1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include <linux/error-injection.h> 11 #include "messages.h" 12 #include "ctree.h" 13 #include "disk-io.h" 14 #include "transaction.h" 15 #include "print-tree.h" 16 #include "locking.h" 17 #include "volumes.h" 18 #include "qgroup.h" 19 #include "tree-mod-log.h" 20 #include "tree-checker.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 #include "relocation.h" 25 #include "file-item.h" 26 27 static struct kmem_cache *btrfs_path_cachep; 28 29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_path *path, int level); 31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 32 const struct btrfs_key *ins_key, struct btrfs_path *path, 33 int data_size, bool extend); 34 static int push_node_left(struct btrfs_trans_handle *trans, 35 struct extent_buffer *dst, 36 struct extent_buffer *src, bool empty); 37 static int balance_node_right(struct btrfs_trans_handle *trans, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 /* 41 * The leaf data grows from end-to-front in the node. this returns the address 42 * of the start of the last item, which is the stop of the leaf data stack. 43 */ 44 static unsigned int leaf_data_end(const struct extent_buffer *leaf) 45 { 46 u32 nr = btrfs_header_nritems(leaf); 47 48 if (nr == 0) 49 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 50 return btrfs_item_offset(leaf, nr - 1); 51 } 52 53 /* 54 * Move data in a @leaf (using memmove, safe for overlapping ranges). 55 * 56 * @leaf: leaf that we're doing a memmove on 57 * @dst_offset: item data offset we're moving to 58 * @src_offset: item data offset were' moving from 59 * @len: length of the data we're moving 60 * 61 * Wrapper around memmove_extent_buffer() that takes into account the header on 62 * the leaf. The btrfs_item offset's start directly after the header, so we 63 * have to adjust any offsets to account for the header in the leaf. This 64 * handles that math to simplify the callers. 65 */ 66 static inline void memmove_leaf_data(const struct extent_buffer *leaf, 67 unsigned long dst_offset, 68 unsigned long src_offset, 69 unsigned long len) 70 { 71 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset, 72 btrfs_item_nr_offset(leaf, 0) + src_offset, len); 73 } 74 75 /* 76 * Copy item data from @src into @dst at the given @offset. 77 * 78 * @dst: destination leaf that we're copying into 79 * @src: source leaf that we're copying from 80 * @dst_offset: item data offset we're copying to 81 * @src_offset: item data offset were' copying from 82 * @len: length of the data we're copying 83 * 84 * Wrapper around copy_extent_buffer() that takes into account the header on 85 * the leaf. The btrfs_item offset's start directly after the header, so we 86 * have to adjust any offsets to account for the header in the leaf. This 87 * handles that math to simplify the callers. 88 */ 89 static inline void copy_leaf_data(const struct extent_buffer *dst, 90 const struct extent_buffer *src, 91 unsigned long dst_offset, 92 unsigned long src_offset, unsigned long len) 93 { 94 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset, 95 btrfs_item_nr_offset(src, 0) + src_offset, len); 96 } 97 98 /* 99 * Move items in a @leaf (using memmove). 100 * 101 * @dst: destination leaf for the items 102 * @dst_item: the item nr we're copying into 103 * @src_item: the item nr we're copying from 104 * @nr_items: the number of items to copy 105 * 106 * Wrapper around memmove_extent_buffer() that does the math to get the 107 * appropriate offsets into the leaf from the item numbers. 108 */ 109 static inline void memmove_leaf_items(const struct extent_buffer *leaf, 110 int dst_item, int src_item, int nr_items) 111 { 112 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item), 113 btrfs_item_nr_offset(leaf, src_item), 114 nr_items * sizeof(struct btrfs_item)); 115 } 116 117 /* 118 * Copy items from @src into @dst at the given @offset. 119 * 120 * @dst: destination leaf for the items 121 * @src: source leaf for the items 122 * @dst_item: the item nr we're copying into 123 * @src_item: the item nr we're copying from 124 * @nr_items: the number of items to copy 125 * 126 * Wrapper around copy_extent_buffer() that does the math to get the 127 * appropriate offsets into the leaf from the item numbers. 128 */ 129 static inline void copy_leaf_items(const struct extent_buffer *dst, 130 const struct extent_buffer *src, 131 int dst_item, int src_item, int nr_items) 132 { 133 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item), 134 btrfs_item_nr_offset(src, src_item), 135 nr_items * sizeof(struct btrfs_item)); 136 } 137 138 struct btrfs_path *btrfs_alloc_path(void) 139 { 140 might_sleep(); 141 142 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 143 } 144 145 /* this also releases the path */ 146 void btrfs_free_path(struct btrfs_path *p) 147 { 148 if (!p) 149 return; 150 btrfs_release_path(p); 151 kmem_cache_free(btrfs_path_cachep, p); 152 } 153 154 /* 155 * path release drops references on the extent buffers in the path 156 * and it drops any locks held by this path 157 * 158 * It is safe to call this on paths that no locks or extent buffers held. 159 */ 160 noinline void btrfs_release_path(struct btrfs_path *p) 161 { 162 int i; 163 164 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 165 p->slots[i] = 0; 166 if (!p->nodes[i]) 167 continue; 168 if (p->locks[i]) { 169 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 170 p->locks[i] = 0; 171 } 172 free_extent_buffer(p->nodes[i]); 173 p->nodes[i] = NULL; 174 } 175 } 176 177 /* 178 * safely gets a reference on the root node of a tree. A lock 179 * is not taken, so a concurrent writer may put a different node 180 * at the root of the tree. See btrfs_lock_root_node for the 181 * looping required. 182 * 183 * The extent buffer returned by this has a reference taken, so 184 * it won't disappear. It may stop being the root of the tree 185 * at any time because there are no locks held. 186 */ 187 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 188 { 189 struct extent_buffer *eb; 190 191 while (1) { 192 rcu_read_lock(); 193 eb = rcu_dereference(root->node); 194 195 /* 196 * RCU really hurts here, we could free up the root node because 197 * it was COWed but we may not get the new root node yet so do 198 * the inc_not_zero dance and if it doesn't work then 199 * synchronize_rcu and try again. 200 */ 201 if (refcount_inc_not_zero(&eb->refs)) { 202 rcu_read_unlock(); 203 break; 204 } 205 rcu_read_unlock(); 206 synchronize_rcu(); 207 } 208 return eb; 209 } 210 211 /* 212 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 213 * just get put onto a simple dirty list. Transaction walks this list to make 214 * sure they get properly updated on disk. 215 */ 216 static void add_root_to_dirty_list(struct btrfs_root *root) 217 { 218 struct btrfs_fs_info *fs_info = root->fs_info; 219 220 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 221 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 222 return; 223 224 spin_lock(&fs_info->trans_lock); 225 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 226 /* Want the extent tree to be the last on the list */ 227 if (btrfs_root_id(root) == BTRFS_EXTENT_TREE_OBJECTID) 228 list_move_tail(&root->dirty_list, 229 &fs_info->dirty_cowonly_roots); 230 else 231 list_move(&root->dirty_list, 232 &fs_info->dirty_cowonly_roots); 233 } 234 spin_unlock(&fs_info->trans_lock); 235 } 236 237 /* 238 * used by snapshot creation to make a copy of a root for a tree with 239 * a given objectid. The buffer with the new root node is returned in 240 * cow_ret, and this func returns zero on success or a negative error code. 241 */ 242 int btrfs_copy_root(struct btrfs_trans_handle *trans, 243 struct btrfs_root *root, 244 struct extent_buffer *buf, 245 struct extent_buffer **cow_ret, u64 new_root_objectid) 246 { 247 struct btrfs_fs_info *fs_info = root->fs_info; 248 struct extent_buffer *cow; 249 int ret = 0; 250 int level; 251 struct btrfs_disk_key disk_key; 252 u64 reloc_src_root = 0; 253 254 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 255 trans->transid != fs_info->running_transaction->transid); 256 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 257 trans->transid != btrfs_get_root_last_trans(root)); 258 259 level = btrfs_header_level(buf); 260 if (level == 0) 261 btrfs_item_key(buf, &disk_key, 0); 262 else 263 btrfs_node_key(buf, &disk_key, 0); 264 265 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 266 reloc_src_root = btrfs_header_owner(buf); 267 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 268 &disk_key, level, buf->start, 0, 269 reloc_src_root, BTRFS_NESTING_NEW_ROOT); 270 if (IS_ERR(cow)) 271 return PTR_ERR(cow); 272 273 copy_extent_buffer_full(cow, buf); 274 btrfs_set_header_bytenr(cow, cow->start); 275 btrfs_set_header_generation(cow, trans->transid); 276 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 277 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 278 BTRFS_HEADER_FLAG_RELOC); 279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 280 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 281 else 282 btrfs_set_header_owner(cow, new_root_objectid); 283 284 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 285 286 if (unlikely(btrfs_header_generation(buf) > trans->transid)) { 287 btrfs_tree_unlock(cow); 288 free_extent_buffer(cow); 289 ret = -EUCLEAN; 290 btrfs_abort_transaction(trans, ret); 291 return ret; 292 } 293 294 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 295 ret = btrfs_inc_ref(trans, root, cow, 1); 296 if (unlikely(ret)) 297 btrfs_abort_transaction(trans, ret); 298 } else { 299 ret = btrfs_inc_ref(trans, root, cow, 0); 300 if (unlikely(ret)) 301 btrfs_abort_transaction(trans, ret); 302 } 303 if (ret) { 304 btrfs_tree_unlock(cow); 305 free_extent_buffer(cow); 306 return ret; 307 } 308 309 btrfs_mark_buffer_dirty(trans, cow); 310 *cow_ret = cow; 311 return 0; 312 } 313 314 /* 315 * check if the tree block can be shared by multiple trees 316 */ 317 bool btrfs_block_can_be_shared(const struct btrfs_trans_handle *trans, 318 const struct btrfs_root *root, 319 const struct extent_buffer *buf) 320 { 321 const u64 buf_gen = btrfs_header_generation(buf); 322 323 /* 324 * Tree blocks not in shareable trees and tree roots are never shared. 325 * If a block was allocated after the last snapshot and the block was 326 * not allocated by tree relocation, we know the block is not shared. 327 */ 328 329 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 330 return false; 331 332 if (buf == root->node) 333 return false; 334 335 if (buf_gen > btrfs_root_last_snapshot(&root->root_item) && 336 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) 337 return false; 338 339 if (buf != root->commit_root) 340 return true; 341 342 /* 343 * An extent buffer that used to be the commit root may still be shared 344 * because the tree height may have increased and it became a child of a 345 * higher level root. This can happen when snapshotting a subvolume 346 * created in the current transaction. 347 */ 348 if (buf_gen == trans->transid) 349 return true; 350 351 return false; 352 } 353 354 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 355 struct btrfs_root *root, 356 struct extent_buffer *buf, 357 struct extent_buffer *cow, 358 int *last_ref) 359 { 360 struct btrfs_fs_info *fs_info = root->fs_info; 361 u64 refs; 362 u64 owner; 363 u64 flags; 364 int ret; 365 366 /* 367 * Backrefs update rules: 368 * 369 * Always use full backrefs for extent pointers in tree block 370 * allocated by tree relocation. 371 * 372 * If a shared tree block is no longer referenced by its owner 373 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 374 * use full backrefs for extent pointers in tree block. 375 * 376 * If a tree block is been relocating 377 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 378 * use full backrefs for extent pointers in tree block. 379 * The reason for this is some operations (such as drop tree) 380 * are only allowed for blocks use full backrefs. 381 */ 382 383 if (btrfs_block_can_be_shared(trans, root, buf)) { 384 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 385 btrfs_header_level(buf), 1, 386 &refs, &flags, NULL); 387 if (ret) 388 return ret; 389 if (unlikely(refs == 0)) { 390 btrfs_crit(fs_info, 391 "found 0 references for tree block at bytenr %llu level %d root %llu", 392 buf->start, btrfs_header_level(buf), 393 btrfs_root_id(root)); 394 ret = -EUCLEAN; 395 btrfs_abort_transaction(trans, ret); 396 return ret; 397 } 398 } else { 399 refs = 1; 400 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID || 401 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 402 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 403 else 404 flags = 0; 405 } 406 407 owner = btrfs_header_owner(buf); 408 if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID && 409 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) { 410 btrfs_crit(fs_info, 411 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set", 412 buf->start, btrfs_header_level(buf), 413 btrfs_root_id(root), refs, flags); 414 ret = -EUCLEAN; 415 btrfs_abort_transaction(trans, ret); 416 return ret; 417 } 418 419 if (refs > 1) { 420 if ((owner == btrfs_root_id(root) || 421 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) && 422 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 423 ret = btrfs_inc_ref(trans, root, buf, 1); 424 if (ret) 425 return ret; 426 427 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) { 428 ret = btrfs_dec_ref(trans, root, buf, 0); 429 if (ret) 430 return ret; 431 ret = btrfs_inc_ref(trans, root, cow, 1); 432 if (ret) 433 return ret; 434 } 435 ret = btrfs_set_disk_extent_flags(trans, buf, 436 BTRFS_BLOCK_FLAG_FULL_BACKREF); 437 if (ret) 438 return ret; 439 } else { 440 441 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 442 ret = btrfs_inc_ref(trans, root, cow, 1); 443 else 444 ret = btrfs_inc_ref(trans, root, cow, 0); 445 if (ret) 446 return ret; 447 } 448 } else { 449 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 450 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 451 ret = btrfs_inc_ref(trans, root, cow, 1); 452 else 453 ret = btrfs_inc_ref(trans, root, cow, 0); 454 if (ret) 455 return ret; 456 ret = btrfs_dec_ref(trans, root, buf, 1); 457 if (ret) 458 return ret; 459 } 460 btrfs_clear_buffer_dirty(trans, buf); 461 *last_ref = 1; 462 } 463 return 0; 464 } 465 466 /* 467 * does the dirty work in cow of a single block. The parent block (if 468 * supplied) is updated to point to the new cow copy. The new buffer is marked 469 * dirty and returned locked. If you modify the block it needs to be marked 470 * dirty again. 471 * 472 * search_start -- an allocation hint for the new block 473 * 474 * empty_size -- a hint that you plan on doing more cow. This is the size in 475 * bytes the allocator should try to find free next to the block it returns. 476 * This is just a hint and may be ignored by the allocator. 477 */ 478 int btrfs_force_cow_block(struct btrfs_trans_handle *trans, 479 struct btrfs_root *root, 480 struct extent_buffer *buf, 481 struct extent_buffer *parent, int parent_slot, 482 struct extent_buffer **cow_ret, 483 u64 search_start, u64 empty_size, 484 enum btrfs_lock_nesting nest) 485 { 486 struct btrfs_fs_info *fs_info = root->fs_info; 487 struct btrfs_disk_key disk_key; 488 struct extent_buffer *cow; 489 int level, ret; 490 int last_ref = 0; 491 int unlock_orig = 0; 492 u64 parent_start = 0; 493 u64 reloc_src_root = 0; 494 495 if (*cow_ret == buf) 496 unlock_orig = 1; 497 498 btrfs_assert_tree_write_locked(buf); 499 500 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 501 trans->transid != fs_info->running_transaction->transid); 502 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 503 trans->transid != btrfs_get_root_last_trans(root)); 504 505 level = btrfs_header_level(buf); 506 507 if (level == 0) 508 btrfs_item_key(buf, &disk_key, 0); 509 else 510 btrfs_node_key(buf, &disk_key, 0); 511 512 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) { 513 if (parent) 514 parent_start = parent->start; 515 reloc_src_root = btrfs_header_owner(buf); 516 } 517 cow = btrfs_alloc_tree_block(trans, root, parent_start, 518 btrfs_root_id(root), &disk_key, level, 519 search_start, empty_size, reloc_src_root, nest); 520 if (IS_ERR(cow)) 521 return PTR_ERR(cow); 522 523 /* cow is set to blocking by btrfs_init_new_buffer */ 524 525 copy_extent_buffer_full(cow, buf); 526 btrfs_set_header_bytenr(cow, cow->start); 527 btrfs_set_header_generation(cow, trans->transid); 528 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 529 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 530 BTRFS_HEADER_FLAG_RELOC); 531 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 532 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 533 else 534 btrfs_set_header_owner(cow, btrfs_root_id(root)); 535 536 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 537 538 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 539 if (unlikely(ret)) { 540 btrfs_abort_transaction(trans, ret); 541 goto error_unlock_cow; 542 } 543 544 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 545 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 546 if (unlikely(ret)) { 547 btrfs_abort_transaction(trans, ret); 548 goto error_unlock_cow; 549 } 550 } 551 552 if (buf == root->node) { 553 WARN_ON(parent && parent != buf); 554 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID || 555 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 556 parent_start = buf->start; 557 558 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true); 559 if (unlikely(ret < 0)) { 560 btrfs_abort_transaction(trans, ret); 561 goto error_unlock_cow; 562 } 563 refcount_inc(&cow->refs); 564 rcu_assign_pointer(root->node, cow); 565 566 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf, 567 parent_start, last_ref); 568 free_extent_buffer(buf); 569 add_root_to_dirty_list(root); 570 if (unlikely(ret < 0)) { 571 btrfs_abort_transaction(trans, ret); 572 goto error_unlock_cow; 573 } 574 } else { 575 WARN_ON(trans->transid != btrfs_header_generation(parent)); 576 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot, 577 BTRFS_MOD_LOG_KEY_REPLACE); 578 if (unlikely(ret)) { 579 btrfs_abort_transaction(trans, ret); 580 goto error_unlock_cow; 581 } 582 btrfs_set_node_blockptr(parent, parent_slot, 583 cow->start); 584 btrfs_set_node_ptr_generation(parent, parent_slot, 585 trans->transid); 586 btrfs_mark_buffer_dirty(trans, parent); 587 if (last_ref) { 588 ret = btrfs_tree_mod_log_free_eb(buf); 589 if (unlikely(ret)) { 590 btrfs_abort_transaction(trans, ret); 591 goto error_unlock_cow; 592 } 593 } 594 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf, 595 parent_start, last_ref); 596 if (unlikely(ret < 0)) { 597 btrfs_abort_transaction(trans, ret); 598 goto error_unlock_cow; 599 } 600 } 601 602 trace_btrfs_cow_block(root, buf, cow); 603 if (unlock_orig) 604 btrfs_tree_unlock(buf); 605 free_extent_buffer_stale(buf); 606 btrfs_mark_buffer_dirty(trans, cow); 607 *cow_ret = cow; 608 return 0; 609 610 error_unlock_cow: 611 btrfs_tree_unlock(cow); 612 free_extent_buffer(cow); 613 return ret; 614 } 615 616 static inline bool should_cow_block(const struct btrfs_trans_handle *trans, 617 const struct btrfs_root *root, 618 const struct extent_buffer *buf) 619 { 620 if (btrfs_is_testing(root->fs_info)) 621 return false; 622 623 /* 624 * We do not need to cow a block if 625 * 1) this block is not created or changed in this transaction; 626 * 2) this block does not belong to TREE_RELOC tree; 627 * 3) the root is not forced COW. 628 * 629 * What is forced COW: 630 * when we create snapshot during committing the transaction, 631 * after we've finished copying src root, we must COW the shared 632 * block to ensure the metadata consistency. 633 */ 634 635 if (btrfs_header_generation(buf) != trans->transid) 636 return true; 637 638 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) 639 return true; 640 641 /* Ensure we can see the FORCE_COW bit. */ 642 smp_mb__before_atomic(); 643 if (test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 644 return true; 645 646 if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) 647 return false; 648 649 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) 650 return true; 651 652 return false; 653 } 654 655 /* 656 * COWs a single block, see btrfs_force_cow_block() for the real work. 657 * This version of it has extra checks so that a block isn't COWed more than 658 * once per transaction, as long as it hasn't been written yet 659 */ 660 int btrfs_cow_block(struct btrfs_trans_handle *trans, 661 struct btrfs_root *root, struct extent_buffer *buf, 662 struct extent_buffer *parent, int parent_slot, 663 struct extent_buffer **cow_ret, 664 enum btrfs_lock_nesting nest) 665 { 666 struct btrfs_fs_info *fs_info = root->fs_info; 667 u64 search_start; 668 669 if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) { 670 btrfs_abort_transaction(trans, -EUCLEAN); 671 btrfs_crit(fs_info, 672 "attempt to COW block %llu on root %llu that is being deleted", 673 buf->start, btrfs_root_id(root)); 674 return -EUCLEAN; 675 } 676 677 /* 678 * COWing must happen through a running transaction, which always 679 * matches the current fs generation (it's a transaction with a state 680 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs 681 * into error state to prevent the commit of any transaction. 682 */ 683 if (unlikely(trans->transaction != fs_info->running_transaction || 684 trans->transid != fs_info->generation)) { 685 btrfs_abort_transaction(trans, -EUCLEAN); 686 btrfs_crit(fs_info, 687 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu", 688 buf->start, btrfs_root_id(root), trans->transid, 689 fs_info->running_transaction->transid, 690 fs_info->generation); 691 return -EUCLEAN; 692 } 693 694 if (!should_cow_block(trans, root, buf)) { 695 *cow_ret = buf; 696 return 0; 697 } 698 699 search_start = round_down(buf->start, SZ_1G); 700 701 /* 702 * Before CoWing this block for later modification, check if it's 703 * the subtree root and do the delayed subtree trace if needed. 704 * 705 * Also We don't care about the error, as it's handled internally. 706 */ 707 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 708 return btrfs_force_cow_block(trans, root, buf, parent, parent_slot, 709 cow_ret, search_start, 0, nest); 710 } 711 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO); 712 713 /* 714 * same as comp_keys only with two btrfs_key's 715 */ 716 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 717 { 718 if (k1->objectid > k2->objectid) 719 return 1; 720 if (k1->objectid < k2->objectid) 721 return -1; 722 if (k1->type > k2->type) 723 return 1; 724 if (k1->type < k2->type) 725 return -1; 726 if (k1->offset > k2->offset) 727 return 1; 728 if (k1->offset < k2->offset) 729 return -1; 730 return 0; 731 } 732 733 /* 734 * Search for a key in the given extent_buffer. 735 * 736 * The lower boundary for the search is specified by the slot number @first_slot. 737 * Use a value of 0 to search over the whole extent buffer. Works for both 738 * leaves and nodes. 739 * 740 * The slot in the extent buffer is returned via @slot. If the key exists in the 741 * extent buffer, then @slot will point to the slot where the key is, otherwise 742 * it points to the slot where you would insert the key. 743 * 744 * Slot may point to the total number of items (i.e. one position beyond the last 745 * key) if the key is bigger than the last key in the extent buffer. 746 */ 747 int btrfs_bin_search(const struct extent_buffer *eb, int first_slot, 748 const struct btrfs_key *key, int *slot) 749 { 750 unsigned long p; 751 int item_size; 752 /* 753 * Use unsigned types for the low and high slots, so that we get a more 754 * efficient division in the search loop below. 755 */ 756 u32 low = first_slot; 757 u32 high = btrfs_header_nritems(eb); 758 int ret; 759 const int key_size = sizeof(struct btrfs_disk_key); 760 761 if (unlikely(low > high)) { 762 btrfs_err(eb->fs_info, 763 "%s: low (%u) > high (%u) eb %llu owner %llu level %d", 764 __func__, low, high, eb->start, 765 btrfs_header_owner(eb), btrfs_header_level(eb)); 766 return -EINVAL; 767 } 768 769 if (btrfs_header_level(eb) == 0) { 770 p = offsetof(struct btrfs_leaf, items); 771 item_size = sizeof(struct btrfs_item); 772 } else { 773 p = offsetof(struct btrfs_node, ptrs); 774 item_size = sizeof(struct btrfs_key_ptr); 775 } 776 777 while (low < high) { 778 const int unit_size = eb->folio_size; 779 unsigned long oil; 780 unsigned long offset; 781 struct btrfs_disk_key *tmp; 782 struct btrfs_disk_key unaligned; 783 int mid; 784 785 mid = (low + high) / 2; 786 offset = p + mid * item_size; 787 oil = get_eb_offset_in_folio(eb, offset); 788 789 if (oil + key_size <= unit_size) { 790 const unsigned long idx = get_eb_folio_index(eb, offset); 791 char *kaddr = folio_address(eb->folios[idx]); 792 793 oil = get_eb_offset_in_folio(eb, offset); 794 tmp = (struct btrfs_disk_key *)(kaddr + oil); 795 } else { 796 read_extent_buffer(eb, &unaligned, offset, key_size); 797 tmp = &unaligned; 798 } 799 800 ret = btrfs_comp_keys(tmp, key); 801 802 if (ret < 0) 803 low = mid + 1; 804 else if (ret > 0) 805 high = mid; 806 else { 807 *slot = mid; 808 return 0; 809 } 810 } 811 *slot = low; 812 return 1; 813 } 814 815 static void root_add_used_bytes(struct btrfs_root *root) 816 { 817 spin_lock(&root->accounting_lock); 818 btrfs_set_root_used(&root->root_item, 819 btrfs_root_used(&root->root_item) + root->fs_info->nodesize); 820 spin_unlock(&root->accounting_lock); 821 } 822 823 static void root_sub_used_bytes(struct btrfs_root *root) 824 { 825 spin_lock(&root->accounting_lock); 826 btrfs_set_root_used(&root->root_item, 827 btrfs_root_used(&root->root_item) - root->fs_info->nodesize); 828 spin_unlock(&root->accounting_lock); 829 } 830 831 /* given a node and slot number, this reads the blocks it points to. The 832 * extent buffer is returned with a reference taken (but unlocked). 833 */ 834 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 835 int slot) 836 { 837 int level = btrfs_header_level(parent); 838 struct btrfs_tree_parent_check check = { 0 }; 839 struct extent_buffer *eb; 840 841 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 842 return ERR_PTR(-ENOENT); 843 844 ASSERT(level); 845 846 check.level = level - 1; 847 check.transid = btrfs_node_ptr_generation(parent, slot); 848 check.owner_root = btrfs_header_owner(parent); 849 check.has_first_key = true; 850 btrfs_node_key_to_cpu(parent, &check.first_key, slot); 851 852 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 853 &check); 854 if (IS_ERR(eb)) 855 return eb; 856 if (unlikely(!extent_buffer_uptodate(eb))) { 857 free_extent_buffer(eb); 858 return ERR_PTR(-EIO); 859 } 860 861 return eb; 862 } 863 864 /* 865 * node level balancing, used to make sure nodes are in proper order for 866 * item deletion. We balance from the top down, so we have to make sure 867 * that a deletion won't leave an node completely empty later on. 868 */ 869 static noinline int balance_level(struct btrfs_trans_handle *trans, 870 struct btrfs_root *root, 871 struct btrfs_path *path, int level) 872 { 873 struct btrfs_fs_info *fs_info = root->fs_info; 874 struct extent_buffer *right = NULL; 875 struct extent_buffer *mid; 876 struct extent_buffer *left = NULL; 877 struct extent_buffer *parent = NULL; 878 int ret = 0; 879 int wret; 880 int pslot; 881 int orig_slot = path->slots[level]; 882 u64 orig_ptr; 883 884 ASSERT(level > 0); 885 886 mid = path->nodes[level]; 887 888 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK); 889 WARN_ON(btrfs_header_generation(mid) != trans->transid); 890 891 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 892 893 if (level < BTRFS_MAX_LEVEL - 1) { 894 parent = path->nodes[level + 1]; 895 pslot = path->slots[level + 1]; 896 } 897 898 /* 899 * deal with the case where there is only one pointer in the root 900 * by promoting the node below to a root 901 */ 902 if (!parent) { 903 struct extent_buffer *child; 904 905 if (btrfs_header_nritems(mid) != 1) 906 return 0; 907 908 /* promote the child to a root */ 909 child = btrfs_read_node_slot(mid, 0); 910 if (IS_ERR(child)) { 911 ret = PTR_ERR(child); 912 goto out; 913 } 914 915 btrfs_tree_lock(child); 916 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 917 BTRFS_NESTING_COW); 918 if (ret) { 919 btrfs_tree_unlock(child); 920 free_extent_buffer(child); 921 goto out; 922 } 923 924 ret = btrfs_tree_mod_log_insert_root(root->node, child, true); 925 if (unlikely(ret < 0)) { 926 btrfs_tree_unlock(child); 927 free_extent_buffer(child); 928 btrfs_abort_transaction(trans, ret); 929 goto out; 930 } 931 rcu_assign_pointer(root->node, child); 932 933 add_root_to_dirty_list(root); 934 btrfs_tree_unlock(child); 935 936 path->locks[level] = 0; 937 path->nodes[level] = NULL; 938 btrfs_clear_buffer_dirty(trans, mid); 939 btrfs_tree_unlock(mid); 940 /* once for the path */ 941 free_extent_buffer(mid); 942 943 root_sub_used_bytes(root); 944 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); 945 /* once for the root ptr */ 946 free_extent_buffer_stale(mid); 947 if (unlikely(ret < 0)) { 948 btrfs_abort_transaction(trans, ret); 949 goto out; 950 } 951 return 0; 952 } 953 if (btrfs_header_nritems(mid) > 954 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 955 return 0; 956 957 if (pslot) { 958 left = btrfs_read_node_slot(parent, pslot - 1); 959 if (IS_ERR(left)) { 960 ret = PTR_ERR(left); 961 left = NULL; 962 goto out; 963 } 964 965 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT); 966 wret = btrfs_cow_block(trans, root, left, 967 parent, pslot - 1, &left, 968 BTRFS_NESTING_LEFT_COW); 969 if (wret) { 970 ret = wret; 971 goto out; 972 } 973 } 974 975 if (pslot + 1 < btrfs_header_nritems(parent)) { 976 right = btrfs_read_node_slot(parent, pslot + 1); 977 if (IS_ERR(right)) { 978 ret = PTR_ERR(right); 979 right = NULL; 980 goto out; 981 } 982 983 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT); 984 wret = btrfs_cow_block(trans, root, right, 985 parent, pslot + 1, &right, 986 BTRFS_NESTING_RIGHT_COW); 987 if (wret) { 988 ret = wret; 989 goto out; 990 } 991 } 992 993 /* first, try to make some room in the middle buffer */ 994 if (left) { 995 orig_slot += btrfs_header_nritems(left); 996 wret = push_node_left(trans, left, mid, 1); 997 if (wret < 0) 998 ret = wret; 999 } 1000 1001 /* 1002 * then try to empty the right most buffer into the middle 1003 */ 1004 if (right) { 1005 wret = push_node_left(trans, mid, right, 1); 1006 if (wret < 0 && wret != -ENOSPC) 1007 ret = wret; 1008 if (btrfs_header_nritems(right) == 0) { 1009 btrfs_clear_buffer_dirty(trans, right); 1010 btrfs_tree_unlock(right); 1011 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1); 1012 if (ret < 0) { 1013 free_extent_buffer_stale(right); 1014 right = NULL; 1015 goto out; 1016 } 1017 root_sub_used_bytes(root); 1018 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), 1019 right, 0, 1); 1020 free_extent_buffer_stale(right); 1021 right = NULL; 1022 if (unlikely(ret < 0)) { 1023 btrfs_abort_transaction(trans, ret); 1024 goto out; 1025 } 1026 } else { 1027 struct btrfs_disk_key right_key; 1028 btrfs_node_key(right, &right_key, 0); 1029 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1030 BTRFS_MOD_LOG_KEY_REPLACE); 1031 if (unlikely(ret < 0)) { 1032 btrfs_abort_transaction(trans, ret); 1033 goto out; 1034 } 1035 btrfs_set_node_key(parent, &right_key, pslot + 1); 1036 btrfs_mark_buffer_dirty(trans, parent); 1037 } 1038 } 1039 if (btrfs_header_nritems(mid) == 1) { 1040 /* 1041 * we're not allowed to leave a node with one item in the 1042 * tree during a delete. A deletion from lower in the tree 1043 * could try to delete the only pointer in this node. 1044 * So, pull some keys from the left. 1045 * There has to be a left pointer at this point because 1046 * otherwise we would have pulled some pointers from the 1047 * right 1048 */ 1049 if (unlikely(!left)) { 1050 btrfs_crit(fs_info, 1051 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu", 1052 parent->start, btrfs_header_level(parent), 1053 mid->start, btrfs_root_id(root)); 1054 ret = -EUCLEAN; 1055 btrfs_abort_transaction(trans, ret); 1056 goto out; 1057 } 1058 wret = balance_node_right(trans, mid, left); 1059 if (wret < 0) { 1060 ret = wret; 1061 goto out; 1062 } 1063 if (wret == 1) { 1064 wret = push_node_left(trans, left, mid, 1); 1065 if (wret < 0) 1066 ret = wret; 1067 } 1068 BUG_ON(wret == 1); 1069 } 1070 if (btrfs_header_nritems(mid) == 0) { 1071 btrfs_clear_buffer_dirty(trans, mid); 1072 btrfs_tree_unlock(mid); 1073 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot); 1074 if (ret < 0) { 1075 free_extent_buffer_stale(mid); 1076 mid = NULL; 1077 goto out; 1078 } 1079 root_sub_used_bytes(root); 1080 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); 1081 free_extent_buffer_stale(mid); 1082 mid = NULL; 1083 if (unlikely(ret < 0)) { 1084 btrfs_abort_transaction(trans, ret); 1085 goto out; 1086 } 1087 } else { 1088 /* update the parent key to reflect our changes */ 1089 struct btrfs_disk_key mid_key; 1090 btrfs_node_key(mid, &mid_key, 0); 1091 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1092 BTRFS_MOD_LOG_KEY_REPLACE); 1093 if (unlikely(ret < 0)) { 1094 btrfs_abort_transaction(trans, ret); 1095 goto out; 1096 } 1097 btrfs_set_node_key(parent, &mid_key, pslot); 1098 btrfs_mark_buffer_dirty(trans, parent); 1099 } 1100 1101 /* update the path */ 1102 if (left) { 1103 if (btrfs_header_nritems(left) > orig_slot) { 1104 refcount_inc(&left->refs); 1105 /* left was locked after cow */ 1106 path->nodes[level] = left; 1107 path->slots[level + 1] -= 1; 1108 path->slots[level] = orig_slot; 1109 if (mid) { 1110 btrfs_tree_unlock(mid); 1111 free_extent_buffer(mid); 1112 } 1113 } else { 1114 orig_slot -= btrfs_header_nritems(left); 1115 path->slots[level] = orig_slot; 1116 } 1117 } 1118 /* double check we haven't messed things up */ 1119 if (orig_ptr != 1120 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1121 BUG(); 1122 out: 1123 if (right) { 1124 btrfs_tree_unlock(right); 1125 free_extent_buffer(right); 1126 } 1127 if (left) { 1128 if (path->nodes[level] != left) 1129 btrfs_tree_unlock(left); 1130 free_extent_buffer(left); 1131 } 1132 return ret; 1133 } 1134 1135 /* Node balancing for insertion. Here we only split or push nodes around 1136 * when they are completely full. This is also done top down, so we 1137 * have to be pessimistic. 1138 */ 1139 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1140 struct btrfs_root *root, 1141 struct btrfs_path *path, int level) 1142 { 1143 struct btrfs_fs_info *fs_info = root->fs_info; 1144 struct extent_buffer *right = NULL; 1145 struct extent_buffer *mid; 1146 struct extent_buffer *left = NULL; 1147 struct extent_buffer *parent = NULL; 1148 int ret = 0; 1149 int wret; 1150 int pslot; 1151 int orig_slot = path->slots[level]; 1152 1153 if (level == 0) 1154 return 1; 1155 1156 mid = path->nodes[level]; 1157 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1158 1159 if (level < BTRFS_MAX_LEVEL - 1) { 1160 parent = path->nodes[level + 1]; 1161 pslot = path->slots[level + 1]; 1162 } 1163 1164 if (!parent) 1165 return 1; 1166 1167 /* first, try to make some room in the middle buffer */ 1168 if (pslot) { 1169 u32 left_nr; 1170 1171 left = btrfs_read_node_slot(parent, pslot - 1); 1172 if (IS_ERR(left)) 1173 return PTR_ERR(left); 1174 1175 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT); 1176 1177 left_nr = btrfs_header_nritems(left); 1178 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1179 wret = 1; 1180 } else { 1181 ret = btrfs_cow_block(trans, root, left, parent, 1182 pslot - 1, &left, 1183 BTRFS_NESTING_LEFT_COW); 1184 if (ret) 1185 wret = 1; 1186 else { 1187 wret = push_node_left(trans, left, mid, 0); 1188 } 1189 } 1190 if (wret < 0) 1191 ret = wret; 1192 if (wret == 0) { 1193 struct btrfs_disk_key disk_key; 1194 orig_slot += left_nr; 1195 btrfs_node_key(mid, &disk_key, 0); 1196 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1197 BTRFS_MOD_LOG_KEY_REPLACE); 1198 if (unlikely(ret < 0)) { 1199 btrfs_tree_unlock(left); 1200 free_extent_buffer(left); 1201 btrfs_abort_transaction(trans, ret); 1202 return ret; 1203 } 1204 btrfs_set_node_key(parent, &disk_key, pslot); 1205 btrfs_mark_buffer_dirty(trans, parent); 1206 if (btrfs_header_nritems(left) > orig_slot) { 1207 path->nodes[level] = left; 1208 path->slots[level + 1] -= 1; 1209 path->slots[level] = orig_slot; 1210 btrfs_tree_unlock(mid); 1211 free_extent_buffer(mid); 1212 } else { 1213 orig_slot -= 1214 btrfs_header_nritems(left); 1215 path->slots[level] = orig_slot; 1216 btrfs_tree_unlock(left); 1217 free_extent_buffer(left); 1218 } 1219 return 0; 1220 } 1221 btrfs_tree_unlock(left); 1222 free_extent_buffer(left); 1223 } 1224 1225 /* 1226 * then try to empty the right most buffer into the middle 1227 */ 1228 if (pslot + 1 < btrfs_header_nritems(parent)) { 1229 u32 right_nr; 1230 1231 right = btrfs_read_node_slot(parent, pslot + 1); 1232 if (IS_ERR(right)) 1233 return PTR_ERR(right); 1234 1235 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT); 1236 1237 right_nr = btrfs_header_nritems(right); 1238 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1239 wret = 1; 1240 } else { 1241 ret = btrfs_cow_block(trans, root, right, 1242 parent, pslot + 1, 1243 &right, BTRFS_NESTING_RIGHT_COW); 1244 if (ret) 1245 wret = 1; 1246 else { 1247 wret = balance_node_right(trans, right, mid); 1248 } 1249 } 1250 if (wret < 0) 1251 ret = wret; 1252 if (wret == 0) { 1253 struct btrfs_disk_key disk_key; 1254 1255 btrfs_node_key(right, &disk_key, 0); 1256 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1257 BTRFS_MOD_LOG_KEY_REPLACE); 1258 if (unlikely(ret < 0)) { 1259 btrfs_tree_unlock(right); 1260 free_extent_buffer(right); 1261 btrfs_abort_transaction(trans, ret); 1262 return ret; 1263 } 1264 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1265 btrfs_mark_buffer_dirty(trans, parent); 1266 1267 if (btrfs_header_nritems(mid) <= orig_slot) { 1268 path->nodes[level] = right; 1269 path->slots[level + 1] += 1; 1270 path->slots[level] = orig_slot - 1271 btrfs_header_nritems(mid); 1272 btrfs_tree_unlock(mid); 1273 free_extent_buffer(mid); 1274 } else { 1275 btrfs_tree_unlock(right); 1276 free_extent_buffer(right); 1277 } 1278 return 0; 1279 } 1280 btrfs_tree_unlock(right); 1281 free_extent_buffer(right); 1282 } 1283 return 1; 1284 } 1285 1286 /* 1287 * readahead one full node of leaves, finding things that are close 1288 * to the block in 'slot', and triggering ra on them. 1289 */ 1290 static void reada_for_search(struct btrfs_fs_info *fs_info, 1291 const struct btrfs_path *path, 1292 int level, int slot, u64 objectid) 1293 { 1294 struct extent_buffer *node; 1295 struct btrfs_disk_key disk_key; 1296 u32 nritems; 1297 u64 search; 1298 u64 target; 1299 u64 nread = 0; 1300 u64 nread_max; 1301 u32 nr; 1302 u32 blocksize; 1303 u32 nscan = 0; 1304 1305 if (level != 1 && path->reada != READA_FORWARD_ALWAYS) 1306 return; 1307 1308 if (!path->nodes[level]) 1309 return; 1310 1311 node = path->nodes[level]; 1312 1313 /* 1314 * Since the time between visiting leaves is much shorter than the time 1315 * between visiting nodes, limit read ahead of nodes to 1, to avoid too 1316 * much IO at once (possibly random). 1317 */ 1318 if (path->reada == READA_FORWARD_ALWAYS) { 1319 if (level > 1) 1320 nread_max = node->fs_info->nodesize; 1321 else 1322 nread_max = SZ_128K; 1323 } else { 1324 nread_max = SZ_64K; 1325 } 1326 1327 search = btrfs_node_blockptr(node, slot); 1328 blocksize = fs_info->nodesize; 1329 if (path->reada != READA_FORWARD_ALWAYS) { 1330 struct extent_buffer *eb; 1331 1332 eb = find_extent_buffer(fs_info, search); 1333 if (eb) { 1334 free_extent_buffer(eb); 1335 return; 1336 } 1337 } 1338 1339 target = search; 1340 1341 nritems = btrfs_header_nritems(node); 1342 nr = slot; 1343 1344 while (1) { 1345 if (path->reada == READA_BACK) { 1346 if (nr == 0) 1347 break; 1348 nr--; 1349 } else if (path->reada == READA_FORWARD || 1350 path->reada == READA_FORWARD_ALWAYS) { 1351 nr++; 1352 if (nr >= nritems) 1353 break; 1354 } 1355 if (path->reada == READA_BACK && objectid) { 1356 btrfs_node_key(node, &disk_key, nr); 1357 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1358 break; 1359 } 1360 search = btrfs_node_blockptr(node, nr); 1361 if (path->reada == READA_FORWARD_ALWAYS || 1362 (search <= target && target - search <= 65536) || 1363 (search > target && search - target <= 65536)) { 1364 btrfs_readahead_node_child(node, nr); 1365 nread += blocksize; 1366 } 1367 nscan++; 1368 if (nread > nread_max || nscan > 32) 1369 break; 1370 } 1371 } 1372 1373 static noinline void reada_for_balance(const struct btrfs_path *path, int level) 1374 { 1375 struct extent_buffer *parent; 1376 int slot; 1377 int nritems; 1378 1379 parent = path->nodes[level + 1]; 1380 if (!parent) 1381 return; 1382 1383 nritems = btrfs_header_nritems(parent); 1384 slot = path->slots[level + 1]; 1385 1386 if (slot > 0) 1387 btrfs_readahead_node_child(parent, slot - 1); 1388 if (slot + 1 < nritems) 1389 btrfs_readahead_node_child(parent, slot + 1); 1390 } 1391 1392 1393 /* 1394 * when we walk down the tree, it is usually safe to unlock the higher layers 1395 * in the tree. The exceptions are when our path goes through slot 0, because 1396 * operations on the tree might require changing key pointers higher up in the 1397 * tree. 1398 * 1399 * callers might also have set path->keep_locks, which tells this code to keep 1400 * the lock if the path points to the last slot in the block. This is part of 1401 * walking through the tree, and selecting the next slot in the higher block. 1402 * 1403 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1404 * if lowest_unlock is 1, level 0 won't be unlocked 1405 */ 1406 static noinline void unlock_up(struct btrfs_path *path, int level, 1407 int lowest_unlock, int min_write_lock_level, 1408 int *write_lock_level) 1409 { 1410 int i; 1411 int skip_level = level; 1412 bool check_skip = true; 1413 1414 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1415 if (!path->nodes[i]) 1416 break; 1417 if (!path->locks[i]) 1418 break; 1419 1420 if (check_skip) { 1421 if (path->slots[i] == 0) { 1422 skip_level = i + 1; 1423 continue; 1424 } 1425 1426 if (path->keep_locks) { 1427 u32 nritems; 1428 1429 nritems = btrfs_header_nritems(path->nodes[i]); 1430 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1431 skip_level = i + 1; 1432 continue; 1433 } 1434 } 1435 } 1436 1437 if (i >= lowest_unlock && i > skip_level) { 1438 check_skip = false; 1439 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 1440 path->locks[i] = 0; 1441 if (write_lock_level && 1442 i > min_write_lock_level && 1443 i <= *write_lock_level) { 1444 *write_lock_level = i - 1; 1445 } 1446 } 1447 } 1448 } 1449 1450 /* 1451 * Helper function for btrfs_search_slot() and other functions that do a search 1452 * on a btree. The goal is to find a tree block in the cache (the radix tree at 1453 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read 1454 * its pages from disk. 1455 * 1456 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the 1457 * whole btree search, starting again from the current root node. 1458 */ 1459 static int 1460 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 1461 struct extent_buffer **eb_ret, int slot, 1462 const struct btrfs_key *key) 1463 { 1464 struct btrfs_fs_info *fs_info = root->fs_info; 1465 struct btrfs_tree_parent_check check = { 0 }; 1466 u64 blocknr; 1467 struct extent_buffer *tmp = NULL; 1468 int ret = 0; 1469 int ret2; 1470 int parent_level; 1471 bool read_tmp = false; 1472 bool tmp_locked = false; 1473 bool path_released = false; 1474 1475 blocknr = btrfs_node_blockptr(*eb_ret, slot); 1476 parent_level = btrfs_header_level(*eb_ret); 1477 btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot); 1478 check.has_first_key = true; 1479 check.level = parent_level - 1; 1480 check.transid = btrfs_node_ptr_generation(*eb_ret, slot); 1481 check.owner_root = btrfs_root_id(root); 1482 1483 /* 1484 * If we need to read an extent buffer from disk and we are holding locks 1485 * on upper level nodes, we unlock all the upper nodes before reading the 1486 * extent buffer, and then return -EAGAIN to the caller as it needs to 1487 * restart the search. We don't release the lock on the current level 1488 * because we need to walk this node to figure out which blocks to read. 1489 */ 1490 tmp = find_extent_buffer(fs_info, blocknr); 1491 if (tmp) { 1492 if (p->reada == READA_FORWARD_ALWAYS) 1493 reada_for_search(fs_info, p, parent_level, slot, key->objectid); 1494 1495 /* first we do an atomic uptodate check */ 1496 if (btrfs_buffer_uptodate(tmp, check.transid, true) > 0) { 1497 /* 1498 * Do extra check for first_key, eb can be stale due to 1499 * being cached, read from scrub, or have multiple 1500 * parents (shared tree blocks). 1501 */ 1502 if (unlikely(btrfs_verify_level_key(tmp, &check))) { 1503 ret = -EUCLEAN; 1504 goto out; 1505 } 1506 *eb_ret = tmp; 1507 tmp = NULL; 1508 ret = 0; 1509 goto out; 1510 } 1511 1512 if (p->nowait) { 1513 ret = -EAGAIN; 1514 goto out; 1515 } 1516 1517 if (!p->skip_locking) { 1518 btrfs_unlock_up_safe(p, parent_level + 1); 1519 btrfs_maybe_reset_lockdep_class(root, tmp); 1520 tmp_locked = true; 1521 btrfs_tree_read_lock(tmp); 1522 btrfs_release_path(p); 1523 ret = -EAGAIN; 1524 path_released = true; 1525 } 1526 1527 /* Now we're allowed to do a blocking uptodate check. */ 1528 ret2 = btrfs_read_extent_buffer(tmp, &check); 1529 if (ret2) { 1530 ret = ret2; 1531 goto out; 1532 } 1533 1534 if (ret == 0) { 1535 ASSERT(!tmp_locked); 1536 *eb_ret = tmp; 1537 tmp = NULL; 1538 } 1539 goto out; 1540 } else if (p->nowait) { 1541 ret = -EAGAIN; 1542 goto out; 1543 } 1544 1545 if (!p->skip_locking) { 1546 btrfs_unlock_up_safe(p, parent_level + 1); 1547 ret = -EAGAIN; 1548 } 1549 1550 if (p->reada != READA_NONE) 1551 reada_for_search(fs_info, p, parent_level, slot, key->objectid); 1552 1553 tmp = btrfs_find_create_tree_block(fs_info, blocknr, check.owner_root, check.level); 1554 if (IS_ERR(tmp)) { 1555 ret = PTR_ERR(tmp); 1556 tmp = NULL; 1557 goto out; 1558 } 1559 read_tmp = true; 1560 1561 if (!p->skip_locking) { 1562 ASSERT(ret == -EAGAIN); 1563 btrfs_maybe_reset_lockdep_class(root, tmp); 1564 tmp_locked = true; 1565 btrfs_tree_read_lock(tmp); 1566 btrfs_release_path(p); 1567 path_released = true; 1568 } 1569 1570 /* Now we're allowed to do a blocking uptodate check. */ 1571 ret2 = btrfs_read_extent_buffer(tmp, &check); 1572 if (ret2) { 1573 ret = ret2; 1574 goto out; 1575 } 1576 1577 /* 1578 * If the read above didn't mark this buffer up to date, 1579 * it will never end up being up to date. Set ret to EIO now 1580 * and give up so that our caller doesn't loop forever 1581 * on our EAGAINs. 1582 */ 1583 if (unlikely(!extent_buffer_uptodate(tmp))) { 1584 ret = -EIO; 1585 goto out; 1586 } 1587 1588 if (ret == 0) { 1589 ASSERT(!tmp_locked); 1590 *eb_ret = tmp; 1591 tmp = NULL; 1592 } 1593 out: 1594 if (tmp) { 1595 if (tmp_locked) 1596 btrfs_tree_read_unlock(tmp); 1597 if (read_tmp && ret && ret != -EAGAIN) 1598 free_extent_buffer_stale(tmp); 1599 else 1600 free_extent_buffer(tmp); 1601 } 1602 if (ret && !path_released) 1603 btrfs_release_path(p); 1604 1605 return ret; 1606 } 1607 1608 /* 1609 * helper function for btrfs_search_slot. This does all of the checks 1610 * for node-level blocks and does any balancing required based on 1611 * the ins_len. 1612 * 1613 * If no extra work was required, zero is returned. If we had to 1614 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1615 * start over 1616 */ 1617 static int 1618 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1619 struct btrfs_root *root, struct btrfs_path *p, 1620 struct extent_buffer *b, int level, int ins_len, 1621 int *write_lock_level) 1622 { 1623 struct btrfs_fs_info *fs_info = root->fs_info; 1624 int ret = 0; 1625 1626 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1627 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 1628 1629 if (*write_lock_level < level + 1) { 1630 *write_lock_level = level + 1; 1631 btrfs_release_path(p); 1632 return -EAGAIN; 1633 } 1634 1635 reada_for_balance(p, level); 1636 ret = split_node(trans, root, p, level); 1637 1638 b = p->nodes[level]; 1639 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1640 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 1641 1642 if (*write_lock_level < level + 1) { 1643 *write_lock_level = level + 1; 1644 btrfs_release_path(p); 1645 return -EAGAIN; 1646 } 1647 1648 reada_for_balance(p, level); 1649 ret = balance_level(trans, root, p, level); 1650 if (ret) 1651 return ret; 1652 1653 b = p->nodes[level]; 1654 if (!b) { 1655 btrfs_release_path(p); 1656 return -EAGAIN; 1657 } 1658 BUG_ON(btrfs_header_nritems(b) == 1); 1659 } 1660 return ret; 1661 } 1662 1663 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 1664 u64 iobjectid, u64 ioff, u8 key_type, 1665 struct btrfs_key *found_key) 1666 { 1667 int ret; 1668 struct btrfs_key key; 1669 struct extent_buffer *eb; 1670 1671 ASSERT(path); 1672 ASSERT(found_key); 1673 1674 key.type = key_type; 1675 key.objectid = iobjectid; 1676 key.offset = ioff; 1677 1678 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1679 if (ret < 0) 1680 return ret; 1681 1682 eb = path->nodes[0]; 1683 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1684 ret = btrfs_next_leaf(fs_root, path); 1685 if (ret) 1686 return ret; 1687 eb = path->nodes[0]; 1688 } 1689 1690 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1691 if (found_key->type != key.type || 1692 found_key->objectid != key.objectid) 1693 return 1; 1694 1695 return 0; 1696 } 1697 1698 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 1699 struct btrfs_path *p, 1700 int write_lock_level) 1701 { 1702 struct extent_buffer *b; 1703 int root_lock = 0; 1704 int level = 0; 1705 1706 if (p->search_commit_root) { 1707 b = root->commit_root; 1708 refcount_inc(&b->refs); 1709 level = btrfs_header_level(b); 1710 /* 1711 * Ensure that all callers have set skip_locking when 1712 * p->search_commit_root = 1. 1713 */ 1714 ASSERT(p->skip_locking == 1); 1715 1716 goto out; 1717 } 1718 1719 if (p->skip_locking) { 1720 b = btrfs_root_node(root); 1721 level = btrfs_header_level(b); 1722 goto out; 1723 } 1724 1725 /* We try very hard to do read locks on the root */ 1726 root_lock = BTRFS_READ_LOCK; 1727 1728 /* 1729 * If the level is set to maximum, we can skip trying to get the read 1730 * lock. 1731 */ 1732 if (write_lock_level < BTRFS_MAX_LEVEL) { 1733 /* 1734 * We don't know the level of the root node until we actually 1735 * have it read locked 1736 */ 1737 if (p->nowait) { 1738 b = btrfs_try_read_lock_root_node(root); 1739 if (IS_ERR(b)) 1740 return b; 1741 } else { 1742 b = btrfs_read_lock_root_node(root); 1743 } 1744 level = btrfs_header_level(b); 1745 if (level > write_lock_level) 1746 goto out; 1747 1748 /* Whoops, must trade for write lock */ 1749 btrfs_tree_read_unlock(b); 1750 free_extent_buffer(b); 1751 } 1752 1753 b = btrfs_lock_root_node(root); 1754 root_lock = BTRFS_WRITE_LOCK; 1755 1756 /* The level might have changed, check again */ 1757 level = btrfs_header_level(b); 1758 1759 out: 1760 /* 1761 * The root may have failed to write out at some point, and thus is no 1762 * longer valid, return an error in this case. 1763 */ 1764 if (unlikely(!extent_buffer_uptodate(b))) { 1765 if (root_lock) 1766 btrfs_tree_unlock_rw(b, root_lock); 1767 free_extent_buffer(b); 1768 return ERR_PTR(-EIO); 1769 } 1770 1771 p->nodes[level] = b; 1772 if (!p->skip_locking) 1773 p->locks[level] = root_lock; 1774 /* 1775 * Callers are responsible for dropping b's references. 1776 */ 1777 return b; 1778 } 1779 1780 /* 1781 * Replace the extent buffer at the lowest level of the path with a cloned 1782 * version. The purpose is to be able to use it safely, after releasing the 1783 * commit root semaphore, even if relocation is happening in parallel, the 1784 * transaction used for relocation is committed and the extent buffer is 1785 * reallocated in the next transaction. 1786 * 1787 * This is used in a context where the caller does not prevent transaction 1788 * commits from happening, either by holding a transaction handle or holding 1789 * some lock, while it's doing searches through a commit root. 1790 * At the moment it's only used for send operations. 1791 */ 1792 static int finish_need_commit_sem_search(struct btrfs_path *path) 1793 { 1794 const int i = path->lowest_level; 1795 const int slot = path->slots[i]; 1796 struct extent_buffer *lowest = path->nodes[i]; 1797 struct extent_buffer *clone; 1798 1799 ASSERT(path->need_commit_sem); 1800 1801 if (!lowest) 1802 return 0; 1803 1804 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem); 1805 1806 clone = btrfs_clone_extent_buffer(lowest); 1807 if (!clone) 1808 return -ENOMEM; 1809 1810 btrfs_release_path(path); 1811 path->nodes[i] = clone; 1812 path->slots[i] = slot; 1813 1814 return 0; 1815 } 1816 1817 static inline int search_for_key_slot(const struct extent_buffer *eb, 1818 int search_low_slot, 1819 const struct btrfs_key *key, 1820 int prev_cmp, 1821 int *slot) 1822 { 1823 /* 1824 * If a previous call to btrfs_bin_search() on a parent node returned an 1825 * exact match (prev_cmp == 0), we can safely assume the target key will 1826 * always be at slot 0 on lower levels, since each key pointer 1827 * (struct btrfs_key_ptr) refers to the lowest key accessible from the 1828 * subtree it points to. Thus we can skip searching lower levels. 1829 */ 1830 if (prev_cmp == 0) { 1831 *slot = 0; 1832 return 0; 1833 } 1834 1835 return btrfs_bin_search(eb, search_low_slot, key, slot); 1836 } 1837 1838 static int search_leaf(struct btrfs_trans_handle *trans, 1839 struct btrfs_root *root, 1840 const struct btrfs_key *key, 1841 struct btrfs_path *path, 1842 int ins_len, 1843 int prev_cmp) 1844 { 1845 struct extent_buffer *leaf = path->nodes[0]; 1846 int leaf_free_space = -1; 1847 int search_low_slot = 0; 1848 int ret; 1849 bool do_bin_search = true; 1850 1851 /* 1852 * If we are doing an insertion, the leaf has enough free space and the 1853 * destination slot for the key is not slot 0, then we can unlock our 1854 * write lock on the parent, and any other upper nodes, before doing the 1855 * binary search on the leaf (with search_for_key_slot()), allowing other 1856 * tasks to lock the parent and any other upper nodes. 1857 */ 1858 if (ins_len > 0) { 1859 /* 1860 * Cache the leaf free space, since we will need it later and it 1861 * will not change until then. 1862 */ 1863 leaf_free_space = btrfs_leaf_free_space(leaf); 1864 1865 /* 1866 * !path->locks[1] means we have a single node tree, the leaf is 1867 * the root of the tree. 1868 */ 1869 if (path->locks[1] && leaf_free_space >= ins_len) { 1870 struct btrfs_disk_key first_key; 1871 1872 ASSERT(btrfs_header_nritems(leaf) > 0); 1873 btrfs_item_key(leaf, &first_key, 0); 1874 1875 /* 1876 * Doing the extra comparison with the first key is cheap, 1877 * taking into account that the first key is very likely 1878 * already in a cache line because it immediately follows 1879 * the extent buffer's header and we have recently accessed 1880 * the header's level field. 1881 */ 1882 ret = btrfs_comp_keys(&first_key, key); 1883 if (ret < 0) { 1884 /* 1885 * The first key is smaller than the key we want 1886 * to insert, so we are safe to unlock all upper 1887 * nodes and we have to do the binary search. 1888 * 1889 * We do use btrfs_unlock_up_safe() and not 1890 * unlock_up() because the later does not unlock 1891 * nodes with a slot of 0 - we can safely unlock 1892 * any node even if its slot is 0 since in this 1893 * case the key does not end up at slot 0 of the 1894 * leaf and there's no need to split the leaf. 1895 */ 1896 btrfs_unlock_up_safe(path, 1); 1897 search_low_slot = 1; 1898 } else { 1899 /* 1900 * The first key is >= then the key we want to 1901 * insert, so we can skip the binary search as 1902 * the target key will be at slot 0. 1903 * 1904 * We can not unlock upper nodes when the key is 1905 * less than the first key, because we will need 1906 * to update the key at slot 0 of the parent node 1907 * and possibly of other upper nodes too. 1908 * If the key matches the first key, then we can 1909 * unlock all the upper nodes, using 1910 * btrfs_unlock_up_safe() instead of unlock_up() 1911 * as stated above. 1912 */ 1913 if (ret == 0) 1914 btrfs_unlock_up_safe(path, 1); 1915 /* 1916 * ret is already 0 or 1, matching the result of 1917 * a btrfs_bin_search() call, so there is no need 1918 * to adjust it. 1919 */ 1920 do_bin_search = false; 1921 path->slots[0] = 0; 1922 } 1923 } 1924 } 1925 1926 if (do_bin_search) { 1927 ret = search_for_key_slot(leaf, search_low_slot, key, 1928 prev_cmp, &path->slots[0]); 1929 if (ret < 0) 1930 return ret; 1931 } 1932 1933 if (ins_len > 0) { 1934 /* 1935 * Item key already exists. In this case, if we are allowed to 1936 * insert the item (for example, in dir_item case, item key 1937 * collision is allowed), it will be merged with the original 1938 * item. Only the item size grows, no new btrfs item will be 1939 * added. If search_for_extension is not set, ins_len already 1940 * accounts the size btrfs_item, deduct it here so leaf space 1941 * check will be correct. 1942 */ 1943 if (ret == 0 && !path->search_for_extension) { 1944 ASSERT(ins_len >= sizeof(struct btrfs_item)); 1945 ins_len -= sizeof(struct btrfs_item); 1946 } 1947 1948 ASSERT(leaf_free_space >= 0); 1949 1950 if (leaf_free_space < ins_len) { 1951 int ret2; 1952 1953 ret2 = split_leaf(trans, root, key, path, ins_len, (ret == 0)); 1954 ASSERT(ret2 <= 0); 1955 if (WARN_ON(ret2 > 0)) 1956 ret2 = -EUCLEAN; 1957 if (ret2) 1958 ret = ret2; 1959 } 1960 } 1961 1962 return ret; 1963 } 1964 1965 /* 1966 * Look for a key in a tree and perform necessary modifications to preserve 1967 * tree invariants. 1968 * 1969 * @trans: Handle of transaction, used when modifying the tree 1970 * @p: Holds all btree nodes along the search path 1971 * @root: The root node of the tree 1972 * @key: The key we are looking for 1973 * @ins_len: Indicates purpose of search: 1974 * >0 for inserts it's size of item inserted (*) 1975 * <0 for deletions 1976 * 0 for plain searches, not modifying the tree 1977 * 1978 * (*) If size of item inserted doesn't include 1979 * sizeof(struct btrfs_item), then p->search_for_extension must 1980 * be set. 1981 * @cow: boolean should CoW operations be performed. Must always be 1 1982 * when modifying the tree. 1983 * 1984 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 1985 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 1986 * 1987 * If @key is found, 0 is returned and you can find the item in the leaf level 1988 * of the path (level 0) 1989 * 1990 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 1991 * points to the slot where it should be inserted 1992 * 1993 * If an error is encountered while searching the tree a negative error number 1994 * is returned 1995 */ 1996 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1997 const struct btrfs_key *key, struct btrfs_path *p, 1998 int ins_len, int cow) 1999 { 2000 struct btrfs_fs_info *fs_info; 2001 struct extent_buffer *b; 2002 int slot; 2003 int ret; 2004 int level; 2005 int lowest_unlock = 1; 2006 /* everything at write_lock_level or lower must be write locked */ 2007 int write_lock_level = 0; 2008 u8 lowest_level = 0; 2009 int min_write_lock_level; 2010 int prev_cmp; 2011 2012 if (!root) 2013 return -EINVAL; 2014 2015 fs_info = root->fs_info; 2016 might_sleep(); 2017 2018 lowest_level = p->lowest_level; 2019 WARN_ON(lowest_level && ins_len > 0); 2020 WARN_ON(p->nodes[0] != NULL); 2021 BUG_ON(!cow && ins_len); 2022 2023 /* 2024 * For now only allow nowait for read only operations. There's no 2025 * strict reason why we can't, we just only need it for reads so it's 2026 * only implemented for reads. 2027 */ 2028 ASSERT(!p->nowait || !cow); 2029 2030 if (ins_len < 0) { 2031 lowest_unlock = 2; 2032 2033 /* when we are removing items, we might have to go up to level 2034 * two as we update tree pointers Make sure we keep write 2035 * for those levels as well 2036 */ 2037 write_lock_level = 2; 2038 } else if (ins_len > 0) { 2039 /* 2040 * for inserting items, make sure we have a write lock on 2041 * level 1 so we can update keys 2042 */ 2043 write_lock_level = 1; 2044 } 2045 2046 if (!cow) 2047 write_lock_level = -1; 2048 2049 if (cow && (p->keep_locks || p->lowest_level)) 2050 write_lock_level = BTRFS_MAX_LEVEL; 2051 2052 min_write_lock_level = write_lock_level; 2053 2054 if (p->need_commit_sem) { 2055 ASSERT(p->search_commit_root); 2056 if (p->nowait) { 2057 if (!down_read_trylock(&fs_info->commit_root_sem)) 2058 return -EAGAIN; 2059 } else { 2060 down_read(&fs_info->commit_root_sem); 2061 } 2062 } 2063 2064 again: 2065 prev_cmp = -1; 2066 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2067 if (IS_ERR(b)) { 2068 ret = PTR_ERR(b); 2069 goto done; 2070 } 2071 2072 while (b) { 2073 int dec = 0; 2074 int ret2; 2075 2076 level = btrfs_header_level(b); 2077 2078 if (cow) { 2079 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2080 2081 /* 2082 * if we don't really need to cow this block 2083 * then we don't want to set the path blocking, 2084 * so we test it here 2085 */ 2086 if (!should_cow_block(trans, root, b)) 2087 goto cow_done; 2088 2089 /* 2090 * must have write locks on this node and the 2091 * parent 2092 */ 2093 if (level > write_lock_level || 2094 (level + 1 > write_lock_level && 2095 level + 1 < BTRFS_MAX_LEVEL && 2096 p->nodes[level + 1])) { 2097 write_lock_level = level + 1; 2098 btrfs_release_path(p); 2099 goto again; 2100 } 2101 2102 if (last_level) 2103 ret2 = btrfs_cow_block(trans, root, b, NULL, 0, 2104 &b, BTRFS_NESTING_COW); 2105 else 2106 ret2 = btrfs_cow_block(trans, root, b, 2107 p->nodes[level + 1], 2108 p->slots[level + 1], &b, 2109 BTRFS_NESTING_COW); 2110 if (ret2) { 2111 ret = ret2; 2112 goto done; 2113 } 2114 } 2115 cow_done: 2116 p->nodes[level] = b; 2117 2118 /* 2119 * we have a lock on b and as long as we aren't changing 2120 * the tree, there is no way to for the items in b to change. 2121 * It is safe to drop the lock on our parent before we 2122 * go through the expensive btree search on b. 2123 * 2124 * If we're inserting or deleting (ins_len != 0), then we might 2125 * be changing slot zero, which may require changing the parent. 2126 * So, we can't drop the lock until after we know which slot 2127 * we're operating on. 2128 */ 2129 if (!ins_len && !p->keep_locks) { 2130 int u = level + 1; 2131 2132 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2133 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2134 p->locks[u] = 0; 2135 } 2136 } 2137 2138 if (level == 0) { 2139 if (ins_len > 0) 2140 ASSERT(write_lock_level >= 1); 2141 2142 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp); 2143 if (!p->search_for_split) 2144 unlock_up(p, level, lowest_unlock, 2145 min_write_lock_level, NULL); 2146 goto done; 2147 } 2148 2149 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot); 2150 if (ret < 0) 2151 goto done; 2152 prev_cmp = ret; 2153 2154 if (ret && slot > 0) { 2155 dec = 1; 2156 slot--; 2157 } 2158 p->slots[level] = slot; 2159 ret2 = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2160 &write_lock_level); 2161 if (ret2 == -EAGAIN) 2162 goto again; 2163 if (ret2) { 2164 ret = ret2; 2165 goto done; 2166 } 2167 b = p->nodes[level]; 2168 slot = p->slots[level]; 2169 2170 /* 2171 * Slot 0 is special, if we change the key we have to update 2172 * the parent pointer which means we must have a write lock on 2173 * the parent 2174 */ 2175 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2176 write_lock_level = level + 1; 2177 btrfs_release_path(p); 2178 goto again; 2179 } 2180 2181 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2182 &write_lock_level); 2183 2184 if (level == lowest_level) { 2185 if (dec) 2186 p->slots[level]++; 2187 goto done; 2188 } 2189 2190 ret2 = read_block_for_search(root, p, &b, slot, key); 2191 if (ret2 == -EAGAIN && !p->nowait) 2192 goto again; 2193 if (ret2) { 2194 ret = ret2; 2195 goto done; 2196 } 2197 2198 if (!p->skip_locking) { 2199 level = btrfs_header_level(b); 2200 2201 btrfs_maybe_reset_lockdep_class(root, b); 2202 2203 if (level <= write_lock_level) { 2204 btrfs_tree_lock(b); 2205 p->locks[level] = BTRFS_WRITE_LOCK; 2206 } else { 2207 if (p->nowait) { 2208 if (!btrfs_try_tree_read_lock(b)) { 2209 free_extent_buffer(b); 2210 ret = -EAGAIN; 2211 goto done; 2212 } 2213 } else { 2214 btrfs_tree_read_lock(b); 2215 } 2216 p->locks[level] = BTRFS_READ_LOCK; 2217 } 2218 p->nodes[level] = b; 2219 } 2220 } 2221 ret = 1; 2222 done: 2223 if (ret < 0 && !p->skip_release_on_error) 2224 btrfs_release_path(p); 2225 2226 if (p->need_commit_sem) { 2227 int ret2; 2228 2229 ret2 = finish_need_commit_sem_search(p); 2230 up_read(&fs_info->commit_root_sem); 2231 if (ret2) 2232 ret = ret2; 2233 } 2234 2235 return ret; 2236 } 2237 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO); 2238 2239 /* 2240 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2241 * current state of the tree together with the operations recorded in the tree 2242 * modification log to search for the key in a previous version of this tree, as 2243 * denoted by the time_seq parameter. 2244 * 2245 * Naturally, there is no support for insert, delete or cow operations. 2246 * 2247 * The resulting path and return value will be set up as if we called 2248 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2249 */ 2250 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2251 struct btrfs_path *p, u64 time_seq) 2252 { 2253 struct btrfs_fs_info *fs_info = root->fs_info; 2254 struct extent_buffer *b; 2255 int slot; 2256 int ret; 2257 int level; 2258 int lowest_unlock = 1; 2259 u8 lowest_level = 0; 2260 2261 lowest_level = p->lowest_level; 2262 WARN_ON(p->nodes[0] != NULL); 2263 ASSERT(!p->nowait); 2264 2265 if (p->search_commit_root) { 2266 BUG_ON(time_seq); 2267 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2268 } 2269 2270 again: 2271 b = btrfs_get_old_root(root, time_seq); 2272 if (unlikely(!b)) { 2273 ret = -EIO; 2274 goto done; 2275 } 2276 level = btrfs_header_level(b); 2277 p->locks[level] = BTRFS_READ_LOCK; 2278 2279 while (b) { 2280 int dec = 0; 2281 int ret2; 2282 2283 level = btrfs_header_level(b); 2284 p->nodes[level] = b; 2285 2286 /* 2287 * we have a lock on b and as long as we aren't changing 2288 * the tree, there is no way to for the items in b to change. 2289 * It is safe to drop the lock on our parent before we 2290 * go through the expensive btree search on b. 2291 */ 2292 btrfs_unlock_up_safe(p, level + 1); 2293 2294 ret = btrfs_bin_search(b, 0, key, &slot); 2295 if (ret < 0) 2296 goto done; 2297 2298 if (level == 0) { 2299 p->slots[level] = slot; 2300 unlock_up(p, level, lowest_unlock, 0, NULL); 2301 goto done; 2302 } 2303 2304 if (ret && slot > 0) { 2305 dec = 1; 2306 slot--; 2307 } 2308 p->slots[level] = slot; 2309 unlock_up(p, level, lowest_unlock, 0, NULL); 2310 2311 if (level == lowest_level) { 2312 if (dec) 2313 p->slots[level]++; 2314 goto done; 2315 } 2316 2317 ret2 = read_block_for_search(root, p, &b, slot, key); 2318 if (ret2 == -EAGAIN && !p->nowait) 2319 goto again; 2320 if (ret2) { 2321 ret = ret2; 2322 goto done; 2323 } 2324 2325 level = btrfs_header_level(b); 2326 btrfs_tree_read_lock(b); 2327 b = btrfs_tree_mod_log_rewind(fs_info, b, time_seq); 2328 if (!b) { 2329 ret = -ENOMEM; 2330 goto done; 2331 } 2332 p->locks[level] = BTRFS_READ_LOCK; 2333 p->nodes[level] = b; 2334 } 2335 ret = 1; 2336 done: 2337 if (ret < 0) 2338 btrfs_release_path(p); 2339 2340 return ret; 2341 } 2342 2343 /* 2344 * Search the tree again to find a leaf with smaller keys. 2345 * Returns 0 if it found something. 2346 * Returns 1 if there are no smaller keys. 2347 * Returns < 0 on error. 2348 * 2349 * This may release the path, and so you may lose any locks held at the 2350 * time you call it. 2351 */ 2352 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 2353 { 2354 struct btrfs_key key; 2355 struct btrfs_key orig_key; 2356 struct btrfs_disk_key found_key; 2357 int ret; 2358 2359 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 2360 orig_key = key; 2361 2362 if (key.offset > 0) { 2363 key.offset--; 2364 } else if (key.type > 0) { 2365 key.type--; 2366 key.offset = (u64)-1; 2367 } else if (key.objectid > 0) { 2368 key.objectid--; 2369 key.type = (u8)-1; 2370 key.offset = (u64)-1; 2371 } else { 2372 return 1; 2373 } 2374 2375 btrfs_release_path(path); 2376 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2377 if (ret <= 0) 2378 return ret; 2379 2380 /* 2381 * Previous key not found. Even if we were at slot 0 of the leaf we had 2382 * before releasing the path and calling btrfs_search_slot(), we now may 2383 * be in a slot pointing to the same original key - this can happen if 2384 * after we released the path, one of more items were moved from a 2385 * sibling leaf into the front of the leaf we had due to an insertion 2386 * (see push_leaf_right()). 2387 * If we hit this case and our slot is > 0 and just decrement the slot 2388 * so that the caller does not process the same key again, which may or 2389 * may not break the caller, depending on its logic. 2390 */ 2391 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 2392 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]); 2393 ret = btrfs_comp_keys(&found_key, &orig_key); 2394 if (ret == 0) { 2395 if (path->slots[0] > 0) { 2396 path->slots[0]--; 2397 return 0; 2398 } 2399 /* 2400 * At slot 0, same key as before, it means orig_key is 2401 * the lowest, leftmost, key in the tree. We're done. 2402 */ 2403 return 1; 2404 } 2405 } 2406 2407 btrfs_item_key(path->nodes[0], &found_key, 0); 2408 ret = btrfs_comp_keys(&found_key, &key); 2409 /* 2410 * We might have had an item with the previous key in the tree right 2411 * before we released our path. And after we released our path, that 2412 * item might have been pushed to the first slot (0) of the leaf we 2413 * were holding due to a tree balance. Alternatively, an item with the 2414 * previous key can exist as the only element of a leaf (big fat item). 2415 * Therefore account for these 2 cases, so that our callers (like 2416 * btrfs_previous_item) don't miss an existing item with a key matching 2417 * the previous key we computed above. 2418 */ 2419 if (ret <= 0) 2420 return 0; 2421 return 1; 2422 } 2423 2424 /* 2425 * helper to use instead of search slot if no exact match is needed but 2426 * instead the next or previous item should be returned. 2427 * When find_higher is true, the next higher item is returned, the next lower 2428 * otherwise. 2429 * When return_any and find_higher are both true, and no higher item is found, 2430 * return the next lower instead. 2431 * When return_any is true and find_higher is false, and no lower item is found, 2432 * return the next higher instead. 2433 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2434 * < 0 on error 2435 */ 2436 int btrfs_search_slot_for_read(struct btrfs_root *root, 2437 const struct btrfs_key *key, 2438 struct btrfs_path *p, int find_higher, 2439 int return_any) 2440 { 2441 int ret; 2442 struct extent_buffer *leaf; 2443 2444 again: 2445 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2446 if (ret <= 0) 2447 return ret; 2448 /* 2449 * a return value of 1 means the path is at the position where the 2450 * item should be inserted. Normally this is the next bigger item, 2451 * but in case the previous item is the last in a leaf, path points 2452 * to the first free slot in the previous leaf, i.e. at an invalid 2453 * item. 2454 */ 2455 leaf = p->nodes[0]; 2456 2457 if (find_higher) { 2458 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2459 ret = btrfs_next_leaf(root, p); 2460 if (ret <= 0) 2461 return ret; 2462 if (!return_any) 2463 return 1; 2464 /* 2465 * no higher item found, return the next 2466 * lower instead 2467 */ 2468 return_any = 0; 2469 find_higher = 0; 2470 btrfs_release_path(p); 2471 goto again; 2472 } 2473 } else { 2474 if (p->slots[0] == 0) { 2475 ret = btrfs_prev_leaf(root, p); 2476 if (ret < 0) 2477 return ret; 2478 if (!ret) { 2479 leaf = p->nodes[0]; 2480 if (p->slots[0] == btrfs_header_nritems(leaf)) 2481 p->slots[0]--; 2482 return 0; 2483 } 2484 if (!return_any) 2485 return 1; 2486 /* 2487 * no lower item found, return the next 2488 * higher instead 2489 */ 2490 return_any = 0; 2491 find_higher = 1; 2492 btrfs_release_path(p); 2493 goto again; 2494 } else { 2495 --p->slots[0]; 2496 } 2497 } 2498 return 0; 2499 } 2500 2501 /* 2502 * Execute search and call btrfs_previous_item to traverse backwards if the item 2503 * was not found. 2504 * 2505 * Return 0 if found, 1 if not found and < 0 if error. 2506 */ 2507 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 2508 struct btrfs_path *path) 2509 { 2510 int ret; 2511 2512 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 2513 if (ret > 0) 2514 ret = btrfs_previous_item(root, path, key->objectid, key->type); 2515 2516 if (ret == 0) 2517 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); 2518 2519 return ret; 2520 } 2521 2522 /* 2523 * Search for a valid slot for the given path. 2524 * 2525 * @root: The root node of the tree. 2526 * @key: Will contain a valid item if found. 2527 * @path: The starting point to validate the slot. 2528 * 2529 * Return: 0 if the item is valid 2530 * 1 if not found 2531 * <0 if error. 2532 */ 2533 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 2534 struct btrfs_path *path) 2535 { 2536 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2537 int ret; 2538 2539 ret = btrfs_next_leaf(root, path); 2540 if (ret) 2541 return ret; 2542 } 2543 2544 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); 2545 return 0; 2546 } 2547 2548 /* 2549 * adjust the pointers going up the tree, starting at level 2550 * making sure the right key of each node is points to 'key'. 2551 * This is used after shifting pointers to the left, so it stops 2552 * fixing up pointers when a given leaf/node is not in slot 0 of the 2553 * higher levels 2554 * 2555 */ 2556 static void fixup_low_keys(struct btrfs_trans_handle *trans, 2557 const struct btrfs_path *path, 2558 const struct btrfs_disk_key *key, int level) 2559 { 2560 int i; 2561 struct extent_buffer *t; 2562 int ret; 2563 2564 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2565 int tslot = path->slots[i]; 2566 2567 if (!path->nodes[i]) 2568 break; 2569 t = path->nodes[i]; 2570 ret = btrfs_tree_mod_log_insert_key(t, tslot, 2571 BTRFS_MOD_LOG_KEY_REPLACE); 2572 BUG_ON(ret < 0); 2573 btrfs_set_node_key(t, key, tslot); 2574 btrfs_mark_buffer_dirty(trans, path->nodes[i]); 2575 if (tslot != 0) 2576 break; 2577 } 2578 } 2579 2580 /* 2581 * update item key. 2582 * 2583 * This function isn't completely safe. It's the caller's responsibility 2584 * that the new key won't break the order 2585 */ 2586 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 2587 const struct btrfs_path *path, 2588 const struct btrfs_key *new_key) 2589 { 2590 struct btrfs_fs_info *fs_info = trans->fs_info; 2591 struct btrfs_disk_key disk_key; 2592 struct extent_buffer *eb; 2593 int slot; 2594 2595 eb = path->nodes[0]; 2596 slot = path->slots[0]; 2597 if (slot > 0) { 2598 btrfs_item_key(eb, &disk_key, slot - 1); 2599 if (unlikely(btrfs_comp_keys(&disk_key, new_key) >= 0)) { 2600 btrfs_print_leaf(eb); 2601 btrfs_crit(fs_info, 2602 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2603 slot, btrfs_disk_key_objectid(&disk_key), 2604 btrfs_disk_key_type(&disk_key), 2605 btrfs_disk_key_offset(&disk_key), 2606 new_key->objectid, new_key->type, 2607 new_key->offset); 2608 BUG(); 2609 } 2610 } 2611 if (slot < btrfs_header_nritems(eb) - 1) { 2612 btrfs_item_key(eb, &disk_key, slot + 1); 2613 if (unlikely(btrfs_comp_keys(&disk_key, new_key) <= 0)) { 2614 btrfs_print_leaf(eb); 2615 btrfs_crit(fs_info, 2616 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2617 slot, btrfs_disk_key_objectid(&disk_key), 2618 btrfs_disk_key_type(&disk_key), 2619 btrfs_disk_key_offset(&disk_key), 2620 new_key->objectid, new_key->type, 2621 new_key->offset); 2622 BUG(); 2623 } 2624 } 2625 2626 btrfs_cpu_key_to_disk(&disk_key, new_key); 2627 btrfs_set_item_key(eb, &disk_key, slot); 2628 btrfs_mark_buffer_dirty(trans, eb); 2629 if (slot == 0) 2630 fixup_low_keys(trans, path, &disk_key, 1); 2631 } 2632 2633 /* 2634 * Check key order of two sibling extent buffers. 2635 * 2636 * Return true if something is wrong. 2637 * Return false if everything is fine. 2638 * 2639 * Tree-checker only works inside one tree block, thus the following 2640 * corruption can not be detected by tree-checker: 2641 * 2642 * Leaf @left | Leaf @right 2643 * -------------------------------------------------------------- 2644 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | 2645 * 2646 * Key f6 in leaf @left itself is valid, but not valid when the next 2647 * key in leaf @right is 7. 2648 * This can only be checked at tree block merge time. 2649 * And since tree checker has ensured all key order in each tree block 2650 * is correct, we only need to bother the last key of @left and the first 2651 * key of @right. 2652 */ 2653 static bool check_sibling_keys(const struct extent_buffer *left, 2654 const struct extent_buffer *right) 2655 { 2656 struct btrfs_key left_last; 2657 struct btrfs_key right_first; 2658 int level = btrfs_header_level(left); 2659 int nr_left = btrfs_header_nritems(left); 2660 int nr_right = btrfs_header_nritems(right); 2661 2662 /* No key to check in one of the tree blocks */ 2663 if (!nr_left || !nr_right) 2664 return false; 2665 2666 if (level) { 2667 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); 2668 btrfs_node_key_to_cpu(right, &right_first, 0); 2669 } else { 2670 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); 2671 btrfs_item_key_to_cpu(right, &right_first, 0); 2672 } 2673 2674 if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) { 2675 btrfs_crit(left->fs_info, "left extent buffer:"); 2676 btrfs_print_tree(left, false); 2677 btrfs_crit(left->fs_info, "right extent buffer:"); 2678 btrfs_print_tree(right, false); 2679 btrfs_crit(left->fs_info, 2680 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", 2681 left_last.objectid, left_last.type, 2682 left_last.offset, right_first.objectid, 2683 right_first.type, right_first.offset); 2684 return true; 2685 } 2686 return false; 2687 } 2688 2689 /* 2690 * try to push data from one node into the next node left in the 2691 * tree. 2692 * 2693 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2694 * error, and > 0 if there was no room in the left hand block. 2695 */ 2696 static int push_node_left(struct btrfs_trans_handle *trans, 2697 struct extent_buffer *dst, 2698 struct extent_buffer *src, bool empty) 2699 { 2700 struct btrfs_fs_info *fs_info = trans->fs_info; 2701 int push_items = 0; 2702 int src_nritems; 2703 int dst_nritems; 2704 int ret = 0; 2705 2706 src_nritems = btrfs_header_nritems(src); 2707 dst_nritems = btrfs_header_nritems(dst); 2708 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2709 WARN_ON(btrfs_header_generation(src) != trans->transid); 2710 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2711 2712 if (!empty && src_nritems <= 8) 2713 return 1; 2714 2715 if (push_items <= 0) 2716 return 1; 2717 2718 if (empty) { 2719 push_items = min(src_nritems, push_items); 2720 if (push_items < src_nritems) { 2721 /* leave at least 8 pointers in the node if 2722 * we aren't going to empty it 2723 */ 2724 if (src_nritems - push_items < 8) { 2725 if (push_items <= 8) 2726 return 1; 2727 push_items -= 8; 2728 } 2729 } 2730 } else 2731 push_items = min(src_nritems - 8, push_items); 2732 2733 /* dst is the left eb, src is the middle eb */ 2734 if (unlikely(check_sibling_keys(dst, src))) { 2735 ret = -EUCLEAN; 2736 btrfs_abort_transaction(trans, ret); 2737 return ret; 2738 } 2739 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 2740 if (unlikely(ret)) { 2741 btrfs_abort_transaction(trans, ret); 2742 return ret; 2743 } 2744 copy_extent_buffer(dst, src, 2745 btrfs_node_key_ptr_offset(dst, dst_nritems), 2746 btrfs_node_key_ptr_offset(src, 0), 2747 push_items * sizeof(struct btrfs_key_ptr)); 2748 2749 if (push_items < src_nritems) { 2750 /* 2751 * btrfs_tree_mod_log_eb_copy handles logging the move, so we 2752 * don't need to do an explicit tree mod log operation for it. 2753 */ 2754 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0), 2755 btrfs_node_key_ptr_offset(src, push_items), 2756 (src_nritems - push_items) * 2757 sizeof(struct btrfs_key_ptr)); 2758 } 2759 btrfs_set_header_nritems(src, src_nritems - push_items); 2760 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2761 btrfs_mark_buffer_dirty(trans, src); 2762 btrfs_mark_buffer_dirty(trans, dst); 2763 2764 return ret; 2765 } 2766 2767 /* 2768 * try to push data from one node into the next node right in the 2769 * tree. 2770 * 2771 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2772 * error, and > 0 if there was no room in the right hand block. 2773 * 2774 * this will only push up to 1/2 the contents of the left node over 2775 */ 2776 static int balance_node_right(struct btrfs_trans_handle *trans, 2777 struct extent_buffer *dst, 2778 struct extent_buffer *src) 2779 { 2780 struct btrfs_fs_info *fs_info = trans->fs_info; 2781 int push_items = 0; 2782 int max_push; 2783 int src_nritems; 2784 int dst_nritems; 2785 int ret = 0; 2786 2787 WARN_ON(btrfs_header_generation(src) != trans->transid); 2788 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2789 2790 src_nritems = btrfs_header_nritems(src); 2791 dst_nritems = btrfs_header_nritems(dst); 2792 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2793 if (push_items <= 0) 2794 return 1; 2795 2796 if (src_nritems < 4) 2797 return 1; 2798 2799 max_push = src_nritems / 2 + 1; 2800 /* don't try to empty the node */ 2801 if (max_push >= src_nritems) 2802 return 1; 2803 2804 if (max_push < push_items) 2805 push_items = max_push; 2806 2807 /* dst is the right eb, src is the middle eb */ 2808 if (unlikely(check_sibling_keys(src, dst))) { 2809 ret = -EUCLEAN; 2810 btrfs_abort_transaction(trans, ret); 2811 return ret; 2812 } 2813 2814 /* 2815 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't 2816 * need to do an explicit tree mod log operation for it. 2817 */ 2818 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items), 2819 btrfs_node_key_ptr_offset(dst, 0), 2820 (dst_nritems) * 2821 sizeof(struct btrfs_key_ptr)); 2822 2823 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 2824 push_items); 2825 if (unlikely(ret)) { 2826 btrfs_abort_transaction(trans, ret); 2827 return ret; 2828 } 2829 copy_extent_buffer(dst, src, 2830 btrfs_node_key_ptr_offset(dst, 0), 2831 btrfs_node_key_ptr_offset(src, src_nritems - push_items), 2832 push_items * sizeof(struct btrfs_key_ptr)); 2833 2834 btrfs_set_header_nritems(src, src_nritems - push_items); 2835 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2836 2837 btrfs_mark_buffer_dirty(trans, src); 2838 btrfs_mark_buffer_dirty(trans, dst); 2839 2840 return ret; 2841 } 2842 2843 /* 2844 * helper function to insert a new root level in the tree. 2845 * A new node is allocated, and a single item is inserted to 2846 * point to the existing root 2847 * 2848 * returns zero on success or < 0 on failure. 2849 */ 2850 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2851 struct btrfs_root *root, 2852 struct btrfs_path *path, int level) 2853 { 2854 u64 lower_gen; 2855 struct extent_buffer *lower; 2856 struct extent_buffer *c; 2857 struct extent_buffer *old; 2858 struct btrfs_disk_key lower_key; 2859 int ret; 2860 2861 BUG_ON(path->nodes[level]); 2862 BUG_ON(path->nodes[level-1] != root->node); 2863 2864 lower = path->nodes[level-1]; 2865 if (level == 1) 2866 btrfs_item_key(lower, &lower_key, 0); 2867 else 2868 btrfs_node_key(lower, &lower_key, 0); 2869 2870 c = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root), 2871 &lower_key, level, root->node->start, 0, 2872 0, BTRFS_NESTING_NEW_ROOT); 2873 if (IS_ERR(c)) 2874 return PTR_ERR(c); 2875 2876 root_add_used_bytes(root); 2877 2878 btrfs_set_header_nritems(c, 1); 2879 btrfs_set_node_key(c, &lower_key, 0); 2880 btrfs_set_node_blockptr(c, 0, lower->start); 2881 lower_gen = btrfs_header_generation(lower); 2882 WARN_ON(lower_gen != trans->transid); 2883 2884 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2885 2886 btrfs_mark_buffer_dirty(trans, c); 2887 2888 old = root->node; 2889 ret = btrfs_tree_mod_log_insert_root(root->node, c, false); 2890 if (ret < 0) { 2891 int ret2; 2892 2893 btrfs_clear_buffer_dirty(trans, c); 2894 ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1); 2895 if (unlikely(ret2 < 0)) 2896 btrfs_abort_transaction(trans, ret2); 2897 btrfs_tree_unlock(c); 2898 free_extent_buffer(c); 2899 return ret; 2900 } 2901 rcu_assign_pointer(root->node, c); 2902 2903 /* the super has an extra ref to root->node */ 2904 free_extent_buffer(old); 2905 2906 add_root_to_dirty_list(root); 2907 refcount_inc(&c->refs); 2908 path->nodes[level] = c; 2909 path->locks[level] = BTRFS_WRITE_LOCK; 2910 path->slots[level] = 0; 2911 return 0; 2912 } 2913 2914 /* 2915 * worker function to insert a single pointer in a node. 2916 * the node should have enough room for the pointer already 2917 * 2918 * slot and level indicate where you want the key to go, and 2919 * blocknr is the block the key points to. 2920 */ 2921 static int insert_ptr(struct btrfs_trans_handle *trans, 2922 const struct btrfs_path *path, 2923 const struct btrfs_disk_key *key, u64 bytenr, 2924 int slot, int level) 2925 { 2926 struct extent_buffer *lower; 2927 int nritems; 2928 int ret; 2929 2930 BUG_ON(!path->nodes[level]); 2931 btrfs_assert_tree_write_locked(path->nodes[level]); 2932 lower = path->nodes[level]; 2933 nritems = btrfs_header_nritems(lower); 2934 BUG_ON(slot > nritems); 2935 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 2936 if (slot != nritems) { 2937 if (level) { 2938 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1, 2939 slot, nritems - slot); 2940 if (unlikely(ret < 0)) { 2941 btrfs_abort_transaction(trans, ret); 2942 return ret; 2943 } 2944 } 2945 memmove_extent_buffer(lower, 2946 btrfs_node_key_ptr_offset(lower, slot + 1), 2947 btrfs_node_key_ptr_offset(lower, slot), 2948 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2949 } 2950 if (level) { 2951 ret = btrfs_tree_mod_log_insert_key(lower, slot, 2952 BTRFS_MOD_LOG_KEY_ADD); 2953 if (unlikely(ret < 0)) { 2954 btrfs_abort_transaction(trans, ret); 2955 return ret; 2956 } 2957 } 2958 btrfs_set_node_key(lower, key, slot); 2959 btrfs_set_node_blockptr(lower, slot, bytenr); 2960 WARN_ON(trans->transid == 0); 2961 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2962 btrfs_set_header_nritems(lower, nritems + 1); 2963 btrfs_mark_buffer_dirty(trans, lower); 2964 2965 return 0; 2966 } 2967 2968 /* 2969 * split the node at the specified level in path in two. 2970 * The path is corrected to point to the appropriate node after the split 2971 * 2972 * Before splitting this tries to make some room in the node by pushing 2973 * left and right, if either one works, it returns right away. 2974 * 2975 * returns 0 on success and < 0 on failure 2976 */ 2977 static noinline int split_node(struct btrfs_trans_handle *trans, 2978 struct btrfs_root *root, 2979 struct btrfs_path *path, int level) 2980 { 2981 struct btrfs_fs_info *fs_info = root->fs_info; 2982 struct extent_buffer *c; 2983 struct extent_buffer *split; 2984 struct btrfs_disk_key disk_key; 2985 int mid; 2986 int ret; 2987 u32 c_nritems; 2988 2989 c = path->nodes[level]; 2990 WARN_ON(btrfs_header_generation(c) != trans->transid); 2991 if (c == root->node) { 2992 /* 2993 * trying to split the root, lets make a new one 2994 * 2995 * tree mod log: We don't log_removal old root in 2996 * insert_new_root, because that root buffer will be kept as a 2997 * normal node. We are going to log removal of half of the 2998 * elements below with btrfs_tree_mod_log_eb_copy(). We're 2999 * holding a tree lock on the buffer, which is why we cannot 3000 * race with other tree_mod_log users. 3001 */ 3002 ret = insert_new_root(trans, root, path, level + 1); 3003 if (ret) 3004 return ret; 3005 } else { 3006 ret = push_nodes_for_insert(trans, root, path, level); 3007 c = path->nodes[level]; 3008 if (!ret && btrfs_header_nritems(c) < 3009 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3010 return 0; 3011 if (ret < 0) 3012 return ret; 3013 } 3014 3015 c_nritems = btrfs_header_nritems(c); 3016 mid = (c_nritems + 1) / 2; 3017 btrfs_node_key(c, &disk_key, mid); 3018 3019 split = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root), 3020 &disk_key, level, c->start, 0, 3021 0, BTRFS_NESTING_SPLIT); 3022 if (IS_ERR(split)) 3023 return PTR_ERR(split); 3024 3025 root_add_used_bytes(root); 3026 ASSERT(btrfs_header_level(c) == level); 3027 3028 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 3029 if (unlikely(ret)) { 3030 btrfs_tree_unlock(split); 3031 free_extent_buffer(split); 3032 btrfs_abort_transaction(trans, ret); 3033 return ret; 3034 } 3035 copy_extent_buffer(split, c, 3036 btrfs_node_key_ptr_offset(split, 0), 3037 btrfs_node_key_ptr_offset(c, mid), 3038 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3039 btrfs_set_header_nritems(split, c_nritems - mid); 3040 btrfs_set_header_nritems(c, mid); 3041 3042 btrfs_mark_buffer_dirty(trans, c); 3043 btrfs_mark_buffer_dirty(trans, split); 3044 3045 ret = insert_ptr(trans, path, &disk_key, split->start, 3046 path->slots[level + 1] + 1, level + 1); 3047 if (ret < 0) { 3048 btrfs_tree_unlock(split); 3049 free_extent_buffer(split); 3050 return ret; 3051 } 3052 3053 if (path->slots[level] >= mid) { 3054 path->slots[level] -= mid; 3055 btrfs_tree_unlock(c); 3056 free_extent_buffer(c); 3057 path->nodes[level] = split; 3058 path->slots[level + 1] += 1; 3059 } else { 3060 btrfs_tree_unlock(split); 3061 free_extent_buffer(split); 3062 } 3063 return 0; 3064 } 3065 3066 /* 3067 * how many bytes are required to store the items in a leaf. start 3068 * and nr indicate which items in the leaf to check. This totals up the 3069 * space used both by the item structs and the item data 3070 */ 3071 static int leaf_space_used(const struct extent_buffer *l, int start, int nr) 3072 { 3073 int data_len; 3074 int nritems = btrfs_header_nritems(l); 3075 int end = min(nritems, start + nr) - 1; 3076 3077 if (!nr) 3078 return 0; 3079 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start); 3080 data_len = data_len - btrfs_item_offset(l, end); 3081 data_len += sizeof(struct btrfs_item) * nr; 3082 WARN_ON(data_len < 0); 3083 return data_len; 3084 } 3085 3086 /* 3087 * The space between the end of the leaf items and 3088 * the start of the leaf data. IOW, how much room 3089 * the leaf has left for both items and data 3090 */ 3091 int btrfs_leaf_free_space(const struct extent_buffer *leaf) 3092 { 3093 struct btrfs_fs_info *fs_info = leaf->fs_info; 3094 int nritems = btrfs_header_nritems(leaf); 3095 int ret; 3096 3097 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3098 if (unlikely(ret < 0)) { 3099 btrfs_crit(fs_info, 3100 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3101 ret, 3102 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3103 leaf_space_used(leaf, 0, nritems), nritems); 3104 } 3105 return ret; 3106 } 3107 3108 /* 3109 * min slot controls the lowest index we're willing to push to the 3110 * right. We'll push up to and including min_slot, but no lower 3111 */ 3112 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3113 struct btrfs_path *path, 3114 int data_size, bool empty, 3115 struct extent_buffer *right, 3116 int free_space, u32 left_nritems, 3117 u32 min_slot) 3118 { 3119 struct btrfs_fs_info *fs_info = right->fs_info; 3120 struct extent_buffer *left = path->nodes[0]; 3121 struct extent_buffer *upper = path->nodes[1]; 3122 struct btrfs_disk_key disk_key; 3123 int slot; 3124 u32 i; 3125 int push_space = 0; 3126 int push_items = 0; 3127 u32 nr; 3128 u32 right_nritems; 3129 u32 data_end; 3130 u32 this_item_size; 3131 3132 if (empty) 3133 nr = 0; 3134 else 3135 nr = max_t(u32, 1, min_slot); 3136 3137 if (path->slots[0] >= left_nritems) 3138 push_space += data_size; 3139 3140 slot = path->slots[1]; 3141 i = left_nritems - 1; 3142 while (i >= nr) { 3143 if (!empty && push_items > 0) { 3144 if (path->slots[0] > i) 3145 break; 3146 if (path->slots[0] == i) { 3147 int space = btrfs_leaf_free_space(left); 3148 3149 if (space + push_space * 2 > free_space) 3150 break; 3151 } 3152 } 3153 3154 if (path->slots[0] == i) 3155 push_space += data_size; 3156 3157 this_item_size = btrfs_item_size(left, i); 3158 if (this_item_size + sizeof(struct btrfs_item) + 3159 push_space > free_space) 3160 break; 3161 3162 push_items++; 3163 push_space += this_item_size + sizeof(struct btrfs_item); 3164 if (i == 0) 3165 break; 3166 i--; 3167 } 3168 3169 if (push_items == 0) 3170 goto out_unlock; 3171 3172 WARN_ON(!empty && push_items == left_nritems); 3173 3174 /* push left to right */ 3175 right_nritems = btrfs_header_nritems(right); 3176 3177 push_space = btrfs_item_data_end(left, left_nritems - push_items); 3178 push_space -= leaf_data_end(left); 3179 3180 /* make room in the right data area */ 3181 data_end = leaf_data_end(right); 3182 memmove_leaf_data(right, data_end - push_space, data_end, 3183 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3184 3185 /* copy from the left data area */ 3186 copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3187 leaf_data_end(left), push_space); 3188 3189 memmove_leaf_items(right, push_items, 0, right_nritems); 3190 3191 /* copy the items from left to right */ 3192 copy_leaf_items(right, left, 0, left_nritems - push_items, push_items); 3193 3194 /* update the item pointers */ 3195 right_nritems += push_items; 3196 btrfs_set_header_nritems(right, right_nritems); 3197 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3198 for (i = 0; i < right_nritems; i++) { 3199 push_space -= btrfs_item_size(right, i); 3200 btrfs_set_item_offset(right, i, push_space); 3201 } 3202 3203 left_nritems -= push_items; 3204 btrfs_set_header_nritems(left, left_nritems); 3205 3206 if (left_nritems) 3207 btrfs_mark_buffer_dirty(trans, left); 3208 else 3209 btrfs_clear_buffer_dirty(trans, left); 3210 3211 btrfs_mark_buffer_dirty(trans, right); 3212 3213 btrfs_item_key(right, &disk_key, 0); 3214 btrfs_set_node_key(upper, &disk_key, slot + 1); 3215 btrfs_mark_buffer_dirty(trans, upper); 3216 3217 /* then fixup the leaf pointer in the path */ 3218 if (path->slots[0] >= left_nritems) { 3219 path->slots[0] -= left_nritems; 3220 if (btrfs_header_nritems(path->nodes[0]) == 0) 3221 btrfs_clear_buffer_dirty(trans, path->nodes[0]); 3222 btrfs_tree_unlock(path->nodes[0]); 3223 free_extent_buffer(path->nodes[0]); 3224 path->nodes[0] = right; 3225 path->slots[1] += 1; 3226 } else { 3227 btrfs_tree_unlock(right); 3228 free_extent_buffer(right); 3229 } 3230 return 0; 3231 3232 out_unlock: 3233 btrfs_tree_unlock(right); 3234 free_extent_buffer(right); 3235 return 1; 3236 } 3237 3238 /* 3239 * push some data in the path leaf to the right, trying to free up at 3240 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3241 * 3242 * returns 1 if the push failed because the other node didn't have enough 3243 * room, 0 if everything worked out and < 0 if there were major errors. 3244 * 3245 * this will push starting from min_slot to the end of the leaf. It won't 3246 * push any slot lower than min_slot 3247 */ 3248 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3249 *root, struct btrfs_path *path, 3250 int min_data_size, int data_size, 3251 bool empty, u32 min_slot) 3252 { 3253 struct extent_buffer *left = path->nodes[0]; 3254 struct extent_buffer *right; 3255 struct extent_buffer *upper; 3256 int slot; 3257 int free_space; 3258 u32 left_nritems; 3259 int ret; 3260 3261 if (!path->nodes[1]) 3262 return 1; 3263 3264 slot = path->slots[1]; 3265 upper = path->nodes[1]; 3266 if (slot >= btrfs_header_nritems(upper) - 1) 3267 return 1; 3268 3269 btrfs_assert_tree_write_locked(path->nodes[1]); 3270 3271 right = btrfs_read_node_slot(upper, slot + 1); 3272 if (IS_ERR(right)) 3273 return PTR_ERR(right); 3274 3275 btrfs_tree_lock_nested(right, BTRFS_NESTING_RIGHT); 3276 3277 free_space = btrfs_leaf_free_space(right); 3278 if (free_space < data_size) 3279 goto out_unlock; 3280 3281 ret = btrfs_cow_block(trans, root, right, upper, 3282 slot + 1, &right, BTRFS_NESTING_RIGHT_COW); 3283 if (ret) 3284 goto out_unlock; 3285 3286 left_nritems = btrfs_header_nritems(left); 3287 if (left_nritems == 0) 3288 goto out_unlock; 3289 3290 if (unlikely(check_sibling_keys(left, right))) { 3291 ret = -EUCLEAN; 3292 btrfs_abort_transaction(trans, ret); 3293 btrfs_tree_unlock(right); 3294 free_extent_buffer(right); 3295 return ret; 3296 } 3297 if (path->slots[0] == left_nritems && !empty) { 3298 /* Key greater than all keys in the leaf, right neighbor has 3299 * enough room for it and we're not emptying our leaf to delete 3300 * it, therefore use right neighbor to insert the new item and 3301 * no need to touch/dirty our left leaf. */ 3302 btrfs_tree_unlock(left); 3303 free_extent_buffer(left); 3304 path->nodes[0] = right; 3305 path->slots[0] = 0; 3306 path->slots[1]++; 3307 return 0; 3308 } 3309 3310 return __push_leaf_right(trans, path, min_data_size, empty, right, 3311 free_space, left_nritems, min_slot); 3312 out_unlock: 3313 btrfs_tree_unlock(right); 3314 free_extent_buffer(right); 3315 return 1; 3316 } 3317 3318 /* 3319 * push some data in the path leaf to the left, trying to free up at 3320 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3321 * 3322 * max_slot can put a limit on how far into the leaf we'll push items. The 3323 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3324 * items 3325 */ 3326 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3327 struct btrfs_path *path, int data_size, 3328 bool empty, struct extent_buffer *left, 3329 int free_space, u32 right_nritems, 3330 u32 max_slot) 3331 { 3332 struct btrfs_fs_info *fs_info = left->fs_info; 3333 struct btrfs_disk_key disk_key; 3334 struct extent_buffer *right = path->nodes[0]; 3335 int i; 3336 int push_space = 0; 3337 int push_items = 0; 3338 u32 old_left_nritems; 3339 u32 nr; 3340 int ret = 0; 3341 u32 this_item_size; 3342 u32 old_left_item_size; 3343 3344 if (empty) 3345 nr = min(right_nritems, max_slot); 3346 else 3347 nr = min(right_nritems - 1, max_slot); 3348 3349 for (i = 0; i < nr; i++) { 3350 if (!empty && push_items > 0) { 3351 if (path->slots[0] < i) 3352 break; 3353 if (path->slots[0] == i) { 3354 int space = btrfs_leaf_free_space(right); 3355 3356 if (space + push_space * 2 > free_space) 3357 break; 3358 } 3359 } 3360 3361 if (path->slots[0] == i) 3362 push_space += data_size; 3363 3364 this_item_size = btrfs_item_size(right, i); 3365 if (this_item_size + sizeof(struct btrfs_item) + push_space > 3366 free_space) 3367 break; 3368 3369 push_items++; 3370 push_space += this_item_size + sizeof(struct btrfs_item); 3371 } 3372 3373 if (push_items == 0) { 3374 ret = 1; 3375 goto out; 3376 } 3377 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3378 3379 /* push data from right to left */ 3380 copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items); 3381 3382 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3383 btrfs_item_offset(right, push_items - 1); 3384 3385 copy_leaf_data(left, right, leaf_data_end(left) - push_space, 3386 btrfs_item_offset(right, push_items - 1), push_space); 3387 old_left_nritems = btrfs_header_nritems(left); 3388 BUG_ON(old_left_nritems <= 0); 3389 3390 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1); 3391 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3392 u32 ioff; 3393 3394 ioff = btrfs_item_offset(left, i); 3395 btrfs_set_item_offset(left, i, 3396 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 3397 } 3398 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3399 3400 /* fixup right node */ 3401 if (push_items > right_nritems) 3402 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3403 right_nritems); 3404 3405 if (push_items < right_nritems) { 3406 push_space = btrfs_item_offset(right, push_items - 1) - 3407 leaf_data_end(right); 3408 memmove_leaf_data(right, 3409 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3410 leaf_data_end(right), push_space); 3411 3412 memmove_leaf_items(right, 0, push_items, 3413 btrfs_header_nritems(right) - push_items); 3414 } 3415 3416 right_nritems -= push_items; 3417 btrfs_set_header_nritems(right, right_nritems); 3418 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3419 for (i = 0; i < right_nritems; i++) { 3420 push_space = push_space - btrfs_item_size(right, i); 3421 btrfs_set_item_offset(right, i, push_space); 3422 } 3423 3424 btrfs_mark_buffer_dirty(trans, left); 3425 if (right_nritems) 3426 btrfs_mark_buffer_dirty(trans, right); 3427 else 3428 btrfs_clear_buffer_dirty(trans, right); 3429 3430 btrfs_item_key(right, &disk_key, 0); 3431 fixup_low_keys(trans, path, &disk_key, 1); 3432 3433 /* then fixup the leaf pointer in the path */ 3434 if (path->slots[0] < push_items) { 3435 path->slots[0] += old_left_nritems; 3436 btrfs_tree_unlock(path->nodes[0]); 3437 free_extent_buffer(path->nodes[0]); 3438 path->nodes[0] = left; 3439 path->slots[1] -= 1; 3440 } else { 3441 btrfs_tree_unlock(left); 3442 free_extent_buffer(left); 3443 path->slots[0] -= push_items; 3444 } 3445 BUG_ON(path->slots[0] < 0); 3446 return ret; 3447 out: 3448 btrfs_tree_unlock(left); 3449 free_extent_buffer(left); 3450 return ret; 3451 } 3452 3453 /* 3454 * push some data in the path leaf to the left, trying to free up at 3455 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3456 * 3457 * max_slot can put a limit on how far into the leaf we'll push items. The 3458 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3459 * items 3460 */ 3461 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3462 *root, struct btrfs_path *path, int min_data_size, 3463 int data_size, int empty, u32 max_slot) 3464 { 3465 struct extent_buffer *right = path->nodes[0]; 3466 struct extent_buffer *left; 3467 int slot; 3468 int free_space; 3469 u32 right_nritems; 3470 int ret = 0; 3471 3472 slot = path->slots[1]; 3473 if (slot == 0) 3474 return 1; 3475 if (!path->nodes[1]) 3476 return 1; 3477 3478 right_nritems = btrfs_header_nritems(right); 3479 if (right_nritems == 0) 3480 return 1; 3481 3482 btrfs_assert_tree_write_locked(path->nodes[1]); 3483 3484 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3485 if (IS_ERR(left)) 3486 return PTR_ERR(left); 3487 3488 btrfs_tree_lock_nested(left, BTRFS_NESTING_LEFT); 3489 3490 free_space = btrfs_leaf_free_space(left); 3491 if (free_space < data_size) { 3492 ret = 1; 3493 goto out; 3494 } 3495 3496 ret = btrfs_cow_block(trans, root, left, 3497 path->nodes[1], slot - 1, &left, 3498 BTRFS_NESTING_LEFT_COW); 3499 if (ret) { 3500 /* we hit -ENOSPC, but it isn't fatal here */ 3501 if (ret == -ENOSPC) 3502 ret = 1; 3503 goto out; 3504 } 3505 3506 if (unlikely(check_sibling_keys(left, right))) { 3507 ret = -EUCLEAN; 3508 btrfs_abort_transaction(trans, ret); 3509 goto out; 3510 } 3511 return __push_leaf_left(trans, path, min_data_size, empty, left, 3512 free_space, right_nritems, max_slot); 3513 out: 3514 btrfs_tree_unlock(left); 3515 free_extent_buffer(left); 3516 return ret; 3517 } 3518 3519 /* 3520 * split the path's leaf in two, making sure there is at least data_size 3521 * available for the resulting leaf level of the path. 3522 */ 3523 static noinline int copy_for_split(struct btrfs_trans_handle *trans, 3524 struct btrfs_path *path, 3525 struct extent_buffer *l, 3526 struct extent_buffer *right, 3527 int slot, int mid, int nritems) 3528 { 3529 struct btrfs_fs_info *fs_info = trans->fs_info; 3530 int data_copy_size; 3531 int rt_data_off; 3532 int i; 3533 int ret; 3534 struct btrfs_disk_key disk_key; 3535 3536 nritems = nritems - mid; 3537 btrfs_set_header_nritems(right, nritems); 3538 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l); 3539 3540 copy_leaf_items(right, l, 0, mid, nritems); 3541 3542 copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size, 3543 leaf_data_end(l), data_copy_size); 3544 3545 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid); 3546 3547 for (i = 0; i < nritems; i++) { 3548 u32 ioff; 3549 3550 ioff = btrfs_item_offset(right, i); 3551 btrfs_set_item_offset(right, i, ioff + rt_data_off); 3552 } 3553 3554 btrfs_set_header_nritems(l, mid); 3555 btrfs_item_key(right, &disk_key, 0); 3556 ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 3557 if (ret < 0) 3558 return ret; 3559 3560 btrfs_mark_buffer_dirty(trans, right); 3561 btrfs_mark_buffer_dirty(trans, l); 3562 BUG_ON(path->slots[0] != slot); 3563 3564 if (mid <= slot) { 3565 btrfs_tree_unlock(path->nodes[0]); 3566 free_extent_buffer(path->nodes[0]); 3567 path->nodes[0] = right; 3568 path->slots[0] -= mid; 3569 path->slots[1] += 1; 3570 } else { 3571 btrfs_tree_unlock(right); 3572 free_extent_buffer(right); 3573 } 3574 3575 BUG_ON(path->slots[0] < 0); 3576 3577 return 0; 3578 } 3579 3580 /* 3581 * double splits happen when we need to insert a big item in the middle 3582 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3583 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3584 * A B C 3585 * 3586 * We avoid this by trying to push the items on either side of our target 3587 * into the adjacent leaves. If all goes well we can avoid the double split 3588 * completely. 3589 */ 3590 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3591 struct btrfs_root *root, 3592 struct btrfs_path *path, 3593 int data_size) 3594 { 3595 int ret; 3596 int progress = 0; 3597 int slot; 3598 u32 nritems; 3599 int space_needed = data_size; 3600 3601 slot = path->slots[0]; 3602 if (slot < btrfs_header_nritems(path->nodes[0])) 3603 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3604 3605 /* 3606 * try to push all the items after our slot into the 3607 * right leaf 3608 */ 3609 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 3610 if (ret < 0) 3611 return ret; 3612 3613 if (ret == 0) 3614 progress++; 3615 3616 nritems = btrfs_header_nritems(path->nodes[0]); 3617 /* 3618 * our goal is to get our slot at the start or end of a leaf. If 3619 * we've done so we're done 3620 */ 3621 if (path->slots[0] == 0 || path->slots[0] == nritems) 3622 return 0; 3623 3624 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3625 return 0; 3626 3627 /* try to push all the items before our slot into the next leaf */ 3628 slot = path->slots[0]; 3629 space_needed = data_size; 3630 if (slot > 0) 3631 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3632 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 3633 if (ret < 0) 3634 return ret; 3635 3636 if (ret == 0) 3637 progress++; 3638 3639 if (progress) 3640 return 0; 3641 return 1; 3642 } 3643 3644 /* 3645 * split the path's leaf in two, making sure there is at least data_size 3646 * available for the resulting leaf level of the path. 3647 * 3648 * returns 0 if all went well and < 0 on failure. 3649 */ 3650 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3651 struct btrfs_root *root, 3652 const struct btrfs_key *ins_key, 3653 struct btrfs_path *path, int data_size, 3654 bool extend) 3655 { 3656 struct btrfs_disk_key disk_key; 3657 struct extent_buffer *l; 3658 u32 nritems; 3659 int mid; 3660 int slot; 3661 struct extent_buffer *right; 3662 struct btrfs_fs_info *fs_info = root->fs_info; 3663 int ret = 0; 3664 int wret; 3665 int split; 3666 int num_doubles = 0; 3667 int tried_avoid_double = 0; 3668 3669 l = path->nodes[0]; 3670 slot = path->slots[0]; 3671 if (extend && data_size + btrfs_item_size(l, slot) + 3672 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 3673 return -EOVERFLOW; 3674 3675 /* first try to make some room by pushing left and right */ 3676 if (data_size && path->nodes[1]) { 3677 int space_needed = data_size; 3678 3679 if (slot < btrfs_header_nritems(l)) 3680 space_needed -= btrfs_leaf_free_space(l); 3681 3682 wret = push_leaf_right(trans, root, path, space_needed, 3683 space_needed, 0, 0); 3684 if (wret < 0) 3685 return wret; 3686 if (wret) { 3687 space_needed = data_size; 3688 if (slot > 0) 3689 space_needed -= btrfs_leaf_free_space(l); 3690 wret = push_leaf_left(trans, root, path, space_needed, 3691 space_needed, 0, (u32)-1); 3692 if (wret < 0) 3693 return wret; 3694 } 3695 l = path->nodes[0]; 3696 3697 /* did the pushes work? */ 3698 if (btrfs_leaf_free_space(l) >= data_size) 3699 return 0; 3700 } 3701 3702 if (!path->nodes[1]) { 3703 ret = insert_new_root(trans, root, path, 1); 3704 if (ret) 3705 return ret; 3706 } 3707 again: 3708 split = 1; 3709 l = path->nodes[0]; 3710 slot = path->slots[0]; 3711 nritems = btrfs_header_nritems(l); 3712 mid = (nritems + 1) / 2; 3713 3714 if (mid <= slot) { 3715 if (nritems == 1 || 3716 leaf_space_used(l, mid, nritems - mid) + data_size > 3717 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3718 if (slot >= nritems) { 3719 split = 0; 3720 } else { 3721 mid = slot; 3722 if (mid != nritems && 3723 leaf_space_used(l, mid, nritems - mid) + 3724 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3725 if (data_size && !tried_avoid_double) 3726 goto push_for_double; 3727 split = 2; 3728 } 3729 } 3730 } 3731 } else { 3732 if (leaf_space_used(l, 0, mid) + data_size > 3733 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3734 if (!extend && data_size && slot == 0) { 3735 split = 0; 3736 } else if ((extend || !data_size) && slot == 0) { 3737 mid = 1; 3738 } else { 3739 mid = slot; 3740 if (mid != nritems && 3741 leaf_space_used(l, mid, nritems - mid) + 3742 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3743 if (data_size && !tried_avoid_double) 3744 goto push_for_double; 3745 split = 2; 3746 } 3747 } 3748 } 3749 } 3750 3751 if (split == 0) 3752 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3753 else 3754 btrfs_item_key(l, &disk_key, mid); 3755 3756 /* 3757 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double 3758 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES 3759 * subclasses, which is 8 at the time of this patch, and we've maxed it 3760 * out. In the future we could add a 3761 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just 3762 * use BTRFS_NESTING_NEW_ROOT. 3763 */ 3764 right = btrfs_alloc_tree_block(trans, root, 0, btrfs_root_id(root), 3765 &disk_key, 0, l->start, 0, 0, 3766 num_doubles ? BTRFS_NESTING_NEW_ROOT : 3767 BTRFS_NESTING_SPLIT); 3768 if (IS_ERR(right)) 3769 return PTR_ERR(right); 3770 3771 root_add_used_bytes(root); 3772 3773 if (split == 0) { 3774 if (mid <= slot) { 3775 btrfs_set_header_nritems(right, 0); 3776 ret = insert_ptr(trans, path, &disk_key, 3777 right->start, path->slots[1] + 1, 1); 3778 if (ret < 0) { 3779 btrfs_tree_unlock(right); 3780 free_extent_buffer(right); 3781 return ret; 3782 } 3783 btrfs_tree_unlock(path->nodes[0]); 3784 free_extent_buffer(path->nodes[0]); 3785 path->nodes[0] = right; 3786 path->slots[0] = 0; 3787 path->slots[1] += 1; 3788 } else { 3789 btrfs_set_header_nritems(right, 0); 3790 ret = insert_ptr(trans, path, &disk_key, 3791 right->start, path->slots[1], 1); 3792 if (ret < 0) { 3793 btrfs_tree_unlock(right); 3794 free_extent_buffer(right); 3795 return ret; 3796 } 3797 btrfs_tree_unlock(path->nodes[0]); 3798 free_extent_buffer(path->nodes[0]); 3799 path->nodes[0] = right; 3800 path->slots[0] = 0; 3801 if (path->slots[1] == 0) 3802 fixup_low_keys(trans, path, &disk_key, 1); 3803 } 3804 /* 3805 * We create a new leaf 'right' for the required ins_len and 3806 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 3807 * the content of ins_len to 'right'. 3808 */ 3809 return ret; 3810 } 3811 3812 ret = copy_for_split(trans, path, l, right, slot, mid, nritems); 3813 if (ret < 0) { 3814 btrfs_tree_unlock(right); 3815 free_extent_buffer(right); 3816 return ret; 3817 } 3818 3819 if (split == 2) { 3820 BUG_ON(num_doubles != 0); 3821 num_doubles++; 3822 goto again; 3823 } 3824 3825 return 0; 3826 3827 push_for_double: 3828 push_for_double_split(trans, root, path, data_size); 3829 tried_avoid_double = 1; 3830 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3831 return 0; 3832 goto again; 3833 } 3834 3835 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3836 struct btrfs_root *root, 3837 struct btrfs_path *path, int ins_len) 3838 { 3839 struct btrfs_key key; 3840 struct extent_buffer *leaf; 3841 struct btrfs_file_extent_item *fi; 3842 u64 extent_len = 0; 3843 u32 item_size; 3844 int ret; 3845 3846 leaf = path->nodes[0]; 3847 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3848 3849 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3850 key.type != BTRFS_RAID_STRIPE_KEY && 3851 key.type != BTRFS_EXTENT_CSUM_KEY); 3852 3853 if (btrfs_leaf_free_space(leaf) >= ins_len) 3854 return 0; 3855 3856 item_size = btrfs_item_size(leaf, path->slots[0]); 3857 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3858 fi = btrfs_item_ptr(leaf, path->slots[0], 3859 struct btrfs_file_extent_item); 3860 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3861 } 3862 btrfs_release_path(path); 3863 3864 path->keep_locks = 1; 3865 path->search_for_split = 1; 3866 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3867 path->search_for_split = 0; 3868 if (ret > 0) 3869 ret = -EAGAIN; 3870 if (ret < 0) 3871 goto err; 3872 3873 ret = -EAGAIN; 3874 leaf = path->nodes[0]; 3875 /* if our item isn't there, return now */ 3876 if (item_size != btrfs_item_size(leaf, path->slots[0])) 3877 goto err; 3878 3879 /* the leaf has changed, it now has room. return now */ 3880 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 3881 goto err; 3882 3883 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3884 fi = btrfs_item_ptr(leaf, path->slots[0], 3885 struct btrfs_file_extent_item); 3886 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3887 goto err; 3888 } 3889 3890 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3891 if (ret) 3892 goto err; 3893 3894 path->keep_locks = 0; 3895 btrfs_unlock_up_safe(path, 1); 3896 return 0; 3897 err: 3898 path->keep_locks = 0; 3899 return ret; 3900 } 3901 3902 static noinline int split_item(struct btrfs_trans_handle *trans, 3903 struct btrfs_path *path, 3904 const struct btrfs_key *new_key, 3905 unsigned long split_offset) 3906 { 3907 struct extent_buffer *leaf; 3908 int orig_slot, slot; 3909 char *buf; 3910 u32 nritems; 3911 u32 item_size; 3912 u32 orig_offset; 3913 struct btrfs_disk_key disk_key; 3914 3915 leaf = path->nodes[0]; 3916 /* 3917 * Shouldn't happen because the caller must have previously called 3918 * setup_leaf_for_split() to make room for the new item in the leaf. 3919 */ 3920 if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item))) 3921 return -ENOSPC; 3922 3923 orig_slot = path->slots[0]; 3924 orig_offset = btrfs_item_offset(leaf, path->slots[0]); 3925 item_size = btrfs_item_size(leaf, path->slots[0]); 3926 3927 buf = kmalloc(item_size, GFP_NOFS); 3928 if (!buf) 3929 return -ENOMEM; 3930 3931 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3932 path->slots[0]), item_size); 3933 3934 slot = path->slots[0] + 1; 3935 nritems = btrfs_header_nritems(leaf); 3936 if (slot != nritems) { 3937 /* shift the items */ 3938 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot); 3939 } 3940 3941 btrfs_cpu_key_to_disk(&disk_key, new_key); 3942 btrfs_set_item_key(leaf, &disk_key, slot); 3943 3944 btrfs_set_item_offset(leaf, slot, orig_offset); 3945 btrfs_set_item_size(leaf, slot, item_size - split_offset); 3946 3947 btrfs_set_item_offset(leaf, orig_slot, 3948 orig_offset + item_size - split_offset); 3949 btrfs_set_item_size(leaf, orig_slot, split_offset); 3950 3951 btrfs_set_header_nritems(leaf, nritems + 1); 3952 3953 /* write the data for the start of the original item */ 3954 write_extent_buffer(leaf, buf, 3955 btrfs_item_ptr_offset(leaf, path->slots[0]), 3956 split_offset); 3957 3958 /* write the data for the new item */ 3959 write_extent_buffer(leaf, buf + split_offset, 3960 btrfs_item_ptr_offset(leaf, slot), 3961 item_size - split_offset); 3962 btrfs_mark_buffer_dirty(trans, leaf); 3963 3964 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 3965 kfree(buf); 3966 return 0; 3967 } 3968 3969 /* 3970 * This function splits a single item into two items, 3971 * giving 'new_key' to the new item and splitting the 3972 * old one at split_offset (from the start of the item). 3973 * 3974 * The path may be released by this operation. After 3975 * the split, the path is pointing to the old item. The 3976 * new item is going to be in the same node as the old one. 3977 * 3978 * Note, the item being split must be smaller enough to live alone on 3979 * a tree block with room for one extra struct btrfs_item 3980 * 3981 * This allows us to split the item in place, keeping a lock on the 3982 * leaf the entire time. 3983 */ 3984 int btrfs_split_item(struct btrfs_trans_handle *trans, 3985 struct btrfs_root *root, 3986 struct btrfs_path *path, 3987 const struct btrfs_key *new_key, 3988 unsigned long split_offset) 3989 { 3990 int ret; 3991 ret = setup_leaf_for_split(trans, root, path, 3992 sizeof(struct btrfs_item)); 3993 if (ret) 3994 return ret; 3995 3996 ret = split_item(trans, path, new_key, split_offset); 3997 return ret; 3998 } 3999 4000 /* 4001 * make the item pointed to by the path smaller. new_size indicates 4002 * how small to make it, and from_end tells us if we just chop bytes 4003 * off the end of the item or if we shift the item to chop bytes off 4004 * the front. 4005 */ 4006 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 4007 const struct btrfs_path *path, u32 new_size, int from_end) 4008 { 4009 int slot; 4010 struct extent_buffer *leaf; 4011 u32 nritems; 4012 unsigned int data_end; 4013 unsigned int old_data_start; 4014 unsigned int old_size; 4015 unsigned int size_diff; 4016 int i; 4017 4018 leaf = path->nodes[0]; 4019 slot = path->slots[0]; 4020 4021 old_size = btrfs_item_size(leaf, slot); 4022 if (old_size == new_size) 4023 return; 4024 4025 nritems = btrfs_header_nritems(leaf); 4026 data_end = leaf_data_end(leaf); 4027 4028 old_data_start = btrfs_item_offset(leaf, slot); 4029 4030 size_diff = old_size - new_size; 4031 4032 BUG_ON(slot < 0); 4033 BUG_ON(slot >= nritems); 4034 4035 /* 4036 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4037 */ 4038 /* first correct the data pointers */ 4039 for (i = slot; i < nritems; i++) { 4040 u32 ioff; 4041 4042 ioff = btrfs_item_offset(leaf, i); 4043 btrfs_set_item_offset(leaf, i, ioff + size_diff); 4044 } 4045 4046 /* shift the data */ 4047 if (from_end) { 4048 memmove_leaf_data(leaf, data_end + size_diff, data_end, 4049 old_data_start + new_size - data_end); 4050 } else { 4051 struct btrfs_disk_key disk_key; 4052 u64 offset; 4053 4054 btrfs_item_key(leaf, &disk_key, slot); 4055 4056 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4057 unsigned long ptr; 4058 struct btrfs_file_extent_item *fi; 4059 4060 fi = btrfs_item_ptr(leaf, slot, 4061 struct btrfs_file_extent_item); 4062 fi = (struct btrfs_file_extent_item *)( 4063 (unsigned long)fi - size_diff); 4064 4065 if (btrfs_file_extent_type(leaf, fi) == 4066 BTRFS_FILE_EXTENT_INLINE) { 4067 ptr = btrfs_item_ptr_offset(leaf, slot); 4068 memmove_extent_buffer(leaf, ptr, 4069 (unsigned long)fi, 4070 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4071 } 4072 } 4073 4074 memmove_leaf_data(leaf, data_end + size_diff, data_end, 4075 old_data_start - data_end); 4076 4077 offset = btrfs_disk_key_offset(&disk_key); 4078 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4079 btrfs_set_item_key(leaf, &disk_key, slot); 4080 if (slot == 0) 4081 fixup_low_keys(trans, path, &disk_key, 1); 4082 } 4083 4084 btrfs_set_item_size(leaf, slot, new_size); 4085 btrfs_mark_buffer_dirty(trans, leaf); 4086 4087 if (unlikely(btrfs_leaf_free_space(leaf) < 0)) { 4088 btrfs_print_leaf(leaf); 4089 BUG(); 4090 } 4091 } 4092 4093 /* 4094 * make the item pointed to by the path bigger, data_size is the added size. 4095 */ 4096 void btrfs_extend_item(struct btrfs_trans_handle *trans, 4097 const struct btrfs_path *path, u32 data_size) 4098 { 4099 int slot; 4100 struct extent_buffer *leaf; 4101 u32 nritems; 4102 unsigned int data_end; 4103 unsigned int old_data; 4104 unsigned int old_size; 4105 int i; 4106 4107 leaf = path->nodes[0]; 4108 4109 nritems = btrfs_header_nritems(leaf); 4110 data_end = leaf_data_end(leaf); 4111 4112 if (btrfs_leaf_free_space(leaf) < data_size) { 4113 btrfs_print_leaf(leaf); 4114 BUG(); 4115 } 4116 slot = path->slots[0]; 4117 old_data = btrfs_item_data_end(leaf, slot); 4118 4119 BUG_ON(slot < 0); 4120 if (unlikely(slot >= nritems)) { 4121 btrfs_print_leaf(leaf); 4122 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4123 slot, nritems); 4124 BUG(); 4125 } 4126 4127 /* 4128 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4129 */ 4130 /* first correct the data pointers */ 4131 for (i = slot; i < nritems; i++) { 4132 u32 ioff; 4133 4134 ioff = btrfs_item_offset(leaf, i); 4135 btrfs_set_item_offset(leaf, i, ioff - data_size); 4136 } 4137 4138 /* shift the data */ 4139 memmove_leaf_data(leaf, data_end - data_size, data_end, 4140 old_data - data_end); 4141 4142 data_end = old_data; 4143 old_size = btrfs_item_size(leaf, slot); 4144 btrfs_set_item_size(leaf, slot, old_size + data_size); 4145 btrfs_mark_buffer_dirty(trans, leaf); 4146 4147 if (unlikely(btrfs_leaf_free_space(leaf) < 0)) { 4148 btrfs_print_leaf(leaf); 4149 BUG(); 4150 } 4151 } 4152 4153 /* 4154 * Make space in the node before inserting one or more items. 4155 * 4156 * @trans: transaction handle 4157 * @root: root we are inserting items to 4158 * @path: points to the leaf/slot where we are going to insert new items 4159 * @batch: information about the batch of items to insert 4160 * 4161 * Main purpose is to save stack depth by doing the bulk of the work in a 4162 * function that doesn't call btrfs_search_slot 4163 */ 4164 static void setup_items_for_insert(struct btrfs_trans_handle *trans, 4165 struct btrfs_root *root, struct btrfs_path *path, 4166 const struct btrfs_item_batch *batch) 4167 { 4168 struct btrfs_fs_info *fs_info = root->fs_info; 4169 int i; 4170 u32 nritems; 4171 unsigned int data_end; 4172 struct btrfs_disk_key disk_key; 4173 struct extent_buffer *leaf; 4174 int slot; 4175 u32 total_size; 4176 4177 /* 4178 * Before anything else, update keys in the parent and other ancestors 4179 * if needed, then release the write locks on them, so that other tasks 4180 * can use them while we modify the leaf. 4181 */ 4182 if (path->slots[0] == 0) { 4183 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]); 4184 fixup_low_keys(trans, path, &disk_key, 1); 4185 } 4186 btrfs_unlock_up_safe(path, 1); 4187 4188 leaf = path->nodes[0]; 4189 slot = path->slots[0]; 4190 4191 nritems = btrfs_header_nritems(leaf); 4192 data_end = leaf_data_end(leaf); 4193 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); 4194 4195 if (unlikely(btrfs_leaf_free_space(leaf) < total_size)) { 4196 btrfs_print_leaf(leaf); 4197 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4198 total_size, btrfs_leaf_free_space(leaf)); 4199 BUG(); 4200 } 4201 4202 if (slot != nritems) { 4203 unsigned int old_data = btrfs_item_data_end(leaf, slot); 4204 4205 if (unlikely(old_data < data_end)) { 4206 btrfs_print_leaf(leaf); 4207 btrfs_crit(fs_info, 4208 "item at slot %d with data offset %u beyond data end of leaf %u", 4209 slot, old_data, data_end); 4210 BUG(); 4211 } 4212 /* 4213 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4214 */ 4215 /* first correct the data pointers */ 4216 for (i = slot; i < nritems; i++) { 4217 u32 ioff; 4218 4219 ioff = btrfs_item_offset(leaf, i); 4220 btrfs_set_item_offset(leaf, i, 4221 ioff - batch->total_data_size); 4222 } 4223 /* shift the items */ 4224 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot); 4225 4226 /* shift the data */ 4227 memmove_leaf_data(leaf, data_end - batch->total_data_size, 4228 data_end, old_data - data_end); 4229 data_end = old_data; 4230 } 4231 4232 /* setup the item for the new data */ 4233 for (i = 0; i < batch->nr; i++) { 4234 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]); 4235 btrfs_set_item_key(leaf, &disk_key, slot + i); 4236 data_end -= batch->data_sizes[i]; 4237 btrfs_set_item_offset(leaf, slot + i, data_end); 4238 btrfs_set_item_size(leaf, slot + i, batch->data_sizes[i]); 4239 } 4240 4241 btrfs_set_header_nritems(leaf, nritems + batch->nr); 4242 btrfs_mark_buffer_dirty(trans, leaf); 4243 4244 if (unlikely(btrfs_leaf_free_space(leaf) < 0)) { 4245 btrfs_print_leaf(leaf); 4246 BUG(); 4247 } 4248 } 4249 4250 /* 4251 * Insert a new item into a leaf. 4252 * 4253 * @trans: Transaction handle. 4254 * @root: The root of the btree. 4255 * @path: A path pointing to the target leaf and slot. 4256 * @key: The key of the new item. 4257 * @data_size: The size of the data associated with the new key. 4258 */ 4259 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans, 4260 struct btrfs_root *root, 4261 struct btrfs_path *path, 4262 const struct btrfs_key *key, 4263 u32 data_size) 4264 { 4265 struct btrfs_item_batch batch; 4266 4267 batch.keys = key; 4268 batch.data_sizes = &data_size; 4269 batch.total_data_size = data_size; 4270 batch.nr = 1; 4271 4272 setup_items_for_insert(trans, root, path, &batch); 4273 } 4274 4275 /* 4276 * Given a key and some data, insert items into the tree. 4277 * This does all the path init required, making room in the tree if needed. 4278 * 4279 * Returns: 0 on success 4280 * -EEXIST if the first key already exists 4281 * < 0 on other errors 4282 */ 4283 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4284 struct btrfs_root *root, 4285 struct btrfs_path *path, 4286 const struct btrfs_item_batch *batch) 4287 { 4288 int ret = 0; 4289 int slot; 4290 u32 total_size; 4291 4292 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); 4293 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1); 4294 if (ret == 0) 4295 return -EEXIST; 4296 if (ret < 0) 4297 return ret; 4298 4299 slot = path->slots[0]; 4300 BUG_ON(slot < 0); 4301 4302 setup_items_for_insert(trans, root, path, batch); 4303 return 0; 4304 } 4305 4306 /* 4307 * Given a key and some data, insert an item into the tree. 4308 * This does all the path init required, making room in the tree if needed. 4309 */ 4310 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4311 const struct btrfs_key *cpu_key, void *data, 4312 u32 data_size) 4313 { 4314 int ret = 0; 4315 BTRFS_PATH_AUTO_FREE(path); 4316 struct extent_buffer *leaf; 4317 unsigned long ptr; 4318 4319 path = btrfs_alloc_path(); 4320 if (!path) 4321 return -ENOMEM; 4322 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4323 if (!ret) { 4324 leaf = path->nodes[0]; 4325 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4326 write_extent_buffer(leaf, data, ptr, data_size); 4327 btrfs_mark_buffer_dirty(trans, leaf); 4328 } 4329 return ret; 4330 } 4331 4332 /* 4333 * This function duplicates an item, giving 'new_key' to the new item. 4334 * It guarantees both items live in the same tree leaf and the new item is 4335 * contiguous with the original item. 4336 * 4337 * This allows us to split a file extent in place, keeping a lock on the leaf 4338 * the entire time. 4339 */ 4340 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4341 struct btrfs_root *root, 4342 struct btrfs_path *path, 4343 const struct btrfs_key *new_key) 4344 { 4345 struct extent_buffer *leaf; 4346 int ret; 4347 u32 item_size; 4348 4349 leaf = path->nodes[0]; 4350 item_size = btrfs_item_size(leaf, path->slots[0]); 4351 ret = setup_leaf_for_split(trans, root, path, 4352 item_size + sizeof(struct btrfs_item)); 4353 if (ret) 4354 return ret; 4355 4356 path->slots[0]++; 4357 btrfs_setup_item_for_insert(trans, root, path, new_key, item_size); 4358 leaf = path->nodes[0]; 4359 memcpy_extent_buffer(leaf, 4360 btrfs_item_ptr_offset(leaf, path->slots[0]), 4361 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4362 item_size); 4363 return 0; 4364 } 4365 4366 /* 4367 * delete the pointer from a given node. 4368 * 4369 * the tree should have been previously balanced so the deletion does not 4370 * empty a node. 4371 * 4372 * This is exported for use inside btrfs-progs, don't un-export it. 4373 */ 4374 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4375 struct btrfs_path *path, int level, int slot) 4376 { 4377 struct extent_buffer *parent = path->nodes[level]; 4378 u32 nritems; 4379 int ret; 4380 4381 nritems = btrfs_header_nritems(parent); 4382 if (slot != nritems - 1) { 4383 if (level) { 4384 ret = btrfs_tree_mod_log_insert_move(parent, slot, 4385 slot + 1, nritems - slot - 1); 4386 if (unlikely(ret < 0)) { 4387 btrfs_abort_transaction(trans, ret); 4388 return ret; 4389 } 4390 } 4391 memmove_extent_buffer(parent, 4392 btrfs_node_key_ptr_offset(parent, slot), 4393 btrfs_node_key_ptr_offset(parent, slot + 1), 4394 sizeof(struct btrfs_key_ptr) * 4395 (nritems - slot - 1)); 4396 } else if (level) { 4397 ret = btrfs_tree_mod_log_insert_key(parent, slot, 4398 BTRFS_MOD_LOG_KEY_REMOVE); 4399 if (unlikely(ret < 0)) { 4400 btrfs_abort_transaction(trans, ret); 4401 return ret; 4402 } 4403 } 4404 4405 nritems--; 4406 btrfs_set_header_nritems(parent, nritems); 4407 if (nritems == 0 && parent == root->node) { 4408 BUG_ON(btrfs_header_level(root->node) != 1); 4409 /* just turn the root into a leaf and break */ 4410 btrfs_set_header_level(root->node, 0); 4411 } else if (slot == 0) { 4412 struct btrfs_disk_key disk_key; 4413 4414 btrfs_node_key(parent, &disk_key, 0); 4415 fixup_low_keys(trans, path, &disk_key, level + 1); 4416 } 4417 btrfs_mark_buffer_dirty(trans, parent); 4418 return 0; 4419 } 4420 4421 /* 4422 * a helper function to delete the leaf pointed to by path->slots[1] and 4423 * path->nodes[1]. 4424 * 4425 * This deletes the pointer in path->nodes[1] and frees the leaf 4426 * block extent. zero is returned if it all worked out, < 0 otherwise. 4427 * 4428 * The path must have already been setup for deleting the leaf, including 4429 * all the proper balancing. path->nodes[1] must be locked. 4430 */ 4431 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 4432 struct btrfs_root *root, 4433 struct btrfs_path *path, 4434 struct extent_buffer *leaf) 4435 { 4436 int ret; 4437 4438 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4439 ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]); 4440 if (ret < 0) 4441 return ret; 4442 4443 /* 4444 * btrfs_free_extent is expensive, we want to make sure we 4445 * aren't holding any locks when we call it 4446 */ 4447 btrfs_unlock_up_safe(path, 0); 4448 4449 root_sub_used_bytes(root); 4450 4451 refcount_inc(&leaf->refs); 4452 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1); 4453 free_extent_buffer_stale(leaf); 4454 if (ret < 0) 4455 btrfs_abort_transaction(trans, ret); 4456 4457 return ret; 4458 } 4459 /* 4460 * delete the item at the leaf level in path. If that empties 4461 * the leaf, remove it from the tree 4462 */ 4463 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4464 struct btrfs_path *path, int slot, int nr) 4465 { 4466 struct btrfs_fs_info *fs_info = root->fs_info; 4467 struct extent_buffer *leaf; 4468 int ret = 0; 4469 int wret; 4470 u32 nritems; 4471 4472 leaf = path->nodes[0]; 4473 nritems = btrfs_header_nritems(leaf); 4474 4475 if (slot + nr != nritems) { 4476 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1); 4477 const int data_end = leaf_data_end(leaf); 4478 u32 dsize = 0; 4479 int i; 4480 4481 for (i = 0; i < nr; i++) 4482 dsize += btrfs_item_size(leaf, slot + i); 4483 4484 memmove_leaf_data(leaf, data_end + dsize, data_end, 4485 last_off - data_end); 4486 4487 for (i = slot + nr; i < nritems; i++) { 4488 u32 ioff; 4489 4490 ioff = btrfs_item_offset(leaf, i); 4491 btrfs_set_item_offset(leaf, i, ioff + dsize); 4492 } 4493 4494 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr); 4495 } 4496 btrfs_set_header_nritems(leaf, nritems - nr); 4497 nritems -= nr; 4498 4499 /* delete the leaf if we've emptied it */ 4500 if (nritems == 0) { 4501 if (leaf == root->node) { 4502 btrfs_set_header_level(leaf, 0); 4503 } else { 4504 btrfs_clear_buffer_dirty(trans, leaf); 4505 ret = btrfs_del_leaf(trans, root, path, leaf); 4506 if (ret < 0) 4507 return ret; 4508 } 4509 } else { 4510 int used = leaf_space_used(leaf, 0, nritems); 4511 if (slot == 0) { 4512 struct btrfs_disk_key disk_key; 4513 4514 btrfs_item_key(leaf, &disk_key, 0); 4515 fixup_low_keys(trans, path, &disk_key, 1); 4516 } 4517 4518 /* 4519 * Try to delete the leaf if it is mostly empty. We do this by 4520 * trying to move all its items into its left and right neighbours. 4521 * If we can't move all the items, then we don't delete it - it's 4522 * not ideal, but future insertions might fill the leaf with more 4523 * items, or items from other leaves might be moved later into our 4524 * leaf due to deletions on those leaves. 4525 */ 4526 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4527 u32 min_push_space; 4528 4529 /* push_leaf_left fixes the path. 4530 * make sure the path still points to our leaf 4531 * for possible call to btrfs_del_ptr below 4532 */ 4533 slot = path->slots[1]; 4534 refcount_inc(&leaf->refs); 4535 /* 4536 * We want to be able to at least push one item to the 4537 * left neighbour leaf, and that's the first item. 4538 */ 4539 min_push_space = sizeof(struct btrfs_item) + 4540 btrfs_item_size(leaf, 0); 4541 wret = push_leaf_left(trans, root, path, 0, 4542 min_push_space, 1, (u32)-1); 4543 if (wret < 0 && wret != -ENOSPC) 4544 ret = wret; 4545 4546 if (path->nodes[0] == leaf && 4547 btrfs_header_nritems(leaf)) { 4548 /* 4549 * If we were not able to push all items from our 4550 * leaf to its left neighbour, then attempt to 4551 * either push all the remaining items to the 4552 * right neighbour or none. There's no advantage 4553 * in pushing only some items, instead of all, as 4554 * it's pointless to end up with a leaf having 4555 * too few items while the neighbours can be full 4556 * or nearly full. 4557 */ 4558 nritems = btrfs_header_nritems(leaf); 4559 min_push_space = leaf_space_used(leaf, 0, nritems); 4560 wret = push_leaf_right(trans, root, path, 0, 4561 min_push_space, 1, 0); 4562 if (wret < 0 && wret != -ENOSPC) 4563 ret = wret; 4564 } 4565 4566 if (btrfs_header_nritems(leaf) == 0) { 4567 path->slots[1] = slot; 4568 ret = btrfs_del_leaf(trans, root, path, leaf); 4569 if (ret < 0) 4570 return ret; 4571 free_extent_buffer(leaf); 4572 ret = 0; 4573 } else { 4574 /* if we're still in the path, make sure 4575 * we're dirty. Otherwise, one of the 4576 * push_leaf functions must have already 4577 * dirtied this buffer 4578 */ 4579 if (path->nodes[0] == leaf) 4580 btrfs_mark_buffer_dirty(trans, leaf); 4581 free_extent_buffer(leaf); 4582 } 4583 } else { 4584 btrfs_mark_buffer_dirty(trans, leaf); 4585 } 4586 } 4587 return ret; 4588 } 4589 4590 /* 4591 * A helper function to walk down the tree starting at min_key, and looking 4592 * for leaves that have a minimum transaction id. 4593 * This is used by the btree defrag code, and tree logging 4594 * 4595 * This does not cow, but it does stuff the starting key it finds back 4596 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4597 * key and get a writable path. 4598 * 4599 * min_trans indicates the oldest transaction that you are interested 4600 * in walking through. Any nodes or leaves older than min_trans are 4601 * skipped over (without reading them). 4602 * 4603 * returns zero if something useful was found, < 0 on error and 1 if there 4604 * was nothing in the tree that matched the search criteria. 4605 */ 4606 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4607 struct btrfs_path *path, 4608 u64 min_trans) 4609 { 4610 struct extent_buffer *cur; 4611 int slot; 4612 int sret; 4613 u32 nritems; 4614 int level; 4615 int ret = 1; 4616 int keep_locks = path->keep_locks; 4617 4618 ASSERT(!path->nowait); 4619 ASSERT(path->lowest_level == 0); 4620 path->keep_locks = 1; 4621 again: 4622 cur = btrfs_read_lock_root_node(root); 4623 level = btrfs_header_level(cur); 4624 WARN_ON(path->nodes[level]); 4625 path->nodes[level] = cur; 4626 path->locks[level] = BTRFS_READ_LOCK; 4627 4628 if (btrfs_header_generation(cur) < min_trans) { 4629 ret = 1; 4630 goto out; 4631 } 4632 while (1) { 4633 nritems = btrfs_header_nritems(cur); 4634 level = btrfs_header_level(cur); 4635 sret = btrfs_bin_search(cur, 0, min_key, &slot); 4636 if (sret < 0) { 4637 ret = sret; 4638 goto out; 4639 } 4640 4641 /* At level 0 we're done, setup the path and exit. */ 4642 if (level == 0) { 4643 if (slot >= nritems) 4644 goto find_next_key; 4645 ret = 0; 4646 path->slots[level] = slot; 4647 /* Save our key for returning back. */ 4648 btrfs_item_key_to_cpu(cur, min_key, slot); 4649 goto out; 4650 } 4651 if (sret && slot > 0) 4652 slot--; 4653 /* 4654 * check this node pointer against the min_trans parameters. 4655 * If it is too old, skip to the next one. 4656 */ 4657 while (slot < nritems) { 4658 u64 gen; 4659 4660 gen = btrfs_node_ptr_generation(cur, slot); 4661 if (gen < min_trans) { 4662 slot++; 4663 continue; 4664 } 4665 break; 4666 } 4667 find_next_key: 4668 /* 4669 * we didn't find a candidate key in this node, walk forward 4670 * and find another one 4671 */ 4672 path->slots[level] = slot; 4673 if (slot >= nritems) { 4674 sret = btrfs_find_next_key(root, path, min_key, level, 4675 min_trans); 4676 if (sret == 0) { 4677 btrfs_release_path(path); 4678 goto again; 4679 } else { 4680 goto out; 4681 } 4682 } 4683 cur = btrfs_read_node_slot(cur, slot); 4684 if (IS_ERR(cur)) { 4685 ret = PTR_ERR(cur); 4686 goto out; 4687 } 4688 4689 btrfs_tree_read_lock(cur); 4690 4691 path->locks[level - 1] = BTRFS_READ_LOCK; 4692 path->nodes[level - 1] = cur; 4693 unlock_up(path, level, 1, 0, NULL); 4694 } 4695 out: 4696 path->keep_locks = keep_locks; 4697 if (ret == 0) 4698 btrfs_unlock_up_safe(path, 1); 4699 return ret; 4700 } 4701 4702 /* 4703 * this is similar to btrfs_next_leaf, but does not try to preserve 4704 * and fixup the path. It looks for and returns the next key in the 4705 * tree based on the current path and the min_trans parameters. 4706 * 4707 * 0 is returned if another key is found, < 0 if there are any errors 4708 * and 1 is returned if there are no higher keys in the tree 4709 * 4710 * path->keep_locks should be set to 1 on the search made before 4711 * calling this function. 4712 */ 4713 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4714 struct btrfs_key *key, int level, u64 min_trans) 4715 { 4716 int slot; 4717 struct extent_buffer *c; 4718 4719 WARN_ON(!path->keep_locks && !path->skip_locking); 4720 while (level < BTRFS_MAX_LEVEL) { 4721 if (!path->nodes[level]) 4722 return 1; 4723 4724 slot = path->slots[level] + 1; 4725 c = path->nodes[level]; 4726 next: 4727 if (slot >= btrfs_header_nritems(c)) { 4728 int ret; 4729 int orig_lowest; 4730 struct btrfs_key cur_key; 4731 if (level + 1 >= BTRFS_MAX_LEVEL || 4732 !path->nodes[level + 1]) 4733 return 1; 4734 4735 if (path->locks[level + 1] || path->skip_locking) { 4736 level++; 4737 continue; 4738 } 4739 4740 slot = btrfs_header_nritems(c) - 1; 4741 if (level == 0) 4742 btrfs_item_key_to_cpu(c, &cur_key, slot); 4743 else 4744 btrfs_node_key_to_cpu(c, &cur_key, slot); 4745 4746 orig_lowest = path->lowest_level; 4747 btrfs_release_path(path); 4748 path->lowest_level = level; 4749 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4750 0, 0); 4751 path->lowest_level = orig_lowest; 4752 if (ret < 0) 4753 return ret; 4754 4755 c = path->nodes[level]; 4756 slot = path->slots[level]; 4757 if (ret == 0) 4758 slot++; 4759 goto next; 4760 } 4761 4762 if (level == 0) 4763 btrfs_item_key_to_cpu(c, key, slot); 4764 else { 4765 u64 gen = btrfs_node_ptr_generation(c, slot); 4766 4767 if (gen < min_trans) { 4768 slot++; 4769 goto next; 4770 } 4771 btrfs_node_key_to_cpu(c, key, slot); 4772 } 4773 return 0; 4774 } 4775 return 1; 4776 } 4777 4778 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 4779 u64 time_seq) 4780 { 4781 int slot; 4782 int level; 4783 struct extent_buffer *c; 4784 struct extent_buffer *next; 4785 struct btrfs_fs_info *fs_info = root->fs_info; 4786 struct btrfs_key key; 4787 bool need_commit_sem = false; 4788 u32 nritems; 4789 int ret; 4790 int i; 4791 4792 /* 4793 * The nowait semantics are used only for write paths, where we don't 4794 * use the tree mod log and sequence numbers. 4795 */ 4796 if (time_seq) 4797 ASSERT(!path->nowait); 4798 4799 nritems = btrfs_header_nritems(path->nodes[0]); 4800 if (nritems == 0) 4801 return 1; 4802 4803 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4804 again: 4805 level = 1; 4806 next = NULL; 4807 btrfs_release_path(path); 4808 4809 path->keep_locks = 1; 4810 4811 if (time_seq) { 4812 ret = btrfs_search_old_slot(root, &key, path, time_seq); 4813 } else { 4814 if (path->need_commit_sem) { 4815 path->need_commit_sem = 0; 4816 need_commit_sem = true; 4817 if (path->nowait) { 4818 if (!down_read_trylock(&fs_info->commit_root_sem)) { 4819 ret = -EAGAIN; 4820 goto done; 4821 } 4822 } else { 4823 down_read(&fs_info->commit_root_sem); 4824 } 4825 } 4826 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4827 } 4828 path->keep_locks = 0; 4829 4830 if (ret < 0) 4831 goto done; 4832 4833 nritems = btrfs_header_nritems(path->nodes[0]); 4834 /* 4835 * by releasing the path above we dropped all our locks. A balance 4836 * could have added more items next to the key that used to be 4837 * at the very end of the block. So, check again here and 4838 * advance the path if there are now more items available. 4839 */ 4840 if (nritems > 0 && path->slots[0] < nritems - 1) { 4841 if (ret == 0) 4842 path->slots[0]++; 4843 ret = 0; 4844 goto done; 4845 } 4846 /* 4847 * So the above check misses one case: 4848 * - after releasing the path above, someone has removed the item that 4849 * used to be at the very end of the block, and balance between leafs 4850 * gets another one with bigger key.offset to replace it. 4851 * 4852 * This one should be returned as well, or we can get leaf corruption 4853 * later(esp. in __btrfs_drop_extents()). 4854 * 4855 * And a bit more explanation about this check, 4856 * with ret > 0, the key isn't found, the path points to the slot 4857 * where it should be inserted, so the path->slots[0] item must be the 4858 * bigger one. 4859 */ 4860 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 4861 ret = 0; 4862 goto done; 4863 } 4864 4865 while (level < BTRFS_MAX_LEVEL) { 4866 if (!path->nodes[level]) { 4867 ret = 1; 4868 goto done; 4869 } 4870 4871 slot = path->slots[level] + 1; 4872 c = path->nodes[level]; 4873 if (slot >= btrfs_header_nritems(c)) { 4874 level++; 4875 if (level == BTRFS_MAX_LEVEL) { 4876 ret = 1; 4877 goto done; 4878 } 4879 continue; 4880 } 4881 4882 4883 /* 4884 * Our current level is where we're going to start from, and to 4885 * make sure lockdep doesn't complain we need to drop our locks 4886 * and nodes from 0 to our current level. 4887 */ 4888 for (i = 0; i < level; i++) { 4889 if (path->locks[level]) { 4890 btrfs_tree_read_unlock(path->nodes[i]); 4891 path->locks[i] = 0; 4892 } 4893 free_extent_buffer(path->nodes[i]); 4894 path->nodes[i] = NULL; 4895 } 4896 4897 next = c; 4898 ret = read_block_for_search(root, path, &next, slot, &key); 4899 if (ret == -EAGAIN && !path->nowait) 4900 goto again; 4901 4902 if (ret < 0) { 4903 btrfs_release_path(path); 4904 goto done; 4905 } 4906 4907 if (!path->skip_locking) { 4908 ret = btrfs_try_tree_read_lock(next); 4909 if (!ret && path->nowait) { 4910 ret = -EAGAIN; 4911 goto done; 4912 } 4913 if (!ret && time_seq) { 4914 /* 4915 * If we don't get the lock, we may be racing 4916 * with push_leaf_left, holding that lock while 4917 * itself waiting for the leaf we've currently 4918 * locked. To solve this situation, we give up 4919 * on our lock and cycle. 4920 */ 4921 free_extent_buffer(next); 4922 btrfs_release_path(path); 4923 cond_resched(); 4924 goto again; 4925 } 4926 if (!ret) 4927 btrfs_tree_read_lock(next); 4928 } 4929 break; 4930 } 4931 path->slots[level] = slot; 4932 while (1) { 4933 level--; 4934 path->nodes[level] = next; 4935 path->slots[level] = 0; 4936 if (!path->skip_locking) 4937 path->locks[level] = BTRFS_READ_LOCK; 4938 if (!level) 4939 break; 4940 4941 ret = read_block_for_search(root, path, &next, 0, &key); 4942 if (ret == -EAGAIN && !path->nowait) 4943 goto again; 4944 4945 if (ret < 0) { 4946 btrfs_release_path(path); 4947 goto done; 4948 } 4949 4950 if (!path->skip_locking) { 4951 if (path->nowait) { 4952 if (!btrfs_try_tree_read_lock(next)) { 4953 ret = -EAGAIN; 4954 goto done; 4955 } 4956 } else { 4957 btrfs_tree_read_lock(next); 4958 } 4959 } 4960 } 4961 ret = 0; 4962 done: 4963 unlock_up(path, 0, 1, 0, NULL); 4964 if (need_commit_sem) { 4965 int ret2; 4966 4967 path->need_commit_sem = 1; 4968 ret2 = finish_need_commit_sem_search(path); 4969 up_read(&fs_info->commit_root_sem); 4970 if (ret2) 4971 ret = ret2; 4972 } 4973 4974 return ret; 4975 } 4976 4977 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq) 4978 { 4979 path->slots[0]++; 4980 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 4981 return btrfs_next_old_leaf(root, path, time_seq); 4982 return 0; 4983 } 4984 4985 /* 4986 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4987 * searching until it gets past min_objectid or finds an item of 'type' 4988 * 4989 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4990 */ 4991 int btrfs_previous_item(struct btrfs_root *root, 4992 struct btrfs_path *path, u64 min_objectid, 4993 int type) 4994 { 4995 struct btrfs_key found_key; 4996 struct extent_buffer *leaf; 4997 u32 nritems; 4998 int ret; 4999 5000 while (1) { 5001 if (path->slots[0] == 0) { 5002 ret = btrfs_prev_leaf(root, path); 5003 if (ret != 0) 5004 return ret; 5005 } else { 5006 path->slots[0]--; 5007 } 5008 leaf = path->nodes[0]; 5009 nritems = btrfs_header_nritems(leaf); 5010 if (nritems == 0) 5011 return 1; 5012 if (path->slots[0] == nritems) 5013 path->slots[0]--; 5014 5015 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5016 if (found_key.objectid < min_objectid) 5017 break; 5018 if (found_key.type == type) 5019 return 0; 5020 if (found_key.objectid == min_objectid && 5021 found_key.type < type) 5022 break; 5023 } 5024 return 1; 5025 } 5026 5027 /* 5028 * search in extent tree to find a previous Metadata/Data extent item with 5029 * min objecitd. 5030 * 5031 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5032 */ 5033 int btrfs_previous_extent_item(struct btrfs_root *root, 5034 struct btrfs_path *path, u64 min_objectid) 5035 { 5036 struct btrfs_key found_key; 5037 struct extent_buffer *leaf; 5038 u32 nritems; 5039 int ret; 5040 5041 while (1) { 5042 if (path->slots[0] == 0) { 5043 ret = btrfs_prev_leaf(root, path); 5044 if (ret != 0) 5045 return ret; 5046 } else { 5047 path->slots[0]--; 5048 } 5049 leaf = path->nodes[0]; 5050 nritems = btrfs_header_nritems(leaf); 5051 if (nritems == 0) 5052 return 1; 5053 if (path->slots[0] == nritems) 5054 path->slots[0]--; 5055 5056 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5057 if (found_key.objectid < min_objectid) 5058 break; 5059 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5060 found_key.type == BTRFS_METADATA_ITEM_KEY) 5061 return 0; 5062 if (found_key.objectid == min_objectid && 5063 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5064 break; 5065 } 5066 return 1; 5067 } 5068 5069 int __init btrfs_ctree_init(void) 5070 { 5071 btrfs_path_cachep = KMEM_CACHE(btrfs_path, 0); 5072 if (!btrfs_path_cachep) 5073 return -ENOMEM; 5074 return 0; 5075 } 5076 5077 void __cold btrfs_ctree_exit(void) 5078 { 5079 kmem_cache_destroy(btrfs_path_cachep); 5080 } 5081