xref: /linux/fs/btrfs/ctree.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32 		      *root, struct btrfs_key *ins_key,
33 		      struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct btrfs_root *root, struct extent_buffer *dst,
36 			  struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 			      struct btrfs_root *root,
39 			      struct extent_buffer *dst_buf,
40 			      struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42 		    int level, int slot);
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 				 struct extent_buffer *eb);
45 
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 	struct btrfs_path *path;
49 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 	return path;
51 }
52 
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59 	int i;
60 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 		if (!p->nodes[i] || !p->locks[i])
62 			continue;
63 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 		if (p->locks[i] == BTRFS_READ_LOCK)
65 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 	}
69 }
70 
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 					struct extent_buffer *held, int held_rw)
81 {
82 	int i;
83 
84 	if (held) {
85 		btrfs_set_lock_blocking_rw(held, held_rw);
86 		if (held_rw == BTRFS_WRITE_LOCK)
87 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
88 		else if (held_rw == BTRFS_READ_LOCK)
89 			held_rw = BTRFS_READ_LOCK_BLOCKING;
90 	}
91 	btrfs_set_path_blocking(p);
92 
93 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
94 		if (p->nodes[i] && p->locks[i]) {
95 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
96 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
97 				p->locks[i] = BTRFS_WRITE_LOCK;
98 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
99 				p->locks[i] = BTRFS_READ_LOCK;
100 		}
101 	}
102 
103 	if (held)
104 		btrfs_clear_lock_blocking_rw(held, held_rw);
105 }
106 
107 /* this also releases the path */
108 void btrfs_free_path(struct btrfs_path *p)
109 {
110 	if (!p)
111 		return;
112 	btrfs_release_path(p);
113 	kmem_cache_free(btrfs_path_cachep, p);
114 }
115 
116 /*
117  * path release drops references on the extent buffers in the path
118  * and it drops any locks held by this path
119  *
120  * It is safe to call this on paths that no locks or extent buffers held.
121  */
122 noinline void btrfs_release_path(struct btrfs_path *p)
123 {
124 	int i;
125 
126 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
127 		p->slots[i] = 0;
128 		if (!p->nodes[i])
129 			continue;
130 		if (p->locks[i]) {
131 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
132 			p->locks[i] = 0;
133 		}
134 		free_extent_buffer(p->nodes[i]);
135 		p->nodes[i] = NULL;
136 	}
137 }
138 
139 /*
140  * safely gets a reference on the root node of a tree.  A lock
141  * is not taken, so a concurrent writer may put a different node
142  * at the root of the tree.  See btrfs_lock_root_node for the
143  * looping required.
144  *
145  * The extent buffer returned by this has a reference taken, so
146  * it won't disappear.  It may stop being the root of the tree
147  * at any time because there are no locks held.
148  */
149 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
150 {
151 	struct extent_buffer *eb;
152 
153 	while (1) {
154 		rcu_read_lock();
155 		eb = rcu_dereference(root->node);
156 
157 		/*
158 		 * RCU really hurts here, we could free up the root node because
159 		 * it was COWed but we may not get the new root node yet so do
160 		 * the inc_not_zero dance and if it doesn't work then
161 		 * synchronize_rcu and try again.
162 		 */
163 		if (atomic_inc_not_zero(&eb->refs)) {
164 			rcu_read_unlock();
165 			break;
166 		}
167 		rcu_read_unlock();
168 		synchronize_rcu();
169 	}
170 	return eb;
171 }
172 
173 /* loop around taking references on and locking the root node of the
174  * tree until you end up with a lock on the root.  A locked buffer
175  * is returned, with a reference held.
176  */
177 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
178 {
179 	struct extent_buffer *eb;
180 
181 	while (1) {
182 		eb = btrfs_root_node(root);
183 		btrfs_tree_lock(eb);
184 		if (eb == root->node)
185 			break;
186 		btrfs_tree_unlock(eb);
187 		free_extent_buffer(eb);
188 	}
189 	return eb;
190 }
191 
192 /* loop around taking references on and locking the root node of the
193  * tree until you end up with a lock on the root.  A locked buffer
194  * is returned, with a reference held.
195  */
196 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
197 {
198 	struct extent_buffer *eb;
199 
200 	while (1) {
201 		eb = btrfs_root_node(root);
202 		btrfs_tree_read_lock(eb);
203 		if (eb == root->node)
204 			break;
205 		btrfs_tree_read_unlock(eb);
206 		free_extent_buffer(eb);
207 	}
208 	return eb;
209 }
210 
211 /* cowonly root (everything not a reference counted cow subvolume), just get
212  * put onto a simple dirty list.  transaction.c walks this to make sure they
213  * get properly updated on disk.
214  */
215 static void add_root_to_dirty_list(struct btrfs_root *root)
216 {
217 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
218 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
219 		return;
220 
221 	spin_lock(&root->fs_info->trans_lock);
222 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
223 		/* Want the extent tree to be the last on the list */
224 		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
225 			list_move_tail(&root->dirty_list,
226 				       &root->fs_info->dirty_cowonly_roots);
227 		else
228 			list_move(&root->dirty_list,
229 				  &root->fs_info->dirty_cowonly_roots);
230 	}
231 	spin_unlock(&root->fs_info->trans_lock);
232 }
233 
234 /*
235  * used by snapshot creation to make a copy of a root for a tree with
236  * a given objectid.  The buffer with the new root node is returned in
237  * cow_ret, and this func returns zero on success or a negative error code.
238  */
239 int btrfs_copy_root(struct btrfs_trans_handle *trans,
240 		      struct btrfs_root *root,
241 		      struct extent_buffer *buf,
242 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
243 {
244 	struct extent_buffer *cow;
245 	int ret = 0;
246 	int level;
247 	struct btrfs_disk_key disk_key;
248 
249 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250 		trans->transid != root->fs_info->running_transaction->transid);
251 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 		trans->transid != root->last_trans);
253 
254 	level = btrfs_header_level(buf);
255 	if (level == 0)
256 		btrfs_item_key(buf, &disk_key, 0);
257 	else
258 		btrfs_node_key(buf, &disk_key, 0);
259 
260 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
261 			&disk_key, level, buf->start, 0);
262 	if (IS_ERR(cow))
263 		return PTR_ERR(cow);
264 
265 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
266 	btrfs_set_header_bytenr(cow, cow->start);
267 	btrfs_set_header_generation(cow, trans->transid);
268 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270 				     BTRFS_HEADER_FLAG_RELOC);
271 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273 	else
274 		btrfs_set_header_owner(cow, new_root_objectid);
275 
276 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
277 			    BTRFS_FSID_SIZE);
278 
279 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
280 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281 		ret = btrfs_inc_ref(trans, root, cow, 1);
282 	else
283 		ret = btrfs_inc_ref(trans, root, cow, 0);
284 
285 	if (ret)
286 		return ret;
287 
288 	btrfs_mark_buffer_dirty(cow);
289 	*cow_ret = cow;
290 	return 0;
291 }
292 
293 enum mod_log_op {
294 	MOD_LOG_KEY_REPLACE,
295 	MOD_LOG_KEY_ADD,
296 	MOD_LOG_KEY_REMOVE,
297 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
299 	MOD_LOG_MOVE_KEYS,
300 	MOD_LOG_ROOT_REPLACE,
301 };
302 
303 struct tree_mod_move {
304 	int dst_slot;
305 	int nr_items;
306 };
307 
308 struct tree_mod_root {
309 	u64 logical;
310 	u8 level;
311 };
312 
313 struct tree_mod_elem {
314 	struct rb_node node;
315 	u64 logical;
316 	u64 seq;
317 	enum mod_log_op op;
318 
319 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320 	int slot;
321 
322 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323 	u64 generation;
324 
325 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326 	struct btrfs_disk_key key;
327 	u64 blockptr;
328 
329 	/* this is used for op == MOD_LOG_MOVE_KEYS */
330 	struct tree_mod_move move;
331 
332 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
333 	struct tree_mod_root old_root;
334 };
335 
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337 {
338 	read_lock(&fs_info->tree_mod_log_lock);
339 }
340 
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342 {
343 	read_unlock(&fs_info->tree_mod_log_lock);
344 }
345 
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347 {
348 	write_lock(&fs_info->tree_mod_log_lock);
349 }
350 
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352 {
353 	write_unlock(&fs_info->tree_mod_log_lock);
354 }
355 
356 /*
357  * Pull a new tree mod seq number for our operation.
358  */
359 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
360 {
361 	return atomic64_inc_return(&fs_info->tree_mod_seq);
362 }
363 
364 /*
365  * This adds a new blocker to the tree mod log's blocker list if the @elem
366  * passed does not already have a sequence number set. So when a caller expects
367  * to record tree modifications, it should ensure to set elem->seq to zero
368  * before calling btrfs_get_tree_mod_seq.
369  * Returns a fresh, unused tree log modification sequence number, even if no new
370  * blocker was added.
371  */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 			   struct seq_list *elem)
374 {
375 	tree_mod_log_write_lock(fs_info);
376 	spin_lock(&fs_info->tree_mod_seq_lock);
377 	if (!elem->seq) {
378 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
379 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
380 	}
381 	spin_unlock(&fs_info->tree_mod_seq_lock);
382 	tree_mod_log_write_unlock(fs_info);
383 
384 	return elem->seq;
385 }
386 
387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
388 			    struct seq_list *elem)
389 {
390 	struct rb_root *tm_root;
391 	struct rb_node *node;
392 	struct rb_node *next;
393 	struct seq_list *cur_elem;
394 	struct tree_mod_elem *tm;
395 	u64 min_seq = (u64)-1;
396 	u64 seq_putting = elem->seq;
397 
398 	if (!seq_putting)
399 		return;
400 
401 	spin_lock(&fs_info->tree_mod_seq_lock);
402 	list_del(&elem->list);
403 	elem->seq = 0;
404 
405 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
406 		if (cur_elem->seq < min_seq) {
407 			if (seq_putting > cur_elem->seq) {
408 				/*
409 				 * blocker with lower sequence number exists, we
410 				 * cannot remove anything from the log
411 				 */
412 				spin_unlock(&fs_info->tree_mod_seq_lock);
413 				return;
414 			}
415 			min_seq = cur_elem->seq;
416 		}
417 	}
418 	spin_unlock(&fs_info->tree_mod_seq_lock);
419 
420 	/*
421 	 * anything that's lower than the lowest existing (read: blocked)
422 	 * sequence number can be removed from the tree.
423 	 */
424 	tree_mod_log_write_lock(fs_info);
425 	tm_root = &fs_info->tree_mod_log;
426 	for (node = rb_first(tm_root); node; node = next) {
427 		next = rb_next(node);
428 		tm = container_of(node, struct tree_mod_elem, node);
429 		if (tm->seq > min_seq)
430 			continue;
431 		rb_erase(node, tm_root);
432 		kfree(tm);
433 	}
434 	tree_mod_log_write_unlock(fs_info);
435 }
436 
437 /*
438  * key order of the log:
439  *       node/leaf start address -> sequence
440  *
441  * The 'start address' is the logical address of the *new* root node
442  * for root replace operations, or the logical address of the affected
443  * block for all other operations.
444  *
445  * Note: must be called with write lock (tree_mod_log_write_lock).
446  */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450 	struct rb_root *tm_root;
451 	struct rb_node **new;
452 	struct rb_node *parent = NULL;
453 	struct tree_mod_elem *cur;
454 
455 	BUG_ON(!tm);
456 
457 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
458 
459 	tm_root = &fs_info->tree_mod_log;
460 	new = &tm_root->rb_node;
461 	while (*new) {
462 		cur = container_of(*new, struct tree_mod_elem, node);
463 		parent = *new;
464 		if (cur->logical < tm->logical)
465 			new = &((*new)->rb_left);
466 		else if (cur->logical > tm->logical)
467 			new = &((*new)->rb_right);
468 		else if (cur->seq < tm->seq)
469 			new = &((*new)->rb_left);
470 		else if (cur->seq > tm->seq)
471 			new = &((*new)->rb_right);
472 		else
473 			return -EEXIST;
474 	}
475 
476 	rb_link_node(&tm->node, parent, new);
477 	rb_insert_color(&tm->node, tm_root);
478 	return 0;
479 }
480 
481 /*
482  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483  * returns zero with the tree_mod_log_lock acquired. The caller must hold
484  * this until all tree mod log insertions are recorded in the rb tree and then
485  * call tree_mod_log_write_unlock() to release.
486  */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 				    struct extent_buffer *eb) {
489 	smp_mb();
490 	if (list_empty(&(fs_info)->tree_mod_seq_list))
491 		return 1;
492 	if (eb && btrfs_header_level(eb) == 0)
493 		return 1;
494 
495 	tree_mod_log_write_lock(fs_info);
496 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
497 		tree_mod_log_write_unlock(fs_info);
498 		return 1;
499 	}
500 
501 	return 0;
502 }
503 
504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
506 				    struct extent_buffer *eb)
507 {
508 	smp_mb();
509 	if (list_empty(&(fs_info)->tree_mod_seq_list))
510 		return 0;
511 	if (eb && btrfs_header_level(eb) == 0)
512 		return 0;
513 
514 	return 1;
515 }
516 
517 static struct tree_mod_elem *
518 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
519 		    enum mod_log_op op, gfp_t flags)
520 {
521 	struct tree_mod_elem *tm;
522 
523 	tm = kzalloc(sizeof(*tm), flags);
524 	if (!tm)
525 		return NULL;
526 
527 	tm->logical = eb->start;
528 	if (op != MOD_LOG_KEY_ADD) {
529 		btrfs_node_key(eb, &tm->key, slot);
530 		tm->blockptr = btrfs_node_blockptr(eb, slot);
531 	}
532 	tm->op = op;
533 	tm->slot = slot;
534 	tm->generation = btrfs_node_ptr_generation(eb, slot);
535 	RB_CLEAR_NODE(&tm->node);
536 
537 	return tm;
538 }
539 
540 static noinline int
541 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
542 			struct extent_buffer *eb, int slot,
543 			enum mod_log_op op, gfp_t flags)
544 {
545 	struct tree_mod_elem *tm;
546 	int ret;
547 
548 	if (!tree_mod_need_log(fs_info, eb))
549 		return 0;
550 
551 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
552 	if (!tm)
553 		return -ENOMEM;
554 
555 	if (tree_mod_dont_log(fs_info, eb)) {
556 		kfree(tm);
557 		return 0;
558 	}
559 
560 	ret = __tree_mod_log_insert(fs_info, tm);
561 	tree_mod_log_write_unlock(fs_info);
562 	if (ret)
563 		kfree(tm);
564 
565 	return ret;
566 }
567 
568 static noinline int
569 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
570 			 struct extent_buffer *eb, int dst_slot, int src_slot,
571 			 int nr_items, gfp_t flags)
572 {
573 	struct tree_mod_elem *tm = NULL;
574 	struct tree_mod_elem **tm_list = NULL;
575 	int ret = 0;
576 	int i;
577 	int locked = 0;
578 
579 	if (!tree_mod_need_log(fs_info, eb))
580 		return 0;
581 
582 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
583 	if (!tm_list)
584 		return -ENOMEM;
585 
586 	tm = kzalloc(sizeof(*tm), flags);
587 	if (!tm) {
588 		ret = -ENOMEM;
589 		goto free_tms;
590 	}
591 
592 	tm->logical = eb->start;
593 	tm->slot = src_slot;
594 	tm->move.dst_slot = dst_slot;
595 	tm->move.nr_items = nr_items;
596 	tm->op = MOD_LOG_MOVE_KEYS;
597 
598 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
599 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
600 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
601 		if (!tm_list[i]) {
602 			ret = -ENOMEM;
603 			goto free_tms;
604 		}
605 	}
606 
607 	if (tree_mod_dont_log(fs_info, eb))
608 		goto free_tms;
609 	locked = 1;
610 
611 	/*
612 	 * When we override something during the move, we log these removals.
613 	 * This can only happen when we move towards the beginning of the
614 	 * buffer, i.e. dst_slot < src_slot.
615 	 */
616 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
617 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
618 		if (ret)
619 			goto free_tms;
620 	}
621 
622 	ret = __tree_mod_log_insert(fs_info, tm);
623 	if (ret)
624 		goto free_tms;
625 	tree_mod_log_write_unlock(fs_info);
626 	kfree(tm_list);
627 
628 	return 0;
629 free_tms:
630 	for (i = 0; i < nr_items; i++) {
631 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
632 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
633 		kfree(tm_list[i]);
634 	}
635 	if (locked)
636 		tree_mod_log_write_unlock(fs_info);
637 	kfree(tm_list);
638 	kfree(tm);
639 
640 	return ret;
641 }
642 
643 static inline int
644 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
645 		       struct tree_mod_elem **tm_list,
646 		       int nritems)
647 {
648 	int i, j;
649 	int ret;
650 
651 	for (i = nritems - 1; i >= 0; i--) {
652 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
653 		if (ret) {
654 			for (j = nritems - 1; j > i; j--)
655 				rb_erase(&tm_list[j]->node,
656 					 &fs_info->tree_mod_log);
657 			return ret;
658 		}
659 	}
660 
661 	return 0;
662 }
663 
664 static noinline int
665 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
666 			 struct extent_buffer *old_root,
667 			 struct extent_buffer *new_root, gfp_t flags,
668 			 int log_removal)
669 {
670 	struct tree_mod_elem *tm = NULL;
671 	struct tree_mod_elem **tm_list = NULL;
672 	int nritems = 0;
673 	int ret = 0;
674 	int i;
675 
676 	if (!tree_mod_need_log(fs_info, NULL))
677 		return 0;
678 
679 	if (log_removal && btrfs_header_level(old_root) > 0) {
680 		nritems = btrfs_header_nritems(old_root);
681 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
682 				  flags);
683 		if (!tm_list) {
684 			ret = -ENOMEM;
685 			goto free_tms;
686 		}
687 		for (i = 0; i < nritems; i++) {
688 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
689 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
690 			if (!tm_list[i]) {
691 				ret = -ENOMEM;
692 				goto free_tms;
693 			}
694 		}
695 	}
696 
697 	tm = kzalloc(sizeof(*tm), flags);
698 	if (!tm) {
699 		ret = -ENOMEM;
700 		goto free_tms;
701 	}
702 
703 	tm->logical = new_root->start;
704 	tm->old_root.logical = old_root->start;
705 	tm->old_root.level = btrfs_header_level(old_root);
706 	tm->generation = btrfs_header_generation(old_root);
707 	tm->op = MOD_LOG_ROOT_REPLACE;
708 
709 	if (tree_mod_dont_log(fs_info, NULL))
710 		goto free_tms;
711 
712 	if (tm_list)
713 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
714 	if (!ret)
715 		ret = __tree_mod_log_insert(fs_info, tm);
716 
717 	tree_mod_log_write_unlock(fs_info);
718 	if (ret)
719 		goto free_tms;
720 	kfree(tm_list);
721 
722 	return ret;
723 
724 free_tms:
725 	if (tm_list) {
726 		for (i = 0; i < nritems; i++)
727 			kfree(tm_list[i]);
728 		kfree(tm_list);
729 	}
730 	kfree(tm);
731 
732 	return ret;
733 }
734 
735 static struct tree_mod_elem *
736 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
737 		      int smallest)
738 {
739 	struct rb_root *tm_root;
740 	struct rb_node *node;
741 	struct tree_mod_elem *cur = NULL;
742 	struct tree_mod_elem *found = NULL;
743 
744 	tree_mod_log_read_lock(fs_info);
745 	tm_root = &fs_info->tree_mod_log;
746 	node = tm_root->rb_node;
747 	while (node) {
748 		cur = container_of(node, struct tree_mod_elem, node);
749 		if (cur->logical < start) {
750 			node = node->rb_left;
751 		} else if (cur->logical > start) {
752 			node = node->rb_right;
753 		} else if (cur->seq < min_seq) {
754 			node = node->rb_left;
755 		} else if (!smallest) {
756 			/* we want the node with the highest seq */
757 			if (found)
758 				BUG_ON(found->seq > cur->seq);
759 			found = cur;
760 			node = node->rb_left;
761 		} else if (cur->seq > min_seq) {
762 			/* we want the node with the smallest seq */
763 			if (found)
764 				BUG_ON(found->seq < cur->seq);
765 			found = cur;
766 			node = node->rb_right;
767 		} else {
768 			found = cur;
769 			break;
770 		}
771 	}
772 	tree_mod_log_read_unlock(fs_info);
773 
774 	return found;
775 }
776 
777 /*
778  * this returns the element from the log with the smallest time sequence
779  * value that's in the log (the oldest log item). any element with a time
780  * sequence lower than min_seq will be ignored.
781  */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784 			   u64 min_seq)
785 {
786 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788 
789 /*
790  * this returns the element from the log with the largest time sequence
791  * value that's in the log (the most recent log item). any element with
792  * a time sequence lower than min_seq will be ignored.
793  */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799 
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 		     struct extent_buffer *src, unsigned long dst_offset,
803 		     unsigned long src_offset, int nr_items)
804 {
805 	int ret = 0;
806 	struct tree_mod_elem **tm_list = NULL;
807 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
808 	int i;
809 	int locked = 0;
810 
811 	if (!tree_mod_need_log(fs_info, NULL))
812 		return 0;
813 
814 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815 		return 0;
816 
817 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818 			  GFP_NOFS);
819 	if (!tm_list)
820 		return -ENOMEM;
821 
822 	tm_list_add = tm_list;
823 	tm_list_rem = tm_list + nr_items;
824 	for (i = 0; i < nr_items; i++) {
825 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 		if (!tm_list_rem[i]) {
828 			ret = -ENOMEM;
829 			goto free_tms;
830 		}
831 
832 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 		    MOD_LOG_KEY_ADD, GFP_NOFS);
834 		if (!tm_list_add[i]) {
835 			ret = -ENOMEM;
836 			goto free_tms;
837 		}
838 	}
839 
840 	if (tree_mod_dont_log(fs_info, NULL))
841 		goto free_tms;
842 	locked = 1;
843 
844 	for (i = 0; i < nr_items; i++) {
845 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846 		if (ret)
847 			goto free_tms;
848 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849 		if (ret)
850 			goto free_tms;
851 	}
852 
853 	tree_mod_log_write_unlock(fs_info);
854 	kfree(tm_list);
855 
856 	return 0;
857 
858 free_tms:
859 	for (i = 0; i < nr_items * 2; i++) {
860 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862 		kfree(tm_list[i]);
863 	}
864 	if (locked)
865 		tree_mod_log_write_unlock(fs_info);
866 	kfree(tm_list);
867 
868 	return ret;
869 }
870 
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 		     int dst_offset, int src_offset, int nr_items)
874 {
875 	int ret;
876 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877 				       nr_items, GFP_NOFS);
878 	BUG_ON(ret < 0);
879 }
880 
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883 			  struct extent_buffer *eb, int slot, int atomic)
884 {
885 	int ret;
886 
887 	ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 					MOD_LOG_KEY_REPLACE,
889 					atomic ? GFP_ATOMIC : GFP_NOFS);
890 	BUG_ON(ret < 0);
891 }
892 
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896 	struct tree_mod_elem **tm_list = NULL;
897 	int nritems = 0;
898 	int i;
899 	int ret = 0;
900 
901 	if (btrfs_header_level(eb) == 0)
902 		return 0;
903 
904 	if (!tree_mod_need_log(fs_info, NULL))
905 		return 0;
906 
907 	nritems = btrfs_header_nritems(eb);
908 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909 	if (!tm_list)
910 		return -ENOMEM;
911 
912 	for (i = 0; i < nritems; i++) {
913 		tm_list[i] = alloc_tree_mod_elem(eb, i,
914 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915 		if (!tm_list[i]) {
916 			ret = -ENOMEM;
917 			goto free_tms;
918 		}
919 	}
920 
921 	if (tree_mod_dont_log(fs_info, eb))
922 		goto free_tms;
923 
924 	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925 	tree_mod_log_write_unlock(fs_info);
926 	if (ret)
927 		goto free_tms;
928 	kfree(tm_list);
929 
930 	return 0;
931 
932 free_tms:
933 	for (i = 0; i < nritems; i++)
934 		kfree(tm_list[i]);
935 	kfree(tm_list);
936 
937 	return ret;
938 }
939 
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 			      struct extent_buffer *new_root_node,
943 			      int log_removal)
944 {
945 	int ret;
946 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
947 				       new_root_node, GFP_NOFS, log_removal);
948 	BUG_ON(ret < 0);
949 }
950 
951 /*
952  * check if the tree block can be shared by multiple trees
953  */
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955 			      struct extent_buffer *buf)
956 {
957 	/*
958 	 * Tree blocks not in reference counted trees and tree roots
959 	 * are never shared. If a block was allocated after the last
960 	 * snapshot and the block was not allocated by tree relocation,
961 	 * we know the block is not shared.
962 	 */
963 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 	    buf != root->node && buf != root->commit_root &&
965 	    (btrfs_header_generation(buf) <=
966 	     btrfs_root_last_snapshot(&root->root_item) ||
967 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968 		return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972 		return 1;
973 #endif
974 	return 0;
975 }
976 
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978 				       struct btrfs_root *root,
979 				       struct extent_buffer *buf,
980 				       struct extent_buffer *cow,
981 				       int *last_ref)
982 {
983 	u64 refs;
984 	u64 owner;
985 	u64 flags;
986 	u64 new_flags = 0;
987 	int ret;
988 
989 	/*
990 	 * Backrefs update rules:
991 	 *
992 	 * Always use full backrefs for extent pointers in tree block
993 	 * allocated by tree relocation.
994 	 *
995 	 * If a shared tree block is no longer referenced by its owner
996 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 	 * use full backrefs for extent pointers in tree block.
998 	 *
999 	 * If a tree block is been relocating
1000 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 	 * use full backrefs for extent pointers in tree block.
1002 	 * The reason for this is some operations (such as drop tree)
1003 	 * are only allowed for blocks use full backrefs.
1004 	 */
1005 
1006 	if (btrfs_block_can_be_shared(root, buf)) {
1007 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 					       btrfs_header_level(buf), 1,
1009 					       &refs, &flags);
1010 		if (ret)
1011 			return ret;
1012 		if (refs == 0) {
1013 			ret = -EROFS;
1014 			btrfs_handle_fs_error(root->fs_info, ret, NULL);
1015 			return ret;
1016 		}
1017 	} else {
1018 		refs = 1;
1019 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 		else
1023 			flags = 0;
1024 	}
1025 
1026 	owner = btrfs_header_owner(buf);
1027 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029 
1030 	if (refs > 1) {
1031 		if ((owner == root->root_key.objectid ||
1032 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 			ret = btrfs_inc_ref(trans, root, buf, 1);
1035 			BUG_ON(ret); /* -ENOMEM */
1036 
1037 			if (root->root_key.objectid ==
1038 			    BTRFS_TREE_RELOC_OBJECTID) {
1039 				ret = btrfs_dec_ref(trans, root, buf, 0);
1040 				BUG_ON(ret); /* -ENOMEM */
1041 				ret = btrfs_inc_ref(trans, root, cow, 1);
1042 				BUG_ON(ret); /* -ENOMEM */
1043 			}
1044 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045 		} else {
1046 
1047 			if (root->root_key.objectid ==
1048 			    BTRFS_TREE_RELOC_OBJECTID)
1049 				ret = btrfs_inc_ref(trans, root, cow, 1);
1050 			else
1051 				ret = btrfs_inc_ref(trans, root, cow, 0);
1052 			BUG_ON(ret); /* -ENOMEM */
1053 		}
1054 		if (new_flags != 0) {
1055 			int level = btrfs_header_level(buf);
1056 
1057 			ret = btrfs_set_disk_extent_flags(trans, root,
1058 							  buf->start,
1059 							  buf->len,
1060 							  new_flags, level, 0);
1061 			if (ret)
1062 				return ret;
1063 		}
1064 	} else {
1065 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 			if (root->root_key.objectid ==
1067 			    BTRFS_TREE_RELOC_OBJECTID)
1068 				ret = btrfs_inc_ref(trans, root, cow, 1);
1069 			else
1070 				ret = btrfs_inc_ref(trans, root, cow, 0);
1071 			BUG_ON(ret); /* -ENOMEM */
1072 			ret = btrfs_dec_ref(trans, root, buf, 1);
1073 			BUG_ON(ret); /* -ENOMEM */
1074 		}
1075 		clean_tree_block(trans, root->fs_info, buf);
1076 		*last_ref = 1;
1077 	}
1078 	return 0;
1079 }
1080 
1081 /*
1082  * does the dirty work in cow of a single block.  The parent block (if
1083  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1084  * dirty and returned locked.  If you modify the block it needs to be marked
1085  * dirty again.
1086  *
1087  * search_start -- an allocation hint for the new block
1088  *
1089  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1090  * bytes the allocator should try to find free next to the block it returns.
1091  * This is just a hint and may be ignored by the allocator.
1092  */
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 			     struct btrfs_root *root,
1095 			     struct extent_buffer *buf,
1096 			     struct extent_buffer *parent, int parent_slot,
1097 			     struct extent_buffer **cow_ret,
1098 			     u64 search_start, u64 empty_size)
1099 {
1100 	struct btrfs_disk_key disk_key;
1101 	struct extent_buffer *cow;
1102 	int level, ret;
1103 	int last_ref = 0;
1104 	int unlock_orig = 0;
1105 	u64 parent_start;
1106 
1107 	if (*cow_ret == buf)
1108 		unlock_orig = 1;
1109 
1110 	btrfs_assert_tree_locked(buf);
1111 
1112 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 		trans->transid != root->fs_info->running_transaction->transid);
1114 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115 		trans->transid != root->last_trans);
1116 
1117 	level = btrfs_header_level(buf);
1118 
1119 	if (level == 0)
1120 		btrfs_item_key(buf, &disk_key, 0);
1121 	else
1122 		btrfs_node_key(buf, &disk_key, 0);
1123 
1124 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125 		if (parent)
1126 			parent_start = parent->start;
1127 		else
1128 			parent_start = 0;
1129 	} else
1130 		parent_start = 0;
1131 
1132 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133 			root->root_key.objectid, &disk_key, level,
1134 			search_start, empty_size);
1135 	if (IS_ERR(cow))
1136 		return PTR_ERR(cow);
1137 
1138 	/* cow is set to blocking by btrfs_init_new_buffer */
1139 
1140 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141 	btrfs_set_header_bytenr(cow, cow->start);
1142 	btrfs_set_header_generation(cow, trans->transid);
1143 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145 				     BTRFS_HEADER_FLAG_RELOC);
1146 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148 	else
1149 		btrfs_set_header_owner(cow, root->root_key.objectid);
1150 
1151 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152 			    BTRFS_FSID_SIZE);
1153 
1154 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155 	if (ret) {
1156 		btrfs_abort_transaction(trans, root, ret);
1157 		return ret;
1158 	}
1159 
1160 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162 		if (ret) {
1163 			btrfs_abort_transaction(trans, root, ret);
1164 			return ret;
1165 		}
1166 	}
1167 
1168 	if (buf == root->node) {
1169 		WARN_ON(parent && parent != buf);
1170 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172 			parent_start = buf->start;
1173 		else
1174 			parent_start = 0;
1175 
1176 		extent_buffer_get(cow);
1177 		tree_mod_log_set_root_pointer(root, cow, 1);
1178 		rcu_assign_pointer(root->node, cow);
1179 
1180 		btrfs_free_tree_block(trans, root, buf, parent_start,
1181 				      last_ref);
1182 		free_extent_buffer(buf);
1183 		add_root_to_dirty_list(root);
1184 	} else {
1185 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186 			parent_start = parent->start;
1187 		else
1188 			parent_start = 0;
1189 
1190 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1191 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193 		btrfs_set_node_blockptr(parent, parent_slot,
1194 					cow->start);
1195 		btrfs_set_node_ptr_generation(parent, parent_slot,
1196 					      trans->transid);
1197 		btrfs_mark_buffer_dirty(parent);
1198 		if (last_ref) {
1199 			ret = tree_mod_log_free_eb(root->fs_info, buf);
1200 			if (ret) {
1201 				btrfs_abort_transaction(trans, root, ret);
1202 				return ret;
1203 			}
1204 		}
1205 		btrfs_free_tree_block(trans, root, buf, parent_start,
1206 				      last_ref);
1207 	}
1208 	if (unlock_orig)
1209 		btrfs_tree_unlock(buf);
1210 	free_extent_buffer_stale(buf);
1211 	btrfs_mark_buffer_dirty(cow);
1212 	*cow_ret = cow;
1213 	return 0;
1214 }
1215 
1216 /*
1217  * returns the logical address of the oldest predecessor of the given root.
1218  * entries older than time_seq are ignored.
1219  */
1220 static struct tree_mod_elem *
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222 			   struct extent_buffer *eb_root, u64 time_seq)
1223 {
1224 	struct tree_mod_elem *tm;
1225 	struct tree_mod_elem *found = NULL;
1226 	u64 root_logical = eb_root->start;
1227 	int looped = 0;
1228 
1229 	if (!time_seq)
1230 		return NULL;
1231 
1232 	/*
1233 	 * the very last operation that's logged for a root is the
1234 	 * replacement operation (if it is replaced at all). this has
1235 	 * the logical address of the *new* root, making it the very
1236 	 * first operation that's logged for this root.
1237 	 */
1238 	while (1) {
1239 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240 						time_seq);
1241 		if (!looped && !tm)
1242 			return NULL;
1243 		/*
1244 		 * if there are no tree operation for the oldest root, we simply
1245 		 * return it. this should only happen if that (old) root is at
1246 		 * level 0.
1247 		 */
1248 		if (!tm)
1249 			break;
1250 
1251 		/*
1252 		 * if there's an operation that's not a root replacement, we
1253 		 * found the oldest version of our root. normally, we'll find a
1254 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255 		 */
1256 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1257 			break;
1258 
1259 		found = tm;
1260 		root_logical = tm->old_root.logical;
1261 		looped = 1;
1262 	}
1263 
1264 	/* if there's no old root to return, return what we found instead */
1265 	if (!found)
1266 		found = tm;
1267 
1268 	return found;
1269 }
1270 
1271 /*
1272  * tm is a pointer to the first operation to rewind within eb. then, all
1273  * previous operations will be rewound (until we reach something older than
1274  * time_seq).
1275  */
1276 static void
1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278 		      u64 time_seq, struct tree_mod_elem *first_tm)
1279 {
1280 	u32 n;
1281 	struct rb_node *next;
1282 	struct tree_mod_elem *tm = first_tm;
1283 	unsigned long o_dst;
1284 	unsigned long o_src;
1285 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286 
1287 	n = btrfs_header_nritems(eb);
1288 	tree_mod_log_read_lock(fs_info);
1289 	while (tm && tm->seq >= time_seq) {
1290 		/*
1291 		 * all the operations are recorded with the operator used for
1292 		 * the modification. as we're going backwards, we do the
1293 		 * opposite of each operation here.
1294 		 */
1295 		switch (tm->op) {
1296 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297 			BUG_ON(tm->slot < n);
1298 			/* Fallthrough */
1299 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300 		case MOD_LOG_KEY_REMOVE:
1301 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1302 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303 			btrfs_set_node_ptr_generation(eb, tm->slot,
1304 						      tm->generation);
1305 			n++;
1306 			break;
1307 		case MOD_LOG_KEY_REPLACE:
1308 			BUG_ON(tm->slot >= n);
1309 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1310 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311 			btrfs_set_node_ptr_generation(eb, tm->slot,
1312 						      tm->generation);
1313 			break;
1314 		case MOD_LOG_KEY_ADD:
1315 			/* if a move operation is needed it's in the log */
1316 			n--;
1317 			break;
1318 		case MOD_LOG_MOVE_KEYS:
1319 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321 			memmove_extent_buffer(eb, o_dst, o_src,
1322 					      tm->move.nr_items * p_size);
1323 			break;
1324 		case MOD_LOG_ROOT_REPLACE:
1325 			/*
1326 			 * this operation is special. for roots, this must be
1327 			 * handled explicitly before rewinding.
1328 			 * for non-roots, this operation may exist if the node
1329 			 * was a root: root A -> child B; then A gets empty and
1330 			 * B is promoted to the new root. in the mod log, we'll
1331 			 * have a root-replace operation for B, a tree block
1332 			 * that is no root. we simply ignore that operation.
1333 			 */
1334 			break;
1335 		}
1336 		next = rb_next(&tm->node);
1337 		if (!next)
1338 			break;
1339 		tm = container_of(next, struct tree_mod_elem, node);
1340 		if (tm->logical != first_tm->logical)
1341 			break;
1342 	}
1343 	tree_mod_log_read_unlock(fs_info);
1344 	btrfs_set_header_nritems(eb, n);
1345 }
1346 
1347 /*
1348  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349  * is returned. If rewind operations happen, a fresh buffer is returned. The
1350  * returned buffer is always read-locked. If the returned buffer is not the
1351  * input buffer, the lock on the input buffer is released and the input buffer
1352  * is freed (its refcount is decremented).
1353  */
1354 static struct extent_buffer *
1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356 		    struct extent_buffer *eb, u64 time_seq)
1357 {
1358 	struct extent_buffer *eb_rewin;
1359 	struct tree_mod_elem *tm;
1360 
1361 	if (!time_seq)
1362 		return eb;
1363 
1364 	if (btrfs_header_level(eb) == 0)
1365 		return eb;
1366 
1367 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368 	if (!tm)
1369 		return eb;
1370 
1371 	btrfs_set_path_blocking(path);
1372 	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373 
1374 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375 		BUG_ON(tm->slot != 0);
1376 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1377 						eb->len);
1378 		if (!eb_rewin) {
1379 			btrfs_tree_read_unlock_blocking(eb);
1380 			free_extent_buffer(eb);
1381 			return NULL;
1382 		}
1383 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1384 		btrfs_set_header_backref_rev(eb_rewin,
1385 					     btrfs_header_backref_rev(eb));
1386 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1387 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1388 	} else {
1389 		eb_rewin = btrfs_clone_extent_buffer(eb);
1390 		if (!eb_rewin) {
1391 			btrfs_tree_read_unlock_blocking(eb);
1392 			free_extent_buffer(eb);
1393 			return NULL;
1394 		}
1395 	}
1396 
1397 	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1398 	btrfs_tree_read_unlock_blocking(eb);
1399 	free_extent_buffer(eb);
1400 
1401 	extent_buffer_get(eb_rewin);
1402 	btrfs_tree_read_lock(eb_rewin);
1403 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1404 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1405 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1406 
1407 	return eb_rewin;
1408 }
1409 
1410 /*
1411  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412  * value. If there are no changes, the current root->root_node is returned. If
1413  * anything changed in between, there's a fresh buffer allocated on which the
1414  * rewind operations are done. In any case, the returned buffer is read locked.
1415  * Returns NULL on error (with no locks held).
1416  */
1417 static inline struct extent_buffer *
1418 get_old_root(struct btrfs_root *root, u64 time_seq)
1419 {
1420 	struct tree_mod_elem *tm;
1421 	struct extent_buffer *eb = NULL;
1422 	struct extent_buffer *eb_root;
1423 	struct extent_buffer *old;
1424 	struct tree_mod_root *old_root = NULL;
1425 	u64 old_generation = 0;
1426 	u64 logical;
1427 
1428 	eb_root = btrfs_read_lock_root_node(root);
1429 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1430 	if (!tm)
1431 		return eb_root;
1432 
1433 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1434 		old_root = &tm->old_root;
1435 		old_generation = tm->generation;
1436 		logical = old_root->logical;
1437 	} else {
1438 		logical = eb_root->start;
1439 	}
1440 
1441 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1442 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1443 		btrfs_tree_read_unlock(eb_root);
1444 		free_extent_buffer(eb_root);
1445 		old = read_tree_block(root, logical, 0);
1446 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1447 			if (!IS_ERR(old))
1448 				free_extent_buffer(old);
1449 			btrfs_warn(root->fs_info,
1450 				"failed to read tree block %llu from get_old_root", logical);
1451 		} else {
1452 			eb = btrfs_clone_extent_buffer(old);
1453 			free_extent_buffer(old);
1454 		}
1455 	} else if (old_root) {
1456 		btrfs_tree_read_unlock(eb_root);
1457 		free_extent_buffer(eb_root);
1458 		eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1459 					root->nodesize);
1460 	} else {
1461 		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1462 		eb = btrfs_clone_extent_buffer(eb_root);
1463 		btrfs_tree_read_unlock_blocking(eb_root);
1464 		free_extent_buffer(eb_root);
1465 	}
1466 
1467 	if (!eb)
1468 		return NULL;
1469 	extent_buffer_get(eb);
1470 	btrfs_tree_read_lock(eb);
1471 	if (old_root) {
1472 		btrfs_set_header_bytenr(eb, eb->start);
1473 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1474 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1475 		btrfs_set_header_level(eb, old_root->level);
1476 		btrfs_set_header_generation(eb, old_generation);
1477 	}
1478 	if (tm)
1479 		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1480 	else
1481 		WARN_ON(btrfs_header_level(eb) != 0);
1482 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1483 
1484 	return eb;
1485 }
1486 
1487 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1488 {
1489 	struct tree_mod_elem *tm;
1490 	int level;
1491 	struct extent_buffer *eb_root = btrfs_root_node(root);
1492 
1493 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1494 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1495 		level = tm->old_root.level;
1496 	} else {
1497 		level = btrfs_header_level(eb_root);
1498 	}
1499 	free_extent_buffer(eb_root);
1500 
1501 	return level;
1502 }
1503 
1504 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1505 				   struct btrfs_root *root,
1506 				   struct extent_buffer *buf)
1507 {
1508 	if (btrfs_test_is_dummy_root(root))
1509 		return 0;
1510 
1511 	/* ensure we can see the force_cow */
1512 	smp_rmb();
1513 
1514 	/*
1515 	 * We do not need to cow a block if
1516 	 * 1) this block is not created or changed in this transaction;
1517 	 * 2) this block does not belong to TREE_RELOC tree;
1518 	 * 3) the root is not forced COW.
1519 	 *
1520 	 * What is forced COW:
1521 	 *    when we create snapshot during committing the transaction,
1522 	 *    after we've finished coping src root, we must COW the shared
1523 	 *    block to ensure the metadata consistency.
1524 	 */
1525 	if (btrfs_header_generation(buf) == trans->transid &&
1526 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1527 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1528 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1529 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1530 		return 0;
1531 	return 1;
1532 }
1533 
1534 /*
1535  * cows a single block, see __btrfs_cow_block for the real work.
1536  * This version of it has extra checks so that a block isn't COWed more than
1537  * once per transaction, as long as it hasn't been written yet
1538  */
1539 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1540 		    struct btrfs_root *root, struct extent_buffer *buf,
1541 		    struct extent_buffer *parent, int parent_slot,
1542 		    struct extent_buffer **cow_ret)
1543 {
1544 	u64 search_start;
1545 	int ret;
1546 
1547 	if (trans->transaction != root->fs_info->running_transaction)
1548 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549 		       trans->transid,
1550 		       root->fs_info->running_transaction->transid);
1551 
1552 	if (trans->transid != root->fs_info->generation)
1553 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1554 		       trans->transid, root->fs_info->generation);
1555 
1556 	if (!should_cow_block(trans, root, buf)) {
1557 		*cow_ret = buf;
1558 		return 0;
1559 	}
1560 
1561 	search_start = buf->start & ~((u64)SZ_1G - 1);
1562 
1563 	if (parent)
1564 		btrfs_set_lock_blocking(parent);
1565 	btrfs_set_lock_blocking(buf);
1566 
1567 	ret = __btrfs_cow_block(trans, root, buf, parent,
1568 				 parent_slot, cow_ret, search_start, 0);
1569 
1570 	trace_btrfs_cow_block(root, buf, *cow_ret);
1571 
1572 	return ret;
1573 }
1574 
1575 /*
1576  * helper function for defrag to decide if two blocks pointed to by a
1577  * node are actually close by
1578  */
1579 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1580 {
1581 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1582 		return 1;
1583 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1584 		return 1;
1585 	return 0;
1586 }
1587 
1588 /*
1589  * compare two keys in a memcmp fashion
1590  */
1591 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1592 {
1593 	struct btrfs_key k1;
1594 
1595 	btrfs_disk_key_to_cpu(&k1, disk);
1596 
1597 	return btrfs_comp_cpu_keys(&k1, k2);
1598 }
1599 
1600 /*
1601  * same as comp_keys only with two btrfs_key's
1602  */
1603 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1604 {
1605 	if (k1->objectid > k2->objectid)
1606 		return 1;
1607 	if (k1->objectid < k2->objectid)
1608 		return -1;
1609 	if (k1->type > k2->type)
1610 		return 1;
1611 	if (k1->type < k2->type)
1612 		return -1;
1613 	if (k1->offset > k2->offset)
1614 		return 1;
1615 	if (k1->offset < k2->offset)
1616 		return -1;
1617 	return 0;
1618 }
1619 
1620 /*
1621  * this is used by the defrag code to go through all the
1622  * leaves pointed to by a node and reallocate them so that
1623  * disk order is close to key order
1624  */
1625 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1626 		       struct btrfs_root *root, struct extent_buffer *parent,
1627 		       int start_slot, u64 *last_ret,
1628 		       struct btrfs_key *progress)
1629 {
1630 	struct extent_buffer *cur;
1631 	u64 blocknr;
1632 	u64 gen;
1633 	u64 search_start = *last_ret;
1634 	u64 last_block = 0;
1635 	u64 other;
1636 	u32 parent_nritems;
1637 	int end_slot;
1638 	int i;
1639 	int err = 0;
1640 	int parent_level;
1641 	int uptodate;
1642 	u32 blocksize;
1643 	int progress_passed = 0;
1644 	struct btrfs_disk_key disk_key;
1645 
1646 	parent_level = btrfs_header_level(parent);
1647 
1648 	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1649 	WARN_ON(trans->transid != root->fs_info->generation);
1650 
1651 	parent_nritems = btrfs_header_nritems(parent);
1652 	blocksize = root->nodesize;
1653 	end_slot = parent_nritems - 1;
1654 
1655 	if (parent_nritems <= 1)
1656 		return 0;
1657 
1658 	btrfs_set_lock_blocking(parent);
1659 
1660 	for (i = start_slot; i <= end_slot; i++) {
1661 		int close = 1;
1662 
1663 		btrfs_node_key(parent, &disk_key, i);
1664 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1665 			continue;
1666 
1667 		progress_passed = 1;
1668 		blocknr = btrfs_node_blockptr(parent, i);
1669 		gen = btrfs_node_ptr_generation(parent, i);
1670 		if (last_block == 0)
1671 			last_block = blocknr;
1672 
1673 		if (i > 0) {
1674 			other = btrfs_node_blockptr(parent, i - 1);
1675 			close = close_blocks(blocknr, other, blocksize);
1676 		}
1677 		if (!close && i < end_slot) {
1678 			other = btrfs_node_blockptr(parent, i + 1);
1679 			close = close_blocks(blocknr, other, blocksize);
1680 		}
1681 		if (close) {
1682 			last_block = blocknr;
1683 			continue;
1684 		}
1685 
1686 		cur = btrfs_find_tree_block(root->fs_info, blocknr);
1687 		if (cur)
1688 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1689 		else
1690 			uptodate = 0;
1691 		if (!cur || !uptodate) {
1692 			if (!cur) {
1693 				cur = read_tree_block(root, blocknr, gen);
1694 				if (IS_ERR(cur)) {
1695 					return PTR_ERR(cur);
1696 				} else if (!extent_buffer_uptodate(cur)) {
1697 					free_extent_buffer(cur);
1698 					return -EIO;
1699 				}
1700 			} else if (!uptodate) {
1701 				err = btrfs_read_buffer(cur, gen);
1702 				if (err) {
1703 					free_extent_buffer(cur);
1704 					return err;
1705 				}
1706 			}
1707 		}
1708 		if (search_start == 0)
1709 			search_start = last_block;
1710 
1711 		btrfs_tree_lock(cur);
1712 		btrfs_set_lock_blocking(cur);
1713 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1714 					&cur, search_start,
1715 					min(16 * blocksize,
1716 					    (end_slot - i) * blocksize));
1717 		if (err) {
1718 			btrfs_tree_unlock(cur);
1719 			free_extent_buffer(cur);
1720 			break;
1721 		}
1722 		search_start = cur->start;
1723 		last_block = cur->start;
1724 		*last_ret = search_start;
1725 		btrfs_tree_unlock(cur);
1726 		free_extent_buffer(cur);
1727 	}
1728 	return err;
1729 }
1730 
1731 /*
1732  * The leaf data grows from end-to-front in the node.
1733  * this returns the address of the start of the last item,
1734  * which is the stop of the leaf data stack
1735  */
1736 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1737 					 struct extent_buffer *leaf)
1738 {
1739 	u32 nr = btrfs_header_nritems(leaf);
1740 	if (nr == 0)
1741 		return BTRFS_LEAF_DATA_SIZE(root);
1742 	return btrfs_item_offset_nr(leaf, nr - 1);
1743 }
1744 
1745 
1746 /*
1747  * search for key in the extent_buffer.  The items start at offset p,
1748  * and they are item_size apart.  There are 'max' items in p.
1749  *
1750  * the slot in the array is returned via slot, and it points to
1751  * the place where you would insert key if it is not found in
1752  * the array.
1753  *
1754  * slot may point to max if the key is bigger than all of the keys
1755  */
1756 static noinline int generic_bin_search(struct extent_buffer *eb,
1757 				       unsigned long p,
1758 				       int item_size, struct btrfs_key *key,
1759 				       int max, int *slot)
1760 {
1761 	int low = 0;
1762 	int high = max;
1763 	int mid;
1764 	int ret;
1765 	struct btrfs_disk_key *tmp = NULL;
1766 	struct btrfs_disk_key unaligned;
1767 	unsigned long offset;
1768 	char *kaddr = NULL;
1769 	unsigned long map_start = 0;
1770 	unsigned long map_len = 0;
1771 	int err;
1772 
1773 	while (low < high) {
1774 		mid = (low + high) / 2;
1775 		offset = p + mid * item_size;
1776 
1777 		if (!kaddr || offset < map_start ||
1778 		    (offset + sizeof(struct btrfs_disk_key)) >
1779 		    map_start + map_len) {
1780 
1781 			err = map_private_extent_buffer(eb, offset,
1782 						sizeof(struct btrfs_disk_key),
1783 						&kaddr, &map_start, &map_len);
1784 
1785 			if (!err) {
1786 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1787 							map_start);
1788 			} else {
1789 				read_extent_buffer(eb, &unaligned,
1790 						   offset, sizeof(unaligned));
1791 				tmp = &unaligned;
1792 			}
1793 
1794 		} else {
1795 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1796 							map_start);
1797 		}
1798 		ret = comp_keys(tmp, key);
1799 
1800 		if (ret < 0)
1801 			low = mid + 1;
1802 		else if (ret > 0)
1803 			high = mid;
1804 		else {
1805 			*slot = mid;
1806 			return 0;
1807 		}
1808 	}
1809 	*slot = low;
1810 	return 1;
1811 }
1812 
1813 /*
1814  * simple bin_search frontend that does the right thing for
1815  * leaves vs nodes
1816  */
1817 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1818 		      int level, int *slot)
1819 {
1820 	if (level == 0)
1821 		return generic_bin_search(eb,
1822 					  offsetof(struct btrfs_leaf, items),
1823 					  sizeof(struct btrfs_item),
1824 					  key, btrfs_header_nritems(eb),
1825 					  slot);
1826 	else
1827 		return generic_bin_search(eb,
1828 					  offsetof(struct btrfs_node, ptrs),
1829 					  sizeof(struct btrfs_key_ptr),
1830 					  key, btrfs_header_nritems(eb),
1831 					  slot);
1832 }
1833 
1834 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1835 		     int level, int *slot)
1836 {
1837 	return bin_search(eb, key, level, slot);
1838 }
1839 
1840 static void root_add_used(struct btrfs_root *root, u32 size)
1841 {
1842 	spin_lock(&root->accounting_lock);
1843 	btrfs_set_root_used(&root->root_item,
1844 			    btrfs_root_used(&root->root_item) + size);
1845 	spin_unlock(&root->accounting_lock);
1846 }
1847 
1848 static void root_sub_used(struct btrfs_root *root, u32 size)
1849 {
1850 	spin_lock(&root->accounting_lock);
1851 	btrfs_set_root_used(&root->root_item,
1852 			    btrfs_root_used(&root->root_item) - size);
1853 	spin_unlock(&root->accounting_lock);
1854 }
1855 
1856 /* given a node and slot number, this reads the blocks it points to.  The
1857  * extent buffer is returned with a reference taken (but unlocked).
1858  * NULL is returned on error.
1859  */
1860 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1861 				   struct extent_buffer *parent, int slot)
1862 {
1863 	int level = btrfs_header_level(parent);
1864 	struct extent_buffer *eb;
1865 
1866 	if (slot < 0)
1867 		return NULL;
1868 	if (slot >= btrfs_header_nritems(parent))
1869 		return NULL;
1870 
1871 	BUG_ON(level == 0);
1872 
1873 	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1874 			     btrfs_node_ptr_generation(parent, slot));
1875 	if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1876 		if (!IS_ERR(eb))
1877 			free_extent_buffer(eb);
1878 		eb = NULL;
1879 	}
1880 
1881 	return eb;
1882 }
1883 
1884 /*
1885  * node level balancing, used to make sure nodes are in proper order for
1886  * item deletion.  We balance from the top down, so we have to make sure
1887  * that a deletion won't leave an node completely empty later on.
1888  */
1889 static noinline int balance_level(struct btrfs_trans_handle *trans,
1890 			 struct btrfs_root *root,
1891 			 struct btrfs_path *path, int level)
1892 {
1893 	struct extent_buffer *right = NULL;
1894 	struct extent_buffer *mid;
1895 	struct extent_buffer *left = NULL;
1896 	struct extent_buffer *parent = NULL;
1897 	int ret = 0;
1898 	int wret;
1899 	int pslot;
1900 	int orig_slot = path->slots[level];
1901 	u64 orig_ptr;
1902 
1903 	if (level == 0)
1904 		return 0;
1905 
1906 	mid = path->nodes[level];
1907 
1908 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1909 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1910 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1911 
1912 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1913 
1914 	if (level < BTRFS_MAX_LEVEL - 1) {
1915 		parent = path->nodes[level + 1];
1916 		pslot = path->slots[level + 1];
1917 	}
1918 
1919 	/*
1920 	 * deal with the case where there is only one pointer in the root
1921 	 * by promoting the node below to a root
1922 	 */
1923 	if (!parent) {
1924 		struct extent_buffer *child;
1925 
1926 		if (btrfs_header_nritems(mid) != 1)
1927 			return 0;
1928 
1929 		/* promote the child to a root */
1930 		child = read_node_slot(root, mid, 0);
1931 		if (!child) {
1932 			ret = -EROFS;
1933 			btrfs_handle_fs_error(root->fs_info, ret, NULL);
1934 			goto enospc;
1935 		}
1936 
1937 		btrfs_tree_lock(child);
1938 		btrfs_set_lock_blocking(child);
1939 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1940 		if (ret) {
1941 			btrfs_tree_unlock(child);
1942 			free_extent_buffer(child);
1943 			goto enospc;
1944 		}
1945 
1946 		tree_mod_log_set_root_pointer(root, child, 1);
1947 		rcu_assign_pointer(root->node, child);
1948 
1949 		add_root_to_dirty_list(root);
1950 		btrfs_tree_unlock(child);
1951 
1952 		path->locks[level] = 0;
1953 		path->nodes[level] = NULL;
1954 		clean_tree_block(trans, root->fs_info, mid);
1955 		btrfs_tree_unlock(mid);
1956 		/* once for the path */
1957 		free_extent_buffer(mid);
1958 
1959 		root_sub_used(root, mid->len);
1960 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1961 		/* once for the root ptr */
1962 		free_extent_buffer_stale(mid);
1963 		return 0;
1964 	}
1965 	if (btrfs_header_nritems(mid) >
1966 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1967 		return 0;
1968 
1969 	left = read_node_slot(root, parent, pslot - 1);
1970 	if (left) {
1971 		btrfs_tree_lock(left);
1972 		btrfs_set_lock_blocking(left);
1973 		wret = btrfs_cow_block(trans, root, left,
1974 				       parent, pslot - 1, &left);
1975 		if (wret) {
1976 			ret = wret;
1977 			goto enospc;
1978 		}
1979 	}
1980 	right = read_node_slot(root, parent, pslot + 1);
1981 	if (right) {
1982 		btrfs_tree_lock(right);
1983 		btrfs_set_lock_blocking(right);
1984 		wret = btrfs_cow_block(trans, root, right,
1985 				       parent, pslot + 1, &right);
1986 		if (wret) {
1987 			ret = wret;
1988 			goto enospc;
1989 		}
1990 	}
1991 
1992 	/* first, try to make some room in the middle buffer */
1993 	if (left) {
1994 		orig_slot += btrfs_header_nritems(left);
1995 		wret = push_node_left(trans, root, left, mid, 1);
1996 		if (wret < 0)
1997 			ret = wret;
1998 	}
1999 
2000 	/*
2001 	 * then try to empty the right most buffer into the middle
2002 	 */
2003 	if (right) {
2004 		wret = push_node_left(trans, root, mid, right, 1);
2005 		if (wret < 0 && wret != -ENOSPC)
2006 			ret = wret;
2007 		if (btrfs_header_nritems(right) == 0) {
2008 			clean_tree_block(trans, root->fs_info, right);
2009 			btrfs_tree_unlock(right);
2010 			del_ptr(root, path, level + 1, pslot + 1);
2011 			root_sub_used(root, right->len);
2012 			btrfs_free_tree_block(trans, root, right, 0, 1);
2013 			free_extent_buffer_stale(right);
2014 			right = NULL;
2015 		} else {
2016 			struct btrfs_disk_key right_key;
2017 			btrfs_node_key(right, &right_key, 0);
2018 			tree_mod_log_set_node_key(root->fs_info, parent,
2019 						  pslot + 1, 0);
2020 			btrfs_set_node_key(parent, &right_key, pslot + 1);
2021 			btrfs_mark_buffer_dirty(parent);
2022 		}
2023 	}
2024 	if (btrfs_header_nritems(mid) == 1) {
2025 		/*
2026 		 * we're not allowed to leave a node with one item in the
2027 		 * tree during a delete.  A deletion from lower in the tree
2028 		 * could try to delete the only pointer in this node.
2029 		 * So, pull some keys from the left.
2030 		 * There has to be a left pointer at this point because
2031 		 * otherwise we would have pulled some pointers from the
2032 		 * right
2033 		 */
2034 		if (!left) {
2035 			ret = -EROFS;
2036 			btrfs_handle_fs_error(root->fs_info, ret, NULL);
2037 			goto enospc;
2038 		}
2039 		wret = balance_node_right(trans, root, mid, left);
2040 		if (wret < 0) {
2041 			ret = wret;
2042 			goto enospc;
2043 		}
2044 		if (wret == 1) {
2045 			wret = push_node_left(trans, root, left, mid, 1);
2046 			if (wret < 0)
2047 				ret = wret;
2048 		}
2049 		BUG_ON(wret == 1);
2050 	}
2051 	if (btrfs_header_nritems(mid) == 0) {
2052 		clean_tree_block(trans, root->fs_info, mid);
2053 		btrfs_tree_unlock(mid);
2054 		del_ptr(root, path, level + 1, pslot);
2055 		root_sub_used(root, mid->len);
2056 		btrfs_free_tree_block(trans, root, mid, 0, 1);
2057 		free_extent_buffer_stale(mid);
2058 		mid = NULL;
2059 	} else {
2060 		/* update the parent key to reflect our changes */
2061 		struct btrfs_disk_key mid_key;
2062 		btrfs_node_key(mid, &mid_key, 0);
2063 		tree_mod_log_set_node_key(root->fs_info, parent,
2064 					  pslot, 0);
2065 		btrfs_set_node_key(parent, &mid_key, pslot);
2066 		btrfs_mark_buffer_dirty(parent);
2067 	}
2068 
2069 	/* update the path */
2070 	if (left) {
2071 		if (btrfs_header_nritems(left) > orig_slot) {
2072 			extent_buffer_get(left);
2073 			/* left was locked after cow */
2074 			path->nodes[level] = left;
2075 			path->slots[level + 1] -= 1;
2076 			path->slots[level] = orig_slot;
2077 			if (mid) {
2078 				btrfs_tree_unlock(mid);
2079 				free_extent_buffer(mid);
2080 			}
2081 		} else {
2082 			orig_slot -= btrfs_header_nritems(left);
2083 			path->slots[level] = orig_slot;
2084 		}
2085 	}
2086 	/* double check we haven't messed things up */
2087 	if (orig_ptr !=
2088 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2089 		BUG();
2090 enospc:
2091 	if (right) {
2092 		btrfs_tree_unlock(right);
2093 		free_extent_buffer(right);
2094 	}
2095 	if (left) {
2096 		if (path->nodes[level] != left)
2097 			btrfs_tree_unlock(left);
2098 		free_extent_buffer(left);
2099 	}
2100 	return ret;
2101 }
2102 
2103 /* Node balancing for insertion.  Here we only split or push nodes around
2104  * when they are completely full.  This is also done top down, so we
2105  * have to be pessimistic.
2106  */
2107 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2108 					  struct btrfs_root *root,
2109 					  struct btrfs_path *path, int level)
2110 {
2111 	struct extent_buffer *right = NULL;
2112 	struct extent_buffer *mid;
2113 	struct extent_buffer *left = NULL;
2114 	struct extent_buffer *parent = NULL;
2115 	int ret = 0;
2116 	int wret;
2117 	int pslot;
2118 	int orig_slot = path->slots[level];
2119 
2120 	if (level == 0)
2121 		return 1;
2122 
2123 	mid = path->nodes[level];
2124 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2125 
2126 	if (level < BTRFS_MAX_LEVEL - 1) {
2127 		parent = path->nodes[level + 1];
2128 		pslot = path->slots[level + 1];
2129 	}
2130 
2131 	if (!parent)
2132 		return 1;
2133 
2134 	left = read_node_slot(root, parent, pslot - 1);
2135 
2136 	/* first, try to make some room in the middle buffer */
2137 	if (left) {
2138 		u32 left_nr;
2139 
2140 		btrfs_tree_lock(left);
2141 		btrfs_set_lock_blocking(left);
2142 
2143 		left_nr = btrfs_header_nritems(left);
2144 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2145 			wret = 1;
2146 		} else {
2147 			ret = btrfs_cow_block(trans, root, left, parent,
2148 					      pslot - 1, &left);
2149 			if (ret)
2150 				wret = 1;
2151 			else {
2152 				wret = push_node_left(trans, root,
2153 						      left, mid, 0);
2154 			}
2155 		}
2156 		if (wret < 0)
2157 			ret = wret;
2158 		if (wret == 0) {
2159 			struct btrfs_disk_key disk_key;
2160 			orig_slot += left_nr;
2161 			btrfs_node_key(mid, &disk_key, 0);
2162 			tree_mod_log_set_node_key(root->fs_info, parent,
2163 						  pslot, 0);
2164 			btrfs_set_node_key(parent, &disk_key, pslot);
2165 			btrfs_mark_buffer_dirty(parent);
2166 			if (btrfs_header_nritems(left) > orig_slot) {
2167 				path->nodes[level] = left;
2168 				path->slots[level + 1] -= 1;
2169 				path->slots[level] = orig_slot;
2170 				btrfs_tree_unlock(mid);
2171 				free_extent_buffer(mid);
2172 			} else {
2173 				orig_slot -=
2174 					btrfs_header_nritems(left);
2175 				path->slots[level] = orig_slot;
2176 				btrfs_tree_unlock(left);
2177 				free_extent_buffer(left);
2178 			}
2179 			return 0;
2180 		}
2181 		btrfs_tree_unlock(left);
2182 		free_extent_buffer(left);
2183 	}
2184 	right = read_node_slot(root, parent, pslot + 1);
2185 
2186 	/*
2187 	 * then try to empty the right most buffer into the middle
2188 	 */
2189 	if (right) {
2190 		u32 right_nr;
2191 
2192 		btrfs_tree_lock(right);
2193 		btrfs_set_lock_blocking(right);
2194 
2195 		right_nr = btrfs_header_nritems(right);
2196 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2197 			wret = 1;
2198 		} else {
2199 			ret = btrfs_cow_block(trans, root, right,
2200 					      parent, pslot + 1,
2201 					      &right);
2202 			if (ret)
2203 				wret = 1;
2204 			else {
2205 				wret = balance_node_right(trans, root,
2206 							  right, mid);
2207 			}
2208 		}
2209 		if (wret < 0)
2210 			ret = wret;
2211 		if (wret == 0) {
2212 			struct btrfs_disk_key disk_key;
2213 
2214 			btrfs_node_key(right, &disk_key, 0);
2215 			tree_mod_log_set_node_key(root->fs_info, parent,
2216 						  pslot + 1, 0);
2217 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2218 			btrfs_mark_buffer_dirty(parent);
2219 
2220 			if (btrfs_header_nritems(mid) <= orig_slot) {
2221 				path->nodes[level] = right;
2222 				path->slots[level + 1] += 1;
2223 				path->slots[level] = orig_slot -
2224 					btrfs_header_nritems(mid);
2225 				btrfs_tree_unlock(mid);
2226 				free_extent_buffer(mid);
2227 			} else {
2228 				btrfs_tree_unlock(right);
2229 				free_extent_buffer(right);
2230 			}
2231 			return 0;
2232 		}
2233 		btrfs_tree_unlock(right);
2234 		free_extent_buffer(right);
2235 	}
2236 	return 1;
2237 }
2238 
2239 /*
2240  * readahead one full node of leaves, finding things that are close
2241  * to the block in 'slot', and triggering ra on them.
2242  */
2243 static void reada_for_search(struct btrfs_root *root,
2244 			     struct btrfs_path *path,
2245 			     int level, int slot, u64 objectid)
2246 {
2247 	struct extent_buffer *node;
2248 	struct btrfs_disk_key disk_key;
2249 	u32 nritems;
2250 	u64 search;
2251 	u64 target;
2252 	u64 nread = 0;
2253 	u64 gen;
2254 	struct extent_buffer *eb;
2255 	u32 nr;
2256 	u32 blocksize;
2257 	u32 nscan = 0;
2258 
2259 	if (level != 1)
2260 		return;
2261 
2262 	if (!path->nodes[level])
2263 		return;
2264 
2265 	node = path->nodes[level];
2266 
2267 	search = btrfs_node_blockptr(node, slot);
2268 	blocksize = root->nodesize;
2269 	eb = btrfs_find_tree_block(root->fs_info, search);
2270 	if (eb) {
2271 		free_extent_buffer(eb);
2272 		return;
2273 	}
2274 
2275 	target = search;
2276 
2277 	nritems = btrfs_header_nritems(node);
2278 	nr = slot;
2279 
2280 	while (1) {
2281 		if (path->reada == READA_BACK) {
2282 			if (nr == 0)
2283 				break;
2284 			nr--;
2285 		} else if (path->reada == READA_FORWARD) {
2286 			nr++;
2287 			if (nr >= nritems)
2288 				break;
2289 		}
2290 		if (path->reada == READA_BACK && objectid) {
2291 			btrfs_node_key(node, &disk_key, nr);
2292 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2293 				break;
2294 		}
2295 		search = btrfs_node_blockptr(node, nr);
2296 		if ((search <= target && target - search <= 65536) ||
2297 		    (search > target && search - target <= 65536)) {
2298 			gen = btrfs_node_ptr_generation(node, nr);
2299 			readahead_tree_block(root, search);
2300 			nread += blocksize;
2301 		}
2302 		nscan++;
2303 		if ((nread > 65536 || nscan > 32))
2304 			break;
2305 	}
2306 }
2307 
2308 static noinline void reada_for_balance(struct btrfs_root *root,
2309 				       struct btrfs_path *path, int level)
2310 {
2311 	int slot;
2312 	int nritems;
2313 	struct extent_buffer *parent;
2314 	struct extent_buffer *eb;
2315 	u64 gen;
2316 	u64 block1 = 0;
2317 	u64 block2 = 0;
2318 
2319 	parent = path->nodes[level + 1];
2320 	if (!parent)
2321 		return;
2322 
2323 	nritems = btrfs_header_nritems(parent);
2324 	slot = path->slots[level + 1];
2325 
2326 	if (slot > 0) {
2327 		block1 = btrfs_node_blockptr(parent, slot - 1);
2328 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2329 		eb = btrfs_find_tree_block(root->fs_info, block1);
2330 		/*
2331 		 * if we get -eagain from btrfs_buffer_uptodate, we
2332 		 * don't want to return eagain here.  That will loop
2333 		 * forever
2334 		 */
2335 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2336 			block1 = 0;
2337 		free_extent_buffer(eb);
2338 	}
2339 	if (slot + 1 < nritems) {
2340 		block2 = btrfs_node_blockptr(parent, slot + 1);
2341 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2342 		eb = btrfs_find_tree_block(root->fs_info, block2);
2343 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2344 			block2 = 0;
2345 		free_extent_buffer(eb);
2346 	}
2347 
2348 	if (block1)
2349 		readahead_tree_block(root, block1);
2350 	if (block2)
2351 		readahead_tree_block(root, block2);
2352 }
2353 
2354 
2355 /*
2356  * when we walk down the tree, it is usually safe to unlock the higher layers
2357  * in the tree.  The exceptions are when our path goes through slot 0, because
2358  * operations on the tree might require changing key pointers higher up in the
2359  * tree.
2360  *
2361  * callers might also have set path->keep_locks, which tells this code to keep
2362  * the lock if the path points to the last slot in the block.  This is part of
2363  * walking through the tree, and selecting the next slot in the higher block.
2364  *
2365  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2366  * if lowest_unlock is 1, level 0 won't be unlocked
2367  */
2368 static noinline void unlock_up(struct btrfs_path *path, int level,
2369 			       int lowest_unlock, int min_write_lock_level,
2370 			       int *write_lock_level)
2371 {
2372 	int i;
2373 	int skip_level = level;
2374 	int no_skips = 0;
2375 	struct extent_buffer *t;
2376 
2377 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2378 		if (!path->nodes[i])
2379 			break;
2380 		if (!path->locks[i])
2381 			break;
2382 		if (!no_skips && path->slots[i] == 0) {
2383 			skip_level = i + 1;
2384 			continue;
2385 		}
2386 		if (!no_skips && path->keep_locks) {
2387 			u32 nritems;
2388 			t = path->nodes[i];
2389 			nritems = btrfs_header_nritems(t);
2390 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2391 				skip_level = i + 1;
2392 				continue;
2393 			}
2394 		}
2395 		if (skip_level < i && i >= lowest_unlock)
2396 			no_skips = 1;
2397 
2398 		t = path->nodes[i];
2399 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2400 			btrfs_tree_unlock_rw(t, path->locks[i]);
2401 			path->locks[i] = 0;
2402 			if (write_lock_level &&
2403 			    i > min_write_lock_level &&
2404 			    i <= *write_lock_level) {
2405 				*write_lock_level = i - 1;
2406 			}
2407 		}
2408 	}
2409 }
2410 
2411 /*
2412  * This releases any locks held in the path starting at level and
2413  * going all the way up to the root.
2414  *
2415  * btrfs_search_slot will keep the lock held on higher nodes in a few
2416  * corner cases, such as COW of the block at slot zero in the node.  This
2417  * ignores those rules, and it should only be called when there are no
2418  * more updates to be done higher up in the tree.
2419  */
2420 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2421 {
2422 	int i;
2423 
2424 	if (path->keep_locks)
2425 		return;
2426 
2427 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2428 		if (!path->nodes[i])
2429 			continue;
2430 		if (!path->locks[i])
2431 			continue;
2432 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2433 		path->locks[i] = 0;
2434 	}
2435 }
2436 
2437 /*
2438  * helper function for btrfs_search_slot.  The goal is to find a block
2439  * in cache without setting the path to blocking.  If we find the block
2440  * we return zero and the path is unchanged.
2441  *
2442  * If we can't find the block, we set the path blocking and do some
2443  * reada.  -EAGAIN is returned and the search must be repeated.
2444  */
2445 static int
2446 read_block_for_search(struct btrfs_trans_handle *trans,
2447 		       struct btrfs_root *root, struct btrfs_path *p,
2448 		       struct extent_buffer **eb_ret, int level, int slot,
2449 		       struct btrfs_key *key, u64 time_seq)
2450 {
2451 	u64 blocknr;
2452 	u64 gen;
2453 	struct extent_buffer *b = *eb_ret;
2454 	struct extent_buffer *tmp;
2455 	int ret;
2456 
2457 	blocknr = btrfs_node_blockptr(b, slot);
2458 	gen = btrfs_node_ptr_generation(b, slot);
2459 
2460 	tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2461 	if (tmp) {
2462 		/* first we do an atomic uptodate check */
2463 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2464 			*eb_ret = tmp;
2465 			return 0;
2466 		}
2467 
2468 		/* the pages were up to date, but we failed
2469 		 * the generation number check.  Do a full
2470 		 * read for the generation number that is correct.
2471 		 * We must do this without dropping locks so
2472 		 * we can trust our generation number
2473 		 */
2474 		btrfs_set_path_blocking(p);
2475 
2476 		/* now we're allowed to do a blocking uptodate check */
2477 		ret = btrfs_read_buffer(tmp, gen);
2478 		if (!ret) {
2479 			*eb_ret = tmp;
2480 			return 0;
2481 		}
2482 		free_extent_buffer(tmp);
2483 		btrfs_release_path(p);
2484 		return -EIO;
2485 	}
2486 
2487 	/*
2488 	 * reduce lock contention at high levels
2489 	 * of the btree by dropping locks before
2490 	 * we read.  Don't release the lock on the current
2491 	 * level because we need to walk this node to figure
2492 	 * out which blocks to read.
2493 	 */
2494 	btrfs_unlock_up_safe(p, level + 1);
2495 	btrfs_set_path_blocking(p);
2496 
2497 	free_extent_buffer(tmp);
2498 	if (p->reada != READA_NONE)
2499 		reada_for_search(root, p, level, slot, key->objectid);
2500 
2501 	btrfs_release_path(p);
2502 
2503 	ret = -EAGAIN;
2504 	tmp = read_tree_block(root, blocknr, 0);
2505 	if (!IS_ERR(tmp)) {
2506 		/*
2507 		 * If the read above didn't mark this buffer up to date,
2508 		 * it will never end up being up to date.  Set ret to EIO now
2509 		 * and give up so that our caller doesn't loop forever
2510 		 * on our EAGAINs.
2511 		 */
2512 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2513 			ret = -EIO;
2514 		free_extent_buffer(tmp);
2515 	}
2516 	return ret;
2517 }
2518 
2519 /*
2520  * helper function for btrfs_search_slot.  This does all of the checks
2521  * for node-level blocks and does any balancing required based on
2522  * the ins_len.
2523  *
2524  * If no extra work was required, zero is returned.  If we had to
2525  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2526  * start over
2527  */
2528 static int
2529 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2530 		       struct btrfs_root *root, struct btrfs_path *p,
2531 		       struct extent_buffer *b, int level, int ins_len,
2532 		       int *write_lock_level)
2533 {
2534 	int ret;
2535 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2536 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2537 		int sret;
2538 
2539 		if (*write_lock_level < level + 1) {
2540 			*write_lock_level = level + 1;
2541 			btrfs_release_path(p);
2542 			goto again;
2543 		}
2544 
2545 		btrfs_set_path_blocking(p);
2546 		reada_for_balance(root, p, level);
2547 		sret = split_node(trans, root, p, level);
2548 		btrfs_clear_path_blocking(p, NULL, 0);
2549 
2550 		BUG_ON(sret > 0);
2551 		if (sret) {
2552 			ret = sret;
2553 			goto done;
2554 		}
2555 		b = p->nodes[level];
2556 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2557 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2558 		int sret;
2559 
2560 		if (*write_lock_level < level + 1) {
2561 			*write_lock_level = level + 1;
2562 			btrfs_release_path(p);
2563 			goto again;
2564 		}
2565 
2566 		btrfs_set_path_blocking(p);
2567 		reada_for_balance(root, p, level);
2568 		sret = balance_level(trans, root, p, level);
2569 		btrfs_clear_path_blocking(p, NULL, 0);
2570 
2571 		if (sret) {
2572 			ret = sret;
2573 			goto done;
2574 		}
2575 		b = p->nodes[level];
2576 		if (!b) {
2577 			btrfs_release_path(p);
2578 			goto again;
2579 		}
2580 		BUG_ON(btrfs_header_nritems(b) == 1);
2581 	}
2582 	return 0;
2583 
2584 again:
2585 	ret = -EAGAIN;
2586 done:
2587 	return ret;
2588 }
2589 
2590 static void key_search_validate(struct extent_buffer *b,
2591 				struct btrfs_key *key,
2592 				int level)
2593 {
2594 #ifdef CONFIG_BTRFS_ASSERT
2595 	struct btrfs_disk_key disk_key;
2596 
2597 	btrfs_cpu_key_to_disk(&disk_key, key);
2598 
2599 	if (level == 0)
2600 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2601 		    offsetof(struct btrfs_leaf, items[0].key),
2602 		    sizeof(disk_key)));
2603 	else
2604 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2605 		    offsetof(struct btrfs_node, ptrs[0].key),
2606 		    sizeof(disk_key)));
2607 #endif
2608 }
2609 
2610 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2611 		      int level, int *prev_cmp, int *slot)
2612 {
2613 	if (*prev_cmp != 0) {
2614 		*prev_cmp = bin_search(b, key, level, slot);
2615 		return *prev_cmp;
2616 	}
2617 
2618 	key_search_validate(b, key, level);
2619 	*slot = 0;
2620 
2621 	return 0;
2622 }
2623 
2624 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2625 		u64 iobjectid, u64 ioff, u8 key_type,
2626 		struct btrfs_key *found_key)
2627 {
2628 	int ret;
2629 	struct btrfs_key key;
2630 	struct extent_buffer *eb;
2631 
2632 	ASSERT(path);
2633 	ASSERT(found_key);
2634 
2635 	key.type = key_type;
2636 	key.objectid = iobjectid;
2637 	key.offset = ioff;
2638 
2639 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2640 	if (ret < 0)
2641 		return ret;
2642 
2643 	eb = path->nodes[0];
2644 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2645 		ret = btrfs_next_leaf(fs_root, path);
2646 		if (ret)
2647 			return ret;
2648 		eb = path->nodes[0];
2649 	}
2650 
2651 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2652 	if (found_key->type != key.type ||
2653 			found_key->objectid != key.objectid)
2654 		return 1;
2655 
2656 	return 0;
2657 }
2658 
2659 /*
2660  * look for key in the tree.  path is filled in with nodes along the way
2661  * if key is found, we return zero and you can find the item in the leaf
2662  * level of the path (level 0)
2663  *
2664  * If the key isn't found, the path points to the slot where it should
2665  * be inserted, and 1 is returned.  If there are other errors during the
2666  * search a negative error number is returned.
2667  *
2668  * if ins_len > 0, nodes and leaves will be split as we walk down the
2669  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2670  * possible)
2671  */
2672 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2673 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2674 		      ins_len, int cow)
2675 {
2676 	struct extent_buffer *b;
2677 	int slot;
2678 	int ret;
2679 	int err;
2680 	int level;
2681 	int lowest_unlock = 1;
2682 	int root_lock;
2683 	/* everything at write_lock_level or lower must be write locked */
2684 	int write_lock_level = 0;
2685 	u8 lowest_level = 0;
2686 	int min_write_lock_level;
2687 	int prev_cmp;
2688 
2689 	lowest_level = p->lowest_level;
2690 	WARN_ON(lowest_level && ins_len > 0);
2691 	WARN_ON(p->nodes[0] != NULL);
2692 	BUG_ON(!cow && ins_len);
2693 
2694 	if (ins_len < 0) {
2695 		lowest_unlock = 2;
2696 
2697 		/* when we are removing items, we might have to go up to level
2698 		 * two as we update tree pointers  Make sure we keep write
2699 		 * for those levels as well
2700 		 */
2701 		write_lock_level = 2;
2702 	} else if (ins_len > 0) {
2703 		/*
2704 		 * for inserting items, make sure we have a write lock on
2705 		 * level 1 so we can update keys
2706 		 */
2707 		write_lock_level = 1;
2708 	}
2709 
2710 	if (!cow)
2711 		write_lock_level = -1;
2712 
2713 	if (cow && (p->keep_locks || p->lowest_level))
2714 		write_lock_level = BTRFS_MAX_LEVEL;
2715 
2716 	min_write_lock_level = write_lock_level;
2717 
2718 again:
2719 	prev_cmp = -1;
2720 	/*
2721 	 * we try very hard to do read locks on the root
2722 	 */
2723 	root_lock = BTRFS_READ_LOCK;
2724 	level = 0;
2725 	if (p->search_commit_root) {
2726 		/*
2727 		 * the commit roots are read only
2728 		 * so we always do read locks
2729 		 */
2730 		if (p->need_commit_sem)
2731 			down_read(&root->fs_info->commit_root_sem);
2732 		b = root->commit_root;
2733 		extent_buffer_get(b);
2734 		level = btrfs_header_level(b);
2735 		if (p->need_commit_sem)
2736 			up_read(&root->fs_info->commit_root_sem);
2737 		if (!p->skip_locking)
2738 			btrfs_tree_read_lock(b);
2739 	} else {
2740 		if (p->skip_locking) {
2741 			b = btrfs_root_node(root);
2742 			level = btrfs_header_level(b);
2743 		} else {
2744 			/* we don't know the level of the root node
2745 			 * until we actually have it read locked
2746 			 */
2747 			b = btrfs_read_lock_root_node(root);
2748 			level = btrfs_header_level(b);
2749 			if (level <= write_lock_level) {
2750 				/* whoops, must trade for write lock */
2751 				btrfs_tree_read_unlock(b);
2752 				free_extent_buffer(b);
2753 				b = btrfs_lock_root_node(root);
2754 				root_lock = BTRFS_WRITE_LOCK;
2755 
2756 				/* the level might have changed, check again */
2757 				level = btrfs_header_level(b);
2758 			}
2759 		}
2760 	}
2761 	p->nodes[level] = b;
2762 	if (!p->skip_locking)
2763 		p->locks[level] = root_lock;
2764 
2765 	while (b) {
2766 		level = btrfs_header_level(b);
2767 
2768 		/*
2769 		 * setup the path here so we can release it under lock
2770 		 * contention with the cow code
2771 		 */
2772 		if (cow) {
2773 			/*
2774 			 * if we don't really need to cow this block
2775 			 * then we don't want to set the path blocking,
2776 			 * so we test it here
2777 			 */
2778 			if (!should_cow_block(trans, root, b))
2779 				goto cow_done;
2780 
2781 			/*
2782 			 * must have write locks on this node and the
2783 			 * parent
2784 			 */
2785 			if (level > write_lock_level ||
2786 			    (level + 1 > write_lock_level &&
2787 			    level + 1 < BTRFS_MAX_LEVEL &&
2788 			    p->nodes[level + 1])) {
2789 				write_lock_level = level + 1;
2790 				btrfs_release_path(p);
2791 				goto again;
2792 			}
2793 
2794 			btrfs_set_path_blocking(p);
2795 			err = btrfs_cow_block(trans, root, b,
2796 					      p->nodes[level + 1],
2797 					      p->slots[level + 1], &b);
2798 			if (err) {
2799 				ret = err;
2800 				goto done;
2801 			}
2802 		}
2803 cow_done:
2804 		p->nodes[level] = b;
2805 		btrfs_clear_path_blocking(p, NULL, 0);
2806 
2807 		/*
2808 		 * we have a lock on b and as long as we aren't changing
2809 		 * the tree, there is no way to for the items in b to change.
2810 		 * It is safe to drop the lock on our parent before we
2811 		 * go through the expensive btree search on b.
2812 		 *
2813 		 * If we're inserting or deleting (ins_len != 0), then we might
2814 		 * be changing slot zero, which may require changing the parent.
2815 		 * So, we can't drop the lock until after we know which slot
2816 		 * we're operating on.
2817 		 */
2818 		if (!ins_len && !p->keep_locks) {
2819 			int u = level + 1;
2820 
2821 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2822 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2823 				p->locks[u] = 0;
2824 			}
2825 		}
2826 
2827 		ret = key_search(b, key, level, &prev_cmp, &slot);
2828 
2829 		if (level != 0) {
2830 			int dec = 0;
2831 			if (ret && slot > 0) {
2832 				dec = 1;
2833 				slot -= 1;
2834 			}
2835 			p->slots[level] = slot;
2836 			err = setup_nodes_for_search(trans, root, p, b, level,
2837 					     ins_len, &write_lock_level);
2838 			if (err == -EAGAIN)
2839 				goto again;
2840 			if (err) {
2841 				ret = err;
2842 				goto done;
2843 			}
2844 			b = p->nodes[level];
2845 			slot = p->slots[level];
2846 
2847 			/*
2848 			 * slot 0 is special, if we change the key
2849 			 * we have to update the parent pointer
2850 			 * which means we must have a write lock
2851 			 * on the parent
2852 			 */
2853 			if (slot == 0 && ins_len &&
2854 			    write_lock_level < level + 1) {
2855 				write_lock_level = level + 1;
2856 				btrfs_release_path(p);
2857 				goto again;
2858 			}
2859 
2860 			unlock_up(p, level, lowest_unlock,
2861 				  min_write_lock_level, &write_lock_level);
2862 
2863 			if (level == lowest_level) {
2864 				if (dec)
2865 					p->slots[level]++;
2866 				goto done;
2867 			}
2868 
2869 			err = read_block_for_search(trans, root, p,
2870 						    &b, level, slot, key, 0);
2871 			if (err == -EAGAIN)
2872 				goto again;
2873 			if (err) {
2874 				ret = err;
2875 				goto done;
2876 			}
2877 
2878 			if (!p->skip_locking) {
2879 				level = btrfs_header_level(b);
2880 				if (level <= write_lock_level) {
2881 					err = btrfs_try_tree_write_lock(b);
2882 					if (!err) {
2883 						btrfs_set_path_blocking(p);
2884 						btrfs_tree_lock(b);
2885 						btrfs_clear_path_blocking(p, b,
2886 								  BTRFS_WRITE_LOCK);
2887 					}
2888 					p->locks[level] = BTRFS_WRITE_LOCK;
2889 				} else {
2890 					err = btrfs_tree_read_lock_atomic(b);
2891 					if (!err) {
2892 						btrfs_set_path_blocking(p);
2893 						btrfs_tree_read_lock(b);
2894 						btrfs_clear_path_blocking(p, b,
2895 								  BTRFS_READ_LOCK);
2896 					}
2897 					p->locks[level] = BTRFS_READ_LOCK;
2898 				}
2899 				p->nodes[level] = b;
2900 			}
2901 		} else {
2902 			p->slots[level] = slot;
2903 			if (ins_len > 0 &&
2904 			    btrfs_leaf_free_space(root, b) < ins_len) {
2905 				if (write_lock_level < 1) {
2906 					write_lock_level = 1;
2907 					btrfs_release_path(p);
2908 					goto again;
2909 				}
2910 
2911 				btrfs_set_path_blocking(p);
2912 				err = split_leaf(trans, root, key,
2913 						 p, ins_len, ret == 0);
2914 				btrfs_clear_path_blocking(p, NULL, 0);
2915 
2916 				BUG_ON(err > 0);
2917 				if (err) {
2918 					ret = err;
2919 					goto done;
2920 				}
2921 			}
2922 			if (!p->search_for_split)
2923 				unlock_up(p, level, lowest_unlock,
2924 					  min_write_lock_level, &write_lock_level);
2925 			goto done;
2926 		}
2927 	}
2928 	ret = 1;
2929 done:
2930 	/*
2931 	 * we don't really know what they plan on doing with the path
2932 	 * from here on, so for now just mark it as blocking
2933 	 */
2934 	if (!p->leave_spinning)
2935 		btrfs_set_path_blocking(p);
2936 	if (ret < 0 && !p->skip_release_on_error)
2937 		btrfs_release_path(p);
2938 	return ret;
2939 }
2940 
2941 /*
2942  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2943  * current state of the tree together with the operations recorded in the tree
2944  * modification log to search for the key in a previous version of this tree, as
2945  * denoted by the time_seq parameter.
2946  *
2947  * Naturally, there is no support for insert, delete or cow operations.
2948  *
2949  * The resulting path and return value will be set up as if we called
2950  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2951  */
2952 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2953 			  struct btrfs_path *p, u64 time_seq)
2954 {
2955 	struct extent_buffer *b;
2956 	int slot;
2957 	int ret;
2958 	int err;
2959 	int level;
2960 	int lowest_unlock = 1;
2961 	u8 lowest_level = 0;
2962 	int prev_cmp = -1;
2963 
2964 	lowest_level = p->lowest_level;
2965 	WARN_ON(p->nodes[0] != NULL);
2966 
2967 	if (p->search_commit_root) {
2968 		BUG_ON(time_seq);
2969 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2970 	}
2971 
2972 again:
2973 	b = get_old_root(root, time_seq);
2974 	level = btrfs_header_level(b);
2975 	p->locks[level] = BTRFS_READ_LOCK;
2976 
2977 	while (b) {
2978 		level = btrfs_header_level(b);
2979 		p->nodes[level] = b;
2980 		btrfs_clear_path_blocking(p, NULL, 0);
2981 
2982 		/*
2983 		 * we have a lock on b and as long as we aren't changing
2984 		 * the tree, there is no way to for the items in b to change.
2985 		 * It is safe to drop the lock on our parent before we
2986 		 * go through the expensive btree search on b.
2987 		 */
2988 		btrfs_unlock_up_safe(p, level + 1);
2989 
2990 		/*
2991 		 * Since we can unwind ebs we want to do a real search every
2992 		 * time.
2993 		 */
2994 		prev_cmp = -1;
2995 		ret = key_search(b, key, level, &prev_cmp, &slot);
2996 
2997 		if (level != 0) {
2998 			int dec = 0;
2999 			if (ret && slot > 0) {
3000 				dec = 1;
3001 				slot -= 1;
3002 			}
3003 			p->slots[level] = slot;
3004 			unlock_up(p, level, lowest_unlock, 0, NULL);
3005 
3006 			if (level == lowest_level) {
3007 				if (dec)
3008 					p->slots[level]++;
3009 				goto done;
3010 			}
3011 
3012 			err = read_block_for_search(NULL, root, p, &b, level,
3013 						    slot, key, time_seq);
3014 			if (err == -EAGAIN)
3015 				goto again;
3016 			if (err) {
3017 				ret = err;
3018 				goto done;
3019 			}
3020 
3021 			level = btrfs_header_level(b);
3022 			err = btrfs_tree_read_lock_atomic(b);
3023 			if (!err) {
3024 				btrfs_set_path_blocking(p);
3025 				btrfs_tree_read_lock(b);
3026 				btrfs_clear_path_blocking(p, b,
3027 							  BTRFS_READ_LOCK);
3028 			}
3029 			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3030 			if (!b) {
3031 				ret = -ENOMEM;
3032 				goto done;
3033 			}
3034 			p->locks[level] = BTRFS_READ_LOCK;
3035 			p->nodes[level] = b;
3036 		} else {
3037 			p->slots[level] = slot;
3038 			unlock_up(p, level, lowest_unlock, 0, NULL);
3039 			goto done;
3040 		}
3041 	}
3042 	ret = 1;
3043 done:
3044 	if (!p->leave_spinning)
3045 		btrfs_set_path_blocking(p);
3046 	if (ret < 0)
3047 		btrfs_release_path(p);
3048 
3049 	return ret;
3050 }
3051 
3052 /*
3053  * helper to use instead of search slot if no exact match is needed but
3054  * instead the next or previous item should be returned.
3055  * When find_higher is true, the next higher item is returned, the next lower
3056  * otherwise.
3057  * When return_any and find_higher are both true, and no higher item is found,
3058  * return the next lower instead.
3059  * When return_any is true and find_higher is false, and no lower item is found,
3060  * return the next higher instead.
3061  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3062  * < 0 on error
3063  */
3064 int btrfs_search_slot_for_read(struct btrfs_root *root,
3065 			       struct btrfs_key *key, struct btrfs_path *p,
3066 			       int find_higher, int return_any)
3067 {
3068 	int ret;
3069 	struct extent_buffer *leaf;
3070 
3071 again:
3072 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3073 	if (ret <= 0)
3074 		return ret;
3075 	/*
3076 	 * a return value of 1 means the path is at the position where the
3077 	 * item should be inserted. Normally this is the next bigger item,
3078 	 * but in case the previous item is the last in a leaf, path points
3079 	 * to the first free slot in the previous leaf, i.e. at an invalid
3080 	 * item.
3081 	 */
3082 	leaf = p->nodes[0];
3083 
3084 	if (find_higher) {
3085 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3086 			ret = btrfs_next_leaf(root, p);
3087 			if (ret <= 0)
3088 				return ret;
3089 			if (!return_any)
3090 				return 1;
3091 			/*
3092 			 * no higher item found, return the next
3093 			 * lower instead
3094 			 */
3095 			return_any = 0;
3096 			find_higher = 0;
3097 			btrfs_release_path(p);
3098 			goto again;
3099 		}
3100 	} else {
3101 		if (p->slots[0] == 0) {
3102 			ret = btrfs_prev_leaf(root, p);
3103 			if (ret < 0)
3104 				return ret;
3105 			if (!ret) {
3106 				leaf = p->nodes[0];
3107 				if (p->slots[0] == btrfs_header_nritems(leaf))
3108 					p->slots[0]--;
3109 				return 0;
3110 			}
3111 			if (!return_any)
3112 				return 1;
3113 			/*
3114 			 * no lower item found, return the next
3115 			 * higher instead
3116 			 */
3117 			return_any = 0;
3118 			find_higher = 1;
3119 			btrfs_release_path(p);
3120 			goto again;
3121 		} else {
3122 			--p->slots[0];
3123 		}
3124 	}
3125 	return 0;
3126 }
3127 
3128 /*
3129  * adjust the pointers going up the tree, starting at level
3130  * making sure the right key of each node is points to 'key'.
3131  * This is used after shifting pointers to the left, so it stops
3132  * fixing up pointers when a given leaf/node is not in slot 0 of the
3133  * higher levels
3134  *
3135  */
3136 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3137 			   struct btrfs_path *path,
3138 			   struct btrfs_disk_key *key, int level)
3139 {
3140 	int i;
3141 	struct extent_buffer *t;
3142 
3143 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3144 		int tslot = path->slots[i];
3145 		if (!path->nodes[i])
3146 			break;
3147 		t = path->nodes[i];
3148 		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3149 		btrfs_set_node_key(t, key, tslot);
3150 		btrfs_mark_buffer_dirty(path->nodes[i]);
3151 		if (tslot != 0)
3152 			break;
3153 	}
3154 }
3155 
3156 /*
3157  * update item key.
3158  *
3159  * This function isn't completely safe. It's the caller's responsibility
3160  * that the new key won't break the order
3161  */
3162 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3163 			     struct btrfs_path *path,
3164 			     struct btrfs_key *new_key)
3165 {
3166 	struct btrfs_disk_key disk_key;
3167 	struct extent_buffer *eb;
3168 	int slot;
3169 
3170 	eb = path->nodes[0];
3171 	slot = path->slots[0];
3172 	if (slot > 0) {
3173 		btrfs_item_key(eb, &disk_key, slot - 1);
3174 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3175 	}
3176 	if (slot < btrfs_header_nritems(eb) - 1) {
3177 		btrfs_item_key(eb, &disk_key, slot + 1);
3178 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3179 	}
3180 
3181 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3182 	btrfs_set_item_key(eb, &disk_key, slot);
3183 	btrfs_mark_buffer_dirty(eb);
3184 	if (slot == 0)
3185 		fixup_low_keys(fs_info, path, &disk_key, 1);
3186 }
3187 
3188 /*
3189  * try to push data from one node into the next node left in the
3190  * tree.
3191  *
3192  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3193  * error, and > 0 if there was no room in the left hand block.
3194  */
3195 static int push_node_left(struct btrfs_trans_handle *trans,
3196 			  struct btrfs_root *root, struct extent_buffer *dst,
3197 			  struct extent_buffer *src, int empty)
3198 {
3199 	int push_items = 0;
3200 	int src_nritems;
3201 	int dst_nritems;
3202 	int ret = 0;
3203 
3204 	src_nritems = btrfs_header_nritems(src);
3205 	dst_nritems = btrfs_header_nritems(dst);
3206 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3207 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3208 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3209 
3210 	if (!empty && src_nritems <= 8)
3211 		return 1;
3212 
3213 	if (push_items <= 0)
3214 		return 1;
3215 
3216 	if (empty) {
3217 		push_items = min(src_nritems, push_items);
3218 		if (push_items < src_nritems) {
3219 			/* leave at least 8 pointers in the node if
3220 			 * we aren't going to empty it
3221 			 */
3222 			if (src_nritems - push_items < 8) {
3223 				if (push_items <= 8)
3224 					return 1;
3225 				push_items -= 8;
3226 			}
3227 		}
3228 	} else
3229 		push_items = min(src_nritems - 8, push_items);
3230 
3231 	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3232 				   push_items);
3233 	if (ret) {
3234 		btrfs_abort_transaction(trans, root, ret);
3235 		return ret;
3236 	}
3237 	copy_extent_buffer(dst, src,
3238 			   btrfs_node_key_ptr_offset(dst_nritems),
3239 			   btrfs_node_key_ptr_offset(0),
3240 			   push_items * sizeof(struct btrfs_key_ptr));
3241 
3242 	if (push_items < src_nritems) {
3243 		/*
3244 		 * don't call tree_mod_log_eb_move here, key removal was already
3245 		 * fully logged by tree_mod_log_eb_copy above.
3246 		 */
3247 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3248 				      btrfs_node_key_ptr_offset(push_items),
3249 				      (src_nritems - push_items) *
3250 				      sizeof(struct btrfs_key_ptr));
3251 	}
3252 	btrfs_set_header_nritems(src, src_nritems - push_items);
3253 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3254 	btrfs_mark_buffer_dirty(src);
3255 	btrfs_mark_buffer_dirty(dst);
3256 
3257 	return ret;
3258 }
3259 
3260 /*
3261  * try to push data from one node into the next node right in the
3262  * tree.
3263  *
3264  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3265  * error, and > 0 if there was no room in the right hand block.
3266  *
3267  * this will  only push up to 1/2 the contents of the left node over
3268  */
3269 static int balance_node_right(struct btrfs_trans_handle *trans,
3270 			      struct btrfs_root *root,
3271 			      struct extent_buffer *dst,
3272 			      struct extent_buffer *src)
3273 {
3274 	int push_items = 0;
3275 	int max_push;
3276 	int src_nritems;
3277 	int dst_nritems;
3278 	int ret = 0;
3279 
3280 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3281 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3282 
3283 	src_nritems = btrfs_header_nritems(src);
3284 	dst_nritems = btrfs_header_nritems(dst);
3285 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3286 	if (push_items <= 0)
3287 		return 1;
3288 
3289 	if (src_nritems < 4)
3290 		return 1;
3291 
3292 	max_push = src_nritems / 2 + 1;
3293 	/* don't try to empty the node */
3294 	if (max_push >= src_nritems)
3295 		return 1;
3296 
3297 	if (max_push < push_items)
3298 		push_items = max_push;
3299 
3300 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3301 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3302 				      btrfs_node_key_ptr_offset(0),
3303 				      (dst_nritems) *
3304 				      sizeof(struct btrfs_key_ptr));
3305 
3306 	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3307 				   src_nritems - push_items, push_items);
3308 	if (ret) {
3309 		btrfs_abort_transaction(trans, root, ret);
3310 		return ret;
3311 	}
3312 	copy_extent_buffer(dst, src,
3313 			   btrfs_node_key_ptr_offset(0),
3314 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3315 			   push_items * sizeof(struct btrfs_key_ptr));
3316 
3317 	btrfs_set_header_nritems(src, src_nritems - push_items);
3318 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3319 
3320 	btrfs_mark_buffer_dirty(src);
3321 	btrfs_mark_buffer_dirty(dst);
3322 
3323 	return ret;
3324 }
3325 
3326 /*
3327  * helper function to insert a new root level in the tree.
3328  * A new node is allocated, and a single item is inserted to
3329  * point to the existing root
3330  *
3331  * returns zero on success or < 0 on failure.
3332  */
3333 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3334 			   struct btrfs_root *root,
3335 			   struct btrfs_path *path, int level)
3336 {
3337 	u64 lower_gen;
3338 	struct extent_buffer *lower;
3339 	struct extent_buffer *c;
3340 	struct extent_buffer *old;
3341 	struct btrfs_disk_key lower_key;
3342 
3343 	BUG_ON(path->nodes[level]);
3344 	BUG_ON(path->nodes[level-1] != root->node);
3345 
3346 	lower = path->nodes[level-1];
3347 	if (level == 1)
3348 		btrfs_item_key(lower, &lower_key, 0);
3349 	else
3350 		btrfs_node_key(lower, &lower_key, 0);
3351 
3352 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3353 				   &lower_key, level, root->node->start, 0);
3354 	if (IS_ERR(c))
3355 		return PTR_ERR(c);
3356 
3357 	root_add_used(root, root->nodesize);
3358 
3359 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3360 	btrfs_set_header_nritems(c, 1);
3361 	btrfs_set_header_level(c, level);
3362 	btrfs_set_header_bytenr(c, c->start);
3363 	btrfs_set_header_generation(c, trans->transid);
3364 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3365 	btrfs_set_header_owner(c, root->root_key.objectid);
3366 
3367 	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3368 			    BTRFS_FSID_SIZE);
3369 
3370 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3371 			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3372 
3373 	btrfs_set_node_key(c, &lower_key, 0);
3374 	btrfs_set_node_blockptr(c, 0, lower->start);
3375 	lower_gen = btrfs_header_generation(lower);
3376 	WARN_ON(lower_gen != trans->transid);
3377 
3378 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3379 
3380 	btrfs_mark_buffer_dirty(c);
3381 
3382 	old = root->node;
3383 	tree_mod_log_set_root_pointer(root, c, 0);
3384 	rcu_assign_pointer(root->node, c);
3385 
3386 	/* the super has an extra ref to root->node */
3387 	free_extent_buffer(old);
3388 
3389 	add_root_to_dirty_list(root);
3390 	extent_buffer_get(c);
3391 	path->nodes[level] = c;
3392 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3393 	path->slots[level] = 0;
3394 	return 0;
3395 }
3396 
3397 /*
3398  * worker function to insert a single pointer in a node.
3399  * the node should have enough room for the pointer already
3400  *
3401  * slot and level indicate where you want the key to go, and
3402  * blocknr is the block the key points to.
3403  */
3404 static void insert_ptr(struct btrfs_trans_handle *trans,
3405 		       struct btrfs_root *root, struct btrfs_path *path,
3406 		       struct btrfs_disk_key *key, u64 bytenr,
3407 		       int slot, int level)
3408 {
3409 	struct extent_buffer *lower;
3410 	int nritems;
3411 	int ret;
3412 
3413 	BUG_ON(!path->nodes[level]);
3414 	btrfs_assert_tree_locked(path->nodes[level]);
3415 	lower = path->nodes[level];
3416 	nritems = btrfs_header_nritems(lower);
3417 	BUG_ON(slot > nritems);
3418 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3419 	if (slot != nritems) {
3420 		if (level)
3421 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3422 					     slot, nritems - slot);
3423 		memmove_extent_buffer(lower,
3424 			      btrfs_node_key_ptr_offset(slot + 1),
3425 			      btrfs_node_key_ptr_offset(slot),
3426 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3427 	}
3428 	if (level) {
3429 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3430 					      MOD_LOG_KEY_ADD, GFP_NOFS);
3431 		BUG_ON(ret < 0);
3432 	}
3433 	btrfs_set_node_key(lower, key, slot);
3434 	btrfs_set_node_blockptr(lower, slot, bytenr);
3435 	WARN_ON(trans->transid == 0);
3436 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3437 	btrfs_set_header_nritems(lower, nritems + 1);
3438 	btrfs_mark_buffer_dirty(lower);
3439 }
3440 
3441 /*
3442  * split the node at the specified level in path in two.
3443  * The path is corrected to point to the appropriate node after the split
3444  *
3445  * Before splitting this tries to make some room in the node by pushing
3446  * left and right, if either one works, it returns right away.
3447  *
3448  * returns 0 on success and < 0 on failure
3449  */
3450 static noinline int split_node(struct btrfs_trans_handle *trans,
3451 			       struct btrfs_root *root,
3452 			       struct btrfs_path *path, int level)
3453 {
3454 	struct extent_buffer *c;
3455 	struct extent_buffer *split;
3456 	struct btrfs_disk_key disk_key;
3457 	int mid;
3458 	int ret;
3459 	u32 c_nritems;
3460 
3461 	c = path->nodes[level];
3462 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3463 	if (c == root->node) {
3464 		/*
3465 		 * trying to split the root, lets make a new one
3466 		 *
3467 		 * tree mod log: We don't log_removal old root in
3468 		 * insert_new_root, because that root buffer will be kept as a
3469 		 * normal node. We are going to log removal of half of the
3470 		 * elements below with tree_mod_log_eb_copy. We're holding a
3471 		 * tree lock on the buffer, which is why we cannot race with
3472 		 * other tree_mod_log users.
3473 		 */
3474 		ret = insert_new_root(trans, root, path, level + 1);
3475 		if (ret)
3476 			return ret;
3477 	} else {
3478 		ret = push_nodes_for_insert(trans, root, path, level);
3479 		c = path->nodes[level];
3480 		if (!ret && btrfs_header_nritems(c) <
3481 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3482 			return 0;
3483 		if (ret < 0)
3484 			return ret;
3485 	}
3486 
3487 	c_nritems = btrfs_header_nritems(c);
3488 	mid = (c_nritems + 1) / 2;
3489 	btrfs_node_key(c, &disk_key, mid);
3490 
3491 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3492 			&disk_key, level, c->start, 0);
3493 	if (IS_ERR(split))
3494 		return PTR_ERR(split);
3495 
3496 	root_add_used(root, root->nodesize);
3497 
3498 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3499 	btrfs_set_header_level(split, btrfs_header_level(c));
3500 	btrfs_set_header_bytenr(split, split->start);
3501 	btrfs_set_header_generation(split, trans->transid);
3502 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3503 	btrfs_set_header_owner(split, root->root_key.objectid);
3504 	write_extent_buffer(split, root->fs_info->fsid,
3505 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
3506 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3507 			    btrfs_header_chunk_tree_uuid(split),
3508 			    BTRFS_UUID_SIZE);
3509 
3510 	ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3511 				   mid, c_nritems - mid);
3512 	if (ret) {
3513 		btrfs_abort_transaction(trans, root, ret);
3514 		return ret;
3515 	}
3516 	copy_extent_buffer(split, c,
3517 			   btrfs_node_key_ptr_offset(0),
3518 			   btrfs_node_key_ptr_offset(mid),
3519 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3520 	btrfs_set_header_nritems(split, c_nritems - mid);
3521 	btrfs_set_header_nritems(c, mid);
3522 	ret = 0;
3523 
3524 	btrfs_mark_buffer_dirty(c);
3525 	btrfs_mark_buffer_dirty(split);
3526 
3527 	insert_ptr(trans, root, path, &disk_key, split->start,
3528 		   path->slots[level + 1] + 1, level + 1);
3529 
3530 	if (path->slots[level] >= mid) {
3531 		path->slots[level] -= mid;
3532 		btrfs_tree_unlock(c);
3533 		free_extent_buffer(c);
3534 		path->nodes[level] = split;
3535 		path->slots[level + 1] += 1;
3536 	} else {
3537 		btrfs_tree_unlock(split);
3538 		free_extent_buffer(split);
3539 	}
3540 	return ret;
3541 }
3542 
3543 /*
3544  * how many bytes are required to store the items in a leaf.  start
3545  * and nr indicate which items in the leaf to check.  This totals up the
3546  * space used both by the item structs and the item data
3547  */
3548 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3549 {
3550 	struct btrfs_item *start_item;
3551 	struct btrfs_item *end_item;
3552 	struct btrfs_map_token token;
3553 	int data_len;
3554 	int nritems = btrfs_header_nritems(l);
3555 	int end = min(nritems, start + nr) - 1;
3556 
3557 	if (!nr)
3558 		return 0;
3559 	btrfs_init_map_token(&token);
3560 	start_item = btrfs_item_nr(start);
3561 	end_item = btrfs_item_nr(end);
3562 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3563 		btrfs_token_item_size(l, start_item, &token);
3564 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3565 	data_len += sizeof(struct btrfs_item) * nr;
3566 	WARN_ON(data_len < 0);
3567 	return data_len;
3568 }
3569 
3570 /*
3571  * The space between the end of the leaf items and
3572  * the start of the leaf data.  IOW, how much room
3573  * the leaf has left for both items and data
3574  */
3575 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3576 				   struct extent_buffer *leaf)
3577 {
3578 	int nritems = btrfs_header_nritems(leaf);
3579 	int ret;
3580 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3581 	if (ret < 0) {
3582 		btrfs_crit(root->fs_info,
3583 			"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3584 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3585 		       leaf_space_used(leaf, 0, nritems), nritems);
3586 	}
3587 	return ret;
3588 }
3589 
3590 /*
3591  * min slot controls the lowest index we're willing to push to the
3592  * right.  We'll push up to and including min_slot, but no lower
3593  */
3594 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3595 				      struct btrfs_root *root,
3596 				      struct btrfs_path *path,
3597 				      int data_size, int empty,
3598 				      struct extent_buffer *right,
3599 				      int free_space, u32 left_nritems,
3600 				      u32 min_slot)
3601 {
3602 	struct extent_buffer *left = path->nodes[0];
3603 	struct extent_buffer *upper = path->nodes[1];
3604 	struct btrfs_map_token token;
3605 	struct btrfs_disk_key disk_key;
3606 	int slot;
3607 	u32 i;
3608 	int push_space = 0;
3609 	int push_items = 0;
3610 	struct btrfs_item *item;
3611 	u32 nr;
3612 	u32 right_nritems;
3613 	u32 data_end;
3614 	u32 this_item_size;
3615 
3616 	btrfs_init_map_token(&token);
3617 
3618 	if (empty)
3619 		nr = 0;
3620 	else
3621 		nr = max_t(u32, 1, min_slot);
3622 
3623 	if (path->slots[0] >= left_nritems)
3624 		push_space += data_size;
3625 
3626 	slot = path->slots[1];
3627 	i = left_nritems - 1;
3628 	while (i >= nr) {
3629 		item = btrfs_item_nr(i);
3630 
3631 		if (!empty && push_items > 0) {
3632 			if (path->slots[0] > i)
3633 				break;
3634 			if (path->slots[0] == i) {
3635 				int space = btrfs_leaf_free_space(root, left);
3636 				if (space + push_space * 2 > free_space)
3637 					break;
3638 			}
3639 		}
3640 
3641 		if (path->slots[0] == i)
3642 			push_space += data_size;
3643 
3644 		this_item_size = btrfs_item_size(left, item);
3645 		if (this_item_size + sizeof(*item) + push_space > free_space)
3646 			break;
3647 
3648 		push_items++;
3649 		push_space += this_item_size + sizeof(*item);
3650 		if (i == 0)
3651 			break;
3652 		i--;
3653 	}
3654 
3655 	if (push_items == 0)
3656 		goto out_unlock;
3657 
3658 	WARN_ON(!empty && push_items == left_nritems);
3659 
3660 	/* push left to right */
3661 	right_nritems = btrfs_header_nritems(right);
3662 
3663 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3664 	push_space -= leaf_data_end(root, left);
3665 
3666 	/* make room in the right data area */
3667 	data_end = leaf_data_end(root, right);
3668 	memmove_extent_buffer(right,
3669 			      btrfs_leaf_data(right) + data_end - push_space,
3670 			      btrfs_leaf_data(right) + data_end,
3671 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3672 
3673 	/* copy from the left data area */
3674 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3675 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3676 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3677 		     push_space);
3678 
3679 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3680 			      btrfs_item_nr_offset(0),
3681 			      right_nritems * sizeof(struct btrfs_item));
3682 
3683 	/* copy the items from left to right */
3684 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3685 		   btrfs_item_nr_offset(left_nritems - push_items),
3686 		   push_items * sizeof(struct btrfs_item));
3687 
3688 	/* update the item pointers */
3689 	right_nritems += push_items;
3690 	btrfs_set_header_nritems(right, right_nritems);
3691 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3692 	for (i = 0; i < right_nritems; i++) {
3693 		item = btrfs_item_nr(i);
3694 		push_space -= btrfs_token_item_size(right, item, &token);
3695 		btrfs_set_token_item_offset(right, item, push_space, &token);
3696 	}
3697 
3698 	left_nritems -= push_items;
3699 	btrfs_set_header_nritems(left, left_nritems);
3700 
3701 	if (left_nritems)
3702 		btrfs_mark_buffer_dirty(left);
3703 	else
3704 		clean_tree_block(trans, root->fs_info, left);
3705 
3706 	btrfs_mark_buffer_dirty(right);
3707 
3708 	btrfs_item_key(right, &disk_key, 0);
3709 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3710 	btrfs_mark_buffer_dirty(upper);
3711 
3712 	/* then fixup the leaf pointer in the path */
3713 	if (path->slots[0] >= left_nritems) {
3714 		path->slots[0] -= left_nritems;
3715 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3716 			clean_tree_block(trans, root->fs_info, path->nodes[0]);
3717 		btrfs_tree_unlock(path->nodes[0]);
3718 		free_extent_buffer(path->nodes[0]);
3719 		path->nodes[0] = right;
3720 		path->slots[1] += 1;
3721 	} else {
3722 		btrfs_tree_unlock(right);
3723 		free_extent_buffer(right);
3724 	}
3725 	return 0;
3726 
3727 out_unlock:
3728 	btrfs_tree_unlock(right);
3729 	free_extent_buffer(right);
3730 	return 1;
3731 }
3732 
3733 /*
3734  * push some data in the path leaf to the right, trying to free up at
3735  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3736  *
3737  * returns 1 if the push failed because the other node didn't have enough
3738  * room, 0 if everything worked out and < 0 if there were major errors.
3739  *
3740  * this will push starting from min_slot to the end of the leaf.  It won't
3741  * push any slot lower than min_slot
3742  */
3743 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3744 			   *root, struct btrfs_path *path,
3745 			   int min_data_size, int data_size,
3746 			   int empty, u32 min_slot)
3747 {
3748 	struct extent_buffer *left = path->nodes[0];
3749 	struct extent_buffer *right;
3750 	struct extent_buffer *upper;
3751 	int slot;
3752 	int free_space;
3753 	u32 left_nritems;
3754 	int ret;
3755 
3756 	if (!path->nodes[1])
3757 		return 1;
3758 
3759 	slot = path->slots[1];
3760 	upper = path->nodes[1];
3761 	if (slot >= btrfs_header_nritems(upper) - 1)
3762 		return 1;
3763 
3764 	btrfs_assert_tree_locked(path->nodes[1]);
3765 
3766 	right = read_node_slot(root, upper, slot + 1);
3767 	if (right == NULL)
3768 		return 1;
3769 
3770 	btrfs_tree_lock(right);
3771 	btrfs_set_lock_blocking(right);
3772 
3773 	free_space = btrfs_leaf_free_space(root, right);
3774 	if (free_space < data_size)
3775 		goto out_unlock;
3776 
3777 	/* cow and double check */
3778 	ret = btrfs_cow_block(trans, root, right, upper,
3779 			      slot + 1, &right);
3780 	if (ret)
3781 		goto out_unlock;
3782 
3783 	free_space = btrfs_leaf_free_space(root, right);
3784 	if (free_space < data_size)
3785 		goto out_unlock;
3786 
3787 	left_nritems = btrfs_header_nritems(left);
3788 	if (left_nritems == 0)
3789 		goto out_unlock;
3790 
3791 	if (path->slots[0] == left_nritems && !empty) {
3792 		/* Key greater than all keys in the leaf, right neighbor has
3793 		 * enough room for it and we're not emptying our leaf to delete
3794 		 * it, therefore use right neighbor to insert the new item and
3795 		 * no need to touch/dirty our left leaft. */
3796 		btrfs_tree_unlock(left);
3797 		free_extent_buffer(left);
3798 		path->nodes[0] = right;
3799 		path->slots[0] = 0;
3800 		path->slots[1]++;
3801 		return 0;
3802 	}
3803 
3804 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3805 				right, free_space, left_nritems, min_slot);
3806 out_unlock:
3807 	btrfs_tree_unlock(right);
3808 	free_extent_buffer(right);
3809 	return 1;
3810 }
3811 
3812 /*
3813  * push some data in the path leaf to the left, trying to free up at
3814  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3815  *
3816  * max_slot can put a limit on how far into the leaf we'll push items.  The
3817  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3818  * items
3819  */
3820 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3821 				     struct btrfs_root *root,
3822 				     struct btrfs_path *path, int data_size,
3823 				     int empty, struct extent_buffer *left,
3824 				     int free_space, u32 right_nritems,
3825 				     u32 max_slot)
3826 {
3827 	struct btrfs_disk_key disk_key;
3828 	struct extent_buffer *right = path->nodes[0];
3829 	int i;
3830 	int push_space = 0;
3831 	int push_items = 0;
3832 	struct btrfs_item *item;
3833 	u32 old_left_nritems;
3834 	u32 nr;
3835 	int ret = 0;
3836 	u32 this_item_size;
3837 	u32 old_left_item_size;
3838 	struct btrfs_map_token token;
3839 
3840 	btrfs_init_map_token(&token);
3841 
3842 	if (empty)
3843 		nr = min(right_nritems, max_slot);
3844 	else
3845 		nr = min(right_nritems - 1, max_slot);
3846 
3847 	for (i = 0; i < nr; i++) {
3848 		item = btrfs_item_nr(i);
3849 
3850 		if (!empty && push_items > 0) {
3851 			if (path->slots[0] < i)
3852 				break;
3853 			if (path->slots[0] == i) {
3854 				int space = btrfs_leaf_free_space(root, right);
3855 				if (space + push_space * 2 > free_space)
3856 					break;
3857 			}
3858 		}
3859 
3860 		if (path->slots[0] == i)
3861 			push_space += data_size;
3862 
3863 		this_item_size = btrfs_item_size(right, item);
3864 		if (this_item_size + sizeof(*item) + push_space > free_space)
3865 			break;
3866 
3867 		push_items++;
3868 		push_space += this_item_size + sizeof(*item);
3869 	}
3870 
3871 	if (push_items == 0) {
3872 		ret = 1;
3873 		goto out;
3874 	}
3875 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3876 
3877 	/* push data from right to left */
3878 	copy_extent_buffer(left, right,
3879 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3880 			   btrfs_item_nr_offset(0),
3881 			   push_items * sizeof(struct btrfs_item));
3882 
3883 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3884 		     btrfs_item_offset_nr(right, push_items - 1);
3885 
3886 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3887 		     leaf_data_end(root, left) - push_space,
3888 		     btrfs_leaf_data(right) +
3889 		     btrfs_item_offset_nr(right, push_items - 1),
3890 		     push_space);
3891 	old_left_nritems = btrfs_header_nritems(left);
3892 	BUG_ON(old_left_nritems <= 0);
3893 
3894 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3895 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3896 		u32 ioff;
3897 
3898 		item = btrfs_item_nr(i);
3899 
3900 		ioff = btrfs_token_item_offset(left, item, &token);
3901 		btrfs_set_token_item_offset(left, item,
3902 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3903 		      &token);
3904 	}
3905 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3906 
3907 	/* fixup right node */
3908 	if (push_items > right_nritems)
3909 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3910 		       right_nritems);
3911 
3912 	if (push_items < right_nritems) {
3913 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3914 						  leaf_data_end(root, right);
3915 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3916 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3917 				      btrfs_leaf_data(right) +
3918 				      leaf_data_end(root, right), push_space);
3919 
3920 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3921 			      btrfs_item_nr_offset(push_items),
3922 			     (btrfs_header_nritems(right) - push_items) *
3923 			     sizeof(struct btrfs_item));
3924 	}
3925 	right_nritems -= push_items;
3926 	btrfs_set_header_nritems(right, right_nritems);
3927 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3928 	for (i = 0; i < right_nritems; i++) {
3929 		item = btrfs_item_nr(i);
3930 
3931 		push_space = push_space - btrfs_token_item_size(right,
3932 								item, &token);
3933 		btrfs_set_token_item_offset(right, item, push_space, &token);
3934 	}
3935 
3936 	btrfs_mark_buffer_dirty(left);
3937 	if (right_nritems)
3938 		btrfs_mark_buffer_dirty(right);
3939 	else
3940 		clean_tree_block(trans, root->fs_info, right);
3941 
3942 	btrfs_item_key(right, &disk_key, 0);
3943 	fixup_low_keys(root->fs_info, path, &disk_key, 1);
3944 
3945 	/* then fixup the leaf pointer in the path */
3946 	if (path->slots[0] < push_items) {
3947 		path->slots[0] += old_left_nritems;
3948 		btrfs_tree_unlock(path->nodes[0]);
3949 		free_extent_buffer(path->nodes[0]);
3950 		path->nodes[0] = left;
3951 		path->slots[1] -= 1;
3952 	} else {
3953 		btrfs_tree_unlock(left);
3954 		free_extent_buffer(left);
3955 		path->slots[0] -= push_items;
3956 	}
3957 	BUG_ON(path->slots[0] < 0);
3958 	return ret;
3959 out:
3960 	btrfs_tree_unlock(left);
3961 	free_extent_buffer(left);
3962 	return ret;
3963 }
3964 
3965 /*
3966  * push some data in the path leaf to the left, trying to free up at
3967  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3968  *
3969  * max_slot can put a limit on how far into the leaf we'll push items.  The
3970  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3971  * items
3972  */
3973 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3974 			  *root, struct btrfs_path *path, int min_data_size,
3975 			  int data_size, int empty, u32 max_slot)
3976 {
3977 	struct extent_buffer *right = path->nodes[0];
3978 	struct extent_buffer *left;
3979 	int slot;
3980 	int free_space;
3981 	u32 right_nritems;
3982 	int ret = 0;
3983 
3984 	slot = path->slots[1];
3985 	if (slot == 0)
3986 		return 1;
3987 	if (!path->nodes[1])
3988 		return 1;
3989 
3990 	right_nritems = btrfs_header_nritems(right);
3991 	if (right_nritems == 0)
3992 		return 1;
3993 
3994 	btrfs_assert_tree_locked(path->nodes[1]);
3995 
3996 	left = read_node_slot(root, path->nodes[1], slot - 1);
3997 	if (left == NULL)
3998 		return 1;
3999 
4000 	btrfs_tree_lock(left);
4001 	btrfs_set_lock_blocking(left);
4002 
4003 	free_space = btrfs_leaf_free_space(root, left);
4004 	if (free_space < data_size) {
4005 		ret = 1;
4006 		goto out;
4007 	}
4008 
4009 	/* cow and double check */
4010 	ret = btrfs_cow_block(trans, root, left,
4011 			      path->nodes[1], slot - 1, &left);
4012 	if (ret) {
4013 		/* we hit -ENOSPC, but it isn't fatal here */
4014 		if (ret == -ENOSPC)
4015 			ret = 1;
4016 		goto out;
4017 	}
4018 
4019 	free_space = btrfs_leaf_free_space(root, left);
4020 	if (free_space < data_size) {
4021 		ret = 1;
4022 		goto out;
4023 	}
4024 
4025 	return __push_leaf_left(trans, root, path, min_data_size,
4026 			       empty, left, free_space, right_nritems,
4027 			       max_slot);
4028 out:
4029 	btrfs_tree_unlock(left);
4030 	free_extent_buffer(left);
4031 	return ret;
4032 }
4033 
4034 /*
4035  * split the path's leaf in two, making sure there is at least data_size
4036  * available for the resulting leaf level of the path.
4037  */
4038 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4039 				    struct btrfs_root *root,
4040 				    struct btrfs_path *path,
4041 				    struct extent_buffer *l,
4042 				    struct extent_buffer *right,
4043 				    int slot, int mid, int nritems)
4044 {
4045 	int data_copy_size;
4046 	int rt_data_off;
4047 	int i;
4048 	struct btrfs_disk_key disk_key;
4049 	struct btrfs_map_token token;
4050 
4051 	btrfs_init_map_token(&token);
4052 
4053 	nritems = nritems - mid;
4054 	btrfs_set_header_nritems(right, nritems);
4055 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4056 
4057 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4058 			   btrfs_item_nr_offset(mid),
4059 			   nritems * sizeof(struct btrfs_item));
4060 
4061 	copy_extent_buffer(right, l,
4062 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4063 		     data_copy_size, btrfs_leaf_data(l) +
4064 		     leaf_data_end(root, l), data_copy_size);
4065 
4066 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4067 		      btrfs_item_end_nr(l, mid);
4068 
4069 	for (i = 0; i < nritems; i++) {
4070 		struct btrfs_item *item = btrfs_item_nr(i);
4071 		u32 ioff;
4072 
4073 		ioff = btrfs_token_item_offset(right, item, &token);
4074 		btrfs_set_token_item_offset(right, item,
4075 					    ioff + rt_data_off, &token);
4076 	}
4077 
4078 	btrfs_set_header_nritems(l, mid);
4079 	btrfs_item_key(right, &disk_key, 0);
4080 	insert_ptr(trans, root, path, &disk_key, right->start,
4081 		   path->slots[1] + 1, 1);
4082 
4083 	btrfs_mark_buffer_dirty(right);
4084 	btrfs_mark_buffer_dirty(l);
4085 	BUG_ON(path->slots[0] != slot);
4086 
4087 	if (mid <= slot) {
4088 		btrfs_tree_unlock(path->nodes[0]);
4089 		free_extent_buffer(path->nodes[0]);
4090 		path->nodes[0] = right;
4091 		path->slots[0] -= mid;
4092 		path->slots[1] += 1;
4093 	} else {
4094 		btrfs_tree_unlock(right);
4095 		free_extent_buffer(right);
4096 	}
4097 
4098 	BUG_ON(path->slots[0] < 0);
4099 }
4100 
4101 /*
4102  * double splits happen when we need to insert a big item in the middle
4103  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4104  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4105  *          A                 B                 C
4106  *
4107  * We avoid this by trying to push the items on either side of our target
4108  * into the adjacent leaves.  If all goes well we can avoid the double split
4109  * completely.
4110  */
4111 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4112 					  struct btrfs_root *root,
4113 					  struct btrfs_path *path,
4114 					  int data_size)
4115 {
4116 	int ret;
4117 	int progress = 0;
4118 	int slot;
4119 	u32 nritems;
4120 	int space_needed = data_size;
4121 
4122 	slot = path->slots[0];
4123 	if (slot < btrfs_header_nritems(path->nodes[0]))
4124 		space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4125 
4126 	/*
4127 	 * try to push all the items after our slot into the
4128 	 * right leaf
4129 	 */
4130 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4131 	if (ret < 0)
4132 		return ret;
4133 
4134 	if (ret == 0)
4135 		progress++;
4136 
4137 	nritems = btrfs_header_nritems(path->nodes[0]);
4138 	/*
4139 	 * our goal is to get our slot at the start or end of a leaf.  If
4140 	 * we've done so we're done
4141 	 */
4142 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4143 		return 0;
4144 
4145 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4146 		return 0;
4147 
4148 	/* try to push all the items before our slot into the next leaf */
4149 	slot = path->slots[0];
4150 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4151 	if (ret < 0)
4152 		return ret;
4153 
4154 	if (ret == 0)
4155 		progress++;
4156 
4157 	if (progress)
4158 		return 0;
4159 	return 1;
4160 }
4161 
4162 /*
4163  * split the path's leaf in two, making sure there is at least data_size
4164  * available for the resulting leaf level of the path.
4165  *
4166  * returns 0 if all went well and < 0 on failure.
4167  */
4168 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4169 			       struct btrfs_root *root,
4170 			       struct btrfs_key *ins_key,
4171 			       struct btrfs_path *path, int data_size,
4172 			       int extend)
4173 {
4174 	struct btrfs_disk_key disk_key;
4175 	struct extent_buffer *l;
4176 	u32 nritems;
4177 	int mid;
4178 	int slot;
4179 	struct extent_buffer *right;
4180 	struct btrfs_fs_info *fs_info = root->fs_info;
4181 	int ret = 0;
4182 	int wret;
4183 	int split;
4184 	int num_doubles = 0;
4185 	int tried_avoid_double = 0;
4186 
4187 	l = path->nodes[0];
4188 	slot = path->slots[0];
4189 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4190 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4191 		return -EOVERFLOW;
4192 
4193 	/* first try to make some room by pushing left and right */
4194 	if (data_size && path->nodes[1]) {
4195 		int space_needed = data_size;
4196 
4197 		if (slot < btrfs_header_nritems(l))
4198 			space_needed -= btrfs_leaf_free_space(root, l);
4199 
4200 		wret = push_leaf_right(trans, root, path, space_needed,
4201 				       space_needed, 0, 0);
4202 		if (wret < 0)
4203 			return wret;
4204 		if (wret) {
4205 			wret = push_leaf_left(trans, root, path, space_needed,
4206 					      space_needed, 0, (u32)-1);
4207 			if (wret < 0)
4208 				return wret;
4209 		}
4210 		l = path->nodes[0];
4211 
4212 		/* did the pushes work? */
4213 		if (btrfs_leaf_free_space(root, l) >= data_size)
4214 			return 0;
4215 	}
4216 
4217 	if (!path->nodes[1]) {
4218 		ret = insert_new_root(trans, root, path, 1);
4219 		if (ret)
4220 			return ret;
4221 	}
4222 again:
4223 	split = 1;
4224 	l = path->nodes[0];
4225 	slot = path->slots[0];
4226 	nritems = btrfs_header_nritems(l);
4227 	mid = (nritems + 1) / 2;
4228 
4229 	if (mid <= slot) {
4230 		if (nritems == 1 ||
4231 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4232 			BTRFS_LEAF_DATA_SIZE(root)) {
4233 			if (slot >= nritems) {
4234 				split = 0;
4235 			} else {
4236 				mid = slot;
4237 				if (mid != nritems &&
4238 				    leaf_space_used(l, mid, nritems - mid) +
4239 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4240 					if (data_size && !tried_avoid_double)
4241 						goto push_for_double;
4242 					split = 2;
4243 				}
4244 			}
4245 		}
4246 	} else {
4247 		if (leaf_space_used(l, 0, mid) + data_size >
4248 			BTRFS_LEAF_DATA_SIZE(root)) {
4249 			if (!extend && data_size && slot == 0) {
4250 				split = 0;
4251 			} else if ((extend || !data_size) && slot == 0) {
4252 				mid = 1;
4253 			} else {
4254 				mid = slot;
4255 				if (mid != nritems &&
4256 				    leaf_space_used(l, mid, nritems - mid) +
4257 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4258 					if (data_size && !tried_avoid_double)
4259 						goto push_for_double;
4260 					split = 2;
4261 				}
4262 			}
4263 		}
4264 	}
4265 
4266 	if (split == 0)
4267 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4268 	else
4269 		btrfs_item_key(l, &disk_key, mid);
4270 
4271 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4272 			&disk_key, 0, l->start, 0);
4273 	if (IS_ERR(right))
4274 		return PTR_ERR(right);
4275 
4276 	root_add_used(root, root->nodesize);
4277 
4278 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4279 	btrfs_set_header_bytenr(right, right->start);
4280 	btrfs_set_header_generation(right, trans->transid);
4281 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4282 	btrfs_set_header_owner(right, root->root_key.objectid);
4283 	btrfs_set_header_level(right, 0);
4284 	write_extent_buffer(right, fs_info->fsid,
4285 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
4286 
4287 	write_extent_buffer(right, fs_info->chunk_tree_uuid,
4288 			    btrfs_header_chunk_tree_uuid(right),
4289 			    BTRFS_UUID_SIZE);
4290 
4291 	if (split == 0) {
4292 		if (mid <= slot) {
4293 			btrfs_set_header_nritems(right, 0);
4294 			insert_ptr(trans, root, path, &disk_key, right->start,
4295 				   path->slots[1] + 1, 1);
4296 			btrfs_tree_unlock(path->nodes[0]);
4297 			free_extent_buffer(path->nodes[0]);
4298 			path->nodes[0] = right;
4299 			path->slots[0] = 0;
4300 			path->slots[1] += 1;
4301 		} else {
4302 			btrfs_set_header_nritems(right, 0);
4303 			insert_ptr(trans, root, path, &disk_key, right->start,
4304 					  path->slots[1], 1);
4305 			btrfs_tree_unlock(path->nodes[0]);
4306 			free_extent_buffer(path->nodes[0]);
4307 			path->nodes[0] = right;
4308 			path->slots[0] = 0;
4309 			if (path->slots[1] == 0)
4310 				fixup_low_keys(fs_info, path, &disk_key, 1);
4311 		}
4312 		btrfs_mark_buffer_dirty(right);
4313 		return ret;
4314 	}
4315 
4316 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4317 
4318 	if (split == 2) {
4319 		BUG_ON(num_doubles != 0);
4320 		num_doubles++;
4321 		goto again;
4322 	}
4323 
4324 	return 0;
4325 
4326 push_for_double:
4327 	push_for_double_split(trans, root, path, data_size);
4328 	tried_avoid_double = 1;
4329 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4330 		return 0;
4331 	goto again;
4332 }
4333 
4334 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4335 					 struct btrfs_root *root,
4336 					 struct btrfs_path *path, int ins_len)
4337 {
4338 	struct btrfs_key key;
4339 	struct extent_buffer *leaf;
4340 	struct btrfs_file_extent_item *fi;
4341 	u64 extent_len = 0;
4342 	u32 item_size;
4343 	int ret;
4344 
4345 	leaf = path->nodes[0];
4346 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4347 
4348 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4349 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4350 
4351 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4352 		return 0;
4353 
4354 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4355 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4356 		fi = btrfs_item_ptr(leaf, path->slots[0],
4357 				    struct btrfs_file_extent_item);
4358 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4359 	}
4360 	btrfs_release_path(path);
4361 
4362 	path->keep_locks = 1;
4363 	path->search_for_split = 1;
4364 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4365 	path->search_for_split = 0;
4366 	if (ret > 0)
4367 		ret = -EAGAIN;
4368 	if (ret < 0)
4369 		goto err;
4370 
4371 	ret = -EAGAIN;
4372 	leaf = path->nodes[0];
4373 	/* if our item isn't there, return now */
4374 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4375 		goto err;
4376 
4377 	/* the leaf has  changed, it now has room.  return now */
4378 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4379 		goto err;
4380 
4381 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4382 		fi = btrfs_item_ptr(leaf, path->slots[0],
4383 				    struct btrfs_file_extent_item);
4384 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4385 			goto err;
4386 	}
4387 
4388 	btrfs_set_path_blocking(path);
4389 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4390 	if (ret)
4391 		goto err;
4392 
4393 	path->keep_locks = 0;
4394 	btrfs_unlock_up_safe(path, 1);
4395 	return 0;
4396 err:
4397 	path->keep_locks = 0;
4398 	return ret;
4399 }
4400 
4401 static noinline int split_item(struct btrfs_trans_handle *trans,
4402 			       struct btrfs_root *root,
4403 			       struct btrfs_path *path,
4404 			       struct btrfs_key *new_key,
4405 			       unsigned long split_offset)
4406 {
4407 	struct extent_buffer *leaf;
4408 	struct btrfs_item *item;
4409 	struct btrfs_item *new_item;
4410 	int slot;
4411 	char *buf;
4412 	u32 nritems;
4413 	u32 item_size;
4414 	u32 orig_offset;
4415 	struct btrfs_disk_key disk_key;
4416 
4417 	leaf = path->nodes[0];
4418 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4419 
4420 	btrfs_set_path_blocking(path);
4421 
4422 	item = btrfs_item_nr(path->slots[0]);
4423 	orig_offset = btrfs_item_offset(leaf, item);
4424 	item_size = btrfs_item_size(leaf, item);
4425 
4426 	buf = kmalloc(item_size, GFP_NOFS);
4427 	if (!buf)
4428 		return -ENOMEM;
4429 
4430 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4431 			    path->slots[0]), item_size);
4432 
4433 	slot = path->slots[0] + 1;
4434 	nritems = btrfs_header_nritems(leaf);
4435 	if (slot != nritems) {
4436 		/* shift the items */
4437 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4438 				btrfs_item_nr_offset(slot),
4439 				(nritems - slot) * sizeof(struct btrfs_item));
4440 	}
4441 
4442 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4443 	btrfs_set_item_key(leaf, &disk_key, slot);
4444 
4445 	new_item = btrfs_item_nr(slot);
4446 
4447 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4448 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4449 
4450 	btrfs_set_item_offset(leaf, item,
4451 			      orig_offset + item_size - split_offset);
4452 	btrfs_set_item_size(leaf, item, split_offset);
4453 
4454 	btrfs_set_header_nritems(leaf, nritems + 1);
4455 
4456 	/* write the data for the start of the original item */
4457 	write_extent_buffer(leaf, buf,
4458 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4459 			    split_offset);
4460 
4461 	/* write the data for the new item */
4462 	write_extent_buffer(leaf, buf + split_offset,
4463 			    btrfs_item_ptr_offset(leaf, slot),
4464 			    item_size - split_offset);
4465 	btrfs_mark_buffer_dirty(leaf);
4466 
4467 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4468 	kfree(buf);
4469 	return 0;
4470 }
4471 
4472 /*
4473  * This function splits a single item into two items,
4474  * giving 'new_key' to the new item and splitting the
4475  * old one at split_offset (from the start of the item).
4476  *
4477  * The path may be released by this operation.  After
4478  * the split, the path is pointing to the old item.  The
4479  * new item is going to be in the same node as the old one.
4480  *
4481  * Note, the item being split must be smaller enough to live alone on
4482  * a tree block with room for one extra struct btrfs_item
4483  *
4484  * This allows us to split the item in place, keeping a lock on the
4485  * leaf the entire time.
4486  */
4487 int btrfs_split_item(struct btrfs_trans_handle *trans,
4488 		     struct btrfs_root *root,
4489 		     struct btrfs_path *path,
4490 		     struct btrfs_key *new_key,
4491 		     unsigned long split_offset)
4492 {
4493 	int ret;
4494 	ret = setup_leaf_for_split(trans, root, path,
4495 				   sizeof(struct btrfs_item));
4496 	if (ret)
4497 		return ret;
4498 
4499 	ret = split_item(trans, root, path, new_key, split_offset);
4500 	return ret;
4501 }
4502 
4503 /*
4504  * This function duplicate a item, giving 'new_key' to the new item.
4505  * It guarantees both items live in the same tree leaf and the new item
4506  * is contiguous with the original item.
4507  *
4508  * This allows us to split file extent in place, keeping a lock on the
4509  * leaf the entire time.
4510  */
4511 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4512 			 struct btrfs_root *root,
4513 			 struct btrfs_path *path,
4514 			 struct btrfs_key *new_key)
4515 {
4516 	struct extent_buffer *leaf;
4517 	int ret;
4518 	u32 item_size;
4519 
4520 	leaf = path->nodes[0];
4521 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4522 	ret = setup_leaf_for_split(trans, root, path,
4523 				   item_size + sizeof(struct btrfs_item));
4524 	if (ret)
4525 		return ret;
4526 
4527 	path->slots[0]++;
4528 	setup_items_for_insert(root, path, new_key, &item_size,
4529 			       item_size, item_size +
4530 			       sizeof(struct btrfs_item), 1);
4531 	leaf = path->nodes[0];
4532 	memcpy_extent_buffer(leaf,
4533 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4534 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4535 			     item_size);
4536 	return 0;
4537 }
4538 
4539 /*
4540  * make the item pointed to by the path smaller.  new_size indicates
4541  * how small to make it, and from_end tells us if we just chop bytes
4542  * off the end of the item or if we shift the item to chop bytes off
4543  * the front.
4544  */
4545 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4546 			 u32 new_size, int from_end)
4547 {
4548 	int slot;
4549 	struct extent_buffer *leaf;
4550 	struct btrfs_item *item;
4551 	u32 nritems;
4552 	unsigned int data_end;
4553 	unsigned int old_data_start;
4554 	unsigned int old_size;
4555 	unsigned int size_diff;
4556 	int i;
4557 	struct btrfs_map_token token;
4558 
4559 	btrfs_init_map_token(&token);
4560 
4561 	leaf = path->nodes[0];
4562 	slot = path->slots[0];
4563 
4564 	old_size = btrfs_item_size_nr(leaf, slot);
4565 	if (old_size == new_size)
4566 		return;
4567 
4568 	nritems = btrfs_header_nritems(leaf);
4569 	data_end = leaf_data_end(root, leaf);
4570 
4571 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4572 
4573 	size_diff = old_size - new_size;
4574 
4575 	BUG_ON(slot < 0);
4576 	BUG_ON(slot >= nritems);
4577 
4578 	/*
4579 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4580 	 */
4581 	/* first correct the data pointers */
4582 	for (i = slot; i < nritems; i++) {
4583 		u32 ioff;
4584 		item = btrfs_item_nr(i);
4585 
4586 		ioff = btrfs_token_item_offset(leaf, item, &token);
4587 		btrfs_set_token_item_offset(leaf, item,
4588 					    ioff + size_diff, &token);
4589 	}
4590 
4591 	/* shift the data */
4592 	if (from_end) {
4593 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4594 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4595 			      data_end, old_data_start + new_size - data_end);
4596 	} else {
4597 		struct btrfs_disk_key disk_key;
4598 		u64 offset;
4599 
4600 		btrfs_item_key(leaf, &disk_key, slot);
4601 
4602 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4603 			unsigned long ptr;
4604 			struct btrfs_file_extent_item *fi;
4605 
4606 			fi = btrfs_item_ptr(leaf, slot,
4607 					    struct btrfs_file_extent_item);
4608 			fi = (struct btrfs_file_extent_item *)(
4609 			     (unsigned long)fi - size_diff);
4610 
4611 			if (btrfs_file_extent_type(leaf, fi) ==
4612 			    BTRFS_FILE_EXTENT_INLINE) {
4613 				ptr = btrfs_item_ptr_offset(leaf, slot);
4614 				memmove_extent_buffer(leaf, ptr,
4615 				      (unsigned long)fi,
4616 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4617 			}
4618 		}
4619 
4620 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4621 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4622 			      data_end, old_data_start - data_end);
4623 
4624 		offset = btrfs_disk_key_offset(&disk_key);
4625 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4626 		btrfs_set_item_key(leaf, &disk_key, slot);
4627 		if (slot == 0)
4628 			fixup_low_keys(root->fs_info, path, &disk_key, 1);
4629 	}
4630 
4631 	item = btrfs_item_nr(slot);
4632 	btrfs_set_item_size(leaf, item, new_size);
4633 	btrfs_mark_buffer_dirty(leaf);
4634 
4635 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4636 		btrfs_print_leaf(root, leaf);
4637 		BUG();
4638 	}
4639 }
4640 
4641 /*
4642  * make the item pointed to by the path bigger, data_size is the added size.
4643  */
4644 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4645 		       u32 data_size)
4646 {
4647 	int slot;
4648 	struct extent_buffer *leaf;
4649 	struct btrfs_item *item;
4650 	u32 nritems;
4651 	unsigned int data_end;
4652 	unsigned int old_data;
4653 	unsigned int old_size;
4654 	int i;
4655 	struct btrfs_map_token token;
4656 
4657 	btrfs_init_map_token(&token);
4658 
4659 	leaf = path->nodes[0];
4660 
4661 	nritems = btrfs_header_nritems(leaf);
4662 	data_end = leaf_data_end(root, leaf);
4663 
4664 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4665 		btrfs_print_leaf(root, leaf);
4666 		BUG();
4667 	}
4668 	slot = path->slots[0];
4669 	old_data = btrfs_item_end_nr(leaf, slot);
4670 
4671 	BUG_ON(slot < 0);
4672 	if (slot >= nritems) {
4673 		btrfs_print_leaf(root, leaf);
4674 		btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4675 		       slot, nritems);
4676 		BUG_ON(1);
4677 	}
4678 
4679 	/*
4680 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4681 	 */
4682 	/* first correct the data pointers */
4683 	for (i = slot; i < nritems; i++) {
4684 		u32 ioff;
4685 		item = btrfs_item_nr(i);
4686 
4687 		ioff = btrfs_token_item_offset(leaf, item, &token);
4688 		btrfs_set_token_item_offset(leaf, item,
4689 					    ioff - data_size, &token);
4690 	}
4691 
4692 	/* shift the data */
4693 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4694 		      data_end - data_size, btrfs_leaf_data(leaf) +
4695 		      data_end, old_data - data_end);
4696 
4697 	data_end = old_data;
4698 	old_size = btrfs_item_size_nr(leaf, slot);
4699 	item = btrfs_item_nr(slot);
4700 	btrfs_set_item_size(leaf, item, old_size + data_size);
4701 	btrfs_mark_buffer_dirty(leaf);
4702 
4703 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4704 		btrfs_print_leaf(root, leaf);
4705 		BUG();
4706 	}
4707 }
4708 
4709 /*
4710  * this is a helper for btrfs_insert_empty_items, the main goal here is
4711  * to save stack depth by doing the bulk of the work in a function
4712  * that doesn't call btrfs_search_slot
4713  */
4714 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4715 			    struct btrfs_key *cpu_key, u32 *data_size,
4716 			    u32 total_data, u32 total_size, int nr)
4717 {
4718 	struct btrfs_item *item;
4719 	int i;
4720 	u32 nritems;
4721 	unsigned int data_end;
4722 	struct btrfs_disk_key disk_key;
4723 	struct extent_buffer *leaf;
4724 	int slot;
4725 	struct btrfs_map_token token;
4726 
4727 	if (path->slots[0] == 0) {
4728 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4729 		fixup_low_keys(root->fs_info, path, &disk_key, 1);
4730 	}
4731 	btrfs_unlock_up_safe(path, 1);
4732 
4733 	btrfs_init_map_token(&token);
4734 
4735 	leaf = path->nodes[0];
4736 	slot = path->slots[0];
4737 
4738 	nritems = btrfs_header_nritems(leaf);
4739 	data_end = leaf_data_end(root, leaf);
4740 
4741 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4742 		btrfs_print_leaf(root, leaf);
4743 		btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4744 		       total_size, btrfs_leaf_free_space(root, leaf));
4745 		BUG();
4746 	}
4747 
4748 	if (slot != nritems) {
4749 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4750 
4751 		if (old_data < data_end) {
4752 			btrfs_print_leaf(root, leaf);
4753 			btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4754 			       slot, old_data, data_end);
4755 			BUG_ON(1);
4756 		}
4757 		/*
4758 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4759 		 */
4760 		/* first correct the data pointers */
4761 		for (i = slot; i < nritems; i++) {
4762 			u32 ioff;
4763 
4764 			item = btrfs_item_nr( i);
4765 			ioff = btrfs_token_item_offset(leaf, item, &token);
4766 			btrfs_set_token_item_offset(leaf, item,
4767 						    ioff - total_data, &token);
4768 		}
4769 		/* shift the items */
4770 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4771 			      btrfs_item_nr_offset(slot),
4772 			      (nritems - slot) * sizeof(struct btrfs_item));
4773 
4774 		/* shift the data */
4775 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4776 			      data_end - total_data, btrfs_leaf_data(leaf) +
4777 			      data_end, old_data - data_end);
4778 		data_end = old_data;
4779 	}
4780 
4781 	/* setup the item for the new data */
4782 	for (i = 0; i < nr; i++) {
4783 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4784 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4785 		item = btrfs_item_nr(slot + i);
4786 		btrfs_set_token_item_offset(leaf, item,
4787 					    data_end - data_size[i], &token);
4788 		data_end -= data_size[i];
4789 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4790 	}
4791 
4792 	btrfs_set_header_nritems(leaf, nritems + nr);
4793 	btrfs_mark_buffer_dirty(leaf);
4794 
4795 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4796 		btrfs_print_leaf(root, leaf);
4797 		BUG();
4798 	}
4799 }
4800 
4801 /*
4802  * Given a key and some data, insert items into the tree.
4803  * This does all the path init required, making room in the tree if needed.
4804  */
4805 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4806 			    struct btrfs_root *root,
4807 			    struct btrfs_path *path,
4808 			    struct btrfs_key *cpu_key, u32 *data_size,
4809 			    int nr)
4810 {
4811 	int ret = 0;
4812 	int slot;
4813 	int i;
4814 	u32 total_size = 0;
4815 	u32 total_data = 0;
4816 
4817 	for (i = 0; i < nr; i++)
4818 		total_data += data_size[i];
4819 
4820 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4821 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4822 	if (ret == 0)
4823 		return -EEXIST;
4824 	if (ret < 0)
4825 		return ret;
4826 
4827 	slot = path->slots[0];
4828 	BUG_ON(slot < 0);
4829 
4830 	setup_items_for_insert(root, path, cpu_key, data_size,
4831 			       total_data, total_size, nr);
4832 	return 0;
4833 }
4834 
4835 /*
4836  * Given a key and some data, insert an item into the tree.
4837  * This does all the path init required, making room in the tree if needed.
4838  */
4839 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4840 		      *root, struct btrfs_key *cpu_key, void *data, u32
4841 		      data_size)
4842 {
4843 	int ret = 0;
4844 	struct btrfs_path *path;
4845 	struct extent_buffer *leaf;
4846 	unsigned long ptr;
4847 
4848 	path = btrfs_alloc_path();
4849 	if (!path)
4850 		return -ENOMEM;
4851 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4852 	if (!ret) {
4853 		leaf = path->nodes[0];
4854 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4855 		write_extent_buffer(leaf, data, ptr, data_size);
4856 		btrfs_mark_buffer_dirty(leaf);
4857 	}
4858 	btrfs_free_path(path);
4859 	return ret;
4860 }
4861 
4862 /*
4863  * delete the pointer from a given node.
4864  *
4865  * the tree should have been previously balanced so the deletion does not
4866  * empty a node.
4867  */
4868 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4869 		    int level, int slot)
4870 {
4871 	struct extent_buffer *parent = path->nodes[level];
4872 	u32 nritems;
4873 	int ret;
4874 
4875 	nritems = btrfs_header_nritems(parent);
4876 	if (slot != nritems - 1) {
4877 		if (level)
4878 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4879 					     slot + 1, nritems - slot - 1);
4880 		memmove_extent_buffer(parent,
4881 			      btrfs_node_key_ptr_offset(slot),
4882 			      btrfs_node_key_ptr_offset(slot + 1),
4883 			      sizeof(struct btrfs_key_ptr) *
4884 			      (nritems - slot - 1));
4885 	} else if (level) {
4886 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4887 					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4888 		BUG_ON(ret < 0);
4889 	}
4890 
4891 	nritems--;
4892 	btrfs_set_header_nritems(parent, nritems);
4893 	if (nritems == 0 && parent == root->node) {
4894 		BUG_ON(btrfs_header_level(root->node) != 1);
4895 		/* just turn the root into a leaf and break */
4896 		btrfs_set_header_level(root->node, 0);
4897 	} else if (slot == 0) {
4898 		struct btrfs_disk_key disk_key;
4899 
4900 		btrfs_node_key(parent, &disk_key, 0);
4901 		fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4902 	}
4903 	btrfs_mark_buffer_dirty(parent);
4904 }
4905 
4906 /*
4907  * a helper function to delete the leaf pointed to by path->slots[1] and
4908  * path->nodes[1].
4909  *
4910  * This deletes the pointer in path->nodes[1] and frees the leaf
4911  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4912  *
4913  * The path must have already been setup for deleting the leaf, including
4914  * all the proper balancing.  path->nodes[1] must be locked.
4915  */
4916 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4917 				    struct btrfs_root *root,
4918 				    struct btrfs_path *path,
4919 				    struct extent_buffer *leaf)
4920 {
4921 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4922 	del_ptr(root, path, 1, path->slots[1]);
4923 
4924 	/*
4925 	 * btrfs_free_extent is expensive, we want to make sure we
4926 	 * aren't holding any locks when we call it
4927 	 */
4928 	btrfs_unlock_up_safe(path, 0);
4929 
4930 	root_sub_used(root, leaf->len);
4931 
4932 	extent_buffer_get(leaf);
4933 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4934 	free_extent_buffer_stale(leaf);
4935 }
4936 /*
4937  * delete the item at the leaf level in path.  If that empties
4938  * the leaf, remove it from the tree
4939  */
4940 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4941 		    struct btrfs_path *path, int slot, int nr)
4942 {
4943 	struct extent_buffer *leaf;
4944 	struct btrfs_item *item;
4945 	u32 last_off;
4946 	u32 dsize = 0;
4947 	int ret = 0;
4948 	int wret;
4949 	int i;
4950 	u32 nritems;
4951 	struct btrfs_map_token token;
4952 
4953 	btrfs_init_map_token(&token);
4954 
4955 	leaf = path->nodes[0];
4956 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4957 
4958 	for (i = 0; i < nr; i++)
4959 		dsize += btrfs_item_size_nr(leaf, slot + i);
4960 
4961 	nritems = btrfs_header_nritems(leaf);
4962 
4963 	if (slot + nr != nritems) {
4964 		int data_end = leaf_data_end(root, leaf);
4965 
4966 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4967 			      data_end + dsize,
4968 			      btrfs_leaf_data(leaf) + data_end,
4969 			      last_off - data_end);
4970 
4971 		for (i = slot + nr; i < nritems; i++) {
4972 			u32 ioff;
4973 
4974 			item = btrfs_item_nr(i);
4975 			ioff = btrfs_token_item_offset(leaf, item, &token);
4976 			btrfs_set_token_item_offset(leaf, item,
4977 						    ioff + dsize, &token);
4978 		}
4979 
4980 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4981 			      btrfs_item_nr_offset(slot + nr),
4982 			      sizeof(struct btrfs_item) *
4983 			      (nritems - slot - nr));
4984 	}
4985 	btrfs_set_header_nritems(leaf, nritems - nr);
4986 	nritems -= nr;
4987 
4988 	/* delete the leaf if we've emptied it */
4989 	if (nritems == 0) {
4990 		if (leaf == root->node) {
4991 			btrfs_set_header_level(leaf, 0);
4992 		} else {
4993 			btrfs_set_path_blocking(path);
4994 			clean_tree_block(trans, root->fs_info, leaf);
4995 			btrfs_del_leaf(trans, root, path, leaf);
4996 		}
4997 	} else {
4998 		int used = leaf_space_used(leaf, 0, nritems);
4999 		if (slot == 0) {
5000 			struct btrfs_disk_key disk_key;
5001 
5002 			btrfs_item_key(leaf, &disk_key, 0);
5003 			fixup_low_keys(root->fs_info, path, &disk_key, 1);
5004 		}
5005 
5006 		/* delete the leaf if it is mostly empty */
5007 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5008 			/* push_leaf_left fixes the path.
5009 			 * make sure the path still points to our leaf
5010 			 * for possible call to del_ptr below
5011 			 */
5012 			slot = path->slots[1];
5013 			extent_buffer_get(leaf);
5014 
5015 			btrfs_set_path_blocking(path);
5016 			wret = push_leaf_left(trans, root, path, 1, 1,
5017 					      1, (u32)-1);
5018 			if (wret < 0 && wret != -ENOSPC)
5019 				ret = wret;
5020 
5021 			if (path->nodes[0] == leaf &&
5022 			    btrfs_header_nritems(leaf)) {
5023 				wret = push_leaf_right(trans, root, path, 1,
5024 						       1, 1, 0);
5025 				if (wret < 0 && wret != -ENOSPC)
5026 					ret = wret;
5027 			}
5028 
5029 			if (btrfs_header_nritems(leaf) == 0) {
5030 				path->slots[1] = slot;
5031 				btrfs_del_leaf(trans, root, path, leaf);
5032 				free_extent_buffer(leaf);
5033 				ret = 0;
5034 			} else {
5035 				/* if we're still in the path, make sure
5036 				 * we're dirty.  Otherwise, one of the
5037 				 * push_leaf functions must have already
5038 				 * dirtied this buffer
5039 				 */
5040 				if (path->nodes[0] == leaf)
5041 					btrfs_mark_buffer_dirty(leaf);
5042 				free_extent_buffer(leaf);
5043 			}
5044 		} else {
5045 			btrfs_mark_buffer_dirty(leaf);
5046 		}
5047 	}
5048 	return ret;
5049 }
5050 
5051 /*
5052  * search the tree again to find a leaf with lesser keys
5053  * returns 0 if it found something or 1 if there are no lesser leaves.
5054  * returns < 0 on io errors.
5055  *
5056  * This may release the path, and so you may lose any locks held at the
5057  * time you call it.
5058  */
5059 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5060 {
5061 	struct btrfs_key key;
5062 	struct btrfs_disk_key found_key;
5063 	int ret;
5064 
5065 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5066 
5067 	if (key.offset > 0) {
5068 		key.offset--;
5069 	} else if (key.type > 0) {
5070 		key.type--;
5071 		key.offset = (u64)-1;
5072 	} else if (key.objectid > 0) {
5073 		key.objectid--;
5074 		key.type = (u8)-1;
5075 		key.offset = (u64)-1;
5076 	} else {
5077 		return 1;
5078 	}
5079 
5080 	btrfs_release_path(path);
5081 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5082 	if (ret < 0)
5083 		return ret;
5084 	btrfs_item_key(path->nodes[0], &found_key, 0);
5085 	ret = comp_keys(&found_key, &key);
5086 	/*
5087 	 * We might have had an item with the previous key in the tree right
5088 	 * before we released our path. And after we released our path, that
5089 	 * item might have been pushed to the first slot (0) of the leaf we
5090 	 * were holding due to a tree balance. Alternatively, an item with the
5091 	 * previous key can exist as the only element of a leaf (big fat item).
5092 	 * Therefore account for these 2 cases, so that our callers (like
5093 	 * btrfs_previous_item) don't miss an existing item with a key matching
5094 	 * the previous key we computed above.
5095 	 */
5096 	if (ret <= 0)
5097 		return 0;
5098 	return 1;
5099 }
5100 
5101 /*
5102  * A helper function to walk down the tree starting at min_key, and looking
5103  * for nodes or leaves that are have a minimum transaction id.
5104  * This is used by the btree defrag code, and tree logging
5105  *
5106  * This does not cow, but it does stuff the starting key it finds back
5107  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5108  * key and get a writable path.
5109  *
5110  * This does lock as it descends, and path->keep_locks should be set
5111  * to 1 by the caller.
5112  *
5113  * This honors path->lowest_level to prevent descent past a given level
5114  * of the tree.
5115  *
5116  * min_trans indicates the oldest transaction that you are interested
5117  * in walking through.  Any nodes or leaves older than min_trans are
5118  * skipped over (without reading them).
5119  *
5120  * returns zero if something useful was found, < 0 on error and 1 if there
5121  * was nothing in the tree that matched the search criteria.
5122  */
5123 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5124 			 struct btrfs_path *path,
5125 			 u64 min_trans)
5126 {
5127 	struct extent_buffer *cur;
5128 	struct btrfs_key found_key;
5129 	int slot;
5130 	int sret;
5131 	u32 nritems;
5132 	int level;
5133 	int ret = 1;
5134 	int keep_locks = path->keep_locks;
5135 
5136 	path->keep_locks = 1;
5137 again:
5138 	cur = btrfs_read_lock_root_node(root);
5139 	level = btrfs_header_level(cur);
5140 	WARN_ON(path->nodes[level]);
5141 	path->nodes[level] = cur;
5142 	path->locks[level] = BTRFS_READ_LOCK;
5143 
5144 	if (btrfs_header_generation(cur) < min_trans) {
5145 		ret = 1;
5146 		goto out;
5147 	}
5148 	while (1) {
5149 		nritems = btrfs_header_nritems(cur);
5150 		level = btrfs_header_level(cur);
5151 		sret = bin_search(cur, min_key, level, &slot);
5152 
5153 		/* at the lowest level, we're done, setup the path and exit */
5154 		if (level == path->lowest_level) {
5155 			if (slot >= nritems)
5156 				goto find_next_key;
5157 			ret = 0;
5158 			path->slots[level] = slot;
5159 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5160 			goto out;
5161 		}
5162 		if (sret && slot > 0)
5163 			slot--;
5164 		/*
5165 		 * check this node pointer against the min_trans parameters.
5166 		 * If it is too old, old, skip to the next one.
5167 		 */
5168 		while (slot < nritems) {
5169 			u64 gen;
5170 
5171 			gen = btrfs_node_ptr_generation(cur, slot);
5172 			if (gen < min_trans) {
5173 				slot++;
5174 				continue;
5175 			}
5176 			break;
5177 		}
5178 find_next_key:
5179 		/*
5180 		 * we didn't find a candidate key in this node, walk forward
5181 		 * and find another one
5182 		 */
5183 		if (slot >= nritems) {
5184 			path->slots[level] = slot;
5185 			btrfs_set_path_blocking(path);
5186 			sret = btrfs_find_next_key(root, path, min_key, level,
5187 						  min_trans);
5188 			if (sret == 0) {
5189 				btrfs_release_path(path);
5190 				goto again;
5191 			} else {
5192 				goto out;
5193 			}
5194 		}
5195 		/* save our key for returning back */
5196 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5197 		path->slots[level] = slot;
5198 		if (level == path->lowest_level) {
5199 			ret = 0;
5200 			goto out;
5201 		}
5202 		btrfs_set_path_blocking(path);
5203 		cur = read_node_slot(root, cur, slot);
5204 		BUG_ON(!cur); /* -ENOMEM */
5205 
5206 		btrfs_tree_read_lock(cur);
5207 
5208 		path->locks[level - 1] = BTRFS_READ_LOCK;
5209 		path->nodes[level - 1] = cur;
5210 		unlock_up(path, level, 1, 0, NULL);
5211 		btrfs_clear_path_blocking(path, NULL, 0);
5212 	}
5213 out:
5214 	path->keep_locks = keep_locks;
5215 	if (ret == 0) {
5216 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5217 		btrfs_set_path_blocking(path);
5218 		memcpy(min_key, &found_key, sizeof(found_key));
5219 	}
5220 	return ret;
5221 }
5222 
5223 static void tree_move_down(struct btrfs_root *root,
5224 			   struct btrfs_path *path,
5225 			   int *level, int root_level)
5226 {
5227 	BUG_ON(*level == 0);
5228 	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5229 					path->slots[*level]);
5230 	path->slots[*level - 1] = 0;
5231 	(*level)--;
5232 }
5233 
5234 static int tree_move_next_or_upnext(struct btrfs_root *root,
5235 				    struct btrfs_path *path,
5236 				    int *level, int root_level)
5237 {
5238 	int ret = 0;
5239 	int nritems;
5240 	nritems = btrfs_header_nritems(path->nodes[*level]);
5241 
5242 	path->slots[*level]++;
5243 
5244 	while (path->slots[*level] >= nritems) {
5245 		if (*level == root_level)
5246 			return -1;
5247 
5248 		/* move upnext */
5249 		path->slots[*level] = 0;
5250 		free_extent_buffer(path->nodes[*level]);
5251 		path->nodes[*level] = NULL;
5252 		(*level)++;
5253 		path->slots[*level]++;
5254 
5255 		nritems = btrfs_header_nritems(path->nodes[*level]);
5256 		ret = 1;
5257 	}
5258 	return ret;
5259 }
5260 
5261 /*
5262  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5263  * or down.
5264  */
5265 static int tree_advance(struct btrfs_root *root,
5266 			struct btrfs_path *path,
5267 			int *level, int root_level,
5268 			int allow_down,
5269 			struct btrfs_key *key)
5270 {
5271 	int ret;
5272 
5273 	if (*level == 0 || !allow_down) {
5274 		ret = tree_move_next_or_upnext(root, path, level, root_level);
5275 	} else {
5276 		tree_move_down(root, path, level, root_level);
5277 		ret = 0;
5278 	}
5279 	if (ret >= 0) {
5280 		if (*level == 0)
5281 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5282 					path->slots[*level]);
5283 		else
5284 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5285 					path->slots[*level]);
5286 	}
5287 	return ret;
5288 }
5289 
5290 static int tree_compare_item(struct btrfs_root *left_root,
5291 			     struct btrfs_path *left_path,
5292 			     struct btrfs_path *right_path,
5293 			     char *tmp_buf)
5294 {
5295 	int cmp;
5296 	int len1, len2;
5297 	unsigned long off1, off2;
5298 
5299 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5300 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5301 	if (len1 != len2)
5302 		return 1;
5303 
5304 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5305 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5306 				right_path->slots[0]);
5307 
5308 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5309 
5310 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5311 	if (cmp)
5312 		return 1;
5313 	return 0;
5314 }
5315 
5316 #define ADVANCE 1
5317 #define ADVANCE_ONLY_NEXT -1
5318 
5319 /*
5320  * This function compares two trees and calls the provided callback for
5321  * every changed/new/deleted item it finds.
5322  * If shared tree blocks are encountered, whole subtrees are skipped, making
5323  * the compare pretty fast on snapshotted subvolumes.
5324  *
5325  * This currently works on commit roots only. As commit roots are read only,
5326  * we don't do any locking. The commit roots are protected with transactions.
5327  * Transactions are ended and rejoined when a commit is tried in between.
5328  *
5329  * This function checks for modifications done to the trees while comparing.
5330  * If it detects a change, it aborts immediately.
5331  */
5332 int btrfs_compare_trees(struct btrfs_root *left_root,
5333 			struct btrfs_root *right_root,
5334 			btrfs_changed_cb_t changed_cb, void *ctx)
5335 {
5336 	int ret;
5337 	int cmp;
5338 	struct btrfs_path *left_path = NULL;
5339 	struct btrfs_path *right_path = NULL;
5340 	struct btrfs_key left_key;
5341 	struct btrfs_key right_key;
5342 	char *tmp_buf = NULL;
5343 	int left_root_level;
5344 	int right_root_level;
5345 	int left_level;
5346 	int right_level;
5347 	int left_end_reached;
5348 	int right_end_reached;
5349 	int advance_left;
5350 	int advance_right;
5351 	u64 left_blockptr;
5352 	u64 right_blockptr;
5353 	u64 left_gen;
5354 	u64 right_gen;
5355 
5356 	left_path = btrfs_alloc_path();
5357 	if (!left_path) {
5358 		ret = -ENOMEM;
5359 		goto out;
5360 	}
5361 	right_path = btrfs_alloc_path();
5362 	if (!right_path) {
5363 		ret = -ENOMEM;
5364 		goto out;
5365 	}
5366 
5367 	tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5368 	if (!tmp_buf) {
5369 		tmp_buf = vmalloc(left_root->nodesize);
5370 		if (!tmp_buf) {
5371 			ret = -ENOMEM;
5372 			goto out;
5373 		}
5374 	}
5375 
5376 	left_path->search_commit_root = 1;
5377 	left_path->skip_locking = 1;
5378 	right_path->search_commit_root = 1;
5379 	right_path->skip_locking = 1;
5380 
5381 	/*
5382 	 * Strategy: Go to the first items of both trees. Then do
5383 	 *
5384 	 * If both trees are at level 0
5385 	 *   Compare keys of current items
5386 	 *     If left < right treat left item as new, advance left tree
5387 	 *       and repeat
5388 	 *     If left > right treat right item as deleted, advance right tree
5389 	 *       and repeat
5390 	 *     If left == right do deep compare of items, treat as changed if
5391 	 *       needed, advance both trees and repeat
5392 	 * If both trees are at the same level but not at level 0
5393 	 *   Compare keys of current nodes/leafs
5394 	 *     If left < right advance left tree and repeat
5395 	 *     If left > right advance right tree and repeat
5396 	 *     If left == right compare blockptrs of the next nodes/leafs
5397 	 *       If they match advance both trees but stay at the same level
5398 	 *         and repeat
5399 	 *       If they don't match advance both trees while allowing to go
5400 	 *         deeper and repeat
5401 	 * If tree levels are different
5402 	 *   Advance the tree that needs it and repeat
5403 	 *
5404 	 * Advancing a tree means:
5405 	 *   If we are at level 0, try to go to the next slot. If that's not
5406 	 *   possible, go one level up and repeat. Stop when we found a level
5407 	 *   where we could go to the next slot. We may at this point be on a
5408 	 *   node or a leaf.
5409 	 *
5410 	 *   If we are not at level 0 and not on shared tree blocks, go one
5411 	 *   level deeper.
5412 	 *
5413 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5414 	 *   the right if possible or go up and right.
5415 	 */
5416 
5417 	down_read(&left_root->fs_info->commit_root_sem);
5418 	left_level = btrfs_header_level(left_root->commit_root);
5419 	left_root_level = left_level;
5420 	left_path->nodes[left_level] = left_root->commit_root;
5421 	extent_buffer_get(left_path->nodes[left_level]);
5422 
5423 	right_level = btrfs_header_level(right_root->commit_root);
5424 	right_root_level = right_level;
5425 	right_path->nodes[right_level] = right_root->commit_root;
5426 	extent_buffer_get(right_path->nodes[right_level]);
5427 	up_read(&left_root->fs_info->commit_root_sem);
5428 
5429 	if (left_level == 0)
5430 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5431 				&left_key, left_path->slots[left_level]);
5432 	else
5433 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5434 				&left_key, left_path->slots[left_level]);
5435 	if (right_level == 0)
5436 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5437 				&right_key, right_path->slots[right_level]);
5438 	else
5439 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5440 				&right_key, right_path->slots[right_level]);
5441 
5442 	left_end_reached = right_end_reached = 0;
5443 	advance_left = advance_right = 0;
5444 
5445 	while (1) {
5446 		if (advance_left && !left_end_reached) {
5447 			ret = tree_advance(left_root, left_path, &left_level,
5448 					left_root_level,
5449 					advance_left != ADVANCE_ONLY_NEXT,
5450 					&left_key);
5451 			if (ret < 0)
5452 				left_end_reached = ADVANCE;
5453 			advance_left = 0;
5454 		}
5455 		if (advance_right && !right_end_reached) {
5456 			ret = tree_advance(right_root, right_path, &right_level,
5457 					right_root_level,
5458 					advance_right != ADVANCE_ONLY_NEXT,
5459 					&right_key);
5460 			if (ret < 0)
5461 				right_end_reached = ADVANCE;
5462 			advance_right = 0;
5463 		}
5464 
5465 		if (left_end_reached && right_end_reached) {
5466 			ret = 0;
5467 			goto out;
5468 		} else if (left_end_reached) {
5469 			if (right_level == 0) {
5470 				ret = changed_cb(left_root, right_root,
5471 						left_path, right_path,
5472 						&right_key,
5473 						BTRFS_COMPARE_TREE_DELETED,
5474 						ctx);
5475 				if (ret < 0)
5476 					goto out;
5477 			}
5478 			advance_right = ADVANCE;
5479 			continue;
5480 		} else if (right_end_reached) {
5481 			if (left_level == 0) {
5482 				ret = changed_cb(left_root, right_root,
5483 						left_path, right_path,
5484 						&left_key,
5485 						BTRFS_COMPARE_TREE_NEW,
5486 						ctx);
5487 				if (ret < 0)
5488 					goto out;
5489 			}
5490 			advance_left = ADVANCE;
5491 			continue;
5492 		}
5493 
5494 		if (left_level == 0 && right_level == 0) {
5495 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5496 			if (cmp < 0) {
5497 				ret = changed_cb(left_root, right_root,
5498 						left_path, right_path,
5499 						&left_key,
5500 						BTRFS_COMPARE_TREE_NEW,
5501 						ctx);
5502 				if (ret < 0)
5503 					goto out;
5504 				advance_left = ADVANCE;
5505 			} else if (cmp > 0) {
5506 				ret = changed_cb(left_root, right_root,
5507 						left_path, right_path,
5508 						&right_key,
5509 						BTRFS_COMPARE_TREE_DELETED,
5510 						ctx);
5511 				if (ret < 0)
5512 					goto out;
5513 				advance_right = ADVANCE;
5514 			} else {
5515 				enum btrfs_compare_tree_result result;
5516 
5517 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5518 				ret = tree_compare_item(left_root, left_path,
5519 						right_path, tmp_buf);
5520 				if (ret)
5521 					result = BTRFS_COMPARE_TREE_CHANGED;
5522 				else
5523 					result = BTRFS_COMPARE_TREE_SAME;
5524 				ret = changed_cb(left_root, right_root,
5525 						 left_path, right_path,
5526 						 &left_key, result, ctx);
5527 				if (ret < 0)
5528 					goto out;
5529 				advance_left = ADVANCE;
5530 				advance_right = ADVANCE;
5531 			}
5532 		} else if (left_level == right_level) {
5533 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5534 			if (cmp < 0) {
5535 				advance_left = ADVANCE;
5536 			} else if (cmp > 0) {
5537 				advance_right = ADVANCE;
5538 			} else {
5539 				left_blockptr = btrfs_node_blockptr(
5540 						left_path->nodes[left_level],
5541 						left_path->slots[left_level]);
5542 				right_blockptr = btrfs_node_blockptr(
5543 						right_path->nodes[right_level],
5544 						right_path->slots[right_level]);
5545 				left_gen = btrfs_node_ptr_generation(
5546 						left_path->nodes[left_level],
5547 						left_path->slots[left_level]);
5548 				right_gen = btrfs_node_ptr_generation(
5549 						right_path->nodes[right_level],
5550 						right_path->slots[right_level]);
5551 				if (left_blockptr == right_blockptr &&
5552 				    left_gen == right_gen) {
5553 					/*
5554 					 * As we're on a shared block, don't
5555 					 * allow to go deeper.
5556 					 */
5557 					advance_left = ADVANCE_ONLY_NEXT;
5558 					advance_right = ADVANCE_ONLY_NEXT;
5559 				} else {
5560 					advance_left = ADVANCE;
5561 					advance_right = ADVANCE;
5562 				}
5563 			}
5564 		} else if (left_level < right_level) {
5565 			advance_right = ADVANCE;
5566 		} else {
5567 			advance_left = ADVANCE;
5568 		}
5569 	}
5570 
5571 out:
5572 	btrfs_free_path(left_path);
5573 	btrfs_free_path(right_path);
5574 	kvfree(tmp_buf);
5575 	return ret;
5576 }
5577 
5578 /*
5579  * this is similar to btrfs_next_leaf, but does not try to preserve
5580  * and fixup the path.  It looks for and returns the next key in the
5581  * tree based on the current path and the min_trans parameters.
5582  *
5583  * 0 is returned if another key is found, < 0 if there are any errors
5584  * and 1 is returned if there are no higher keys in the tree
5585  *
5586  * path->keep_locks should be set to 1 on the search made before
5587  * calling this function.
5588  */
5589 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5590 			struct btrfs_key *key, int level, u64 min_trans)
5591 {
5592 	int slot;
5593 	struct extent_buffer *c;
5594 
5595 	WARN_ON(!path->keep_locks);
5596 	while (level < BTRFS_MAX_LEVEL) {
5597 		if (!path->nodes[level])
5598 			return 1;
5599 
5600 		slot = path->slots[level] + 1;
5601 		c = path->nodes[level];
5602 next:
5603 		if (slot >= btrfs_header_nritems(c)) {
5604 			int ret;
5605 			int orig_lowest;
5606 			struct btrfs_key cur_key;
5607 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5608 			    !path->nodes[level + 1])
5609 				return 1;
5610 
5611 			if (path->locks[level + 1]) {
5612 				level++;
5613 				continue;
5614 			}
5615 
5616 			slot = btrfs_header_nritems(c) - 1;
5617 			if (level == 0)
5618 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5619 			else
5620 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5621 
5622 			orig_lowest = path->lowest_level;
5623 			btrfs_release_path(path);
5624 			path->lowest_level = level;
5625 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5626 						0, 0);
5627 			path->lowest_level = orig_lowest;
5628 			if (ret < 0)
5629 				return ret;
5630 
5631 			c = path->nodes[level];
5632 			slot = path->slots[level];
5633 			if (ret == 0)
5634 				slot++;
5635 			goto next;
5636 		}
5637 
5638 		if (level == 0)
5639 			btrfs_item_key_to_cpu(c, key, slot);
5640 		else {
5641 			u64 gen = btrfs_node_ptr_generation(c, slot);
5642 
5643 			if (gen < min_trans) {
5644 				slot++;
5645 				goto next;
5646 			}
5647 			btrfs_node_key_to_cpu(c, key, slot);
5648 		}
5649 		return 0;
5650 	}
5651 	return 1;
5652 }
5653 
5654 /*
5655  * search the tree again to find a leaf with greater keys
5656  * returns 0 if it found something or 1 if there are no greater leaves.
5657  * returns < 0 on io errors.
5658  */
5659 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5660 {
5661 	return btrfs_next_old_leaf(root, path, 0);
5662 }
5663 
5664 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5665 			u64 time_seq)
5666 {
5667 	int slot;
5668 	int level;
5669 	struct extent_buffer *c;
5670 	struct extent_buffer *next;
5671 	struct btrfs_key key;
5672 	u32 nritems;
5673 	int ret;
5674 	int old_spinning = path->leave_spinning;
5675 	int next_rw_lock = 0;
5676 
5677 	nritems = btrfs_header_nritems(path->nodes[0]);
5678 	if (nritems == 0)
5679 		return 1;
5680 
5681 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5682 again:
5683 	level = 1;
5684 	next = NULL;
5685 	next_rw_lock = 0;
5686 	btrfs_release_path(path);
5687 
5688 	path->keep_locks = 1;
5689 	path->leave_spinning = 1;
5690 
5691 	if (time_seq)
5692 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5693 	else
5694 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5695 	path->keep_locks = 0;
5696 
5697 	if (ret < 0)
5698 		return ret;
5699 
5700 	nritems = btrfs_header_nritems(path->nodes[0]);
5701 	/*
5702 	 * by releasing the path above we dropped all our locks.  A balance
5703 	 * could have added more items next to the key that used to be
5704 	 * at the very end of the block.  So, check again here and
5705 	 * advance the path if there are now more items available.
5706 	 */
5707 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5708 		if (ret == 0)
5709 			path->slots[0]++;
5710 		ret = 0;
5711 		goto done;
5712 	}
5713 	/*
5714 	 * So the above check misses one case:
5715 	 * - after releasing the path above, someone has removed the item that
5716 	 *   used to be at the very end of the block, and balance between leafs
5717 	 *   gets another one with bigger key.offset to replace it.
5718 	 *
5719 	 * This one should be returned as well, or we can get leaf corruption
5720 	 * later(esp. in __btrfs_drop_extents()).
5721 	 *
5722 	 * And a bit more explanation about this check,
5723 	 * with ret > 0, the key isn't found, the path points to the slot
5724 	 * where it should be inserted, so the path->slots[0] item must be the
5725 	 * bigger one.
5726 	 */
5727 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5728 		ret = 0;
5729 		goto done;
5730 	}
5731 
5732 	while (level < BTRFS_MAX_LEVEL) {
5733 		if (!path->nodes[level]) {
5734 			ret = 1;
5735 			goto done;
5736 		}
5737 
5738 		slot = path->slots[level] + 1;
5739 		c = path->nodes[level];
5740 		if (slot >= btrfs_header_nritems(c)) {
5741 			level++;
5742 			if (level == BTRFS_MAX_LEVEL) {
5743 				ret = 1;
5744 				goto done;
5745 			}
5746 			continue;
5747 		}
5748 
5749 		if (next) {
5750 			btrfs_tree_unlock_rw(next, next_rw_lock);
5751 			free_extent_buffer(next);
5752 		}
5753 
5754 		next = c;
5755 		next_rw_lock = path->locks[level];
5756 		ret = read_block_for_search(NULL, root, path, &next, level,
5757 					    slot, &key, 0);
5758 		if (ret == -EAGAIN)
5759 			goto again;
5760 
5761 		if (ret < 0) {
5762 			btrfs_release_path(path);
5763 			goto done;
5764 		}
5765 
5766 		if (!path->skip_locking) {
5767 			ret = btrfs_try_tree_read_lock(next);
5768 			if (!ret && time_seq) {
5769 				/*
5770 				 * If we don't get the lock, we may be racing
5771 				 * with push_leaf_left, holding that lock while
5772 				 * itself waiting for the leaf we've currently
5773 				 * locked. To solve this situation, we give up
5774 				 * on our lock and cycle.
5775 				 */
5776 				free_extent_buffer(next);
5777 				btrfs_release_path(path);
5778 				cond_resched();
5779 				goto again;
5780 			}
5781 			if (!ret) {
5782 				btrfs_set_path_blocking(path);
5783 				btrfs_tree_read_lock(next);
5784 				btrfs_clear_path_blocking(path, next,
5785 							  BTRFS_READ_LOCK);
5786 			}
5787 			next_rw_lock = BTRFS_READ_LOCK;
5788 		}
5789 		break;
5790 	}
5791 	path->slots[level] = slot;
5792 	while (1) {
5793 		level--;
5794 		c = path->nodes[level];
5795 		if (path->locks[level])
5796 			btrfs_tree_unlock_rw(c, path->locks[level]);
5797 
5798 		free_extent_buffer(c);
5799 		path->nodes[level] = next;
5800 		path->slots[level] = 0;
5801 		if (!path->skip_locking)
5802 			path->locks[level] = next_rw_lock;
5803 		if (!level)
5804 			break;
5805 
5806 		ret = read_block_for_search(NULL, root, path, &next, level,
5807 					    0, &key, 0);
5808 		if (ret == -EAGAIN)
5809 			goto again;
5810 
5811 		if (ret < 0) {
5812 			btrfs_release_path(path);
5813 			goto done;
5814 		}
5815 
5816 		if (!path->skip_locking) {
5817 			ret = btrfs_try_tree_read_lock(next);
5818 			if (!ret) {
5819 				btrfs_set_path_blocking(path);
5820 				btrfs_tree_read_lock(next);
5821 				btrfs_clear_path_blocking(path, next,
5822 							  BTRFS_READ_LOCK);
5823 			}
5824 			next_rw_lock = BTRFS_READ_LOCK;
5825 		}
5826 	}
5827 	ret = 0;
5828 done:
5829 	unlock_up(path, 0, 1, 0, NULL);
5830 	path->leave_spinning = old_spinning;
5831 	if (!old_spinning)
5832 		btrfs_set_path_blocking(path);
5833 
5834 	return ret;
5835 }
5836 
5837 /*
5838  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5839  * searching until it gets past min_objectid or finds an item of 'type'
5840  *
5841  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5842  */
5843 int btrfs_previous_item(struct btrfs_root *root,
5844 			struct btrfs_path *path, u64 min_objectid,
5845 			int type)
5846 {
5847 	struct btrfs_key found_key;
5848 	struct extent_buffer *leaf;
5849 	u32 nritems;
5850 	int ret;
5851 
5852 	while (1) {
5853 		if (path->slots[0] == 0) {
5854 			btrfs_set_path_blocking(path);
5855 			ret = btrfs_prev_leaf(root, path);
5856 			if (ret != 0)
5857 				return ret;
5858 		} else {
5859 			path->slots[0]--;
5860 		}
5861 		leaf = path->nodes[0];
5862 		nritems = btrfs_header_nritems(leaf);
5863 		if (nritems == 0)
5864 			return 1;
5865 		if (path->slots[0] == nritems)
5866 			path->slots[0]--;
5867 
5868 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5869 		if (found_key.objectid < min_objectid)
5870 			break;
5871 		if (found_key.type == type)
5872 			return 0;
5873 		if (found_key.objectid == min_objectid &&
5874 		    found_key.type < type)
5875 			break;
5876 	}
5877 	return 1;
5878 }
5879 
5880 /*
5881  * search in extent tree to find a previous Metadata/Data extent item with
5882  * min objecitd.
5883  *
5884  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5885  */
5886 int btrfs_previous_extent_item(struct btrfs_root *root,
5887 			struct btrfs_path *path, u64 min_objectid)
5888 {
5889 	struct btrfs_key found_key;
5890 	struct extent_buffer *leaf;
5891 	u32 nritems;
5892 	int ret;
5893 
5894 	while (1) {
5895 		if (path->slots[0] == 0) {
5896 			btrfs_set_path_blocking(path);
5897 			ret = btrfs_prev_leaf(root, path);
5898 			if (ret != 0)
5899 				return ret;
5900 		} else {
5901 			path->slots[0]--;
5902 		}
5903 		leaf = path->nodes[0];
5904 		nritems = btrfs_header_nritems(leaf);
5905 		if (nritems == 0)
5906 			return 1;
5907 		if (path->slots[0] == nritems)
5908 			path->slots[0]--;
5909 
5910 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5911 		if (found_key.objectid < min_objectid)
5912 			break;
5913 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5914 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5915 			return 0;
5916 		if (found_key.objectid == min_objectid &&
5917 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5918 			break;
5919 	}
5920 	return 1;
5921 }
5922