1790 1791 blocksize = btrfs_level_size(root, level - 1); 1792 generation = btrfs_node_ptr_generation(parent, slot); 1793 btrfs_node_key_to_cpu(eb, &key, slot); 1794 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key)); 1795 1796 if (generation == trans->transid) { 1797 eb = read_tree_block(root, bytenr, blocksize, 1798 generation); 1799 btrfs_tree_lock(eb); 1800 btrfs_set_lock_blocking(eb); 1801 } 1802 1803 /* 1804 * if node keys match and node pointer hasn't been modified 1805 * in the running transaction, we can merge the path. for 1806 * blocks owened by reloc trees, the node pointer check is 1807 * skipped, this is because these blocks are fully controlled 1808 * by the space balance code, no one else can modify them. 1809 */ 1810 if (!nodes[level - 1] || !key_match || 1811 (generation == trans->transid && 1812 btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) { 1813 if (level == 1 || level == lowest_level + 1) { 1814 if (generation == trans->transid) { 1815 btrfs_tree_unlock(eb); 1816 free_extent_buffer(eb); 1817 } 1818 break; 1819 } 1820 1821 if (generation != trans->transid) { 1822 eb = read_tree_block(root, bytenr, blocksize, 1823 generation); 1824 btrfs_tree_lock(eb); 1825 btrfs_set_lock_blocking(eb); 1826 } 1827 1828 ret = btrfs_cow_block(trans, root, eb, parent, slot, 1829 &eb, 0); 1830 BUG_ON(ret); 1831 1832 if (root->root_key.objectid == 1833 BTRFS_TREE_RELOC_OBJECTID) { 1834 if (!nodes[level - 1]) { 1835 nodes[level - 1] = eb->start; 1836 memcpy(&node_keys[level - 1], &key, 1837 sizeof(node_keys[0])); 1838 } else { 1839 WARN_ON(1); 1840 } 1841 } 1842 1843 btrfs_tree_unlock(parent); 1844 free_extent_buffer(parent); 1845 parent = eb; 1846 continue; 1847 } 1848 1849 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]); 1850 btrfs_set_node_ptr_generation(parent, slot, trans->transid); 1851 btrfs_mark_buffer_dirty(parent); 1852 1853 ret = btrfs_inc_extent_ref(trans, root, 1854 nodes[level - 1], 1855 blocksize, parent->start, 1856 btrfs_header_owner(parent), 1857 btrfs_header_generation(parent), 1858 level - 1); 1859 BUG_ON(ret); 1860 1861 /* 1862 * If the block was created in the running transaction, 1863 * it's possible this is the last reference to it, so we 1864 * should drop the subtree. 1865 */ 1866 if (generation == trans->transid) { 1867 ret = btrfs_drop_subtree(trans, root, eb, parent); 1868 BUG_ON(ret); 1869 btrfs_tree_unlock(eb); 1870 free_extent_buffer(eb); 1871 } else { 1872 ret = btrfs_free_extent(trans, root, bytenr, 1873 blocksize, parent->start, 1874 btrfs_header_owner(parent), 1875 btrfs_header_generation(parent), 1876 level - 1, 1); 1877 BUG_ON(ret); 1878 } 1879 break; 1880 } 1881 btrfs_tree_unlock(parent); 1882 free_extent_buffer(parent); 1883 return 0; 1884 } 1885 1886 /* 1887 * adjust the pointers going up the tree, starting at level 1888 * making sure the right key of each node is points to 'key'. 1889 * This is used after shifting pointers to the left, so it stops 1890 * fixing up pointers when a given leaf/node is not in slot 0 of the 1891 * higher levels 1892 * 1893 * If this fails to write a tree block, it returns -1, but continues 1894 * fixing up the blocks in ram so the tree is consistent. 1895 */ 1896 static int fixup_low_keys(struct btrfs_trans_handle *trans, 1897 struct btrfs_root *root, struct btrfs_path *path, 1898 struct btrfs_disk_key *key, int level) 1899 { 1900 int i; 1901 int ret = 0; 1902 struct extent_buffer *t; 1903 1904 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1905 int tslot = path->slots[i]; 1906 if (!path->nodes[i]) 1907 break; 1908 t = path->nodes[i]; 1909 btrfs_set_node_key(t, key, tslot); 1910 btrfs_mark_buffer_dirty(path->nodes[i]); 1911 if (tslot != 0) 1912 break; 1913 } 1914 return ret; 1915 } 1916 1917 /* 1918 * update item key. 1919 * 1920 * This function isn't completely safe. It's the caller's responsibility 1921 * that the new key won't break the order 1922 */ 1923 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 1924 struct btrfs_root *root, struct btrfs_path *path, 1925 struct btrfs_key *new_key) 1926 { 1927 struct btrfs_disk_key disk_key; 1928 struct extent_buffer *eb; 1929 int slot; 1930 1931 eb = path->nodes[0]; 1932 slot = path->slots[0]; 1933 if (slot > 0) { 1934 btrfs_item_key(eb, &disk_key, slot - 1); 1935 if (comp_keys(&disk_key, new_key) >= 0) 1936 return -1; 1937 } 1938 if (slot < btrfs_header_nritems(eb) - 1) { 1939 btrfs_item_key(eb, &disk_key, slot + 1); 1940 if (comp_keys(&disk_key, new_key) <= 0) 1941 return -1; 1942 } 1943 1944 btrfs_cpu_key_to_disk(&disk_key, new_key); 1945 btrfs_set_item_key(eb, &disk_key, slot); 1946 btrfs_mark_buffer_dirty(eb); 1947 if (slot == 0) 1948 fixup_low_keys(trans, root, path, &disk_key, 1); 1949 return 0; 1950 } 1951 1952 /* 1953 * try to push data from one node into the next node left in the 1954 * tree. 1955 * 1956 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 1957 * error, and > 0 if there was no room in the left hand block. 1958 */ 1959 static int push_node_left(struct btrfs_trans_handle *trans, 1960 struct btrfs_root *root, struct extent_buffer *dst, 1961 struct extent_buffer *src, int empty) 1962 { 1963 int push_items = 0; 1964 int src_nritems; 1965 int dst_nritems; 1966 int ret = 0; 1967 1968 src_nritems = btrfs_header_nritems(src); 1969 dst_nritems = btrfs_header_nritems(dst); 1970 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 1971 WARN_ON(btrfs_header_generation(src) != trans->transid); 1972 WARN_ON(btrfs_header_generation(dst) != trans->transid); 1973 1974 if (!empty && src_nritems <= 8) 1975 return 1; 1976 1977 if (push_items <= 0) 1978 return 1; 1979 1980 if (empty) { 1981 push_items = min(src_nritems, push_items); 1982 if (push_items < src_nritems) { 1983 /* leave at least 8 pointers in the node if 1984 * we aren't going to empty it 1985 */ 1986 if (src_nritems - push_items < 8) { 1987 if (push_items <= 8) 1988 return 1; 1989 push_items -= 8; 1990 } 1991 } 1992 } else 1993 push_items = min(src_nritems - 8, push_items); 1994 1995 copy_extent_buffer(dst, src, 1996 btrfs_node_key_ptr_offset(dst_nritems), 1997 btrfs_node_key_ptr_offset(0), 1998 push_items * sizeof(struct btrfs_key_ptr)); 1999 2000 if (push_items < src_nritems) { 2001 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2002 btrfs_node_key_ptr_offset(push_items), 2003 (src_nritems - push_items) * 2004 sizeof(struct btrfs_key_ptr)); 2005 } 2006 btrfs_set_header_nritems(src, src_nritems - push_items); 2007 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2008 btrfs_mark_buffer_dirty(src); 2009 btrfs_mark_buffer_dirty(dst); 2010 2011 ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items); 2012 BUG_ON(ret); 2013 2014 return ret; 2015 } 2016 2017 /* 2018 * try to push data from one node into the next node right in the 2019 * tree. 2020 * 2021 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2022 * error, and > 0 if there was no room in the right hand block. 2023 * 2024 * this will only push up to 1/2 the contents of the left node over 2025 */ 2026 static int balance_node_right(struct btrfs_trans_handle *trans, 2027 struct btrfs_root *root, 2028 struct extent_buffer *dst, 2029 struct extent_buffer *src) 2030 { 2031 int push_items = 0; 2032 int max_push; 2033 int src_nritems; 2034 int dst_nritems; 2035 int ret = 0; 2036 2037 WARN_ON(btrfs_header_generation(src) != trans->transid); 2038 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2039 2040 src_nritems = btrfs_header_nritems(src); 2041 dst_nritems = btrfs_header_nritems(dst); 2042 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2043 if (push_items <= 0) 2044 return 1; 2045 2046 if (src_nritems < 4) 2047 return 1; 2048 2049 max_push = src_nritems / 2 + 1; 2050 /* don't try to empty the node */ 2051 if (max_push >= src_nritems) 2052 return 1; 2053 2054 if (max_push < push_items) 2055 push_items = max_push; 2056 2057 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2058 btrfs_node_key_ptr_offset(0), 2059 (dst_nritems) * 2060 sizeof(struct btrfs_key_ptr)); 2061 2062 copy_extent_buffer(dst, src, 2063 btrfs_node_key_ptr_offset(0), 2064 btrfs_node_key_ptr_offset(src_nritems - push_items), 2065 push_items * sizeof(struct btrfs_key_ptr)); 2066 2067 btrfs_set_header_nritems(src, src_nritems - push_items); 2068 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2069 2070 btrfs_mark_buffer_dirty(src); 2071 btrfs_mark_buffer_dirty(dst); 2072 2073 ret = btrfs_update_ref(trans, root, src, dst, 0, push_items); 2074 BUG_ON(ret); 2075 2076 return ret; 2077 } 2078 2079 /* 2080 * helper function to insert a new root level in the tree. 2081 * A new node is allocated, and a single item is inserted to 2082 * point to the existing root 2083 * 2084 * returns zero on success or < 0 on failure. 2085 */ 2086 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2087 struct btrfs_root *root, 2088 struct btrfs_path *path, int level) 2089 { 2090 u64 lower_gen; 2091 struct extent_buffer *lower; 2092 struct extent_buffer *c; 2093 struct extent_buffer *old; 2094 struct btrfs_disk_key lower_key; 2095 int ret; 2096 2097 BUG_ON(path->nodes[level]); 2098 BUG_ON(path->nodes[level-1] != root->node); 2099 2100 lower = path->nodes[level-1]; 2101 if (level == 1) 2102 btrfs_item_key(lower, &lower_key, 0); 2103 else 2104 btrfs_node_key(lower, &lower_key, 0); 2105 2106 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2107 root->root_key.objectid, trans->transid, 2108 level, root->node->start, 0); 2109 if (IS_ERR(c)) 2110 return PTR_ERR(c); 2111 2112 memset_extent_buffer(c, 0, 0, root->nodesize); 2113 btrfs_set_header_nritems(c, 1); 2114 btrfs_set_header_level(c, level); 2115 btrfs_set_header_bytenr(c, c->start); 2116 btrfs_set_header_generation(c, trans->transid); 2117 btrfs_set_header_owner(c, root->root_key.objectid); 2118 2119 write_extent_buffer(c, root->fs_info->fsid, 2120 (unsigned long)btrfs_header_fsid(c), 2121 BTRFS_FSID_SIZE); 2122 2123 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2124 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2125 BTRFS_UUID_SIZE); 2126 2127 btrfs_set_node_key(c, &lower_key, 0); 2128 btrfs_set_node_blockptr(c, 0, lower->start); 2129 lower_gen = btrfs_header_generation(lower); 2130 WARN_ON(lower_gen != trans->transid); 2131 2132 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2133 2134 btrfs_mark_buffer_dirty(c); 2135 2136 spin_lock(&root->node_lock); 2137 old = root->node; 2138 root->node = c; 2139 spin_unlock(&root->node_lock); 2140 2141 ret = btrfs_update_extent_ref(trans, root, lower->start, 2142 lower->start, c->start, 2143 root->root_key.objectid, 2144 trans->transid, level - 1); 2145 BUG_ON(ret); 2146 2147 /* the super has an extra ref to root->node */ 2148 free_extent_buffer(old); 2149 2150 add_root_to_dirty_list(root); 2151 extent_buffer_get(c); 2152 path->nodes[level] = c; 2153 path->locks[level] = 1; 2154 path->slots[level] = 0; 2155 return 0; 2156 } 2157 2158 /* 2159 * worker function to insert a single pointer in a node. 2160 * the node should have enough room for the pointer already 2161 * 2162 * slot and level indicate where you want the key to go, and 2163 * blocknr is the block the key points to. 2164 * 2165 * returns zero on success and < 0 on any error 2166 */ 2167 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root 2168 *root, struct btrfs_path *path, struct btrfs_disk_key 2169 *key, u64 bytenr, int slot, int level) 2170 { 2171 struct extent_buffer *lower; 2172 int nritems; 2173 2174 BUG_ON(!path->nodes[level]); 2175 lower = path->nodes[level]; 2176 nritems = btrfs_header_nritems(lower); 2177 if (slot > nritems) 2178 BUG(); 2179 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) 2180 BUG(); 2181 if (slot != nritems) { 2182 memmove_extent_buffer(lower, 2183 btrfs_node_key_ptr_offset(slot + 1), 2184 btrfs_node_key_ptr_offset(slot), 2185 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2186 } 2187 btrfs_set_node_key(lower, key, slot); 2188 btrfs_set_node_blockptr(lower, slot, bytenr); 2189 WARN_ON(trans->transid == 0); 2190 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2191 btrfs_set_header_nritems(lower, nritems + 1); 2192 btrfs_mark_buffer_dirty(lower); 2193 return 0; 2194 } 2195 2196 /* 2197 * split the node at the specified level in path in two. 2198 * The path is corrected to point to the appropriate node after the split 2199 * 2200 * Before splitting this tries to make some room in the node by pushing 2201 * left and right, if either one works, it returns right away. 2202 * 2203 * returns 0 on success and < 0 on failure 2204 */ 2205 static noinline int split_node(struct btrfs_trans_handle *trans, 2206 struct btrfs_root *root, 2207 struct btrfs_path *path, int level) 2208 { 2209 struct extent_buffer *c; 2210 struct extent_buffer *split; 2211 struct btrfs_disk_key disk_key; 2212 int mid; 2213 int ret; 2214 int wret; 2215 u32 c_nritems; 2216 2217 c = path->nodes[level]; 2218 WARN_ON(btrfs_header_generation(c) != trans->transid); 2219 if (c == root->node) { 2220 /* trying to split the root, lets make a new one */ 2221 ret = insert_new_root(trans, root, path, level + 1); 2222 if (ret) 2223 return ret; 2224 } else { 2225 ret = push_nodes_for_insert(trans, root, path, level); 2226 c = path->nodes[level]; 2227 if (!ret && btrfs_header_nritems(c) < 2228 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 2229 return 0; 2230 if (ret < 0) 2231 return ret; 2232 } 2233 2234 c_nritems = btrfs_header_nritems(c); 2235 2236 split = btrfs_alloc_free_block(trans, root, root->nodesize, 2237 path->nodes[level + 1]->start, 2238 root->root_key.objectid, 2239 trans->transid, level, c->start, 0); 2240 if (IS_ERR(split)) 2241 return PTR_ERR(split); 2242 2243 btrfs_set_header_flags(split, btrfs_header_flags(c)); 2244 btrfs_set_header_level(split, btrfs_header_level(c)); 2245 btrfs_set_header_bytenr(split, split->start); 2246 btrfs_set_header_generation(split, trans->transid); 2247 btrfs_set_header_owner(split, root->root_key.objectid); 2248 btrfs_set_header_flags(split, 0); 2249 write_extent_buffer(split, root->fs_info->fsid, 2250 (unsigned long)btrfs_header_fsid(split), 2251 BTRFS_FSID_SIZE); 2252 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 2253 (unsigned long)btrfs_header_chunk_tree_uuid(split), 2254 BTRFS_UUID_SIZE); 2255 2256 mid = (c_nritems + 1) / 2; 2257 2258 copy_extent_buffer(split, c, 2259 btrfs_node_key_ptr_offset(0), 2260 btrfs_node_key_ptr_offset(mid), 2261 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2262 btrfs_set_header_nritems(split, c_nritems - mid); 2263 btrfs_set_header_nritems(c, mid); 2264 ret = 0; 2265 2266 btrfs_mark_buffer_dirty(c); 2267 btrfs_mark_buffer_dirty(split); 2268 2269 btrfs_node_key(split, &disk_key, 0); 2270 wret = insert_ptr(trans, root, path, &disk_key, split->start, 2271 path->slots[level + 1] + 1, 2272 level + 1); 2273 if (wret) 2274 ret = wret; 2275 2276 ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid); 2277 BUG_ON(ret); 2278 2279 if (path->slots[level] >= mid) { 2280 path->slots[level] -= mid; 2281 btrfs_tree_unlock(c); 2282 free_extent_buffer(c); 2283 path->nodes[level] = split; 2284 path->slots[level + 1] += 1; 2285 } else { 2286 btrfs_tree_unlock(split); 2287 free_extent_buffer(split); 2288 } 2289 return ret; 2290 } 2291 2292 /* 2293 * how many bytes are required to store the items in a leaf. start 2294 * and nr indicate which items in the leaf to check. This totals up the 2295 * space used both by the item structs and the item data 2296 */ 2297 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2298 { 2299 int data_len; 2300 int nritems = btrfs_header_nritems(l); 2301 int end = min(nritems, start + nr) - 1; 2302 2303 if (!nr) 2304 return 0; 2305 data_len = btrfs_item_end_nr(l, start); 2306 data_len = data_len - btrfs_item_offset_nr(l, end); 2307 data_len += sizeof(struct btrfs_item) * nr; 2308 WARN_ON(data_len < 0); 2309 return data_len; 2310 } 2311 2312 /* 2313 * The space between the end of the leaf items and 2314 * the start of the leaf data. IOW, how much room 2315 * the leaf has left for both items and data 2316 */ 2317 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 2318 struct extent_buffer *leaf) 2319 { 2320 int nritems = btrfs_header_nritems(leaf); 2321 int ret; 2322 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 2323 if (ret < 0) { 2324 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 2325 "used %d nritems %d\n", 2326 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 2327 leaf_space_used(leaf, 0, nritems), nritems); 2328 } 2329 return ret; 2330 } 2331 2332 /* 2333 * push some data in the path leaf to the right, trying to free up at 2334 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2335 * 2336 * returns 1 if the push failed because the other node didn't have enough 2337 * room, 0 if everything worked out and < 0 if there were major errors. 2338 */ 2339 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2340 *root, struct btrfs_path *path, int data_size, 2341 int empty) 2342 { 2343 struct extent_buffer *left = path->nodes[0]; 2344 struct extent_buffer *right; 2345 struct extent_buffer *upper; 2346 struct btrfs_disk_key disk_key; 2347 int slot; 2348 u32 i; 2349 int free_space; 2350 int push_space = 0; 2351 int push_items = 0; 2352 struct btrfs_item *item; 2353 u32 left_nritems; 2354 u32 nr; 2355 u32 right_nritems; 2356 u32 data_end; 2357 u32 this_item_size; 2358 int ret; 2359 2360 slot = path->slots[1]; 2361 if (!path->nodes[1]) 2362 return 1; 2363 2364 upper = path->nodes[1]; 2365 if (slot >= btrfs_header_nritems(upper) - 1) 2366 return 1; 2367 2368 btrfs_assert_tree_locked(path->nodes[1]); 2369 2370 right = read_node_slot(root, upper, slot + 1); 2371 btrfs_tree_lock(right); 2372 btrfs_set_lock_blocking(right); 2373 2374 free_space = btrfs_leaf_free_space(root, right); 2375 if (free_space < data_size) 2376 goto out_unlock; 2377 2378 /* cow and double check */ 2379 ret = btrfs_cow_block(trans, root, right, upper, 2380 slot + 1, &right, 0); 2381 if (ret) 2382 goto out_unlock; 2383 2384 free_space = btrfs_leaf_free_space(root, right); 2385 if (free_space < data_size) 2386 goto out_unlock; 2387 2388 left_nritems = btrfs_header_nritems(left); 2389 if (left_nritems == 0) 2390 goto out_unlock; 2391 2392 if (empty) 2393 nr = 0; 2394 else 2395 nr = 1; 2396 2397 if (path->slots[0] >= left_nritems) 2398 push_space += data_size; 2399 2400 i = left_nritems - 1; 2401 while (i >= nr) { 2402 item = btrfs_item_nr(left, i); 2403 2404 if (!empty && push_items > 0) { 2405 if (path->slots[0] > i) 2406 break; 2407 if (path->slots[0] == i) { 2408 int space = btrfs_leaf_free_space(root, left); 2409 if (space + push_space * 2 > free_space) 2410 break; 2411 } 2412 } 2413 2414 if (path->slots[0] == i) 2415 push_space += data_size; 2416 2417 if (!left->map_token) { 2418 map_extent_buffer(left, (unsigned long)item, 2419 sizeof(struct btrfs_item), 2420 &left->map_token, &left->kaddr, 2421 &left->map_start, &left->map_len, 2422 KM_USER1); 2423 } 2424 2425 this_item_size = btrfs_item_size(left, item); 2426 if (this_item_size + sizeof(*item) + push_space > free_space) 2427 break; 2428 2429 push_items++; 2430 push_space += this_item_size + sizeof(*item); 2431 if (i == 0) 2432 break; 2433 i--; 2434 } 2435 if (left->map_token) { 2436 unmap_extent_buffer(left, left->map_token, KM_USER1); 2437 left->map_token = NULL; 2438 } 2439 2440 if (push_items == 0) 2441 goto out_unlock; 2442 2443 if (!empty && push_items == left_nritems) 2444 WARN_ON(1); 2445 2446 /* push left to right */ 2447 right_nritems = btrfs_header_nritems(right); 2448 2449 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2450 push_space -= leaf_data_end(root, left); 2451 2452 /* make room in the right data area */ 2453 data_end = leaf_data_end(root, right); 2454 memmove_extent_buffer(right, 2455 btrfs_leaf_data(right) + data_end - push_space, 2456 btrfs_leaf_data(right) + data_end, 2457 BTRFS_LEAF_DATA_SIZE(root) - data_end); 2458 2459 /* copy from the left data area */ 2460 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 2461 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2462 btrfs_leaf_data(left) + leaf_data_end(root, left), 2463 push_space); 2464 2465 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2466 btrfs_item_nr_offset(0), 2467 right_nritems * sizeof(struct btrfs_item)); 2468 2469 /* copy the items from left to right */ 2470 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2471 btrfs_item_nr_offset(left_nritems - push_items), 2472 push_items * sizeof(struct btrfs_item)); 2473 2474 /* update the item pointers */ 2475 right_nritems += push_items; 2476 btrfs_set_header_nritems(right, right_nritems); 2477 push_space = BTRFS_LEAF_DATA_SIZE(root); 2478 for (i = 0; i < right_nritems; i++) { 2479 item = btrfs_item_nr(right, i); 2480 if (!right->map_token) { 2481 map_extent_buffer(right, (unsigned long)item, 2482 sizeof(struct btrfs_item), 2483 &right->map_token, &right->kaddr, 2484 &right->map_start, &right->map_len, 2485 KM_USER1); 2486 } 2487 push_space -= btrfs_item_size(right, item); 2488 btrfs_set_item_offset(right, item, push_space); 2489 } 2490 2491 if (right->map_token) { 2492 unmap_extent_buffer(right, right->map_token, KM_USER1); 2493 right->map_token = NULL; 2494 } 2495 left_nritems -= push_items; 2496 btrfs_set_header_nritems(left, left_nritems); 2497 2498 if (left_nritems) 2499 btrfs_mark_buffer_dirty(left); 2500 btrfs_mark_buffer_dirty(right); 2501 2502 ret = btrfs_update_ref(trans, root, left, right, 0, push_items); 2503 BUG_ON(ret); 2504 2505 btrfs_item_key(right, &disk_key, 0); 2506 btrfs_set_node_key(upper, &disk_key, slot + 1); 2507 btrfs_mark_buffer_dirty(upper); 2508 2509 /* then fixup the leaf pointer in the path */ 2510 if (path->slots[0] >= left_nritems) { 2511 path->slots[0] -= left_nritems; 2512 if (btrfs_header_nritems(path->nodes[0]) == 0) 2513 clean_tree_block(trans, root, path->nodes[0]); 2514 btrfs_tree_unlock(path->nodes[0]); 2515 free_extent_buffer(path->nodes[0]); 2516 path->nodes[0] = right; 2517 path->slots[1] += 1; 2518 } else { 2519 btrfs_tree_unlock(right); 2520 free_extent_buffer(right); 2521 } 2522 return 0; 2523 2524 out_unlock: 2525 btrfs_tree_unlock(right); 2526 free_extent_buffer(right); 2527 return 1; 2528 } 2529 2530 /* 2531 * push some data in the path leaf to the left, trying to free up at 2532 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2533 */ 2534 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 2535 *root, struct btrfs_path *path, int data_size, 2536 int empty) 2537 { 2538 struct btrfs_disk_key disk_key; 2539 struct extent_buffer *right = path->nodes[0]; 2540 struct extent_buffer *left; 2541 int slot; 2542 int i; 2543 int free_space; 2544 int push_space = 0; 2545 int push_items = 0; 2546 struct btrfs_item *item; 2547 u32 old_left_nritems; 2548 u32 right_nritems; 2549 u32 nr; 2550 int ret = 0; 2551 int wret; 2552 u32 this_item_size; 2553 u32 old_left_item_size; 2554 2555 slot = path->slots[1]; 2556 if (slot == 0) 2557 return 1; 2558 if (!path->nodes[1]) 2559 return 1; 2560 2561 right_nritems = btrfs_header_nritems(right); 2562 if (right_nritems == 0) 2563 return 1; 2564 2565 btrfs_assert_tree_locked(path->nodes[1]); 2566 2567 left = read_node_slot(root, path->nodes[1], slot - 1); 2568 btrfs_tree_lock(left); 2569 btrfs_set_lock_blocking(left); 2570 2571 free_space = btrfs_leaf_free_space(root, left); 2572 if (free_space < data_size) { 2573 ret = 1; 2574 goto out; 2575 } 2576 2577 /* cow and double check */ 2578 ret = btrfs_cow_block(trans, root, left, 2579 path->nodes[1], slot - 1, &left, 0); 2580 if (ret) { 2581 /* we hit -ENOSPC, but it isn't fatal here */ 2582 ret = 1; 2583 goto out; 2584 } 2585 2586 free_space = btrfs_leaf_free_space(root, left); 2587 if (free_space < data_size) { 2588 ret = 1; 2589 goto out; 2590 } 2591 2592 if (empty) 2593 nr = right_nritems; 2594 else 2595 nr = right_nritems - 1; 2596 2597 for (i = 0; i < nr; i++) { 2598 item = btrfs_item_nr(right, i); 2599 if (!right->map_token) { 2600 map_extent_buffer(right, (unsigned long)item, 2601 sizeof(struct btrfs_item), 2602 &right->map_token, &right->kaddr, 2603 &right->map_start, &right->map_len, 2604 KM_USER1); 2605 } 2606 2607 if (!empty && push_items > 0) { 2608 if (path->slots[0] < i) 2609 break; 2610 if (path->slots[0] == i) { 2611 int space = btrfs_leaf_free_space(root, right); 2612 if (space + push_space * 2 > free_space) 2613 break; 2614 } 2615 } 2616 2617 if (path->slots[0] == i) 2618 push_space += data_size; 2619 2620 this_item_size = btrfs_item_size(right, item); 2621 if (this_item_size + sizeof(*item) + push_space > free_space) 2622 break; 2623 2624 push_items++; 2625 push_space += this_item_size + sizeof(*item); 2626 } 2627 2628 if (right->map_token) { 2629 unmap_extent_buffer(right, right->map_token, KM_USER1); 2630 right->map_token = NULL; 2631 } 2632 2633 if (push_items == 0) { 2634 ret = 1; 2635 goto out; 2636 } 2637 if (!empty && push_items == btrfs_header_nritems(right)) 2638 WARN_ON(1); 2639 2640 /* push data from right to left */ 2641 copy_extent_buffer(left, right, 2642 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2643 btrfs_item_nr_offset(0), 2644 push_items * sizeof(struct btrfs_item)); 2645 2646 push_space = BTRFS_LEAF_DATA_SIZE(root) - 2647 btrfs_item_offset_nr(right, push_items - 1); 2648 2649 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 2650 leaf_data_end(root, left) - push_space, 2651 btrfs_leaf_data(right) + 2652 btrfs_item_offset_nr(right, push_items - 1), 2653 push_space); 2654 old_left_nritems = btrfs_header_nritems(left); 2655 BUG_ON(old_left_nritems <= 0); 2656 2657 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2658 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2659 u32 ioff; 2660 2661 item = btrfs_item_nr(left, i); 2662 if (!left->map_token) { 2663 map_extent_buffer(left, (unsigned long)item, 2664 sizeof(struct btrfs_item), 2665 &left->map_token, &left->kaddr, 2666 &left->map_start, &left->map_len, 2667 KM_USER1); 2668 } 2669 2670 ioff = btrfs_item_offset(left, item); 2671 btrfs_set_item_offset(left, item, 2672 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); 2673 } 2674 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2675 if (left->map_token) { 2676 unmap_extent_buffer(left, left->map_token, KM_USER1); 2677 left->map_token = NULL; 2678 } 2679 2680 /* fixup right node */ 2681 if (push_items > right_nritems) { 2682 printk(KERN_CRIT "push items %d nr %u\n", push_items, 2683 right_nritems); 2684 WARN_ON(1); 2685 } 2686 2687 if (push_items < right_nritems) { 2688 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2689 leaf_data_end(root, right); 2690 memmove_extent_buffer(right, btrfs_leaf_data(right) + 2691 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2692 btrfs_leaf_data(right) + 2693 leaf_data_end(root, right), push_space); 2694 2695 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2696 btrfs_item_nr_offset(push_items), 2697 (btrfs_header_nritems(right) - push_items) * 2698 sizeof(struct btrfs_item)); 2699 } 2700 right_nritems -= push_items; 2701 btrfs_set_header_nritems(right, right_nritems); 2702 push_space = BTRFS_LEAF_DATA_SIZE(root); 2703 for (i = 0; i < right_nritems; i++) { 2704 item = btrfs_item_nr(right, i); 2705 2706 if (!right->map_token) { 2707 map_extent_buffer(right, (unsigned long)item, 2708 sizeof(struct btrfs_item), 2709 &right->map_token, &right->kaddr, 2710 &right->map_start, &right->map_len, 2711 KM_USER1); 2712 } 2713 2714 push_space = push_space - btrfs_item_size(right, item); 2715 btrfs_set_item_offset(right, item, push_space); 2716 } 2717 if (right->map_token) { 2718 unmap_extent_buffer(right, right->map_token, KM_USER1); 2719 right->map_token = NULL; 2720 } 2721 2722 btrfs_mark_buffer_dirty(left); 2723 if (right_nritems) 2724 btrfs_mark_buffer_dirty(right); 2725 2726 ret = btrfs_update_ref(trans, root, right, left, 2727 old_left_nritems, push_items); 2728 BUG_ON(ret); 2729 2730 btrfs_item_key(right, &disk_key, 0); 2731 wret = fixup_low_keys(trans, root, path, &disk_key, 1); 2732 if (wret) 2733 ret = wret; 2734 2735 /* then fixup the leaf pointer in the path */ 2736 if (path->slots[0] < push_items) { 2737 path->slots[0] += old_left_nritems; 2738 if (btrfs_header_nritems(path->nodes[0]) == 0) 2739 clean_tree_block(trans, root, path->nodes[0]); 2740 btrfs_tree_unlock(path->nodes[0]); 2741 free_extent_buffer(path->nodes[0]); 2742 path->nodes[0] = left; 2743 path->slots[1] -= 1; 2744 } else { 2745 btrfs_tree_unlock(left); 2746 free_extent_buffer(left); 2747 path->slots[0] -= push_items; 2748 } 2749 BUG_ON(path->slots[0] < 0); 2750 return ret; 2751 out: 2752 btrfs_tree_unlock(left); 2753 free_extent_buffer(left); 2754 return ret; 2755 } 2756 2757 /* 2758 * split the path's leaf in two, making sure there is at least data_size 2759 * available for the resulting leaf level of the path. 2760 * 2761 * returns 0 if all went well and < 0 on failure. 2762 */ 2763 static noinline int split_leaf(struct btrfs_trans_handle *trans, 2764 struct btrfs_root *root, 2765 struct btrfs_key *ins_key, 2766 struct btrfs_path *path, int data_size, 2767 int extend) 2768 { 2769 struct extent_buffer *l; 2770 u32 nritems; 2771 int mid; 2772 int slot; 2773 struct extent_buffer *right; 2774 int data_copy_size; 2775 int rt_data_off; 2776 int i; 2777 int ret = 0; 2778 int wret; 2779 int double_split; 2780 int num_doubles = 0; 2781 struct btrfs_disk_key disk_key; 2782 2783 /* first try to make some room by pushing left and right */ 2784 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) { 2785 wret = push_leaf_right(trans, root, path, data_size, 0); 2786 if (wret < 0) 2787 return wret; 2788 if (wret) { 2789 wret = push_leaf_left(trans, root, path, data_size, 0); 2790 if (wret < 0) 2791 return wret; 2792 } 2793 l = path->nodes[0]; 2794 2795 /* did the pushes work? */ 2796 if (btrfs_leaf_free_space(root, l) >= data_size) 2797 return 0; 2798 } 2799 2800 if (!path->nodes[1]) { 2801 ret = insert_new_root(trans, root, path, 1); 2802 if (ret) 2803 return ret; 2804 } 2805 again: 2806 double_split = 0; 2807 l = path->nodes[0]; 2808 slot = path->slots[0]; 2809 nritems = btrfs_header_nritems(l); 2810 mid = (nritems + 1) / 2; 2811 2812 right = btrfs_alloc_free_block(trans, root, root->leafsize, 2813 path->nodes[1]->start, 2814 root->root_key.objectid, 2815 trans->transid, 0, l->start, 0); 2816 if (IS_ERR(right)) { 2817 BUG_ON(1); 2818 return PTR_ERR(right); 2819 } 2820 2821 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 2822 btrfs_set_header_bytenr(right, right->start); 2823 btrfs_set_header_generation(right, trans->transid); 2824 btrfs_set_header_owner(right, root->root_key.objectid); 2825 btrfs_set_header_level(right, 0); 2826 write_extent_buffer(right, root->fs_info->fsid, 2827 (unsigned long)btrfs_header_fsid(right), 2828 BTRFS_FSID_SIZE); 2829 2830 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 2831 (unsigned long)btrfs_header_chunk_tree_uuid(right), 2832 BTRFS_UUID_SIZE); 2833 if (mid <= slot) { 2834 if (nritems == 1 || 2835 leaf_space_used(l, mid, nritems - mid) + data_size > 2836 BTRFS_LEAF_DATA_SIZE(root)) { 2837 if (slot >= nritems) { 2838 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2839 btrfs_set_header_nritems(right, 0); 2840 wret = insert_ptr(trans, root, path, 2841 &disk_key, right->start, 2842 path->slots[1] + 1, 1); 2843 if (wret) 2844 ret = wret; 2845 2846 btrfs_tree_unlock(path->nodes[0]); 2847 free_extent_buffer(path->nodes[0]); 2848 path->nodes[0] = right; 2849 path->slots[0] = 0; 2850 path->slots[1] += 1; 2851 btrfs_mark_buffer_dirty(right); 2852 return ret; 2853 } 2854 mid = slot; 2855 if (mid != nritems && 2856 leaf_space_used(l, mid, nritems - mid) + 2857 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2858 double_split = 1; 2859 } 2860 } 2861 } else { 2862 if (leaf_space_used(l, 0, mid) + data_size > 2863 BTRFS_LEAF_DATA_SIZE(root)) { 2864 if (!extend && data_size && slot == 0) { 2865 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2866 btrfs_set_header_nritems(right, 0); 2867 wret = insert_ptr(trans, root, path, 2868 &disk_key, 2869 right->start, 2870 path->slots[1], 1); 2871 if (wret) 2872 ret = wret; 2873 btrfs_tree_unlock(path->nodes[0]); 2874 free_extent_buffer(path->nodes[0]); 2875 path->nodes[0] = right; 2876 path->slots[0] = 0; 2877 if (path->slots[1] == 0) { 2878 wret = fixup_low_keys(trans, root, 2879 path, &disk_key, 1); 2880 if (wret) 2881 ret = wret; 2882 } 2883 btrfs_mark_buffer_dirty(right); 2884 return ret; 2885 } else if ((extend || !data_size) && slot == 0) { 2886 mid = 1; 2887 } else { 2888 mid = slot; 2889 if (mid != nritems && 2890 leaf_space_used(l, mid, nritems - mid) + 2891 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2892 double_split = 1; 2893 } 2894 } 2895 } 2896 } 2897 nritems = nritems - mid; 2898 btrfs_set_header_nritems(right, nritems); 2899 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 2900 2901 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 2902 btrfs_item_nr_offset(mid), 2903 nritems * sizeof(struct btrfs_item)); 2904 2905 copy_extent_buffer(right, l, 2906 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 2907 data_copy_size, btrfs_leaf_data(l) + 2908 leaf_data_end(root, l), data_copy_size); 2909 2910 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 2911 btrfs_item_end_nr(l, mid); 2912 2913 for (i = 0; i < nritems; i++) { 2914 struct btrfs_item *item = btrfs_item_nr(right, i); 2915 u32 ioff; 2916 2917 if (!right->map_token) { 2918 map_extent_buffer(right, (unsigned long)item, 2919 sizeof(struct btrfs_item), 2920 &right->map_token, &right->kaddr, 2921 &right->map_start, &right->map_len, 2922 KM_USER1); 2923 } 2924 2925 ioff = btrfs_item_offset(right, item); 2926 btrfs_set_item_offset(right, item, ioff + rt_data_off); 2927 } 2928 2929 if (right->map_token) { 2930 unmap_extent_buffer(right, right->map_token, KM_USER1); 2931 right->map_token = NULL; 2932 } 2933 2934 btrfs_set_header_nritems(l, mid); 2935 ret = 0; 2936 btrfs_item_key(right, &disk_key, 0); 2937 wret = insert_ptr(trans, root, path, &disk_key, right->start, 2938 path->slots[1] + 1, 1); 2939 if (wret) 2940 ret = wret; 2941 2942 btrfs_mark_buffer_dirty(right); 2943 btrfs_mark_buffer_dirty(l); 2944 BUG_ON(path->slots[0] != slot); 2945 2946 ret = btrfs_update_ref(trans, root, l, right, 0, nritems); 2947 BUG_ON(ret); 2948 2949 if (mid <= slot) { 2950 btrfs_tree_unlock(path->nodes[0]); 2951 free_extent_buffer(path->nodes[0]); 2952 path->nodes[0] = right; 2953 path->slots[0] -= mid; 2954 path->slots[1] += 1; 2955 } else { 2956 btrfs_tree_unlock(right); 2957 free_extent_buffer(right); 2958 } 2959 2960 BUG_ON(path->slots[0] < 0); 2961 2962 if (double_split) { 2963 BUG_ON(num_doubles != 0); 2964 num_doubles++; 2965 goto again; 2966 } 2967 return ret; 2968 } 2969 2970 /* 2971 * This function splits a single item into two items, 2972 * giving 'new_key' to the new item and splitting the 2973 * old one at split_offset (from the start of the item). 2974 * 2975 * The path may be released by this operation. After 2976 * the split, the path is pointing to the old item. The 2977 * new item is going to be in the same node as the old one. 2978 * 2979 * Note, the item being split must be smaller enough to live alone on 2980 * a tree block with room for one extra struct btrfs_item 2981 * 2982 * This allows us to split the item in place, keeping a lock on the 2983 * leaf the entire time. 2984 */ 2985 int btrfs_split_item(struct btrfs_trans_handle *trans, 2986 struct btrfs_root *root, 2987 struct btrfs_path *path, 2988 struct btrfs_key *new_key, 2989 unsigned long split_offset) 2990 { 2991 u32 item_size; 2992 struct extent_buffer *leaf; 2993 struct btrfs_key orig_key; 2994 struct btrfs_item *item; 2995 struct btrfs_item *new_item; 2996 int ret = 0; 2997 int slot; 2998 u32 nritems; 2999 u32 orig_offset; 3000 struct btrfs_disk_key disk_key; 3001 char *buf; 3002 3003 leaf = path->nodes[0]; 3004 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]); 3005 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item)) 3006 goto split; 3007 3008 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3009 btrfs_release_path(root, path); 3010 3011 path->search_for_split = 1; 3012 path->keep_locks = 1; 3013 3014 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1); 3015 path->search_for_split = 0; 3016 3017 /* if our item isn't there or got smaller, return now */ 3018 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0], 3019 path->slots[0])) { 3020 path->keep_locks = 0; 3021 return -EAGAIN; 3022 } 3023 3024 ret = split_leaf(trans, root, &orig_key, path, 3025 sizeof(struct btrfs_item), 1); 3026 path->keep_locks = 0; 3027 BUG_ON(ret); 3028 3029 /* 3030 * make sure any changes to the path from split_leaf leave it 3031 * in a blocking state 3032 */ 3033 btrfs_set_path_blocking(path); 3034 3035 leaf = path->nodes[0]; 3036 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3037 3038 split: 3039 item = btrfs_item_nr(leaf, path->slots[0]); 3040 orig_offset = btrfs_item_offset(leaf, item); 3041 item_size = btrfs_item_size(leaf, item); 3042 3043 3044 buf = kmalloc(item_size, GFP_NOFS); 3045 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3046 path->slots[0]), item_size); 3047 slot = path->slots[0] + 1; 3048 leaf = path->nodes[0]; 3049 3050 nritems = btrfs_header_nritems(leaf); 3051 3052 if (slot != nritems) { 3053 /* shift the items */ 3054 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3055 btrfs_item_nr_offset(slot), 3056 (nritems - slot) * sizeof(struct btrfs_item)); 3057 3058 } 3059 3060 btrfs_cpu_key_to_disk(&disk_key, new_key); 3061 btrfs_set_item_key(leaf, &disk_key, slot); 3062 3063 new_item = btrfs_item_nr(leaf, slot); 3064 3065 btrfs_set_item_offset(leaf, new_item, orig_offset); 3066 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3067 3068 btrfs_set_item_offset(leaf, item, 3069 orig_offset + item_size - split_offset); 3070 btrfs_set_item_size(leaf, item, split_offset); 3071 3072 btrfs_set_header_nritems(leaf, nritems + 1); 3073 3074 /* write the data for the start of the original item */ 3075 write_extent_buffer(leaf, buf, 3076 btrfs_item_ptr_offset(leaf, path->slots[0]), 3077 split_offset); 3078 3079 /* write the data for the new item */ 3080 write_extent_buffer(leaf, buf + split_offset, 3081 btrfs_item_ptr_offset(leaf, slot), 3082 item_size - split_offset); 3083 btrfs_mark_buffer_dirty(leaf); 3084 3085 ret = 0; 3086 if (btrfs_leaf_free_space(root, leaf) < 0) { 3087 btrfs_print_leaf(root, leaf); 3088 BUG(); 3089 } 3090 kfree(buf); 3091 return ret; 3092 } 3093 3094 /* 3095 * make the item pointed to by the path smaller. new_size indicates 3096 * how small to make it, and from_end tells us if we just chop bytes 3097 * off the end of the item or if we shift the item to chop bytes off 3098 * the front. 3099 */ 3100 int btrfs_truncate_item(struct btrfs_trans_handle *trans, 3101 struct btrfs_root *root, 3102 struct btrfs_path *path, 3103 u32 new_size, int from_end) 3104 { 3105 int ret = 0; 3106 int slot; 3107 int slot_orig; 3108 struct extent_buffer *leaf; 3109 struct btrfs_item *item; 3110 u32 nritems; 3111 unsigned int data_end; 3112 unsigned int old_data_start; 3113 unsigned int old_size; 3114 unsigned int size_diff; 3115 int i; 3116 3117 slot_orig = path->slots[0]; 3118 leaf = path->nodes[0]; 3119 slot = path->slots[0]; 3120 3121 old_size = btrfs_item_size_nr(leaf, slot); 3122 if (old_size == new_size) 3123 return 0; 3124 3125 nritems = btrfs_header_nritems(leaf); 3126 data_end = leaf_data_end(root, leaf); 3127 3128 old_data_start = btrfs_item_offset_nr(leaf, slot); 3129 3130 size_diff = old_size - new_size; 3131 3132 BUG_ON(slot < 0); 3133 BUG_ON(slot >= nritems); 3134 3135 /* 3136 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3137 */ 3138 /* first correct the data pointers */ 3139 for (i = slot; i < nritems; i++) { 3140 u32 ioff; 3141 item = btrfs_item_nr(leaf, i); 3142 3143 if (!leaf->map_token) { 3144 map_extent_buffer(leaf, (unsigned long)item, 3145 sizeof(struct btrfs_item), 3146 &leaf->map_token, &leaf->kaddr, 3147 &leaf->map_start, &leaf->map_len, 3148 KM_USER1); 3149 } 3150 3151 ioff = btrfs_item_offset(leaf, item); 3152 btrfs_set_item_offset(leaf, item, ioff + size_diff); 3153 } 3154 3155 if (leaf->map_token) { 3156 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3157 leaf->map_token = NULL; 3158 } 3159 3160 /* shift the data */ 3161 if (from_end) { 3162 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3163 data_end + size_diff, btrfs_leaf_data(leaf) + 3164 data_end, old_data_start + new_size - data_end); 3165 } else { 3166 struct btrfs_disk_key disk_key; 3167 u64 offset; 3168 3169 btrfs_item_key(leaf, &disk_key, slot); 3170 3171 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3172 unsigned long ptr; 3173 struct btrfs_file_extent_item *fi; 3174 3175 fi = btrfs_item_ptr(leaf, slot, 3176 struct btrfs_file_extent_item); 3177 fi = (struct btrfs_file_extent_item *)( 3178 (unsigned long)fi - size_diff); 3179 3180 if (btrfs_file_extent_type(leaf, fi) == 3181 BTRFS_FILE_EXTENT_INLINE) { 3182 ptr = btrfs_item_ptr_offset(leaf, slot); 3183 memmove_extent_buffer(leaf, ptr, 3184 (unsigned long)fi, 3185 offsetof(struct btrfs_file_extent_item, 3186 disk_bytenr)); 3187 } 3188 } 3189 3190 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3191 data_end + size_diff, btrfs_leaf_data(leaf) + 3192 data_end, old_data_start - data_end); 3193 3194 offset = btrfs_disk_key_offset(&disk_key); 3195 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3196 btrfs_set_item_key(leaf, &disk_key, slot); 3197 if (slot == 0) 3198 fixup_low_keys(trans, root, path, &disk_key, 1); 3199 } 3200 3201 item = btrfs_item_nr(leaf, slot); 3202 btrfs_set_item_size(leaf, item, new_size); 3203 btrfs_mark_buffer_dirty(leaf); 3204 3205 ret = 0; 3206 if (btrfs_leaf_free_space(root, leaf) < 0) { 3207 btrfs_print_leaf(root, leaf); 3208 BUG(); 3209 } 3210 return ret; 3211 } 3212 3213 /* 3214 * make the item pointed to by the path bigger, data_size is the new size. 3215 */ 3216 int btrfs_extend_item(struct btrfs_trans_handle *trans, 3217 struct btrfs_root *root, struct btrfs_path *path, 3218 u32 data_size) 3219 { 3220 int ret = 0; 3221 int slot; 3222 int slot_orig; 3223 struct extent_buffer *leaf; 3224 struct btrfs_item *item; 3225 u32 nritems; 3226 unsigned int data_end; 3227 unsigned int old_data; 3228 unsigned int old_size; 3229 int i; 3230 3231 slot_orig = path->slots[0]; 3232 leaf = path->nodes[0]; 3233 3234 nritems = btrfs_header_nritems(leaf); 3235 data_end = leaf_data_end(root, leaf); 3236 3237 if (btrfs_leaf_free_space(root, leaf) < data_size) { 3238 btrfs_print_leaf(root, leaf); 3239 BUG(); 3240 } 3241 slot = path->slots[0]; 3242 old_data = btrfs_item_end_nr(leaf, slot); 3243 3244 BUG_ON(slot < 0); 3245 if (slot >= nritems) { 3246 btrfs_print_leaf(root, leaf); 3247 printk(KERN_CRIT "slot %d too large, nritems %d\n", 3248 slot, nritems); 3249 BUG_ON(1); 3250 } 3251 3252 /* 3253 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3254 */ 3255 /* first correct the data pointers */ 3256 for (i = slot; i < nritems; i++) { 3257 u32 ioff; 3258 item = btrfs_item_nr(leaf, i); 3259 3260 if (!leaf->map_token) { 3261 map_extent_buffer(leaf, (unsigned long)item, 3262 sizeof(struct btrfs_item), 3263 &leaf->map_token, &leaf->kaddr, 3264 &leaf->map_start, &leaf->map_len, 3265 KM_USER1); 3266 } 3267 ioff = btrfs_item_offset(leaf, item); 3268 btrfs_set_item_offset(leaf, item, ioff - data_size); 3269 } 3270 3271 if (leaf->map_token) { 3272 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3273 leaf->map_token = NULL; 3274 } 3275 3276 /* shift the data */ 3277 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3278 data_end - data_size, btrfs_leaf_data(leaf) + 3279 data_end, old_data - data_end); 3280 3281 data_end = old_data; 3282 old_size = btrfs_item_size_nr(leaf, slot); 3283 item = btrfs_item_nr(leaf, slot); 3284 btrfs_set_item_size(leaf, item, old_size + data_size); 3285 btrfs_mark_buffer_dirty(leaf); 3286 3287 ret = 0; 3288 if (btrfs_leaf_free_space(root, leaf) < 0) { 3289 btrfs_print_leaf(root, leaf); 3290 BUG(); 3291 } 3292 return ret; 3293 } 3294 3295 /* 3296 * Given a key and some data, insert items into the tree. 3297 * This does all the path init required, making room in the tree if needed. 3298 * Returns the number of keys that were inserted. 3299 */ 3300 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 3301 struct btrfs_root *root, 3302 struct btrfs_path *path, 3303 struct btrfs_key *cpu_key, u32 *data_size, 3304 int nr) 3305 { 3306 struct extent_buffer *leaf; 3307 struct btrfs_item *item; 3308 int ret = 0; 3309 int slot; 3310 int i; 3311 u32 nritems; 3312 u32 total_data = 0; 3313 u32 total_size = 0; 3314 unsigned int data_end; 3315 struct btrfs_disk_key disk_key; 3316 struct btrfs_key found_key; 3317 3318 for (i = 0; i < nr; i++) { 3319 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 3320 BTRFS_LEAF_DATA_SIZE(root)) { 3321 break; 3322 nr = i; 3323 } 3324 total_data += data_size[i]; 3325 total_size += data_size[i] + sizeof(struct btrfs_item); 3326 } 3327 BUG_ON(nr == 0); 3328 3329 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3330 if (ret == 0) 3331 return -EEXIST; 3332 if (ret < 0) 3333 goto out; 3334 3335 leaf = path->nodes[0]; 3336 3337 nritems = btrfs_header_nritems(leaf); 3338 data_end = leaf_data_end(root, leaf); 3339 3340 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3341 for (i = nr; i >= 0; i--) { 3342 total_data -= data_size[i]; 3343 total_size -= data_size[i] + sizeof(struct btrfs_item); 3344 if (total_size < btrfs_leaf_free_space(root, leaf)) 3345 break; 3346 } 3347 nr = i; 3348 } 3349 3350 slot = path->slots[0]; 3351 BUG_ON(slot < 0); 3352 3353 if (slot != nritems) { 3354 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3355 3356 item = btrfs_item_nr(leaf, slot); 3357 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3358 3359 /* figure out how many keys we can insert in here */ 3360 total_data = data_size[0]; 3361 for (i = 1; i < nr; i++) { 3362 if (comp_cpu_keys(&found_key, cpu_key + i) <= 0) 3363 break; 3364 total_data += data_size[i]; 3365 } 3366 nr = i; 3367 3368 if (old_data < data_end) { 3369 btrfs_print_leaf(root, leaf); 3370 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3371 slot, old_data, data_end); 3372 BUG_ON(1); 3373 } 3374 /* 3375 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3376 */ 3377 /* first correct the data pointers */ 3378 WARN_ON(leaf->map_token); 3379 for (i = slot; i < nritems; i++) { 3380 u32 ioff; 3381 3382 item = btrfs_item_nr(leaf, i); 3383 if (!leaf->map_token) { 3384 map_extent_buffer(leaf, (unsigned long)item, 3385 sizeof(struct btrfs_item), 3386 &leaf->map_token, &leaf->kaddr, 3387 &leaf->map_start, &leaf->map_len, 3388 KM_USER1); 3389 } 3390 3391 ioff = btrfs_item_offset(leaf, item); 3392 btrfs_set_item_offset(leaf, item, ioff - total_data); 3393 } 3394 if (leaf->map_token) { 3395 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3396 leaf->map_token = NULL; 3397 } 3398 3399 /* shift the items */ 3400 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3401 btrfs_item_nr_offset(slot), 3402 (nritems - slot) * sizeof(struct btrfs_item)); 3403 3404 /* shift the data */ 3405 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3406 data_end - total_data, btrfs_leaf_data(leaf) + 3407 data_end, old_data - data_end); 3408 data_end = old_data; 3409 } else { 3410 /* 3411 * this sucks but it has to be done, if we are inserting at 3412 * the end of the leaf only insert 1 of the items, since we 3413 * have no way of knowing whats on the next leaf and we'd have 3414 * to drop our current locks to figure it out 3415 */ 3416 nr = 1; 3417 } 3418 3419 /* setup the item for the new data */ 3420 for (i = 0; i < nr; i++) { 3421 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3422 btrfs_set_item_key(leaf, &disk_key, slot + i); 3423 item = btrfs_item_nr(leaf, slot + i); 3424 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3425 data_end -= data_size[i]; 3426 btrfs_set_item_size(leaf, item, data_size[i]); 3427 } 3428 btrfs_set_header_nritems(leaf, nritems + nr); 3429 btrfs_mark_buffer_dirty(leaf); 3430 3431 ret = 0; 3432 if (slot == 0) { 3433 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3434 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3435 } 3436 3437 if (btrfs_leaf_free_space(root, leaf) < 0) { 3438 btrfs_print_leaf(root, leaf); 3439 BUG(); 3440 } 3441 out: 3442 if (!ret) 3443 ret = nr; 3444 return ret; 3445 } 3446 3447 /* 3448 * Given a key and some data, insert items into the tree. 3449 * This does all the path init required, making room in the tree if needed. 3450 */ 3451 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3452 struct btrfs_root *root, 3453 struct btrfs_path *path, 3454 struct btrfs_key *cpu_key, u32 *data_size, 3455 int nr) 3456 { 3457 struct extent_buffer *leaf; 3458 struct btrfs_item *item; 3459 int ret = 0; 3460 int slot; 3461 int slot_orig; 3462 int i; 3463 u32 nritems; 3464 u32 total_size = 0; 3465 u32 total_data = 0; 3466 unsigned int data_end; 3467 struct btrfs_disk_key disk_key; 3468 3469 for (i = 0; i < nr; i++) 3470 total_data += data_size[i]; 3471 3472 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3473 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3474 if (ret == 0) 3475 return -EEXIST; 3476 if (ret < 0) 3477 goto out; 3478 3479 slot_orig = path->slots[0]; 3480 leaf = path->nodes[0]; 3481 3482 nritems = btrfs_header_nritems(leaf); 3483 data_end = leaf_data_end(root, leaf); 3484 3485 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3486 btrfs_print_leaf(root, leaf); 3487 printk(KERN_CRIT "not enough freespace need %u have %d\n", 3488 total_size, btrfs_leaf_free_space(root, leaf)); 3489 BUG(); 3490 } 3491 3492 slot = path->slots[0]; 3493 BUG_ON(slot < 0); 3494 3495 if (slot != nritems) { 3496 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3497 3498 if (old_data < data_end) { 3499 btrfs_print_leaf(root, leaf); 3500 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3501 slot, old_data, data_end); 3502 BUG_ON(1); 3503 } 3504 /* 3505 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3506 */ 3507 /* first correct the data pointers */ 3508 WARN_ON(leaf->map_token); 3509 for (i = slot; i < nritems; i++) { 3510 u32 ioff; 3511 3512 item = btrfs_item_nr(leaf, i); 3513 if (!leaf->map_token) { 3514 map_extent_buffer(leaf, (unsigned long)item, 3515 sizeof(struct btrfs_item), 3516 &leaf->map_token, &leaf->kaddr, 3517 &leaf->map_start, &leaf->map_len, 3518 KM_USER1); 3519 } 3520 3521 ioff = btrfs_item_offset(leaf, item); 3522 btrfs_set_item_offset(leaf, item, ioff - total_data); 3523 } 3524 if (leaf->map_token) { 3525 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3526 leaf->map_token = NULL; 3527 } 3528 3529 /* shift the items */ 3530 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3531 btrfs_item_nr_offset(slot), 3532 (nritems - slot) * sizeof(struct btrfs_item)); 3533 3534 /* shift the data */ 3535 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3536 data_end - total_data, btrfs_leaf_data(leaf) + 3537 data_end, old_data - data_end); 3538 data_end = old_data; 3539 } 3540 3541 /* setup the item for the new data */ 3542 for (i = 0; i < nr; i++) { 3543 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3544 btrfs_set_item_key(leaf, &disk_key, slot + i); 3545 item = btrfs_item_nr(leaf, slot + i); 3546 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3547 data_end -= data_size[i]; 3548 btrfs_set_item_size(leaf, item, data_size[i]); 3549 } 3550 btrfs_set_header_nritems(leaf, nritems + nr); 3551 btrfs_mark_buffer_dirty(leaf); 3552 3553 ret = 0; 3554 if (slot == 0) { 3555 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3556 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3557 } 3558 3559 if (btrfs_leaf_free_space(root, leaf) < 0) { 3560 btrfs_print_leaf(root, leaf); 3561 BUG(); 3562 } 3563 out: 3564 btrfs_unlock_up_safe(path, 1); 3565 return ret; 3566 } 3567 3568 /* 3569 * Given a key and some data, insert an item into the tree. 3570 * This does all the path init required, making room in the tree if needed. 3571 */ 3572 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3573 *root, struct btrfs_key *cpu_key, void *data, u32 3574 data_size) 3575 { 3576 int ret = 0; 3577 struct btrfs_path *path; 3578 struct extent_buffer *leaf; 3579 unsigned long ptr; 3580 3581 path = btrfs_alloc_path(); 3582 BUG_ON(!path); 3583 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3584 if (!ret) { 3585 leaf = path->nodes[0]; 3586 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3587 write_extent_buffer(leaf, data, ptr, data_size); 3588 btrfs_mark_buffer_dirty(leaf); 3589 } 3590 btrfs_free_path(path); 3591 return ret; 3592 } 3593 3594 /* 3595 * delete the pointer from a given node. 3596 * 3597 * the tree should have been previously balanced so the deletion does not 3598 * empty a node. 3599 */ 3600 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3601 struct btrfs_path *path, int level, int slot) 3602 { 3603 struct extent_buffer *parent = path->nodes[level]; 3604 u32 nritems; 3605 int ret = 0; 3606 int wret; 3607 3608 nritems = btrfs_header_nritems(parent); 3609 if (slot != nritems - 1) { 3610 memmove_extent_buffer(parent, 3611 btrfs_node_key_ptr_offset(slot), 3612 btrfs_node_key_ptr_offset(slot + 1), 3613 sizeof(struct btrfs_key_ptr) * 3614 (nritems - slot - 1)); 3615 } 3616 nritems--; 3617 btrfs_set_header_nritems(parent, nritems); 3618 if (nritems == 0 && parent == root->node) { 3619 BUG_ON(btrfs_header_level(root->node) != 1); 3620 /* just turn the root into a leaf and break */ 3621 btrfs_set_header_level(root->node, 0); 3622 } else if (slot == 0) { 3623 struct btrfs_disk_key disk_key; 3624 3625 btrfs_node_key(parent, &disk_key, 0); 3626 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); 3627 if (wret) 3628 ret = wret; 3629 } 3630 btrfs_mark_buffer_dirty(parent); 3631 return ret; 3632 } 3633 3634 /* 3635 * a helper function to delete the leaf pointed to by path->slots[1] and 3636 * path->nodes[1]. bytenr is the node block pointer, but since the callers 3637 * already know it, it is faster to have them pass it down than to 3638 * read it out of the node again. 3639 * 3640 * This deletes the pointer in path->nodes[1] and frees the leaf 3641 * block extent. zero is returned if it all worked out, < 0 otherwise. 3642 * 3643 * The path must have already been setup for deleting the leaf, including 3644 * all the proper balancing. path->nodes[1] must be locked. 3645 */ 3646 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 3647 struct btrfs_root *root, 3648 struct btrfs_path *path, u64 bytenr) 3649 { 3650 int ret; 3651 u64 root_gen = btrfs_header_generation(path->nodes[1]); 3652 u64 parent_start = path->nodes[1]->start; 3653 u64 parent_owner = btrfs_header_owner(path->nodes[1]); 3654 3655 ret = del_ptr(trans, root, path, 1, path->slots[1]); 3656 if (ret) 3657 return ret; 3658 3659 /* 3660 * btrfs_free_extent is expensive, we want to make sure we 3661 * aren't holding any locks when we call it 3662 */ 3663 btrfs_unlock_up_safe(path, 0); 3664 3665 ret = btrfs_free_extent(trans, root, bytenr, 3666 btrfs_level_size(root, 0), 3667 parent_start, parent_owner, 3668 root_gen, 0, 1); 3669 return ret; 3670 } 3671 /* 3672 * delete the item at the leaf level in path. If that empties 3673 * the leaf, remove it from the tree 3674 */ 3675 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3676 struct btrfs_path *path, int slot, int nr) 3677 { 3678 struct extent_buffer *leaf; 3679 struct btrfs_item *item; 3680 int last_off; 3681 int dsize = 0; 3682 int ret = 0; 3683 int wret; 3684 int i; 3685 u32 nritems; 3686 3687 leaf = path->nodes[0]; 3688 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 3689 3690 for (i = 0; i < nr; i++) 3691 dsize += btrfs_item_size_nr(leaf, slot + i); 3692 3693 nritems = btrfs_header_nritems(leaf); 3694 3695 if (slot + nr != nritems) { 3696 int data_end = leaf_data_end(root, leaf); 3697 3698 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3699 data_end + dsize, 3700 btrfs_leaf_data(leaf) + data_end, 3701 last_off - data_end); 3702 3703 for (i = slot + nr; i < nritems; i++) { 3704 u32 ioff; 3705 3706 item = btrfs_item_nr(leaf, i); 3707 if (!leaf->map_token) { 3708 map_extent_buffer(leaf, (unsigned long)item, 3709 sizeof(struct btrfs_item), 3710 &leaf->map_token, &leaf->kaddr, 3711 &leaf->map_start, &leaf->map_len, 3712 KM_USER1); 3713 } 3714 ioff = btrfs_item_offset(leaf, item); 3715 btrfs_set_item_offset(leaf, item, ioff + dsize); 3716 } 3717 3718 if (leaf->map_token) { 3719 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3720 leaf->map_token = NULL; 3721 } 3722 3723 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 3724 btrfs_item_nr_offset(slot + nr), 3725 sizeof(struct btrfs_item) * 3726 (nritems - slot - nr)); 3727 } 3728 btrfs_set_header_nritems(leaf, nritems - nr); 3729 nritems -= nr; 3730 3731 /* delete the leaf if we've emptied it */ 3732 if (nritems == 0) { 3733 if (leaf == root->node) { 3734 btrfs_set_header_level(leaf, 0); 3735 } else { 3736 ret = btrfs_del_leaf(trans, root, path, leaf->start); 3737 BUG_ON(ret); 3738 } 3739 } else { 3740 int used = leaf_space_used(leaf, 0, nritems); 3741 if (slot == 0) { 3742 struct btrfs_disk_key disk_key; 3743 3744 btrfs_item_key(leaf, &disk_key, 0); 3745 wret = fixup_low_keys(trans, root, path, 3746 &disk_key, 1); 3747 if (wret) 3748 ret = wret; 3749 } 3750 3751 /* delete the leaf if it is mostly empty */ 3752 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) { 3753 /* push_leaf_left fixes the path. 3754 * make sure the path still points to our leaf 3755 * for possible call to del_ptr below 3756 */ 3757 slot = path->slots[1]; 3758 extent_buffer_get(leaf); 3759 3760 wret = push_leaf_left(trans, root, path, 1, 1); 3761 if (wret < 0 && wret != -ENOSPC) 3762 ret = wret; 3763 3764 if (path->nodes[0] == leaf && 3765 btrfs_header_nritems(leaf)) { 3766 wret = push_leaf_right(trans, root, path, 1, 1); 3767 if (wret < 0 && wret != -ENOSPC) 3768 ret = wret; 3769 } 3770 3771 if (btrfs_header_nritems(leaf) == 0) { 3772 path->slots[1] = slot; 3773 ret = btrfs_del_leaf(trans, root, path, 3774 leaf->start); 3775 BUG_ON(ret); 3776 free_extent_buffer(leaf); 3777 } else { 3778 /* if we're still in the path, make sure 3779 * we're dirty. Otherwise, one of the 3780 * push_leaf functions must have already 3781 * dirtied this buffer 3782 */ 3783 if (path->nodes[0] == leaf) 3784 btrfs_mark_buffer_dirty(leaf); 3785 free_extent_buffer(leaf); 3786 } 3787 } else { 3788 btrfs_mark_buffer_dirty(leaf); 3789 } 3790 } 3791 return ret; 3792 } 3793 3794 /* 3795 * search the tree again to find a leaf with lesser keys 3796 * returns 0 if it found something or 1 if there are no lesser leaves. 3797 * returns < 0 on io errors. 3798 * 3799 * This may release the path, and so you may lose any locks held at the 3800 * time you call it. 3801 */ 3802 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 3803 { 3804 struct btrfs_key key; 3805 struct btrfs_disk_key found_key; 3806 int ret; 3807 3808 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 3809 3810 if (key.offset > 0) 3811 key.offset--; 3812 else if (key.type > 0) 3813 key.type--; 3814 else if (key.objectid > 0) 3815 key.objectid--; 3816 else 3817 return 1; 3818 3819 btrfs_release_path(root, path); 3820 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3821 if (ret < 0) 3822 return ret; 3823 btrfs_item_key(path->nodes[0], &found_key, 0); 3824 ret = comp_keys(&found_key, &key); 3825 if (ret < 0) 3826 return 0; 3827 return 1; 3828 } 3829 3830 /* 3831 * A helper function to walk down the tree starting at min_key, and looking 3832 * for nodes or leaves that are either in cache or have a minimum 3833 * transaction id. This is used by the btree defrag code, and tree logging 3834 * 3835 * This does not cow, but it does stuff the starting key it finds back 3836 * into min_key, so you can call btrfs_search_slot with cow=1 on the 3837 * key and get a writable path. 3838 * 3839 * This does lock as it descends, and path->keep_locks should be set 3840 * to 1 by the caller. 3841 * 3842 * This honors path->lowest_level to prevent descent past a given level 3843 * of the tree. 3844 * 3845 * min_trans indicates the oldest transaction that you are interested 3846 * in walking through. Any nodes or leaves older than min_trans are 3847 * skipped over (without reading them). 3848 * 3849 * returns zero if something useful was found, < 0 on error and 1 if there 3850 * was nothing in the tree that matched the search criteria. 3851 */ 3852 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3853 struct btrfs_key *max_key, 3854 struct btrfs_path *path, int cache_only, 3855 u64 min_trans) 3856 { 3857 struct extent_buffer *cur; 3858 struct btrfs_key found_key; 3859 int slot; 3860 int sret; 3861 u32 nritems; 3862 int level; 3863 int ret = 1; 3864 3865 WARN_ON(!path->keep_locks); 3866 again: 3867 cur = btrfs_lock_root_node(root); 3868 level = btrfs_header_level(cur); 3869 WARN_ON(path->nodes[level]); 3870 path->nodes[level] = cur; 3871 path->locks[level] = 1; 3872 3873 if (btrfs_header_generation(cur) < min_trans) { 3874 ret = 1; 3875 goto out; 3876 } 3877 while (1) { 3878 nritems = btrfs_header_nritems(cur); 3879 level = btrfs_header_level(cur); 3880 sret = bin_search(cur, min_key, level, &slot); 3881 3882 /* at the lowest level, we're done, setup the path and exit */ 3883 if (level == path->lowest_level) { 3884 if (slot >= nritems) 3885 goto find_next_key; 3886 ret = 0; 3887 path->slots[level] = slot; 3888 btrfs_item_key_to_cpu(cur, &found_key, slot); 3889 goto out; 3890 } 3891 if (sret && slot > 0) 3892 slot--; 3893 /* 3894 * check this node pointer against the cache_only and 3895 * min_trans parameters. If it isn't in cache or is too 3896 * old, skip to the next one. 3897 */ 3898 while (slot < nritems) { 3899 u64 blockptr; 3900 u64 gen; 3901 struct extent_buffer *tmp; 3902 struct btrfs_disk_key disk_key; 3903 3904 blockptr = btrfs_node_blockptr(cur, slot); 3905 gen = btrfs_node_ptr_generation(cur, slot); 3906 if (gen < min_trans) { 3907 slot++; 3908 continue; 3909 } 3910 if (!cache_only) 3911 break; 3912 3913 if (max_key) { 3914 btrfs_node_key(cur, &disk_key, slot); 3915 if (comp_keys(&disk_key, max_key) >= 0) { 3916 ret = 1; 3917 goto out; 3918 } 3919 } 3920 3921 tmp = btrfs_find_tree_block(root, blockptr, 3922 btrfs_level_size(root, level - 1)); 3923 3924 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 3925 free_extent_buffer(tmp); 3926 break; 3927 } 3928 if (tmp) 3929 free_extent_buffer(tmp); 3930 slot++; 3931 } 3932 find_next_key: 3933 /* 3934 * we didn't find a candidate key in this node, walk forward 3935 * and find another one 3936 */ 3937 if (slot >= nritems) { 3938 path->slots[level] = slot; 3939 btrfs_set_path_blocking(path); 3940 sret = btrfs_find_next_key(root, path, min_key, level, 3941 cache_only, min_trans); 3942 if (sret == 0) { 3943 btrfs_release_path(root, path); 3944 goto again; 3945 } else { 3946 goto out; 3947 } 3948 } 3949 /* save our key for returning back */ 3950 btrfs_node_key_to_cpu(cur, &found_key, slot); 3951 path->slots[level] = slot; 3952 if (level == path->lowest_level) { 3953 ret = 0; 3954 unlock_up(path, level, 1); 3955 goto out; 3956 } 3957 btrfs_set_path_blocking(path); 3958 cur = read_node_slot(root, cur, slot); 3959 3960 btrfs_tree_lock(cur); 3961 3962 path->locks[level - 1] = 1; 3963 path->nodes[level - 1] = cur; 3964 unlock_up(path, level, 1); 3965 btrfs_clear_path_blocking(path, NULL); 3966 } 3967 out: 3968 if (ret == 0) 3969 memcpy(min_key, &found_key, sizeof(found_key)); 3970 btrfs_set_path_blocking(path); 3971 return ret; 3972 } 3973 3974 /* 3975 * this is similar to btrfs_next_leaf, but does not try to preserve 3976 * and fixup the path. It looks for and returns the next key in the 3977 * tree based on the current path and the cache_only and min_trans 3978 * parameters. 3979 * 3980 * 0 is returned if another key is found, < 0 if there are any errors 3981 * and 1 is returned if there are no higher keys in the tree 3982 * 3983 * path->keep_locks should be set to 1 on the search made before 3984 * calling this function. 3985 */ 3986 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 3987 struct btrfs_key *key, int lowest_level, 3988 int cache_only, u64 min_trans) 3989 { 3990 int level = lowest_level; 3991 int slot; 3992 struct extent_buffer *c; 3993 3994 WARN_ON(!path->keep_locks); 3995 while (level < BTRFS_MAX_LEVEL) { 3996 if (!path->nodes[level]) 3997 return 1; 3998 3999 slot = path->slots[level] + 1; 4000 c = path->nodes[level]; 4001 next: 4002 if (slot >= btrfs_header_nritems(c)) { 4003 level++; 4004 if (level == BTRFS_MAX_LEVEL) 4005 return 1; 4006 continue; 4007 } 4008 if (level == 0) 4009 btrfs_item_key_to_cpu(c, key, slot); 4010 else { 4011 u64 blockptr = btrfs_node_blockptr(c, slot); 4012 u64 gen = btrfs_node_ptr_generation(c, slot); 4013 4014 if (cache_only) { 4015 struct extent_buffer *cur; 4016 cur = btrfs_find_tree_block(root, blockptr, 4017 btrfs_level_size(root, level - 1)); 4018 if (!cur || !btrfs_buffer_uptodate(cur, gen)) { 4019 slot++; 4020 if (cur) 4021 free_extent_buffer(cur); 4022 goto next; 4023 } 4024 free_extent_buffer(cur); 4025 } 4026 if (gen < min_trans) { 4027 slot++; 4028 goto next; 4029 } 4030 btrfs_node_key_to_cpu(c, key, slot); 4031 } 4032 return 0; 4033 } 4034 return 1; 4035 } 4036 4037 /* 4038 * search the tree again to find a leaf with greater keys 4039 * returns 0 if it found something or 1 if there are no greater leaves. 4040 * returns < 0 on io errors. 4041 */ 4042 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4043 { 4044 int slot; 4045 int level = 1; 4046 struct extent_buffer *c; 4047 struct extent_buffer *next = NULL; 4048 struct btrfs_key key; 4049 u32 nritems; 4050 int ret; 4051 4052 nritems = btrfs_header_nritems(path->nodes[0]); 4053 if (nritems == 0) 4054 return 1; 4055 4056 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4057 4058 btrfs_release_path(root, path); 4059 path->keep_locks = 1; 4060 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4061 path->keep_locks = 0; 4062 4063 if (ret < 0) 4064 return ret; 4065 4066 btrfs_set_path_blocking(path); 4067 nritems = btrfs_header_nritems(path->nodes[0]); 4068 /* 4069 * by releasing the path above we dropped all our locks. A balance 4070 * could have added more items next to the key that used to be 4071 * at the very end of the block. So, check again here and 4072 * advance the path if there are now more items available. 4073 */ 4074 if (nritems > 0 && path->slots[0] < nritems - 1) { 4075 path->slots[0]++; 4076 goto done; 4077 } 4078 4079 while (level < BTRFS_MAX_LEVEL) { 4080 if (!path->nodes[level]) 4081 return 1; 4082 4083 slot = path->slots[level] + 1; 4084 c = path->nodes[level]; 4085 if (slot >= btrfs_header_nritems(c)) { 4086 level++; 4087 if (level == BTRFS_MAX_LEVEL) 4088 return 1; 4089 continue; 4090 } 4091 4092 if (next) { 4093 btrfs_tree_unlock(next); 4094 free_extent_buffer(next); 4095 } 4096 4097 /* the path was set to blocking above */ 4098 if (level == 1 && (path->locks[1] || path->skip_locking) && 4099 path->reada) 4100 reada_for_search(root, path, level, slot, 0); 4101 4102 next = read_node_slot(root, c, slot); 4103 if (!path->skip_locking) { 4104 btrfs_assert_tree_locked(c); 4105 btrfs_tree_lock(next); 4106 btrfs_set_lock_blocking(next); 4107 } 4108 break; 4109 } 4110 path->slots[level] = slot; 4111 while (1) { 4112 level--; 4113 c = path->nodes[level]; 4114 if (path->locks[level]) 4115 btrfs_tree_unlock(c); 4116 free_extent_buffer(c); 4117 path->nodes[level] = next; 4118 path->slots[level] = 0; 4119 if (!path->skip_locking) 4120 path->locks[level] = 1; 4121 if (!level) 4122 break; 4123 4124 btrfs_set_path_blocking(path); 4125 if (level == 1 && path->locks[1] && path->reada) 4126 reada_for_search(root, path, level, slot, 0); 4127 next = read_node_slot(root, next, 0); 4128 if (!path->skip_locking) { 4129 btrfs_assert_tree_locked(path->nodes[level]); 4130 btrfs_tree_lock(next); 4131 btrfs_set_lock_blocking(next); 4132 } 4133 } 4134 done: 4135 unlock_up(path, 0, 1); 4136 return 0; 4137 } 4138 4139 /* 4140 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4141 * searching until it gets past min_objectid or finds an item of 'type' 4142 * 4143 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4144 */ 4145 int btrfs_previous_item(struct btrfs_root *root, 4146 struct btrfs_path *path, u64 min_objectid, 4147 int type) 4148 { 4149 struct btrfs_key found_key; 4150 struct extent_buffer *leaf; 4151 u32 nritems; 4152 int ret; 4153 4154 while (1) { 4155 if (path->slots[0] == 0) { 4156 btrfs_set_path_blocking(path); 4157 ret = btrfs_prev_leaf(root, path); 4158 if (ret != 0) 4159 return ret; 4160 } else { 4161 path->slots[0]--; 4162 } 4163 leaf = path->nodes[0]; 4164 nritems = btrfs_header_nritems(leaf); 4165 if (nritems == 0) 4166 return 1; 4167 if (path->slots[0] == nritems) 4168 path->slots[0]--; 4169 4170 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4171 if (found_key.type == type) 4172 return 0; 4173 if (found_key.objectid < min_objectid) 4174 break; 4175 if (found_key.objectid == min_objectid && 4176 found_key.type < type) 4177 break; 4178 } 4179 return 1; 4180 } 4181