1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include <linux/vmalloc.h> 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "print-tree.h" 27 #include "locking.h" 28 29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_path *path, int level); 31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 32 *root, struct btrfs_key *ins_key, 33 struct btrfs_path *path, int data_size, int extend); 34 static int push_node_left(struct btrfs_trans_handle *trans, 35 struct btrfs_root *root, struct extent_buffer *dst, 36 struct extent_buffer *src, int empty); 37 static int balance_node_right(struct btrfs_trans_handle *trans, 38 struct btrfs_root *root, 39 struct extent_buffer *dst_buf, 40 struct extent_buffer *src_buf); 41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 42 int level, int slot); 43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 44 struct extent_buffer *eb); 45 46 struct btrfs_path *btrfs_alloc_path(void) 47 { 48 struct btrfs_path *path; 49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 50 return path; 51 } 52 53 /* 54 * set all locked nodes in the path to blocking locks. This should 55 * be done before scheduling 56 */ 57 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 58 { 59 int i; 60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 61 if (!p->nodes[i] || !p->locks[i]) 62 continue; 63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 64 if (p->locks[i] == BTRFS_READ_LOCK) 65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 66 else if (p->locks[i] == BTRFS_WRITE_LOCK) 67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 68 } 69 } 70 71 /* 72 * reset all the locked nodes in the patch to spinning locks. 73 * 74 * held is used to keep lockdep happy, when lockdep is enabled 75 * we set held to a blocking lock before we go around and 76 * retake all the spinlocks in the path. You can safely use NULL 77 * for held 78 */ 79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 80 struct extent_buffer *held, int held_rw) 81 { 82 int i; 83 84 if (held) { 85 btrfs_set_lock_blocking_rw(held, held_rw); 86 if (held_rw == BTRFS_WRITE_LOCK) 87 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 88 else if (held_rw == BTRFS_READ_LOCK) 89 held_rw = BTRFS_READ_LOCK_BLOCKING; 90 } 91 btrfs_set_path_blocking(p); 92 93 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 94 if (p->nodes[i] && p->locks[i]) { 95 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 96 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 97 p->locks[i] = BTRFS_WRITE_LOCK; 98 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 99 p->locks[i] = BTRFS_READ_LOCK; 100 } 101 } 102 103 if (held) 104 btrfs_clear_lock_blocking_rw(held, held_rw); 105 } 106 107 /* this also releases the path */ 108 void btrfs_free_path(struct btrfs_path *p) 109 { 110 if (!p) 111 return; 112 btrfs_release_path(p); 113 kmem_cache_free(btrfs_path_cachep, p); 114 } 115 116 /* 117 * path release drops references on the extent buffers in the path 118 * and it drops any locks held by this path 119 * 120 * It is safe to call this on paths that no locks or extent buffers held. 121 */ 122 noinline void btrfs_release_path(struct btrfs_path *p) 123 { 124 int i; 125 126 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 127 p->slots[i] = 0; 128 if (!p->nodes[i]) 129 continue; 130 if (p->locks[i]) { 131 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 132 p->locks[i] = 0; 133 } 134 free_extent_buffer(p->nodes[i]); 135 p->nodes[i] = NULL; 136 } 137 } 138 139 /* 140 * safely gets a reference on the root node of a tree. A lock 141 * is not taken, so a concurrent writer may put a different node 142 * at the root of the tree. See btrfs_lock_root_node for the 143 * looping required. 144 * 145 * The extent buffer returned by this has a reference taken, so 146 * it won't disappear. It may stop being the root of the tree 147 * at any time because there are no locks held. 148 */ 149 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 150 { 151 struct extent_buffer *eb; 152 153 while (1) { 154 rcu_read_lock(); 155 eb = rcu_dereference(root->node); 156 157 /* 158 * RCU really hurts here, we could free up the root node because 159 * it was COWed but we may not get the new root node yet so do 160 * the inc_not_zero dance and if it doesn't work then 161 * synchronize_rcu and try again. 162 */ 163 if (atomic_inc_not_zero(&eb->refs)) { 164 rcu_read_unlock(); 165 break; 166 } 167 rcu_read_unlock(); 168 synchronize_rcu(); 169 } 170 return eb; 171 } 172 173 /* loop around taking references on and locking the root node of the 174 * tree until you end up with a lock on the root. A locked buffer 175 * is returned, with a reference held. 176 */ 177 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 178 { 179 struct extent_buffer *eb; 180 181 while (1) { 182 eb = btrfs_root_node(root); 183 btrfs_tree_lock(eb); 184 if (eb == root->node) 185 break; 186 btrfs_tree_unlock(eb); 187 free_extent_buffer(eb); 188 } 189 return eb; 190 } 191 192 /* loop around taking references on and locking the root node of the 193 * tree until you end up with a lock on the root. A locked buffer 194 * is returned, with a reference held. 195 */ 196 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 197 { 198 struct extent_buffer *eb; 199 200 while (1) { 201 eb = btrfs_root_node(root); 202 btrfs_tree_read_lock(eb); 203 if (eb == root->node) 204 break; 205 btrfs_tree_read_unlock(eb); 206 free_extent_buffer(eb); 207 } 208 return eb; 209 } 210 211 /* cowonly root (everything not a reference counted cow subvolume), just get 212 * put onto a simple dirty list. transaction.c walks this to make sure they 213 * get properly updated on disk. 214 */ 215 static void add_root_to_dirty_list(struct btrfs_root *root) 216 { 217 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 218 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 219 return; 220 221 spin_lock(&root->fs_info->trans_lock); 222 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 223 /* Want the extent tree to be the last on the list */ 224 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID) 225 list_move_tail(&root->dirty_list, 226 &root->fs_info->dirty_cowonly_roots); 227 else 228 list_move(&root->dirty_list, 229 &root->fs_info->dirty_cowonly_roots); 230 } 231 spin_unlock(&root->fs_info->trans_lock); 232 } 233 234 /* 235 * used by snapshot creation to make a copy of a root for a tree with 236 * a given objectid. The buffer with the new root node is returned in 237 * cow_ret, and this func returns zero on success or a negative error code. 238 */ 239 int btrfs_copy_root(struct btrfs_trans_handle *trans, 240 struct btrfs_root *root, 241 struct extent_buffer *buf, 242 struct extent_buffer **cow_ret, u64 new_root_objectid) 243 { 244 struct extent_buffer *cow; 245 int ret = 0; 246 int level; 247 struct btrfs_disk_key disk_key; 248 249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 250 trans->transid != root->fs_info->running_transaction->transid); 251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 252 trans->transid != root->last_trans); 253 254 level = btrfs_header_level(buf); 255 if (level == 0) 256 btrfs_item_key(buf, &disk_key, 0); 257 else 258 btrfs_node_key(buf, &disk_key, 0); 259 260 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 261 &disk_key, level, buf->start, 0); 262 if (IS_ERR(cow)) 263 return PTR_ERR(cow); 264 265 copy_extent_buffer(cow, buf, 0, 0, cow->len); 266 btrfs_set_header_bytenr(cow, cow->start); 267 btrfs_set_header_generation(cow, trans->transid); 268 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 269 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 270 BTRFS_HEADER_FLAG_RELOC); 271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 272 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 273 else 274 btrfs_set_header_owner(cow, new_root_objectid); 275 276 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 277 BTRFS_FSID_SIZE); 278 279 WARN_ON(btrfs_header_generation(buf) > trans->transid); 280 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 281 ret = btrfs_inc_ref(trans, root, cow, 1); 282 else 283 ret = btrfs_inc_ref(trans, root, cow, 0); 284 285 if (ret) 286 return ret; 287 288 btrfs_mark_buffer_dirty(cow); 289 *cow_ret = cow; 290 return 0; 291 } 292 293 enum mod_log_op { 294 MOD_LOG_KEY_REPLACE, 295 MOD_LOG_KEY_ADD, 296 MOD_LOG_KEY_REMOVE, 297 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 298 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 299 MOD_LOG_MOVE_KEYS, 300 MOD_LOG_ROOT_REPLACE, 301 }; 302 303 struct tree_mod_move { 304 int dst_slot; 305 int nr_items; 306 }; 307 308 struct tree_mod_root { 309 u64 logical; 310 u8 level; 311 }; 312 313 struct tree_mod_elem { 314 struct rb_node node; 315 u64 logical; 316 u64 seq; 317 enum mod_log_op op; 318 319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 320 int slot; 321 322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 323 u64 generation; 324 325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 326 struct btrfs_disk_key key; 327 u64 blockptr; 328 329 /* this is used for op == MOD_LOG_MOVE_KEYS */ 330 struct tree_mod_move move; 331 332 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 333 struct tree_mod_root old_root; 334 }; 335 336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 337 { 338 read_lock(&fs_info->tree_mod_log_lock); 339 } 340 341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 342 { 343 read_unlock(&fs_info->tree_mod_log_lock); 344 } 345 346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 347 { 348 write_lock(&fs_info->tree_mod_log_lock); 349 } 350 351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 352 { 353 write_unlock(&fs_info->tree_mod_log_lock); 354 } 355 356 /* 357 * Pull a new tree mod seq number for our operation. 358 */ 359 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 360 { 361 return atomic64_inc_return(&fs_info->tree_mod_seq); 362 } 363 364 /* 365 * This adds a new blocker to the tree mod log's blocker list if the @elem 366 * passed does not already have a sequence number set. So when a caller expects 367 * to record tree modifications, it should ensure to set elem->seq to zero 368 * before calling btrfs_get_tree_mod_seq. 369 * Returns a fresh, unused tree log modification sequence number, even if no new 370 * blocker was added. 371 */ 372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 373 struct seq_list *elem) 374 { 375 tree_mod_log_write_lock(fs_info); 376 spin_lock(&fs_info->tree_mod_seq_lock); 377 if (!elem->seq) { 378 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 379 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 380 } 381 spin_unlock(&fs_info->tree_mod_seq_lock); 382 tree_mod_log_write_unlock(fs_info); 383 384 return elem->seq; 385 } 386 387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 388 struct seq_list *elem) 389 { 390 struct rb_root *tm_root; 391 struct rb_node *node; 392 struct rb_node *next; 393 struct seq_list *cur_elem; 394 struct tree_mod_elem *tm; 395 u64 min_seq = (u64)-1; 396 u64 seq_putting = elem->seq; 397 398 if (!seq_putting) 399 return; 400 401 spin_lock(&fs_info->tree_mod_seq_lock); 402 list_del(&elem->list); 403 elem->seq = 0; 404 405 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 406 if (cur_elem->seq < min_seq) { 407 if (seq_putting > cur_elem->seq) { 408 /* 409 * blocker with lower sequence number exists, we 410 * cannot remove anything from the log 411 */ 412 spin_unlock(&fs_info->tree_mod_seq_lock); 413 return; 414 } 415 min_seq = cur_elem->seq; 416 } 417 } 418 spin_unlock(&fs_info->tree_mod_seq_lock); 419 420 /* 421 * anything that's lower than the lowest existing (read: blocked) 422 * sequence number can be removed from the tree. 423 */ 424 tree_mod_log_write_lock(fs_info); 425 tm_root = &fs_info->tree_mod_log; 426 for (node = rb_first(tm_root); node; node = next) { 427 next = rb_next(node); 428 tm = container_of(node, struct tree_mod_elem, node); 429 if (tm->seq > min_seq) 430 continue; 431 rb_erase(node, tm_root); 432 kfree(tm); 433 } 434 tree_mod_log_write_unlock(fs_info); 435 } 436 437 /* 438 * key order of the log: 439 * node/leaf start address -> sequence 440 * 441 * The 'start address' is the logical address of the *new* root node 442 * for root replace operations, or the logical address of the affected 443 * block for all other operations. 444 * 445 * Note: must be called with write lock (tree_mod_log_write_lock). 446 */ 447 static noinline int 448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 449 { 450 struct rb_root *tm_root; 451 struct rb_node **new; 452 struct rb_node *parent = NULL; 453 struct tree_mod_elem *cur; 454 455 BUG_ON(!tm); 456 457 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 458 459 tm_root = &fs_info->tree_mod_log; 460 new = &tm_root->rb_node; 461 while (*new) { 462 cur = container_of(*new, struct tree_mod_elem, node); 463 parent = *new; 464 if (cur->logical < tm->logical) 465 new = &((*new)->rb_left); 466 else if (cur->logical > tm->logical) 467 new = &((*new)->rb_right); 468 else if (cur->seq < tm->seq) 469 new = &((*new)->rb_left); 470 else if (cur->seq > tm->seq) 471 new = &((*new)->rb_right); 472 else 473 return -EEXIST; 474 } 475 476 rb_link_node(&tm->node, parent, new); 477 rb_insert_color(&tm->node, tm_root); 478 return 0; 479 } 480 481 /* 482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 483 * returns zero with the tree_mod_log_lock acquired. The caller must hold 484 * this until all tree mod log insertions are recorded in the rb tree and then 485 * call tree_mod_log_write_unlock() to release. 486 */ 487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 488 struct extent_buffer *eb) { 489 smp_mb(); 490 if (list_empty(&(fs_info)->tree_mod_seq_list)) 491 return 1; 492 if (eb && btrfs_header_level(eb) == 0) 493 return 1; 494 495 tree_mod_log_write_lock(fs_info); 496 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 497 tree_mod_log_write_unlock(fs_info); 498 return 1; 499 } 500 501 return 0; 502 } 503 504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 505 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 506 struct extent_buffer *eb) 507 { 508 smp_mb(); 509 if (list_empty(&(fs_info)->tree_mod_seq_list)) 510 return 0; 511 if (eb && btrfs_header_level(eb) == 0) 512 return 0; 513 514 return 1; 515 } 516 517 static struct tree_mod_elem * 518 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 519 enum mod_log_op op, gfp_t flags) 520 { 521 struct tree_mod_elem *tm; 522 523 tm = kzalloc(sizeof(*tm), flags); 524 if (!tm) 525 return NULL; 526 527 tm->logical = eb->start; 528 if (op != MOD_LOG_KEY_ADD) { 529 btrfs_node_key(eb, &tm->key, slot); 530 tm->blockptr = btrfs_node_blockptr(eb, slot); 531 } 532 tm->op = op; 533 tm->slot = slot; 534 tm->generation = btrfs_node_ptr_generation(eb, slot); 535 RB_CLEAR_NODE(&tm->node); 536 537 return tm; 538 } 539 540 static noinline int 541 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 542 struct extent_buffer *eb, int slot, 543 enum mod_log_op op, gfp_t flags) 544 { 545 struct tree_mod_elem *tm; 546 int ret; 547 548 if (!tree_mod_need_log(fs_info, eb)) 549 return 0; 550 551 tm = alloc_tree_mod_elem(eb, slot, op, flags); 552 if (!tm) 553 return -ENOMEM; 554 555 if (tree_mod_dont_log(fs_info, eb)) { 556 kfree(tm); 557 return 0; 558 } 559 560 ret = __tree_mod_log_insert(fs_info, tm); 561 tree_mod_log_write_unlock(fs_info); 562 if (ret) 563 kfree(tm); 564 565 return ret; 566 } 567 568 static noinline int 569 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 570 struct extent_buffer *eb, int dst_slot, int src_slot, 571 int nr_items, gfp_t flags) 572 { 573 struct tree_mod_elem *tm = NULL; 574 struct tree_mod_elem **tm_list = NULL; 575 int ret = 0; 576 int i; 577 int locked = 0; 578 579 if (!tree_mod_need_log(fs_info, eb)) 580 return 0; 581 582 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags); 583 if (!tm_list) 584 return -ENOMEM; 585 586 tm = kzalloc(sizeof(*tm), flags); 587 if (!tm) { 588 ret = -ENOMEM; 589 goto free_tms; 590 } 591 592 tm->logical = eb->start; 593 tm->slot = src_slot; 594 tm->move.dst_slot = dst_slot; 595 tm->move.nr_items = nr_items; 596 tm->op = MOD_LOG_MOVE_KEYS; 597 598 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 599 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 600 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags); 601 if (!tm_list[i]) { 602 ret = -ENOMEM; 603 goto free_tms; 604 } 605 } 606 607 if (tree_mod_dont_log(fs_info, eb)) 608 goto free_tms; 609 locked = 1; 610 611 /* 612 * When we override something during the move, we log these removals. 613 * This can only happen when we move towards the beginning of the 614 * buffer, i.e. dst_slot < src_slot. 615 */ 616 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 617 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 618 if (ret) 619 goto free_tms; 620 } 621 622 ret = __tree_mod_log_insert(fs_info, tm); 623 if (ret) 624 goto free_tms; 625 tree_mod_log_write_unlock(fs_info); 626 kfree(tm_list); 627 628 return 0; 629 free_tms: 630 for (i = 0; i < nr_items; i++) { 631 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 632 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 633 kfree(tm_list[i]); 634 } 635 if (locked) 636 tree_mod_log_write_unlock(fs_info); 637 kfree(tm_list); 638 kfree(tm); 639 640 return ret; 641 } 642 643 static inline int 644 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 645 struct tree_mod_elem **tm_list, 646 int nritems) 647 { 648 int i, j; 649 int ret; 650 651 for (i = nritems - 1; i >= 0; i--) { 652 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 653 if (ret) { 654 for (j = nritems - 1; j > i; j--) 655 rb_erase(&tm_list[j]->node, 656 &fs_info->tree_mod_log); 657 return ret; 658 } 659 } 660 661 return 0; 662 } 663 664 static noinline int 665 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 666 struct extent_buffer *old_root, 667 struct extent_buffer *new_root, gfp_t flags, 668 int log_removal) 669 { 670 struct tree_mod_elem *tm = NULL; 671 struct tree_mod_elem **tm_list = NULL; 672 int nritems = 0; 673 int ret = 0; 674 int i; 675 676 if (!tree_mod_need_log(fs_info, NULL)) 677 return 0; 678 679 if (log_removal && btrfs_header_level(old_root) > 0) { 680 nritems = btrfs_header_nritems(old_root); 681 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 682 flags); 683 if (!tm_list) { 684 ret = -ENOMEM; 685 goto free_tms; 686 } 687 for (i = 0; i < nritems; i++) { 688 tm_list[i] = alloc_tree_mod_elem(old_root, i, 689 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags); 690 if (!tm_list[i]) { 691 ret = -ENOMEM; 692 goto free_tms; 693 } 694 } 695 } 696 697 tm = kzalloc(sizeof(*tm), flags); 698 if (!tm) { 699 ret = -ENOMEM; 700 goto free_tms; 701 } 702 703 tm->logical = new_root->start; 704 tm->old_root.logical = old_root->start; 705 tm->old_root.level = btrfs_header_level(old_root); 706 tm->generation = btrfs_header_generation(old_root); 707 tm->op = MOD_LOG_ROOT_REPLACE; 708 709 if (tree_mod_dont_log(fs_info, NULL)) 710 goto free_tms; 711 712 if (tm_list) 713 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 714 if (!ret) 715 ret = __tree_mod_log_insert(fs_info, tm); 716 717 tree_mod_log_write_unlock(fs_info); 718 if (ret) 719 goto free_tms; 720 kfree(tm_list); 721 722 return ret; 723 724 free_tms: 725 if (tm_list) { 726 for (i = 0; i < nritems; i++) 727 kfree(tm_list[i]); 728 kfree(tm_list); 729 } 730 kfree(tm); 731 732 return ret; 733 } 734 735 static struct tree_mod_elem * 736 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 737 int smallest) 738 { 739 struct rb_root *tm_root; 740 struct rb_node *node; 741 struct tree_mod_elem *cur = NULL; 742 struct tree_mod_elem *found = NULL; 743 744 tree_mod_log_read_lock(fs_info); 745 tm_root = &fs_info->tree_mod_log; 746 node = tm_root->rb_node; 747 while (node) { 748 cur = container_of(node, struct tree_mod_elem, node); 749 if (cur->logical < start) { 750 node = node->rb_left; 751 } else if (cur->logical > start) { 752 node = node->rb_right; 753 } else if (cur->seq < min_seq) { 754 node = node->rb_left; 755 } else if (!smallest) { 756 /* we want the node with the highest seq */ 757 if (found) 758 BUG_ON(found->seq > cur->seq); 759 found = cur; 760 node = node->rb_left; 761 } else if (cur->seq > min_seq) { 762 /* we want the node with the smallest seq */ 763 if (found) 764 BUG_ON(found->seq < cur->seq); 765 found = cur; 766 node = node->rb_right; 767 } else { 768 found = cur; 769 break; 770 } 771 } 772 tree_mod_log_read_unlock(fs_info); 773 774 return found; 775 } 776 777 /* 778 * this returns the element from the log with the smallest time sequence 779 * value that's in the log (the oldest log item). any element with a time 780 * sequence lower than min_seq will be ignored. 781 */ 782 static struct tree_mod_elem * 783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 784 u64 min_seq) 785 { 786 return __tree_mod_log_search(fs_info, start, min_seq, 1); 787 } 788 789 /* 790 * this returns the element from the log with the largest time sequence 791 * value that's in the log (the most recent log item). any element with 792 * a time sequence lower than min_seq will be ignored. 793 */ 794 static struct tree_mod_elem * 795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 796 { 797 return __tree_mod_log_search(fs_info, start, min_seq, 0); 798 } 799 800 static noinline int 801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 802 struct extent_buffer *src, unsigned long dst_offset, 803 unsigned long src_offset, int nr_items) 804 { 805 int ret = 0; 806 struct tree_mod_elem **tm_list = NULL; 807 struct tree_mod_elem **tm_list_add, **tm_list_rem; 808 int i; 809 int locked = 0; 810 811 if (!tree_mod_need_log(fs_info, NULL)) 812 return 0; 813 814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 815 return 0; 816 817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 818 GFP_NOFS); 819 if (!tm_list) 820 return -ENOMEM; 821 822 tm_list_add = tm_list; 823 tm_list_rem = tm_list + nr_items; 824 for (i = 0; i < nr_items; i++) { 825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 826 MOD_LOG_KEY_REMOVE, GFP_NOFS); 827 if (!tm_list_rem[i]) { 828 ret = -ENOMEM; 829 goto free_tms; 830 } 831 832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 833 MOD_LOG_KEY_ADD, GFP_NOFS); 834 if (!tm_list_add[i]) { 835 ret = -ENOMEM; 836 goto free_tms; 837 } 838 } 839 840 if (tree_mod_dont_log(fs_info, NULL)) 841 goto free_tms; 842 locked = 1; 843 844 for (i = 0; i < nr_items; i++) { 845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 846 if (ret) 847 goto free_tms; 848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 849 if (ret) 850 goto free_tms; 851 } 852 853 tree_mod_log_write_unlock(fs_info); 854 kfree(tm_list); 855 856 return 0; 857 858 free_tms: 859 for (i = 0; i < nr_items * 2; i++) { 860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 862 kfree(tm_list[i]); 863 } 864 if (locked) 865 tree_mod_log_write_unlock(fs_info); 866 kfree(tm_list); 867 868 return ret; 869 } 870 871 static inline void 872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 873 int dst_offset, int src_offset, int nr_items) 874 { 875 int ret; 876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 877 nr_items, GFP_NOFS); 878 BUG_ON(ret < 0); 879 } 880 881 static noinline void 882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 883 struct extent_buffer *eb, int slot, int atomic) 884 { 885 int ret; 886 887 ret = tree_mod_log_insert_key(fs_info, eb, slot, 888 MOD_LOG_KEY_REPLACE, 889 atomic ? GFP_ATOMIC : GFP_NOFS); 890 BUG_ON(ret < 0); 891 } 892 893 static noinline int 894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 895 { 896 struct tree_mod_elem **tm_list = NULL; 897 int nritems = 0; 898 int i; 899 int ret = 0; 900 901 if (btrfs_header_level(eb) == 0) 902 return 0; 903 904 if (!tree_mod_need_log(fs_info, NULL)) 905 return 0; 906 907 nritems = btrfs_header_nritems(eb); 908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 909 if (!tm_list) 910 return -ENOMEM; 911 912 for (i = 0; i < nritems; i++) { 913 tm_list[i] = alloc_tree_mod_elem(eb, i, 914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 915 if (!tm_list[i]) { 916 ret = -ENOMEM; 917 goto free_tms; 918 } 919 } 920 921 if (tree_mod_dont_log(fs_info, eb)) 922 goto free_tms; 923 924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 925 tree_mod_log_write_unlock(fs_info); 926 if (ret) 927 goto free_tms; 928 kfree(tm_list); 929 930 return 0; 931 932 free_tms: 933 for (i = 0; i < nritems; i++) 934 kfree(tm_list[i]); 935 kfree(tm_list); 936 937 return ret; 938 } 939 940 static noinline void 941 tree_mod_log_set_root_pointer(struct btrfs_root *root, 942 struct extent_buffer *new_root_node, 943 int log_removal) 944 { 945 int ret; 946 ret = tree_mod_log_insert_root(root->fs_info, root->node, 947 new_root_node, GFP_NOFS, log_removal); 948 BUG_ON(ret < 0); 949 } 950 951 /* 952 * check if the tree block can be shared by multiple trees 953 */ 954 int btrfs_block_can_be_shared(struct btrfs_root *root, 955 struct extent_buffer *buf) 956 { 957 /* 958 * Tree blocks not in reference counted trees and tree roots 959 * are never shared. If a block was allocated after the last 960 * snapshot and the block was not allocated by tree relocation, 961 * we know the block is not shared. 962 */ 963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 964 buf != root->node && buf != root->commit_root && 965 (btrfs_header_generation(buf) <= 966 btrfs_root_last_snapshot(&root->root_item) || 967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 968 return 1; 969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 972 return 1; 973 #endif 974 return 0; 975 } 976 977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 978 struct btrfs_root *root, 979 struct extent_buffer *buf, 980 struct extent_buffer *cow, 981 int *last_ref) 982 { 983 u64 refs; 984 u64 owner; 985 u64 flags; 986 u64 new_flags = 0; 987 int ret; 988 989 /* 990 * Backrefs update rules: 991 * 992 * Always use full backrefs for extent pointers in tree block 993 * allocated by tree relocation. 994 * 995 * If a shared tree block is no longer referenced by its owner 996 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 997 * use full backrefs for extent pointers in tree block. 998 * 999 * If a tree block is been relocating 1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 1001 * use full backrefs for extent pointers in tree block. 1002 * The reason for this is some operations (such as drop tree) 1003 * are only allowed for blocks use full backrefs. 1004 */ 1005 1006 if (btrfs_block_can_be_shared(root, buf)) { 1007 ret = btrfs_lookup_extent_info(trans, root, buf->start, 1008 btrfs_header_level(buf), 1, 1009 &refs, &flags); 1010 if (ret) 1011 return ret; 1012 if (refs == 0) { 1013 ret = -EROFS; 1014 btrfs_handle_fs_error(root->fs_info, ret, NULL); 1015 return ret; 1016 } 1017 } else { 1018 refs = 1; 1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1022 else 1023 flags = 0; 1024 } 1025 1026 owner = btrfs_header_owner(buf); 1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1029 1030 if (refs > 1) { 1031 if ((owner == root->root_key.objectid || 1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1034 ret = btrfs_inc_ref(trans, root, buf, 1); 1035 BUG_ON(ret); /* -ENOMEM */ 1036 1037 if (root->root_key.objectid == 1038 BTRFS_TREE_RELOC_OBJECTID) { 1039 ret = btrfs_dec_ref(trans, root, buf, 0); 1040 BUG_ON(ret); /* -ENOMEM */ 1041 ret = btrfs_inc_ref(trans, root, cow, 1); 1042 BUG_ON(ret); /* -ENOMEM */ 1043 } 1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1045 } else { 1046 1047 if (root->root_key.objectid == 1048 BTRFS_TREE_RELOC_OBJECTID) 1049 ret = btrfs_inc_ref(trans, root, cow, 1); 1050 else 1051 ret = btrfs_inc_ref(trans, root, cow, 0); 1052 BUG_ON(ret); /* -ENOMEM */ 1053 } 1054 if (new_flags != 0) { 1055 int level = btrfs_header_level(buf); 1056 1057 ret = btrfs_set_disk_extent_flags(trans, root, 1058 buf->start, 1059 buf->len, 1060 new_flags, level, 0); 1061 if (ret) 1062 return ret; 1063 } 1064 } else { 1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1066 if (root->root_key.objectid == 1067 BTRFS_TREE_RELOC_OBJECTID) 1068 ret = btrfs_inc_ref(trans, root, cow, 1); 1069 else 1070 ret = btrfs_inc_ref(trans, root, cow, 0); 1071 BUG_ON(ret); /* -ENOMEM */ 1072 ret = btrfs_dec_ref(trans, root, buf, 1); 1073 BUG_ON(ret); /* -ENOMEM */ 1074 } 1075 clean_tree_block(trans, root->fs_info, buf); 1076 *last_ref = 1; 1077 } 1078 return 0; 1079 } 1080 1081 /* 1082 * does the dirty work in cow of a single block. The parent block (if 1083 * supplied) is updated to point to the new cow copy. The new buffer is marked 1084 * dirty and returned locked. If you modify the block it needs to be marked 1085 * dirty again. 1086 * 1087 * search_start -- an allocation hint for the new block 1088 * 1089 * empty_size -- a hint that you plan on doing more cow. This is the size in 1090 * bytes the allocator should try to find free next to the block it returns. 1091 * This is just a hint and may be ignored by the allocator. 1092 */ 1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1094 struct btrfs_root *root, 1095 struct extent_buffer *buf, 1096 struct extent_buffer *parent, int parent_slot, 1097 struct extent_buffer **cow_ret, 1098 u64 search_start, u64 empty_size) 1099 { 1100 struct btrfs_disk_key disk_key; 1101 struct extent_buffer *cow; 1102 int level, ret; 1103 int last_ref = 0; 1104 int unlock_orig = 0; 1105 u64 parent_start; 1106 1107 if (*cow_ret == buf) 1108 unlock_orig = 1; 1109 1110 btrfs_assert_tree_locked(buf); 1111 1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1113 trans->transid != root->fs_info->running_transaction->transid); 1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1115 trans->transid != root->last_trans); 1116 1117 level = btrfs_header_level(buf); 1118 1119 if (level == 0) 1120 btrfs_item_key(buf, &disk_key, 0); 1121 else 1122 btrfs_node_key(buf, &disk_key, 0); 1123 1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 1125 if (parent) 1126 parent_start = parent->start; 1127 else 1128 parent_start = 0; 1129 } else 1130 parent_start = 0; 1131 1132 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1133 root->root_key.objectid, &disk_key, level, 1134 search_start, empty_size); 1135 if (IS_ERR(cow)) 1136 return PTR_ERR(cow); 1137 1138 /* cow is set to blocking by btrfs_init_new_buffer */ 1139 1140 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1141 btrfs_set_header_bytenr(cow, cow->start); 1142 btrfs_set_header_generation(cow, trans->transid); 1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1145 BTRFS_HEADER_FLAG_RELOC); 1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1148 else 1149 btrfs_set_header_owner(cow, root->root_key.objectid); 1150 1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 1152 BTRFS_FSID_SIZE); 1153 1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1155 if (ret) { 1156 btrfs_abort_transaction(trans, ret); 1157 return ret; 1158 } 1159 1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1162 if (ret) { 1163 btrfs_abort_transaction(trans, ret); 1164 return ret; 1165 } 1166 } 1167 1168 if (buf == root->node) { 1169 WARN_ON(parent && parent != buf); 1170 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1171 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1172 parent_start = buf->start; 1173 else 1174 parent_start = 0; 1175 1176 extent_buffer_get(cow); 1177 tree_mod_log_set_root_pointer(root, cow, 1); 1178 rcu_assign_pointer(root->node, cow); 1179 1180 btrfs_free_tree_block(trans, root, buf, parent_start, 1181 last_ref); 1182 free_extent_buffer(buf); 1183 add_root_to_dirty_list(root); 1184 } else { 1185 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1186 parent_start = parent->start; 1187 else 1188 parent_start = 0; 1189 1190 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1191 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1192 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1193 btrfs_set_node_blockptr(parent, parent_slot, 1194 cow->start); 1195 btrfs_set_node_ptr_generation(parent, parent_slot, 1196 trans->transid); 1197 btrfs_mark_buffer_dirty(parent); 1198 if (last_ref) { 1199 ret = tree_mod_log_free_eb(root->fs_info, buf); 1200 if (ret) { 1201 btrfs_abort_transaction(trans, ret); 1202 return ret; 1203 } 1204 } 1205 btrfs_free_tree_block(trans, root, buf, parent_start, 1206 last_ref); 1207 } 1208 if (unlock_orig) 1209 btrfs_tree_unlock(buf); 1210 free_extent_buffer_stale(buf); 1211 btrfs_mark_buffer_dirty(cow); 1212 *cow_ret = cow; 1213 return 0; 1214 } 1215 1216 /* 1217 * returns the logical address of the oldest predecessor of the given root. 1218 * entries older than time_seq are ignored. 1219 */ 1220 static struct tree_mod_elem * 1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1222 struct extent_buffer *eb_root, u64 time_seq) 1223 { 1224 struct tree_mod_elem *tm; 1225 struct tree_mod_elem *found = NULL; 1226 u64 root_logical = eb_root->start; 1227 int looped = 0; 1228 1229 if (!time_seq) 1230 return NULL; 1231 1232 /* 1233 * the very last operation that's logged for a root is the 1234 * replacement operation (if it is replaced at all). this has 1235 * the logical address of the *new* root, making it the very 1236 * first operation that's logged for this root. 1237 */ 1238 while (1) { 1239 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1240 time_seq); 1241 if (!looped && !tm) 1242 return NULL; 1243 /* 1244 * if there are no tree operation for the oldest root, we simply 1245 * return it. this should only happen if that (old) root is at 1246 * level 0. 1247 */ 1248 if (!tm) 1249 break; 1250 1251 /* 1252 * if there's an operation that's not a root replacement, we 1253 * found the oldest version of our root. normally, we'll find a 1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1255 */ 1256 if (tm->op != MOD_LOG_ROOT_REPLACE) 1257 break; 1258 1259 found = tm; 1260 root_logical = tm->old_root.logical; 1261 looped = 1; 1262 } 1263 1264 /* if there's no old root to return, return what we found instead */ 1265 if (!found) 1266 found = tm; 1267 1268 return found; 1269 } 1270 1271 /* 1272 * tm is a pointer to the first operation to rewind within eb. then, all 1273 * previous operations will be rewound (until we reach something older than 1274 * time_seq). 1275 */ 1276 static void 1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1278 u64 time_seq, struct tree_mod_elem *first_tm) 1279 { 1280 u32 n; 1281 struct rb_node *next; 1282 struct tree_mod_elem *tm = first_tm; 1283 unsigned long o_dst; 1284 unsigned long o_src; 1285 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1286 1287 n = btrfs_header_nritems(eb); 1288 tree_mod_log_read_lock(fs_info); 1289 while (tm && tm->seq >= time_seq) { 1290 /* 1291 * all the operations are recorded with the operator used for 1292 * the modification. as we're going backwards, we do the 1293 * opposite of each operation here. 1294 */ 1295 switch (tm->op) { 1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1297 BUG_ON(tm->slot < n); 1298 /* Fallthrough */ 1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1300 case MOD_LOG_KEY_REMOVE: 1301 btrfs_set_node_key(eb, &tm->key, tm->slot); 1302 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1303 btrfs_set_node_ptr_generation(eb, tm->slot, 1304 tm->generation); 1305 n++; 1306 break; 1307 case MOD_LOG_KEY_REPLACE: 1308 BUG_ON(tm->slot >= n); 1309 btrfs_set_node_key(eb, &tm->key, tm->slot); 1310 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1311 btrfs_set_node_ptr_generation(eb, tm->slot, 1312 tm->generation); 1313 break; 1314 case MOD_LOG_KEY_ADD: 1315 /* if a move operation is needed it's in the log */ 1316 n--; 1317 break; 1318 case MOD_LOG_MOVE_KEYS: 1319 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1320 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1321 memmove_extent_buffer(eb, o_dst, o_src, 1322 tm->move.nr_items * p_size); 1323 break; 1324 case MOD_LOG_ROOT_REPLACE: 1325 /* 1326 * this operation is special. for roots, this must be 1327 * handled explicitly before rewinding. 1328 * for non-roots, this operation may exist if the node 1329 * was a root: root A -> child B; then A gets empty and 1330 * B is promoted to the new root. in the mod log, we'll 1331 * have a root-replace operation for B, a tree block 1332 * that is no root. we simply ignore that operation. 1333 */ 1334 break; 1335 } 1336 next = rb_next(&tm->node); 1337 if (!next) 1338 break; 1339 tm = container_of(next, struct tree_mod_elem, node); 1340 if (tm->logical != first_tm->logical) 1341 break; 1342 } 1343 tree_mod_log_read_unlock(fs_info); 1344 btrfs_set_header_nritems(eb, n); 1345 } 1346 1347 /* 1348 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1349 * is returned. If rewind operations happen, a fresh buffer is returned. The 1350 * returned buffer is always read-locked. If the returned buffer is not the 1351 * input buffer, the lock on the input buffer is released and the input buffer 1352 * is freed (its refcount is decremented). 1353 */ 1354 static struct extent_buffer * 1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1356 struct extent_buffer *eb, u64 time_seq) 1357 { 1358 struct extent_buffer *eb_rewin; 1359 struct tree_mod_elem *tm; 1360 1361 if (!time_seq) 1362 return eb; 1363 1364 if (btrfs_header_level(eb) == 0) 1365 return eb; 1366 1367 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1368 if (!tm) 1369 return eb; 1370 1371 btrfs_set_path_blocking(path); 1372 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1373 1374 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1375 BUG_ON(tm->slot != 0); 1376 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start, 1377 eb->len); 1378 if (!eb_rewin) { 1379 btrfs_tree_read_unlock_blocking(eb); 1380 free_extent_buffer(eb); 1381 return NULL; 1382 } 1383 btrfs_set_header_bytenr(eb_rewin, eb->start); 1384 btrfs_set_header_backref_rev(eb_rewin, 1385 btrfs_header_backref_rev(eb)); 1386 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1387 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1388 } else { 1389 eb_rewin = btrfs_clone_extent_buffer(eb); 1390 if (!eb_rewin) { 1391 btrfs_tree_read_unlock_blocking(eb); 1392 free_extent_buffer(eb); 1393 return NULL; 1394 } 1395 } 1396 1397 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1398 btrfs_tree_read_unlock_blocking(eb); 1399 free_extent_buffer(eb); 1400 1401 extent_buffer_get(eb_rewin); 1402 btrfs_tree_read_lock(eb_rewin); 1403 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1404 WARN_ON(btrfs_header_nritems(eb_rewin) > 1405 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1406 1407 return eb_rewin; 1408 } 1409 1410 /* 1411 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1412 * value. If there are no changes, the current root->root_node is returned. If 1413 * anything changed in between, there's a fresh buffer allocated on which the 1414 * rewind operations are done. In any case, the returned buffer is read locked. 1415 * Returns NULL on error (with no locks held). 1416 */ 1417 static inline struct extent_buffer * 1418 get_old_root(struct btrfs_root *root, u64 time_seq) 1419 { 1420 struct tree_mod_elem *tm; 1421 struct extent_buffer *eb = NULL; 1422 struct extent_buffer *eb_root; 1423 struct extent_buffer *old; 1424 struct tree_mod_root *old_root = NULL; 1425 u64 old_generation = 0; 1426 u64 logical; 1427 1428 eb_root = btrfs_read_lock_root_node(root); 1429 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1430 if (!tm) 1431 return eb_root; 1432 1433 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1434 old_root = &tm->old_root; 1435 old_generation = tm->generation; 1436 logical = old_root->logical; 1437 } else { 1438 logical = eb_root->start; 1439 } 1440 1441 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1442 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1443 btrfs_tree_read_unlock(eb_root); 1444 free_extent_buffer(eb_root); 1445 old = read_tree_block(root, logical, 0); 1446 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1447 if (!IS_ERR(old)) 1448 free_extent_buffer(old); 1449 btrfs_warn(root->fs_info, 1450 "failed to read tree block %llu from get_old_root", logical); 1451 } else { 1452 eb = btrfs_clone_extent_buffer(old); 1453 free_extent_buffer(old); 1454 } 1455 } else if (old_root) { 1456 btrfs_tree_read_unlock(eb_root); 1457 free_extent_buffer(eb_root); 1458 eb = alloc_dummy_extent_buffer(root->fs_info, logical, 1459 root->nodesize); 1460 } else { 1461 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1462 eb = btrfs_clone_extent_buffer(eb_root); 1463 btrfs_tree_read_unlock_blocking(eb_root); 1464 free_extent_buffer(eb_root); 1465 } 1466 1467 if (!eb) 1468 return NULL; 1469 extent_buffer_get(eb); 1470 btrfs_tree_read_lock(eb); 1471 if (old_root) { 1472 btrfs_set_header_bytenr(eb, eb->start); 1473 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1474 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1475 btrfs_set_header_level(eb, old_root->level); 1476 btrfs_set_header_generation(eb, old_generation); 1477 } 1478 if (tm) 1479 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1480 else 1481 WARN_ON(btrfs_header_level(eb) != 0); 1482 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1483 1484 return eb; 1485 } 1486 1487 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1488 { 1489 struct tree_mod_elem *tm; 1490 int level; 1491 struct extent_buffer *eb_root = btrfs_root_node(root); 1492 1493 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1494 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1495 level = tm->old_root.level; 1496 } else { 1497 level = btrfs_header_level(eb_root); 1498 } 1499 free_extent_buffer(eb_root); 1500 1501 return level; 1502 } 1503 1504 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1505 struct btrfs_root *root, 1506 struct extent_buffer *buf) 1507 { 1508 if (btrfs_is_testing(root->fs_info)) 1509 return 0; 1510 1511 /* ensure we can see the force_cow */ 1512 smp_rmb(); 1513 1514 /* 1515 * We do not need to cow a block if 1516 * 1) this block is not created or changed in this transaction; 1517 * 2) this block does not belong to TREE_RELOC tree; 1518 * 3) the root is not forced COW. 1519 * 1520 * What is forced COW: 1521 * when we create snapshot during committing the transaction, 1522 * after we've finished coping src root, we must COW the shared 1523 * block to ensure the metadata consistency. 1524 */ 1525 if (btrfs_header_generation(buf) == trans->transid && 1526 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1527 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1528 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1529 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1530 return 0; 1531 return 1; 1532 } 1533 1534 /* 1535 * cows a single block, see __btrfs_cow_block for the real work. 1536 * This version of it has extra checks so that a block isn't COWed more than 1537 * once per transaction, as long as it hasn't been written yet 1538 */ 1539 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1540 struct btrfs_root *root, struct extent_buffer *buf, 1541 struct extent_buffer *parent, int parent_slot, 1542 struct extent_buffer **cow_ret) 1543 { 1544 u64 search_start; 1545 int ret; 1546 1547 if (trans->transaction != root->fs_info->running_transaction) 1548 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1549 trans->transid, 1550 root->fs_info->running_transaction->transid); 1551 1552 if (trans->transid != root->fs_info->generation) 1553 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1554 trans->transid, root->fs_info->generation); 1555 1556 if (!should_cow_block(trans, root, buf)) { 1557 trans->dirty = true; 1558 *cow_ret = buf; 1559 return 0; 1560 } 1561 1562 search_start = buf->start & ~((u64)SZ_1G - 1); 1563 1564 if (parent) 1565 btrfs_set_lock_blocking(parent); 1566 btrfs_set_lock_blocking(buf); 1567 1568 ret = __btrfs_cow_block(trans, root, buf, parent, 1569 parent_slot, cow_ret, search_start, 0); 1570 1571 trace_btrfs_cow_block(root, buf, *cow_ret); 1572 1573 return ret; 1574 } 1575 1576 /* 1577 * helper function for defrag to decide if two blocks pointed to by a 1578 * node are actually close by 1579 */ 1580 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1581 { 1582 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1583 return 1; 1584 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1585 return 1; 1586 return 0; 1587 } 1588 1589 /* 1590 * compare two keys in a memcmp fashion 1591 */ 1592 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1593 { 1594 struct btrfs_key k1; 1595 1596 btrfs_disk_key_to_cpu(&k1, disk); 1597 1598 return btrfs_comp_cpu_keys(&k1, k2); 1599 } 1600 1601 /* 1602 * same as comp_keys only with two btrfs_key's 1603 */ 1604 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1605 { 1606 if (k1->objectid > k2->objectid) 1607 return 1; 1608 if (k1->objectid < k2->objectid) 1609 return -1; 1610 if (k1->type > k2->type) 1611 return 1; 1612 if (k1->type < k2->type) 1613 return -1; 1614 if (k1->offset > k2->offset) 1615 return 1; 1616 if (k1->offset < k2->offset) 1617 return -1; 1618 return 0; 1619 } 1620 1621 /* 1622 * this is used by the defrag code to go through all the 1623 * leaves pointed to by a node and reallocate them so that 1624 * disk order is close to key order 1625 */ 1626 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1627 struct btrfs_root *root, struct extent_buffer *parent, 1628 int start_slot, u64 *last_ret, 1629 struct btrfs_key *progress) 1630 { 1631 struct extent_buffer *cur; 1632 u64 blocknr; 1633 u64 gen; 1634 u64 search_start = *last_ret; 1635 u64 last_block = 0; 1636 u64 other; 1637 u32 parent_nritems; 1638 int end_slot; 1639 int i; 1640 int err = 0; 1641 int parent_level; 1642 int uptodate; 1643 u32 blocksize; 1644 int progress_passed = 0; 1645 struct btrfs_disk_key disk_key; 1646 1647 parent_level = btrfs_header_level(parent); 1648 1649 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1650 WARN_ON(trans->transid != root->fs_info->generation); 1651 1652 parent_nritems = btrfs_header_nritems(parent); 1653 blocksize = root->nodesize; 1654 end_slot = parent_nritems - 1; 1655 1656 if (parent_nritems <= 1) 1657 return 0; 1658 1659 btrfs_set_lock_blocking(parent); 1660 1661 for (i = start_slot; i <= end_slot; i++) { 1662 int close = 1; 1663 1664 btrfs_node_key(parent, &disk_key, i); 1665 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1666 continue; 1667 1668 progress_passed = 1; 1669 blocknr = btrfs_node_blockptr(parent, i); 1670 gen = btrfs_node_ptr_generation(parent, i); 1671 if (last_block == 0) 1672 last_block = blocknr; 1673 1674 if (i > 0) { 1675 other = btrfs_node_blockptr(parent, i - 1); 1676 close = close_blocks(blocknr, other, blocksize); 1677 } 1678 if (!close && i < end_slot) { 1679 other = btrfs_node_blockptr(parent, i + 1); 1680 close = close_blocks(blocknr, other, blocksize); 1681 } 1682 if (close) { 1683 last_block = blocknr; 1684 continue; 1685 } 1686 1687 cur = btrfs_find_tree_block(root->fs_info, blocknr); 1688 if (cur) 1689 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1690 else 1691 uptodate = 0; 1692 if (!cur || !uptodate) { 1693 if (!cur) { 1694 cur = read_tree_block(root, blocknr, gen); 1695 if (IS_ERR(cur)) { 1696 return PTR_ERR(cur); 1697 } else if (!extent_buffer_uptodate(cur)) { 1698 free_extent_buffer(cur); 1699 return -EIO; 1700 } 1701 } else if (!uptodate) { 1702 err = btrfs_read_buffer(cur, gen); 1703 if (err) { 1704 free_extent_buffer(cur); 1705 return err; 1706 } 1707 } 1708 } 1709 if (search_start == 0) 1710 search_start = last_block; 1711 1712 btrfs_tree_lock(cur); 1713 btrfs_set_lock_blocking(cur); 1714 err = __btrfs_cow_block(trans, root, cur, parent, i, 1715 &cur, search_start, 1716 min(16 * blocksize, 1717 (end_slot - i) * blocksize)); 1718 if (err) { 1719 btrfs_tree_unlock(cur); 1720 free_extent_buffer(cur); 1721 break; 1722 } 1723 search_start = cur->start; 1724 last_block = cur->start; 1725 *last_ret = search_start; 1726 btrfs_tree_unlock(cur); 1727 free_extent_buffer(cur); 1728 } 1729 return err; 1730 } 1731 1732 /* 1733 * The leaf data grows from end-to-front in the node. 1734 * this returns the address of the start of the last item, 1735 * which is the stop of the leaf data stack 1736 */ 1737 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1738 struct extent_buffer *leaf) 1739 { 1740 u32 nr = btrfs_header_nritems(leaf); 1741 if (nr == 0) 1742 return BTRFS_LEAF_DATA_SIZE(root); 1743 return btrfs_item_offset_nr(leaf, nr - 1); 1744 } 1745 1746 1747 /* 1748 * search for key in the extent_buffer. The items start at offset p, 1749 * and they are item_size apart. There are 'max' items in p. 1750 * 1751 * the slot in the array is returned via slot, and it points to 1752 * the place where you would insert key if it is not found in 1753 * the array. 1754 * 1755 * slot may point to max if the key is bigger than all of the keys 1756 */ 1757 static noinline int generic_bin_search(struct extent_buffer *eb, 1758 unsigned long p, 1759 int item_size, struct btrfs_key *key, 1760 int max, int *slot) 1761 { 1762 int low = 0; 1763 int high = max; 1764 int mid; 1765 int ret; 1766 struct btrfs_disk_key *tmp = NULL; 1767 struct btrfs_disk_key unaligned; 1768 unsigned long offset; 1769 char *kaddr = NULL; 1770 unsigned long map_start = 0; 1771 unsigned long map_len = 0; 1772 int err; 1773 1774 if (low > high) { 1775 btrfs_err(eb->fs_info, 1776 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1777 __func__, low, high, eb->start, 1778 btrfs_header_owner(eb), btrfs_header_level(eb)); 1779 return -EINVAL; 1780 } 1781 1782 while (low < high) { 1783 mid = (low + high) / 2; 1784 offset = p + mid * item_size; 1785 1786 if (!kaddr || offset < map_start || 1787 (offset + sizeof(struct btrfs_disk_key)) > 1788 map_start + map_len) { 1789 1790 err = map_private_extent_buffer(eb, offset, 1791 sizeof(struct btrfs_disk_key), 1792 &kaddr, &map_start, &map_len); 1793 1794 if (!err) { 1795 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1796 map_start); 1797 } else if (err == 1) { 1798 read_extent_buffer(eb, &unaligned, 1799 offset, sizeof(unaligned)); 1800 tmp = &unaligned; 1801 } else { 1802 return err; 1803 } 1804 1805 } else { 1806 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1807 map_start); 1808 } 1809 ret = comp_keys(tmp, key); 1810 1811 if (ret < 0) 1812 low = mid + 1; 1813 else if (ret > 0) 1814 high = mid; 1815 else { 1816 *slot = mid; 1817 return 0; 1818 } 1819 } 1820 *slot = low; 1821 return 1; 1822 } 1823 1824 /* 1825 * simple bin_search frontend that does the right thing for 1826 * leaves vs nodes 1827 */ 1828 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1829 int level, int *slot) 1830 { 1831 if (level == 0) 1832 return generic_bin_search(eb, 1833 offsetof(struct btrfs_leaf, items), 1834 sizeof(struct btrfs_item), 1835 key, btrfs_header_nritems(eb), 1836 slot); 1837 else 1838 return generic_bin_search(eb, 1839 offsetof(struct btrfs_node, ptrs), 1840 sizeof(struct btrfs_key_ptr), 1841 key, btrfs_header_nritems(eb), 1842 slot); 1843 } 1844 1845 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1846 int level, int *slot) 1847 { 1848 return bin_search(eb, key, level, slot); 1849 } 1850 1851 static void root_add_used(struct btrfs_root *root, u32 size) 1852 { 1853 spin_lock(&root->accounting_lock); 1854 btrfs_set_root_used(&root->root_item, 1855 btrfs_root_used(&root->root_item) + size); 1856 spin_unlock(&root->accounting_lock); 1857 } 1858 1859 static void root_sub_used(struct btrfs_root *root, u32 size) 1860 { 1861 spin_lock(&root->accounting_lock); 1862 btrfs_set_root_used(&root->root_item, 1863 btrfs_root_used(&root->root_item) - size); 1864 spin_unlock(&root->accounting_lock); 1865 } 1866 1867 /* given a node and slot number, this reads the blocks it points to. The 1868 * extent buffer is returned with a reference taken (but unlocked). 1869 */ 1870 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1871 struct extent_buffer *parent, int slot) 1872 { 1873 int level = btrfs_header_level(parent); 1874 struct extent_buffer *eb; 1875 1876 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1877 return ERR_PTR(-ENOENT); 1878 1879 BUG_ON(level == 0); 1880 1881 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1882 btrfs_node_ptr_generation(parent, slot)); 1883 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1884 free_extent_buffer(eb); 1885 eb = ERR_PTR(-EIO); 1886 } 1887 1888 return eb; 1889 } 1890 1891 /* 1892 * node level balancing, used to make sure nodes are in proper order for 1893 * item deletion. We balance from the top down, so we have to make sure 1894 * that a deletion won't leave an node completely empty later on. 1895 */ 1896 static noinline int balance_level(struct btrfs_trans_handle *trans, 1897 struct btrfs_root *root, 1898 struct btrfs_path *path, int level) 1899 { 1900 struct extent_buffer *right = NULL; 1901 struct extent_buffer *mid; 1902 struct extent_buffer *left = NULL; 1903 struct extent_buffer *parent = NULL; 1904 int ret = 0; 1905 int wret; 1906 int pslot; 1907 int orig_slot = path->slots[level]; 1908 u64 orig_ptr; 1909 1910 if (level == 0) 1911 return 0; 1912 1913 mid = path->nodes[level]; 1914 1915 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1916 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1917 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1918 1919 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1920 1921 if (level < BTRFS_MAX_LEVEL - 1) { 1922 parent = path->nodes[level + 1]; 1923 pslot = path->slots[level + 1]; 1924 } 1925 1926 /* 1927 * deal with the case where there is only one pointer in the root 1928 * by promoting the node below to a root 1929 */ 1930 if (!parent) { 1931 struct extent_buffer *child; 1932 1933 if (btrfs_header_nritems(mid) != 1) 1934 return 0; 1935 1936 /* promote the child to a root */ 1937 child = read_node_slot(root, mid, 0); 1938 if (IS_ERR(child)) { 1939 ret = PTR_ERR(child); 1940 btrfs_handle_fs_error(root->fs_info, ret, NULL); 1941 goto enospc; 1942 } 1943 1944 btrfs_tree_lock(child); 1945 btrfs_set_lock_blocking(child); 1946 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1947 if (ret) { 1948 btrfs_tree_unlock(child); 1949 free_extent_buffer(child); 1950 goto enospc; 1951 } 1952 1953 tree_mod_log_set_root_pointer(root, child, 1); 1954 rcu_assign_pointer(root->node, child); 1955 1956 add_root_to_dirty_list(root); 1957 btrfs_tree_unlock(child); 1958 1959 path->locks[level] = 0; 1960 path->nodes[level] = NULL; 1961 clean_tree_block(trans, root->fs_info, mid); 1962 btrfs_tree_unlock(mid); 1963 /* once for the path */ 1964 free_extent_buffer(mid); 1965 1966 root_sub_used(root, mid->len); 1967 btrfs_free_tree_block(trans, root, mid, 0, 1); 1968 /* once for the root ptr */ 1969 free_extent_buffer_stale(mid); 1970 return 0; 1971 } 1972 if (btrfs_header_nritems(mid) > 1973 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1974 return 0; 1975 1976 left = read_node_slot(root, parent, pslot - 1); 1977 if (IS_ERR(left)) 1978 left = NULL; 1979 1980 if (left) { 1981 btrfs_tree_lock(left); 1982 btrfs_set_lock_blocking(left); 1983 wret = btrfs_cow_block(trans, root, left, 1984 parent, pslot - 1, &left); 1985 if (wret) { 1986 ret = wret; 1987 goto enospc; 1988 } 1989 } 1990 1991 right = read_node_slot(root, parent, pslot + 1); 1992 if (IS_ERR(right)) 1993 right = NULL; 1994 1995 if (right) { 1996 btrfs_tree_lock(right); 1997 btrfs_set_lock_blocking(right); 1998 wret = btrfs_cow_block(trans, root, right, 1999 parent, pslot + 1, &right); 2000 if (wret) { 2001 ret = wret; 2002 goto enospc; 2003 } 2004 } 2005 2006 /* first, try to make some room in the middle buffer */ 2007 if (left) { 2008 orig_slot += btrfs_header_nritems(left); 2009 wret = push_node_left(trans, root, left, mid, 1); 2010 if (wret < 0) 2011 ret = wret; 2012 } 2013 2014 /* 2015 * then try to empty the right most buffer into the middle 2016 */ 2017 if (right) { 2018 wret = push_node_left(trans, root, mid, right, 1); 2019 if (wret < 0 && wret != -ENOSPC) 2020 ret = wret; 2021 if (btrfs_header_nritems(right) == 0) { 2022 clean_tree_block(trans, root->fs_info, right); 2023 btrfs_tree_unlock(right); 2024 del_ptr(root, path, level + 1, pslot + 1); 2025 root_sub_used(root, right->len); 2026 btrfs_free_tree_block(trans, root, right, 0, 1); 2027 free_extent_buffer_stale(right); 2028 right = NULL; 2029 } else { 2030 struct btrfs_disk_key right_key; 2031 btrfs_node_key(right, &right_key, 0); 2032 tree_mod_log_set_node_key(root->fs_info, parent, 2033 pslot + 1, 0); 2034 btrfs_set_node_key(parent, &right_key, pslot + 1); 2035 btrfs_mark_buffer_dirty(parent); 2036 } 2037 } 2038 if (btrfs_header_nritems(mid) == 1) { 2039 /* 2040 * we're not allowed to leave a node with one item in the 2041 * tree during a delete. A deletion from lower in the tree 2042 * could try to delete the only pointer in this node. 2043 * So, pull some keys from the left. 2044 * There has to be a left pointer at this point because 2045 * otherwise we would have pulled some pointers from the 2046 * right 2047 */ 2048 if (!left) { 2049 ret = -EROFS; 2050 btrfs_handle_fs_error(root->fs_info, ret, NULL); 2051 goto enospc; 2052 } 2053 wret = balance_node_right(trans, root, mid, left); 2054 if (wret < 0) { 2055 ret = wret; 2056 goto enospc; 2057 } 2058 if (wret == 1) { 2059 wret = push_node_left(trans, root, left, mid, 1); 2060 if (wret < 0) 2061 ret = wret; 2062 } 2063 BUG_ON(wret == 1); 2064 } 2065 if (btrfs_header_nritems(mid) == 0) { 2066 clean_tree_block(trans, root->fs_info, mid); 2067 btrfs_tree_unlock(mid); 2068 del_ptr(root, path, level + 1, pslot); 2069 root_sub_used(root, mid->len); 2070 btrfs_free_tree_block(trans, root, mid, 0, 1); 2071 free_extent_buffer_stale(mid); 2072 mid = NULL; 2073 } else { 2074 /* update the parent key to reflect our changes */ 2075 struct btrfs_disk_key mid_key; 2076 btrfs_node_key(mid, &mid_key, 0); 2077 tree_mod_log_set_node_key(root->fs_info, parent, 2078 pslot, 0); 2079 btrfs_set_node_key(parent, &mid_key, pslot); 2080 btrfs_mark_buffer_dirty(parent); 2081 } 2082 2083 /* update the path */ 2084 if (left) { 2085 if (btrfs_header_nritems(left) > orig_slot) { 2086 extent_buffer_get(left); 2087 /* left was locked after cow */ 2088 path->nodes[level] = left; 2089 path->slots[level + 1] -= 1; 2090 path->slots[level] = orig_slot; 2091 if (mid) { 2092 btrfs_tree_unlock(mid); 2093 free_extent_buffer(mid); 2094 } 2095 } else { 2096 orig_slot -= btrfs_header_nritems(left); 2097 path->slots[level] = orig_slot; 2098 } 2099 } 2100 /* double check we haven't messed things up */ 2101 if (orig_ptr != 2102 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2103 BUG(); 2104 enospc: 2105 if (right) { 2106 btrfs_tree_unlock(right); 2107 free_extent_buffer(right); 2108 } 2109 if (left) { 2110 if (path->nodes[level] != left) 2111 btrfs_tree_unlock(left); 2112 free_extent_buffer(left); 2113 } 2114 return ret; 2115 } 2116 2117 /* Node balancing for insertion. Here we only split or push nodes around 2118 * when they are completely full. This is also done top down, so we 2119 * have to be pessimistic. 2120 */ 2121 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2122 struct btrfs_root *root, 2123 struct btrfs_path *path, int level) 2124 { 2125 struct extent_buffer *right = NULL; 2126 struct extent_buffer *mid; 2127 struct extent_buffer *left = NULL; 2128 struct extent_buffer *parent = NULL; 2129 int ret = 0; 2130 int wret; 2131 int pslot; 2132 int orig_slot = path->slots[level]; 2133 2134 if (level == 0) 2135 return 1; 2136 2137 mid = path->nodes[level]; 2138 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2139 2140 if (level < BTRFS_MAX_LEVEL - 1) { 2141 parent = path->nodes[level + 1]; 2142 pslot = path->slots[level + 1]; 2143 } 2144 2145 if (!parent) 2146 return 1; 2147 2148 left = read_node_slot(root, parent, pslot - 1); 2149 if (IS_ERR(left)) 2150 left = NULL; 2151 2152 /* first, try to make some room in the middle buffer */ 2153 if (left) { 2154 u32 left_nr; 2155 2156 btrfs_tree_lock(left); 2157 btrfs_set_lock_blocking(left); 2158 2159 left_nr = btrfs_header_nritems(left); 2160 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2161 wret = 1; 2162 } else { 2163 ret = btrfs_cow_block(trans, root, left, parent, 2164 pslot - 1, &left); 2165 if (ret) 2166 wret = 1; 2167 else { 2168 wret = push_node_left(trans, root, 2169 left, mid, 0); 2170 } 2171 } 2172 if (wret < 0) 2173 ret = wret; 2174 if (wret == 0) { 2175 struct btrfs_disk_key disk_key; 2176 orig_slot += left_nr; 2177 btrfs_node_key(mid, &disk_key, 0); 2178 tree_mod_log_set_node_key(root->fs_info, parent, 2179 pslot, 0); 2180 btrfs_set_node_key(parent, &disk_key, pslot); 2181 btrfs_mark_buffer_dirty(parent); 2182 if (btrfs_header_nritems(left) > orig_slot) { 2183 path->nodes[level] = left; 2184 path->slots[level + 1] -= 1; 2185 path->slots[level] = orig_slot; 2186 btrfs_tree_unlock(mid); 2187 free_extent_buffer(mid); 2188 } else { 2189 orig_slot -= 2190 btrfs_header_nritems(left); 2191 path->slots[level] = orig_slot; 2192 btrfs_tree_unlock(left); 2193 free_extent_buffer(left); 2194 } 2195 return 0; 2196 } 2197 btrfs_tree_unlock(left); 2198 free_extent_buffer(left); 2199 } 2200 right = read_node_slot(root, parent, pslot + 1); 2201 if (IS_ERR(right)) 2202 right = NULL; 2203 2204 /* 2205 * then try to empty the right most buffer into the middle 2206 */ 2207 if (right) { 2208 u32 right_nr; 2209 2210 btrfs_tree_lock(right); 2211 btrfs_set_lock_blocking(right); 2212 2213 right_nr = btrfs_header_nritems(right); 2214 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2215 wret = 1; 2216 } else { 2217 ret = btrfs_cow_block(trans, root, right, 2218 parent, pslot + 1, 2219 &right); 2220 if (ret) 2221 wret = 1; 2222 else { 2223 wret = balance_node_right(trans, root, 2224 right, mid); 2225 } 2226 } 2227 if (wret < 0) 2228 ret = wret; 2229 if (wret == 0) { 2230 struct btrfs_disk_key disk_key; 2231 2232 btrfs_node_key(right, &disk_key, 0); 2233 tree_mod_log_set_node_key(root->fs_info, parent, 2234 pslot + 1, 0); 2235 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2236 btrfs_mark_buffer_dirty(parent); 2237 2238 if (btrfs_header_nritems(mid) <= orig_slot) { 2239 path->nodes[level] = right; 2240 path->slots[level + 1] += 1; 2241 path->slots[level] = orig_slot - 2242 btrfs_header_nritems(mid); 2243 btrfs_tree_unlock(mid); 2244 free_extent_buffer(mid); 2245 } else { 2246 btrfs_tree_unlock(right); 2247 free_extent_buffer(right); 2248 } 2249 return 0; 2250 } 2251 btrfs_tree_unlock(right); 2252 free_extent_buffer(right); 2253 } 2254 return 1; 2255 } 2256 2257 /* 2258 * readahead one full node of leaves, finding things that are close 2259 * to the block in 'slot', and triggering ra on them. 2260 */ 2261 static void reada_for_search(struct btrfs_root *root, 2262 struct btrfs_path *path, 2263 int level, int slot, u64 objectid) 2264 { 2265 struct extent_buffer *node; 2266 struct btrfs_disk_key disk_key; 2267 u32 nritems; 2268 u64 search; 2269 u64 target; 2270 u64 nread = 0; 2271 u64 gen; 2272 struct extent_buffer *eb; 2273 u32 nr; 2274 u32 blocksize; 2275 u32 nscan = 0; 2276 2277 if (level != 1) 2278 return; 2279 2280 if (!path->nodes[level]) 2281 return; 2282 2283 node = path->nodes[level]; 2284 2285 search = btrfs_node_blockptr(node, slot); 2286 blocksize = root->nodesize; 2287 eb = btrfs_find_tree_block(root->fs_info, search); 2288 if (eb) { 2289 free_extent_buffer(eb); 2290 return; 2291 } 2292 2293 target = search; 2294 2295 nritems = btrfs_header_nritems(node); 2296 nr = slot; 2297 2298 while (1) { 2299 if (path->reada == READA_BACK) { 2300 if (nr == 0) 2301 break; 2302 nr--; 2303 } else if (path->reada == READA_FORWARD) { 2304 nr++; 2305 if (nr >= nritems) 2306 break; 2307 } 2308 if (path->reada == READA_BACK && objectid) { 2309 btrfs_node_key(node, &disk_key, nr); 2310 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2311 break; 2312 } 2313 search = btrfs_node_blockptr(node, nr); 2314 if ((search <= target && target - search <= 65536) || 2315 (search > target && search - target <= 65536)) { 2316 gen = btrfs_node_ptr_generation(node, nr); 2317 readahead_tree_block(root, search); 2318 nread += blocksize; 2319 } 2320 nscan++; 2321 if ((nread > 65536 || nscan > 32)) 2322 break; 2323 } 2324 } 2325 2326 static noinline void reada_for_balance(struct btrfs_root *root, 2327 struct btrfs_path *path, int level) 2328 { 2329 int slot; 2330 int nritems; 2331 struct extent_buffer *parent; 2332 struct extent_buffer *eb; 2333 u64 gen; 2334 u64 block1 = 0; 2335 u64 block2 = 0; 2336 2337 parent = path->nodes[level + 1]; 2338 if (!parent) 2339 return; 2340 2341 nritems = btrfs_header_nritems(parent); 2342 slot = path->slots[level + 1]; 2343 2344 if (slot > 0) { 2345 block1 = btrfs_node_blockptr(parent, slot - 1); 2346 gen = btrfs_node_ptr_generation(parent, slot - 1); 2347 eb = btrfs_find_tree_block(root->fs_info, block1); 2348 /* 2349 * if we get -eagain from btrfs_buffer_uptodate, we 2350 * don't want to return eagain here. That will loop 2351 * forever 2352 */ 2353 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2354 block1 = 0; 2355 free_extent_buffer(eb); 2356 } 2357 if (slot + 1 < nritems) { 2358 block2 = btrfs_node_blockptr(parent, slot + 1); 2359 gen = btrfs_node_ptr_generation(parent, slot + 1); 2360 eb = btrfs_find_tree_block(root->fs_info, block2); 2361 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2362 block2 = 0; 2363 free_extent_buffer(eb); 2364 } 2365 2366 if (block1) 2367 readahead_tree_block(root, block1); 2368 if (block2) 2369 readahead_tree_block(root, block2); 2370 } 2371 2372 2373 /* 2374 * when we walk down the tree, it is usually safe to unlock the higher layers 2375 * in the tree. The exceptions are when our path goes through slot 0, because 2376 * operations on the tree might require changing key pointers higher up in the 2377 * tree. 2378 * 2379 * callers might also have set path->keep_locks, which tells this code to keep 2380 * the lock if the path points to the last slot in the block. This is part of 2381 * walking through the tree, and selecting the next slot in the higher block. 2382 * 2383 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2384 * if lowest_unlock is 1, level 0 won't be unlocked 2385 */ 2386 static noinline void unlock_up(struct btrfs_path *path, int level, 2387 int lowest_unlock, int min_write_lock_level, 2388 int *write_lock_level) 2389 { 2390 int i; 2391 int skip_level = level; 2392 int no_skips = 0; 2393 struct extent_buffer *t; 2394 2395 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2396 if (!path->nodes[i]) 2397 break; 2398 if (!path->locks[i]) 2399 break; 2400 if (!no_skips && path->slots[i] == 0) { 2401 skip_level = i + 1; 2402 continue; 2403 } 2404 if (!no_skips && path->keep_locks) { 2405 u32 nritems; 2406 t = path->nodes[i]; 2407 nritems = btrfs_header_nritems(t); 2408 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2409 skip_level = i + 1; 2410 continue; 2411 } 2412 } 2413 if (skip_level < i && i >= lowest_unlock) 2414 no_skips = 1; 2415 2416 t = path->nodes[i]; 2417 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2418 btrfs_tree_unlock_rw(t, path->locks[i]); 2419 path->locks[i] = 0; 2420 if (write_lock_level && 2421 i > min_write_lock_level && 2422 i <= *write_lock_level) { 2423 *write_lock_level = i - 1; 2424 } 2425 } 2426 } 2427 } 2428 2429 /* 2430 * This releases any locks held in the path starting at level and 2431 * going all the way up to the root. 2432 * 2433 * btrfs_search_slot will keep the lock held on higher nodes in a few 2434 * corner cases, such as COW of the block at slot zero in the node. This 2435 * ignores those rules, and it should only be called when there are no 2436 * more updates to be done higher up in the tree. 2437 */ 2438 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2439 { 2440 int i; 2441 2442 if (path->keep_locks) 2443 return; 2444 2445 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2446 if (!path->nodes[i]) 2447 continue; 2448 if (!path->locks[i]) 2449 continue; 2450 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2451 path->locks[i] = 0; 2452 } 2453 } 2454 2455 /* 2456 * helper function for btrfs_search_slot. The goal is to find a block 2457 * in cache without setting the path to blocking. If we find the block 2458 * we return zero and the path is unchanged. 2459 * 2460 * If we can't find the block, we set the path blocking and do some 2461 * reada. -EAGAIN is returned and the search must be repeated. 2462 */ 2463 static int 2464 read_block_for_search(struct btrfs_trans_handle *trans, 2465 struct btrfs_root *root, struct btrfs_path *p, 2466 struct extent_buffer **eb_ret, int level, int slot, 2467 struct btrfs_key *key, u64 time_seq) 2468 { 2469 u64 blocknr; 2470 u64 gen; 2471 struct extent_buffer *b = *eb_ret; 2472 struct extent_buffer *tmp; 2473 int ret; 2474 2475 blocknr = btrfs_node_blockptr(b, slot); 2476 gen = btrfs_node_ptr_generation(b, slot); 2477 2478 tmp = btrfs_find_tree_block(root->fs_info, blocknr); 2479 if (tmp) { 2480 /* first we do an atomic uptodate check */ 2481 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2482 *eb_ret = tmp; 2483 return 0; 2484 } 2485 2486 /* the pages were up to date, but we failed 2487 * the generation number check. Do a full 2488 * read for the generation number that is correct. 2489 * We must do this without dropping locks so 2490 * we can trust our generation number 2491 */ 2492 btrfs_set_path_blocking(p); 2493 2494 /* now we're allowed to do a blocking uptodate check */ 2495 ret = btrfs_read_buffer(tmp, gen); 2496 if (!ret) { 2497 *eb_ret = tmp; 2498 return 0; 2499 } 2500 free_extent_buffer(tmp); 2501 btrfs_release_path(p); 2502 return -EIO; 2503 } 2504 2505 /* 2506 * reduce lock contention at high levels 2507 * of the btree by dropping locks before 2508 * we read. Don't release the lock on the current 2509 * level because we need to walk this node to figure 2510 * out which blocks to read. 2511 */ 2512 btrfs_unlock_up_safe(p, level + 1); 2513 btrfs_set_path_blocking(p); 2514 2515 free_extent_buffer(tmp); 2516 if (p->reada != READA_NONE) 2517 reada_for_search(root, p, level, slot, key->objectid); 2518 2519 btrfs_release_path(p); 2520 2521 ret = -EAGAIN; 2522 tmp = read_tree_block(root, blocknr, 0); 2523 if (!IS_ERR(tmp)) { 2524 /* 2525 * If the read above didn't mark this buffer up to date, 2526 * it will never end up being up to date. Set ret to EIO now 2527 * and give up so that our caller doesn't loop forever 2528 * on our EAGAINs. 2529 */ 2530 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2531 ret = -EIO; 2532 free_extent_buffer(tmp); 2533 } else { 2534 ret = PTR_ERR(tmp); 2535 } 2536 return ret; 2537 } 2538 2539 /* 2540 * helper function for btrfs_search_slot. This does all of the checks 2541 * for node-level blocks and does any balancing required based on 2542 * the ins_len. 2543 * 2544 * If no extra work was required, zero is returned. If we had to 2545 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2546 * start over 2547 */ 2548 static int 2549 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2550 struct btrfs_root *root, struct btrfs_path *p, 2551 struct extent_buffer *b, int level, int ins_len, 2552 int *write_lock_level) 2553 { 2554 int ret; 2555 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2556 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2557 int sret; 2558 2559 if (*write_lock_level < level + 1) { 2560 *write_lock_level = level + 1; 2561 btrfs_release_path(p); 2562 goto again; 2563 } 2564 2565 btrfs_set_path_blocking(p); 2566 reada_for_balance(root, p, level); 2567 sret = split_node(trans, root, p, level); 2568 btrfs_clear_path_blocking(p, NULL, 0); 2569 2570 BUG_ON(sret > 0); 2571 if (sret) { 2572 ret = sret; 2573 goto done; 2574 } 2575 b = p->nodes[level]; 2576 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2577 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2578 int sret; 2579 2580 if (*write_lock_level < level + 1) { 2581 *write_lock_level = level + 1; 2582 btrfs_release_path(p); 2583 goto again; 2584 } 2585 2586 btrfs_set_path_blocking(p); 2587 reada_for_balance(root, p, level); 2588 sret = balance_level(trans, root, p, level); 2589 btrfs_clear_path_blocking(p, NULL, 0); 2590 2591 if (sret) { 2592 ret = sret; 2593 goto done; 2594 } 2595 b = p->nodes[level]; 2596 if (!b) { 2597 btrfs_release_path(p); 2598 goto again; 2599 } 2600 BUG_ON(btrfs_header_nritems(b) == 1); 2601 } 2602 return 0; 2603 2604 again: 2605 ret = -EAGAIN; 2606 done: 2607 return ret; 2608 } 2609 2610 static void key_search_validate(struct extent_buffer *b, 2611 struct btrfs_key *key, 2612 int level) 2613 { 2614 #ifdef CONFIG_BTRFS_ASSERT 2615 struct btrfs_disk_key disk_key; 2616 2617 btrfs_cpu_key_to_disk(&disk_key, key); 2618 2619 if (level == 0) 2620 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2621 offsetof(struct btrfs_leaf, items[0].key), 2622 sizeof(disk_key))); 2623 else 2624 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2625 offsetof(struct btrfs_node, ptrs[0].key), 2626 sizeof(disk_key))); 2627 #endif 2628 } 2629 2630 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2631 int level, int *prev_cmp, int *slot) 2632 { 2633 if (*prev_cmp != 0) { 2634 *prev_cmp = bin_search(b, key, level, slot); 2635 return *prev_cmp; 2636 } 2637 2638 key_search_validate(b, key, level); 2639 *slot = 0; 2640 2641 return 0; 2642 } 2643 2644 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2645 u64 iobjectid, u64 ioff, u8 key_type, 2646 struct btrfs_key *found_key) 2647 { 2648 int ret; 2649 struct btrfs_key key; 2650 struct extent_buffer *eb; 2651 2652 ASSERT(path); 2653 ASSERT(found_key); 2654 2655 key.type = key_type; 2656 key.objectid = iobjectid; 2657 key.offset = ioff; 2658 2659 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2660 if (ret < 0) 2661 return ret; 2662 2663 eb = path->nodes[0]; 2664 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2665 ret = btrfs_next_leaf(fs_root, path); 2666 if (ret) 2667 return ret; 2668 eb = path->nodes[0]; 2669 } 2670 2671 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2672 if (found_key->type != key.type || 2673 found_key->objectid != key.objectid) 2674 return 1; 2675 2676 return 0; 2677 } 2678 2679 /* 2680 * look for key in the tree. path is filled in with nodes along the way 2681 * if key is found, we return zero and you can find the item in the leaf 2682 * level of the path (level 0) 2683 * 2684 * If the key isn't found, the path points to the slot where it should 2685 * be inserted, and 1 is returned. If there are other errors during the 2686 * search a negative error number is returned. 2687 * 2688 * if ins_len > 0, nodes and leaves will be split as we walk down the 2689 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2690 * possible) 2691 */ 2692 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2693 *root, struct btrfs_key *key, struct btrfs_path *p, int 2694 ins_len, int cow) 2695 { 2696 struct extent_buffer *b; 2697 int slot; 2698 int ret; 2699 int err; 2700 int level; 2701 int lowest_unlock = 1; 2702 int root_lock; 2703 /* everything at write_lock_level or lower must be write locked */ 2704 int write_lock_level = 0; 2705 u8 lowest_level = 0; 2706 int min_write_lock_level; 2707 int prev_cmp; 2708 2709 lowest_level = p->lowest_level; 2710 WARN_ON(lowest_level && ins_len > 0); 2711 WARN_ON(p->nodes[0] != NULL); 2712 BUG_ON(!cow && ins_len); 2713 2714 if (ins_len < 0) { 2715 lowest_unlock = 2; 2716 2717 /* when we are removing items, we might have to go up to level 2718 * two as we update tree pointers Make sure we keep write 2719 * for those levels as well 2720 */ 2721 write_lock_level = 2; 2722 } else if (ins_len > 0) { 2723 /* 2724 * for inserting items, make sure we have a write lock on 2725 * level 1 so we can update keys 2726 */ 2727 write_lock_level = 1; 2728 } 2729 2730 if (!cow) 2731 write_lock_level = -1; 2732 2733 if (cow && (p->keep_locks || p->lowest_level)) 2734 write_lock_level = BTRFS_MAX_LEVEL; 2735 2736 min_write_lock_level = write_lock_level; 2737 2738 again: 2739 prev_cmp = -1; 2740 /* 2741 * we try very hard to do read locks on the root 2742 */ 2743 root_lock = BTRFS_READ_LOCK; 2744 level = 0; 2745 if (p->search_commit_root) { 2746 /* 2747 * the commit roots are read only 2748 * so we always do read locks 2749 */ 2750 if (p->need_commit_sem) 2751 down_read(&root->fs_info->commit_root_sem); 2752 b = root->commit_root; 2753 extent_buffer_get(b); 2754 level = btrfs_header_level(b); 2755 if (p->need_commit_sem) 2756 up_read(&root->fs_info->commit_root_sem); 2757 if (!p->skip_locking) 2758 btrfs_tree_read_lock(b); 2759 } else { 2760 if (p->skip_locking) { 2761 b = btrfs_root_node(root); 2762 level = btrfs_header_level(b); 2763 } else { 2764 /* we don't know the level of the root node 2765 * until we actually have it read locked 2766 */ 2767 b = btrfs_read_lock_root_node(root); 2768 level = btrfs_header_level(b); 2769 if (level <= write_lock_level) { 2770 /* whoops, must trade for write lock */ 2771 btrfs_tree_read_unlock(b); 2772 free_extent_buffer(b); 2773 b = btrfs_lock_root_node(root); 2774 root_lock = BTRFS_WRITE_LOCK; 2775 2776 /* the level might have changed, check again */ 2777 level = btrfs_header_level(b); 2778 } 2779 } 2780 } 2781 p->nodes[level] = b; 2782 if (!p->skip_locking) 2783 p->locks[level] = root_lock; 2784 2785 while (b) { 2786 level = btrfs_header_level(b); 2787 2788 /* 2789 * setup the path here so we can release it under lock 2790 * contention with the cow code 2791 */ 2792 if (cow) { 2793 /* 2794 * if we don't really need to cow this block 2795 * then we don't want to set the path blocking, 2796 * so we test it here 2797 */ 2798 if (!should_cow_block(trans, root, b)) { 2799 trans->dirty = true; 2800 goto cow_done; 2801 } 2802 2803 /* 2804 * must have write locks on this node and the 2805 * parent 2806 */ 2807 if (level > write_lock_level || 2808 (level + 1 > write_lock_level && 2809 level + 1 < BTRFS_MAX_LEVEL && 2810 p->nodes[level + 1])) { 2811 write_lock_level = level + 1; 2812 btrfs_release_path(p); 2813 goto again; 2814 } 2815 2816 btrfs_set_path_blocking(p); 2817 err = btrfs_cow_block(trans, root, b, 2818 p->nodes[level + 1], 2819 p->slots[level + 1], &b); 2820 if (err) { 2821 ret = err; 2822 goto done; 2823 } 2824 } 2825 cow_done: 2826 p->nodes[level] = b; 2827 btrfs_clear_path_blocking(p, NULL, 0); 2828 2829 /* 2830 * we have a lock on b and as long as we aren't changing 2831 * the tree, there is no way to for the items in b to change. 2832 * It is safe to drop the lock on our parent before we 2833 * go through the expensive btree search on b. 2834 * 2835 * If we're inserting or deleting (ins_len != 0), then we might 2836 * be changing slot zero, which may require changing the parent. 2837 * So, we can't drop the lock until after we know which slot 2838 * we're operating on. 2839 */ 2840 if (!ins_len && !p->keep_locks) { 2841 int u = level + 1; 2842 2843 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2844 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2845 p->locks[u] = 0; 2846 } 2847 } 2848 2849 ret = key_search(b, key, level, &prev_cmp, &slot); 2850 if (ret < 0) 2851 goto done; 2852 2853 if (level != 0) { 2854 int dec = 0; 2855 if (ret && slot > 0) { 2856 dec = 1; 2857 slot -= 1; 2858 } 2859 p->slots[level] = slot; 2860 err = setup_nodes_for_search(trans, root, p, b, level, 2861 ins_len, &write_lock_level); 2862 if (err == -EAGAIN) 2863 goto again; 2864 if (err) { 2865 ret = err; 2866 goto done; 2867 } 2868 b = p->nodes[level]; 2869 slot = p->slots[level]; 2870 2871 /* 2872 * slot 0 is special, if we change the key 2873 * we have to update the parent pointer 2874 * which means we must have a write lock 2875 * on the parent 2876 */ 2877 if (slot == 0 && ins_len && 2878 write_lock_level < level + 1) { 2879 write_lock_level = level + 1; 2880 btrfs_release_path(p); 2881 goto again; 2882 } 2883 2884 unlock_up(p, level, lowest_unlock, 2885 min_write_lock_level, &write_lock_level); 2886 2887 if (level == lowest_level) { 2888 if (dec) 2889 p->slots[level]++; 2890 goto done; 2891 } 2892 2893 err = read_block_for_search(trans, root, p, 2894 &b, level, slot, key, 0); 2895 if (err == -EAGAIN) 2896 goto again; 2897 if (err) { 2898 ret = err; 2899 goto done; 2900 } 2901 2902 if (!p->skip_locking) { 2903 level = btrfs_header_level(b); 2904 if (level <= write_lock_level) { 2905 err = btrfs_try_tree_write_lock(b); 2906 if (!err) { 2907 btrfs_set_path_blocking(p); 2908 btrfs_tree_lock(b); 2909 btrfs_clear_path_blocking(p, b, 2910 BTRFS_WRITE_LOCK); 2911 } 2912 p->locks[level] = BTRFS_WRITE_LOCK; 2913 } else { 2914 err = btrfs_tree_read_lock_atomic(b); 2915 if (!err) { 2916 btrfs_set_path_blocking(p); 2917 btrfs_tree_read_lock(b); 2918 btrfs_clear_path_blocking(p, b, 2919 BTRFS_READ_LOCK); 2920 } 2921 p->locks[level] = BTRFS_READ_LOCK; 2922 } 2923 p->nodes[level] = b; 2924 } 2925 } else { 2926 p->slots[level] = slot; 2927 if (ins_len > 0 && 2928 btrfs_leaf_free_space(root, b) < ins_len) { 2929 if (write_lock_level < 1) { 2930 write_lock_level = 1; 2931 btrfs_release_path(p); 2932 goto again; 2933 } 2934 2935 btrfs_set_path_blocking(p); 2936 err = split_leaf(trans, root, key, 2937 p, ins_len, ret == 0); 2938 btrfs_clear_path_blocking(p, NULL, 0); 2939 2940 BUG_ON(err > 0); 2941 if (err) { 2942 ret = err; 2943 goto done; 2944 } 2945 } 2946 if (!p->search_for_split) 2947 unlock_up(p, level, lowest_unlock, 2948 min_write_lock_level, &write_lock_level); 2949 goto done; 2950 } 2951 } 2952 ret = 1; 2953 done: 2954 /* 2955 * we don't really know what they plan on doing with the path 2956 * from here on, so for now just mark it as blocking 2957 */ 2958 if (!p->leave_spinning) 2959 btrfs_set_path_blocking(p); 2960 if (ret < 0 && !p->skip_release_on_error) 2961 btrfs_release_path(p); 2962 return ret; 2963 } 2964 2965 /* 2966 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2967 * current state of the tree together with the operations recorded in the tree 2968 * modification log to search for the key in a previous version of this tree, as 2969 * denoted by the time_seq parameter. 2970 * 2971 * Naturally, there is no support for insert, delete or cow operations. 2972 * 2973 * The resulting path and return value will be set up as if we called 2974 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2975 */ 2976 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2977 struct btrfs_path *p, u64 time_seq) 2978 { 2979 struct extent_buffer *b; 2980 int slot; 2981 int ret; 2982 int err; 2983 int level; 2984 int lowest_unlock = 1; 2985 u8 lowest_level = 0; 2986 int prev_cmp = -1; 2987 2988 lowest_level = p->lowest_level; 2989 WARN_ON(p->nodes[0] != NULL); 2990 2991 if (p->search_commit_root) { 2992 BUG_ON(time_seq); 2993 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2994 } 2995 2996 again: 2997 b = get_old_root(root, time_seq); 2998 level = btrfs_header_level(b); 2999 p->locks[level] = BTRFS_READ_LOCK; 3000 3001 while (b) { 3002 level = btrfs_header_level(b); 3003 p->nodes[level] = b; 3004 btrfs_clear_path_blocking(p, NULL, 0); 3005 3006 /* 3007 * we have a lock on b and as long as we aren't changing 3008 * the tree, there is no way to for the items in b to change. 3009 * It is safe to drop the lock on our parent before we 3010 * go through the expensive btree search on b. 3011 */ 3012 btrfs_unlock_up_safe(p, level + 1); 3013 3014 /* 3015 * Since we can unwind ebs we want to do a real search every 3016 * time. 3017 */ 3018 prev_cmp = -1; 3019 ret = key_search(b, key, level, &prev_cmp, &slot); 3020 3021 if (level != 0) { 3022 int dec = 0; 3023 if (ret && slot > 0) { 3024 dec = 1; 3025 slot -= 1; 3026 } 3027 p->slots[level] = slot; 3028 unlock_up(p, level, lowest_unlock, 0, NULL); 3029 3030 if (level == lowest_level) { 3031 if (dec) 3032 p->slots[level]++; 3033 goto done; 3034 } 3035 3036 err = read_block_for_search(NULL, root, p, &b, level, 3037 slot, key, time_seq); 3038 if (err == -EAGAIN) 3039 goto again; 3040 if (err) { 3041 ret = err; 3042 goto done; 3043 } 3044 3045 level = btrfs_header_level(b); 3046 err = btrfs_tree_read_lock_atomic(b); 3047 if (!err) { 3048 btrfs_set_path_blocking(p); 3049 btrfs_tree_read_lock(b); 3050 btrfs_clear_path_blocking(p, b, 3051 BTRFS_READ_LOCK); 3052 } 3053 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 3054 if (!b) { 3055 ret = -ENOMEM; 3056 goto done; 3057 } 3058 p->locks[level] = BTRFS_READ_LOCK; 3059 p->nodes[level] = b; 3060 } else { 3061 p->slots[level] = slot; 3062 unlock_up(p, level, lowest_unlock, 0, NULL); 3063 goto done; 3064 } 3065 } 3066 ret = 1; 3067 done: 3068 if (!p->leave_spinning) 3069 btrfs_set_path_blocking(p); 3070 if (ret < 0) 3071 btrfs_release_path(p); 3072 3073 return ret; 3074 } 3075 3076 /* 3077 * helper to use instead of search slot if no exact match is needed but 3078 * instead the next or previous item should be returned. 3079 * When find_higher is true, the next higher item is returned, the next lower 3080 * otherwise. 3081 * When return_any and find_higher are both true, and no higher item is found, 3082 * return the next lower instead. 3083 * When return_any is true and find_higher is false, and no lower item is found, 3084 * return the next higher instead. 3085 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3086 * < 0 on error 3087 */ 3088 int btrfs_search_slot_for_read(struct btrfs_root *root, 3089 struct btrfs_key *key, struct btrfs_path *p, 3090 int find_higher, int return_any) 3091 { 3092 int ret; 3093 struct extent_buffer *leaf; 3094 3095 again: 3096 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3097 if (ret <= 0) 3098 return ret; 3099 /* 3100 * a return value of 1 means the path is at the position where the 3101 * item should be inserted. Normally this is the next bigger item, 3102 * but in case the previous item is the last in a leaf, path points 3103 * to the first free slot in the previous leaf, i.e. at an invalid 3104 * item. 3105 */ 3106 leaf = p->nodes[0]; 3107 3108 if (find_higher) { 3109 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3110 ret = btrfs_next_leaf(root, p); 3111 if (ret <= 0) 3112 return ret; 3113 if (!return_any) 3114 return 1; 3115 /* 3116 * no higher item found, return the next 3117 * lower instead 3118 */ 3119 return_any = 0; 3120 find_higher = 0; 3121 btrfs_release_path(p); 3122 goto again; 3123 } 3124 } else { 3125 if (p->slots[0] == 0) { 3126 ret = btrfs_prev_leaf(root, p); 3127 if (ret < 0) 3128 return ret; 3129 if (!ret) { 3130 leaf = p->nodes[0]; 3131 if (p->slots[0] == btrfs_header_nritems(leaf)) 3132 p->slots[0]--; 3133 return 0; 3134 } 3135 if (!return_any) 3136 return 1; 3137 /* 3138 * no lower item found, return the next 3139 * higher instead 3140 */ 3141 return_any = 0; 3142 find_higher = 1; 3143 btrfs_release_path(p); 3144 goto again; 3145 } else { 3146 --p->slots[0]; 3147 } 3148 } 3149 return 0; 3150 } 3151 3152 /* 3153 * adjust the pointers going up the tree, starting at level 3154 * making sure the right key of each node is points to 'key'. 3155 * This is used after shifting pointers to the left, so it stops 3156 * fixing up pointers when a given leaf/node is not in slot 0 of the 3157 * higher levels 3158 * 3159 */ 3160 static void fixup_low_keys(struct btrfs_fs_info *fs_info, 3161 struct btrfs_path *path, 3162 struct btrfs_disk_key *key, int level) 3163 { 3164 int i; 3165 struct extent_buffer *t; 3166 3167 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3168 int tslot = path->slots[i]; 3169 if (!path->nodes[i]) 3170 break; 3171 t = path->nodes[i]; 3172 tree_mod_log_set_node_key(fs_info, t, tslot, 1); 3173 btrfs_set_node_key(t, key, tslot); 3174 btrfs_mark_buffer_dirty(path->nodes[i]); 3175 if (tslot != 0) 3176 break; 3177 } 3178 } 3179 3180 /* 3181 * update item key. 3182 * 3183 * This function isn't completely safe. It's the caller's responsibility 3184 * that the new key won't break the order 3185 */ 3186 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3187 struct btrfs_path *path, 3188 struct btrfs_key *new_key) 3189 { 3190 struct btrfs_disk_key disk_key; 3191 struct extent_buffer *eb; 3192 int slot; 3193 3194 eb = path->nodes[0]; 3195 slot = path->slots[0]; 3196 if (slot > 0) { 3197 btrfs_item_key(eb, &disk_key, slot - 1); 3198 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3199 } 3200 if (slot < btrfs_header_nritems(eb) - 1) { 3201 btrfs_item_key(eb, &disk_key, slot + 1); 3202 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3203 } 3204 3205 btrfs_cpu_key_to_disk(&disk_key, new_key); 3206 btrfs_set_item_key(eb, &disk_key, slot); 3207 btrfs_mark_buffer_dirty(eb); 3208 if (slot == 0) 3209 fixup_low_keys(fs_info, path, &disk_key, 1); 3210 } 3211 3212 /* 3213 * try to push data from one node into the next node left in the 3214 * tree. 3215 * 3216 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3217 * error, and > 0 if there was no room in the left hand block. 3218 */ 3219 static int push_node_left(struct btrfs_trans_handle *trans, 3220 struct btrfs_root *root, struct extent_buffer *dst, 3221 struct extent_buffer *src, int empty) 3222 { 3223 int push_items = 0; 3224 int src_nritems; 3225 int dst_nritems; 3226 int ret = 0; 3227 3228 src_nritems = btrfs_header_nritems(src); 3229 dst_nritems = btrfs_header_nritems(dst); 3230 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3231 WARN_ON(btrfs_header_generation(src) != trans->transid); 3232 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3233 3234 if (!empty && src_nritems <= 8) 3235 return 1; 3236 3237 if (push_items <= 0) 3238 return 1; 3239 3240 if (empty) { 3241 push_items = min(src_nritems, push_items); 3242 if (push_items < src_nritems) { 3243 /* leave at least 8 pointers in the node if 3244 * we aren't going to empty it 3245 */ 3246 if (src_nritems - push_items < 8) { 3247 if (push_items <= 8) 3248 return 1; 3249 push_items -= 8; 3250 } 3251 } 3252 } else 3253 push_items = min(src_nritems - 8, push_items); 3254 3255 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3256 push_items); 3257 if (ret) { 3258 btrfs_abort_transaction(trans, ret); 3259 return ret; 3260 } 3261 copy_extent_buffer(dst, src, 3262 btrfs_node_key_ptr_offset(dst_nritems), 3263 btrfs_node_key_ptr_offset(0), 3264 push_items * sizeof(struct btrfs_key_ptr)); 3265 3266 if (push_items < src_nritems) { 3267 /* 3268 * don't call tree_mod_log_eb_move here, key removal was already 3269 * fully logged by tree_mod_log_eb_copy above. 3270 */ 3271 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3272 btrfs_node_key_ptr_offset(push_items), 3273 (src_nritems - push_items) * 3274 sizeof(struct btrfs_key_ptr)); 3275 } 3276 btrfs_set_header_nritems(src, src_nritems - push_items); 3277 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3278 btrfs_mark_buffer_dirty(src); 3279 btrfs_mark_buffer_dirty(dst); 3280 3281 return ret; 3282 } 3283 3284 /* 3285 * try to push data from one node into the next node right in the 3286 * tree. 3287 * 3288 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3289 * error, and > 0 if there was no room in the right hand block. 3290 * 3291 * this will only push up to 1/2 the contents of the left node over 3292 */ 3293 static int balance_node_right(struct btrfs_trans_handle *trans, 3294 struct btrfs_root *root, 3295 struct extent_buffer *dst, 3296 struct extent_buffer *src) 3297 { 3298 int push_items = 0; 3299 int max_push; 3300 int src_nritems; 3301 int dst_nritems; 3302 int ret = 0; 3303 3304 WARN_ON(btrfs_header_generation(src) != trans->transid); 3305 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3306 3307 src_nritems = btrfs_header_nritems(src); 3308 dst_nritems = btrfs_header_nritems(dst); 3309 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3310 if (push_items <= 0) 3311 return 1; 3312 3313 if (src_nritems < 4) 3314 return 1; 3315 3316 max_push = src_nritems / 2 + 1; 3317 /* don't try to empty the node */ 3318 if (max_push >= src_nritems) 3319 return 1; 3320 3321 if (max_push < push_items) 3322 push_items = max_push; 3323 3324 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3325 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3326 btrfs_node_key_ptr_offset(0), 3327 (dst_nritems) * 3328 sizeof(struct btrfs_key_ptr)); 3329 3330 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3331 src_nritems - push_items, push_items); 3332 if (ret) { 3333 btrfs_abort_transaction(trans, ret); 3334 return ret; 3335 } 3336 copy_extent_buffer(dst, src, 3337 btrfs_node_key_ptr_offset(0), 3338 btrfs_node_key_ptr_offset(src_nritems - push_items), 3339 push_items * sizeof(struct btrfs_key_ptr)); 3340 3341 btrfs_set_header_nritems(src, src_nritems - push_items); 3342 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3343 3344 btrfs_mark_buffer_dirty(src); 3345 btrfs_mark_buffer_dirty(dst); 3346 3347 return ret; 3348 } 3349 3350 /* 3351 * helper function to insert a new root level in the tree. 3352 * A new node is allocated, and a single item is inserted to 3353 * point to the existing root 3354 * 3355 * returns zero on success or < 0 on failure. 3356 */ 3357 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3358 struct btrfs_root *root, 3359 struct btrfs_path *path, int level) 3360 { 3361 u64 lower_gen; 3362 struct extent_buffer *lower; 3363 struct extent_buffer *c; 3364 struct extent_buffer *old; 3365 struct btrfs_disk_key lower_key; 3366 3367 BUG_ON(path->nodes[level]); 3368 BUG_ON(path->nodes[level-1] != root->node); 3369 3370 lower = path->nodes[level-1]; 3371 if (level == 1) 3372 btrfs_item_key(lower, &lower_key, 0); 3373 else 3374 btrfs_node_key(lower, &lower_key, 0); 3375 3376 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3377 &lower_key, level, root->node->start, 0); 3378 if (IS_ERR(c)) 3379 return PTR_ERR(c); 3380 3381 root_add_used(root, root->nodesize); 3382 3383 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3384 btrfs_set_header_nritems(c, 1); 3385 btrfs_set_header_level(c, level); 3386 btrfs_set_header_bytenr(c, c->start); 3387 btrfs_set_header_generation(c, trans->transid); 3388 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3389 btrfs_set_header_owner(c, root->root_key.objectid); 3390 3391 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), 3392 BTRFS_FSID_SIZE); 3393 3394 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3395 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3396 3397 btrfs_set_node_key(c, &lower_key, 0); 3398 btrfs_set_node_blockptr(c, 0, lower->start); 3399 lower_gen = btrfs_header_generation(lower); 3400 WARN_ON(lower_gen != trans->transid); 3401 3402 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3403 3404 btrfs_mark_buffer_dirty(c); 3405 3406 old = root->node; 3407 tree_mod_log_set_root_pointer(root, c, 0); 3408 rcu_assign_pointer(root->node, c); 3409 3410 /* the super has an extra ref to root->node */ 3411 free_extent_buffer(old); 3412 3413 add_root_to_dirty_list(root); 3414 extent_buffer_get(c); 3415 path->nodes[level] = c; 3416 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3417 path->slots[level] = 0; 3418 return 0; 3419 } 3420 3421 /* 3422 * worker function to insert a single pointer in a node. 3423 * the node should have enough room for the pointer already 3424 * 3425 * slot and level indicate where you want the key to go, and 3426 * blocknr is the block the key points to. 3427 */ 3428 static void insert_ptr(struct btrfs_trans_handle *trans, 3429 struct btrfs_root *root, struct btrfs_path *path, 3430 struct btrfs_disk_key *key, u64 bytenr, 3431 int slot, int level) 3432 { 3433 struct extent_buffer *lower; 3434 int nritems; 3435 int ret; 3436 3437 BUG_ON(!path->nodes[level]); 3438 btrfs_assert_tree_locked(path->nodes[level]); 3439 lower = path->nodes[level]; 3440 nritems = btrfs_header_nritems(lower); 3441 BUG_ON(slot > nritems); 3442 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3443 if (slot != nritems) { 3444 if (level) 3445 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3446 slot, nritems - slot); 3447 memmove_extent_buffer(lower, 3448 btrfs_node_key_ptr_offset(slot + 1), 3449 btrfs_node_key_ptr_offset(slot), 3450 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3451 } 3452 if (level) { 3453 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3454 MOD_LOG_KEY_ADD, GFP_NOFS); 3455 BUG_ON(ret < 0); 3456 } 3457 btrfs_set_node_key(lower, key, slot); 3458 btrfs_set_node_blockptr(lower, slot, bytenr); 3459 WARN_ON(trans->transid == 0); 3460 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3461 btrfs_set_header_nritems(lower, nritems + 1); 3462 btrfs_mark_buffer_dirty(lower); 3463 } 3464 3465 /* 3466 * split the node at the specified level in path in two. 3467 * The path is corrected to point to the appropriate node after the split 3468 * 3469 * Before splitting this tries to make some room in the node by pushing 3470 * left and right, if either one works, it returns right away. 3471 * 3472 * returns 0 on success and < 0 on failure 3473 */ 3474 static noinline int split_node(struct btrfs_trans_handle *trans, 3475 struct btrfs_root *root, 3476 struct btrfs_path *path, int level) 3477 { 3478 struct extent_buffer *c; 3479 struct extent_buffer *split; 3480 struct btrfs_disk_key disk_key; 3481 int mid; 3482 int ret; 3483 u32 c_nritems; 3484 3485 c = path->nodes[level]; 3486 WARN_ON(btrfs_header_generation(c) != trans->transid); 3487 if (c == root->node) { 3488 /* 3489 * trying to split the root, lets make a new one 3490 * 3491 * tree mod log: We don't log_removal old root in 3492 * insert_new_root, because that root buffer will be kept as a 3493 * normal node. We are going to log removal of half of the 3494 * elements below with tree_mod_log_eb_copy. We're holding a 3495 * tree lock on the buffer, which is why we cannot race with 3496 * other tree_mod_log users. 3497 */ 3498 ret = insert_new_root(trans, root, path, level + 1); 3499 if (ret) 3500 return ret; 3501 } else { 3502 ret = push_nodes_for_insert(trans, root, path, level); 3503 c = path->nodes[level]; 3504 if (!ret && btrfs_header_nritems(c) < 3505 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3506 return 0; 3507 if (ret < 0) 3508 return ret; 3509 } 3510 3511 c_nritems = btrfs_header_nritems(c); 3512 mid = (c_nritems + 1) / 2; 3513 btrfs_node_key(c, &disk_key, mid); 3514 3515 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3516 &disk_key, level, c->start, 0); 3517 if (IS_ERR(split)) 3518 return PTR_ERR(split); 3519 3520 root_add_used(root, root->nodesize); 3521 3522 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3523 btrfs_set_header_level(split, btrfs_header_level(c)); 3524 btrfs_set_header_bytenr(split, split->start); 3525 btrfs_set_header_generation(split, trans->transid); 3526 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3527 btrfs_set_header_owner(split, root->root_key.objectid); 3528 write_extent_buffer(split, root->fs_info->fsid, 3529 btrfs_header_fsid(), BTRFS_FSID_SIZE); 3530 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3531 btrfs_header_chunk_tree_uuid(split), 3532 BTRFS_UUID_SIZE); 3533 3534 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0, 3535 mid, c_nritems - mid); 3536 if (ret) { 3537 btrfs_abort_transaction(trans, ret); 3538 return ret; 3539 } 3540 copy_extent_buffer(split, c, 3541 btrfs_node_key_ptr_offset(0), 3542 btrfs_node_key_ptr_offset(mid), 3543 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3544 btrfs_set_header_nritems(split, c_nritems - mid); 3545 btrfs_set_header_nritems(c, mid); 3546 ret = 0; 3547 3548 btrfs_mark_buffer_dirty(c); 3549 btrfs_mark_buffer_dirty(split); 3550 3551 insert_ptr(trans, root, path, &disk_key, split->start, 3552 path->slots[level + 1] + 1, level + 1); 3553 3554 if (path->slots[level] >= mid) { 3555 path->slots[level] -= mid; 3556 btrfs_tree_unlock(c); 3557 free_extent_buffer(c); 3558 path->nodes[level] = split; 3559 path->slots[level + 1] += 1; 3560 } else { 3561 btrfs_tree_unlock(split); 3562 free_extent_buffer(split); 3563 } 3564 return ret; 3565 } 3566 3567 /* 3568 * how many bytes are required to store the items in a leaf. start 3569 * and nr indicate which items in the leaf to check. This totals up the 3570 * space used both by the item structs and the item data 3571 */ 3572 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3573 { 3574 struct btrfs_item *start_item; 3575 struct btrfs_item *end_item; 3576 struct btrfs_map_token token; 3577 int data_len; 3578 int nritems = btrfs_header_nritems(l); 3579 int end = min(nritems, start + nr) - 1; 3580 3581 if (!nr) 3582 return 0; 3583 btrfs_init_map_token(&token); 3584 start_item = btrfs_item_nr(start); 3585 end_item = btrfs_item_nr(end); 3586 data_len = btrfs_token_item_offset(l, start_item, &token) + 3587 btrfs_token_item_size(l, start_item, &token); 3588 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3589 data_len += sizeof(struct btrfs_item) * nr; 3590 WARN_ON(data_len < 0); 3591 return data_len; 3592 } 3593 3594 /* 3595 * The space between the end of the leaf items and 3596 * the start of the leaf data. IOW, how much room 3597 * the leaf has left for both items and data 3598 */ 3599 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3600 struct extent_buffer *leaf) 3601 { 3602 int nritems = btrfs_header_nritems(leaf); 3603 int ret; 3604 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3605 if (ret < 0) { 3606 btrfs_crit(root->fs_info, 3607 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3608 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3609 leaf_space_used(leaf, 0, nritems), nritems); 3610 } 3611 return ret; 3612 } 3613 3614 /* 3615 * min slot controls the lowest index we're willing to push to the 3616 * right. We'll push up to and including min_slot, but no lower 3617 */ 3618 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3619 struct btrfs_root *root, 3620 struct btrfs_path *path, 3621 int data_size, int empty, 3622 struct extent_buffer *right, 3623 int free_space, u32 left_nritems, 3624 u32 min_slot) 3625 { 3626 struct extent_buffer *left = path->nodes[0]; 3627 struct extent_buffer *upper = path->nodes[1]; 3628 struct btrfs_map_token token; 3629 struct btrfs_disk_key disk_key; 3630 int slot; 3631 u32 i; 3632 int push_space = 0; 3633 int push_items = 0; 3634 struct btrfs_item *item; 3635 u32 nr; 3636 u32 right_nritems; 3637 u32 data_end; 3638 u32 this_item_size; 3639 3640 btrfs_init_map_token(&token); 3641 3642 if (empty) 3643 nr = 0; 3644 else 3645 nr = max_t(u32, 1, min_slot); 3646 3647 if (path->slots[0] >= left_nritems) 3648 push_space += data_size; 3649 3650 slot = path->slots[1]; 3651 i = left_nritems - 1; 3652 while (i >= nr) { 3653 item = btrfs_item_nr(i); 3654 3655 if (!empty && push_items > 0) { 3656 if (path->slots[0] > i) 3657 break; 3658 if (path->slots[0] == i) { 3659 int space = btrfs_leaf_free_space(root, left); 3660 if (space + push_space * 2 > free_space) 3661 break; 3662 } 3663 } 3664 3665 if (path->slots[0] == i) 3666 push_space += data_size; 3667 3668 this_item_size = btrfs_item_size(left, item); 3669 if (this_item_size + sizeof(*item) + push_space > free_space) 3670 break; 3671 3672 push_items++; 3673 push_space += this_item_size + sizeof(*item); 3674 if (i == 0) 3675 break; 3676 i--; 3677 } 3678 3679 if (push_items == 0) 3680 goto out_unlock; 3681 3682 WARN_ON(!empty && push_items == left_nritems); 3683 3684 /* push left to right */ 3685 right_nritems = btrfs_header_nritems(right); 3686 3687 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3688 push_space -= leaf_data_end(root, left); 3689 3690 /* make room in the right data area */ 3691 data_end = leaf_data_end(root, right); 3692 memmove_extent_buffer(right, 3693 btrfs_leaf_data(right) + data_end - push_space, 3694 btrfs_leaf_data(right) + data_end, 3695 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3696 3697 /* copy from the left data area */ 3698 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3699 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3700 btrfs_leaf_data(left) + leaf_data_end(root, left), 3701 push_space); 3702 3703 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3704 btrfs_item_nr_offset(0), 3705 right_nritems * sizeof(struct btrfs_item)); 3706 3707 /* copy the items from left to right */ 3708 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3709 btrfs_item_nr_offset(left_nritems - push_items), 3710 push_items * sizeof(struct btrfs_item)); 3711 3712 /* update the item pointers */ 3713 right_nritems += push_items; 3714 btrfs_set_header_nritems(right, right_nritems); 3715 push_space = BTRFS_LEAF_DATA_SIZE(root); 3716 for (i = 0; i < right_nritems; i++) { 3717 item = btrfs_item_nr(i); 3718 push_space -= btrfs_token_item_size(right, item, &token); 3719 btrfs_set_token_item_offset(right, item, push_space, &token); 3720 } 3721 3722 left_nritems -= push_items; 3723 btrfs_set_header_nritems(left, left_nritems); 3724 3725 if (left_nritems) 3726 btrfs_mark_buffer_dirty(left); 3727 else 3728 clean_tree_block(trans, root->fs_info, left); 3729 3730 btrfs_mark_buffer_dirty(right); 3731 3732 btrfs_item_key(right, &disk_key, 0); 3733 btrfs_set_node_key(upper, &disk_key, slot + 1); 3734 btrfs_mark_buffer_dirty(upper); 3735 3736 /* then fixup the leaf pointer in the path */ 3737 if (path->slots[0] >= left_nritems) { 3738 path->slots[0] -= left_nritems; 3739 if (btrfs_header_nritems(path->nodes[0]) == 0) 3740 clean_tree_block(trans, root->fs_info, path->nodes[0]); 3741 btrfs_tree_unlock(path->nodes[0]); 3742 free_extent_buffer(path->nodes[0]); 3743 path->nodes[0] = right; 3744 path->slots[1] += 1; 3745 } else { 3746 btrfs_tree_unlock(right); 3747 free_extent_buffer(right); 3748 } 3749 return 0; 3750 3751 out_unlock: 3752 btrfs_tree_unlock(right); 3753 free_extent_buffer(right); 3754 return 1; 3755 } 3756 3757 /* 3758 * push some data in the path leaf to the right, trying to free up at 3759 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3760 * 3761 * returns 1 if the push failed because the other node didn't have enough 3762 * room, 0 if everything worked out and < 0 if there were major errors. 3763 * 3764 * this will push starting from min_slot to the end of the leaf. It won't 3765 * push any slot lower than min_slot 3766 */ 3767 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3768 *root, struct btrfs_path *path, 3769 int min_data_size, int data_size, 3770 int empty, u32 min_slot) 3771 { 3772 struct extent_buffer *left = path->nodes[0]; 3773 struct extent_buffer *right; 3774 struct extent_buffer *upper; 3775 int slot; 3776 int free_space; 3777 u32 left_nritems; 3778 int ret; 3779 3780 if (!path->nodes[1]) 3781 return 1; 3782 3783 slot = path->slots[1]; 3784 upper = path->nodes[1]; 3785 if (slot >= btrfs_header_nritems(upper) - 1) 3786 return 1; 3787 3788 btrfs_assert_tree_locked(path->nodes[1]); 3789 3790 right = read_node_slot(root, upper, slot + 1); 3791 /* 3792 * slot + 1 is not valid or we fail to read the right node, 3793 * no big deal, just return. 3794 */ 3795 if (IS_ERR(right)) 3796 return 1; 3797 3798 btrfs_tree_lock(right); 3799 btrfs_set_lock_blocking(right); 3800 3801 free_space = btrfs_leaf_free_space(root, right); 3802 if (free_space < data_size) 3803 goto out_unlock; 3804 3805 /* cow and double check */ 3806 ret = btrfs_cow_block(trans, root, right, upper, 3807 slot + 1, &right); 3808 if (ret) 3809 goto out_unlock; 3810 3811 free_space = btrfs_leaf_free_space(root, right); 3812 if (free_space < data_size) 3813 goto out_unlock; 3814 3815 left_nritems = btrfs_header_nritems(left); 3816 if (left_nritems == 0) 3817 goto out_unlock; 3818 3819 if (path->slots[0] == left_nritems && !empty) { 3820 /* Key greater than all keys in the leaf, right neighbor has 3821 * enough room for it and we're not emptying our leaf to delete 3822 * it, therefore use right neighbor to insert the new item and 3823 * no need to touch/dirty our left leaft. */ 3824 btrfs_tree_unlock(left); 3825 free_extent_buffer(left); 3826 path->nodes[0] = right; 3827 path->slots[0] = 0; 3828 path->slots[1]++; 3829 return 0; 3830 } 3831 3832 return __push_leaf_right(trans, root, path, min_data_size, empty, 3833 right, free_space, left_nritems, min_slot); 3834 out_unlock: 3835 btrfs_tree_unlock(right); 3836 free_extent_buffer(right); 3837 return 1; 3838 } 3839 3840 /* 3841 * push some data in the path leaf to the left, trying to free up at 3842 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3843 * 3844 * max_slot can put a limit on how far into the leaf we'll push items. The 3845 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3846 * items 3847 */ 3848 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3849 struct btrfs_root *root, 3850 struct btrfs_path *path, int data_size, 3851 int empty, struct extent_buffer *left, 3852 int free_space, u32 right_nritems, 3853 u32 max_slot) 3854 { 3855 struct btrfs_disk_key disk_key; 3856 struct extent_buffer *right = path->nodes[0]; 3857 int i; 3858 int push_space = 0; 3859 int push_items = 0; 3860 struct btrfs_item *item; 3861 u32 old_left_nritems; 3862 u32 nr; 3863 int ret = 0; 3864 u32 this_item_size; 3865 u32 old_left_item_size; 3866 struct btrfs_map_token token; 3867 3868 btrfs_init_map_token(&token); 3869 3870 if (empty) 3871 nr = min(right_nritems, max_slot); 3872 else 3873 nr = min(right_nritems - 1, max_slot); 3874 3875 for (i = 0; i < nr; i++) { 3876 item = btrfs_item_nr(i); 3877 3878 if (!empty && push_items > 0) { 3879 if (path->slots[0] < i) 3880 break; 3881 if (path->slots[0] == i) { 3882 int space = btrfs_leaf_free_space(root, right); 3883 if (space + push_space * 2 > free_space) 3884 break; 3885 } 3886 } 3887 3888 if (path->slots[0] == i) 3889 push_space += data_size; 3890 3891 this_item_size = btrfs_item_size(right, item); 3892 if (this_item_size + sizeof(*item) + push_space > free_space) 3893 break; 3894 3895 push_items++; 3896 push_space += this_item_size + sizeof(*item); 3897 } 3898 3899 if (push_items == 0) { 3900 ret = 1; 3901 goto out; 3902 } 3903 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3904 3905 /* push data from right to left */ 3906 copy_extent_buffer(left, right, 3907 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3908 btrfs_item_nr_offset(0), 3909 push_items * sizeof(struct btrfs_item)); 3910 3911 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3912 btrfs_item_offset_nr(right, push_items - 1); 3913 3914 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3915 leaf_data_end(root, left) - push_space, 3916 btrfs_leaf_data(right) + 3917 btrfs_item_offset_nr(right, push_items - 1), 3918 push_space); 3919 old_left_nritems = btrfs_header_nritems(left); 3920 BUG_ON(old_left_nritems <= 0); 3921 3922 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3923 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3924 u32 ioff; 3925 3926 item = btrfs_item_nr(i); 3927 3928 ioff = btrfs_token_item_offset(left, item, &token); 3929 btrfs_set_token_item_offset(left, item, 3930 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3931 &token); 3932 } 3933 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3934 3935 /* fixup right node */ 3936 if (push_items > right_nritems) 3937 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3938 right_nritems); 3939 3940 if (push_items < right_nritems) { 3941 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3942 leaf_data_end(root, right); 3943 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3944 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3945 btrfs_leaf_data(right) + 3946 leaf_data_end(root, right), push_space); 3947 3948 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3949 btrfs_item_nr_offset(push_items), 3950 (btrfs_header_nritems(right) - push_items) * 3951 sizeof(struct btrfs_item)); 3952 } 3953 right_nritems -= push_items; 3954 btrfs_set_header_nritems(right, right_nritems); 3955 push_space = BTRFS_LEAF_DATA_SIZE(root); 3956 for (i = 0; i < right_nritems; i++) { 3957 item = btrfs_item_nr(i); 3958 3959 push_space = push_space - btrfs_token_item_size(right, 3960 item, &token); 3961 btrfs_set_token_item_offset(right, item, push_space, &token); 3962 } 3963 3964 btrfs_mark_buffer_dirty(left); 3965 if (right_nritems) 3966 btrfs_mark_buffer_dirty(right); 3967 else 3968 clean_tree_block(trans, root->fs_info, right); 3969 3970 btrfs_item_key(right, &disk_key, 0); 3971 fixup_low_keys(root->fs_info, path, &disk_key, 1); 3972 3973 /* then fixup the leaf pointer in the path */ 3974 if (path->slots[0] < push_items) { 3975 path->slots[0] += old_left_nritems; 3976 btrfs_tree_unlock(path->nodes[0]); 3977 free_extent_buffer(path->nodes[0]); 3978 path->nodes[0] = left; 3979 path->slots[1] -= 1; 3980 } else { 3981 btrfs_tree_unlock(left); 3982 free_extent_buffer(left); 3983 path->slots[0] -= push_items; 3984 } 3985 BUG_ON(path->slots[0] < 0); 3986 return ret; 3987 out: 3988 btrfs_tree_unlock(left); 3989 free_extent_buffer(left); 3990 return ret; 3991 } 3992 3993 /* 3994 * push some data in the path leaf to the left, trying to free up at 3995 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3996 * 3997 * max_slot can put a limit on how far into the leaf we'll push items. The 3998 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3999 * items 4000 */ 4001 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 4002 *root, struct btrfs_path *path, int min_data_size, 4003 int data_size, int empty, u32 max_slot) 4004 { 4005 struct extent_buffer *right = path->nodes[0]; 4006 struct extent_buffer *left; 4007 int slot; 4008 int free_space; 4009 u32 right_nritems; 4010 int ret = 0; 4011 4012 slot = path->slots[1]; 4013 if (slot == 0) 4014 return 1; 4015 if (!path->nodes[1]) 4016 return 1; 4017 4018 right_nritems = btrfs_header_nritems(right); 4019 if (right_nritems == 0) 4020 return 1; 4021 4022 btrfs_assert_tree_locked(path->nodes[1]); 4023 4024 left = read_node_slot(root, path->nodes[1], slot - 1); 4025 /* 4026 * slot - 1 is not valid or we fail to read the left node, 4027 * no big deal, just return. 4028 */ 4029 if (IS_ERR(left)) 4030 return 1; 4031 4032 btrfs_tree_lock(left); 4033 btrfs_set_lock_blocking(left); 4034 4035 free_space = btrfs_leaf_free_space(root, left); 4036 if (free_space < data_size) { 4037 ret = 1; 4038 goto out; 4039 } 4040 4041 /* cow and double check */ 4042 ret = btrfs_cow_block(trans, root, left, 4043 path->nodes[1], slot - 1, &left); 4044 if (ret) { 4045 /* we hit -ENOSPC, but it isn't fatal here */ 4046 if (ret == -ENOSPC) 4047 ret = 1; 4048 goto out; 4049 } 4050 4051 free_space = btrfs_leaf_free_space(root, left); 4052 if (free_space < data_size) { 4053 ret = 1; 4054 goto out; 4055 } 4056 4057 return __push_leaf_left(trans, root, path, min_data_size, 4058 empty, left, free_space, right_nritems, 4059 max_slot); 4060 out: 4061 btrfs_tree_unlock(left); 4062 free_extent_buffer(left); 4063 return ret; 4064 } 4065 4066 /* 4067 * split the path's leaf in two, making sure there is at least data_size 4068 * available for the resulting leaf level of the path. 4069 */ 4070 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4071 struct btrfs_root *root, 4072 struct btrfs_path *path, 4073 struct extent_buffer *l, 4074 struct extent_buffer *right, 4075 int slot, int mid, int nritems) 4076 { 4077 int data_copy_size; 4078 int rt_data_off; 4079 int i; 4080 struct btrfs_disk_key disk_key; 4081 struct btrfs_map_token token; 4082 4083 btrfs_init_map_token(&token); 4084 4085 nritems = nritems - mid; 4086 btrfs_set_header_nritems(right, nritems); 4087 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 4088 4089 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4090 btrfs_item_nr_offset(mid), 4091 nritems * sizeof(struct btrfs_item)); 4092 4093 copy_extent_buffer(right, l, 4094 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 4095 data_copy_size, btrfs_leaf_data(l) + 4096 leaf_data_end(root, l), data_copy_size); 4097 4098 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 4099 btrfs_item_end_nr(l, mid); 4100 4101 for (i = 0; i < nritems; i++) { 4102 struct btrfs_item *item = btrfs_item_nr(i); 4103 u32 ioff; 4104 4105 ioff = btrfs_token_item_offset(right, item, &token); 4106 btrfs_set_token_item_offset(right, item, 4107 ioff + rt_data_off, &token); 4108 } 4109 4110 btrfs_set_header_nritems(l, mid); 4111 btrfs_item_key(right, &disk_key, 0); 4112 insert_ptr(trans, root, path, &disk_key, right->start, 4113 path->slots[1] + 1, 1); 4114 4115 btrfs_mark_buffer_dirty(right); 4116 btrfs_mark_buffer_dirty(l); 4117 BUG_ON(path->slots[0] != slot); 4118 4119 if (mid <= slot) { 4120 btrfs_tree_unlock(path->nodes[0]); 4121 free_extent_buffer(path->nodes[0]); 4122 path->nodes[0] = right; 4123 path->slots[0] -= mid; 4124 path->slots[1] += 1; 4125 } else { 4126 btrfs_tree_unlock(right); 4127 free_extent_buffer(right); 4128 } 4129 4130 BUG_ON(path->slots[0] < 0); 4131 } 4132 4133 /* 4134 * double splits happen when we need to insert a big item in the middle 4135 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4136 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4137 * A B C 4138 * 4139 * We avoid this by trying to push the items on either side of our target 4140 * into the adjacent leaves. If all goes well we can avoid the double split 4141 * completely. 4142 */ 4143 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4144 struct btrfs_root *root, 4145 struct btrfs_path *path, 4146 int data_size) 4147 { 4148 int ret; 4149 int progress = 0; 4150 int slot; 4151 u32 nritems; 4152 int space_needed = data_size; 4153 4154 slot = path->slots[0]; 4155 if (slot < btrfs_header_nritems(path->nodes[0])) 4156 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]); 4157 4158 /* 4159 * try to push all the items after our slot into the 4160 * right leaf 4161 */ 4162 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4163 if (ret < 0) 4164 return ret; 4165 4166 if (ret == 0) 4167 progress++; 4168 4169 nritems = btrfs_header_nritems(path->nodes[0]); 4170 /* 4171 * our goal is to get our slot at the start or end of a leaf. If 4172 * we've done so we're done 4173 */ 4174 if (path->slots[0] == 0 || path->slots[0] == nritems) 4175 return 0; 4176 4177 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4178 return 0; 4179 4180 /* try to push all the items before our slot into the next leaf */ 4181 slot = path->slots[0]; 4182 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4183 if (ret < 0) 4184 return ret; 4185 4186 if (ret == 0) 4187 progress++; 4188 4189 if (progress) 4190 return 0; 4191 return 1; 4192 } 4193 4194 /* 4195 * split the path's leaf in two, making sure there is at least data_size 4196 * available for the resulting leaf level of the path. 4197 * 4198 * returns 0 if all went well and < 0 on failure. 4199 */ 4200 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4201 struct btrfs_root *root, 4202 struct btrfs_key *ins_key, 4203 struct btrfs_path *path, int data_size, 4204 int extend) 4205 { 4206 struct btrfs_disk_key disk_key; 4207 struct extent_buffer *l; 4208 u32 nritems; 4209 int mid; 4210 int slot; 4211 struct extent_buffer *right; 4212 struct btrfs_fs_info *fs_info = root->fs_info; 4213 int ret = 0; 4214 int wret; 4215 int split; 4216 int num_doubles = 0; 4217 int tried_avoid_double = 0; 4218 4219 l = path->nodes[0]; 4220 slot = path->slots[0]; 4221 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4222 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 4223 return -EOVERFLOW; 4224 4225 /* first try to make some room by pushing left and right */ 4226 if (data_size && path->nodes[1]) { 4227 int space_needed = data_size; 4228 4229 if (slot < btrfs_header_nritems(l)) 4230 space_needed -= btrfs_leaf_free_space(root, l); 4231 4232 wret = push_leaf_right(trans, root, path, space_needed, 4233 space_needed, 0, 0); 4234 if (wret < 0) 4235 return wret; 4236 if (wret) { 4237 wret = push_leaf_left(trans, root, path, space_needed, 4238 space_needed, 0, (u32)-1); 4239 if (wret < 0) 4240 return wret; 4241 } 4242 l = path->nodes[0]; 4243 4244 /* did the pushes work? */ 4245 if (btrfs_leaf_free_space(root, l) >= data_size) 4246 return 0; 4247 } 4248 4249 if (!path->nodes[1]) { 4250 ret = insert_new_root(trans, root, path, 1); 4251 if (ret) 4252 return ret; 4253 } 4254 again: 4255 split = 1; 4256 l = path->nodes[0]; 4257 slot = path->slots[0]; 4258 nritems = btrfs_header_nritems(l); 4259 mid = (nritems + 1) / 2; 4260 4261 if (mid <= slot) { 4262 if (nritems == 1 || 4263 leaf_space_used(l, mid, nritems - mid) + data_size > 4264 BTRFS_LEAF_DATA_SIZE(root)) { 4265 if (slot >= nritems) { 4266 split = 0; 4267 } else { 4268 mid = slot; 4269 if (mid != nritems && 4270 leaf_space_used(l, mid, nritems - mid) + 4271 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4272 if (data_size && !tried_avoid_double) 4273 goto push_for_double; 4274 split = 2; 4275 } 4276 } 4277 } 4278 } else { 4279 if (leaf_space_used(l, 0, mid) + data_size > 4280 BTRFS_LEAF_DATA_SIZE(root)) { 4281 if (!extend && data_size && slot == 0) { 4282 split = 0; 4283 } else if ((extend || !data_size) && slot == 0) { 4284 mid = 1; 4285 } else { 4286 mid = slot; 4287 if (mid != nritems && 4288 leaf_space_used(l, mid, nritems - mid) + 4289 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4290 if (data_size && !tried_avoid_double) 4291 goto push_for_double; 4292 split = 2; 4293 } 4294 } 4295 } 4296 } 4297 4298 if (split == 0) 4299 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4300 else 4301 btrfs_item_key(l, &disk_key, mid); 4302 4303 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4304 &disk_key, 0, l->start, 0); 4305 if (IS_ERR(right)) 4306 return PTR_ERR(right); 4307 4308 root_add_used(root, root->nodesize); 4309 4310 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4311 btrfs_set_header_bytenr(right, right->start); 4312 btrfs_set_header_generation(right, trans->transid); 4313 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4314 btrfs_set_header_owner(right, root->root_key.objectid); 4315 btrfs_set_header_level(right, 0); 4316 write_extent_buffer(right, fs_info->fsid, 4317 btrfs_header_fsid(), BTRFS_FSID_SIZE); 4318 4319 write_extent_buffer(right, fs_info->chunk_tree_uuid, 4320 btrfs_header_chunk_tree_uuid(right), 4321 BTRFS_UUID_SIZE); 4322 4323 if (split == 0) { 4324 if (mid <= slot) { 4325 btrfs_set_header_nritems(right, 0); 4326 insert_ptr(trans, root, path, &disk_key, right->start, 4327 path->slots[1] + 1, 1); 4328 btrfs_tree_unlock(path->nodes[0]); 4329 free_extent_buffer(path->nodes[0]); 4330 path->nodes[0] = right; 4331 path->slots[0] = 0; 4332 path->slots[1] += 1; 4333 } else { 4334 btrfs_set_header_nritems(right, 0); 4335 insert_ptr(trans, root, path, &disk_key, right->start, 4336 path->slots[1], 1); 4337 btrfs_tree_unlock(path->nodes[0]); 4338 free_extent_buffer(path->nodes[0]); 4339 path->nodes[0] = right; 4340 path->slots[0] = 0; 4341 if (path->slots[1] == 0) 4342 fixup_low_keys(fs_info, path, &disk_key, 1); 4343 } 4344 btrfs_mark_buffer_dirty(right); 4345 return ret; 4346 } 4347 4348 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4349 4350 if (split == 2) { 4351 BUG_ON(num_doubles != 0); 4352 num_doubles++; 4353 goto again; 4354 } 4355 4356 return 0; 4357 4358 push_for_double: 4359 push_for_double_split(trans, root, path, data_size); 4360 tried_avoid_double = 1; 4361 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4362 return 0; 4363 goto again; 4364 } 4365 4366 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4367 struct btrfs_root *root, 4368 struct btrfs_path *path, int ins_len) 4369 { 4370 struct btrfs_key key; 4371 struct extent_buffer *leaf; 4372 struct btrfs_file_extent_item *fi; 4373 u64 extent_len = 0; 4374 u32 item_size; 4375 int ret; 4376 4377 leaf = path->nodes[0]; 4378 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4379 4380 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4381 key.type != BTRFS_EXTENT_CSUM_KEY); 4382 4383 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4384 return 0; 4385 4386 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4387 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4388 fi = btrfs_item_ptr(leaf, path->slots[0], 4389 struct btrfs_file_extent_item); 4390 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4391 } 4392 btrfs_release_path(path); 4393 4394 path->keep_locks = 1; 4395 path->search_for_split = 1; 4396 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4397 path->search_for_split = 0; 4398 if (ret > 0) 4399 ret = -EAGAIN; 4400 if (ret < 0) 4401 goto err; 4402 4403 ret = -EAGAIN; 4404 leaf = path->nodes[0]; 4405 /* if our item isn't there, return now */ 4406 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4407 goto err; 4408 4409 /* the leaf has changed, it now has room. return now */ 4410 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4411 goto err; 4412 4413 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4414 fi = btrfs_item_ptr(leaf, path->slots[0], 4415 struct btrfs_file_extent_item); 4416 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4417 goto err; 4418 } 4419 4420 btrfs_set_path_blocking(path); 4421 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4422 if (ret) 4423 goto err; 4424 4425 path->keep_locks = 0; 4426 btrfs_unlock_up_safe(path, 1); 4427 return 0; 4428 err: 4429 path->keep_locks = 0; 4430 return ret; 4431 } 4432 4433 static noinline int split_item(struct btrfs_trans_handle *trans, 4434 struct btrfs_root *root, 4435 struct btrfs_path *path, 4436 struct btrfs_key *new_key, 4437 unsigned long split_offset) 4438 { 4439 struct extent_buffer *leaf; 4440 struct btrfs_item *item; 4441 struct btrfs_item *new_item; 4442 int slot; 4443 char *buf; 4444 u32 nritems; 4445 u32 item_size; 4446 u32 orig_offset; 4447 struct btrfs_disk_key disk_key; 4448 4449 leaf = path->nodes[0]; 4450 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4451 4452 btrfs_set_path_blocking(path); 4453 4454 item = btrfs_item_nr(path->slots[0]); 4455 orig_offset = btrfs_item_offset(leaf, item); 4456 item_size = btrfs_item_size(leaf, item); 4457 4458 buf = kmalloc(item_size, GFP_NOFS); 4459 if (!buf) 4460 return -ENOMEM; 4461 4462 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4463 path->slots[0]), item_size); 4464 4465 slot = path->slots[0] + 1; 4466 nritems = btrfs_header_nritems(leaf); 4467 if (slot != nritems) { 4468 /* shift the items */ 4469 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4470 btrfs_item_nr_offset(slot), 4471 (nritems - slot) * sizeof(struct btrfs_item)); 4472 } 4473 4474 btrfs_cpu_key_to_disk(&disk_key, new_key); 4475 btrfs_set_item_key(leaf, &disk_key, slot); 4476 4477 new_item = btrfs_item_nr(slot); 4478 4479 btrfs_set_item_offset(leaf, new_item, orig_offset); 4480 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4481 4482 btrfs_set_item_offset(leaf, item, 4483 orig_offset + item_size - split_offset); 4484 btrfs_set_item_size(leaf, item, split_offset); 4485 4486 btrfs_set_header_nritems(leaf, nritems + 1); 4487 4488 /* write the data for the start of the original item */ 4489 write_extent_buffer(leaf, buf, 4490 btrfs_item_ptr_offset(leaf, path->slots[0]), 4491 split_offset); 4492 4493 /* write the data for the new item */ 4494 write_extent_buffer(leaf, buf + split_offset, 4495 btrfs_item_ptr_offset(leaf, slot), 4496 item_size - split_offset); 4497 btrfs_mark_buffer_dirty(leaf); 4498 4499 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4500 kfree(buf); 4501 return 0; 4502 } 4503 4504 /* 4505 * This function splits a single item into two items, 4506 * giving 'new_key' to the new item and splitting the 4507 * old one at split_offset (from the start of the item). 4508 * 4509 * The path may be released by this operation. After 4510 * the split, the path is pointing to the old item. The 4511 * new item is going to be in the same node as the old one. 4512 * 4513 * Note, the item being split must be smaller enough to live alone on 4514 * a tree block with room for one extra struct btrfs_item 4515 * 4516 * This allows us to split the item in place, keeping a lock on the 4517 * leaf the entire time. 4518 */ 4519 int btrfs_split_item(struct btrfs_trans_handle *trans, 4520 struct btrfs_root *root, 4521 struct btrfs_path *path, 4522 struct btrfs_key *new_key, 4523 unsigned long split_offset) 4524 { 4525 int ret; 4526 ret = setup_leaf_for_split(trans, root, path, 4527 sizeof(struct btrfs_item)); 4528 if (ret) 4529 return ret; 4530 4531 ret = split_item(trans, root, path, new_key, split_offset); 4532 return ret; 4533 } 4534 4535 /* 4536 * This function duplicate a item, giving 'new_key' to the new item. 4537 * It guarantees both items live in the same tree leaf and the new item 4538 * is contiguous with the original item. 4539 * 4540 * This allows us to split file extent in place, keeping a lock on the 4541 * leaf the entire time. 4542 */ 4543 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4544 struct btrfs_root *root, 4545 struct btrfs_path *path, 4546 struct btrfs_key *new_key) 4547 { 4548 struct extent_buffer *leaf; 4549 int ret; 4550 u32 item_size; 4551 4552 leaf = path->nodes[0]; 4553 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4554 ret = setup_leaf_for_split(trans, root, path, 4555 item_size + sizeof(struct btrfs_item)); 4556 if (ret) 4557 return ret; 4558 4559 path->slots[0]++; 4560 setup_items_for_insert(root, path, new_key, &item_size, 4561 item_size, item_size + 4562 sizeof(struct btrfs_item), 1); 4563 leaf = path->nodes[0]; 4564 memcpy_extent_buffer(leaf, 4565 btrfs_item_ptr_offset(leaf, path->slots[0]), 4566 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4567 item_size); 4568 return 0; 4569 } 4570 4571 /* 4572 * make the item pointed to by the path smaller. new_size indicates 4573 * how small to make it, and from_end tells us if we just chop bytes 4574 * off the end of the item or if we shift the item to chop bytes off 4575 * the front. 4576 */ 4577 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4578 u32 new_size, int from_end) 4579 { 4580 int slot; 4581 struct extent_buffer *leaf; 4582 struct btrfs_item *item; 4583 u32 nritems; 4584 unsigned int data_end; 4585 unsigned int old_data_start; 4586 unsigned int old_size; 4587 unsigned int size_diff; 4588 int i; 4589 struct btrfs_map_token token; 4590 4591 btrfs_init_map_token(&token); 4592 4593 leaf = path->nodes[0]; 4594 slot = path->slots[0]; 4595 4596 old_size = btrfs_item_size_nr(leaf, slot); 4597 if (old_size == new_size) 4598 return; 4599 4600 nritems = btrfs_header_nritems(leaf); 4601 data_end = leaf_data_end(root, leaf); 4602 4603 old_data_start = btrfs_item_offset_nr(leaf, slot); 4604 4605 size_diff = old_size - new_size; 4606 4607 BUG_ON(slot < 0); 4608 BUG_ON(slot >= nritems); 4609 4610 /* 4611 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4612 */ 4613 /* first correct the data pointers */ 4614 for (i = slot; i < nritems; i++) { 4615 u32 ioff; 4616 item = btrfs_item_nr(i); 4617 4618 ioff = btrfs_token_item_offset(leaf, item, &token); 4619 btrfs_set_token_item_offset(leaf, item, 4620 ioff + size_diff, &token); 4621 } 4622 4623 /* shift the data */ 4624 if (from_end) { 4625 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4626 data_end + size_diff, btrfs_leaf_data(leaf) + 4627 data_end, old_data_start + new_size - data_end); 4628 } else { 4629 struct btrfs_disk_key disk_key; 4630 u64 offset; 4631 4632 btrfs_item_key(leaf, &disk_key, slot); 4633 4634 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4635 unsigned long ptr; 4636 struct btrfs_file_extent_item *fi; 4637 4638 fi = btrfs_item_ptr(leaf, slot, 4639 struct btrfs_file_extent_item); 4640 fi = (struct btrfs_file_extent_item *)( 4641 (unsigned long)fi - size_diff); 4642 4643 if (btrfs_file_extent_type(leaf, fi) == 4644 BTRFS_FILE_EXTENT_INLINE) { 4645 ptr = btrfs_item_ptr_offset(leaf, slot); 4646 memmove_extent_buffer(leaf, ptr, 4647 (unsigned long)fi, 4648 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4649 } 4650 } 4651 4652 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4653 data_end + size_diff, btrfs_leaf_data(leaf) + 4654 data_end, old_data_start - data_end); 4655 4656 offset = btrfs_disk_key_offset(&disk_key); 4657 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4658 btrfs_set_item_key(leaf, &disk_key, slot); 4659 if (slot == 0) 4660 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4661 } 4662 4663 item = btrfs_item_nr(slot); 4664 btrfs_set_item_size(leaf, item, new_size); 4665 btrfs_mark_buffer_dirty(leaf); 4666 4667 if (btrfs_leaf_free_space(root, leaf) < 0) { 4668 btrfs_print_leaf(root, leaf); 4669 BUG(); 4670 } 4671 } 4672 4673 /* 4674 * make the item pointed to by the path bigger, data_size is the added size. 4675 */ 4676 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4677 u32 data_size) 4678 { 4679 int slot; 4680 struct extent_buffer *leaf; 4681 struct btrfs_item *item; 4682 u32 nritems; 4683 unsigned int data_end; 4684 unsigned int old_data; 4685 unsigned int old_size; 4686 int i; 4687 struct btrfs_map_token token; 4688 4689 btrfs_init_map_token(&token); 4690 4691 leaf = path->nodes[0]; 4692 4693 nritems = btrfs_header_nritems(leaf); 4694 data_end = leaf_data_end(root, leaf); 4695 4696 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4697 btrfs_print_leaf(root, leaf); 4698 BUG(); 4699 } 4700 slot = path->slots[0]; 4701 old_data = btrfs_item_end_nr(leaf, slot); 4702 4703 BUG_ON(slot < 0); 4704 if (slot >= nritems) { 4705 btrfs_print_leaf(root, leaf); 4706 btrfs_crit(root->fs_info, "slot %d too large, nritems %d", 4707 slot, nritems); 4708 BUG_ON(1); 4709 } 4710 4711 /* 4712 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4713 */ 4714 /* first correct the data pointers */ 4715 for (i = slot; i < nritems; i++) { 4716 u32 ioff; 4717 item = btrfs_item_nr(i); 4718 4719 ioff = btrfs_token_item_offset(leaf, item, &token); 4720 btrfs_set_token_item_offset(leaf, item, 4721 ioff - data_size, &token); 4722 } 4723 4724 /* shift the data */ 4725 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4726 data_end - data_size, btrfs_leaf_data(leaf) + 4727 data_end, old_data - data_end); 4728 4729 data_end = old_data; 4730 old_size = btrfs_item_size_nr(leaf, slot); 4731 item = btrfs_item_nr(slot); 4732 btrfs_set_item_size(leaf, item, old_size + data_size); 4733 btrfs_mark_buffer_dirty(leaf); 4734 4735 if (btrfs_leaf_free_space(root, leaf) < 0) { 4736 btrfs_print_leaf(root, leaf); 4737 BUG(); 4738 } 4739 } 4740 4741 /* 4742 * this is a helper for btrfs_insert_empty_items, the main goal here is 4743 * to save stack depth by doing the bulk of the work in a function 4744 * that doesn't call btrfs_search_slot 4745 */ 4746 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4747 struct btrfs_key *cpu_key, u32 *data_size, 4748 u32 total_data, u32 total_size, int nr) 4749 { 4750 struct btrfs_item *item; 4751 int i; 4752 u32 nritems; 4753 unsigned int data_end; 4754 struct btrfs_disk_key disk_key; 4755 struct extent_buffer *leaf; 4756 int slot; 4757 struct btrfs_map_token token; 4758 4759 if (path->slots[0] == 0) { 4760 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4761 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4762 } 4763 btrfs_unlock_up_safe(path, 1); 4764 4765 btrfs_init_map_token(&token); 4766 4767 leaf = path->nodes[0]; 4768 slot = path->slots[0]; 4769 4770 nritems = btrfs_header_nritems(leaf); 4771 data_end = leaf_data_end(root, leaf); 4772 4773 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4774 btrfs_print_leaf(root, leaf); 4775 btrfs_crit(root->fs_info, "not enough freespace need %u have %d", 4776 total_size, btrfs_leaf_free_space(root, leaf)); 4777 BUG(); 4778 } 4779 4780 if (slot != nritems) { 4781 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4782 4783 if (old_data < data_end) { 4784 btrfs_print_leaf(root, leaf); 4785 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d", 4786 slot, old_data, data_end); 4787 BUG_ON(1); 4788 } 4789 /* 4790 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4791 */ 4792 /* first correct the data pointers */ 4793 for (i = slot; i < nritems; i++) { 4794 u32 ioff; 4795 4796 item = btrfs_item_nr( i); 4797 ioff = btrfs_token_item_offset(leaf, item, &token); 4798 btrfs_set_token_item_offset(leaf, item, 4799 ioff - total_data, &token); 4800 } 4801 /* shift the items */ 4802 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4803 btrfs_item_nr_offset(slot), 4804 (nritems - slot) * sizeof(struct btrfs_item)); 4805 4806 /* shift the data */ 4807 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4808 data_end - total_data, btrfs_leaf_data(leaf) + 4809 data_end, old_data - data_end); 4810 data_end = old_data; 4811 } 4812 4813 /* setup the item for the new data */ 4814 for (i = 0; i < nr; i++) { 4815 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4816 btrfs_set_item_key(leaf, &disk_key, slot + i); 4817 item = btrfs_item_nr(slot + i); 4818 btrfs_set_token_item_offset(leaf, item, 4819 data_end - data_size[i], &token); 4820 data_end -= data_size[i]; 4821 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4822 } 4823 4824 btrfs_set_header_nritems(leaf, nritems + nr); 4825 btrfs_mark_buffer_dirty(leaf); 4826 4827 if (btrfs_leaf_free_space(root, leaf) < 0) { 4828 btrfs_print_leaf(root, leaf); 4829 BUG(); 4830 } 4831 } 4832 4833 /* 4834 * Given a key and some data, insert items into the tree. 4835 * This does all the path init required, making room in the tree if needed. 4836 */ 4837 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4838 struct btrfs_root *root, 4839 struct btrfs_path *path, 4840 struct btrfs_key *cpu_key, u32 *data_size, 4841 int nr) 4842 { 4843 int ret = 0; 4844 int slot; 4845 int i; 4846 u32 total_size = 0; 4847 u32 total_data = 0; 4848 4849 for (i = 0; i < nr; i++) 4850 total_data += data_size[i]; 4851 4852 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4853 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4854 if (ret == 0) 4855 return -EEXIST; 4856 if (ret < 0) 4857 return ret; 4858 4859 slot = path->slots[0]; 4860 BUG_ON(slot < 0); 4861 4862 setup_items_for_insert(root, path, cpu_key, data_size, 4863 total_data, total_size, nr); 4864 return 0; 4865 } 4866 4867 /* 4868 * Given a key and some data, insert an item into the tree. 4869 * This does all the path init required, making room in the tree if needed. 4870 */ 4871 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4872 *root, struct btrfs_key *cpu_key, void *data, u32 4873 data_size) 4874 { 4875 int ret = 0; 4876 struct btrfs_path *path; 4877 struct extent_buffer *leaf; 4878 unsigned long ptr; 4879 4880 path = btrfs_alloc_path(); 4881 if (!path) 4882 return -ENOMEM; 4883 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4884 if (!ret) { 4885 leaf = path->nodes[0]; 4886 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4887 write_extent_buffer(leaf, data, ptr, data_size); 4888 btrfs_mark_buffer_dirty(leaf); 4889 } 4890 btrfs_free_path(path); 4891 return ret; 4892 } 4893 4894 /* 4895 * delete the pointer from a given node. 4896 * 4897 * the tree should have been previously balanced so the deletion does not 4898 * empty a node. 4899 */ 4900 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4901 int level, int slot) 4902 { 4903 struct extent_buffer *parent = path->nodes[level]; 4904 u32 nritems; 4905 int ret; 4906 4907 nritems = btrfs_header_nritems(parent); 4908 if (slot != nritems - 1) { 4909 if (level) 4910 tree_mod_log_eb_move(root->fs_info, parent, slot, 4911 slot + 1, nritems - slot - 1); 4912 memmove_extent_buffer(parent, 4913 btrfs_node_key_ptr_offset(slot), 4914 btrfs_node_key_ptr_offset(slot + 1), 4915 sizeof(struct btrfs_key_ptr) * 4916 (nritems - slot - 1)); 4917 } else if (level) { 4918 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4919 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4920 BUG_ON(ret < 0); 4921 } 4922 4923 nritems--; 4924 btrfs_set_header_nritems(parent, nritems); 4925 if (nritems == 0 && parent == root->node) { 4926 BUG_ON(btrfs_header_level(root->node) != 1); 4927 /* just turn the root into a leaf and break */ 4928 btrfs_set_header_level(root->node, 0); 4929 } else if (slot == 0) { 4930 struct btrfs_disk_key disk_key; 4931 4932 btrfs_node_key(parent, &disk_key, 0); 4933 fixup_low_keys(root->fs_info, path, &disk_key, level + 1); 4934 } 4935 btrfs_mark_buffer_dirty(parent); 4936 } 4937 4938 /* 4939 * a helper function to delete the leaf pointed to by path->slots[1] and 4940 * path->nodes[1]. 4941 * 4942 * This deletes the pointer in path->nodes[1] and frees the leaf 4943 * block extent. zero is returned if it all worked out, < 0 otherwise. 4944 * 4945 * The path must have already been setup for deleting the leaf, including 4946 * all the proper balancing. path->nodes[1] must be locked. 4947 */ 4948 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4949 struct btrfs_root *root, 4950 struct btrfs_path *path, 4951 struct extent_buffer *leaf) 4952 { 4953 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4954 del_ptr(root, path, 1, path->slots[1]); 4955 4956 /* 4957 * btrfs_free_extent is expensive, we want to make sure we 4958 * aren't holding any locks when we call it 4959 */ 4960 btrfs_unlock_up_safe(path, 0); 4961 4962 root_sub_used(root, leaf->len); 4963 4964 extent_buffer_get(leaf); 4965 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4966 free_extent_buffer_stale(leaf); 4967 } 4968 /* 4969 * delete the item at the leaf level in path. If that empties 4970 * the leaf, remove it from the tree 4971 */ 4972 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4973 struct btrfs_path *path, int slot, int nr) 4974 { 4975 struct extent_buffer *leaf; 4976 struct btrfs_item *item; 4977 u32 last_off; 4978 u32 dsize = 0; 4979 int ret = 0; 4980 int wret; 4981 int i; 4982 u32 nritems; 4983 struct btrfs_map_token token; 4984 4985 btrfs_init_map_token(&token); 4986 4987 leaf = path->nodes[0]; 4988 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4989 4990 for (i = 0; i < nr; i++) 4991 dsize += btrfs_item_size_nr(leaf, slot + i); 4992 4993 nritems = btrfs_header_nritems(leaf); 4994 4995 if (slot + nr != nritems) { 4996 int data_end = leaf_data_end(root, leaf); 4997 4998 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4999 data_end + dsize, 5000 btrfs_leaf_data(leaf) + data_end, 5001 last_off - data_end); 5002 5003 for (i = slot + nr; i < nritems; i++) { 5004 u32 ioff; 5005 5006 item = btrfs_item_nr(i); 5007 ioff = btrfs_token_item_offset(leaf, item, &token); 5008 btrfs_set_token_item_offset(leaf, item, 5009 ioff + dsize, &token); 5010 } 5011 5012 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 5013 btrfs_item_nr_offset(slot + nr), 5014 sizeof(struct btrfs_item) * 5015 (nritems - slot - nr)); 5016 } 5017 btrfs_set_header_nritems(leaf, nritems - nr); 5018 nritems -= nr; 5019 5020 /* delete the leaf if we've emptied it */ 5021 if (nritems == 0) { 5022 if (leaf == root->node) { 5023 btrfs_set_header_level(leaf, 0); 5024 } else { 5025 btrfs_set_path_blocking(path); 5026 clean_tree_block(trans, root->fs_info, leaf); 5027 btrfs_del_leaf(trans, root, path, leaf); 5028 } 5029 } else { 5030 int used = leaf_space_used(leaf, 0, nritems); 5031 if (slot == 0) { 5032 struct btrfs_disk_key disk_key; 5033 5034 btrfs_item_key(leaf, &disk_key, 0); 5035 fixup_low_keys(root->fs_info, path, &disk_key, 1); 5036 } 5037 5038 /* delete the leaf if it is mostly empty */ 5039 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 5040 /* push_leaf_left fixes the path. 5041 * make sure the path still points to our leaf 5042 * for possible call to del_ptr below 5043 */ 5044 slot = path->slots[1]; 5045 extent_buffer_get(leaf); 5046 5047 btrfs_set_path_blocking(path); 5048 wret = push_leaf_left(trans, root, path, 1, 1, 5049 1, (u32)-1); 5050 if (wret < 0 && wret != -ENOSPC) 5051 ret = wret; 5052 5053 if (path->nodes[0] == leaf && 5054 btrfs_header_nritems(leaf)) { 5055 wret = push_leaf_right(trans, root, path, 1, 5056 1, 1, 0); 5057 if (wret < 0 && wret != -ENOSPC) 5058 ret = wret; 5059 } 5060 5061 if (btrfs_header_nritems(leaf) == 0) { 5062 path->slots[1] = slot; 5063 btrfs_del_leaf(trans, root, path, leaf); 5064 free_extent_buffer(leaf); 5065 ret = 0; 5066 } else { 5067 /* if we're still in the path, make sure 5068 * we're dirty. Otherwise, one of the 5069 * push_leaf functions must have already 5070 * dirtied this buffer 5071 */ 5072 if (path->nodes[0] == leaf) 5073 btrfs_mark_buffer_dirty(leaf); 5074 free_extent_buffer(leaf); 5075 } 5076 } else { 5077 btrfs_mark_buffer_dirty(leaf); 5078 } 5079 } 5080 return ret; 5081 } 5082 5083 /* 5084 * search the tree again to find a leaf with lesser keys 5085 * returns 0 if it found something or 1 if there are no lesser leaves. 5086 * returns < 0 on io errors. 5087 * 5088 * This may release the path, and so you may lose any locks held at the 5089 * time you call it. 5090 */ 5091 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5092 { 5093 struct btrfs_key key; 5094 struct btrfs_disk_key found_key; 5095 int ret; 5096 5097 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5098 5099 if (key.offset > 0) { 5100 key.offset--; 5101 } else if (key.type > 0) { 5102 key.type--; 5103 key.offset = (u64)-1; 5104 } else if (key.objectid > 0) { 5105 key.objectid--; 5106 key.type = (u8)-1; 5107 key.offset = (u64)-1; 5108 } else { 5109 return 1; 5110 } 5111 5112 btrfs_release_path(path); 5113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5114 if (ret < 0) 5115 return ret; 5116 btrfs_item_key(path->nodes[0], &found_key, 0); 5117 ret = comp_keys(&found_key, &key); 5118 /* 5119 * We might have had an item with the previous key in the tree right 5120 * before we released our path. And after we released our path, that 5121 * item might have been pushed to the first slot (0) of the leaf we 5122 * were holding due to a tree balance. Alternatively, an item with the 5123 * previous key can exist as the only element of a leaf (big fat item). 5124 * Therefore account for these 2 cases, so that our callers (like 5125 * btrfs_previous_item) don't miss an existing item with a key matching 5126 * the previous key we computed above. 5127 */ 5128 if (ret <= 0) 5129 return 0; 5130 return 1; 5131 } 5132 5133 /* 5134 * A helper function to walk down the tree starting at min_key, and looking 5135 * for nodes or leaves that are have a minimum transaction id. 5136 * This is used by the btree defrag code, and tree logging 5137 * 5138 * This does not cow, but it does stuff the starting key it finds back 5139 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5140 * key and get a writable path. 5141 * 5142 * This does lock as it descends, and path->keep_locks should be set 5143 * to 1 by the caller. 5144 * 5145 * This honors path->lowest_level to prevent descent past a given level 5146 * of the tree. 5147 * 5148 * min_trans indicates the oldest transaction that you are interested 5149 * in walking through. Any nodes or leaves older than min_trans are 5150 * skipped over (without reading them). 5151 * 5152 * returns zero if something useful was found, < 0 on error and 1 if there 5153 * was nothing in the tree that matched the search criteria. 5154 */ 5155 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5156 struct btrfs_path *path, 5157 u64 min_trans) 5158 { 5159 struct extent_buffer *cur; 5160 struct btrfs_key found_key; 5161 int slot; 5162 int sret; 5163 u32 nritems; 5164 int level; 5165 int ret = 1; 5166 int keep_locks = path->keep_locks; 5167 5168 path->keep_locks = 1; 5169 again: 5170 cur = btrfs_read_lock_root_node(root); 5171 level = btrfs_header_level(cur); 5172 WARN_ON(path->nodes[level]); 5173 path->nodes[level] = cur; 5174 path->locks[level] = BTRFS_READ_LOCK; 5175 5176 if (btrfs_header_generation(cur) < min_trans) { 5177 ret = 1; 5178 goto out; 5179 } 5180 while (1) { 5181 nritems = btrfs_header_nritems(cur); 5182 level = btrfs_header_level(cur); 5183 sret = bin_search(cur, min_key, level, &slot); 5184 5185 /* at the lowest level, we're done, setup the path and exit */ 5186 if (level == path->lowest_level) { 5187 if (slot >= nritems) 5188 goto find_next_key; 5189 ret = 0; 5190 path->slots[level] = slot; 5191 btrfs_item_key_to_cpu(cur, &found_key, slot); 5192 goto out; 5193 } 5194 if (sret && slot > 0) 5195 slot--; 5196 /* 5197 * check this node pointer against the min_trans parameters. 5198 * If it is too old, old, skip to the next one. 5199 */ 5200 while (slot < nritems) { 5201 u64 gen; 5202 5203 gen = btrfs_node_ptr_generation(cur, slot); 5204 if (gen < min_trans) { 5205 slot++; 5206 continue; 5207 } 5208 break; 5209 } 5210 find_next_key: 5211 /* 5212 * we didn't find a candidate key in this node, walk forward 5213 * and find another one 5214 */ 5215 if (slot >= nritems) { 5216 path->slots[level] = slot; 5217 btrfs_set_path_blocking(path); 5218 sret = btrfs_find_next_key(root, path, min_key, level, 5219 min_trans); 5220 if (sret == 0) { 5221 btrfs_release_path(path); 5222 goto again; 5223 } else { 5224 goto out; 5225 } 5226 } 5227 /* save our key for returning back */ 5228 btrfs_node_key_to_cpu(cur, &found_key, slot); 5229 path->slots[level] = slot; 5230 if (level == path->lowest_level) { 5231 ret = 0; 5232 goto out; 5233 } 5234 btrfs_set_path_blocking(path); 5235 cur = read_node_slot(root, cur, slot); 5236 if (IS_ERR(cur)) { 5237 ret = PTR_ERR(cur); 5238 goto out; 5239 } 5240 5241 btrfs_tree_read_lock(cur); 5242 5243 path->locks[level - 1] = BTRFS_READ_LOCK; 5244 path->nodes[level - 1] = cur; 5245 unlock_up(path, level, 1, 0, NULL); 5246 btrfs_clear_path_blocking(path, NULL, 0); 5247 } 5248 out: 5249 path->keep_locks = keep_locks; 5250 if (ret == 0) { 5251 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5252 btrfs_set_path_blocking(path); 5253 memcpy(min_key, &found_key, sizeof(found_key)); 5254 } 5255 return ret; 5256 } 5257 5258 static int tree_move_down(struct btrfs_root *root, 5259 struct btrfs_path *path, 5260 int *level, int root_level) 5261 { 5262 struct extent_buffer *eb; 5263 5264 BUG_ON(*level == 0); 5265 eb = read_node_slot(root, path->nodes[*level], path->slots[*level]); 5266 if (IS_ERR(eb)) 5267 return PTR_ERR(eb); 5268 5269 path->nodes[*level - 1] = eb; 5270 path->slots[*level - 1] = 0; 5271 (*level)--; 5272 return 0; 5273 } 5274 5275 static int tree_move_next_or_upnext(struct btrfs_root *root, 5276 struct btrfs_path *path, 5277 int *level, int root_level) 5278 { 5279 int ret = 0; 5280 int nritems; 5281 nritems = btrfs_header_nritems(path->nodes[*level]); 5282 5283 path->slots[*level]++; 5284 5285 while (path->slots[*level] >= nritems) { 5286 if (*level == root_level) 5287 return -1; 5288 5289 /* move upnext */ 5290 path->slots[*level] = 0; 5291 free_extent_buffer(path->nodes[*level]); 5292 path->nodes[*level] = NULL; 5293 (*level)++; 5294 path->slots[*level]++; 5295 5296 nritems = btrfs_header_nritems(path->nodes[*level]); 5297 ret = 1; 5298 } 5299 return ret; 5300 } 5301 5302 /* 5303 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5304 * or down. 5305 */ 5306 static int tree_advance(struct btrfs_root *root, 5307 struct btrfs_path *path, 5308 int *level, int root_level, 5309 int allow_down, 5310 struct btrfs_key *key) 5311 { 5312 int ret; 5313 5314 if (*level == 0 || !allow_down) { 5315 ret = tree_move_next_or_upnext(root, path, level, root_level); 5316 } else { 5317 ret = tree_move_down(root, path, level, root_level); 5318 } 5319 if (ret >= 0) { 5320 if (*level == 0) 5321 btrfs_item_key_to_cpu(path->nodes[*level], key, 5322 path->slots[*level]); 5323 else 5324 btrfs_node_key_to_cpu(path->nodes[*level], key, 5325 path->slots[*level]); 5326 } 5327 return ret; 5328 } 5329 5330 static int tree_compare_item(struct btrfs_root *left_root, 5331 struct btrfs_path *left_path, 5332 struct btrfs_path *right_path, 5333 char *tmp_buf) 5334 { 5335 int cmp; 5336 int len1, len2; 5337 unsigned long off1, off2; 5338 5339 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5340 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5341 if (len1 != len2) 5342 return 1; 5343 5344 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5345 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5346 right_path->slots[0]); 5347 5348 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5349 5350 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5351 if (cmp) 5352 return 1; 5353 return 0; 5354 } 5355 5356 #define ADVANCE 1 5357 #define ADVANCE_ONLY_NEXT -1 5358 5359 /* 5360 * This function compares two trees and calls the provided callback for 5361 * every changed/new/deleted item it finds. 5362 * If shared tree blocks are encountered, whole subtrees are skipped, making 5363 * the compare pretty fast on snapshotted subvolumes. 5364 * 5365 * This currently works on commit roots only. As commit roots are read only, 5366 * we don't do any locking. The commit roots are protected with transactions. 5367 * Transactions are ended and rejoined when a commit is tried in between. 5368 * 5369 * This function checks for modifications done to the trees while comparing. 5370 * If it detects a change, it aborts immediately. 5371 */ 5372 int btrfs_compare_trees(struct btrfs_root *left_root, 5373 struct btrfs_root *right_root, 5374 btrfs_changed_cb_t changed_cb, void *ctx) 5375 { 5376 int ret; 5377 int cmp; 5378 struct btrfs_path *left_path = NULL; 5379 struct btrfs_path *right_path = NULL; 5380 struct btrfs_key left_key; 5381 struct btrfs_key right_key; 5382 char *tmp_buf = NULL; 5383 int left_root_level; 5384 int right_root_level; 5385 int left_level; 5386 int right_level; 5387 int left_end_reached; 5388 int right_end_reached; 5389 int advance_left; 5390 int advance_right; 5391 u64 left_blockptr; 5392 u64 right_blockptr; 5393 u64 left_gen; 5394 u64 right_gen; 5395 5396 left_path = btrfs_alloc_path(); 5397 if (!left_path) { 5398 ret = -ENOMEM; 5399 goto out; 5400 } 5401 right_path = btrfs_alloc_path(); 5402 if (!right_path) { 5403 ret = -ENOMEM; 5404 goto out; 5405 } 5406 5407 tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN); 5408 if (!tmp_buf) { 5409 tmp_buf = vmalloc(left_root->nodesize); 5410 if (!tmp_buf) { 5411 ret = -ENOMEM; 5412 goto out; 5413 } 5414 } 5415 5416 left_path->search_commit_root = 1; 5417 left_path->skip_locking = 1; 5418 right_path->search_commit_root = 1; 5419 right_path->skip_locking = 1; 5420 5421 /* 5422 * Strategy: Go to the first items of both trees. Then do 5423 * 5424 * If both trees are at level 0 5425 * Compare keys of current items 5426 * If left < right treat left item as new, advance left tree 5427 * and repeat 5428 * If left > right treat right item as deleted, advance right tree 5429 * and repeat 5430 * If left == right do deep compare of items, treat as changed if 5431 * needed, advance both trees and repeat 5432 * If both trees are at the same level but not at level 0 5433 * Compare keys of current nodes/leafs 5434 * If left < right advance left tree and repeat 5435 * If left > right advance right tree and repeat 5436 * If left == right compare blockptrs of the next nodes/leafs 5437 * If they match advance both trees but stay at the same level 5438 * and repeat 5439 * If they don't match advance both trees while allowing to go 5440 * deeper and repeat 5441 * If tree levels are different 5442 * Advance the tree that needs it and repeat 5443 * 5444 * Advancing a tree means: 5445 * If we are at level 0, try to go to the next slot. If that's not 5446 * possible, go one level up and repeat. Stop when we found a level 5447 * where we could go to the next slot. We may at this point be on a 5448 * node or a leaf. 5449 * 5450 * If we are not at level 0 and not on shared tree blocks, go one 5451 * level deeper. 5452 * 5453 * If we are not at level 0 and on shared tree blocks, go one slot to 5454 * the right if possible or go up and right. 5455 */ 5456 5457 down_read(&left_root->fs_info->commit_root_sem); 5458 left_level = btrfs_header_level(left_root->commit_root); 5459 left_root_level = left_level; 5460 left_path->nodes[left_level] = left_root->commit_root; 5461 extent_buffer_get(left_path->nodes[left_level]); 5462 5463 right_level = btrfs_header_level(right_root->commit_root); 5464 right_root_level = right_level; 5465 right_path->nodes[right_level] = right_root->commit_root; 5466 extent_buffer_get(right_path->nodes[right_level]); 5467 up_read(&left_root->fs_info->commit_root_sem); 5468 5469 if (left_level == 0) 5470 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5471 &left_key, left_path->slots[left_level]); 5472 else 5473 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5474 &left_key, left_path->slots[left_level]); 5475 if (right_level == 0) 5476 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5477 &right_key, right_path->slots[right_level]); 5478 else 5479 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5480 &right_key, right_path->slots[right_level]); 5481 5482 left_end_reached = right_end_reached = 0; 5483 advance_left = advance_right = 0; 5484 5485 while (1) { 5486 if (advance_left && !left_end_reached) { 5487 ret = tree_advance(left_root, left_path, &left_level, 5488 left_root_level, 5489 advance_left != ADVANCE_ONLY_NEXT, 5490 &left_key); 5491 if (ret == -1) 5492 left_end_reached = ADVANCE; 5493 else if (ret < 0) 5494 goto out; 5495 advance_left = 0; 5496 } 5497 if (advance_right && !right_end_reached) { 5498 ret = tree_advance(right_root, right_path, &right_level, 5499 right_root_level, 5500 advance_right != ADVANCE_ONLY_NEXT, 5501 &right_key); 5502 if (ret == -1) 5503 right_end_reached = ADVANCE; 5504 else if (ret < 0) 5505 goto out; 5506 advance_right = 0; 5507 } 5508 5509 if (left_end_reached && right_end_reached) { 5510 ret = 0; 5511 goto out; 5512 } else if (left_end_reached) { 5513 if (right_level == 0) { 5514 ret = changed_cb(left_root, right_root, 5515 left_path, right_path, 5516 &right_key, 5517 BTRFS_COMPARE_TREE_DELETED, 5518 ctx); 5519 if (ret < 0) 5520 goto out; 5521 } 5522 advance_right = ADVANCE; 5523 continue; 5524 } else if (right_end_reached) { 5525 if (left_level == 0) { 5526 ret = changed_cb(left_root, right_root, 5527 left_path, right_path, 5528 &left_key, 5529 BTRFS_COMPARE_TREE_NEW, 5530 ctx); 5531 if (ret < 0) 5532 goto out; 5533 } 5534 advance_left = ADVANCE; 5535 continue; 5536 } 5537 5538 if (left_level == 0 && right_level == 0) { 5539 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5540 if (cmp < 0) { 5541 ret = changed_cb(left_root, right_root, 5542 left_path, right_path, 5543 &left_key, 5544 BTRFS_COMPARE_TREE_NEW, 5545 ctx); 5546 if (ret < 0) 5547 goto out; 5548 advance_left = ADVANCE; 5549 } else if (cmp > 0) { 5550 ret = changed_cb(left_root, right_root, 5551 left_path, right_path, 5552 &right_key, 5553 BTRFS_COMPARE_TREE_DELETED, 5554 ctx); 5555 if (ret < 0) 5556 goto out; 5557 advance_right = ADVANCE; 5558 } else { 5559 enum btrfs_compare_tree_result result; 5560 5561 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5562 ret = tree_compare_item(left_root, left_path, 5563 right_path, tmp_buf); 5564 if (ret) 5565 result = BTRFS_COMPARE_TREE_CHANGED; 5566 else 5567 result = BTRFS_COMPARE_TREE_SAME; 5568 ret = changed_cb(left_root, right_root, 5569 left_path, right_path, 5570 &left_key, result, ctx); 5571 if (ret < 0) 5572 goto out; 5573 advance_left = ADVANCE; 5574 advance_right = ADVANCE; 5575 } 5576 } else if (left_level == right_level) { 5577 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5578 if (cmp < 0) { 5579 advance_left = ADVANCE; 5580 } else if (cmp > 0) { 5581 advance_right = ADVANCE; 5582 } else { 5583 left_blockptr = btrfs_node_blockptr( 5584 left_path->nodes[left_level], 5585 left_path->slots[left_level]); 5586 right_blockptr = btrfs_node_blockptr( 5587 right_path->nodes[right_level], 5588 right_path->slots[right_level]); 5589 left_gen = btrfs_node_ptr_generation( 5590 left_path->nodes[left_level], 5591 left_path->slots[left_level]); 5592 right_gen = btrfs_node_ptr_generation( 5593 right_path->nodes[right_level], 5594 right_path->slots[right_level]); 5595 if (left_blockptr == right_blockptr && 5596 left_gen == right_gen) { 5597 /* 5598 * As we're on a shared block, don't 5599 * allow to go deeper. 5600 */ 5601 advance_left = ADVANCE_ONLY_NEXT; 5602 advance_right = ADVANCE_ONLY_NEXT; 5603 } else { 5604 advance_left = ADVANCE; 5605 advance_right = ADVANCE; 5606 } 5607 } 5608 } else if (left_level < right_level) { 5609 advance_right = ADVANCE; 5610 } else { 5611 advance_left = ADVANCE; 5612 } 5613 } 5614 5615 out: 5616 btrfs_free_path(left_path); 5617 btrfs_free_path(right_path); 5618 kvfree(tmp_buf); 5619 return ret; 5620 } 5621 5622 /* 5623 * this is similar to btrfs_next_leaf, but does not try to preserve 5624 * and fixup the path. It looks for and returns the next key in the 5625 * tree based on the current path and the min_trans parameters. 5626 * 5627 * 0 is returned if another key is found, < 0 if there are any errors 5628 * and 1 is returned if there are no higher keys in the tree 5629 * 5630 * path->keep_locks should be set to 1 on the search made before 5631 * calling this function. 5632 */ 5633 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5634 struct btrfs_key *key, int level, u64 min_trans) 5635 { 5636 int slot; 5637 struct extent_buffer *c; 5638 5639 WARN_ON(!path->keep_locks); 5640 while (level < BTRFS_MAX_LEVEL) { 5641 if (!path->nodes[level]) 5642 return 1; 5643 5644 slot = path->slots[level] + 1; 5645 c = path->nodes[level]; 5646 next: 5647 if (slot >= btrfs_header_nritems(c)) { 5648 int ret; 5649 int orig_lowest; 5650 struct btrfs_key cur_key; 5651 if (level + 1 >= BTRFS_MAX_LEVEL || 5652 !path->nodes[level + 1]) 5653 return 1; 5654 5655 if (path->locks[level + 1]) { 5656 level++; 5657 continue; 5658 } 5659 5660 slot = btrfs_header_nritems(c) - 1; 5661 if (level == 0) 5662 btrfs_item_key_to_cpu(c, &cur_key, slot); 5663 else 5664 btrfs_node_key_to_cpu(c, &cur_key, slot); 5665 5666 orig_lowest = path->lowest_level; 5667 btrfs_release_path(path); 5668 path->lowest_level = level; 5669 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5670 0, 0); 5671 path->lowest_level = orig_lowest; 5672 if (ret < 0) 5673 return ret; 5674 5675 c = path->nodes[level]; 5676 slot = path->slots[level]; 5677 if (ret == 0) 5678 slot++; 5679 goto next; 5680 } 5681 5682 if (level == 0) 5683 btrfs_item_key_to_cpu(c, key, slot); 5684 else { 5685 u64 gen = btrfs_node_ptr_generation(c, slot); 5686 5687 if (gen < min_trans) { 5688 slot++; 5689 goto next; 5690 } 5691 btrfs_node_key_to_cpu(c, key, slot); 5692 } 5693 return 0; 5694 } 5695 return 1; 5696 } 5697 5698 /* 5699 * search the tree again to find a leaf with greater keys 5700 * returns 0 if it found something or 1 if there are no greater leaves. 5701 * returns < 0 on io errors. 5702 */ 5703 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5704 { 5705 return btrfs_next_old_leaf(root, path, 0); 5706 } 5707 5708 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5709 u64 time_seq) 5710 { 5711 int slot; 5712 int level; 5713 struct extent_buffer *c; 5714 struct extent_buffer *next; 5715 struct btrfs_key key; 5716 u32 nritems; 5717 int ret; 5718 int old_spinning = path->leave_spinning; 5719 int next_rw_lock = 0; 5720 5721 nritems = btrfs_header_nritems(path->nodes[0]); 5722 if (nritems == 0) 5723 return 1; 5724 5725 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5726 again: 5727 level = 1; 5728 next = NULL; 5729 next_rw_lock = 0; 5730 btrfs_release_path(path); 5731 5732 path->keep_locks = 1; 5733 path->leave_spinning = 1; 5734 5735 if (time_seq) 5736 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5737 else 5738 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5739 path->keep_locks = 0; 5740 5741 if (ret < 0) 5742 return ret; 5743 5744 nritems = btrfs_header_nritems(path->nodes[0]); 5745 /* 5746 * by releasing the path above we dropped all our locks. A balance 5747 * could have added more items next to the key that used to be 5748 * at the very end of the block. So, check again here and 5749 * advance the path if there are now more items available. 5750 */ 5751 if (nritems > 0 && path->slots[0] < nritems - 1) { 5752 if (ret == 0) 5753 path->slots[0]++; 5754 ret = 0; 5755 goto done; 5756 } 5757 /* 5758 * So the above check misses one case: 5759 * - after releasing the path above, someone has removed the item that 5760 * used to be at the very end of the block, and balance between leafs 5761 * gets another one with bigger key.offset to replace it. 5762 * 5763 * This one should be returned as well, or we can get leaf corruption 5764 * later(esp. in __btrfs_drop_extents()). 5765 * 5766 * And a bit more explanation about this check, 5767 * with ret > 0, the key isn't found, the path points to the slot 5768 * where it should be inserted, so the path->slots[0] item must be the 5769 * bigger one. 5770 */ 5771 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5772 ret = 0; 5773 goto done; 5774 } 5775 5776 while (level < BTRFS_MAX_LEVEL) { 5777 if (!path->nodes[level]) { 5778 ret = 1; 5779 goto done; 5780 } 5781 5782 slot = path->slots[level] + 1; 5783 c = path->nodes[level]; 5784 if (slot >= btrfs_header_nritems(c)) { 5785 level++; 5786 if (level == BTRFS_MAX_LEVEL) { 5787 ret = 1; 5788 goto done; 5789 } 5790 continue; 5791 } 5792 5793 if (next) { 5794 btrfs_tree_unlock_rw(next, next_rw_lock); 5795 free_extent_buffer(next); 5796 } 5797 5798 next = c; 5799 next_rw_lock = path->locks[level]; 5800 ret = read_block_for_search(NULL, root, path, &next, level, 5801 slot, &key, 0); 5802 if (ret == -EAGAIN) 5803 goto again; 5804 5805 if (ret < 0) { 5806 btrfs_release_path(path); 5807 goto done; 5808 } 5809 5810 if (!path->skip_locking) { 5811 ret = btrfs_try_tree_read_lock(next); 5812 if (!ret && time_seq) { 5813 /* 5814 * If we don't get the lock, we may be racing 5815 * with push_leaf_left, holding that lock while 5816 * itself waiting for the leaf we've currently 5817 * locked. To solve this situation, we give up 5818 * on our lock and cycle. 5819 */ 5820 free_extent_buffer(next); 5821 btrfs_release_path(path); 5822 cond_resched(); 5823 goto again; 5824 } 5825 if (!ret) { 5826 btrfs_set_path_blocking(path); 5827 btrfs_tree_read_lock(next); 5828 btrfs_clear_path_blocking(path, next, 5829 BTRFS_READ_LOCK); 5830 } 5831 next_rw_lock = BTRFS_READ_LOCK; 5832 } 5833 break; 5834 } 5835 path->slots[level] = slot; 5836 while (1) { 5837 level--; 5838 c = path->nodes[level]; 5839 if (path->locks[level]) 5840 btrfs_tree_unlock_rw(c, path->locks[level]); 5841 5842 free_extent_buffer(c); 5843 path->nodes[level] = next; 5844 path->slots[level] = 0; 5845 if (!path->skip_locking) 5846 path->locks[level] = next_rw_lock; 5847 if (!level) 5848 break; 5849 5850 ret = read_block_for_search(NULL, root, path, &next, level, 5851 0, &key, 0); 5852 if (ret == -EAGAIN) 5853 goto again; 5854 5855 if (ret < 0) { 5856 btrfs_release_path(path); 5857 goto done; 5858 } 5859 5860 if (!path->skip_locking) { 5861 ret = btrfs_try_tree_read_lock(next); 5862 if (!ret) { 5863 btrfs_set_path_blocking(path); 5864 btrfs_tree_read_lock(next); 5865 btrfs_clear_path_blocking(path, next, 5866 BTRFS_READ_LOCK); 5867 } 5868 next_rw_lock = BTRFS_READ_LOCK; 5869 } 5870 } 5871 ret = 0; 5872 done: 5873 unlock_up(path, 0, 1, 0, NULL); 5874 path->leave_spinning = old_spinning; 5875 if (!old_spinning) 5876 btrfs_set_path_blocking(path); 5877 5878 return ret; 5879 } 5880 5881 /* 5882 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5883 * searching until it gets past min_objectid or finds an item of 'type' 5884 * 5885 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5886 */ 5887 int btrfs_previous_item(struct btrfs_root *root, 5888 struct btrfs_path *path, u64 min_objectid, 5889 int type) 5890 { 5891 struct btrfs_key found_key; 5892 struct extent_buffer *leaf; 5893 u32 nritems; 5894 int ret; 5895 5896 while (1) { 5897 if (path->slots[0] == 0) { 5898 btrfs_set_path_blocking(path); 5899 ret = btrfs_prev_leaf(root, path); 5900 if (ret != 0) 5901 return ret; 5902 } else { 5903 path->slots[0]--; 5904 } 5905 leaf = path->nodes[0]; 5906 nritems = btrfs_header_nritems(leaf); 5907 if (nritems == 0) 5908 return 1; 5909 if (path->slots[0] == nritems) 5910 path->slots[0]--; 5911 5912 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5913 if (found_key.objectid < min_objectid) 5914 break; 5915 if (found_key.type == type) 5916 return 0; 5917 if (found_key.objectid == min_objectid && 5918 found_key.type < type) 5919 break; 5920 } 5921 return 1; 5922 } 5923 5924 /* 5925 * search in extent tree to find a previous Metadata/Data extent item with 5926 * min objecitd. 5927 * 5928 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5929 */ 5930 int btrfs_previous_extent_item(struct btrfs_root *root, 5931 struct btrfs_path *path, u64 min_objectid) 5932 { 5933 struct btrfs_key found_key; 5934 struct extent_buffer *leaf; 5935 u32 nritems; 5936 int ret; 5937 5938 while (1) { 5939 if (path->slots[0] == 0) { 5940 btrfs_set_path_blocking(path); 5941 ret = btrfs_prev_leaf(root, path); 5942 if (ret != 0) 5943 return ret; 5944 } else { 5945 path->slots[0]--; 5946 } 5947 leaf = path->nodes[0]; 5948 nritems = btrfs_header_nritems(leaf); 5949 if (nritems == 0) 5950 return 1; 5951 if (path->slots[0] == nritems) 5952 path->slots[0]--; 5953 5954 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5955 if (found_key.objectid < min_objectid) 5956 break; 5957 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5958 found_key.type == BTRFS_METADATA_ITEM_KEY) 5959 return 0; 5960 if (found_key.objectid == min_objectid && 5961 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5962 break; 5963 } 5964 return 1; 5965 } 5966