1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include <linux/vmalloc.h> 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "print-tree.h" 27 #include "locking.h" 28 29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_path *path, int level); 31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 32 *root, struct btrfs_key *ins_key, 33 struct btrfs_path *path, int data_size, int extend); 34 static int push_node_left(struct btrfs_trans_handle *trans, 35 struct btrfs_root *root, struct extent_buffer *dst, 36 struct extent_buffer *src, int empty); 37 static int balance_node_right(struct btrfs_trans_handle *trans, 38 struct btrfs_root *root, 39 struct extent_buffer *dst_buf, 40 struct extent_buffer *src_buf); 41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 42 int level, int slot); 43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 44 struct extent_buffer *eb); 45 46 struct btrfs_path *btrfs_alloc_path(void) 47 { 48 struct btrfs_path *path; 49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 50 return path; 51 } 52 53 /* 54 * set all locked nodes in the path to blocking locks. This should 55 * be done before scheduling 56 */ 57 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 58 { 59 int i; 60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 61 if (!p->nodes[i] || !p->locks[i]) 62 continue; 63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 64 if (p->locks[i] == BTRFS_READ_LOCK) 65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 66 else if (p->locks[i] == BTRFS_WRITE_LOCK) 67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 68 } 69 } 70 71 /* 72 * reset all the locked nodes in the patch to spinning locks. 73 * 74 * held is used to keep lockdep happy, when lockdep is enabled 75 * we set held to a blocking lock before we go around and 76 * retake all the spinlocks in the path. You can safely use NULL 77 * for held 78 */ 79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 80 struct extent_buffer *held, int held_rw) 81 { 82 int i; 83 84 if (held) { 85 btrfs_set_lock_blocking_rw(held, held_rw); 86 if (held_rw == BTRFS_WRITE_LOCK) 87 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 88 else if (held_rw == BTRFS_READ_LOCK) 89 held_rw = BTRFS_READ_LOCK_BLOCKING; 90 } 91 btrfs_set_path_blocking(p); 92 93 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 94 if (p->nodes[i] && p->locks[i]) { 95 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 96 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 97 p->locks[i] = BTRFS_WRITE_LOCK; 98 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 99 p->locks[i] = BTRFS_READ_LOCK; 100 } 101 } 102 103 if (held) 104 btrfs_clear_lock_blocking_rw(held, held_rw); 105 } 106 107 /* this also releases the path */ 108 void btrfs_free_path(struct btrfs_path *p) 109 { 110 if (!p) 111 return; 112 btrfs_release_path(p); 113 kmem_cache_free(btrfs_path_cachep, p); 114 } 115 116 /* 117 * path release drops references on the extent buffers in the path 118 * and it drops any locks held by this path 119 * 120 * It is safe to call this on paths that no locks or extent buffers held. 121 */ 122 noinline void btrfs_release_path(struct btrfs_path *p) 123 { 124 int i; 125 126 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 127 p->slots[i] = 0; 128 if (!p->nodes[i]) 129 continue; 130 if (p->locks[i]) { 131 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 132 p->locks[i] = 0; 133 } 134 free_extent_buffer(p->nodes[i]); 135 p->nodes[i] = NULL; 136 } 137 } 138 139 /* 140 * safely gets a reference on the root node of a tree. A lock 141 * is not taken, so a concurrent writer may put a different node 142 * at the root of the tree. See btrfs_lock_root_node for the 143 * looping required. 144 * 145 * The extent buffer returned by this has a reference taken, so 146 * it won't disappear. It may stop being the root of the tree 147 * at any time because there are no locks held. 148 */ 149 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 150 { 151 struct extent_buffer *eb; 152 153 while (1) { 154 rcu_read_lock(); 155 eb = rcu_dereference(root->node); 156 157 /* 158 * RCU really hurts here, we could free up the root node because 159 * it was COWed but we may not get the new root node yet so do 160 * the inc_not_zero dance and if it doesn't work then 161 * synchronize_rcu and try again. 162 */ 163 if (atomic_inc_not_zero(&eb->refs)) { 164 rcu_read_unlock(); 165 break; 166 } 167 rcu_read_unlock(); 168 synchronize_rcu(); 169 } 170 return eb; 171 } 172 173 /* loop around taking references on and locking the root node of the 174 * tree until you end up with a lock on the root. A locked buffer 175 * is returned, with a reference held. 176 */ 177 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 178 { 179 struct extent_buffer *eb; 180 181 while (1) { 182 eb = btrfs_root_node(root); 183 btrfs_tree_lock(eb); 184 if (eb == root->node) 185 break; 186 btrfs_tree_unlock(eb); 187 free_extent_buffer(eb); 188 } 189 return eb; 190 } 191 192 /* loop around taking references on and locking the root node of the 193 * tree until you end up with a lock on the root. A locked buffer 194 * is returned, with a reference held. 195 */ 196 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 197 { 198 struct extent_buffer *eb; 199 200 while (1) { 201 eb = btrfs_root_node(root); 202 btrfs_tree_read_lock(eb); 203 if (eb == root->node) 204 break; 205 btrfs_tree_read_unlock(eb); 206 free_extent_buffer(eb); 207 } 208 return eb; 209 } 210 211 /* cowonly root (everything not a reference counted cow subvolume), just get 212 * put onto a simple dirty list. transaction.c walks this to make sure they 213 * get properly updated on disk. 214 */ 215 static void add_root_to_dirty_list(struct btrfs_root *root) 216 { 217 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 218 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 219 return; 220 221 spin_lock(&root->fs_info->trans_lock); 222 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 223 /* Want the extent tree to be the last on the list */ 224 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID) 225 list_move_tail(&root->dirty_list, 226 &root->fs_info->dirty_cowonly_roots); 227 else 228 list_move(&root->dirty_list, 229 &root->fs_info->dirty_cowonly_roots); 230 } 231 spin_unlock(&root->fs_info->trans_lock); 232 } 233 234 /* 235 * used by snapshot creation to make a copy of a root for a tree with 236 * a given objectid. The buffer with the new root node is returned in 237 * cow_ret, and this func returns zero on success or a negative error code. 238 */ 239 int btrfs_copy_root(struct btrfs_trans_handle *trans, 240 struct btrfs_root *root, 241 struct extent_buffer *buf, 242 struct extent_buffer **cow_ret, u64 new_root_objectid) 243 { 244 struct extent_buffer *cow; 245 int ret = 0; 246 int level; 247 struct btrfs_disk_key disk_key; 248 249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 250 trans->transid != root->fs_info->running_transaction->transid); 251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 252 trans->transid != root->last_trans); 253 254 level = btrfs_header_level(buf); 255 if (level == 0) 256 btrfs_item_key(buf, &disk_key, 0); 257 else 258 btrfs_node_key(buf, &disk_key, 0); 259 260 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 261 &disk_key, level, buf->start, 0); 262 if (IS_ERR(cow)) 263 return PTR_ERR(cow); 264 265 copy_extent_buffer(cow, buf, 0, 0, cow->len); 266 btrfs_set_header_bytenr(cow, cow->start); 267 btrfs_set_header_generation(cow, trans->transid); 268 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 269 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 270 BTRFS_HEADER_FLAG_RELOC); 271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 272 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 273 else 274 btrfs_set_header_owner(cow, new_root_objectid); 275 276 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 277 BTRFS_FSID_SIZE); 278 279 WARN_ON(btrfs_header_generation(buf) > trans->transid); 280 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 281 ret = btrfs_inc_ref(trans, root, cow, 1); 282 else 283 ret = btrfs_inc_ref(trans, root, cow, 0); 284 285 if (ret) 286 return ret; 287 288 btrfs_mark_buffer_dirty(cow); 289 *cow_ret = cow; 290 return 0; 291 } 292 293 enum mod_log_op { 294 MOD_LOG_KEY_REPLACE, 295 MOD_LOG_KEY_ADD, 296 MOD_LOG_KEY_REMOVE, 297 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 298 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 299 MOD_LOG_MOVE_KEYS, 300 MOD_LOG_ROOT_REPLACE, 301 }; 302 303 struct tree_mod_move { 304 int dst_slot; 305 int nr_items; 306 }; 307 308 struct tree_mod_root { 309 u64 logical; 310 u8 level; 311 }; 312 313 struct tree_mod_elem { 314 struct rb_node node; 315 u64 logical; 316 u64 seq; 317 enum mod_log_op op; 318 319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 320 int slot; 321 322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 323 u64 generation; 324 325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 326 struct btrfs_disk_key key; 327 u64 blockptr; 328 329 /* this is used for op == MOD_LOG_MOVE_KEYS */ 330 struct tree_mod_move move; 331 332 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 333 struct tree_mod_root old_root; 334 }; 335 336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 337 { 338 read_lock(&fs_info->tree_mod_log_lock); 339 } 340 341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 342 { 343 read_unlock(&fs_info->tree_mod_log_lock); 344 } 345 346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 347 { 348 write_lock(&fs_info->tree_mod_log_lock); 349 } 350 351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 352 { 353 write_unlock(&fs_info->tree_mod_log_lock); 354 } 355 356 /* 357 * Pull a new tree mod seq number for our operation. 358 */ 359 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 360 { 361 return atomic64_inc_return(&fs_info->tree_mod_seq); 362 } 363 364 /* 365 * This adds a new blocker to the tree mod log's blocker list if the @elem 366 * passed does not already have a sequence number set. So when a caller expects 367 * to record tree modifications, it should ensure to set elem->seq to zero 368 * before calling btrfs_get_tree_mod_seq. 369 * Returns a fresh, unused tree log modification sequence number, even if no new 370 * blocker was added. 371 */ 372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 373 struct seq_list *elem) 374 { 375 tree_mod_log_write_lock(fs_info); 376 spin_lock(&fs_info->tree_mod_seq_lock); 377 if (!elem->seq) { 378 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 379 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 380 } 381 spin_unlock(&fs_info->tree_mod_seq_lock); 382 tree_mod_log_write_unlock(fs_info); 383 384 return elem->seq; 385 } 386 387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 388 struct seq_list *elem) 389 { 390 struct rb_root *tm_root; 391 struct rb_node *node; 392 struct rb_node *next; 393 struct seq_list *cur_elem; 394 struct tree_mod_elem *tm; 395 u64 min_seq = (u64)-1; 396 u64 seq_putting = elem->seq; 397 398 if (!seq_putting) 399 return; 400 401 spin_lock(&fs_info->tree_mod_seq_lock); 402 list_del(&elem->list); 403 elem->seq = 0; 404 405 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 406 if (cur_elem->seq < min_seq) { 407 if (seq_putting > cur_elem->seq) { 408 /* 409 * blocker with lower sequence number exists, we 410 * cannot remove anything from the log 411 */ 412 spin_unlock(&fs_info->tree_mod_seq_lock); 413 return; 414 } 415 min_seq = cur_elem->seq; 416 } 417 } 418 spin_unlock(&fs_info->tree_mod_seq_lock); 419 420 /* 421 * anything that's lower than the lowest existing (read: blocked) 422 * sequence number can be removed from the tree. 423 */ 424 tree_mod_log_write_lock(fs_info); 425 tm_root = &fs_info->tree_mod_log; 426 for (node = rb_first(tm_root); node; node = next) { 427 next = rb_next(node); 428 tm = container_of(node, struct tree_mod_elem, node); 429 if (tm->seq > min_seq) 430 continue; 431 rb_erase(node, tm_root); 432 kfree(tm); 433 } 434 tree_mod_log_write_unlock(fs_info); 435 } 436 437 /* 438 * key order of the log: 439 * node/leaf start address -> sequence 440 * 441 * The 'start address' is the logical address of the *new* root node 442 * for root replace operations, or the logical address of the affected 443 * block for all other operations. 444 * 445 * Note: must be called with write lock (tree_mod_log_write_lock). 446 */ 447 static noinline int 448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 449 { 450 struct rb_root *tm_root; 451 struct rb_node **new; 452 struct rb_node *parent = NULL; 453 struct tree_mod_elem *cur; 454 455 BUG_ON(!tm); 456 457 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 458 459 tm_root = &fs_info->tree_mod_log; 460 new = &tm_root->rb_node; 461 while (*new) { 462 cur = container_of(*new, struct tree_mod_elem, node); 463 parent = *new; 464 if (cur->logical < tm->logical) 465 new = &((*new)->rb_left); 466 else if (cur->logical > tm->logical) 467 new = &((*new)->rb_right); 468 else if (cur->seq < tm->seq) 469 new = &((*new)->rb_left); 470 else if (cur->seq > tm->seq) 471 new = &((*new)->rb_right); 472 else 473 return -EEXIST; 474 } 475 476 rb_link_node(&tm->node, parent, new); 477 rb_insert_color(&tm->node, tm_root); 478 return 0; 479 } 480 481 /* 482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 483 * returns zero with the tree_mod_log_lock acquired. The caller must hold 484 * this until all tree mod log insertions are recorded in the rb tree and then 485 * call tree_mod_log_write_unlock() to release. 486 */ 487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 488 struct extent_buffer *eb) { 489 smp_mb(); 490 if (list_empty(&(fs_info)->tree_mod_seq_list)) 491 return 1; 492 if (eb && btrfs_header_level(eb) == 0) 493 return 1; 494 495 tree_mod_log_write_lock(fs_info); 496 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 497 tree_mod_log_write_unlock(fs_info); 498 return 1; 499 } 500 501 return 0; 502 } 503 504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 505 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 506 struct extent_buffer *eb) 507 { 508 smp_mb(); 509 if (list_empty(&(fs_info)->tree_mod_seq_list)) 510 return 0; 511 if (eb && btrfs_header_level(eb) == 0) 512 return 0; 513 514 return 1; 515 } 516 517 static struct tree_mod_elem * 518 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 519 enum mod_log_op op, gfp_t flags) 520 { 521 struct tree_mod_elem *tm; 522 523 tm = kzalloc(sizeof(*tm), flags); 524 if (!tm) 525 return NULL; 526 527 tm->logical = eb->start; 528 if (op != MOD_LOG_KEY_ADD) { 529 btrfs_node_key(eb, &tm->key, slot); 530 tm->blockptr = btrfs_node_blockptr(eb, slot); 531 } 532 tm->op = op; 533 tm->slot = slot; 534 tm->generation = btrfs_node_ptr_generation(eb, slot); 535 RB_CLEAR_NODE(&tm->node); 536 537 return tm; 538 } 539 540 static noinline int 541 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 542 struct extent_buffer *eb, int slot, 543 enum mod_log_op op, gfp_t flags) 544 { 545 struct tree_mod_elem *tm; 546 int ret; 547 548 if (!tree_mod_need_log(fs_info, eb)) 549 return 0; 550 551 tm = alloc_tree_mod_elem(eb, slot, op, flags); 552 if (!tm) 553 return -ENOMEM; 554 555 if (tree_mod_dont_log(fs_info, eb)) { 556 kfree(tm); 557 return 0; 558 } 559 560 ret = __tree_mod_log_insert(fs_info, tm); 561 tree_mod_log_write_unlock(fs_info); 562 if (ret) 563 kfree(tm); 564 565 return ret; 566 } 567 568 static noinline int 569 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 570 struct extent_buffer *eb, int dst_slot, int src_slot, 571 int nr_items, gfp_t flags) 572 { 573 struct tree_mod_elem *tm = NULL; 574 struct tree_mod_elem **tm_list = NULL; 575 int ret = 0; 576 int i; 577 int locked = 0; 578 579 if (!tree_mod_need_log(fs_info, eb)) 580 return 0; 581 582 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags); 583 if (!tm_list) 584 return -ENOMEM; 585 586 tm = kzalloc(sizeof(*tm), flags); 587 if (!tm) { 588 ret = -ENOMEM; 589 goto free_tms; 590 } 591 592 tm->logical = eb->start; 593 tm->slot = src_slot; 594 tm->move.dst_slot = dst_slot; 595 tm->move.nr_items = nr_items; 596 tm->op = MOD_LOG_MOVE_KEYS; 597 598 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 599 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 600 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags); 601 if (!tm_list[i]) { 602 ret = -ENOMEM; 603 goto free_tms; 604 } 605 } 606 607 if (tree_mod_dont_log(fs_info, eb)) 608 goto free_tms; 609 locked = 1; 610 611 /* 612 * When we override something during the move, we log these removals. 613 * This can only happen when we move towards the beginning of the 614 * buffer, i.e. dst_slot < src_slot. 615 */ 616 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 617 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 618 if (ret) 619 goto free_tms; 620 } 621 622 ret = __tree_mod_log_insert(fs_info, tm); 623 if (ret) 624 goto free_tms; 625 tree_mod_log_write_unlock(fs_info); 626 kfree(tm_list); 627 628 return 0; 629 free_tms: 630 for (i = 0; i < nr_items; i++) { 631 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 632 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 633 kfree(tm_list[i]); 634 } 635 if (locked) 636 tree_mod_log_write_unlock(fs_info); 637 kfree(tm_list); 638 kfree(tm); 639 640 return ret; 641 } 642 643 static inline int 644 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 645 struct tree_mod_elem **tm_list, 646 int nritems) 647 { 648 int i, j; 649 int ret; 650 651 for (i = nritems - 1; i >= 0; i--) { 652 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 653 if (ret) { 654 for (j = nritems - 1; j > i; j--) 655 rb_erase(&tm_list[j]->node, 656 &fs_info->tree_mod_log); 657 return ret; 658 } 659 } 660 661 return 0; 662 } 663 664 static noinline int 665 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 666 struct extent_buffer *old_root, 667 struct extent_buffer *new_root, gfp_t flags, 668 int log_removal) 669 { 670 struct tree_mod_elem *tm = NULL; 671 struct tree_mod_elem **tm_list = NULL; 672 int nritems = 0; 673 int ret = 0; 674 int i; 675 676 if (!tree_mod_need_log(fs_info, NULL)) 677 return 0; 678 679 if (log_removal && btrfs_header_level(old_root) > 0) { 680 nritems = btrfs_header_nritems(old_root); 681 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 682 flags); 683 if (!tm_list) { 684 ret = -ENOMEM; 685 goto free_tms; 686 } 687 for (i = 0; i < nritems; i++) { 688 tm_list[i] = alloc_tree_mod_elem(old_root, i, 689 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags); 690 if (!tm_list[i]) { 691 ret = -ENOMEM; 692 goto free_tms; 693 } 694 } 695 } 696 697 tm = kzalloc(sizeof(*tm), flags); 698 if (!tm) { 699 ret = -ENOMEM; 700 goto free_tms; 701 } 702 703 tm->logical = new_root->start; 704 tm->old_root.logical = old_root->start; 705 tm->old_root.level = btrfs_header_level(old_root); 706 tm->generation = btrfs_header_generation(old_root); 707 tm->op = MOD_LOG_ROOT_REPLACE; 708 709 if (tree_mod_dont_log(fs_info, NULL)) 710 goto free_tms; 711 712 if (tm_list) 713 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 714 if (!ret) 715 ret = __tree_mod_log_insert(fs_info, tm); 716 717 tree_mod_log_write_unlock(fs_info); 718 if (ret) 719 goto free_tms; 720 kfree(tm_list); 721 722 return ret; 723 724 free_tms: 725 if (tm_list) { 726 for (i = 0; i < nritems; i++) 727 kfree(tm_list[i]); 728 kfree(tm_list); 729 } 730 kfree(tm); 731 732 return ret; 733 } 734 735 static struct tree_mod_elem * 736 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 737 int smallest) 738 { 739 struct rb_root *tm_root; 740 struct rb_node *node; 741 struct tree_mod_elem *cur = NULL; 742 struct tree_mod_elem *found = NULL; 743 744 tree_mod_log_read_lock(fs_info); 745 tm_root = &fs_info->tree_mod_log; 746 node = tm_root->rb_node; 747 while (node) { 748 cur = container_of(node, struct tree_mod_elem, node); 749 if (cur->logical < start) { 750 node = node->rb_left; 751 } else if (cur->logical > start) { 752 node = node->rb_right; 753 } else if (cur->seq < min_seq) { 754 node = node->rb_left; 755 } else if (!smallest) { 756 /* we want the node with the highest seq */ 757 if (found) 758 BUG_ON(found->seq > cur->seq); 759 found = cur; 760 node = node->rb_left; 761 } else if (cur->seq > min_seq) { 762 /* we want the node with the smallest seq */ 763 if (found) 764 BUG_ON(found->seq < cur->seq); 765 found = cur; 766 node = node->rb_right; 767 } else { 768 found = cur; 769 break; 770 } 771 } 772 tree_mod_log_read_unlock(fs_info); 773 774 return found; 775 } 776 777 /* 778 * this returns the element from the log with the smallest time sequence 779 * value that's in the log (the oldest log item). any element with a time 780 * sequence lower than min_seq will be ignored. 781 */ 782 static struct tree_mod_elem * 783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 784 u64 min_seq) 785 { 786 return __tree_mod_log_search(fs_info, start, min_seq, 1); 787 } 788 789 /* 790 * this returns the element from the log with the largest time sequence 791 * value that's in the log (the most recent log item). any element with 792 * a time sequence lower than min_seq will be ignored. 793 */ 794 static struct tree_mod_elem * 795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 796 { 797 return __tree_mod_log_search(fs_info, start, min_seq, 0); 798 } 799 800 static noinline int 801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 802 struct extent_buffer *src, unsigned long dst_offset, 803 unsigned long src_offset, int nr_items) 804 { 805 int ret = 0; 806 struct tree_mod_elem **tm_list = NULL; 807 struct tree_mod_elem **tm_list_add, **tm_list_rem; 808 int i; 809 int locked = 0; 810 811 if (!tree_mod_need_log(fs_info, NULL)) 812 return 0; 813 814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 815 return 0; 816 817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 818 GFP_NOFS); 819 if (!tm_list) 820 return -ENOMEM; 821 822 tm_list_add = tm_list; 823 tm_list_rem = tm_list + nr_items; 824 for (i = 0; i < nr_items; i++) { 825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 826 MOD_LOG_KEY_REMOVE, GFP_NOFS); 827 if (!tm_list_rem[i]) { 828 ret = -ENOMEM; 829 goto free_tms; 830 } 831 832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 833 MOD_LOG_KEY_ADD, GFP_NOFS); 834 if (!tm_list_add[i]) { 835 ret = -ENOMEM; 836 goto free_tms; 837 } 838 } 839 840 if (tree_mod_dont_log(fs_info, NULL)) 841 goto free_tms; 842 locked = 1; 843 844 for (i = 0; i < nr_items; i++) { 845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 846 if (ret) 847 goto free_tms; 848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 849 if (ret) 850 goto free_tms; 851 } 852 853 tree_mod_log_write_unlock(fs_info); 854 kfree(tm_list); 855 856 return 0; 857 858 free_tms: 859 for (i = 0; i < nr_items * 2; i++) { 860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 862 kfree(tm_list[i]); 863 } 864 if (locked) 865 tree_mod_log_write_unlock(fs_info); 866 kfree(tm_list); 867 868 return ret; 869 } 870 871 static inline void 872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 873 int dst_offset, int src_offset, int nr_items) 874 { 875 int ret; 876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 877 nr_items, GFP_NOFS); 878 BUG_ON(ret < 0); 879 } 880 881 static noinline void 882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 883 struct extent_buffer *eb, int slot, int atomic) 884 { 885 int ret; 886 887 ret = tree_mod_log_insert_key(fs_info, eb, slot, 888 MOD_LOG_KEY_REPLACE, 889 atomic ? GFP_ATOMIC : GFP_NOFS); 890 BUG_ON(ret < 0); 891 } 892 893 static noinline int 894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 895 { 896 struct tree_mod_elem **tm_list = NULL; 897 int nritems = 0; 898 int i; 899 int ret = 0; 900 901 if (btrfs_header_level(eb) == 0) 902 return 0; 903 904 if (!tree_mod_need_log(fs_info, NULL)) 905 return 0; 906 907 nritems = btrfs_header_nritems(eb); 908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 909 if (!tm_list) 910 return -ENOMEM; 911 912 for (i = 0; i < nritems; i++) { 913 tm_list[i] = alloc_tree_mod_elem(eb, i, 914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 915 if (!tm_list[i]) { 916 ret = -ENOMEM; 917 goto free_tms; 918 } 919 } 920 921 if (tree_mod_dont_log(fs_info, eb)) 922 goto free_tms; 923 924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 925 tree_mod_log_write_unlock(fs_info); 926 if (ret) 927 goto free_tms; 928 kfree(tm_list); 929 930 return 0; 931 932 free_tms: 933 for (i = 0; i < nritems; i++) 934 kfree(tm_list[i]); 935 kfree(tm_list); 936 937 return ret; 938 } 939 940 static noinline void 941 tree_mod_log_set_root_pointer(struct btrfs_root *root, 942 struct extent_buffer *new_root_node, 943 int log_removal) 944 { 945 int ret; 946 ret = tree_mod_log_insert_root(root->fs_info, root->node, 947 new_root_node, GFP_NOFS, log_removal); 948 BUG_ON(ret < 0); 949 } 950 951 /* 952 * check if the tree block can be shared by multiple trees 953 */ 954 int btrfs_block_can_be_shared(struct btrfs_root *root, 955 struct extent_buffer *buf) 956 { 957 /* 958 * Tree blocks not in reference counted trees and tree roots 959 * are never shared. If a block was allocated after the last 960 * snapshot and the block was not allocated by tree relocation, 961 * we know the block is not shared. 962 */ 963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 964 buf != root->node && buf != root->commit_root && 965 (btrfs_header_generation(buf) <= 966 btrfs_root_last_snapshot(&root->root_item) || 967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 968 return 1; 969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 972 return 1; 973 #endif 974 return 0; 975 } 976 977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 978 struct btrfs_root *root, 979 struct extent_buffer *buf, 980 struct extent_buffer *cow, 981 int *last_ref) 982 { 983 u64 refs; 984 u64 owner; 985 u64 flags; 986 u64 new_flags = 0; 987 int ret; 988 989 /* 990 * Backrefs update rules: 991 * 992 * Always use full backrefs for extent pointers in tree block 993 * allocated by tree relocation. 994 * 995 * If a shared tree block is no longer referenced by its owner 996 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 997 * use full backrefs for extent pointers in tree block. 998 * 999 * If a tree block is been relocating 1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 1001 * use full backrefs for extent pointers in tree block. 1002 * The reason for this is some operations (such as drop tree) 1003 * are only allowed for blocks use full backrefs. 1004 */ 1005 1006 if (btrfs_block_can_be_shared(root, buf)) { 1007 ret = btrfs_lookup_extent_info(trans, root, buf->start, 1008 btrfs_header_level(buf), 1, 1009 &refs, &flags); 1010 if (ret) 1011 return ret; 1012 if (refs == 0) { 1013 ret = -EROFS; 1014 btrfs_handle_fs_error(root->fs_info, ret, NULL); 1015 return ret; 1016 } 1017 } else { 1018 refs = 1; 1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1022 else 1023 flags = 0; 1024 } 1025 1026 owner = btrfs_header_owner(buf); 1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1029 1030 if (refs > 1) { 1031 if ((owner == root->root_key.objectid || 1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1034 ret = btrfs_inc_ref(trans, root, buf, 1); 1035 BUG_ON(ret); /* -ENOMEM */ 1036 1037 if (root->root_key.objectid == 1038 BTRFS_TREE_RELOC_OBJECTID) { 1039 ret = btrfs_dec_ref(trans, root, buf, 0); 1040 BUG_ON(ret); /* -ENOMEM */ 1041 ret = btrfs_inc_ref(trans, root, cow, 1); 1042 BUG_ON(ret); /* -ENOMEM */ 1043 } 1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1045 } else { 1046 1047 if (root->root_key.objectid == 1048 BTRFS_TREE_RELOC_OBJECTID) 1049 ret = btrfs_inc_ref(trans, root, cow, 1); 1050 else 1051 ret = btrfs_inc_ref(trans, root, cow, 0); 1052 BUG_ON(ret); /* -ENOMEM */ 1053 } 1054 if (new_flags != 0) { 1055 int level = btrfs_header_level(buf); 1056 1057 ret = btrfs_set_disk_extent_flags(trans, root, 1058 buf->start, 1059 buf->len, 1060 new_flags, level, 0); 1061 if (ret) 1062 return ret; 1063 } 1064 } else { 1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1066 if (root->root_key.objectid == 1067 BTRFS_TREE_RELOC_OBJECTID) 1068 ret = btrfs_inc_ref(trans, root, cow, 1); 1069 else 1070 ret = btrfs_inc_ref(trans, root, cow, 0); 1071 BUG_ON(ret); /* -ENOMEM */ 1072 ret = btrfs_dec_ref(trans, root, buf, 1); 1073 BUG_ON(ret); /* -ENOMEM */ 1074 } 1075 clean_tree_block(trans, root->fs_info, buf); 1076 *last_ref = 1; 1077 } 1078 return 0; 1079 } 1080 1081 /* 1082 * does the dirty work in cow of a single block. The parent block (if 1083 * supplied) is updated to point to the new cow copy. The new buffer is marked 1084 * dirty and returned locked. If you modify the block it needs to be marked 1085 * dirty again. 1086 * 1087 * search_start -- an allocation hint for the new block 1088 * 1089 * empty_size -- a hint that you plan on doing more cow. This is the size in 1090 * bytes the allocator should try to find free next to the block it returns. 1091 * This is just a hint and may be ignored by the allocator. 1092 */ 1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1094 struct btrfs_root *root, 1095 struct extent_buffer *buf, 1096 struct extent_buffer *parent, int parent_slot, 1097 struct extent_buffer **cow_ret, 1098 u64 search_start, u64 empty_size) 1099 { 1100 struct btrfs_disk_key disk_key; 1101 struct extent_buffer *cow; 1102 int level, ret; 1103 int last_ref = 0; 1104 int unlock_orig = 0; 1105 u64 parent_start; 1106 1107 if (*cow_ret == buf) 1108 unlock_orig = 1; 1109 1110 btrfs_assert_tree_locked(buf); 1111 1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1113 trans->transid != root->fs_info->running_transaction->transid); 1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1115 trans->transid != root->last_trans); 1116 1117 level = btrfs_header_level(buf); 1118 1119 if (level == 0) 1120 btrfs_item_key(buf, &disk_key, 0); 1121 else 1122 btrfs_node_key(buf, &disk_key, 0); 1123 1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 1125 if (parent) 1126 parent_start = parent->start; 1127 else 1128 parent_start = 0; 1129 } else 1130 parent_start = 0; 1131 1132 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1133 root->root_key.objectid, &disk_key, level, 1134 search_start, empty_size); 1135 if (IS_ERR(cow)) 1136 return PTR_ERR(cow); 1137 1138 /* cow is set to blocking by btrfs_init_new_buffer */ 1139 1140 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1141 btrfs_set_header_bytenr(cow, cow->start); 1142 btrfs_set_header_generation(cow, trans->transid); 1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1145 BTRFS_HEADER_FLAG_RELOC); 1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1148 else 1149 btrfs_set_header_owner(cow, root->root_key.objectid); 1150 1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 1152 BTRFS_FSID_SIZE); 1153 1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1155 if (ret) { 1156 btrfs_abort_transaction(trans, root, ret); 1157 return ret; 1158 } 1159 1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1162 if (ret) { 1163 btrfs_abort_transaction(trans, root, ret); 1164 return ret; 1165 } 1166 } 1167 1168 if (buf == root->node) { 1169 WARN_ON(parent && parent != buf); 1170 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1171 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1172 parent_start = buf->start; 1173 else 1174 parent_start = 0; 1175 1176 extent_buffer_get(cow); 1177 tree_mod_log_set_root_pointer(root, cow, 1); 1178 rcu_assign_pointer(root->node, cow); 1179 1180 btrfs_free_tree_block(trans, root, buf, parent_start, 1181 last_ref); 1182 free_extent_buffer(buf); 1183 add_root_to_dirty_list(root); 1184 } else { 1185 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1186 parent_start = parent->start; 1187 else 1188 parent_start = 0; 1189 1190 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1191 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1192 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1193 btrfs_set_node_blockptr(parent, parent_slot, 1194 cow->start); 1195 btrfs_set_node_ptr_generation(parent, parent_slot, 1196 trans->transid); 1197 btrfs_mark_buffer_dirty(parent); 1198 if (last_ref) { 1199 ret = tree_mod_log_free_eb(root->fs_info, buf); 1200 if (ret) { 1201 btrfs_abort_transaction(trans, root, ret); 1202 return ret; 1203 } 1204 } 1205 btrfs_free_tree_block(trans, root, buf, parent_start, 1206 last_ref); 1207 } 1208 if (unlock_orig) 1209 btrfs_tree_unlock(buf); 1210 free_extent_buffer_stale(buf); 1211 btrfs_mark_buffer_dirty(cow); 1212 *cow_ret = cow; 1213 return 0; 1214 } 1215 1216 /* 1217 * returns the logical address of the oldest predecessor of the given root. 1218 * entries older than time_seq are ignored. 1219 */ 1220 static struct tree_mod_elem * 1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1222 struct extent_buffer *eb_root, u64 time_seq) 1223 { 1224 struct tree_mod_elem *tm; 1225 struct tree_mod_elem *found = NULL; 1226 u64 root_logical = eb_root->start; 1227 int looped = 0; 1228 1229 if (!time_seq) 1230 return NULL; 1231 1232 /* 1233 * the very last operation that's logged for a root is the 1234 * replacement operation (if it is replaced at all). this has 1235 * the logical address of the *new* root, making it the very 1236 * first operation that's logged for this root. 1237 */ 1238 while (1) { 1239 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1240 time_seq); 1241 if (!looped && !tm) 1242 return NULL; 1243 /* 1244 * if there are no tree operation for the oldest root, we simply 1245 * return it. this should only happen if that (old) root is at 1246 * level 0. 1247 */ 1248 if (!tm) 1249 break; 1250 1251 /* 1252 * if there's an operation that's not a root replacement, we 1253 * found the oldest version of our root. normally, we'll find a 1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1255 */ 1256 if (tm->op != MOD_LOG_ROOT_REPLACE) 1257 break; 1258 1259 found = tm; 1260 root_logical = tm->old_root.logical; 1261 looped = 1; 1262 } 1263 1264 /* if there's no old root to return, return what we found instead */ 1265 if (!found) 1266 found = tm; 1267 1268 return found; 1269 } 1270 1271 /* 1272 * tm is a pointer to the first operation to rewind within eb. then, all 1273 * previous operations will be rewound (until we reach something older than 1274 * time_seq). 1275 */ 1276 static void 1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1278 u64 time_seq, struct tree_mod_elem *first_tm) 1279 { 1280 u32 n; 1281 struct rb_node *next; 1282 struct tree_mod_elem *tm = first_tm; 1283 unsigned long o_dst; 1284 unsigned long o_src; 1285 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1286 1287 n = btrfs_header_nritems(eb); 1288 tree_mod_log_read_lock(fs_info); 1289 while (tm && tm->seq >= time_seq) { 1290 /* 1291 * all the operations are recorded with the operator used for 1292 * the modification. as we're going backwards, we do the 1293 * opposite of each operation here. 1294 */ 1295 switch (tm->op) { 1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1297 BUG_ON(tm->slot < n); 1298 /* Fallthrough */ 1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1300 case MOD_LOG_KEY_REMOVE: 1301 btrfs_set_node_key(eb, &tm->key, tm->slot); 1302 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1303 btrfs_set_node_ptr_generation(eb, tm->slot, 1304 tm->generation); 1305 n++; 1306 break; 1307 case MOD_LOG_KEY_REPLACE: 1308 BUG_ON(tm->slot >= n); 1309 btrfs_set_node_key(eb, &tm->key, tm->slot); 1310 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1311 btrfs_set_node_ptr_generation(eb, tm->slot, 1312 tm->generation); 1313 break; 1314 case MOD_LOG_KEY_ADD: 1315 /* if a move operation is needed it's in the log */ 1316 n--; 1317 break; 1318 case MOD_LOG_MOVE_KEYS: 1319 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1320 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1321 memmove_extent_buffer(eb, o_dst, o_src, 1322 tm->move.nr_items * p_size); 1323 break; 1324 case MOD_LOG_ROOT_REPLACE: 1325 /* 1326 * this operation is special. for roots, this must be 1327 * handled explicitly before rewinding. 1328 * for non-roots, this operation may exist if the node 1329 * was a root: root A -> child B; then A gets empty and 1330 * B is promoted to the new root. in the mod log, we'll 1331 * have a root-replace operation for B, a tree block 1332 * that is no root. we simply ignore that operation. 1333 */ 1334 break; 1335 } 1336 next = rb_next(&tm->node); 1337 if (!next) 1338 break; 1339 tm = container_of(next, struct tree_mod_elem, node); 1340 if (tm->logical != first_tm->logical) 1341 break; 1342 } 1343 tree_mod_log_read_unlock(fs_info); 1344 btrfs_set_header_nritems(eb, n); 1345 } 1346 1347 /* 1348 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1349 * is returned. If rewind operations happen, a fresh buffer is returned. The 1350 * returned buffer is always read-locked. If the returned buffer is not the 1351 * input buffer, the lock on the input buffer is released and the input buffer 1352 * is freed (its refcount is decremented). 1353 */ 1354 static struct extent_buffer * 1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1356 struct extent_buffer *eb, u64 time_seq) 1357 { 1358 struct extent_buffer *eb_rewin; 1359 struct tree_mod_elem *tm; 1360 1361 if (!time_seq) 1362 return eb; 1363 1364 if (btrfs_header_level(eb) == 0) 1365 return eb; 1366 1367 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1368 if (!tm) 1369 return eb; 1370 1371 btrfs_set_path_blocking(path); 1372 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1373 1374 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1375 BUG_ON(tm->slot != 0); 1376 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start, 1377 eb->len); 1378 if (!eb_rewin) { 1379 btrfs_tree_read_unlock_blocking(eb); 1380 free_extent_buffer(eb); 1381 return NULL; 1382 } 1383 btrfs_set_header_bytenr(eb_rewin, eb->start); 1384 btrfs_set_header_backref_rev(eb_rewin, 1385 btrfs_header_backref_rev(eb)); 1386 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1387 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1388 } else { 1389 eb_rewin = btrfs_clone_extent_buffer(eb); 1390 if (!eb_rewin) { 1391 btrfs_tree_read_unlock_blocking(eb); 1392 free_extent_buffer(eb); 1393 return NULL; 1394 } 1395 } 1396 1397 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1398 btrfs_tree_read_unlock_blocking(eb); 1399 free_extent_buffer(eb); 1400 1401 extent_buffer_get(eb_rewin); 1402 btrfs_tree_read_lock(eb_rewin); 1403 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1404 WARN_ON(btrfs_header_nritems(eb_rewin) > 1405 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1406 1407 return eb_rewin; 1408 } 1409 1410 /* 1411 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1412 * value. If there are no changes, the current root->root_node is returned. If 1413 * anything changed in between, there's a fresh buffer allocated on which the 1414 * rewind operations are done. In any case, the returned buffer is read locked. 1415 * Returns NULL on error (with no locks held). 1416 */ 1417 static inline struct extent_buffer * 1418 get_old_root(struct btrfs_root *root, u64 time_seq) 1419 { 1420 struct tree_mod_elem *tm; 1421 struct extent_buffer *eb = NULL; 1422 struct extent_buffer *eb_root; 1423 struct extent_buffer *old; 1424 struct tree_mod_root *old_root = NULL; 1425 u64 old_generation = 0; 1426 u64 logical; 1427 1428 eb_root = btrfs_read_lock_root_node(root); 1429 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1430 if (!tm) 1431 return eb_root; 1432 1433 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1434 old_root = &tm->old_root; 1435 old_generation = tm->generation; 1436 logical = old_root->logical; 1437 } else { 1438 logical = eb_root->start; 1439 } 1440 1441 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1442 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1443 btrfs_tree_read_unlock(eb_root); 1444 free_extent_buffer(eb_root); 1445 old = read_tree_block(root, logical, 0); 1446 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1447 if (!IS_ERR(old)) 1448 free_extent_buffer(old); 1449 btrfs_warn(root->fs_info, 1450 "failed to read tree block %llu from get_old_root", logical); 1451 } else { 1452 eb = btrfs_clone_extent_buffer(old); 1453 free_extent_buffer(old); 1454 } 1455 } else if (old_root) { 1456 btrfs_tree_read_unlock(eb_root); 1457 free_extent_buffer(eb_root); 1458 eb = alloc_dummy_extent_buffer(root->fs_info, logical, 1459 root->nodesize); 1460 } else { 1461 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1462 eb = btrfs_clone_extent_buffer(eb_root); 1463 btrfs_tree_read_unlock_blocking(eb_root); 1464 free_extent_buffer(eb_root); 1465 } 1466 1467 if (!eb) 1468 return NULL; 1469 extent_buffer_get(eb); 1470 btrfs_tree_read_lock(eb); 1471 if (old_root) { 1472 btrfs_set_header_bytenr(eb, eb->start); 1473 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1474 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1475 btrfs_set_header_level(eb, old_root->level); 1476 btrfs_set_header_generation(eb, old_generation); 1477 } 1478 if (tm) 1479 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1480 else 1481 WARN_ON(btrfs_header_level(eb) != 0); 1482 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1483 1484 return eb; 1485 } 1486 1487 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1488 { 1489 struct tree_mod_elem *tm; 1490 int level; 1491 struct extent_buffer *eb_root = btrfs_root_node(root); 1492 1493 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1494 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1495 level = tm->old_root.level; 1496 } else { 1497 level = btrfs_header_level(eb_root); 1498 } 1499 free_extent_buffer(eb_root); 1500 1501 return level; 1502 } 1503 1504 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1505 struct btrfs_root *root, 1506 struct extent_buffer *buf) 1507 { 1508 if (btrfs_test_is_dummy_root(root)) 1509 return 0; 1510 1511 /* ensure we can see the force_cow */ 1512 smp_rmb(); 1513 1514 /* 1515 * We do not need to cow a block if 1516 * 1) this block is not created or changed in this transaction; 1517 * 2) this block does not belong to TREE_RELOC tree; 1518 * 3) the root is not forced COW. 1519 * 1520 * What is forced COW: 1521 * when we create snapshot during committing the transaction, 1522 * after we've finished coping src root, we must COW the shared 1523 * block to ensure the metadata consistency. 1524 */ 1525 if (btrfs_header_generation(buf) == trans->transid && 1526 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1527 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1528 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1529 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1530 return 0; 1531 return 1; 1532 } 1533 1534 /* 1535 * cows a single block, see __btrfs_cow_block for the real work. 1536 * This version of it has extra checks so that a block isn't COWed more than 1537 * once per transaction, as long as it hasn't been written yet 1538 */ 1539 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1540 struct btrfs_root *root, struct extent_buffer *buf, 1541 struct extent_buffer *parent, int parent_slot, 1542 struct extent_buffer **cow_ret) 1543 { 1544 u64 search_start; 1545 int ret; 1546 1547 if (trans->transaction != root->fs_info->running_transaction) 1548 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1549 trans->transid, 1550 root->fs_info->running_transaction->transid); 1551 1552 if (trans->transid != root->fs_info->generation) 1553 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1554 trans->transid, root->fs_info->generation); 1555 1556 if (!should_cow_block(trans, root, buf)) { 1557 *cow_ret = buf; 1558 return 0; 1559 } 1560 1561 search_start = buf->start & ~((u64)SZ_1G - 1); 1562 1563 if (parent) 1564 btrfs_set_lock_blocking(parent); 1565 btrfs_set_lock_blocking(buf); 1566 1567 ret = __btrfs_cow_block(trans, root, buf, parent, 1568 parent_slot, cow_ret, search_start, 0); 1569 1570 trace_btrfs_cow_block(root, buf, *cow_ret); 1571 1572 return ret; 1573 } 1574 1575 /* 1576 * helper function for defrag to decide if two blocks pointed to by a 1577 * node are actually close by 1578 */ 1579 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1580 { 1581 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1582 return 1; 1583 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1584 return 1; 1585 return 0; 1586 } 1587 1588 /* 1589 * compare two keys in a memcmp fashion 1590 */ 1591 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1592 { 1593 struct btrfs_key k1; 1594 1595 btrfs_disk_key_to_cpu(&k1, disk); 1596 1597 return btrfs_comp_cpu_keys(&k1, k2); 1598 } 1599 1600 /* 1601 * same as comp_keys only with two btrfs_key's 1602 */ 1603 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1604 { 1605 if (k1->objectid > k2->objectid) 1606 return 1; 1607 if (k1->objectid < k2->objectid) 1608 return -1; 1609 if (k1->type > k2->type) 1610 return 1; 1611 if (k1->type < k2->type) 1612 return -1; 1613 if (k1->offset > k2->offset) 1614 return 1; 1615 if (k1->offset < k2->offset) 1616 return -1; 1617 return 0; 1618 } 1619 1620 /* 1621 * this is used by the defrag code to go through all the 1622 * leaves pointed to by a node and reallocate them so that 1623 * disk order is close to key order 1624 */ 1625 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1626 struct btrfs_root *root, struct extent_buffer *parent, 1627 int start_slot, u64 *last_ret, 1628 struct btrfs_key *progress) 1629 { 1630 struct extent_buffer *cur; 1631 u64 blocknr; 1632 u64 gen; 1633 u64 search_start = *last_ret; 1634 u64 last_block = 0; 1635 u64 other; 1636 u32 parent_nritems; 1637 int end_slot; 1638 int i; 1639 int err = 0; 1640 int parent_level; 1641 int uptodate; 1642 u32 blocksize; 1643 int progress_passed = 0; 1644 struct btrfs_disk_key disk_key; 1645 1646 parent_level = btrfs_header_level(parent); 1647 1648 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1649 WARN_ON(trans->transid != root->fs_info->generation); 1650 1651 parent_nritems = btrfs_header_nritems(parent); 1652 blocksize = root->nodesize; 1653 end_slot = parent_nritems - 1; 1654 1655 if (parent_nritems <= 1) 1656 return 0; 1657 1658 btrfs_set_lock_blocking(parent); 1659 1660 for (i = start_slot; i <= end_slot; i++) { 1661 int close = 1; 1662 1663 btrfs_node_key(parent, &disk_key, i); 1664 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1665 continue; 1666 1667 progress_passed = 1; 1668 blocknr = btrfs_node_blockptr(parent, i); 1669 gen = btrfs_node_ptr_generation(parent, i); 1670 if (last_block == 0) 1671 last_block = blocknr; 1672 1673 if (i > 0) { 1674 other = btrfs_node_blockptr(parent, i - 1); 1675 close = close_blocks(blocknr, other, blocksize); 1676 } 1677 if (!close && i < end_slot) { 1678 other = btrfs_node_blockptr(parent, i + 1); 1679 close = close_blocks(blocknr, other, blocksize); 1680 } 1681 if (close) { 1682 last_block = blocknr; 1683 continue; 1684 } 1685 1686 cur = btrfs_find_tree_block(root->fs_info, blocknr); 1687 if (cur) 1688 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1689 else 1690 uptodate = 0; 1691 if (!cur || !uptodate) { 1692 if (!cur) { 1693 cur = read_tree_block(root, blocknr, gen); 1694 if (IS_ERR(cur)) { 1695 return PTR_ERR(cur); 1696 } else if (!extent_buffer_uptodate(cur)) { 1697 free_extent_buffer(cur); 1698 return -EIO; 1699 } 1700 } else if (!uptodate) { 1701 err = btrfs_read_buffer(cur, gen); 1702 if (err) { 1703 free_extent_buffer(cur); 1704 return err; 1705 } 1706 } 1707 } 1708 if (search_start == 0) 1709 search_start = last_block; 1710 1711 btrfs_tree_lock(cur); 1712 btrfs_set_lock_blocking(cur); 1713 err = __btrfs_cow_block(trans, root, cur, parent, i, 1714 &cur, search_start, 1715 min(16 * blocksize, 1716 (end_slot - i) * blocksize)); 1717 if (err) { 1718 btrfs_tree_unlock(cur); 1719 free_extent_buffer(cur); 1720 break; 1721 } 1722 search_start = cur->start; 1723 last_block = cur->start; 1724 *last_ret = search_start; 1725 btrfs_tree_unlock(cur); 1726 free_extent_buffer(cur); 1727 } 1728 return err; 1729 } 1730 1731 /* 1732 * The leaf data grows from end-to-front in the node. 1733 * this returns the address of the start of the last item, 1734 * which is the stop of the leaf data stack 1735 */ 1736 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1737 struct extent_buffer *leaf) 1738 { 1739 u32 nr = btrfs_header_nritems(leaf); 1740 if (nr == 0) 1741 return BTRFS_LEAF_DATA_SIZE(root); 1742 return btrfs_item_offset_nr(leaf, nr - 1); 1743 } 1744 1745 1746 /* 1747 * search for key in the extent_buffer. The items start at offset p, 1748 * and they are item_size apart. There are 'max' items in p. 1749 * 1750 * the slot in the array is returned via slot, and it points to 1751 * the place where you would insert key if it is not found in 1752 * the array. 1753 * 1754 * slot may point to max if the key is bigger than all of the keys 1755 */ 1756 static noinline int generic_bin_search(struct extent_buffer *eb, 1757 unsigned long p, 1758 int item_size, struct btrfs_key *key, 1759 int max, int *slot) 1760 { 1761 int low = 0; 1762 int high = max; 1763 int mid; 1764 int ret; 1765 struct btrfs_disk_key *tmp = NULL; 1766 struct btrfs_disk_key unaligned; 1767 unsigned long offset; 1768 char *kaddr = NULL; 1769 unsigned long map_start = 0; 1770 unsigned long map_len = 0; 1771 int err; 1772 1773 while (low < high) { 1774 mid = (low + high) / 2; 1775 offset = p + mid * item_size; 1776 1777 if (!kaddr || offset < map_start || 1778 (offset + sizeof(struct btrfs_disk_key)) > 1779 map_start + map_len) { 1780 1781 err = map_private_extent_buffer(eb, offset, 1782 sizeof(struct btrfs_disk_key), 1783 &kaddr, &map_start, &map_len); 1784 1785 if (!err) { 1786 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1787 map_start); 1788 } else { 1789 read_extent_buffer(eb, &unaligned, 1790 offset, sizeof(unaligned)); 1791 tmp = &unaligned; 1792 } 1793 1794 } else { 1795 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1796 map_start); 1797 } 1798 ret = comp_keys(tmp, key); 1799 1800 if (ret < 0) 1801 low = mid + 1; 1802 else if (ret > 0) 1803 high = mid; 1804 else { 1805 *slot = mid; 1806 return 0; 1807 } 1808 } 1809 *slot = low; 1810 return 1; 1811 } 1812 1813 /* 1814 * simple bin_search frontend that does the right thing for 1815 * leaves vs nodes 1816 */ 1817 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1818 int level, int *slot) 1819 { 1820 if (level == 0) 1821 return generic_bin_search(eb, 1822 offsetof(struct btrfs_leaf, items), 1823 sizeof(struct btrfs_item), 1824 key, btrfs_header_nritems(eb), 1825 slot); 1826 else 1827 return generic_bin_search(eb, 1828 offsetof(struct btrfs_node, ptrs), 1829 sizeof(struct btrfs_key_ptr), 1830 key, btrfs_header_nritems(eb), 1831 slot); 1832 } 1833 1834 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1835 int level, int *slot) 1836 { 1837 return bin_search(eb, key, level, slot); 1838 } 1839 1840 static void root_add_used(struct btrfs_root *root, u32 size) 1841 { 1842 spin_lock(&root->accounting_lock); 1843 btrfs_set_root_used(&root->root_item, 1844 btrfs_root_used(&root->root_item) + size); 1845 spin_unlock(&root->accounting_lock); 1846 } 1847 1848 static void root_sub_used(struct btrfs_root *root, u32 size) 1849 { 1850 spin_lock(&root->accounting_lock); 1851 btrfs_set_root_used(&root->root_item, 1852 btrfs_root_used(&root->root_item) - size); 1853 spin_unlock(&root->accounting_lock); 1854 } 1855 1856 /* given a node and slot number, this reads the blocks it points to. The 1857 * extent buffer is returned with a reference taken (but unlocked). 1858 * NULL is returned on error. 1859 */ 1860 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1861 struct extent_buffer *parent, int slot) 1862 { 1863 int level = btrfs_header_level(parent); 1864 struct extent_buffer *eb; 1865 1866 if (slot < 0) 1867 return NULL; 1868 if (slot >= btrfs_header_nritems(parent)) 1869 return NULL; 1870 1871 BUG_ON(level == 0); 1872 1873 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1874 btrfs_node_ptr_generation(parent, slot)); 1875 if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) { 1876 if (!IS_ERR(eb)) 1877 free_extent_buffer(eb); 1878 eb = NULL; 1879 } 1880 1881 return eb; 1882 } 1883 1884 /* 1885 * node level balancing, used to make sure nodes are in proper order for 1886 * item deletion. We balance from the top down, so we have to make sure 1887 * that a deletion won't leave an node completely empty later on. 1888 */ 1889 static noinline int balance_level(struct btrfs_trans_handle *trans, 1890 struct btrfs_root *root, 1891 struct btrfs_path *path, int level) 1892 { 1893 struct extent_buffer *right = NULL; 1894 struct extent_buffer *mid; 1895 struct extent_buffer *left = NULL; 1896 struct extent_buffer *parent = NULL; 1897 int ret = 0; 1898 int wret; 1899 int pslot; 1900 int orig_slot = path->slots[level]; 1901 u64 orig_ptr; 1902 1903 if (level == 0) 1904 return 0; 1905 1906 mid = path->nodes[level]; 1907 1908 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1909 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1910 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1911 1912 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1913 1914 if (level < BTRFS_MAX_LEVEL - 1) { 1915 parent = path->nodes[level + 1]; 1916 pslot = path->slots[level + 1]; 1917 } 1918 1919 /* 1920 * deal with the case where there is only one pointer in the root 1921 * by promoting the node below to a root 1922 */ 1923 if (!parent) { 1924 struct extent_buffer *child; 1925 1926 if (btrfs_header_nritems(mid) != 1) 1927 return 0; 1928 1929 /* promote the child to a root */ 1930 child = read_node_slot(root, mid, 0); 1931 if (!child) { 1932 ret = -EROFS; 1933 btrfs_handle_fs_error(root->fs_info, ret, NULL); 1934 goto enospc; 1935 } 1936 1937 btrfs_tree_lock(child); 1938 btrfs_set_lock_blocking(child); 1939 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1940 if (ret) { 1941 btrfs_tree_unlock(child); 1942 free_extent_buffer(child); 1943 goto enospc; 1944 } 1945 1946 tree_mod_log_set_root_pointer(root, child, 1); 1947 rcu_assign_pointer(root->node, child); 1948 1949 add_root_to_dirty_list(root); 1950 btrfs_tree_unlock(child); 1951 1952 path->locks[level] = 0; 1953 path->nodes[level] = NULL; 1954 clean_tree_block(trans, root->fs_info, mid); 1955 btrfs_tree_unlock(mid); 1956 /* once for the path */ 1957 free_extent_buffer(mid); 1958 1959 root_sub_used(root, mid->len); 1960 btrfs_free_tree_block(trans, root, mid, 0, 1); 1961 /* once for the root ptr */ 1962 free_extent_buffer_stale(mid); 1963 return 0; 1964 } 1965 if (btrfs_header_nritems(mid) > 1966 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1967 return 0; 1968 1969 left = read_node_slot(root, parent, pslot - 1); 1970 if (left) { 1971 btrfs_tree_lock(left); 1972 btrfs_set_lock_blocking(left); 1973 wret = btrfs_cow_block(trans, root, left, 1974 parent, pslot - 1, &left); 1975 if (wret) { 1976 ret = wret; 1977 goto enospc; 1978 } 1979 } 1980 right = read_node_slot(root, parent, pslot + 1); 1981 if (right) { 1982 btrfs_tree_lock(right); 1983 btrfs_set_lock_blocking(right); 1984 wret = btrfs_cow_block(trans, root, right, 1985 parent, pslot + 1, &right); 1986 if (wret) { 1987 ret = wret; 1988 goto enospc; 1989 } 1990 } 1991 1992 /* first, try to make some room in the middle buffer */ 1993 if (left) { 1994 orig_slot += btrfs_header_nritems(left); 1995 wret = push_node_left(trans, root, left, mid, 1); 1996 if (wret < 0) 1997 ret = wret; 1998 } 1999 2000 /* 2001 * then try to empty the right most buffer into the middle 2002 */ 2003 if (right) { 2004 wret = push_node_left(trans, root, mid, right, 1); 2005 if (wret < 0 && wret != -ENOSPC) 2006 ret = wret; 2007 if (btrfs_header_nritems(right) == 0) { 2008 clean_tree_block(trans, root->fs_info, right); 2009 btrfs_tree_unlock(right); 2010 del_ptr(root, path, level + 1, pslot + 1); 2011 root_sub_used(root, right->len); 2012 btrfs_free_tree_block(trans, root, right, 0, 1); 2013 free_extent_buffer_stale(right); 2014 right = NULL; 2015 } else { 2016 struct btrfs_disk_key right_key; 2017 btrfs_node_key(right, &right_key, 0); 2018 tree_mod_log_set_node_key(root->fs_info, parent, 2019 pslot + 1, 0); 2020 btrfs_set_node_key(parent, &right_key, pslot + 1); 2021 btrfs_mark_buffer_dirty(parent); 2022 } 2023 } 2024 if (btrfs_header_nritems(mid) == 1) { 2025 /* 2026 * we're not allowed to leave a node with one item in the 2027 * tree during a delete. A deletion from lower in the tree 2028 * could try to delete the only pointer in this node. 2029 * So, pull some keys from the left. 2030 * There has to be a left pointer at this point because 2031 * otherwise we would have pulled some pointers from the 2032 * right 2033 */ 2034 if (!left) { 2035 ret = -EROFS; 2036 btrfs_handle_fs_error(root->fs_info, ret, NULL); 2037 goto enospc; 2038 } 2039 wret = balance_node_right(trans, root, mid, left); 2040 if (wret < 0) { 2041 ret = wret; 2042 goto enospc; 2043 } 2044 if (wret == 1) { 2045 wret = push_node_left(trans, root, left, mid, 1); 2046 if (wret < 0) 2047 ret = wret; 2048 } 2049 BUG_ON(wret == 1); 2050 } 2051 if (btrfs_header_nritems(mid) == 0) { 2052 clean_tree_block(trans, root->fs_info, mid); 2053 btrfs_tree_unlock(mid); 2054 del_ptr(root, path, level + 1, pslot); 2055 root_sub_used(root, mid->len); 2056 btrfs_free_tree_block(trans, root, mid, 0, 1); 2057 free_extent_buffer_stale(mid); 2058 mid = NULL; 2059 } else { 2060 /* update the parent key to reflect our changes */ 2061 struct btrfs_disk_key mid_key; 2062 btrfs_node_key(mid, &mid_key, 0); 2063 tree_mod_log_set_node_key(root->fs_info, parent, 2064 pslot, 0); 2065 btrfs_set_node_key(parent, &mid_key, pslot); 2066 btrfs_mark_buffer_dirty(parent); 2067 } 2068 2069 /* update the path */ 2070 if (left) { 2071 if (btrfs_header_nritems(left) > orig_slot) { 2072 extent_buffer_get(left); 2073 /* left was locked after cow */ 2074 path->nodes[level] = left; 2075 path->slots[level + 1] -= 1; 2076 path->slots[level] = orig_slot; 2077 if (mid) { 2078 btrfs_tree_unlock(mid); 2079 free_extent_buffer(mid); 2080 } 2081 } else { 2082 orig_slot -= btrfs_header_nritems(left); 2083 path->slots[level] = orig_slot; 2084 } 2085 } 2086 /* double check we haven't messed things up */ 2087 if (orig_ptr != 2088 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2089 BUG(); 2090 enospc: 2091 if (right) { 2092 btrfs_tree_unlock(right); 2093 free_extent_buffer(right); 2094 } 2095 if (left) { 2096 if (path->nodes[level] != left) 2097 btrfs_tree_unlock(left); 2098 free_extent_buffer(left); 2099 } 2100 return ret; 2101 } 2102 2103 /* Node balancing for insertion. Here we only split or push nodes around 2104 * when they are completely full. This is also done top down, so we 2105 * have to be pessimistic. 2106 */ 2107 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2108 struct btrfs_root *root, 2109 struct btrfs_path *path, int level) 2110 { 2111 struct extent_buffer *right = NULL; 2112 struct extent_buffer *mid; 2113 struct extent_buffer *left = NULL; 2114 struct extent_buffer *parent = NULL; 2115 int ret = 0; 2116 int wret; 2117 int pslot; 2118 int orig_slot = path->slots[level]; 2119 2120 if (level == 0) 2121 return 1; 2122 2123 mid = path->nodes[level]; 2124 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2125 2126 if (level < BTRFS_MAX_LEVEL - 1) { 2127 parent = path->nodes[level + 1]; 2128 pslot = path->slots[level + 1]; 2129 } 2130 2131 if (!parent) 2132 return 1; 2133 2134 left = read_node_slot(root, parent, pslot - 1); 2135 2136 /* first, try to make some room in the middle buffer */ 2137 if (left) { 2138 u32 left_nr; 2139 2140 btrfs_tree_lock(left); 2141 btrfs_set_lock_blocking(left); 2142 2143 left_nr = btrfs_header_nritems(left); 2144 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2145 wret = 1; 2146 } else { 2147 ret = btrfs_cow_block(trans, root, left, parent, 2148 pslot - 1, &left); 2149 if (ret) 2150 wret = 1; 2151 else { 2152 wret = push_node_left(trans, root, 2153 left, mid, 0); 2154 } 2155 } 2156 if (wret < 0) 2157 ret = wret; 2158 if (wret == 0) { 2159 struct btrfs_disk_key disk_key; 2160 orig_slot += left_nr; 2161 btrfs_node_key(mid, &disk_key, 0); 2162 tree_mod_log_set_node_key(root->fs_info, parent, 2163 pslot, 0); 2164 btrfs_set_node_key(parent, &disk_key, pslot); 2165 btrfs_mark_buffer_dirty(parent); 2166 if (btrfs_header_nritems(left) > orig_slot) { 2167 path->nodes[level] = left; 2168 path->slots[level + 1] -= 1; 2169 path->slots[level] = orig_slot; 2170 btrfs_tree_unlock(mid); 2171 free_extent_buffer(mid); 2172 } else { 2173 orig_slot -= 2174 btrfs_header_nritems(left); 2175 path->slots[level] = orig_slot; 2176 btrfs_tree_unlock(left); 2177 free_extent_buffer(left); 2178 } 2179 return 0; 2180 } 2181 btrfs_tree_unlock(left); 2182 free_extent_buffer(left); 2183 } 2184 right = read_node_slot(root, parent, pslot + 1); 2185 2186 /* 2187 * then try to empty the right most buffer into the middle 2188 */ 2189 if (right) { 2190 u32 right_nr; 2191 2192 btrfs_tree_lock(right); 2193 btrfs_set_lock_blocking(right); 2194 2195 right_nr = btrfs_header_nritems(right); 2196 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2197 wret = 1; 2198 } else { 2199 ret = btrfs_cow_block(trans, root, right, 2200 parent, pslot + 1, 2201 &right); 2202 if (ret) 2203 wret = 1; 2204 else { 2205 wret = balance_node_right(trans, root, 2206 right, mid); 2207 } 2208 } 2209 if (wret < 0) 2210 ret = wret; 2211 if (wret == 0) { 2212 struct btrfs_disk_key disk_key; 2213 2214 btrfs_node_key(right, &disk_key, 0); 2215 tree_mod_log_set_node_key(root->fs_info, parent, 2216 pslot + 1, 0); 2217 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2218 btrfs_mark_buffer_dirty(parent); 2219 2220 if (btrfs_header_nritems(mid) <= orig_slot) { 2221 path->nodes[level] = right; 2222 path->slots[level + 1] += 1; 2223 path->slots[level] = orig_slot - 2224 btrfs_header_nritems(mid); 2225 btrfs_tree_unlock(mid); 2226 free_extent_buffer(mid); 2227 } else { 2228 btrfs_tree_unlock(right); 2229 free_extent_buffer(right); 2230 } 2231 return 0; 2232 } 2233 btrfs_tree_unlock(right); 2234 free_extent_buffer(right); 2235 } 2236 return 1; 2237 } 2238 2239 /* 2240 * readahead one full node of leaves, finding things that are close 2241 * to the block in 'slot', and triggering ra on them. 2242 */ 2243 static void reada_for_search(struct btrfs_root *root, 2244 struct btrfs_path *path, 2245 int level, int slot, u64 objectid) 2246 { 2247 struct extent_buffer *node; 2248 struct btrfs_disk_key disk_key; 2249 u32 nritems; 2250 u64 search; 2251 u64 target; 2252 u64 nread = 0; 2253 u64 gen; 2254 struct extent_buffer *eb; 2255 u32 nr; 2256 u32 blocksize; 2257 u32 nscan = 0; 2258 2259 if (level != 1) 2260 return; 2261 2262 if (!path->nodes[level]) 2263 return; 2264 2265 node = path->nodes[level]; 2266 2267 search = btrfs_node_blockptr(node, slot); 2268 blocksize = root->nodesize; 2269 eb = btrfs_find_tree_block(root->fs_info, search); 2270 if (eb) { 2271 free_extent_buffer(eb); 2272 return; 2273 } 2274 2275 target = search; 2276 2277 nritems = btrfs_header_nritems(node); 2278 nr = slot; 2279 2280 while (1) { 2281 if (path->reada == READA_BACK) { 2282 if (nr == 0) 2283 break; 2284 nr--; 2285 } else if (path->reada == READA_FORWARD) { 2286 nr++; 2287 if (nr >= nritems) 2288 break; 2289 } 2290 if (path->reada == READA_BACK && objectid) { 2291 btrfs_node_key(node, &disk_key, nr); 2292 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2293 break; 2294 } 2295 search = btrfs_node_blockptr(node, nr); 2296 if ((search <= target && target - search <= 65536) || 2297 (search > target && search - target <= 65536)) { 2298 gen = btrfs_node_ptr_generation(node, nr); 2299 readahead_tree_block(root, search); 2300 nread += blocksize; 2301 } 2302 nscan++; 2303 if ((nread > 65536 || nscan > 32)) 2304 break; 2305 } 2306 } 2307 2308 static noinline void reada_for_balance(struct btrfs_root *root, 2309 struct btrfs_path *path, int level) 2310 { 2311 int slot; 2312 int nritems; 2313 struct extent_buffer *parent; 2314 struct extent_buffer *eb; 2315 u64 gen; 2316 u64 block1 = 0; 2317 u64 block2 = 0; 2318 2319 parent = path->nodes[level + 1]; 2320 if (!parent) 2321 return; 2322 2323 nritems = btrfs_header_nritems(parent); 2324 slot = path->slots[level + 1]; 2325 2326 if (slot > 0) { 2327 block1 = btrfs_node_blockptr(parent, slot - 1); 2328 gen = btrfs_node_ptr_generation(parent, slot - 1); 2329 eb = btrfs_find_tree_block(root->fs_info, block1); 2330 /* 2331 * if we get -eagain from btrfs_buffer_uptodate, we 2332 * don't want to return eagain here. That will loop 2333 * forever 2334 */ 2335 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2336 block1 = 0; 2337 free_extent_buffer(eb); 2338 } 2339 if (slot + 1 < nritems) { 2340 block2 = btrfs_node_blockptr(parent, slot + 1); 2341 gen = btrfs_node_ptr_generation(parent, slot + 1); 2342 eb = btrfs_find_tree_block(root->fs_info, block2); 2343 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2344 block2 = 0; 2345 free_extent_buffer(eb); 2346 } 2347 2348 if (block1) 2349 readahead_tree_block(root, block1); 2350 if (block2) 2351 readahead_tree_block(root, block2); 2352 } 2353 2354 2355 /* 2356 * when we walk down the tree, it is usually safe to unlock the higher layers 2357 * in the tree. The exceptions are when our path goes through slot 0, because 2358 * operations on the tree might require changing key pointers higher up in the 2359 * tree. 2360 * 2361 * callers might also have set path->keep_locks, which tells this code to keep 2362 * the lock if the path points to the last slot in the block. This is part of 2363 * walking through the tree, and selecting the next slot in the higher block. 2364 * 2365 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2366 * if lowest_unlock is 1, level 0 won't be unlocked 2367 */ 2368 static noinline void unlock_up(struct btrfs_path *path, int level, 2369 int lowest_unlock, int min_write_lock_level, 2370 int *write_lock_level) 2371 { 2372 int i; 2373 int skip_level = level; 2374 int no_skips = 0; 2375 struct extent_buffer *t; 2376 2377 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2378 if (!path->nodes[i]) 2379 break; 2380 if (!path->locks[i]) 2381 break; 2382 if (!no_skips && path->slots[i] == 0) { 2383 skip_level = i + 1; 2384 continue; 2385 } 2386 if (!no_skips && path->keep_locks) { 2387 u32 nritems; 2388 t = path->nodes[i]; 2389 nritems = btrfs_header_nritems(t); 2390 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2391 skip_level = i + 1; 2392 continue; 2393 } 2394 } 2395 if (skip_level < i && i >= lowest_unlock) 2396 no_skips = 1; 2397 2398 t = path->nodes[i]; 2399 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2400 btrfs_tree_unlock_rw(t, path->locks[i]); 2401 path->locks[i] = 0; 2402 if (write_lock_level && 2403 i > min_write_lock_level && 2404 i <= *write_lock_level) { 2405 *write_lock_level = i - 1; 2406 } 2407 } 2408 } 2409 } 2410 2411 /* 2412 * This releases any locks held in the path starting at level and 2413 * going all the way up to the root. 2414 * 2415 * btrfs_search_slot will keep the lock held on higher nodes in a few 2416 * corner cases, such as COW of the block at slot zero in the node. This 2417 * ignores those rules, and it should only be called when there are no 2418 * more updates to be done higher up in the tree. 2419 */ 2420 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2421 { 2422 int i; 2423 2424 if (path->keep_locks) 2425 return; 2426 2427 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2428 if (!path->nodes[i]) 2429 continue; 2430 if (!path->locks[i]) 2431 continue; 2432 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2433 path->locks[i] = 0; 2434 } 2435 } 2436 2437 /* 2438 * helper function for btrfs_search_slot. The goal is to find a block 2439 * in cache without setting the path to blocking. If we find the block 2440 * we return zero and the path is unchanged. 2441 * 2442 * If we can't find the block, we set the path blocking and do some 2443 * reada. -EAGAIN is returned and the search must be repeated. 2444 */ 2445 static int 2446 read_block_for_search(struct btrfs_trans_handle *trans, 2447 struct btrfs_root *root, struct btrfs_path *p, 2448 struct extent_buffer **eb_ret, int level, int slot, 2449 struct btrfs_key *key, u64 time_seq) 2450 { 2451 u64 blocknr; 2452 u64 gen; 2453 struct extent_buffer *b = *eb_ret; 2454 struct extent_buffer *tmp; 2455 int ret; 2456 2457 blocknr = btrfs_node_blockptr(b, slot); 2458 gen = btrfs_node_ptr_generation(b, slot); 2459 2460 tmp = btrfs_find_tree_block(root->fs_info, blocknr); 2461 if (tmp) { 2462 /* first we do an atomic uptodate check */ 2463 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2464 *eb_ret = tmp; 2465 return 0; 2466 } 2467 2468 /* the pages were up to date, but we failed 2469 * the generation number check. Do a full 2470 * read for the generation number that is correct. 2471 * We must do this without dropping locks so 2472 * we can trust our generation number 2473 */ 2474 btrfs_set_path_blocking(p); 2475 2476 /* now we're allowed to do a blocking uptodate check */ 2477 ret = btrfs_read_buffer(tmp, gen); 2478 if (!ret) { 2479 *eb_ret = tmp; 2480 return 0; 2481 } 2482 free_extent_buffer(tmp); 2483 btrfs_release_path(p); 2484 return -EIO; 2485 } 2486 2487 /* 2488 * reduce lock contention at high levels 2489 * of the btree by dropping locks before 2490 * we read. Don't release the lock on the current 2491 * level because we need to walk this node to figure 2492 * out which blocks to read. 2493 */ 2494 btrfs_unlock_up_safe(p, level + 1); 2495 btrfs_set_path_blocking(p); 2496 2497 free_extent_buffer(tmp); 2498 if (p->reada != READA_NONE) 2499 reada_for_search(root, p, level, slot, key->objectid); 2500 2501 btrfs_release_path(p); 2502 2503 ret = -EAGAIN; 2504 tmp = read_tree_block(root, blocknr, 0); 2505 if (!IS_ERR(tmp)) { 2506 /* 2507 * If the read above didn't mark this buffer up to date, 2508 * it will never end up being up to date. Set ret to EIO now 2509 * and give up so that our caller doesn't loop forever 2510 * on our EAGAINs. 2511 */ 2512 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2513 ret = -EIO; 2514 free_extent_buffer(tmp); 2515 } 2516 return ret; 2517 } 2518 2519 /* 2520 * helper function for btrfs_search_slot. This does all of the checks 2521 * for node-level blocks and does any balancing required based on 2522 * the ins_len. 2523 * 2524 * If no extra work was required, zero is returned. If we had to 2525 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2526 * start over 2527 */ 2528 static int 2529 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2530 struct btrfs_root *root, struct btrfs_path *p, 2531 struct extent_buffer *b, int level, int ins_len, 2532 int *write_lock_level) 2533 { 2534 int ret; 2535 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2536 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2537 int sret; 2538 2539 if (*write_lock_level < level + 1) { 2540 *write_lock_level = level + 1; 2541 btrfs_release_path(p); 2542 goto again; 2543 } 2544 2545 btrfs_set_path_blocking(p); 2546 reada_for_balance(root, p, level); 2547 sret = split_node(trans, root, p, level); 2548 btrfs_clear_path_blocking(p, NULL, 0); 2549 2550 BUG_ON(sret > 0); 2551 if (sret) { 2552 ret = sret; 2553 goto done; 2554 } 2555 b = p->nodes[level]; 2556 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2557 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2558 int sret; 2559 2560 if (*write_lock_level < level + 1) { 2561 *write_lock_level = level + 1; 2562 btrfs_release_path(p); 2563 goto again; 2564 } 2565 2566 btrfs_set_path_blocking(p); 2567 reada_for_balance(root, p, level); 2568 sret = balance_level(trans, root, p, level); 2569 btrfs_clear_path_blocking(p, NULL, 0); 2570 2571 if (sret) { 2572 ret = sret; 2573 goto done; 2574 } 2575 b = p->nodes[level]; 2576 if (!b) { 2577 btrfs_release_path(p); 2578 goto again; 2579 } 2580 BUG_ON(btrfs_header_nritems(b) == 1); 2581 } 2582 return 0; 2583 2584 again: 2585 ret = -EAGAIN; 2586 done: 2587 return ret; 2588 } 2589 2590 static void key_search_validate(struct extent_buffer *b, 2591 struct btrfs_key *key, 2592 int level) 2593 { 2594 #ifdef CONFIG_BTRFS_ASSERT 2595 struct btrfs_disk_key disk_key; 2596 2597 btrfs_cpu_key_to_disk(&disk_key, key); 2598 2599 if (level == 0) 2600 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2601 offsetof(struct btrfs_leaf, items[0].key), 2602 sizeof(disk_key))); 2603 else 2604 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2605 offsetof(struct btrfs_node, ptrs[0].key), 2606 sizeof(disk_key))); 2607 #endif 2608 } 2609 2610 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2611 int level, int *prev_cmp, int *slot) 2612 { 2613 if (*prev_cmp != 0) { 2614 *prev_cmp = bin_search(b, key, level, slot); 2615 return *prev_cmp; 2616 } 2617 2618 key_search_validate(b, key, level); 2619 *slot = 0; 2620 2621 return 0; 2622 } 2623 2624 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2625 u64 iobjectid, u64 ioff, u8 key_type, 2626 struct btrfs_key *found_key) 2627 { 2628 int ret; 2629 struct btrfs_key key; 2630 struct extent_buffer *eb; 2631 2632 ASSERT(path); 2633 ASSERT(found_key); 2634 2635 key.type = key_type; 2636 key.objectid = iobjectid; 2637 key.offset = ioff; 2638 2639 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2640 if (ret < 0) 2641 return ret; 2642 2643 eb = path->nodes[0]; 2644 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2645 ret = btrfs_next_leaf(fs_root, path); 2646 if (ret) 2647 return ret; 2648 eb = path->nodes[0]; 2649 } 2650 2651 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2652 if (found_key->type != key.type || 2653 found_key->objectid != key.objectid) 2654 return 1; 2655 2656 return 0; 2657 } 2658 2659 /* 2660 * look for key in the tree. path is filled in with nodes along the way 2661 * if key is found, we return zero and you can find the item in the leaf 2662 * level of the path (level 0) 2663 * 2664 * If the key isn't found, the path points to the slot where it should 2665 * be inserted, and 1 is returned. If there are other errors during the 2666 * search a negative error number is returned. 2667 * 2668 * if ins_len > 0, nodes and leaves will be split as we walk down the 2669 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2670 * possible) 2671 */ 2672 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2673 *root, struct btrfs_key *key, struct btrfs_path *p, int 2674 ins_len, int cow) 2675 { 2676 struct extent_buffer *b; 2677 int slot; 2678 int ret; 2679 int err; 2680 int level; 2681 int lowest_unlock = 1; 2682 int root_lock; 2683 /* everything at write_lock_level or lower must be write locked */ 2684 int write_lock_level = 0; 2685 u8 lowest_level = 0; 2686 int min_write_lock_level; 2687 int prev_cmp; 2688 2689 lowest_level = p->lowest_level; 2690 WARN_ON(lowest_level && ins_len > 0); 2691 WARN_ON(p->nodes[0] != NULL); 2692 BUG_ON(!cow && ins_len); 2693 2694 if (ins_len < 0) { 2695 lowest_unlock = 2; 2696 2697 /* when we are removing items, we might have to go up to level 2698 * two as we update tree pointers Make sure we keep write 2699 * for those levels as well 2700 */ 2701 write_lock_level = 2; 2702 } else if (ins_len > 0) { 2703 /* 2704 * for inserting items, make sure we have a write lock on 2705 * level 1 so we can update keys 2706 */ 2707 write_lock_level = 1; 2708 } 2709 2710 if (!cow) 2711 write_lock_level = -1; 2712 2713 if (cow && (p->keep_locks || p->lowest_level)) 2714 write_lock_level = BTRFS_MAX_LEVEL; 2715 2716 min_write_lock_level = write_lock_level; 2717 2718 again: 2719 prev_cmp = -1; 2720 /* 2721 * we try very hard to do read locks on the root 2722 */ 2723 root_lock = BTRFS_READ_LOCK; 2724 level = 0; 2725 if (p->search_commit_root) { 2726 /* 2727 * the commit roots are read only 2728 * so we always do read locks 2729 */ 2730 if (p->need_commit_sem) 2731 down_read(&root->fs_info->commit_root_sem); 2732 b = root->commit_root; 2733 extent_buffer_get(b); 2734 level = btrfs_header_level(b); 2735 if (p->need_commit_sem) 2736 up_read(&root->fs_info->commit_root_sem); 2737 if (!p->skip_locking) 2738 btrfs_tree_read_lock(b); 2739 } else { 2740 if (p->skip_locking) { 2741 b = btrfs_root_node(root); 2742 level = btrfs_header_level(b); 2743 } else { 2744 /* we don't know the level of the root node 2745 * until we actually have it read locked 2746 */ 2747 b = btrfs_read_lock_root_node(root); 2748 level = btrfs_header_level(b); 2749 if (level <= write_lock_level) { 2750 /* whoops, must trade for write lock */ 2751 btrfs_tree_read_unlock(b); 2752 free_extent_buffer(b); 2753 b = btrfs_lock_root_node(root); 2754 root_lock = BTRFS_WRITE_LOCK; 2755 2756 /* the level might have changed, check again */ 2757 level = btrfs_header_level(b); 2758 } 2759 } 2760 } 2761 p->nodes[level] = b; 2762 if (!p->skip_locking) 2763 p->locks[level] = root_lock; 2764 2765 while (b) { 2766 level = btrfs_header_level(b); 2767 2768 /* 2769 * setup the path here so we can release it under lock 2770 * contention with the cow code 2771 */ 2772 if (cow) { 2773 /* 2774 * if we don't really need to cow this block 2775 * then we don't want to set the path blocking, 2776 * so we test it here 2777 */ 2778 if (!should_cow_block(trans, root, b)) 2779 goto cow_done; 2780 2781 /* 2782 * must have write locks on this node and the 2783 * parent 2784 */ 2785 if (level > write_lock_level || 2786 (level + 1 > write_lock_level && 2787 level + 1 < BTRFS_MAX_LEVEL && 2788 p->nodes[level + 1])) { 2789 write_lock_level = level + 1; 2790 btrfs_release_path(p); 2791 goto again; 2792 } 2793 2794 btrfs_set_path_blocking(p); 2795 err = btrfs_cow_block(trans, root, b, 2796 p->nodes[level + 1], 2797 p->slots[level + 1], &b); 2798 if (err) { 2799 ret = err; 2800 goto done; 2801 } 2802 } 2803 cow_done: 2804 p->nodes[level] = b; 2805 btrfs_clear_path_blocking(p, NULL, 0); 2806 2807 /* 2808 * we have a lock on b and as long as we aren't changing 2809 * the tree, there is no way to for the items in b to change. 2810 * It is safe to drop the lock on our parent before we 2811 * go through the expensive btree search on b. 2812 * 2813 * If we're inserting or deleting (ins_len != 0), then we might 2814 * be changing slot zero, which may require changing the parent. 2815 * So, we can't drop the lock until after we know which slot 2816 * we're operating on. 2817 */ 2818 if (!ins_len && !p->keep_locks) { 2819 int u = level + 1; 2820 2821 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2822 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2823 p->locks[u] = 0; 2824 } 2825 } 2826 2827 ret = key_search(b, key, level, &prev_cmp, &slot); 2828 2829 if (level != 0) { 2830 int dec = 0; 2831 if (ret && slot > 0) { 2832 dec = 1; 2833 slot -= 1; 2834 } 2835 p->slots[level] = slot; 2836 err = setup_nodes_for_search(trans, root, p, b, level, 2837 ins_len, &write_lock_level); 2838 if (err == -EAGAIN) 2839 goto again; 2840 if (err) { 2841 ret = err; 2842 goto done; 2843 } 2844 b = p->nodes[level]; 2845 slot = p->slots[level]; 2846 2847 /* 2848 * slot 0 is special, if we change the key 2849 * we have to update the parent pointer 2850 * which means we must have a write lock 2851 * on the parent 2852 */ 2853 if (slot == 0 && ins_len && 2854 write_lock_level < level + 1) { 2855 write_lock_level = level + 1; 2856 btrfs_release_path(p); 2857 goto again; 2858 } 2859 2860 unlock_up(p, level, lowest_unlock, 2861 min_write_lock_level, &write_lock_level); 2862 2863 if (level == lowest_level) { 2864 if (dec) 2865 p->slots[level]++; 2866 goto done; 2867 } 2868 2869 err = read_block_for_search(trans, root, p, 2870 &b, level, slot, key, 0); 2871 if (err == -EAGAIN) 2872 goto again; 2873 if (err) { 2874 ret = err; 2875 goto done; 2876 } 2877 2878 if (!p->skip_locking) { 2879 level = btrfs_header_level(b); 2880 if (level <= write_lock_level) { 2881 err = btrfs_try_tree_write_lock(b); 2882 if (!err) { 2883 btrfs_set_path_blocking(p); 2884 btrfs_tree_lock(b); 2885 btrfs_clear_path_blocking(p, b, 2886 BTRFS_WRITE_LOCK); 2887 } 2888 p->locks[level] = BTRFS_WRITE_LOCK; 2889 } else { 2890 err = btrfs_tree_read_lock_atomic(b); 2891 if (!err) { 2892 btrfs_set_path_blocking(p); 2893 btrfs_tree_read_lock(b); 2894 btrfs_clear_path_blocking(p, b, 2895 BTRFS_READ_LOCK); 2896 } 2897 p->locks[level] = BTRFS_READ_LOCK; 2898 } 2899 p->nodes[level] = b; 2900 } 2901 } else { 2902 p->slots[level] = slot; 2903 if (ins_len > 0 && 2904 btrfs_leaf_free_space(root, b) < ins_len) { 2905 if (write_lock_level < 1) { 2906 write_lock_level = 1; 2907 btrfs_release_path(p); 2908 goto again; 2909 } 2910 2911 btrfs_set_path_blocking(p); 2912 err = split_leaf(trans, root, key, 2913 p, ins_len, ret == 0); 2914 btrfs_clear_path_blocking(p, NULL, 0); 2915 2916 BUG_ON(err > 0); 2917 if (err) { 2918 ret = err; 2919 goto done; 2920 } 2921 } 2922 if (!p->search_for_split) 2923 unlock_up(p, level, lowest_unlock, 2924 min_write_lock_level, &write_lock_level); 2925 goto done; 2926 } 2927 } 2928 ret = 1; 2929 done: 2930 /* 2931 * we don't really know what they plan on doing with the path 2932 * from here on, so for now just mark it as blocking 2933 */ 2934 if (!p->leave_spinning) 2935 btrfs_set_path_blocking(p); 2936 if (ret < 0 && !p->skip_release_on_error) 2937 btrfs_release_path(p); 2938 return ret; 2939 } 2940 2941 /* 2942 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2943 * current state of the tree together with the operations recorded in the tree 2944 * modification log to search for the key in a previous version of this tree, as 2945 * denoted by the time_seq parameter. 2946 * 2947 * Naturally, there is no support for insert, delete or cow operations. 2948 * 2949 * The resulting path and return value will be set up as if we called 2950 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2951 */ 2952 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2953 struct btrfs_path *p, u64 time_seq) 2954 { 2955 struct extent_buffer *b; 2956 int slot; 2957 int ret; 2958 int err; 2959 int level; 2960 int lowest_unlock = 1; 2961 u8 lowest_level = 0; 2962 int prev_cmp = -1; 2963 2964 lowest_level = p->lowest_level; 2965 WARN_ON(p->nodes[0] != NULL); 2966 2967 if (p->search_commit_root) { 2968 BUG_ON(time_seq); 2969 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2970 } 2971 2972 again: 2973 b = get_old_root(root, time_seq); 2974 level = btrfs_header_level(b); 2975 p->locks[level] = BTRFS_READ_LOCK; 2976 2977 while (b) { 2978 level = btrfs_header_level(b); 2979 p->nodes[level] = b; 2980 btrfs_clear_path_blocking(p, NULL, 0); 2981 2982 /* 2983 * we have a lock on b and as long as we aren't changing 2984 * the tree, there is no way to for the items in b to change. 2985 * It is safe to drop the lock on our parent before we 2986 * go through the expensive btree search on b. 2987 */ 2988 btrfs_unlock_up_safe(p, level + 1); 2989 2990 /* 2991 * Since we can unwind ebs we want to do a real search every 2992 * time. 2993 */ 2994 prev_cmp = -1; 2995 ret = key_search(b, key, level, &prev_cmp, &slot); 2996 2997 if (level != 0) { 2998 int dec = 0; 2999 if (ret && slot > 0) { 3000 dec = 1; 3001 slot -= 1; 3002 } 3003 p->slots[level] = slot; 3004 unlock_up(p, level, lowest_unlock, 0, NULL); 3005 3006 if (level == lowest_level) { 3007 if (dec) 3008 p->slots[level]++; 3009 goto done; 3010 } 3011 3012 err = read_block_for_search(NULL, root, p, &b, level, 3013 slot, key, time_seq); 3014 if (err == -EAGAIN) 3015 goto again; 3016 if (err) { 3017 ret = err; 3018 goto done; 3019 } 3020 3021 level = btrfs_header_level(b); 3022 err = btrfs_tree_read_lock_atomic(b); 3023 if (!err) { 3024 btrfs_set_path_blocking(p); 3025 btrfs_tree_read_lock(b); 3026 btrfs_clear_path_blocking(p, b, 3027 BTRFS_READ_LOCK); 3028 } 3029 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 3030 if (!b) { 3031 ret = -ENOMEM; 3032 goto done; 3033 } 3034 p->locks[level] = BTRFS_READ_LOCK; 3035 p->nodes[level] = b; 3036 } else { 3037 p->slots[level] = slot; 3038 unlock_up(p, level, lowest_unlock, 0, NULL); 3039 goto done; 3040 } 3041 } 3042 ret = 1; 3043 done: 3044 if (!p->leave_spinning) 3045 btrfs_set_path_blocking(p); 3046 if (ret < 0) 3047 btrfs_release_path(p); 3048 3049 return ret; 3050 } 3051 3052 /* 3053 * helper to use instead of search slot if no exact match is needed but 3054 * instead the next or previous item should be returned. 3055 * When find_higher is true, the next higher item is returned, the next lower 3056 * otherwise. 3057 * When return_any and find_higher are both true, and no higher item is found, 3058 * return the next lower instead. 3059 * When return_any is true and find_higher is false, and no lower item is found, 3060 * return the next higher instead. 3061 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3062 * < 0 on error 3063 */ 3064 int btrfs_search_slot_for_read(struct btrfs_root *root, 3065 struct btrfs_key *key, struct btrfs_path *p, 3066 int find_higher, int return_any) 3067 { 3068 int ret; 3069 struct extent_buffer *leaf; 3070 3071 again: 3072 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3073 if (ret <= 0) 3074 return ret; 3075 /* 3076 * a return value of 1 means the path is at the position where the 3077 * item should be inserted. Normally this is the next bigger item, 3078 * but in case the previous item is the last in a leaf, path points 3079 * to the first free slot in the previous leaf, i.e. at an invalid 3080 * item. 3081 */ 3082 leaf = p->nodes[0]; 3083 3084 if (find_higher) { 3085 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3086 ret = btrfs_next_leaf(root, p); 3087 if (ret <= 0) 3088 return ret; 3089 if (!return_any) 3090 return 1; 3091 /* 3092 * no higher item found, return the next 3093 * lower instead 3094 */ 3095 return_any = 0; 3096 find_higher = 0; 3097 btrfs_release_path(p); 3098 goto again; 3099 } 3100 } else { 3101 if (p->slots[0] == 0) { 3102 ret = btrfs_prev_leaf(root, p); 3103 if (ret < 0) 3104 return ret; 3105 if (!ret) { 3106 leaf = p->nodes[0]; 3107 if (p->slots[0] == btrfs_header_nritems(leaf)) 3108 p->slots[0]--; 3109 return 0; 3110 } 3111 if (!return_any) 3112 return 1; 3113 /* 3114 * no lower item found, return the next 3115 * higher instead 3116 */ 3117 return_any = 0; 3118 find_higher = 1; 3119 btrfs_release_path(p); 3120 goto again; 3121 } else { 3122 --p->slots[0]; 3123 } 3124 } 3125 return 0; 3126 } 3127 3128 /* 3129 * adjust the pointers going up the tree, starting at level 3130 * making sure the right key of each node is points to 'key'. 3131 * This is used after shifting pointers to the left, so it stops 3132 * fixing up pointers when a given leaf/node is not in slot 0 of the 3133 * higher levels 3134 * 3135 */ 3136 static void fixup_low_keys(struct btrfs_fs_info *fs_info, 3137 struct btrfs_path *path, 3138 struct btrfs_disk_key *key, int level) 3139 { 3140 int i; 3141 struct extent_buffer *t; 3142 3143 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3144 int tslot = path->slots[i]; 3145 if (!path->nodes[i]) 3146 break; 3147 t = path->nodes[i]; 3148 tree_mod_log_set_node_key(fs_info, t, tslot, 1); 3149 btrfs_set_node_key(t, key, tslot); 3150 btrfs_mark_buffer_dirty(path->nodes[i]); 3151 if (tslot != 0) 3152 break; 3153 } 3154 } 3155 3156 /* 3157 * update item key. 3158 * 3159 * This function isn't completely safe. It's the caller's responsibility 3160 * that the new key won't break the order 3161 */ 3162 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3163 struct btrfs_path *path, 3164 struct btrfs_key *new_key) 3165 { 3166 struct btrfs_disk_key disk_key; 3167 struct extent_buffer *eb; 3168 int slot; 3169 3170 eb = path->nodes[0]; 3171 slot = path->slots[0]; 3172 if (slot > 0) { 3173 btrfs_item_key(eb, &disk_key, slot - 1); 3174 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3175 } 3176 if (slot < btrfs_header_nritems(eb) - 1) { 3177 btrfs_item_key(eb, &disk_key, slot + 1); 3178 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3179 } 3180 3181 btrfs_cpu_key_to_disk(&disk_key, new_key); 3182 btrfs_set_item_key(eb, &disk_key, slot); 3183 btrfs_mark_buffer_dirty(eb); 3184 if (slot == 0) 3185 fixup_low_keys(fs_info, path, &disk_key, 1); 3186 } 3187 3188 /* 3189 * try to push data from one node into the next node left in the 3190 * tree. 3191 * 3192 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3193 * error, and > 0 if there was no room in the left hand block. 3194 */ 3195 static int push_node_left(struct btrfs_trans_handle *trans, 3196 struct btrfs_root *root, struct extent_buffer *dst, 3197 struct extent_buffer *src, int empty) 3198 { 3199 int push_items = 0; 3200 int src_nritems; 3201 int dst_nritems; 3202 int ret = 0; 3203 3204 src_nritems = btrfs_header_nritems(src); 3205 dst_nritems = btrfs_header_nritems(dst); 3206 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3207 WARN_ON(btrfs_header_generation(src) != trans->transid); 3208 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3209 3210 if (!empty && src_nritems <= 8) 3211 return 1; 3212 3213 if (push_items <= 0) 3214 return 1; 3215 3216 if (empty) { 3217 push_items = min(src_nritems, push_items); 3218 if (push_items < src_nritems) { 3219 /* leave at least 8 pointers in the node if 3220 * we aren't going to empty it 3221 */ 3222 if (src_nritems - push_items < 8) { 3223 if (push_items <= 8) 3224 return 1; 3225 push_items -= 8; 3226 } 3227 } 3228 } else 3229 push_items = min(src_nritems - 8, push_items); 3230 3231 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3232 push_items); 3233 if (ret) { 3234 btrfs_abort_transaction(trans, root, ret); 3235 return ret; 3236 } 3237 copy_extent_buffer(dst, src, 3238 btrfs_node_key_ptr_offset(dst_nritems), 3239 btrfs_node_key_ptr_offset(0), 3240 push_items * sizeof(struct btrfs_key_ptr)); 3241 3242 if (push_items < src_nritems) { 3243 /* 3244 * don't call tree_mod_log_eb_move here, key removal was already 3245 * fully logged by tree_mod_log_eb_copy above. 3246 */ 3247 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3248 btrfs_node_key_ptr_offset(push_items), 3249 (src_nritems - push_items) * 3250 sizeof(struct btrfs_key_ptr)); 3251 } 3252 btrfs_set_header_nritems(src, src_nritems - push_items); 3253 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3254 btrfs_mark_buffer_dirty(src); 3255 btrfs_mark_buffer_dirty(dst); 3256 3257 return ret; 3258 } 3259 3260 /* 3261 * try to push data from one node into the next node right in the 3262 * tree. 3263 * 3264 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3265 * error, and > 0 if there was no room in the right hand block. 3266 * 3267 * this will only push up to 1/2 the contents of the left node over 3268 */ 3269 static int balance_node_right(struct btrfs_trans_handle *trans, 3270 struct btrfs_root *root, 3271 struct extent_buffer *dst, 3272 struct extent_buffer *src) 3273 { 3274 int push_items = 0; 3275 int max_push; 3276 int src_nritems; 3277 int dst_nritems; 3278 int ret = 0; 3279 3280 WARN_ON(btrfs_header_generation(src) != trans->transid); 3281 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3282 3283 src_nritems = btrfs_header_nritems(src); 3284 dst_nritems = btrfs_header_nritems(dst); 3285 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3286 if (push_items <= 0) 3287 return 1; 3288 3289 if (src_nritems < 4) 3290 return 1; 3291 3292 max_push = src_nritems / 2 + 1; 3293 /* don't try to empty the node */ 3294 if (max_push >= src_nritems) 3295 return 1; 3296 3297 if (max_push < push_items) 3298 push_items = max_push; 3299 3300 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3301 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3302 btrfs_node_key_ptr_offset(0), 3303 (dst_nritems) * 3304 sizeof(struct btrfs_key_ptr)); 3305 3306 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3307 src_nritems - push_items, push_items); 3308 if (ret) { 3309 btrfs_abort_transaction(trans, root, ret); 3310 return ret; 3311 } 3312 copy_extent_buffer(dst, src, 3313 btrfs_node_key_ptr_offset(0), 3314 btrfs_node_key_ptr_offset(src_nritems - push_items), 3315 push_items * sizeof(struct btrfs_key_ptr)); 3316 3317 btrfs_set_header_nritems(src, src_nritems - push_items); 3318 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3319 3320 btrfs_mark_buffer_dirty(src); 3321 btrfs_mark_buffer_dirty(dst); 3322 3323 return ret; 3324 } 3325 3326 /* 3327 * helper function to insert a new root level in the tree. 3328 * A new node is allocated, and a single item is inserted to 3329 * point to the existing root 3330 * 3331 * returns zero on success or < 0 on failure. 3332 */ 3333 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3334 struct btrfs_root *root, 3335 struct btrfs_path *path, int level) 3336 { 3337 u64 lower_gen; 3338 struct extent_buffer *lower; 3339 struct extent_buffer *c; 3340 struct extent_buffer *old; 3341 struct btrfs_disk_key lower_key; 3342 3343 BUG_ON(path->nodes[level]); 3344 BUG_ON(path->nodes[level-1] != root->node); 3345 3346 lower = path->nodes[level-1]; 3347 if (level == 1) 3348 btrfs_item_key(lower, &lower_key, 0); 3349 else 3350 btrfs_node_key(lower, &lower_key, 0); 3351 3352 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3353 &lower_key, level, root->node->start, 0); 3354 if (IS_ERR(c)) 3355 return PTR_ERR(c); 3356 3357 root_add_used(root, root->nodesize); 3358 3359 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3360 btrfs_set_header_nritems(c, 1); 3361 btrfs_set_header_level(c, level); 3362 btrfs_set_header_bytenr(c, c->start); 3363 btrfs_set_header_generation(c, trans->transid); 3364 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3365 btrfs_set_header_owner(c, root->root_key.objectid); 3366 3367 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), 3368 BTRFS_FSID_SIZE); 3369 3370 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3371 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3372 3373 btrfs_set_node_key(c, &lower_key, 0); 3374 btrfs_set_node_blockptr(c, 0, lower->start); 3375 lower_gen = btrfs_header_generation(lower); 3376 WARN_ON(lower_gen != trans->transid); 3377 3378 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3379 3380 btrfs_mark_buffer_dirty(c); 3381 3382 old = root->node; 3383 tree_mod_log_set_root_pointer(root, c, 0); 3384 rcu_assign_pointer(root->node, c); 3385 3386 /* the super has an extra ref to root->node */ 3387 free_extent_buffer(old); 3388 3389 add_root_to_dirty_list(root); 3390 extent_buffer_get(c); 3391 path->nodes[level] = c; 3392 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3393 path->slots[level] = 0; 3394 return 0; 3395 } 3396 3397 /* 3398 * worker function to insert a single pointer in a node. 3399 * the node should have enough room for the pointer already 3400 * 3401 * slot and level indicate where you want the key to go, and 3402 * blocknr is the block the key points to. 3403 */ 3404 static void insert_ptr(struct btrfs_trans_handle *trans, 3405 struct btrfs_root *root, struct btrfs_path *path, 3406 struct btrfs_disk_key *key, u64 bytenr, 3407 int slot, int level) 3408 { 3409 struct extent_buffer *lower; 3410 int nritems; 3411 int ret; 3412 3413 BUG_ON(!path->nodes[level]); 3414 btrfs_assert_tree_locked(path->nodes[level]); 3415 lower = path->nodes[level]; 3416 nritems = btrfs_header_nritems(lower); 3417 BUG_ON(slot > nritems); 3418 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3419 if (slot != nritems) { 3420 if (level) 3421 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3422 slot, nritems - slot); 3423 memmove_extent_buffer(lower, 3424 btrfs_node_key_ptr_offset(slot + 1), 3425 btrfs_node_key_ptr_offset(slot), 3426 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3427 } 3428 if (level) { 3429 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3430 MOD_LOG_KEY_ADD, GFP_NOFS); 3431 BUG_ON(ret < 0); 3432 } 3433 btrfs_set_node_key(lower, key, slot); 3434 btrfs_set_node_blockptr(lower, slot, bytenr); 3435 WARN_ON(trans->transid == 0); 3436 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3437 btrfs_set_header_nritems(lower, nritems + 1); 3438 btrfs_mark_buffer_dirty(lower); 3439 } 3440 3441 /* 3442 * split the node at the specified level in path in two. 3443 * The path is corrected to point to the appropriate node after the split 3444 * 3445 * Before splitting this tries to make some room in the node by pushing 3446 * left and right, if either one works, it returns right away. 3447 * 3448 * returns 0 on success and < 0 on failure 3449 */ 3450 static noinline int split_node(struct btrfs_trans_handle *trans, 3451 struct btrfs_root *root, 3452 struct btrfs_path *path, int level) 3453 { 3454 struct extent_buffer *c; 3455 struct extent_buffer *split; 3456 struct btrfs_disk_key disk_key; 3457 int mid; 3458 int ret; 3459 u32 c_nritems; 3460 3461 c = path->nodes[level]; 3462 WARN_ON(btrfs_header_generation(c) != trans->transid); 3463 if (c == root->node) { 3464 /* 3465 * trying to split the root, lets make a new one 3466 * 3467 * tree mod log: We don't log_removal old root in 3468 * insert_new_root, because that root buffer will be kept as a 3469 * normal node. We are going to log removal of half of the 3470 * elements below with tree_mod_log_eb_copy. We're holding a 3471 * tree lock on the buffer, which is why we cannot race with 3472 * other tree_mod_log users. 3473 */ 3474 ret = insert_new_root(trans, root, path, level + 1); 3475 if (ret) 3476 return ret; 3477 } else { 3478 ret = push_nodes_for_insert(trans, root, path, level); 3479 c = path->nodes[level]; 3480 if (!ret && btrfs_header_nritems(c) < 3481 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3482 return 0; 3483 if (ret < 0) 3484 return ret; 3485 } 3486 3487 c_nritems = btrfs_header_nritems(c); 3488 mid = (c_nritems + 1) / 2; 3489 btrfs_node_key(c, &disk_key, mid); 3490 3491 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3492 &disk_key, level, c->start, 0); 3493 if (IS_ERR(split)) 3494 return PTR_ERR(split); 3495 3496 root_add_used(root, root->nodesize); 3497 3498 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3499 btrfs_set_header_level(split, btrfs_header_level(c)); 3500 btrfs_set_header_bytenr(split, split->start); 3501 btrfs_set_header_generation(split, trans->transid); 3502 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3503 btrfs_set_header_owner(split, root->root_key.objectid); 3504 write_extent_buffer(split, root->fs_info->fsid, 3505 btrfs_header_fsid(), BTRFS_FSID_SIZE); 3506 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3507 btrfs_header_chunk_tree_uuid(split), 3508 BTRFS_UUID_SIZE); 3509 3510 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0, 3511 mid, c_nritems - mid); 3512 if (ret) { 3513 btrfs_abort_transaction(trans, root, ret); 3514 return ret; 3515 } 3516 copy_extent_buffer(split, c, 3517 btrfs_node_key_ptr_offset(0), 3518 btrfs_node_key_ptr_offset(mid), 3519 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3520 btrfs_set_header_nritems(split, c_nritems - mid); 3521 btrfs_set_header_nritems(c, mid); 3522 ret = 0; 3523 3524 btrfs_mark_buffer_dirty(c); 3525 btrfs_mark_buffer_dirty(split); 3526 3527 insert_ptr(trans, root, path, &disk_key, split->start, 3528 path->slots[level + 1] + 1, level + 1); 3529 3530 if (path->slots[level] >= mid) { 3531 path->slots[level] -= mid; 3532 btrfs_tree_unlock(c); 3533 free_extent_buffer(c); 3534 path->nodes[level] = split; 3535 path->slots[level + 1] += 1; 3536 } else { 3537 btrfs_tree_unlock(split); 3538 free_extent_buffer(split); 3539 } 3540 return ret; 3541 } 3542 3543 /* 3544 * how many bytes are required to store the items in a leaf. start 3545 * and nr indicate which items in the leaf to check. This totals up the 3546 * space used both by the item structs and the item data 3547 */ 3548 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3549 { 3550 struct btrfs_item *start_item; 3551 struct btrfs_item *end_item; 3552 struct btrfs_map_token token; 3553 int data_len; 3554 int nritems = btrfs_header_nritems(l); 3555 int end = min(nritems, start + nr) - 1; 3556 3557 if (!nr) 3558 return 0; 3559 btrfs_init_map_token(&token); 3560 start_item = btrfs_item_nr(start); 3561 end_item = btrfs_item_nr(end); 3562 data_len = btrfs_token_item_offset(l, start_item, &token) + 3563 btrfs_token_item_size(l, start_item, &token); 3564 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3565 data_len += sizeof(struct btrfs_item) * nr; 3566 WARN_ON(data_len < 0); 3567 return data_len; 3568 } 3569 3570 /* 3571 * The space between the end of the leaf items and 3572 * the start of the leaf data. IOW, how much room 3573 * the leaf has left for both items and data 3574 */ 3575 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3576 struct extent_buffer *leaf) 3577 { 3578 int nritems = btrfs_header_nritems(leaf); 3579 int ret; 3580 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3581 if (ret < 0) { 3582 btrfs_crit(root->fs_info, 3583 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3584 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3585 leaf_space_used(leaf, 0, nritems), nritems); 3586 } 3587 return ret; 3588 } 3589 3590 /* 3591 * min slot controls the lowest index we're willing to push to the 3592 * right. We'll push up to and including min_slot, but no lower 3593 */ 3594 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3595 struct btrfs_root *root, 3596 struct btrfs_path *path, 3597 int data_size, int empty, 3598 struct extent_buffer *right, 3599 int free_space, u32 left_nritems, 3600 u32 min_slot) 3601 { 3602 struct extent_buffer *left = path->nodes[0]; 3603 struct extent_buffer *upper = path->nodes[1]; 3604 struct btrfs_map_token token; 3605 struct btrfs_disk_key disk_key; 3606 int slot; 3607 u32 i; 3608 int push_space = 0; 3609 int push_items = 0; 3610 struct btrfs_item *item; 3611 u32 nr; 3612 u32 right_nritems; 3613 u32 data_end; 3614 u32 this_item_size; 3615 3616 btrfs_init_map_token(&token); 3617 3618 if (empty) 3619 nr = 0; 3620 else 3621 nr = max_t(u32, 1, min_slot); 3622 3623 if (path->slots[0] >= left_nritems) 3624 push_space += data_size; 3625 3626 slot = path->slots[1]; 3627 i = left_nritems - 1; 3628 while (i >= nr) { 3629 item = btrfs_item_nr(i); 3630 3631 if (!empty && push_items > 0) { 3632 if (path->slots[0] > i) 3633 break; 3634 if (path->slots[0] == i) { 3635 int space = btrfs_leaf_free_space(root, left); 3636 if (space + push_space * 2 > free_space) 3637 break; 3638 } 3639 } 3640 3641 if (path->slots[0] == i) 3642 push_space += data_size; 3643 3644 this_item_size = btrfs_item_size(left, item); 3645 if (this_item_size + sizeof(*item) + push_space > free_space) 3646 break; 3647 3648 push_items++; 3649 push_space += this_item_size + sizeof(*item); 3650 if (i == 0) 3651 break; 3652 i--; 3653 } 3654 3655 if (push_items == 0) 3656 goto out_unlock; 3657 3658 WARN_ON(!empty && push_items == left_nritems); 3659 3660 /* push left to right */ 3661 right_nritems = btrfs_header_nritems(right); 3662 3663 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3664 push_space -= leaf_data_end(root, left); 3665 3666 /* make room in the right data area */ 3667 data_end = leaf_data_end(root, right); 3668 memmove_extent_buffer(right, 3669 btrfs_leaf_data(right) + data_end - push_space, 3670 btrfs_leaf_data(right) + data_end, 3671 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3672 3673 /* copy from the left data area */ 3674 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3675 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3676 btrfs_leaf_data(left) + leaf_data_end(root, left), 3677 push_space); 3678 3679 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3680 btrfs_item_nr_offset(0), 3681 right_nritems * sizeof(struct btrfs_item)); 3682 3683 /* copy the items from left to right */ 3684 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3685 btrfs_item_nr_offset(left_nritems - push_items), 3686 push_items * sizeof(struct btrfs_item)); 3687 3688 /* update the item pointers */ 3689 right_nritems += push_items; 3690 btrfs_set_header_nritems(right, right_nritems); 3691 push_space = BTRFS_LEAF_DATA_SIZE(root); 3692 for (i = 0; i < right_nritems; i++) { 3693 item = btrfs_item_nr(i); 3694 push_space -= btrfs_token_item_size(right, item, &token); 3695 btrfs_set_token_item_offset(right, item, push_space, &token); 3696 } 3697 3698 left_nritems -= push_items; 3699 btrfs_set_header_nritems(left, left_nritems); 3700 3701 if (left_nritems) 3702 btrfs_mark_buffer_dirty(left); 3703 else 3704 clean_tree_block(trans, root->fs_info, left); 3705 3706 btrfs_mark_buffer_dirty(right); 3707 3708 btrfs_item_key(right, &disk_key, 0); 3709 btrfs_set_node_key(upper, &disk_key, slot + 1); 3710 btrfs_mark_buffer_dirty(upper); 3711 3712 /* then fixup the leaf pointer in the path */ 3713 if (path->slots[0] >= left_nritems) { 3714 path->slots[0] -= left_nritems; 3715 if (btrfs_header_nritems(path->nodes[0]) == 0) 3716 clean_tree_block(trans, root->fs_info, path->nodes[0]); 3717 btrfs_tree_unlock(path->nodes[0]); 3718 free_extent_buffer(path->nodes[0]); 3719 path->nodes[0] = right; 3720 path->slots[1] += 1; 3721 } else { 3722 btrfs_tree_unlock(right); 3723 free_extent_buffer(right); 3724 } 3725 return 0; 3726 3727 out_unlock: 3728 btrfs_tree_unlock(right); 3729 free_extent_buffer(right); 3730 return 1; 3731 } 3732 3733 /* 3734 * push some data in the path leaf to the right, trying to free up at 3735 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3736 * 3737 * returns 1 if the push failed because the other node didn't have enough 3738 * room, 0 if everything worked out and < 0 if there were major errors. 3739 * 3740 * this will push starting from min_slot to the end of the leaf. It won't 3741 * push any slot lower than min_slot 3742 */ 3743 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3744 *root, struct btrfs_path *path, 3745 int min_data_size, int data_size, 3746 int empty, u32 min_slot) 3747 { 3748 struct extent_buffer *left = path->nodes[0]; 3749 struct extent_buffer *right; 3750 struct extent_buffer *upper; 3751 int slot; 3752 int free_space; 3753 u32 left_nritems; 3754 int ret; 3755 3756 if (!path->nodes[1]) 3757 return 1; 3758 3759 slot = path->slots[1]; 3760 upper = path->nodes[1]; 3761 if (slot >= btrfs_header_nritems(upper) - 1) 3762 return 1; 3763 3764 btrfs_assert_tree_locked(path->nodes[1]); 3765 3766 right = read_node_slot(root, upper, slot + 1); 3767 if (right == NULL) 3768 return 1; 3769 3770 btrfs_tree_lock(right); 3771 btrfs_set_lock_blocking(right); 3772 3773 free_space = btrfs_leaf_free_space(root, right); 3774 if (free_space < data_size) 3775 goto out_unlock; 3776 3777 /* cow and double check */ 3778 ret = btrfs_cow_block(trans, root, right, upper, 3779 slot + 1, &right); 3780 if (ret) 3781 goto out_unlock; 3782 3783 free_space = btrfs_leaf_free_space(root, right); 3784 if (free_space < data_size) 3785 goto out_unlock; 3786 3787 left_nritems = btrfs_header_nritems(left); 3788 if (left_nritems == 0) 3789 goto out_unlock; 3790 3791 if (path->slots[0] == left_nritems && !empty) { 3792 /* Key greater than all keys in the leaf, right neighbor has 3793 * enough room for it and we're not emptying our leaf to delete 3794 * it, therefore use right neighbor to insert the new item and 3795 * no need to touch/dirty our left leaft. */ 3796 btrfs_tree_unlock(left); 3797 free_extent_buffer(left); 3798 path->nodes[0] = right; 3799 path->slots[0] = 0; 3800 path->slots[1]++; 3801 return 0; 3802 } 3803 3804 return __push_leaf_right(trans, root, path, min_data_size, empty, 3805 right, free_space, left_nritems, min_slot); 3806 out_unlock: 3807 btrfs_tree_unlock(right); 3808 free_extent_buffer(right); 3809 return 1; 3810 } 3811 3812 /* 3813 * push some data in the path leaf to the left, trying to free up at 3814 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3815 * 3816 * max_slot can put a limit on how far into the leaf we'll push items. The 3817 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3818 * items 3819 */ 3820 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3821 struct btrfs_root *root, 3822 struct btrfs_path *path, int data_size, 3823 int empty, struct extent_buffer *left, 3824 int free_space, u32 right_nritems, 3825 u32 max_slot) 3826 { 3827 struct btrfs_disk_key disk_key; 3828 struct extent_buffer *right = path->nodes[0]; 3829 int i; 3830 int push_space = 0; 3831 int push_items = 0; 3832 struct btrfs_item *item; 3833 u32 old_left_nritems; 3834 u32 nr; 3835 int ret = 0; 3836 u32 this_item_size; 3837 u32 old_left_item_size; 3838 struct btrfs_map_token token; 3839 3840 btrfs_init_map_token(&token); 3841 3842 if (empty) 3843 nr = min(right_nritems, max_slot); 3844 else 3845 nr = min(right_nritems - 1, max_slot); 3846 3847 for (i = 0; i < nr; i++) { 3848 item = btrfs_item_nr(i); 3849 3850 if (!empty && push_items > 0) { 3851 if (path->slots[0] < i) 3852 break; 3853 if (path->slots[0] == i) { 3854 int space = btrfs_leaf_free_space(root, right); 3855 if (space + push_space * 2 > free_space) 3856 break; 3857 } 3858 } 3859 3860 if (path->slots[0] == i) 3861 push_space += data_size; 3862 3863 this_item_size = btrfs_item_size(right, item); 3864 if (this_item_size + sizeof(*item) + push_space > free_space) 3865 break; 3866 3867 push_items++; 3868 push_space += this_item_size + sizeof(*item); 3869 } 3870 3871 if (push_items == 0) { 3872 ret = 1; 3873 goto out; 3874 } 3875 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3876 3877 /* push data from right to left */ 3878 copy_extent_buffer(left, right, 3879 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3880 btrfs_item_nr_offset(0), 3881 push_items * sizeof(struct btrfs_item)); 3882 3883 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3884 btrfs_item_offset_nr(right, push_items - 1); 3885 3886 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3887 leaf_data_end(root, left) - push_space, 3888 btrfs_leaf_data(right) + 3889 btrfs_item_offset_nr(right, push_items - 1), 3890 push_space); 3891 old_left_nritems = btrfs_header_nritems(left); 3892 BUG_ON(old_left_nritems <= 0); 3893 3894 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3895 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3896 u32 ioff; 3897 3898 item = btrfs_item_nr(i); 3899 3900 ioff = btrfs_token_item_offset(left, item, &token); 3901 btrfs_set_token_item_offset(left, item, 3902 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3903 &token); 3904 } 3905 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3906 3907 /* fixup right node */ 3908 if (push_items > right_nritems) 3909 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3910 right_nritems); 3911 3912 if (push_items < right_nritems) { 3913 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3914 leaf_data_end(root, right); 3915 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3916 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3917 btrfs_leaf_data(right) + 3918 leaf_data_end(root, right), push_space); 3919 3920 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3921 btrfs_item_nr_offset(push_items), 3922 (btrfs_header_nritems(right) - push_items) * 3923 sizeof(struct btrfs_item)); 3924 } 3925 right_nritems -= push_items; 3926 btrfs_set_header_nritems(right, right_nritems); 3927 push_space = BTRFS_LEAF_DATA_SIZE(root); 3928 for (i = 0; i < right_nritems; i++) { 3929 item = btrfs_item_nr(i); 3930 3931 push_space = push_space - btrfs_token_item_size(right, 3932 item, &token); 3933 btrfs_set_token_item_offset(right, item, push_space, &token); 3934 } 3935 3936 btrfs_mark_buffer_dirty(left); 3937 if (right_nritems) 3938 btrfs_mark_buffer_dirty(right); 3939 else 3940 clean_tree_block(trans, root->fs_info, right); 3941 3942 btrfs_item_key(right, &disk_key, 0); 3943 fixup_low_keys(root->fs_info, path, &disk_key, 1); 3944 3945 /* then fixup the leaf pointer in the path */ 3946 if (path->slots[0] < push_items) { 3947 path->slots[0] += old_left_nritems; 3948 btrfs_tree_unlock(path->nodes[0]); 3949 free_extent_buffer(path->nodes[0]); 3950 path->nodes[0] = left; 3951 path->slots[1] -= 1; 3952 } else { 3953 btrfs_tree_unlock(left); 3954 free_extent_buffer(left); 3955 path->slots[0] -= push_items; 3956 } 3957 BUG_ON(path->slots[0] < 0); 3958 return ret; 3959 out: 3960 btrfs_tree_unlock(left); 3961 free_extent_buffer(left); 3962 return ret; 3963 } 3964 3965 /* 3966 * push some data in the path leaf to the left, trying to free up at 3967 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3968 * 3969 * max_slot can put a limit on how far into the leaf we'll push items. The 3970 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3971 * items 3972 */ 3973 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3974 *root, struct btrfs_path *path, int min_data_size, 3975 int data_size, int empty, u32 max_slot) 3976 { 3977 struct extent_buffer *right = path->nodes[0]; 3978 struct extent_buffer *left; 3979 int slot; 3980 int free_space; 3981 u32 right_nritems; 3982 int ret = 0; 3983 3984 slot = path->slots[1]; 3985 if (slot == 0) 3986 return 1; 3987 if (!path->nodes[1]) 3988 return 1; 3989 3990 right_nritems = btrfs_header_nritems(right); 3991 if (right_nritems == 0) 3992 return 1; 3993 3994 btrfs_assert_tree_locked(path->nodes[1]); 3995 3996 left = read_node_slot(root, path->nodes[1], slot - 1); 3997 if (left == NULL) 3998 return 1; 3999 4000 btrfs_tree_lock(left); 4001 btrfs_set_lock_blocking(left); 4002 4003 free_space = btrfs_leaf_free_space(root, left); 4004 if (free_space < data_size) { 4005 ret = 1; 4006 goto out; 4007 } 4008 4009 /* cow and double check */ 4010 ret = btrfs_cow_block(trans, root, left, 4011 path->nodes[1], slot - 1, &left); 4012 if (ret) { 4013 /* we hit -ENOSPC, but it isn't fatal here */ 4014 if (ret == -ENOSPC) 4015 ret = 1; 4016 goto out; 4017 } 4018 4019 free_space = btrfs_leaf_free_space(root, left); 4020 if (free_space < data_size) { 4021 ret = 1; 4022 goto out; 4023 } 4024 4025 return __push_leaf_left(trans, root, path, min_data_size, 4026 empty, left, free_space, right_nritems, 4027 max_slot); 4028 out: 4029 btrfs_tree_unlock(left); 4030 free_extent_buffer(left); 4031 return ret; 4032 } 4033 4034 /* 4035 * split the path's leaf in two, making sure there is at least data_size 4036 * available for the resulting leaf level of the path. 4037 */ 4038 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4039 struct btrfs_root *root, 4040 struct btrfs_path *path, 4041 struct extent_buffer *l, 4042 struct extent_buffer *right, 4043 int slot, int mid, int nritems) 4044 { 4045 int data_copy_size; 4046 int rt_data_off; 4047 int i; 4048 struct btrfs_disk_key disk_key; 4049 struct btrfs_map_token token; 4050 4051 btrfs_init_map_token(&token); 4052 4053 nritems = nritems - mid; 4054 btrfs_set_header_nritems(right, nritems); 4055 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 4056 4057 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4058 btrfs_item_nr_offset(mid), 4059 nritems * sizeof(struct btrfs_item)); 4060 4061 copy_extent_buffer(right, l, 4062 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 4063 data_copy_size, btrfs_leaf_data(l) + 4064 leaf_data_end(root, l), data_copy_size); 4065 4066 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 4067 btrfs_item_end_nr(l, mid); 4068 4069 for (i = 0; i < nritems; i++) { 4070 struct btrfs_item *item = btrfs_item_nr(i); 4071 u32 ioff; 4072 4073 ioff = btrfs_token_item_offset(right, item, &token); 4074 btrfs_set_token_item_offset(right, item, 4075 ioff + rt_data_off, &token); 4076 } 4077 4078 btrfs_set_header_nritems(l, mid); 4079 btrfs_item_key(right, &disk_key, 0); 4080 insert_ptr(trans, root, path, &disk_key, right->start, 4081 path->slots[1] + 1, 1); 4082 4083 btrfs_mark_buffer_dirty(right); 4084 btrfs_mark_buffer_dirty(l); 4085 BUG_ON(path->slots[0] != slot); 4086 4087 if (mid <= slot) { 4088 btrfs_tree_unlock(path->nodes[0]); 4089 free_extent_buffer(path->nodes[0]); 4090 path->nodes[0] = right; 4091 path->slots[0] -= mid; 4092 path->slots[1] += 1; 4093 } else { 4094 btrfs_tree_unlock(right); 4095 free_extent_buffer(right); 4096 } 4097 4098 BUG_ON(path->slots[0] < 0); 4099 } 4100 4101 /* 4102 * double splits happen when we need to insert a big item in the middle 4103 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4104 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4105 * A B C 4106 * 4107 * We avoid this by trying to push the items on either side of our target 4108 * into the adjacent leaves. If all goes well we can avoid the double split 4109 * completely. 4110 */ 4111 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4112 struct btrfs_root *root, 4113 struct btrfs_path *path, 4114 int data_size) 4115 { 4116 int ret; 4117 int progress = 0; 4118 int slot; 4119 u32 nritems; 4120 int space_needed = data_size; 4121 4122 slot = path->slots[0]; 4123 if (slot < btrfs_header_nritems(path->nodes[0])) 4124 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]); 4125 4126 /* 4127 * try to push all the items after our slot into the 4128 * right leaf 4129 */ 4130 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4131 if (ret < 0) 4132 return ret; 4133 4134 if (ret == 0) 4135 progress++; 4136 4137 nritems = btrfs_header_nritems(path->nodes[0]); 4138 /* 4139 * our goal is to get our slot at the start or end of a leaf. If 4140 * we've done so we're done 4141 */ 4142 if (path->slots[0] == 0 || path->slots[0] == nritems) 4143 return 0; 4144 4145 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4146 return 0; 4147 4148 /* try to push all the items before our slot into the next leaf */ 4149 slot = path->slots[0]; 4150 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4151 if (ret < 0) 4152 return ret; 4153 4154 if (ret == 0) 4155 progress++; 4156 4157 if (progress) 4158 return 0; 4159 return 1; 4160 } 4161 4162 /* 4163 * split the path's leaf in two, making sure there is at least data_size 4164 * available for the resulting leaf level of the path. 4165 * 4166 * returns 0 if all went well and < 0 on failure. 4167 */ 4168 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4169 struct btrfs_root *root, 4170 struct btrfs_key *ins_key, 4171 struct btrfs_path *path, int data_size, 4172 int extend) 4173 { 4174 struct btrfs_disk_key disk_key; 4175 struct extent_buffer *l; 4176 u32 nritems; 4177 int mid; 4178 int slot; 4179 struct extent_buffer *right; 4180 struct btrfs_fs_info *fs_info = root->fs_info; 4181 int ret = 0; 4182 int wret; 4183 int split; 4184 int num_doubles = 0; 4185 int tried_avoid_double = 0; 4186 4187 l = path->nodes[0]; 4188 slot = path->slots[0]; 4189 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4190 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 4191 return -EOVERFLOW; 4192 4193 /* first try to make some room by pushing left and right */ 4194 if (data_size && path->nodes[1]) { 4195 int space_needed = data_size; 4196 4197 if (slot < btrfs_header_nritems(l)) 4198 space_needed -= btrfs_leaf_free_space(root, l); 4199 4200 wret = push_leaf_right(trans, root, path, space_needed, 4201 space_needed, 0, 0); 4202 if (wret < 0) 4203 return wret; 4204 if (wret) { 4205 wret = push_leaf_left(trans, root, path, space_needed, 4206 space_needed, 0, (u32)-1); 4207 if (wret < 0) 4208 return wret; 4209 } 4210 l = path->nodes[0]; 4211 4212 /* did the pushes work? */ 4213 if (btrfs_leaf_free_space(root, l) >= data_size) 4214 return 0; 4215 } 4216 4217 if (!path->nodes[1]) { 4218 ret = insert_new_root(trans, root, path, 1); 4219 if (ret) 4220 return ret; 4221 } 4222 again: 4223 split = 1; 4224 l = path->nodes[0]; 4225 slot = path->slots[0]; 4226 nritems = btrfs_header_nritems(l); 4227 mid = (nritems + 1) / 2; 4228 4229 if (mid <= slot) { 4230 if (nritems == 1 || 4231 leaf_space_used(l, mid, nritems - mid) + data_size > 4232 BTRFS_LEAF_DATA_SIZE(root)) { 4233 if (slot >= nritems) { 4234 split = 0; 4235 } else { 4236 mid = slot; 4237 if (mid != nritems && 4238 leaf_space_used(l, mid, nritems - mid) + 4239 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4240 if (data_size && !tried_avoid_double) 4241 goto push_for_double; 4242 split = 2; 4243 } 4244 } 4245 } 4246 } else { 4247 if (leaf_space_used(l, 0, mid) + data_size > 4248 BTRFS_LEAF_DATA_SIZE(root)) { 4249 if (!extend && data_size && slot == 0) { 4250 split = 0; 4251 } else if ((extend || !data_size) && slot == 0) { 4252 mid = 1; 4253 } else { 4254 mid = slot; 4255 if (mid != nritems && 4256 leaf_space_used(l, mid, nritems - mid) + 4257 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4258 if (data_size && !tried_avoid_double) 4259 goto push_for_double; 4260 split = 2; 4261 } 4262 } 4263 } 4264 } 4265 4266 if (split == 0) 4267 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4268 else 4269 btrfs_item_key(l, &disk_key, mid); 4270 4271 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4272 &disk_key, 0, l->start, 0); 4273 if (IS_ERR(right)) 4274 return PTR_ERR(right); 4275 4276 root_add_used(root, root->nodesize); 4277 4278 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4279 btrfs_set_header_bytenr(right, right->start); 4280 btrfs_set_header_generation(right, trans->transid); 4281 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4282 btrfs_set_header_owner(right, root->root_key.objectid); 4283 btrfs_set_header_level(right, 0); 4284 write_extent_buffer(right, fs_info->fsid, 4285 btrfs_header_fsid(), BTRFS_FSID_SIZE); 4286 4287 write_extent_buffer(right, fs_info->chunk_tree_uuid, 4288 btrfs_header_chunk_tree_uuid(right), 4289 BTRFS_UUID_SIZE); 4290 4291 if (split == 0) { 4292 if (mid <= slot) { 4293 btrfs_set_header_nritems(right, 0); 4294 insert_ptr(trans, root, path, &disk_key, right->start, 4295 path->slots[1] + 1, 1); 4296 btrfs_tree_unlock(path->nodes[0]); 4297 free_extent_buffer(path->nodes[0]); 4298 path->nodes[0] = right; 4299 path->slots[0] = 0; 4300 path->slots[1] += 1; 4301 } else { 4302 btrfs_set_header_nritems(right, 0); 4303 insert_ptr(trans, root, path, &disk_key, right->start, 4304 path->slots[1], 1); 4305 btrfs_tree_unlock(path->nodes[0]); 4306 free_extent_buffer(path->nodes[0]); 4307 path->nodes[0] = right; 4308 path->slots[0] = 0; 4309 if (path->slots[1] == 0) 4310 fixup_low_keys(fs_info, path, &disk_key, 1); 4311 } 4312 btrfs_mark_buffer_dirty(right); 4313 return ret; 4314 } 4315 4316 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4317 4318 if (split == 2) { 4319 BUG_ON(num_doubles != 0); 4320 num_doubles++; 4321 goto again; 4322 } 4323 4324 return 0; 4325 4326 push_for_double: 4327 push_for_double_split(trans, root, path, data_size); 4328 tried_avoid_double = 1; 4329 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4330 return 0; 4331 goto again; 4332 } 4333 4334 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4335 struct btrfs_root *root, 4336 struct btrfs_path *path, int ins_len) 4337 { 4338 struct btrfs_key key; 4339 struct extent_buffer *leaf; 4340 struct btrfs_file_extent_item *fi; 4341 u64 extent_len = 0; 4342 u32 item_size; 4343 int ret; 4344 4345 leaf = path->nodes[0]; 4346 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4347 4348 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4349 key.type != BTRFS_EXTENT_CSUM_KEY); 4350 4351 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4352 return 0; 4353 4354 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4355 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4356 fi = btrfs_item_ptr(leaf, path->slots[0], 4357 struct btrfs_file_extent_item); 4358 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4359 } 4360 btrfs_release_path(path); 4361 4362 path->keep_locks = 1; 4363 path->search_for_split = 1; 4364 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4365 path->search_for_split = 0; 4366 if (ret > 0) 4367 ret = -EAGAIN; 4368 if (ret < 0) 4369 goto err; 4370 4371 ret = -EAGAIN; 4372 leaf = path->nodes[0]; 4373 /* if our item isn't there, return now */ 4374 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4375 goto err; 4376 4377 /* the leaf has changed, it now has room. return now */ 4378 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4379 goto err; 4380 4381 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4382 fi = btrfs_item_ptr(leaf, path->slots[0], 4383 struct btrfs_file_extent_item); 4384 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4385 goto err; 4386 } 4387 4388 btrfs_set_path_blocking(path); 4389 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4390 if (ret) 4391 goto err; 4392 4393 path->keep_locks = 0; 4394 btrfs_unlock_up_safe(path, 1); 4395 return 0; 4396 err: 4397 path->keep_locks = 0; 4398 return ret; 4399 } 4400 4401 static noinline int split_item(struct btrfs_trans_handle *trans, 4402 struct btrfs_root *root, 4403 struct btrfs_path *path, 4404 struct btrfs_key *new_key, 4405 unsigned long split_offset) 4406 { 4407 struct extent_buffer *leaf; 4408 struct btrfs_item *item; 4409 struct btrfs_item *new_item; 4410 int slot; 4411 char *buf; 4412 u32 nritems; 4413 u32 item_size; 4414 u32 orig_offset; 4415 struct btrfs_disk_key disk_key; 4416 4417 leaf = path->nodes[0]; 4418 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4419 4420 btrfs_set_path_blocking(path); 4421 4422 item = btrfs_item_nr(path->slots[0]); 4423 orig_offset = btrfs_item_offset(leaf, item); 4424 item_size = btrfs_item_size(leaf, item); 4425 4426 buf = kmalloc(item_size, GFP_NOFS); 4427 if (!buf) 4428 return -ENOMEM; 4429 4430 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4431 path->slots[0]), item_size); 4432 4433 slot = path->slots[0] + 1; 4434 nritems = btrfs_header_nritems(leaf); 4435 if (slot != nritems) { 4436 /* shift the items */ 4437 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4438 btrfs_item_nr_offset(slot), 4439 (nritems - slot) * sizeof(struct btrfs_item)); 4440 } 4441 4442 btrfs_cpu_key_to_disk(&disk_key, new_key); 4443 btrfs_set_item_key(leaf, &disk_key, slot); 4444 4445 new_item = btrfs_item_nr(slot); 4446 4447 btrfs_set_item_offset(leaf, new_item, orig_offset); 4448 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4449 4450 btrfs_set_item_offset(leaf, item, 4451 orig_offset + item_size - split_offset); 4452 btrfs_set_item_size(leaf, item, split_offset); 4453 4454 btrfs_set_header_nritems(leaf, nritems + 1); 4455 4456 /* write the data for the start of the original item */ 4457 write_extent_buffer(leaf, buf, 4458 btrfs_item_ptr_offset(leaf, path->slots[0]), 4459 split_offset); 4460 4461 /* write the data for the new item */ 4462 write_extent_buffer(leaf, buf + split_offset, 4463 btrfs_item_ptr_offset(leaf, slot), 4464 item_size - split_offset); 4465 btrfs_mark_buffer_dirty(leaf); 4466 4467 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4468 kfree(buf); 4469 return 0; 4470 } 4471 4472 /* 4473 * This function splits a single item into two items, 4474 * giving 'new_key' to the new item and splitting the 4475 * old one at split_offset (from the start of the item). 4476 * 4477 * The path may be released by this operation. After 4478 * the split, the path is pointing to the old item. The 4479 * new item is going to be in the same node as the old one. 4480 * 4481 * Note, the item being split must be smaller enough to live alone on 4482 * a tree block with room for one extra struct btrfs_item 4483 * 4484 * This allows us to split the item in place, keeping a lock on the 4485 * leaf the entire time. 4486 */ 4487 int btrfs_split_item(struct btrfs_trans_handle *trans, 4488 struct btrfs_root *root, 4489 struct btrfs_path *path, 4490 struct btrfs_key *new_key, 4491 unsigned long split_offset) 4492 { 4493 int ret; 4494 ret = setup_leaf_for_split(trans, root, path, 4495 sizeof(struct btrfs_item)); 4496 if (ret) 4497 return ret; 4498 4499 ret = split_item(trans, root, path, new_key, split_offset); 4500 return ret; 4501 } 4502 4503 /* 4504 * This function duplicate a item, giving 'new_key' to the new item. 4505 * It guarantees both items live in the same tree leaf and the new item 4506 * is contiguous with the original item. 4507 * 4508 * This allows us to split file extent in place, keeping a lock on the 4509 * leaf the entire time. 4510 */ 4511 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4512 struct btrfs_root *root, 4513 struct btrfs_path *path, 4514 struct btrfs_key *new_key) 4515 { 4516 struct extent_buffer *leaf; 4517 int ret; 4518 u32 item_size; 4519 4520 leaf = path->nodes[0]; 4521 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4522 ret = setup_leaf_for_split(trans, root, path, 4523 item_size + sizeof(struct btrfs_item)); 4524 if (ret) 4525 return ret; 4526 4527 path->slots[0]++; 4528 setup_items_for_insert(root, path, new_key, &item_size, 4529 item_size, item_size + 4530 sizeof(struct btrfs_item), 1); 4531 leaf = path->nodes[0]; 4532 memcpy_extent_buffer(leaf, 4533 btrfs_item_ptr_offset(leaf, path->slots[0]), 4534 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4535 item_size); 4536 return 0; 4537 } 4538 4539 /* 4540 * make the item pointed to by the path smaller. new_size indicates 4541 * how small to make it, and from_end tells us if we just chop bytes 4542 * off the end of the item or if we shift the item to chop bytes off 4543 * the front. 4544 */ 4545 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4546 u32 new_size, int from_end) 4547 { 4548 int slot; 4549 struct extent_buffer *leaf; 4550 struct btrfs_item *item; 4551 u32 nritems; 4552 unsigned int data_end; 4553 unsigned int old_data_start; 4554 unsigned int old_size; 4555 unsigned int size_diff; 4556 int i; 4557 struct btrfs_map_token token; 4558 4559 btrfs_init_map_token(&token); 4560 4561 leaf = path->nodes[0]; 4562 slot = path->slots[0]; 4563 4564 old_size = btrfs_item_size_nr(leaf, slot); 4565 if (old_size == new_size) 4566 return; 4567 4568 nritems = btrfs_header_nritems(leaf); 4569 data_end = leaf_data_end(root, leaf); 4570 4571 old_data_start = btrfs_item_offset_nr(leaf, slot); 4572 4573 size_diff = old_size - new_size; 4574 4575 BUG_ON(slot < 0); 4576 BUG_ON(slot >= nritems); 4577 4578 /* 4579 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4580 */ 4581 /* first correct the data pointers */ 4582 for (i = slot; i < nritems; i++) { 4583 u32 ioff; 4584 item = btrfs_item_nr(i); 4585 4586 ioff = btrfs_token_item_offset(leaf, item, &token); 4587 btrfs_set_token_item_offset(leaf, item, 4588 ioff + size_diff, &token); 4589 } 4590 4591 /* shift the data */ 4592 if (from_end) { 4593 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4594 data_end + size_diff, btrfs_leaf_data(leaf) + 4595 data_end, old_data_start + new_size - data_end); 4596 } else { 4597 struct btrfs_disk_key disk_key; 4598 u64 offset; 4599 4600 btrfs_item_key(leaf, &disk_key, slot); 4601 4602 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4603 unsigned long ptr; 4604 struct btrfs_file_extent_item *fi; 4605 4606 fi = btrfs_item_ptr(leaf, slot, 4607 struct btrfs_file_extent_item); 4608 fi = (struct btrfs_file_extent_item *)( 4609 (unsigned long)fi - size_diff); 4610 4611 if (btrfs_file_extent_type(leaf, fi) == 4612 BTRFS_FILE_EXTENT_INLINE) { 4613 ptr = btrfs_item_ptr_offset(leaf, slot); 4614 memmove_extent_buffer(leaf, ptr, 4615 (unsigned long)fi, 4616 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4617 } 4618 } 4619 4620 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4621 data_end + size_diff, btrfs_leaf_data(leaf) + 4622 data_end, old_data_start - data_end); 4623 4624 offset = btrfs_disk_key_offset(&disk_key); 4625 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4626 btrfs_set_item_key(leaf, &disk_key, slot); 4627 if (slot == 0) 4628 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4629 } 4630 4631 item = btrfs_item_nr(slot); 4632 btrfs_set_item_size(leaf, item, new_size); 4633 btrfs_mark_buffer_dirty(leaf); 4634 4635 if (btrfs_leaf_free_space(root, leaf) < 0) { 4636 btrfs_print_leaf(root, leaf); 4637 BUG(); 4638 } 4639 } 4640 4641 /* 4642 * make the item pointed to by the path bigger, data_size is the added size. 4643 */ 4644 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4645 u32 data_size) 4646 { 4647 int slot; 4648 struct extent_buffer *leaf; 4649 struct btrfs_item *item; 4650 u32 nritems; 4651 unsigned int data_end; 4652 unsigned int old_data; 4653 unsigned int old_size; 4654 int i; 4655 struct btrfs_map_token token; 4656 4657 btrfs_init_map_token(&token); 4658 4659 leaf = path->nodes[0]; 4660 4661 nritems = btrfs_header_nritems(leaf); 4662 data_end = leaf_data_end(root, leaf); 4663 4664 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4665 btrfs_print_leaf(root, leaf); 4666 BUG(); 4667 } 4668 slot = path->slots[0]; 4669 old_data = btrfs_item_end_nr(leaf, slot); 4670 4671 BUG_ON(slot < 0); 4672 if (slot >= nritems) { 4673 btrfs_print_leaf(root, leaf); 4674 btrfs_crit(root->fs_info, "slot %d too large, nritems %d", 4675 slot, nritems); 4676 BUG_ON(1); 4677 } 4678 4679 /* 4680 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4681 */ 4682 /* first correct the data pointers */ 4683 for (i = slot; i < nritems; i++) { 4684 u32 ioff; 4685 item = btrfs_item_nr(i); 4686 4687 ioff = btrfs_token_item_offset(leaf, item, &token); 4688 btrfs_set_token_item_offset(leaf, item, 4689 ioff - data_size, &token); 4690 } 4691 4692 /* shift the data */ 4693 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4694 data_end - data_size, btrfs_leaf_data(leaf) + 4695 data_end, old_data - data_end); 4696 4697 data_end = old_data; 4698 old_size = btrfs_item_size_nr(leaf, slot); 4699 item = btrfs_item_nr(slot); 4700 btrfs_set_item_size(leaf, item, old_size + data_size); 4701 btrfs_mark_buffer_dirty(leaf); 4702 4703 if (btrfs_leaf_free_space(root, leaf) < 0) { 4704 btrfs_print_leaf(root, leaf); 4705 BUG(); 4706 } 4707 } 4708 4709 /* 4710 * this is a helper for btrfs_insert_empty_items, the main goal here is 4711 * to save stack depth by doing the bulk of the work in a function 4712 * that doesn't call btrfs_search_slot 4713 */ 4714 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4715 struct btrfs_key *cpu_key, u32 *data_size, 4716 u32 total_data, u32 total_size, int nr) 4717 { 4718 struct btrfs_item *item; 4719 int i; 4720 u32 nritems; 4721 unsigned int data_end; 4722 struct btrfs_disk_key disk_key; 4723 struct extent_buffer *leaf; 4724 int slot; 4725 struct btrfs_map_token token; 4726 4727 if (path->slots[0] == 0) { 4728 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4729 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4730 } 4731 btrfs_unlock_up_safe(path, 1); 4732 4733 btrfs_init_map_token(&token); 4734 4735 leaf = path->nodes[0]; 4736 slot = path->slots[0]; 4737 4738 nritems = btrfs_header_nritems(leaf); 4739 data_end = leaf_data_end(root, leaf); 4740 4741 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4742 btrfs_print_leaf(root, leaf); 4743 btrfs_crit(root->fs_info, "not enough freespace need %u have %d", 4744 total_size, btrfs_leaf_free_space(root, leaf)); 4745 BUG(); 4746 } 4747 4748 if (slot != nritems) { 4749 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4750 4751 if (old_data < data_end) { 4752 btrfs_print_leaf(root, leaf); 4753 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d", 4754 slot, old_data, data_end); 4755 BUG_ON(1); 4756 } 4757 /* 4758 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4759 */ 4760 /* first correct the data pointers */ 4761 for (i = slot; i < nritems; i++) { 4762 u32 ioff; 4763 4764 item = btrfs_item_nr( i); 4765 ioff = btrfs_token_item_offset(leaf, item, &token); 4766 btrfs_set_token_item_offset(leaf, item, 4767 ioff - total_data, &token); 4768 } 4769 /* shift the items */ 4770 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4771 btrfs_item_nr_offset(slot), 4772 (nritems - slot) * sizeof(struct btrfs_item)); 4773 4774 /* shift the data */ 4775 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4776 data_end - total_data, btrfs_leaf_data(leaf) + 4777 data_end, old_data - data_end); 4778 data_end = old_data; 4779 } 4780 4781 /* setup the item for the new data */ 4782 for (i = 0; i < nr; i++) { 4783 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4784 btrfs_set_item_key(leaf, &disk_key, slot + i); 4785 item = btrfs_item_nr(slot + i); 4786 btrfs_set_token_item_offset(leaf, item, 4787 data_end - data_size[i], &token); 4788 data_end -= data_size[i]; 4789 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4790 } 4791 4792 btrfs_set_header_nritems(leaf, nritems + nr); 4793 btrfs_mark_buffer_dirty(leaf); 4794 4795 if (btrfs_leaf_free_space(root, leaf) < 0) { 4796 btrfs_print_leaf(root, leaf); 4797 BUG(); 4798 } 4799 } 4800 4801 /* 4802 * Given a key and some data, insert items into the tree. 4803 * This does all the path init required, making room in the tree if needed. 4804 */ 4805 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4806 struct btrfs_root *root, 4807 struct btrfs_path *path, 4808 struct btrfs_key *cpu_key, u32 *data_size, 4809 int nr) 4810 { 4811 int ret = 0; 4812 int slot; 4813 int i; 4814 u32 total_size = 0; 4815 u32 total_data = 0; 4816 4817 for (i = 0; i < nr; i++) 4818 total_data += data_size[i]; 4819 4820 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4821 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4822 if (ret == 0) 4823 return -EEXIST; 4824 if (ret < 0) 4825 return ret; 4826 4827 slot = path->slots[0]; 4828 BUG_ON(slot < 0); 4829 4830 setup_items_for_insert(root, path, cpu_key, data_size, 4831 total_data, total_size, nr); 4832 return 0; 4833 } 4834 4835 /* 4836 * Given a key and some data, insert an item into the tree. 4837 * This does all the path init required, making room in the tree if needed. 4838 */ 4839 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4840 *root, struct btrfs_key *cpu_key, void *data, u32 4841 data_size) 4842 { 4843 int ret = 0; 4844 struct btrfs_path *path; 4845 struct extent_buffer *leaf; 4846 unsigned long ptr; 4847 4848 path = btrfs_alloc_path(); 4849 if (!path) 4850 return -ENOMEM; 4851 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4852 if (!ret) { 4853 leaf = path->nodes[0]; 4854 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4855 write_extent_buffer(leaf, data, ptr, data_size); 4856 btrfs_mark_buffer_dirty(leaf); 4857 } 4858 btrfs_free_path(path); 4859 return ret; 4860 } 4861 4862 /* 4863 * delete the pointer from a given node. 4864 * 4865 * the tree should have been previously balanced so the deletion does not 4866 * empty a node. 4867 */ 4868 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4869 int level, int slot) 4870 { 4871 struct extent_buffer *parent = path->nodes[level]; 4872 u32 nritems; 4873 int ret; 4874 4875 nritems = btrfs_header_nritems(parent); 4876 if (slot != nritems - 1) { 4877 if (level) 4878 tree_mod_log_eb_move(root->fs_info, parent, slot, 4879 slot + 1, nritems - slot - 1); 4880 memmove_extent_buffer(parent, 4881 btrfs_node_key_ptr_offset(slot), 4882 btrfs_node_key_ptr_offset(slot + 1), 4883 sizeof(struct btrfs_key_ptr) * 4884 (nritems - slot - 1)); 4885 } else if (level) { 4886 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4887 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4888 BUG_ON(ret < 0); 4889 } 4890 4891 nritems--; 4892 btrfs_set_header_nritems(parent, nritems); 4893 if (nritems == 0 && parent == root->node) { 4894 BUG_ON(btrfs_header_level(root->node) != 1); 4895 /* just turn the root into a leaf and break */ 4896 btrfs_set_header_level(root->node, 0); 4897 } else if (slot == 0) { 4898 struct btrfs_disk_key disk_key; 4899 4900 btrfs_node_key(parent, &disk_key, 0); 4901 fixup_low_keys(root->fs_info, path, &disk_key, level + 1); 4902 } 4903 btrfs_mark_buffer_dirty(parent); 4904 } 4905 4906 /* 4907 * a helper function to delete the leaf pointed to by path->slots[1] and 4908 * path->nodes[1]. 4909 * 4910 * This deletes the pointer in path->nodes[1] and frees the leaf 4911 * block extent. zero is returned if it all worked out, < 0 otherwise. 4912 * 4913 * The path must have already been setup for deleting the leaf, including 4914 * all the proper balancing. path->nodes[1] must be locked. 4915 */ 4916 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4917 struct btrfs_root *root, 4918 struct btrfs_path *path, 4919 struct extent_buffer *leaf) 4920 { 4921 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4922 del_ptr(root, path, 1, path->slots[1]); 4923 4924 /* 4925 * btrfs_free_extent is expensive, we want to make sure we 4926 * aren't holding any locks when we call it 4927 */ 4928 btrfs_unlock_up_safe(path, 0); 4929 4930 root_sub_used(root, leaf->len); 4931 4932 extent_buffer_get(leaf); 4933 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4934 free_extent_buffer_stale(leaf); 4935 } 4936 /* 4937 * delete the item at the leaf level in path. If that empties 4938 * the leaf, remove it from the tree 4939 */ 4940 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4941 struct btrfs_path *path, int slot, int nr) 4942 { 4943 struct extent_buffer *leaf; 4944 struct btrfs_item *item; 4945 u32 last_off; 4946 u32 dsize = 0; 4947 int ret = 0; 4948 int wret; 4949 int i; 4950 u32 nritems; 4951 struct btrfs_map_token token; 4952 4953 btrfs_init_map_token(&token); 4954 4955 leaf = path->nodes[0]; 4956 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4957 4958 for (i = 0; i < nr; i++) 4959 dsize += btrfs_item_size_nr(leaf, slot + i); 4960 4961 nritems = btrfs_header_nritems(leaf); 4962 4963 if (slot + nr != nritems) { 4964 int data_end = leaf_data_end(root, leaf); 4965 4966 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4967 data_end + dsize, 4968 btrfs_leaf_data(leaf) + data_end, 4969 last_off - data_end); 4970 4971 for (i = slot + nr; i < nritems; i++) { 4972 u32 ioff; 4973 4974 item = btrfs_item_nr(i); 4975 ioff = btrfs_token_item_offset(leaf, item, &token); 4976 btrfs_set_token_item_offset(leaf, item, 4977 ioff + dsize, &token); 4978 } 4979 4980 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4981 btrfs_item_nr_offset(slot + nr), 4982 sizeof(struct btrfs_item) * 4983 (nritems - slot - nr)); 4984 } 4985 btrfs_set_header_nritems(leaf, nritems - nr); 4986 nritems -= nr; 4987 4988 /* delete the leaf if we've emptied it */ 4989 if (nritems == 0) { 4990 if (leaf == root->node) { 4991 btrfs_set_header_level(leaf, 0); 4992 } else { 4993 btrfs_set_path_blocking(path); 4994 clean_tree_block(trans, root->fs_info, leaf); 4995 btrfs_del_leaf(trans, root, path, leaf); 4996 } 4997 } else { 4998 int used = leaf_space_used(leaf, 0, nritems); 4999 if (slot == 0) { 5000 struct btrfs_disk_key disk_key; 5001 5002 btrfs_item_key(leaf, &disk_key, 0); 5003 fixup_low_keys(root->fs_info, path, &disk_key, 1); 5004 } 5005 5006 /* delete the leaf if it is mostly empty */ 5007 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 5008 /* push_leaf_left fixes the path. 5009 * make sure the path still points to our leaf 5010 * for possible call to del_ptr below 5011 */ 5012 slot = path->slots[1]; 5013 extent_buffer_get(leaf); 5014 5015 btrfs_set_path_blocking(path); 5016 wret = push_leaf_left(trans, root, path, 1, 1, 5017 1, (u32)-1); 5018 if (wret < 0 && wret != -ENOSPC) 5019 ret = wret; 5020 5021 if (path->nodes[0] == leaf && 5022 btrfs_header_nritems(leaf)) { 5023 wret = push_leaf_right(trans, root, path, 1, 5024 1, 1, 0); 5025 if (wret < 0 && wret != -ENOSPC) 5026 ret = wret; 5027 } 5028 5029 if (btrfs_header_nritems(leaf) == 0) { 5030 path->slots[1] = slot; 5031 btrfs_del_leaf(trans, root, path, leaf); 5032 free_extent_buffer(leaf); 5033 ret = 0; 5034 } else { 5035 /* if we're still in the path, make sure 5036 * we're dirty. Otherwise, one of the 5037 * push_leaf functions must have already 5038 * dirtied this buffer 5039 */ 5040 if (path->nodes[0] == leaf) 5041 btrfs_mark_buffer_dirty(leaf); 5042 free_extent_buffer(leaf); 5043 } 5044 } else { 5045 btrfs_mark_buffer_dirty(leaf); 5046 } 5047 } 5048 return ret; 5049 } 5050 5051 /* 5052 * search the tree again to find a leaf with lesser keys 5053 * returns 0 if it found something or 1 if there are no lesser leaves. 5054 * returns < 0 on io errors. 5055 * 5056 * This may release the path, and so you may lose any locks held at the 5057 * time you call it. 5058 */ 5059 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5060 { 5061 struct btrfs_key key; 5062 struct btrfs_disk_key found_key; 5063 int ret; 5064 5065 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5066 5067 if (key.offset > 0) { 5068 key.offset--; 5069 } else if (key.type > 0) { 5070 key.type--; 5071 key.offset = (u64)-1; 5072 } else if (key.objectid > 0) { 5073 key.objectid--; 5074 key.type = (u8)-1; 5075 key.offset = (u64)-1; 5076 } else { 5077 return 1; 5078 } 5079 5080 btrfs_release_path(path); 5081 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5082 if (ret < 0) 5083 return ret; 5084 btrfs_item_key(path->nodes[0], &found_key, 0); 5085 ret = comp_keys(&found_key, &key); 5086 /* 5087 * We might have had an item with the previous key in the tree right 5088 * before we released our path. And after we released our path, that 5089 * item might have been pushed to the first slot (0) of the leaf we 5090 * were holding due to a tree balance. Alternatively, an item with the 5091 * previous key can exist as the only element of a leaf (big fat item). 5092 * Therefore account for these 2 cases, so that our callers (like 5093 * btrfs_previous_item) don't miss an existing item with a key matching 5094 * the previous key we computed above. 5095 */ 5096 if (ret <= 0) 5097 return 0; 5098 return 1; 5099 } 5100 5101 /* 5102 * A helper function to walk down the tree starting at min_key, and looking 5103 * for nodes or leaves that are have a minimum transaction id. 5104 * This is used by the btree defrag code, and tree logging 5105 * 5106 * This does not cow, but it does stuff the starting key it finds back 5107 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5108 * key and get a writable path. 5109 * 5110 * This does lock as it descends, and path->keep_locks should be set 5111 * to 1 by the caller. 5112 * 5113 * This honors path->lowest_level to prevent descent past a given level 5114 * of the tree. 5115 * 5116 * min_trans indicates the oldest transaction that you are interested 5117 * in walking through. Any nodes or leaves older than min_trans are 5118 * skipped over (without reading them). 5119 * 5120 * returns zero if something useful was found, < 0 on error and 1 if there 5121 * was nothing in the tree that matched the search criteria. 5122 */ 5123 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5124 struct btrfs_path *path, 5125 u64 min_trans) 5126 { 5127 struct extent_buffer *cur; 5128 struct btrfs_key found_key; 5129 int slot; 5130 int sret; 5131 u32 nritems; 5132 int level; 5133 int ret = 1; 5134 int keep_locks = path->keep_locks; 5135 5136 path->keep_locks = 1; 5137 again: 5138 cur = btrfs_read_lock_root_node(root); 5139 level = btrfs_header_level(cur); 5140 WARN_ON(path->nodes[level]); 5141 path->nodes[level] = cur; 5142 path->locks[level] = BTRFS_READ_LOCK; 5143 5144 if (btrfs_header_generation(cur) < min_trans) { 5145 ret = 1; 5146 goto out; 5147 } 5148 while (1) { 5149 nritems = btrfs_header_nritems(cur); 5150 level = btrfs_header_level(cur); 5151 sret = bin_search(cur, min_key, level, &slot); 5152 5153 /* at the lowest level, we're done, setup the path and exit */ 5154 if (level == path->lowest_level) { 5155 if (slot >= nritems) 5156 goto find_next_key; 5157 ret = 0; 5158 path->slots[level] = slot; 5159 btrfs_item_key_to_cpu(cur, &found_key, slot); 5160 goto out; 5161 } 5162 if (sret && slot > 0) 5163 slot--; 5164 /* 5165 * check this node pointer against the min_trans parameters. 5166 * If it is too old, old, skip to the next one. 5167 */ 5168 while (slot < nritems) { 5169 u64 gen; 5170 5171 gen = btrfs_node_ptr_generation(cur, slot); 5172 if (gen < min_trans) { 5173 slot++; 5174 continue; 5175 } 5176 break; 5177 } 5178 find_next_key: 5179 /* 5180 * we didn't find a candidate key in this node, walk forward 5181 * and find another one 5182 */ 5183 if (slot >= nritems) { 5184 path->slots[level] = slot; 5185 btrfs_set_path_blocking(path); 5186 sret = btrfs_find_next_key(root, path, min_key, level, 5187 min_trans); 5188 if (sret == 0) { 5189 btrfs_release_path(path); 5190 goto again; 5191 } else { 5192 goto out; 5193 } 5194 } 5195 /* save our key for returning back */ 5196 btrfs_node_key_to_cpu(cur, &found_key, slot); 5197 path->slots[level] = slot; 5198 if (level == path->lowest_level) { 5199 ret = 0; 5200 goto out; 5201 } 5202 btrfs_set_path_blocking(path); 5203 cur = read_node_slot(root, cur, slot); 5204 BUG_ON(!cur); /* -ENOMEM */ 5205 5206 btrfs_tree_read_lock(cur); 5207 5208 path->locks[level - 1] = BTRFS_READ_LOCK; 5209 path->nodes[level - 1] = cur; 5210 unlock_up(path, level, 1, 0, NULL); 5211 btrfs_clear_path_blocking(path, NULL, 0); 5212 } 5213 out: 5214 path->keep_locks = keep_locks; 5215 if (ret == 0) { 5216 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5217 btrfs_set_path_blocking(path); 5218 memcpy(min_key, &found_key, sizeof(found_key)); 5219 } 5220 return ret; 5221 } 5222 5223 static void tree_move_down(struct btrfs_root *root, 5224 struct btrfs_path *path, 5225 int *level, int root_level) 5226 { 5227 BUG_ON(*level == 0); 5228 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 5229 path->slots[*level]); 5230 path->slots[*level - 1] = 0; 5231 (*level)--; 5232 } 5233 5234 static int tree_move_next_or_upnext(struct btrfs_root *root, 5235 struct btrfs_path *path, 5236 int *level, int root_level) 5237 { 5238 int ret = 0; 5239 int nritems; 5240 nritems = btrfs_header_nritems(path->nodes[*level]); 5241 5242 path->slots[*level]++; 5243 5244 while (path->slots[*level] >= nritems) { 5245 if (*level == root_level) 5246 return -1; 5247 5248 /* move upnext */ 5249 path->slots[*level] = 0; 5250 free_extent_buffer(path->nodes[*level]); 5251 path->nodes[*level] = NULL; 5252 (*level)++; 5253 path->slots[*level]++; 5254 5255 nritems = btrfs_header_nritems(path->nodes[*level]); 5256 ret = 1; 5257 } 5258 return ret; 5259 } 5260 5261 /* 5262 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5263 * or down. 5264 */ 5265 static int tree_advance(struct btrfs_root *root, 5266 struct btrfs_path *path, 5267 int *level, int root_level, 5268 int allow_down, 5269 struct btrfs_key *key) 5270 { 5271 int ret; 5272 5273 if (*level == 0 || !allow_down) { 5274 ret = tree_move_next_or_upnext(root, path, level, root_level); 5275 } else { 5276 tree_move_down(root, path, level, root_level); 5277 ret = 0; 5278 } 5279 if (ret >= 0) { 5280 if (*level == 0) 5281 btrfs_item_key_to_cpu(path->nodes[*level], key, 5282 path->slots[*level]); 5283 else 5284 btrfs_node_key_to_cpu(path->nodes[*level], key, 5285 path->slots[*level]); 5286 } 5287 return ret; 5288 } 5289 5290 static int tree_compare_item(struct btrfs_root *left_root, 5291 struct btrfs_path *left_path, 5292 struct btrfs_path *right_path, 5293 char *tmp_buf) 5294 { 5295 int cmp; 5296 int len1, len2; 5297 unsigned long off1, off2; 5298 5299 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5300 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5301 if (len1 != len2) 5302 return 1; 5303 5304 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5305 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5306 right_path->slots[0]); 5307 5308 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5309 5310 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5311 if (cmp) 5312 return 1; 5313 return 0; 5314 } 5315 5316 #define ADVANCE 1 5317 #define ADVANCE_ONLY_NEXT -1 5318 5319 /* 5320 * This function compares two trees and calls the provided callback for 5321 * every changed/new/deleted item it finds. 5322 * If shared tree blocks are encountered, whole subtrees are skipped, making 5323 * the compare pretty fast on snapshotted subvolumes. 5324 * 5325 * This currently works on commit roots only. As commit roots are read only, 5326 * we don't do any locking. The commit roots are protected with transactions. 5327 * Transactions are ended and rejoined when a commit is tried in between. 5328 * 5329 * This function checks for modifications done to the trees while comparing. 5330 * If it detects a change, it aborts immediately. 5331 */ 5332 int btrfs_compare_trees(struct btrfs_root *left_root, 5333 struct btrfs_root *right_root, 5334 btrfs_changed_cb_t changed_cb, void *ctx) 5335 { 5336 int ret; 5337 int cmp; 5338 struct btrfs_path *left_path = NULL; 5339 struct btrfs_path *right_path = NULL; 5340 struct btrfs_key left_key; 5341 struct btrfs_key right_key; 5342 char *tmp_buf = NULL; 5343 int left_root_level; 5344 int right_root_level; 5345 int left_level; 5346 int right_level; 5347 int left_end_reached; 5348 int right_end_reached; 5349 int advance_left; 5350 int advance_right; 5351 u64 left_blockptr; 5352 u64 right_blockptr; 5353 u64 left_gen; 5354 u64 right_gen; 5355 5356 left_path = btrfs_alloc_path(); 5357 if (!left_path) { 5358 ret = -ENOMEM; 5359 goto out; 5360 } 5361 right_path = btrfs_alloc_path(); 5362 if (!right_path) { 5363 ret = -ENOMEM; 5364 goto out; 5365 } 5366 5367 tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN); 5368 if (!tmp_buf) { 5369 tmp_buf = vmalloc(left_root->nodesize); 5370 if (!tmp_buf) { 5371 ret = -ENOMEM; 5372 goto out; 5373 } 5374 } 5375 5376 left_path->search_commit_root = 1; 5377 left_path->skip_locking = 1; 5378 right_path->search_commit_root = 1; 5379 right_path->skip_locking = 1; 5380 5381 /* 5382 * Strategy: Go to the first items of both trees. Then do 5383 * 5384 * If both trees are at level 0 5385 * Compare keys of current items 5386 * If left < right treat left item as new, advance left tree 5387 * and repeat 5388 * If left > right treat right item as deleted, advance right tree 5389 * and repeat 5390 * If left == right do deep compare of items, treat as changed if 5391 * needed, advance both trees and repeat 5392 * If both trees are at the same level but not at level 0 5393 * Compare keys of current nodes/leafs 5394 * If left < right advance left tree and repeat 5395 * If left > right advance right tree and repeat 5396 * If left == right compare blockptrs of the next nodes/leafs 5397 * If they match advance both trees but stay at the same level 5398 * and repeat 5399 * If they don't match advance both trees while allowing to go 5400 * deeper and repeat 5401 * If tree levels are different 5402 * Advance the tree that needs it and repeat 5403 * 5404 * Advancing a tree means: 5405 * If we are at level 0, try to go to the next slot. If that's not 5406 * possible, go one level up and repeat. Stop when we found a level 5407 * where we could go to the next slot. We may at this point be on a 5408 * node or a leaf. 5409 * 5410 * If we are not at level 0 and not on shared tree blocks, go one 5411 * level deeper. 5412 * 5413 * If we are not at level 0 and on shared tree blocks, go one slot to 5414 * the right if possible or go up and right. 5415 */ 5416 5417 down_read(&left_root->fs_info->commit_root_sem); 5418 left_level = btrfs_header_level(left_root->commit_root); 5419 left_root_level = left_level; 5420 left_path->nodes[left_level] = left_root->commit_root; 5421 extent_buffer_get(left_path->nodes[left_level]); 5422 5423 right_level = btrfs_header_level(right_root->commit_root); 5424 right_root_level = right_level; 5425 right_path->nodes[right_level] = right_root->commit_root; 5426 extent_buffer_get(right_path->nodes[right_level]); 5427 up_read(&left_root->fs_info->commit_root_sem); 5428 5429 if (left_level == 0) 5430 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5431 &left_key, left_path->slots[left_level]); 5432 else 5433 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5434 &left_key, left_path->slots[left_level]); 5435 if (right_level == 0) 5436 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5437 &right_key, right_path->slots[right_level]); 5438 else 5439 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5440 &right_key, right_path->slots[right_level]); 5441 5442 left_end_reached = right_end_reached = 0; 5443 advance_left = advance_right = 0; 5444 5445 while (1) { 5446 if (advance_left && !left_end_reached) { 5447 ret = tree_advance(left_root, left_path, &left_level, 5448 left_root_level, 5449 advance_left != ADVANCE_ONLY_NEXT, 5450 &left_key); 5451 if (ret < 0) 5452 left_end_reached = ADVANCE; 5453 advance_left = 0; 5454 } 5455 if (advance_right && !right_end_reached) { 5456 ret = tree_advance(right_root, right_path, &right_level, 5457 right_root_level, 5458 advance_right != ADVANCE_ONLY_NEXT, 5459 &right_key); 5460 if (ret < 0) 5461 right_end_reached = ADVANCE; 5462 advance_right = 0; 5463 } 5464 5465 if (left_end_reached && right_end_reached) { 5466 ret = 0; 5467 goto out; 5468 } else if (left_end_reached) { 5469 if (right_level == 0) { 5470 ret = changed_cb(left_root, right_root, 5471 left_path, right_path, 5472 &right_key, 5473 BTRFS_COMPARE_TREE_DELETED, 5474 ctx); 5475 if (ret < 0) 5476 goto out; 5477 } 5478 advance_right = ADVANCE; 5479 continue; 5480 } else if (right_end_reached) { 5481 if (left_level == 0) { 5482 ret = changed_cb(left_root, right_root, 5483 left_path, right_path, 5484 &left_key, 5485 BTRFS_COMPARE_TREE_NEW, 5486 ctx); 5487 if (ret < 0) 5488 goto out; 5489 } 5490 advance_left = ADVANCE; 5491 continue; 5492 } 5493 5494 if (left_level == 0 && right_level == 0) { 5495 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5496 if (cmp < 0) { 5497 ret = changed_cb(left_root, right_root, 5498 left_path, right_path, 5499 &left_key, 5500 BTRFS_COMPARE_TREE_NEW, 5501 ctx); 5502 if (ret < 0) 5503 goto out; 5504 advance_left = ADVANCE; 5505 } else if (cmp > 0) { 5506 ret = changed_cb(left_root, right_root, 5507 left_path, right_path, 5508 &right_key, 5509 BTRFS_COMPARE_TREE_DELETED, 5510 ctx); 5511 if (ret < 0) 5512 goto out; 5513 advance_right = ADVANCE; 5514 } else { 5515 enum btrfs_compare_tree_result result; 5516 5517 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5518 ret = tree_compare_item(left_root, left_path, 5519 right_path, tmp_buf); 5520 if (ret) 5521 result = BTRFS_COMPARE_TREE_CHANGED; 5522 else 5523 result = BTRFS_COMPARE_TREE_SAME; 5524 ret = changed_cb(left_root, right_root, 5525 left_path, right_path, 5526 &left_key, result, ctx); 5527 if (ret < 0) 5528 goto out; 5529 advance_left = ADVANCE; 5530 advance_right = ADVANCE; 5531 } 5532 } else if (left_level == right_level) { 5533 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5534 if (cmp < 0) { 5535 advance_left = ADVANCE; 5536 } else if (cmp > 0) { 5537 advance_right = ADVANCE; 5538 } else { 5539 left_blockptr = btrfs_node_blockptr( 5540 left_path->nodes[left_level], 5541 left_path->slots[left_level]); 5542 right_blockptr = btrfs_node_blockptr( 5543 right_path->nodes[right_level], 5544 right_path->slots[right_level]); 5545 left_gen = btrfs_node_ptr_generation( 5546 left_path->nodes[left_level], 5547 left_path->slots[left_level]); 5548 right_gen = btrfs_node_ptr_generation( 5549 right_path->nodes[right_level], 5550 right_path->slots[right_level]); 5551 if (left_blockptr == right_blockptr && 5552 left_gen == right_gen) { 5553 /* 5554 * As we're on a shared block, don't 5555 * allow to go deeper. 5556 */ 5557 advance_left = ADVANCE_ONLY_NEXT; 5558 advance_right = ADVANCE_ONLY_NEXT; 5559 } else { 5560 advance_left = ADVANCE; 5561 advance_right = ADVANCE; 5562 } 5563 } 5564 } else if (left_level < right_level) { 5565 advance_right = ADVANCE; 5566 } else { 5567 advance_left = ADVANCE; 5568 } 5569 } 5570 5571 out: 5572 btrfs_free_path(left_path); 5573 btrfs_free_path(right_path); 5574 kvfree(tmp_buf); 5575 return ret; 5576 } 5577 5578 /* 5579 * this is similar to btrfs_next_leaf, but does not try to preserve 5580 * and fixup the path. It looks for and returns the next key in the 5581 * tree based on the current path and the min_trans parameters. 5582 * 5583 * 0 is returned if another key is found, < 0 if there are any errors 5584 * and 1 is returned if there are no higher keys in the tree 5585 * 5586 * path->keep_locks should be set to 1 on the search made before 5587 * calling this function. 5588 */ 5589 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5590 struct btrfs_key *key, int level, u64 min_trans) 5591 { 5592 int slot; 5593 struct extent_buffer *c; 5594 5595 WARN_ON(!path->keep_locks); 5596 while (level < BTRFS_MAX_LEVEL) { 5597 if (!path->nodes[level]) 5598 return 1; 5599 5600 slot = path->slots[level] + 1; 5601 c = path->nodes[level]; 5602 next: 5603 if (slot >= btrfs_header_nritems(c)) { 5604 int ret; 5605 int orig_lowest; 5606 struct btrfs_key cur_key; 5607 if (level + 1 >= BTRFS_MAX_LEVEL || 5608 !path->nodes[level + 1]) 5609 return 1; 5610 5611 if (path->locks[level + 1]) { 5612 level++; 5613 continue; 5614 } 5615 5616 slot = btrfs_header_nritems(c) - 1; 5617 if (level == 0) 5618 btrfs_item_key_to_cpu(c, &cur_key, slot); 5619 else 5620 btrfs_node_key_to_cpu(c, &cur_key, slot); 5621 5622 orig_lowest = path->lowest_level; 5623 btrfs_release_path(path); 5624 path->lowest_level = level; 5625 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5626 0, 0); 5627 path->lowest_level = orig_lowest; 5628 if (ret < 0) 5629 return ret; 5630 5631 c = path->nodes[level]; 5632 slot = path->slots[level]; 5633 if (ret == 0) 5634 slot++; 5635 goto next; 5636 } 5637 5638 if (level == 0) 5639 btrfs_item_key_to_cpu(c, key, slot); 5640 else { 5641 u64 gen = btrfs_node_ptr_generation(c, slot); 5642 5643 if (gen < min_trans) { 5644 slot++; 5645 goto next; 5646 } 5647 btrfs_node_key_to_cpu(c, key, slot); 5648 } 5649 return 0; 5650 } 5651 return 1; 5652 } 5653 5654 /* 5655 * search the tree again to find a leaf with greater keys 5656 * returns 0 if it found something or 1 if there are no greater leaves. 5657 * returns < 0 on io errors. 5658 */ 5659 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5660 { 5661 return btrfs_next_old_leaf(root, path, 0); 5662 } 5663 5664 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5665 u64 time_seq) 5666 { 5667 int slot; 5668 int level; 5669 struct extent_buffer *c; 5670 struct extent_buffer *next; 5671 struct btrfs_key key; 5672 u32 nritems; 5673 int ret; 5674 int old_spinning = path->leave_spinning; 5675 int next_rw_lock = 0; 5676 5677 nritems = btrfs_header_nritems(path->nodes[0]); 5678 if (nritems == 0) 5679 return 1; 5680 5681 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5682 again: 5683 level = 1; 5684 next = NULL; 5685 next_rw_lock = 0; 5686 btrfs_release_path(path); 5687 5688 path->keep_locks = 1; 5689 path->leave_spinning = 1; 5690 5691 if (time_seq) 5692 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5693 else 5694 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5695 path->keep_locks = 0; 5696 5697 if (ret < 0) 5698 return ret; 5699 5700 nritems = btrfs_header_nritems(path->nodes[0]); 5701 /* 5702 * by releasing the path above we dropped all our locks. A balance 5703 * could have added more items next to the key that used to be 5704 * at the very end of the block. So, check again here and 5705 * advance the path if there are now more items available. 5706 */ 5707 if (nritems > 0 && path->slots[0] < nritems - 1) { 5708 if (ret == 0) 5709 path->slots[0]++; 5710 ret = 0; 5711 goto done; 5712 } 5713 /* 5714 * So the above check misses one case: 5715 * - after releasing the path above, someone has removed the item that 5716 * used to be at the very end of the block, and balance between leafs 5717 * gets another one with bigger key.offset to replace it. 5718 * 5719 * This one should be returned as well, or we can get leaf corruption 5720 * later(esp. in __btrfs_drop_extents()). 5721 * 5722 * And a bit more explanation about this check, 5723 * with ret > 0, the key isn't found, the path points to the slot 5724 * where it should be inserted, so the path->slots[0] item must be the 5725 * bigger one. 5726 */ 5727 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5728 ret = 0; 5729 goto done; 5730 } 5731 5732 while (level < BTRFS_MAX_LEVEL) { 5733 if (!path->nodes[level]) { 5734 ret = 1; 5735 goto done; 5736 } 5737 5738 slot = path->slots[level] + 1; 5739 c = path->nodes[level]; 5740 if (slot >= btrfs_header_nritems(c)) { 5741 level++; 5742 if (level == BTRFS_MAX_LEVEL) { 5743 ret = 1; 5744 goto done; 5745 } 5746 continue; 5747 } 5748 5749 if (next) { 5750 btrfs_tree_unlock_rw(next, next_rw_lock); 5751 free_extent_buffer(next); 5752 } 5753 5754 next = c; 5755 next_rw_lock = path->locks[level]; 5756 ret = read_block_for_search(NULL, root, path, &next, level, 5757 slot, &key, 0); 5758 if (ret == -EAGAIN) 5759 goto again; 5760 5761 if (ret < 0) { 5762 btrfs_release_path(path); 5763 goto done; 5764 } 5765 5766 if (!path->skip_locking) { 5767 ret = btrfs_try_tree_read_lock(next); 5768 if (!ret && time_seq) { 5769 /* 5770 * If we don't get the lock, we may be racing 5771 * with push_leaf_left, holding that lock while 5772 * itself waiting for the leaf we've currently 5773 * locked. To solve this situation, we give up 5774 * on our lock and cycle. 5775 */ 5776 free_extent_buffer(next); 5777 btrfs_release_path(path); 5778 cond_resched(); 5779 goto again; 5780 } 5781 if (!ret) { 5782 btrfs_set_path_blocking(path); 5783 btrfs_tree_read_lock(next); 5784 btrfs_clear_path_blocking(path, next, 5785 BTRFS_READ_LOCK); 5786 } 5787 next_rw_lock = BTRFS_READ_LOCK; 5788 } 5789 break; 5790 } 5791 path->slots[level] = slot; 5792 while (1) { 5793 level--; 5794 c = path->nodes[level]; 5795 if (path->locks[level]) 5796 btrfs_tree_unlock_rw(c, path->locks[level]); 5797 5798 free_extent_buffer(c); 5799 path->nodes[level] = next; 5800 path->slots[level] = 0; 5801 if (!path->skip_locking) 5802 path->locks[level] = next_rw_lock; 5803 if (!level) 5804 break; 5805 5806 ret = read_block_for_search(NULL, root, path, &next, level, 5807 0, &key, 0); 5808 if (ret == -EAGAIN) 5809 goto again; 5810 5811 if (ret < 0) { 5812 btrfs_release_path(path); 5813 goto done; 5814 } 5815 5816 if (!path->skip_locking) { 5817 ret = btrfs_try_tree_read_lock(next); 5818 if (!ret) { 5819 btrfs_set_path_blocking(path); 5820 btrfs_tree_read_lock(next); 5821 btrfs_clear_path_blocking(path, next, 5822 BTRFS_READ_LOCK); 5823 } 5824 next_rw_lock = BTRFS_READ_LOCK; 5825 } 5826 } 5827 ret = 0; 5828 done: 5829 unlock_up(path, 0, 1, 0, NULL); 5830 path->leave_spinning = old_spinning; 5831 if (!old_spinning) 5832 btrfs_set_path_blocking(path); 5833 5834 return ret; 5835 } 5836 5837 /* 5838 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5839 * searching until it gets past min_objectid or finds an item of 'type' 5840 * 5841 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5842 */ 5843 int btrfs_previous_item(struct btrfs_root *root, 5844 struct btrfs_path *path, u64 min_objectid, 5845 int type) 5846 { 5847 struct btrfs_key found_key; 5848 struct extent_buffer *leaf; 5849 u32 nritems; 5850 int ret; 5851 5852 while (1) { 5853 if (path->slots[0] == 0) { 5854 btrfs_set_path_blocking(path); 5855 ret = btrfs_prev_leaf(root, path); 5856 if (ret != 0) 5857 return ret; 5858 } else { 5859 path->slots[0]--; 5860 } 5861 leaf = path->nodes[0]; 5862 nritems = btrfs_header_nritems(leaf); 5863 if (nritems == 0) 5864 return 1; 5865 if (path->slots[0] == nritems) 5866 path->slots[0]--; 5867 5868 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5869 if (found_key.objectid < min_objectid) 5870 break; 5871 if (found_key.type == type) 5872 return 0; 5873 if (found_key.objectid == min_objectid && 5874 found_key.type < type) 5875 break; 5876 } 5877 return 1; 5878 } 5879 5880 /* 5881 * search in extent tree to find a previous Metadata/Data extent item with 5882 * min objecitd. 5883 * 5884 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5885 */ 5886 int btrfs_previous_extent_item(struct btrfs_root *root, 5887 struct btrfs_path *path, u64 min_objectid) 5888 { 5889 struct btrfs_key found_key; 5890 struct extent_buffer *leaf; 5891 u32 nritems; 5892 int ret; 5893 5894 while (1) { 5895 if (path->slots[0] == 0) { 5896 btrfs_set_path_blocking(path); 5897 ret = btrfs_prev_leaf(root, path); 5898 if (ret != 0) 5899 return ret; 5900 } else { 5901 path->slots[0]--; 5902 } 5903 leaf = path->nodes[0]; 5904 nritems = btrfs_header_nritems(leaf); 5905 if (nritems == 0) 5906 return 1; 5907 if (path->slots[0] == nritems) 5908 path->slots[0]--; 5909 5910 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5911 if (found_key.objectid < min_objectid) 5912 break; 5913 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5914 found_key.type == BTRFS_METADATA_ITEM_KEY) 5915 return 0; 5916 if (found_key.objectid == min_objectid && 5917 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5918 break; 5919 } 5920 return 1; 5921 } 5922