xref: /linux/fs/btrfs/ctree.c (revision 068df0f34e81bc06c5eb5012ec2eda25624e87aa)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26 
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28 		      *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_key *ins_key,
31 		      struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33 			  struct btrfs_root *root, struct extent_buffer *dst,
34 			  struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36 			      struct btrfs_root *root,
37 			      struct extent_buffer *dst_buf,
38 			      struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40 		   struct btrfs_path *path, int level, int slot);
41 
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44 	struct btrfs_path *path;
45 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
46 	return path;
47 }
48 
49 /*
50  * set all locked nodes in the path to blocking locks.  This should
51  * be done before scheduling
52  */
53 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
54 {
55 	int i;
56 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
57 		if (!p->nodes[i] || !p->locks[i])
58 			continue;
59 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
60 		if (p->locks[i] == BTRFS_READ_LOCK)
61 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
62 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
63 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
64 	}
65 }
66 
67 /*
68  * reset all the locked nodes in the patch to spinning locks.
69  *
70  * held is used to keep lockdep happy, when lockdep is enabled
71  * we set held to a blocking lock before we go around and
72  * retake all the spinlocks in the path.  You can safely use NULL
73  * for held
74  */
75 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
76 					struct extent_buffer *held, int held_rw)
77 {
78 	int i;
79 
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81 	/* lockdep really cares that we take all of these spinlocks
82 	 * in the right order.  If any of the locks in the path are not
83 	 * currently blocking, it is going to complain.  So, make really
84 	 * really sure by forcing the path to blocking before we clear
85 	 * the path blocking.
86 	 */
87 	if (held) {
88 		btrfs_set_lock_blocking_rw(held, held_rw);
89 		if (held_rw == BTRFS_WRITE_LOCK)
90 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
91 		else if (held_rw == BTRFS_READ_LOCK)
92 			held_rw = BTRFS_READ_LOCK_BLOCKING;
93 	}
94 	btrfs_set_path_blocking(p);
95 #endif
96 
97 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
98 		if (p->nodes[i] && p->locks[i]) {
99 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
100 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
101 				p->locks[i] = BTRFS_WRITE_LOCK;
102 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
103 				p->locks[i] = BTRFS_READ_LOCK;
104 		}
105 	}
106 
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 	if (held)
109 		btrfs_clear_lock_blocking_rw(held, held_rw);
110 #endif
111 }
112 
113 /* this also releases the path */
114 void btrfs_free_path(struct btrfs_path *p)
115 {
116 	if (!p)
117 		return;
118 	btrfs_release_path(p);
119 	kmem_cache_free(btrfs_path_cachep, p);
120 }
121 
122 /*
123  * path release drops references on the extent buffers in the path
124  * and it drops any locks held by this path
125  *
126  * It is safe to call this on paths that no locks or extent buffers held.
127  */
128 noinline void btrfs_release_path(struct btrfs_path *p)
129 {
130 	int i;
131 
132 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
133 		p->slots[i] = 0;
134 		if (!p->nodes[i])
135 			continue;
136 		if (p->locks[i]) {
137 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
138 			p->locks[i] = 0;
139 		}
140 		free_extent_buffer(p->nodes[i]);
141 		p->nodes[i] = NULL;
142 	}
143 }
144 
145 /*
146  * safely gets a reference on the root node of a tree.  A lock
147  * is not taken, so a concurrent writer may put a different node
148  * at the root of the tree.  See btrfs_lock_root_node for the
149  * looping required.
150  *
151  * The extent buffer returned by this has a reference taken, so
152  * it won't disappear.  It may stop being the root of the tree
153  * at any time because there are no locks held.
154  */
155 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
156 {
157 	struct extent_buffer *eb;
158 
159 	rcu_read_lock();
160 	eb = rcu_dereference(root->node);
161 	extent_buffer_get(eb);
162 	rcu_read_unlock();
163 	return eb;
164 }
165 
166 /* loop around taking references on and locking the root node of the
167  * tree until you end up with a lock on the root.  A locked buffer
168  * is returned, with a reference held.
169  */
170 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
171 {
172 	struct extent_buffer *eb;
173 
174 	while (1) {
175 		eb = btrfs_root_node(root);
176 		btrfs_tree_lock(eb);
177 		if (eb == root->node)
178 			break;
179 		btrfs_tree_unlock(eb);
180 		free_extent_buffer(eb);
181 	}
182 	return eb;
183 }
184 
185 /* loop around taking references on and locking the root node of the
186  * tree until you end up with a lock on the root.  A locked buffer
187  * is returned, with a reference held.
188  */
189 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
190 {
191 	struct extent_buffer *eb;
192 
193 	while (1) {
194 		eb = btrfs_root_node(root);
195 		btrfs_tree_read_lock(eb);
196 		if (eb == root->node)
197 			break;
198 		btrfs_tree_read_unlock(eb);
199 		free_extent_buffer(eb);
200 	}
201 	return eb;
202 }
203 
204 /* cowonly root (everything not a reference counted cow subvolume), just get
205  * put onto a simple dirty list.  transaction.c walks this to make sure they
206  * get properly updated on disk.
207  */
208 static void add_root_to_dirty_list(struct btrfs_root *root)
209 {
210 	if (root->track_dirty && list_empty(&root->dirty_list)) {
211 		list_add(&root->dirty_list,
212 			 &root->fs_info->dirty_cowonly_roots);
213 	}
214 }
215 
216 /*
217  * used by snapshot creation to make a copy of a root for a tree with
218  * a given objectid.  The buffer with the new root node is returned in
219  * cow_ret, and this func returns zero on success or a negative error code.
220  */
221 int btrfs_copy_root(struct btrfs_trans_handle *trans,
222 		      struct btrfs_root *root,
223 		      struct extent_buffer *buf,
224 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
225 {
226 	struct extent_buffer *cow;
227 	int ret = 0;
228 	int level;
229 	struct btrfs_disk_key disk_key;
230 
231 	WARN_ON(root->ref_cows && trans->transid !=
232 		root->fs_info->running_transaction->transid);
233 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
234 
235 	level = btrfs_header_level(buf);
236 	if (level == 0)
237 		btrfs_item_key(buf, &disk_key, 0);
238 	else
239 		btrfs_node_key(buf, &disk_key, 0);
240 
241 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
242 				     new_root_objectid, &disk_key, level,
243 				     buf->start, 0);
244 	if (IS_ERR(cow))
245 		return PTR_ERR(cow);
246 
247 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
248 	btrfs_set_header_bytenr(cow, cow->start);
249 	btrfs_set_header_generation(cow, trans->transid);
250 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
251 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
252 				     BTRFS_HEADER_FLAG_RELOC);
253 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
254 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
255 	else
256 		btrfs_set_header_owner(cow, new_root_objectid);
257 
258 	write_extent_buffer(cow, root->fs_info->fsid,
259 			    (unsigned long)btrfs_header_fsid(cow),
260 			    BTRFS_FSID_SIZE);
261 
262 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
263 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
264 		ret = btrfs_inc_ref(trans, root, cow, 1);
265 	else
266 		ret = btrfs_inc_ref(trans, root, cow, 0);
267 
268 	if (ret)
269 		return ret;
270 
271 	btrfs_mark_buffer_dirty(cow);
272 	*cow_ret = cow;
273 	return 0;
274 }
275 
276 /*
277  * check if the tree block can be shared by multiple trees
278  */
279 int btrfs_block_can_be_shared(struct btrfs_root *root,
280 			      struct extent_buffer *buf)
281 {
282 	/*
283 	 * Tree blocks not in refernece counted trees and tree roots
284 	 * are never shared. If a block was allocated after the last
285 	 * snapshot and the block was not allocated by tree relocation,
286 	 * we know the block is not shared.
287 	 */
288 	if (root->ref_cows &&
289 	    buf != root->node && buf != root->commit_root &&
290 	    (btrfs_header_generation(buf) <=
291 	     btrfs_root_last_snapshot(&root->root_item) ||
292 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
293 		return 1;
294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
295 	if (root->ref_cows &&
296 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
297 		return 1;
298 #endif
299 	return 0;
300 }
301 
302 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
303 				       struct btrfs_root *root,
304 				       struct extent_buffer *buf,
305 				       struct extent_buffer *cow,
306 				       int *last_ref)
307 {
308 	u64 refs;
309 	u64 owner;
310 	u64 flags;
311 	u64 new_flags = 0;
312 	int ret;
313 
314 	/*
315 	 * Backrefs update rules:
316 	 *
317 	 * Always use full backrefs for extent pointers in tree block
318 	 * allocated by tree relocation.
319 	 *
320 	 * If a shared tree block is no longer referenced by its owner
321 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
322 	 * use full backrefs for extent pointers in tree block.
323 	 *
324 	 * If a tree block is been relocating
325 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
326 	 * use full backrefs for extent pointers in tree block.
327 	 * The reason for this is some operations (such as drop tree)
328 	 * are only allowed for blocks use full backrefs.
329 	 */
330 
331 	if (btrfs_block_can_be_shared(root, buf)) {
332 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
333 					       buf->len, &refs, &flags);
334 		BUG_ON(ret);
335 		BUG_ON(refs == 0);
336 	} else {
337 		refs = 1;
338 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
339 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
340 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
341 		else
342 			flags = 0;
343 	}
344 
345 	owner = btrfs_header_owner(buf);
346 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
347 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
348 
349 	if (refs > 1) {
350 		if ((owner == root->root_key.objectid ||
351 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
352 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
353 			ret = btrfs_inc_ref(trans, root, buf, 1);
354 			BUG_ON(ret);
355 
356 			if (root->root_key.objectid ==
357 			    BTRFS_TREE_RELOC_OBJECTID) {
358 				ret = btrfs_dec_ref(trans, root, buf, 0);
359 				BUG_ON(ret);
360 				ret = btrfs_inc_ref(trans, root, cow, 1);
361 				BUG_ON(ret);
362 			}
363 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
364 		} else {
365 
366 			if (root->root_key.objectid ==
367 			    BTRFS_TREE_RELOC_OBJECTID)
368 				ret = btrfs_inc_ref(trans, root, cow, 1);
369 			else
370 				ret = btrfs_inc_ref(trans, root, cow, 0);
371 			BUG_ON(ret);
372 		}
373 		if (new_flags != 0) {
374 			ret = btrfs_set_disk_extent_flags(trans, root,
375 							  buf->start,
376 							  buf->len,
377 							  new_flags, 0);
378 			BUG_ON(ret);
379 		}
380 	} else {
381 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
382 			if (root->root_key.objectid ==
383 			    BTRFS_TREE_RELOC_OBJECTID)
384 				ret = btrfs_inc_ref(trans, root, cow, 1);
385 			else
386 				ret = btrfs_inc_ref(trans, root, cow, 0);
387 			BUG_ON(ret);
388 			ret = btrfs_dec_ref(trans, root, buf, 1);
389 			BUG_ON(ret);
390 		}
391 		clean_tree_block(trans, root, buf);
392 		*last_ref = 1;
393 	}
394 	return 0;
395 }
396 
397 /*
398  * does the dirty work in cow of a single block.  The parent block (if
399  * supplied) is updated to point to the new cow copy.  The new buffer is marked
400  * dirty and returned locked.  If you modify the block it needs to be marked
401  * dirty again.
402  *
403  * search_start -- an allocation hint for the new block
404  *
405  * empty_size -- a hint that you plan on doing more cow.  This is the size in
406  * bytes the allocator should try to find free next to the block it returns.
407  * This is just a hint and may be ignored by the allocator.
408  */
409 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
410 			     struct btrfs_root *root,
411 			     struct extent_buffer *buf,
412 			     struct extent_buffer *parent, int parent_slot,
413 			     struct extent_buffer **cow_ret,
414 			     u64 search_start, u64 empty_size)
415 {
416 	struct btrfs_disk_key disk_key;
417 	struct extent_buffer *cow;
418 	int level;
419 	int last_ref = 0;
420 	int unlock_orig = 0;
421 	u64 parent_start;
422 
423 	if (*cow_ret == buf)
424 		unlock_orig = 1;
425 
426 	btrfs_assert_tree_locked(buf);
427 
428 	WARN_ON(root->ref_cows && trans->transid !=
429 		root->fs_info->running_transaction->transid);
430 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
431 
432 	level = btrfs_header_level(buf);
433 
434 	if (level == 0)
435 		btrfs_item_key(buf, &disk_key, 0);
436 	else
437 		btrfs_node_key(buf, &disk_key, 0);
438 
439 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
440 		if (parent)
441 			parent_start = parent->start;
442 		else
443 			parent_start = 0;
444 	} else
445 		parent_start = 0;
446 
447 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
448 				     root->root_key.objectid, &disk_key,
449 				     level, search_start, empty_size);
450 	if (IS_ERR(cow))
451 		return PTR_ERR(cow);
452 
453 	/* cow is set to blocking by btrfs_init_new_buffer */
454 
455 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
456 	btrfs_set_header_bytenr(cow, cow->start);
457 	btrfs_set_header_generation(cow, trans->transid);
458 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
459 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
460 				     BTRFS_HEADER_FLAG_RELOC);
461 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
462 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
463 	else
464 		btrfs_set_header_owner(cow, root->root_key.objectid);
465 
466 	write_extent_buffer(cow, root->fs_info->fsid,
467 			    (unsigned long)btrfs_header_fsid(cow),
468 			    BTRFS_FSID_SIZE);
469 
470 	update_ref_for_cow(trans, root, buf, cow, &last_ref);
471 
472 	if (root->ref_cows)
473 		btrfs_reloc_cow_block(trans, root, buf, cow);
474 
475 	if (buf == root->node) {
476 		WARN_ON(parent && parent != buf);
477 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
478 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
479 			parent_start = buf->start;
480 		else
481 			parent_start = 0;
482 
483 		extent_buffer_get(cow);
484 		rcu_assign_pointer(root->node, cow);
485 
486 		btrfs_free_tree_block(trans, root, buf, parent_start,
487 				      last_ref);
488 		free_extent_buffer(buf);
489 		add_root_to_dirty_list(root);
490 	} else {
491 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
492 			parent_start = parent->start;
493 		else
494 			parent_start = 0;
495 
496 		WARN_ON(trans->transid != btrfs_header_generation(parent));
497 		btrfs_set_node_blockptr(parent, parent_slot,
498 					cow->start);
499 		btrfs_set_node_ptr_generation(parent, parent_slot,
500 					      trans->transid);
501 		btrfs_mark_buffer_dirty(parent);
502 		btrfs_free_tree_block(trans, root, buf, parent_start,
503 				      last_ref);
504 	}
505 	if (unlock_orig)
506 		btrfs_tree_unlock(buf);
507 	free_extent_buffer(buf);
508 	btrfs_mark_buffer_dirty(cow);
509 	*cow_ret = cow;
510 	return 0;
511 }
512 
513 static inline int should_cow_block(struct btrfs_trans_handle *trans,
514 				   struct btrfs_root *root,
515 				   struct extent_buffer *buf)
516 {
517 	if (btrfs_header_generation(buf) == trans->transid &&
518 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
519 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
520 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
521 		return 0;
522 	return 1;
523 }
524 
525 /*
526  * cows a single block, see __btrfs_cow_block for the real work.
527  * This version of it has extra checks so that a block isn't cow'd more than
528  * once per transaction, as long as it hasn't been written yet
529  */
530 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
531 		    struct btrfs_root *root, struct extent_buffer *buf,
532 		    struct extent_buffer *parent, int parent_slot,
533 		    struct extent_buffer **cow_ret)
534 {
535 	u64 search_start;
536 	int ret;
537 
538 	if (trans->transaction != root->fs_info->running_transaction) {
539 		printk(KERN_CRIT "trans %llu running %llu\n",
540 		       (unsigned long long)trans->transid,
541 		       (unsigned long long)
542 		       root->fs_info->running_transaction->transid);
543 		WARN_ON(1);
544 	}
545 	if (trans->transid != root->fs_info->generation) {
546 		printk(KERN_CRIT "trans %llu running %llu\n",
547 		       (unsigned long long)trans->transid,
548 		       (unsigned long long)root->fs_info->generation);
549 		WARN_ON(1);
550 	}
551 
552 	if (!should_cow_block(trans, root, buf)) {
553 		*cow_ret = buf;
554 		return 0;
555 	}
556 
557 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
558 
559 	if (parent)
560 		btrfs_set_lock_blocking(parent);
561 	btrfs_set_lock_blocking(buf);
562 
563 	ret = __btrfs_cow_block(trans, root, buf, parent,
564 				 parent_slot, cow_ret, search_start, 0);
565 
566 	trace_btrfs_cow_block(root, buf, *cow_ret);
567 
568 	return ret;
569 }
570 
571 /*
572  * helper function for defrag to decide if two blocks pointed to by a
573  * node are actually close by
574  */
575 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
576 {
577 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
578 		return 1;
579 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
580 		return 1;
581 	return 0;
582 }
583 
584 /*
585  * compare two keys in a memcmp fashion
586  */
587 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
588 {
589 	struct btrfs_key k1;
590 
591 	btrfs_disk_key_to_cpu(&k1, disk);
592 
593 	return btrfs_comp_cpu_keys(&k1, k2);
594 }
595 
596 /*
597  * same as comp_keys only with two btrfs_key's
598  */
599 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
600 {
601 	if (k1->objectid > k2->objectid)
602 		return 1;
603 	if (k1->objectid < k2->objectid)
604 		return -1;
605 	if (k1->type > k2->type)
606 		return 1;
607 	if (k1->type < k2->type)
608 		return -1;
609 	if (k1->offset > k2->offset)
610 		return 1;
611 	if (k1->offset < k2->offset)
612 		return -1;
613 	return 0;
614 }
615 
616 /*
617  * this is used by the defrag code to go through all the
618  * leaves pointed to by a node and reallocate them so that
619  * disk order is close to key order
620  */
621 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
622 		       struct btrfs_root *root, struct extent_buffer *parent,
623 		       int start_slot, int cache_only, u64 *last_ret,
624 		       struct btrfs_key *progress)
625 {
626 	struct extent_buffer *cur;
627 	u64 blocknr;
628 	u64 gen;
629 	u64 search_start = *last_ret;
630 	u64 last_block = 0;
631 	u64 other;
632 	u32 parent_nritems;
633 	int end_slot;
634 	int i;
635 	int err = 0;
636 	int parent_level;
637 	int uptodate;
638 	u32 blocksize;
639 	int progress_passed = 0;
640 	struct btrfs_disk_key disk_key;
641 
642 	parent_level = btrfs_header_level(parent);
643 	if (cache_only && parent_level != 1)
644 		return 0;
645 
646 	if (trans->transaction != root->fs_info->running_transaction)
647 		WARN_ON(1);
648 	if (trans->transid != root->fs_info->generation)
649 		WARN_ON(1);
650 
651 	parent_nritems = btrfs_header_nritems(parent);
652 	blocksize = btrfs_level_size(root, parent_level - 1);
653 	end_slot = parent_nritems;
654 
655 	if (parent_nritems == 1)
656 		return 0;
657 
658 	btrfs_set_lock_blocking(parent);
659 
660 	for (i = start_slot; i < end_slot; i++) {
661 		int close = 1;
662 
663 		btrfs_node_key(parent, &disk_key, i);
664 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
665 			continue;
666 
667 		progress_passed = 1;
668 		blocknr = btrfs_node_blockptr(parent, i);
669 		gen = btrfs_node_ptr_generation(parent, i);
670 		if (last_block == 0)
671 			last_block = blocknr;
672 
673 		if (i > 0) {
674 			other = btrfs_node_blockptr(parent, i - 1);
675 			close = close_blocks(blocknr, other, blocksize);
676 		}
677 		if (!close && i < end_slot - 2) {
678 			other = btrfs_node_blockptr(parent, i + 1);
679 			close = close_blocks(blocknr, other, blocksize);
680 		}
681 		if (close) {
682 			last_block = blocknr;
683 			continue;
684 		}
685 
686 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
687 		if (cur)
688 			uptodate = btrfs_buffer_uptodate(cur, gen);
689 		else
690 			uptodate = 0;
691 		if (!cur || !uptodate) {
692 			if (cache_only) {
693 				free_extent_buffer(cur);
694 				continue;
695 			}
696 			if (!cur) {
697 				cur = read_tree_block(root, blocknr,
698 							 blocksize, gen);
699 				if (!cur)
700 					return -EIO;
701 			} else if (!uptodate) {
702 				btrfs_read_buffer(cur, gen);
703 			}
704 		}
705 		if (search_start == 0)
706 			search_start = last_block;
707 
708 		btrfs_tree_lock(cur);
709 		btrfs_set_lock_blocking(cur);
710 		err = __btrfs_cow_block(trans, root, cur, parent, i,
711 					&cur, search_start,
712 					min(16 * blocksize,
713 					    (end_slot - i) * blocksize));
714 		if (err) {
715 			btrfs_tree_unlock(cur);
716 			free_extent_buffer(cur);
717 			break;
718 		}
719 		search_start = cur->start;
720 		last_block = cur->start;
721 		*last_ret = search_start;
722 		btrfs_tree_unlock(cur);
723 		free_extent_buffer(cur);
724 	}
725 	return err;
726 }
727 
728 /*
729  * The leaf data grows from end-to-front in the node.
730  * this returns the address of the start of the last item,
731  * which is the stop of the leaf data stack
732  */
733 static inline unsigned int leaf_data_end(struct btrfs_root *root,
734 					 struct extent_buffer *leaf)
735 {
736 	u32 nr = btrfs_header_nritems(leaf);
737 	if (nr == 0)
738 		return BTRFS_LEAF_DATA_SIZE(root);
739 	return btrfs_item_offset_nr(leaf, nr - 1);
740 }
741 
742 
743 /*
744  * search for key in the extent_buffer.  The items start at offset p,
745  * and they are item_size apart.  There are 'max' items in p.
746  *
747  * the slot in the array is returned via slot, and it points to
748  * the place where you would insert key if it is not found in
749  * the array.
750  *
751  * slot may point to max if the key is bigger than all of the keys
752  */
753 static noinline int generic_bin_search(struct extent_buffer *eb,
754 				       unsigned long p,
755 				       int item_size, struct btrfs_key *key,
756 				       int max, int *slot)
757 {
758 	int low = 0;
759 	int high = max;
760 	int mid;
761 	int ret;
762 	struct btrfs_disk_key *tmp = NULL;
763 	struct btrfs_disk_key unaligned;
764 	unsigned long offset;
765 	char *kaddr = NULL;
766 	unsigned long map_start = 0;
767 	unsigned long map_len = 0;
768 	int err;
769 
770 	while (low < high) {
771 		mid = (low + high) / 2;
772 		offset = p + mid * item_size;
773 
774 		if (!kaddr || offset < map_start ||
775 		    (offset + sizeof(struct btrfs_disk_key)) >
776 		    map_start + map_len) {
777 
778 			err = map_private_extent_buffer(eb, offset,
779 						sizeof(struct btrfs_disk_key),
780 						&kaddr, &map_start, &map_len);
781 
782 			if (!err) {
783 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
784 							map_start);
785 			} else {
786 				read_extent_buffer(eb, &unaligned,
787 						   offset, sizeof(unaligned));
788 				tmp = &unaligned;
789 			}
790 
791 		} else {
792 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
793 							map_start);
794 		}
795 		ret = comp_keys(tmp, key);
796 
797 		if (ret < 0)
798 			low = mid + 1;
799 		else if (ret > 0)
800 			high = mid;
801 		else {
802 			*slot = mid;
803 			return 0;
804 		}
805 	}
806 	*slot = low;
807 	return 1;
808 }
809 
810 /*
811  * simple bin_search frontend that does the right thing for
812  * leaves vs nodes
813  */
814 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
815 		      int level, int *slot)
816 {
817 	if (level == 0) {
818 		return generic_bin_search(eb,
819 					  offsetof(struct btrfs_leaf, items),
820 					  sizeof(struct btrfs_item),
821 					  key, btrfs_header_nritems(eb),
822 					  slot);
823 	} else {
824 		return generic_bin_search(eb,
825 					  offsetof(struct btrfs_node, ptrs),
826 					  sizeof(struct btrfs_key_ptr),
827 					  key, btrfs_header_nritems(eb),
828 					  slot);
829 	}
830 	return -1;
831 }
832 
833 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
834 		     int level, int *slot)
835 {
836 	return bin_search(eb, key, level, slot);
837 }
838 
839 static void root_add_used(struct btrfs_root *root, u32 size)
840 {
841 	spin_lock(&root->accounting_lock);
842 	btrfs_set_root_used(&root->root_item,
843 			    btrfs_root_used(&root->root_item) + size);
844 	spin_unlock(&root->accounting_lock);
845 }
846 
847 static void root_sub_used(struct btrfs_root *root, u32 size)
848 {
849 	spin_lock(&root->accounting_lock);
850 	btrfs_set_root_used(&root->root_item,
851 			    btrfs_root_used(&root->root_item) - size);
852 	spin_unlock(&root->accounting_lock);
853 }
854 
855 /* given a node and slot number, this reads the blocks it points to.  The
856  * extent buffer is returned with a reference taken (but unlocked).
857  * NULL is returned on error.
858  */
859 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
860 				   struct extent_buffer *parent, int slot)
861 {
862 	int level = btrfs_header_level(parent);
863 	if (slot < 0)
864 		return NULL;
865 	if (slot >= btrfs_header_nritems(parent))
866 		return NULL;
867 
868 	BUG_ON(level == 0);
869 
870 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
871 		       btrfs_level_size(root, level - 1),
872 		       btrfs_node_ptr_generation(parent, slot));
873 }
874 
875 /*
876  * node level balancing, used to make sure nodes are in proper order for
877  * item deletion.  We balance from the top down, so we have to make sure
878  * that a deletion won't leave an node completely empty later on.
879  */
880 static noinline int balance_level(struct btrfs_trans_handle *trans,
881 			 struct btrfs_root *root,
882 			 struct btrfs_path *path, int level)
883 {
884 	struct extent_buffer *right = NULL;
885 	struct extent_buffer *mid;
886 	struct extent_buffer *left = NULL;
887 	struct extent_buffer *parent = NULL;
888 	int ret = 0;
889 	int wret;
890 	int pslot;
891 	int orig_slot = path->slots[level];
892 	u64 orig_ptr;
893 
894 	if (level == 0)
895 		return 0;
896 
897 	mid = path->nodes[level];
898 
899 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
900 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
901 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
902 
903 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
904 
905 	if (level < BTRFS_MAX_LEVEL - 1) {
906 		parent = path->nodes[level + 1];
907 		pslot = path->slots[level + 1];
908 	}
909 
910 	/*
911 	 * deal with the case where there is only one pointer in the root
912 	 * by promoting the node below to a root
913 	 */
914 	if (!parent) {
915 		struct extent_buffer *child;
916 
917 		if (btrfs_header_nritems(mid) != 1)
918 			return 0;
919 
920 		/* promote the child to a root */
921 		child = read_node_slot(root, mid, 0);
922 		BUG_ON(!child);
923 		btrfs_tree_lock(child);
924 		btrfs_set_lock_blocking(child);
925 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
926 		if (ret) {
927 			btrfs_tree_unlock(child);
928 			free_extent_buffer(child);
929 			goto enospc;
930 		}
931 
932 		rcu_assign_pointer(root->node, child);
933 
934 		add_root_to_dirty_list(root);
935 		btrfs_tree_unlock(child);
936 
937 		path->locks[level] = 0;
938 		path->nodes[level] = NULL;
939 		clean_tree_block(trans, root, mid);
940 		btrfs_tree_unlock(mid);
941 		/* once for the path */
942 		free_extent_buffer(mid);
943 
944 		root_sub_used(root, mid->len);
945 		btrfs_free_tree_block(trans, root, mid, 0, 1);
946 		/* once for the root ptr */
947 		free_extent_buffer(mid);
948 		return 0;
949 	}
950 	if (btrfs_header_nritems(mid) >
951 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
952 		return 0;
953 
954 	btrfs_header_nritems(mid);
955 
956 	left = read_node_slot(root, parent, pslot - 1);
957 	if (left) {
958 		btrfs_tree_lock(left);
959 		btrfs_set_lock_blocking(left);
960 		wret = btrfs_cow_block(trans, root, left,
961 				       parent, pslot - 1, &left);
962 		if (wret) {
963 			ret = wret;
964 			goto enospc;
965 		}
966 	}
967 	right = read_node_slot(root, parent, pslot + 1);
968 	if (right) {
969 		btrfs_tree_lock(right);
970 		btrfs_set_lock_blocking(right);
971 		wret = btrfs_cow_block(trans, root, right,
972 				       parent, pslot + 1, &right);
973 		if (wret) {
974 			ret = wret;
975 			goto enospc;
976 		}
977 	}
978 
979 	/* first, try to make some room in the middle buffer */
980 	if (left) {
981 		orig_slot += btrfs_header_nritems(left);
982 		wret = push_node_left(trans, root, left, mid, 1);
983 		if (wret < 0)
984 			ret = wret;
985 		btrfs_header_nritems(mid);
986 	}
987 
988 	/*
989 	 * then try to empty the right most buffer into the middle
990 	 */
991 	if (right) {
992 		wret = push_node_left(trans, root, mid, right, 1);
993 		if (wret < 0 && wret != -ENOSPC)
994 			ret = wret;
995 		if (btrfs_header_nritems(right) == 0) {
996 			clean_tree_block(trans, root, right);
997 			btrfs_tree_unlock(right);
998 			wret = del_ptr(trans, root, path, level + 1, pslot +
999 				       1);
1000 			if (wret)
1001 				ret = wret;
1002 			root_sub_used(root, right->len);
1003 			btrfs_free_tree_block(trans, root, right, 0, 1);
1004 			free_extent_buffer(right);
1005 			right = NULL;
1006 		} else {
1007 			struct btrfs_disk_key right_key;
1008 			btrfs_node_key(right, &right_key, 0);
1009 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1010 			btrfs_mark_buffer_dirty(parent);
1011 		}
1012 	}
1013 	if (btrfs_header_nritems(mid) == 1) {
1014 		/*
1015 		 * we're not allowed to leave a node with one item in the
1016 		 * tree during a delete.  A deletion from lower in the tree
1017 		 * could try to delete the only pointer in this node.
1018 		 * So, pull some keys from the left.
1019 		 * There has to be a left pointer at this point because
1020 		 * otherwise we would have pulled some pointers from the
1021 		 * right
1022 		 */
1023 		BUG_ON(!left);
1024 		wret = balance_node_right(trans, root, mid, left);
1025 		if (wret < 0) {
1026 			ret = wret;
1027 			goto enospc;
1028 		}
1029 		if (wret == 1) {
1030 			wret = push_node_left(trans, root, left, mid, 1);
1031 			if (wret < 0)
1032 				ret = wret;
1033 		}
1034 		BUG_ON(wret == 1);
1035 	}
1036 	if (btrfs_header_nritems(mid) == 0) {
1037 		clean_tree_block(trans, root, mid);
1038 		btrfs_tree_unlock(mid);
1039 		wret = del_ptr(trans, root, path, level + 1, pslot);
1040 		if (wret)
1041 			ret = wret;
1042 		root_sub_used(root, mid->len);
1043 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1044 		free_extent_buffer(mid);
1045 		mid = NULL;
1046 	} else {
1047 		/* update the parent key to reflect our changes */
1048 		struct btrfs_disk_key mid_key;
1049 		btrfs_node_key(mid, &mid_key, 0);
1050 		btrfs_set_node_key(parent, &mid_key, pslot);
1051 		btrfs_mark_buffer_dirty(parent);
1052 	}
1053 
1054 	/* update the path */
1055 	if (left) {
1056 		if (btrfs_header_nritems(left) > orig_slot) {
1057 			extent_buffer_get(left);
1058 			/* left was locked after cow */
1059 			path->nodes[level] = left;
1060 			path->slots[level + 1] -= 1;
1061 			path->slots[level] = orig_slot;
1062 			if (mid) {
1063 				btrfs_tree_unlock(mid);
1064 				free_extent_buffer(mid);
1065 			}
1066 		} else {
1067 			orig_slot -= btrfs_header_nritems(left);
1068 			path->slots[level] = orig_slot;
1069 		}
1070 	}
1071 	/* double check we haven't messed things up */
1072 	if (orig_ptr !=
1073 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1074 		BUG();
1075 enospc:
1076 	if (right) {
1077 		btrfs_tree_unlock(right);
1078 		free_extent_buffer(right);
1079 	}
1080 	if (left) {
1081 		if (path->nodes[level] != left)
1082 			btrfs_tree_unlock(left);
1083 		free_extent_buffer(left);
1084 	}
1085 	return ret;
1086 }
1087 
1088 /* Node balancing for insertion.  Here we only split or push nodes around
1089  * when they are completely full.  This is also done top down, so we
1090  * have to be pessimistic.
1091  */
1092 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1093 					  struct btrfs_root *root,
1094 					  struct btrfs_path *path, int level)
1095 {
1096 	struct extent_buffer *right = NULL;
1097 	struct extent_buffer *mid;
1098 	struct extent_buffer *left = NULL;
1099 	struct extent_buffer *parent = NULL;
1100 	int ret = 0;
1101 	int wret;
1102 	int pslot;
1103 	int orig_slot = path->slots[level];
1104 
1105 	if (level == 0)
1106 		return 1;
1107 
1108 	mid = path->nodes[level];
1109 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1110 
1111 	if (level < BTRFS_MAX_LEVEL - 1) {
1112 		parent = path->nodes[level + 1];
1113 		pslot = path->slots[level + 1];
1114 	}
1115 
1116 	if (!parent)
1117 		return 1;
1118 
1119 	left = read_node_slot(root, parent, pslot - 1);
1120 
1121 	/* first, try to make some room in the middle buffer */
1122 	if (left) {
1123 		u32 left_nr;
1124 
1125 		btrfs_tree_lock(left);
1126 		btrfs_set_lock_blocking(left);
1127 
1128 		left_nr = btrfs_header_nritems(left);
1129 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1130 			wret = 1;
1131 		} else {
1132 			ret = btrfs_cow_block(trans, root, left, parent,
1133 					      pslot - 1, &left);
1134 			if (ret)
1135 				wret = 1;
1136 			else {
1137 				wret = push_node_left(trans, root,
1138 						      left, mid, 0);
1139 			}
1140 		}
1141 		if (wret < 0)
1142 			ret = wret;
1143 		if (wret == 0) {
1144 			struct btrfs_disk_key disk_key;
1145 			orig_slot += left_nr;
1146 			btrfs_node_key(mid, &disk_key, 0);
1147 			btrfs_set_node_key(parent, &disk_key, pslot);
1148 			btrfs_mark_buffer_dirty(parent);
1149 			if (btrfs_header_nritems(left) > orig_slot) {
1150 				path->nodes[level] = left;
1151 				path->slots[level + 1] -= 1;
1152 				path->slots[level] = orig_slot;
1153 				btrfs_tree_unlock(mid);
1154 				free_extent_buffer(mid);
1155 			} else {
1156 				orig_slot -=
1157 					btrfs_header_nritems(left);
1158 				path->slots[level] = orig_slot;
1159 				btrfs_tree_unlock(left);
1160 				free_extent_buffer(left);
1161 			}
1162 			return 0;
1163 		}
1164 		btrfs_tree_unlock(left);
1165 		free_extent_buffer(left);
1166 	}
1167 	right = read_node_slot(root, parent, pslot + 1);
1168 
1169 	/*
1170 	 * then try to empty the right most buffer into the middle
1171 	 */
1172 	if (right) {
1173 		u32 right_nr;
1174 
1175 		btrfs_tree_lock(right);
1176 		btrfs_set_lock_blocking(right);
1177 
1178 		right_nr = btrfs_header_nritems(right);
1179 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1180 			wret = 1;
1181 		} else {
1182 			ret = btrfs_cow_block(trans, root, right,
1183 					      parent, pslot + 1,
1184 					      &right);
1185 			if (ret)
1186 				wret = 1;
1187 			else {
1188 				wret = balance_node_right(trans, root,
1189 							  right, mid);
1190 			}
1191 		}
1192 		if (wret < 0)
1193 			ret = wret;
1194 		if (wret == 0) {
1195 			struct btrfs_disk_key disk_key;
1196 
1197 			btrfs_node_key(right, &disk_key, 0);
1198 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1199 			btrfs_mark_buffer_dirty(parent);
1200 
1201 			if (btrfs_header_nritems(mid) <= orig_slot) {
1202 				path->nodes[level] = right;
1203 				path->slots[level + 1] += 1;
1204 				path->slots[level] = orig_slot -
1205 					btrfs_header_nritems(mid);
1206 				btrfs_tree_unlock(mid);
1207 				free_extent_buffer(mid);
1208 			} else {
1209 				btrfs_tree_unlock(right);
1210 				free_extent_buffer(right);
1211 			}
1212 			return 0;
1213 		}
1214 		btrfs_tree_unlock(right);
1215 		free_extent_buffer(right);
1216 	}
1217 	return 1;
1218 }
1219 
1220 /*
1221  * readahead one full node of leaves, finding things that are close
1222  * to the block in 'slot', and triggering ra on them.
1223  */
1224 static void reada_for_search(struct btrfs_root *root,
1225 			     struct btrfs_path *path,
1226 			     int level, int slot, u64 objectid)
1227 {
1228 	struct extent_buffer *node;
1229 	struct btrfs_disk_key disk_key;
1230 	u32 nritems;
1231 	u64 search;
1232 	u64 target;
1233 	u64 nread = 0;
1234 	u64 gen;
1235 	int direction = path->reada;
1236 	struct extent_buffer *eb;
1237 	u32 nr;
1238 	u32 blocksize;
1239 	u32 nscan = 0;
1240 
1241 	if (level != 1)
1242 		return;
1243 
1244 	if (!path->nodes[level])
1245 		return;
1246 
1247 	node = path->nodes[level];
1248 
1249 	search = btrfs_node_blockptr(node, slot);
1250 	blocksize = btrfs_level_size(root, level - 1);
1251 	eb = btrfs_find_tree_block(root, search, blocksize);
1252 	if (eb) {
1253 		free_extent_buffer(eb);
1254 		return;
1255 	}
1256 
1257 	target = search;
1258 
1259 	nritems = btrfs_header_nritems(node);
1260 	nr = slot;
1261 
1262 	while (1) {
1263 		if (direction < 0) {
1264 			if (nr == 0)
1265 				break;
1266 			nr--;
1267 		} else if (direction > 0) {
1268 			nr++;
1269 			if (nr >= nritems)
1270 				break;
1271 		}
1272 		if (path->reada < 0 && objectid) {
1273 			btrfs_node_key(node, &disk_key, nr);
1274 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1275 				break;
1276 		}
1277 		search = btrfs_node_blockptr(node, nr);
1278 		if ((search <= target && target - search <= 65536) ||
1279 		    (search > target && search - target <= 65536)) {
1280 			gen = btrfs_node_ptr_generation(node, nr);
1281 			readahead_tree_block(root, search, blocksize, gen);
1282 			nread += blocksize;
1283 		}
1284 		nscan++;
1285 		if ((nread > 65536 || nscan > 32))
1286 			break;
1287 	}
1288 }
1289 
1290 /*
1291  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1292  * cache
1293  */
1294 static noinline int reada_for_balance(struct btrfs_root *root,
1295 				      struct btrfs_path *path, int level)
1296 {
1297 	int slot;
1298 	int nritems;
1299 	struct extent_buffer *parent;
1300 	struct extent_buffer *eb;
1301 	u64 gen;
1302 	u64 block1 = 0;
1303 	u64 block2 = 0;
1304 	int ret = 0;
1305 	int blocksize;
1306 
1307 	parent = path->nodes[level + 1];
1308 	if (!parent)
1309 		return 0;
1310 
1311 	nritems = btrfs_header_nritems(parent);
1312 	slot = path->slots[level + 1];
1313 	blocksize = btrfs_level_size(root, level);
1314 
1315 	if (slot > 0) {
1316 		block1 = btrfs_node_blockptr(parent, slot - 1);
1317 		gen = btrfs_node_ptr_generation(parent, slot - 1);
1318 		eb = btrfs_find_tree_block(root, block1, blocksize);
1319 		if (eb && btrfs_buffer_uptodate(eb, gen))
1320 			block1 = 0;
1321 		free_extent_buffer(eb);
1322 	}
1323 	if (slot + 1 < nritems) {
1324 		block2 = btrfs_node_blockptr(parent, slot + 1);
1325 		gen = btrfs_node_ptr_generation(parent, slot + 1);
1326 		eb = btrfs_find_tree_block(root, block2, blocksize);
1327 		if (eb && btrfs_buffer_uptodate(eb, gen))
1328 			block2 = 0;
1329 		free_extent_buffer(eb);
1330 	}
1331 	if (block1 || block2) {
1332 		ret = -EAGAIN;
1333 
1334 		/* release the whole path */
1335 		btrfs_release_path(path);
1336 
1337 		/* read the blocks */
1338 		if (block1)
1339 			readahead_tree_block(root, block1, blocksize, 0);
1340 		if (block2)
1341 			readahead_tree_block(root, block2, blocksize, 0);
1342 
1343 		if (block1) {
1344 			eb = read_tree_block(root, block1, blocksize, 0);
1345 			free_extent_buffer(eb);
1346 		}
1347 		if (block2) {
1348 			eb = read_tree_block(root, block2, blocksize, 0);
1349 			free_extent_buffer(eb);
1350 		}
1351 	}
1352 	return ret;
1353 }
1354 
1355 
1356 /*
1357  * when we walk down the tree, it is usually safe to unlock the higher layers
1358  * in the tree.  The exceptions are when our path goes through slot 0, because
1359  * operations on the tree might require changing key pointers higher up in the
1360  * tree.
1361  *
1362  * callers might also have set path->keep_locks, which tells this code to keep
1363  * the lock if the path points to the last slot in the block.  This is part of
1364  * walking through the tree, and selecting the next slot in the higher block.
1365  *
1366  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1367  * if lowest_unlock is 1, level 0 won't be unlocked
1368  */
1369 static noinline void unlock_up(struct btrfs_path *path, int level,
1370 			       int lowest_unlock)
1371 {
1372 	int i;
1373 	int skip_level = level;
1374 	int no_skips = 0;
1375 	struct extent_buffer *t;
1376 
1377 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1378 		if (!path->nodes[i])
1379 			break;
1380 		if (!path->locks[i])
1381 			break;
1382 		if (!no_skips && path->slots[i] == 0) {
1383 			skip_level = i + 1;
1384 			continue;
1385 		}
1386 		if (!no_skips && path->keep_locks) {
1387 			u32 nritems;
1388 			t = path->nodes[i];
1389 			nritems = btrfs_header_nritems(t);
1390 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1391 				skip_level = i + 1;
1392 				continue;
1393 			}
1394 		}
1395 		if (skip_level < i && i >= lowest_unlock)
1396 			no_skips = 1;
1397 
1398 		t = path->nodes[i];
1399 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1400 			btrfs_tree_unlock_rw(t, path->locks[i]);
1401 			path->locks[i] = 0;
1402 		}
1403 	}
1404 }
1405 
1406 /*
1407  * This releases any locks held in the path starting at level and
1408  * going all the way up to the root.
1409  *
1410  * btrfs_search_slot will keep the lock held on higher nodes in a few
1411  * corner cases, such as COW of the block at slot zero in the node.  This
1412  * ignores those rules, and it should only be called when there are no
1413  * more updates to be done higher up in the tree.
1414  */
1415 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1416 {
1417 	int i;
1418 
1419 	if (path->keep_locks)
1420 		return;
1421 
1422 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1423 		if (!path->nodes[i])
1424 			continue;
1425 		if (!path->locks[i])
1426 			continue;
1427 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1428 		path->locks[i] = 0;
1429 	}
1430 }
1431 
1432 /*
1433  * helper function for btrfs_search_slot.  The goal is to find a block
1434  * in cache without setting the path to blocking.  If we find the block
1435  * we return zero and the path is unchanged.
1436  *
1437  * If we can't find the block, we set the path blocking and do some
1438  * reada.  -EAGAIN is returned and the search must be repeated.
1439  */
1440 static int
1441 read_block_for_search(struct btrfs_trans_handle *trans,
1442 		       struct btrfs_root *root, struct btrfs_path *p,
1443 		       struct extent_buffer **eb_ret, int level, int slot,
1444 		       struct btrfs_key *key)
1445 {
1446 	u64 blocknr;
1447 	u64 gen;
1448 	u32 blocksize;
1449 	struct extent_buffer *b = *eb_ret;
1450 	struct extent_buffer *tmp;
1451 	int ret;
1452 
1453 	blocknr = btrfs_node_blockptr(b, slot);
1454 	gen = btrfs_node_ptr_generation(b, slot);
1455 	blocksize = btrfs_level_size(root, level - 1);
1456 
1457 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1458 	if (tmp) {
1459 		if (btrfs_buffer_uptodate(tmp, 0)) {
1460 			if (btrfs_buffer_uptodate(tmp, gen)) {
1461 				/*
1462 				 * we found an up to date block without
1463 				 * sleeping, return
1464 				 * right away
1465 				 */
1466 				*eb_ret = tmp;
1467 				return 0;
1468 			}
1469 			/* the pages were up to date, but we failed
1470 			 * the generation number check.  Do a full
1471 			 * read for the generation number that is correct.
1472 			 * We must do this without dropping locks so
1473 			 * we can trust our generation number
1474 			 */
1475 			free_extent_buffer(tmp);
1476 			btrfs_set_path_blocking(p);
1477 
1478 			tmp = read_tree_block(root, blocknr, blocksize, gen);
1479 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1480 				*eb_ret = tmp;
1481 				return 0;
1482 			}
1483 			free_extent_buffer(tmp);
1484 			btrfs_release_path(p);
1485 			return -EIO;
1486 		}
1487 	}
1488 
1489 	/*
1490 	 * reduce lock contention at high levels
1491 	 * of the btree by dropping locks before
1492 	 * we read.  Don't release the lock on the current
1493 	 * level because we need to walk this node to figure
1494 	 * out which blocks to read.
1495 	 */
1496 	btrfs_unlock_up_safe(p, level + 1);
1497 	btrfs_set_path_blocking(p);
1498 
1499 	free_extent_buffer(tmp);
1500 	if (p->reada)
1501 		reada_for_search(root, p, level, slot, key->objectid);
1502 
1503 	btrfs_release_path(p);
1504 
1505 	ret = -EAGAIN;
1506 	tmp = read_tree_block(root, blocknr, blocksize, 0);
1507 	if (tmp) {
1508 		/*
1509 		 * If the read above didn't mark this buffer up to date,
1510 		 * it will never end up being up to date.  Set ret to EIO now
1511 		 * and give up so that our caller doesn't loop forever
1512 		 * on our EAGAINs.
1513 		 */
1514 		if (!btrfs_buffer_uptodate(tmp, 0))
1515 			ret = -EIO;
1516 		free_extent_buffer(tmp);
1517 	}
1518 	return ret;
1519 }
1520 
1521 /*
1522  * helper function for btrfs_search_slot.  This does all of the checks
1523  * for node-level blocks and does any balancing required based on
1524  * the ins_len.
1525  *
1526  * If no extra work was required, zero is returned.  If we had to
1527  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1528  * start over
1529  */
1530 static int
1531 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1532 		       struct btrfs_root *root, struct btrfs_path *p,
1533 		       struct extent_buffer *b, int level, int ins_len,
1534 		       int *write_lock_level)
1535 {
1536 	int ret;
1537 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1538 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1539 		int sret;
1540 
1541 		if (*write_lock_level < level + 1) {
1542 			*write_lock_level = level + 1;
1543 			btrfs_release_path(p);
1544 			goto again;
1545 		}
1546 
1547 		sret = reada_for_balance(root, p, level);
1548 		if (sret)
1549 			goto again;
1550 
1551 		btrfs_set_path_blocking(p);
1552 		sret = split_node(trans, root, p, level);
1553 		btrfs_clear_path_blocking(p, NULL, 0);
1554 
1555 		BUG_ON(sret > 0);
1556 		if (sret) {
1557 			ret = sret;
1558 			goto done;
1559 		}
1560 		b = p->nodes[level];
1561 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1562 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1563 		int sret;
1564 
1565 		if (*write_lock_level < level + 1) {
1566 			*write_lock_level = level + 1;
1567 			btrfs_release_path(p);
1568 			goto again;
1569 		}
1570 
1571 		sret = reada_for_balance(root, p, level);
1572 		if (sret)
1573 			goto again;
1574 
1575 		btrfs_set_path_blocking(p);
1576 		sret = balance_level(trans, root, p, level);
1577 		btrfs_clear_path_blocking(p, NULL, 0);
1578 
1579 		if (sret) {
1580 			ret = sret;
1581 			goto done;
1582 		}
1583 		b = p->nodes[level];
1584 		if (!b) {
1585 			btrfs_release_path(p);
1586 			goto again;
1587 		}
1588 		BUG_ON(btrfs_header_nritems(b) == 1);
1589 	}
1590 	return 0;
1591 
1592 again:
1593 	ret = -EAGAIN;
1594 done:
1595 	return ret;
1596 }
1597 
1598 /*
1599  * look for key in the tree.  path is filled in with nodes along the way
1600  * if key is found, we return zero and you can find the item in the leaf
1601  * level of the path (level 0)
1602  *
1603  * If the key isn't found, the path points to the slot where it should
1604  * be inserted, and 1 is returned.  If there are other errors during the
1605  * search a negative error number is returned.
1606  *
1607  * if ins_len > 0, nodes and leaves will be split as we walk down the
1608  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1609  * possible)
1610  */
1611 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1612 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1613 		      ins_len, int cow)
1614 {
1615 	struct extent_buffer *b;
1616 	int slot;
1617 	int ret;
1618 	int err;
1619 	int level;
1620 	int lowest_unlock = 1;
1621 	int root_lock;
1622 	/* everything at write_lock_level or lower must be write locked */
1623 	int write_lock_level = 0;
1624 	u8 lowest_level = 0;
1625 
1626 	lowest_level = p->lowest_level;
1627 	WARN_ON(lowest_level && ins_len > 0);
1628 	WARN_ON(p->nodes[0] != NULL);
1629 
1630 	if (ins_len < 0) {
1631 		lowest_unlock = 2;
1632 
1633 		/* when we are removing items, we might have to go up to level
1634 		 * two as we update tree pointers  Make sure we keep write
1635 		 * for those levels as well
1636 		 */
1637 		write_lock_level = 2;
1638 	} else if (ins_len > 0) {
1639 		/*
1640 		 * for inserting items, make sure we have a write lock on
1641 		 * level 1 so we can update keys
1642 		 */
1643 		write_lock_level = 1;
1644 	}
1645 
1646 	if (!cow)
1647 		write_lock_level = -1;
1648 
1649 	if (cow && (p->keep_locks || p->lowest_level))
1650 		write_lock_level = BTRFS_MAX_LEVEL;
1651 
1652 again:
1653 	/*
1654 	 * we try very hard to do read locks on the root
1655 	 */
1656 	root_lock = BTRFS_READ_LOCK;
1657 	level = 0;
1658 	if (p->search_commit_root) {
1659 		/*
1660 		 * the commit roots are read only
1661 		 * so we always do read locks
1662 		 */
1663 		b = root->commit_root;
1664 		extent_buffer_get(b);
1665 		level = btrfs_header_level(b);
1666 		if (!p->skip_locking)
1667 			btrfs_tree_read_lock(b);
1668 	} else {
1669 		if (p->skip_locking) {
1670 			b = btrfs_root_node(root);
1671 			level = btrfs_header_level(b);
1672 		} else {
1673 			/* we don't know the level of the root node
1674 			 * until we actually have it read locked
1675 			 */
1676 			b = btrfs_read_lock_root_node(root);
1677 			level = btrfs_header_level(b);
1678 			if (level <= write_lock_level) {
1679 				/* whoops, must trade for write lock */
1680 				btrfs_tree_read_unlock(b);
1681 				free_extent_buffer(b);
1682 				b = btrfs_lock_root_node(root);
1683 				root_lock = BTRFS_WRITE_LOCK;
1684 
1685 				/* the level might have changed, check again */
1686 				level = btrfs_header_level(b);
1687 			}
1688 		}
1689 	}
1690 	p->nodes[level] = b;
1691 	if (!p->skip_locking)
1692 		p->locks[level] = root_lock;
1693 
1694 	while (b) {
1695 		level = btrfs_header_level(b);
1696 
1697 		/*
1698 		 * setup the path here so we can release it under lock
1699 		 * contention with the cow code
1700 		 */
1701 		if (cow) {
1702 			/*
1703 			 * if we don't really need to cow this block
1704 			 * then we don't want to set the path blocking,
1705 			 * so we test it here
1706 			 */
1707 			if (!should_cow_block(trans, root, b))
1708 				goto cow_done;
1709 
1710 			btrfs_set_path_blocking(p);
1711 
1712 			/*
1713 			 * must have write locks on this node and the
1714 			 * parent
1715 			 */
1716 			if (level + 1 > write_lock_level) {
1717 				write_lock_level = level + 1;
1718 				btrfs_release_path(p);
1719 				goto again;
1720 			}
1721 
1722 			err = btrfs_cow_block(trans, root, b,
1723 					      p->nodes[level + 1],
1724 					      p->slots[level + 1], &b);
1725 			if (err) {
1726 				ret = err;
1727 				goto done;
1728 			}
1729 		}
1730 cow_done:
1731 		BUG_ON(!cow && ins_len);
1732 
1733 		p->nodes[level] = b;
1734 		btrfs_clear_path_blocking(p, NULL, 0);
1735 
1736 		/*
1737 		 * we have a lock on b and as long as we aren't changing
1738 		 * the tree, there is no way to for the items in b to change.
1739 		 * It is safe to drop the lock on our parent before we
1740 		 * go through the expensive btree search on b.
1741 		 *
1742 		 * If cow is true, then we might be changing slot zero,
1743 		 * which may require changing the parent.  So, we can't
1744 		 * drop the lock until after we know which slot we're
1745 		 * operating on.
1746 		 */
1747 		if (!cow)
1748 			btrfs_unlock_up_safe(p, level + 1);
1749 
1750 		ret = bin_search(b, key, level, &slot);
1751 
1752 		if (level != 0) {
1753 			int dec = 0;
1754 			if (ret && slot > 0) {
1755 				dec = 1;
1756 				slot -= 1;
1757 			}
1758 			p->slots[level] = slot;
1759 			err = setup_nodes_for_search(trans, root, p, b, level,
1760 					     ins_len, &write_lock_level);
1761 			if (err == -EAGAIN)
1762 				goto again;
1763 			if (err) {
1764 				ret = err;
1765 				goto done;
1766 			}
1767 			b = p->nodes[level];
1768 			slot = p->slots[level];
1769 
1770 			/*
1771 			 * slot 0 is special, if we change the key
1772 			 * we have to update the parent pointer
1773 			 * which means we must have a write lock
1774 			 * on the parent
1775 			 */
1776 			if (slot == 0 && cow &&
1777 			    write_lock_level < level + 1) {
1778 				write_lock_level = level + 1;
1779 				btrfs_release_path(p);
1780 				goto again;
1781 			}
1782 
1783 			unlock_up(p, level, lowest_unlock);
1784 
1785 			if (level == lowest_level) {
1786 				if (dec)
1787 					p->slots[level]++;
1788 				goto done;
1789 			}
1790 
1791 			err = read_block_for_search(trans, root, p,
1792 						    &b, level, slot, key);
1793 			if (err == -EAGAIN)
1794 				goto again;
1795 			if (err) {
1796 				ret = err;
1797 				goto done;
1798 			}
1799 
1800 			if (!p->skip_locking) {
1801 				level = btrfs_header_level(b);
1802 				if (level <= write_lock_level) {
1803 					err = btrfs_try_tree_write_lock(b);
1804 					if (!err) {
1805 						btrfs_set_path_blocking(p);
1806 						btrfs_tree_lock(b);
1807 						btrfs_clear_path_blocking(p, b,
1808 								  BTRFS_WRITE_LOCK);
1809 					}
1810 					p->locks[level] = BTRFS_WRITE_LOCK;
1811 				} else {
1812 					err = btrfs_try_tree_read_lock(b);
1813 					if (!err) {
1814 						btrfs_set_path_blocking(p);
1815 						btrfs_tree_read_lock(b);
1816 						btrfs_clear_path_blocking(p, b,
1817 								  BTRFS_READ_LOCK);
1818 					}
1819 					p->locks[level] = BTRFS_READ_LOCK;
1820 				}
1821 				p->nodes[level] = b;
1822 			}
1823 		} else {
1824 			p->slots[level] = slot;
1825 			if (ins_len > 0 &&
1826 			    btrfs_leaf_free_space(root, b) < ins_len) {
1827 				if (write_lock_level < 1) {
1828 					write_lock_level = 1;
1829 					btrfs_release_path(p);
1830 					goto again;
1831 				}
1832 
1833 				btrfs_set_path_blocking(p);
1834 				err = split_leaf(trans, root, key,
1835 						 p, ins_len, ret == 0);
1836 				btrfs_clear_path_blocking(p, NULL, 0);
1837 
1838 				BUG_ON(err > 0);
1839 				if (err) {
1840 					ret = err;
1841 					goto done;
1842 				}
1843 			}
1844 			if (!p->search_for_split)
1845 				unlock_up(p, level, lowest_unlock);
1846 			goto done;
1847 		}
1848 	}
1849 	ret = 1;
1850 done:
1851 	/*
1852 	 * we don't really know what they plan on doing with the path
1853 	 * from here on, so for now just mark it as blocking
1854 	 */
1855 	if (!p->leave_spinning)
1856 		btrfs_set_path_blocking(p);
1857 	if (ret < 0)
1858 		btrfs_release_path(p);
1859 	return ret;
1860 }
1861 
1862 /*
1863  * adjust the pointers going up the tree, starting at level
1864  * making sure the right key of each node is points to 'key'.
1865  * This is used after shifting pointers to the left, so it stops
1866  * fixing up pointers when a given leaf/node is not in slot 0 of the
1867  * higher levels
1868  *
1869  * If this fails to write a tree block, it returns -1, but continues
1870  * fixing up the blocks in ram so the tree is consistent.
1871  */
1872 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1873 			  struct btrfs_root *root, struct btrfs_path *path,
1874 			  struct btrfs_disk_key *key, int level)
1875 {
1876 	int i;
1877 	int ret = 0;
1878 	struct extent_buffer *t;
1879 
1880 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1881 		int tslot = path->slots[i];
1882 		if (!path->nodes[i])
1883 			break;
1884 		t = path->nodes[i];
1885 		btrfs_set_node_key(t, key, tslot);
1886 		btrfs_mark_buffer_dirty(path->nodes[i]);
1887 		if (tslot != 0)
1888 			break;
1889 	}
1890 	return ret;
1891 }
1892 
1893 /*
1894  * update item key.
1895  *
1896  * This function isn't completely safe. It's the caller's responsibility
1897  * that the new key won't break the order
1898  */
1899 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1900 			    struct btrfs_root *root, struct btrfs_path *path,
1901 			    struct btrfs_key *new_key)
1902 {
1903 	struct btrfs_disk_key disk_key;
1904 	struct extent_buffer *eb;
1905 	int slot;
1906 
1907 	eb = path->nodes[0];
1908 	slot = path->slots[0];
1909 	if (slot > 0) {
1910 		btrfs_item_key(eb, &disk_key, slot - 1);
1911 		if (comp_keys(&disk_key, new_key) >= 0)
1912 			return -1;
1913 	}
1914 	if (slot < btrfs_header_nritems(eb) - 1) {
1915 		btrfs_item_key(eb, &disk_key, slot + 1);
1916 		if (comp_keys(&disk_key, new_key) <= 0)
1917 			return -1;
1918 	}
1919 
1920 	btrfs_cpu_key_to_disk(&disk_key, new_key);
1921 	btrfs_set_item_key(eb, &disk_key, slot);
1922 	btrfs_mark_buffer_dirty(eb);
1923 	if (slot == 0)
1924 		fixup_low_keys(trans, root, path, &disk_key, 1);
1925 	return 0;
1926 }
1927 
1928 /*
1929  * try to push data from one node into the next node left in the
1930  * tree.
1931  *
1932  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1933  * error, and > 0 if there was no room in the left hand block.
1934  */
1935 static int push_node_left(struct btrfs_trans_handle *trans,
1936 			  struct btrfs_root *root, struct extent_buffer *dst,
1937 			  struct extent_buffer *src, int empty)
1938 {
1939 	int push_items = 0;
1940 	int src_nritems;
1941 	int dst_nritems;
1942 	int ret = 0;
1943 
1944 	src_nritems = btrfs_header_nritems(src);
1945 	dst_nritems = btrfs_header_nritems(dst);
1946 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1947 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1948 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1949 
1950 	if (!empty && src_nritems <= 8)
1951 		return 1;
1952 
1953 	if (push_items <= 0)
1954 		return 1;
1955 
1956 	if (empty) {
1957 		push_items = min(src_nritems, push_items);
1958 		if (push_items < src_nritems) {
1959 			/* leave at least 8 pointers in the node if
1960 			 * we aren't going to empty it
1961 			 */
1962 			if (src_nritems - push_items < 8) {
1963 				if (push_items <= 8)
1964 					return 1;
1965 				push_items -= 8;
1966 			}
1967 		}
1968 	} else
1969 		push_items = min(src_nritems - 8, push_items);
1970 
1971 	copy_extent_buffer(dst, src,
1972 			   btrfs_node_key_ptr_offset(dst_nritems),
1973 			   btrfs_node_key_ptr_offset(0),
1974 			   push_items * sizeof(struct btrfs_key_ptr));
1975 
1976 	if (push_items < src_nritems) {
1977 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1978 				      btrfs_node_key_ptr_offset(push_items),
1979 				      (src_nritems - push_items) *
1980 				      sizeof(struct btrfs_key_ptr));
1981 	}
1982 	btrfs_set_header_nritems(src, src_nritems - push_items);
1983 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1984 	btrfs_mark_buffer_dirty(src);
1985 	btrfs_mark_buffer_dirty(dst);
1986 
1987 	return ret;
1988 }
1989 
1990 /*
1991  * try to push data from one node into the next node right in the
1992  * tree.
1993  *
1994  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1995  * error, and > 0 if there was no room in the right hand block.
1996  *
1997  * this will  only push up to 1/2 the contents of the left node over
1998  */
1999 static int balance_node_right(struct btrfs_trans_handle *trans,
2000 			      struct btrfs_root *root,
2001 			      struct extent_buffer *dst,
2002 			      struct extent_buffer *src)
2003 {
2004 	int push_items = 0;
2005 	int max_push;
2006 	int src_nritems;
2007 	int dst_nritems;
2008 	int ret = 0;
2009 
2010 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2011 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2012 
2013 	src_nritems = btrfs_header_nritems(src);
2014 	dst_nritems = btrfs_header_nritems(dst);
2015 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2016 	if (push_items <= 0)
2017 		return 1;
2018 
2019 	if (src_nritems < 4)
2020 		return 1;
2021 
2022 	max_push = src_nritems / 2 + 1;
2023 	/* don't try to empty the node */
2024 	if (max_push >= src_nritems)
2025 		return 1;
2026 
2027 	if (max_push < push_items)
2028 		push_items = max_push;
2029 
2030 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2031 				      btrfs_node_key_ptr_offset(0),
2032 				      (dst_nritems) *
2033 				      sizeof(struct btrfs_key_ptr));
2034 
2035 	copy_extent_buffer(dst, src,
2036 			   btrfs_node_key_ptr_offset(0),
2037 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2038 			   push_items * sizeof(struct btrfs_key_ptr));
2039 
2040 	btrfs_set_header_nritems(src, src_nritems - push_items);
2041 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2042 
2043 	btrfs_mark_buffer_dirty(src);
2044 	btrfs_mark_buffer_dirty(dst);
2045 
2046 	return ret;
2047 }
2048 
2049 /*
2050  * helper function to insert a new root level in the tree.
2051  * A new node is allocated, and a single item is inserted to
2052  * point to the existing root
2053  *
2054  * returns zero on success or < 0 on failure.
2055  */
2056 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2057 			   struct btrfs_root *root,
2058 			   struct btrfs_path *path, int level)
2059 {
2060 	u64 lower_gen;
2061 	struct extent_buffer *lower;
2062 	struct extent_buffer *c;
2063 	struct extent_buffer *old;
2064 	struct btrfs_disk_key lower_key;
2065 
2066 	BUG_ON(path->nodes[level]);
2067 	BUG_ON(path->nodes[level-1] != root->node);
2068 
2069 	lower = path->nodes[level-1];
2070 	if (level == 1)
2071 		btrfs_item_key(lower, &lower_key, 0);
2072 	else
2073 		btrfs_node_key(lower, &lower_key, 0);
2074 
2075 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2076 				   root->root_key.objectid, &lower_key,
2077 				   level, root->node->start, 0);
2078 	if (IS_ERR(c))
2079 		return PTR_ERR(c);
2080 
2081 	root_add_used(root, root->nodesize);
2082 
2083 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2084 	btrfs_set_header_nritems(c, 1);
2085 	btrfs_set_header_level(c, level);
2086 	btrfs_set_header_bytenr(c, c->start);
2087 	btrfs_set_header_generation(c, trans->transid);
2088 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2089 	btrfs_set_header_owner(c, root->root_key.objectid);
2090 
2091 	write_extent_buffer(c, root->fs_info->fsid,
2092 			    (unsigned long)btrfs_header_fsid(c),
2093 			    BTRFS_FSID_SIZE);
2094 
2095 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2096 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2097 			    BTRFS_UUID_SIZE);
2098 
2099 	btrfs_set_node_key(c, &lower_key, 0);
2100 	btrfs_set_node_blockptr(c, 0, lower->start);
2101 	lower_gen = btrfs_header_generation(lower);
2102 	WARN_ON(lower_gen != trans->transid);
2103 
2104 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2105 
2106 	btrfs_mark_buffer_dirty(c);
2107 
2108 	old = root->node;
2109 	rcu_assign_pointer(root->node, c);
2110 
2111 	/* the super has an extra ref to root->node */
2112 	free_extent_buffer(old);
2113 
2114 	add_root_to_dirty_list(root);
2115 	extent_buffer_get(c);
2116 	path->nodes[level] = c;
2117 	path->locks[level] = BTRFS_WRITE_LOCK;
2118 	path->slots[level] = 0;
2119 	return 0;
2120 }
2121 
2122 /*
2123  * worker function to insert a single pointer in a node.
2124  * the node should have enough room for the pointer already
2125  *
2126  * slot and level indicate where you want the key to go, and
2127  * blocknr is the block the key points to.
2128  *
2129  * returns zero on success and < 0 on any error
2130  */
2131 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2132 		      *root, struct btrfs_path *path, struct btrfs_disk_key
2133 		      *key, u64 bytenr, int slot, int level)
2134 {
2135 	struct extent_buffer *lower;
2136 	int nritems;
2137 
2138 	BUG_ON(!path->nodes[level]);
2139 	btrfs_assert_tree_locked(path->nodes[level]);
2140 	lower = path->nodes[level];
2141 	nritems = btrfs_header_nritems(lower);
2142 	BUG_ON(slot > nritems);
2143 	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2144 		BUG();
2145 	if (slot != nritems) {
2146 		memmove_extent_buffer(lower,
2147 			      btrfs_node_key_ptr_offset(slot + 1),
2148 			      btrfs_node_key_ptr_offset(slot),
2149 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2150 	}
2151 	btrfs_set_node_key(lower, key, slot);
2152 	btrfs_set_node_blockptr(lower, slot, bytenr);
2153 	WARN_ON(trans->transid == 0);
2154 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2155 	btrfs_set_header_nritems(lower, nritems + 1);
2156 	btrfs_mark_buffer_dirty(lower);
2157 	return 0;
2158 }
2159 
2160 /*
2161  * split the node at the specified level in path in two.
2162  * The path is corrected to point to the appropriate node after the split
2163  *
2164  * Before splitting this tries to make some room in the node by pushing
2165  * left and right, if either one works, it returns right away.
2166  *
2167  * returns 0 on success and < 0 on failure
2168  */
2169 static noinline int split_node(struct btrfs_trans_handle *trans,
2170 			       struct btrfs_root *root,
2171 			       struct btrfs_path *path, int level)
2172 {
2173 	struct extent_buffer *c;
2174 	struct extent_buffer *split;
2175 	struct btrfs_disk_key disk_key;
2176 	int mid;
2177 	int ret;
2178 	int wret;
2179 	u32 c_nritems;
2180 
2181 	c = path->nodes[level];
2182 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2183 	if (c == root->node) {
2184 		/* trying to split the root, lets make a new one */
2185 		ret = insert_new_root(trans, root, path, level + 1);
2186 		if (ret)
2187 			return ret;
2188 	} else {
2189 		ret = push_nodes_for_insert(trans, root, path, level);
2190 		c = path->nodes[level];
2191 		if (!ret && btrfs_header_nritems(c) <
2192 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2193 			return 0;
2194 		if (ret < 0)
2195 			return ret;
2196 	}
2197 
2198 	c_nritems = btrfs_header_nritems(c);
2199 	mid = (c_nritems + 1) / 2;
2200 	btrfs_node_key(c, &disk_key, mid);
2201 
2202 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2203 					root->root_key.objectid,
2204 					&disk_key, level, c->start, 0);
2205 	if (IS_ERR(split))
2206 		return PTR_ERR(split);
2207 
2208 	root_add_used(root, root->nodesize);
2209 
2210 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2211 	btrfs_set_header_level(split, btrfs_header_level(c));
2212 	btrfs_set_header_bytenr(split, split->start);
2213 	btrfs_set_header_generation(split, trans->transid);
2214 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2215 	btrfs_set_header_owner(split, root->root_key.objectid);
2216 	write_extent_buffer(split, root->fs_info->fsid,
2217 			    (unsigned long)btrfs_header_fsid(split),
2218 			    BTRFS_FSID_SIZE);
2219 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2220 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2221 			    BTRFS_UUID_SIZE);
2222 
2223 
2224 	copy_extent_buffer(split, c,
2225 			   btrfs_node_key_ptr_offset(0),
2226 			   btrfs_node_key_ptr_offset(mid),
2227 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2228 	btrfs_set_header_nritems(split, c_nritems - mid);
2229 	btrfs_set_header_nritems(c, mid);
2230 	ret = 0;
2231 
2232 	btrfs_mark_buffer_dirty(c);
2233 	btrfs_mark_buffer_dirty(split);
2234 
2235 	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2236 			  path->slots[level + 1] + 1,
2237 			  level + 1);
2238 	if (wret)
2239 		ret = wret;
2240 
2241 	if (path->slots[level] >= mid) {
2242 		path->slots[level] -= mid;
2243 		btrfs_tree_unlock(c);
2244 		free_extent_buffer(c);
2245 		path->nodes[level] = split;
2246 		path->slots[level + 1] += 1;
2247 	} else {
2248 		btrfs_tree_unlock(split);
2249 		free_extent_buffer(split);
2250 	}
2251 	return ret;
2252 }
2253 
2254 /*
2255  * how many bytes are required to store the items in a leaf.  start
2256  * and nr indicate which items in the leaf to check.  This totals up the
2257  * space used both by the item structs and the item data
2258  */
2259 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2260 {
2261 	int data_len;
2262 	int nritems = btrfs_header_nritems(l);
2263 	int end = min(nritems, start + nr) - 1;
2264 
2265 	if (!nr)
2266 		return 0;
2267 	data_len = btrfs_item_end_nr(l, start);
2268 	data_len = data_len - btrfs_item_offset_nr(l, end);
2269 	data_len += sizeof(struct btrfs_item) * nr;
2270 	WARN_ON(data_len < 0);
2271 	return data_len;
2272 }
2273 
2274 /*
2275  * The space between the end of the leaf items and
2276  * the start of the leaf data.  IOW, how much room
2277  * the leaf has left for both items and data
2278  */
2279 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2280 				   struct extent_buffer *leaf)
2281 {
2282 	int nritems = btrfs_header_nritems(leaf);
2283 	int ret;
2284 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2285 	if (ret < 0) {
2286 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2287 		       "used %d nritems %d\n",
2288 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2289 		       leaf_space_used(leaf, 0, nritems), nritems);
2290 	}
2291 	return ret;
2292 }
2293 
2294 /*
2295  * min slot controls the lowest index we're willing to push to the
2296  * right.  We'll push up to and including min_slot, but no lower
2297  */
2298 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2299 				      struct btrfs_root *root,
2300 				      struct btrfs_path *path,
2301 				      int data_size, int empty,
2302 				      struct extent_buffer *right,
2303 				      int free_space, u32 left_nritems,
2304 				      u32 min_slot)
2305 {
2306 	struct extent_buffer *left = path->nodes[0];
2307 	struct extent_buffer *upper = path->nodes[1];
2308 	struct btrfs_disk_key disk_key;
2309 	int slot;
2310 	u32 i;
2311 	int push_space = 0;
2312 	int push_items = 0;
2313 	struct btrfs_item *item;
2314 	u32 nr;
2315 	u32 right_nritems;
2316 	u32 data_end;
2317 	u32 this_item_size;
2318 
2319 	if (empty)
2320 		nr = 0;
2321 	else
2322 		nr = max_t(u32, 1, min_slot);
2323 
2324 	if (path->slots[0] >= left_nritems)
2325 		push_space += data_size;
2326 
2327 	slot = path->slots[1];
2328 	i = left_nritems - 1;
2329 	while (i >= nr) {
2330 		item = btrfs_item_nr(left, i);
2331 
2332 		if (!empty && push_items > 0) {
2333 			if (path->slots[0] > i)
2334 				break;
2335 			if (path->slots[0] == i) {
2336 				int space = btrfs_leaf_free_space(root, left);
2337 				if (space + push_space * 2 > free_space)
2338 					break;
2339 			}
2340 		}
2341 
2342 		if (path->slots[0] == i)
2343 			push_space += data_size;
2344 
2345 		this_item_size = btrfs_item_size(left, item);
2346 		if (this_item_size + sizeof(*item) + push_space > free_space)
2347 			break;
2348 
2349 		push_items++;
2350 		push_space += this_item_size + sizeof(*item);
2351 		if (i == 0)
2352 			break;
2353 		i--;
2354 	}
2355 
2356 	if (push_items == 0)
2357 		goto out_unlock;
2358 
2359 	if (!empty && push_items == left_nritems)
2360 		WARN_ON(1);
2361 
2362 	/* push left to right */
2363 	right_nritems = btrfs_header_nritems(right);
2364 
2365 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2366 	push_space -= leaf_data_end(root, left);
2367 
2368 	/* make room in the right data area */
2369 	data_end = leaf_data_end(root, right);
2370 	memmove_extent_buffer(right,
2371 			      btrfs_leaf_data(right) + data_end - push_space,
2372 			      btrfs_leaf_data(right) + data_end,
2373 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2374 
2375 	/* copy from the left data area */
2376 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2377 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2378 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2379 		     push_space);
2380 
2381 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2382 			      btrfs_item_nr_offset(0),
2383 			      right_nritems * sizeof(struct btrfs_item));
2384 
2385 	/* copy the items from left to right */
2386 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2387 		   btrfs_item_nr_offset(left_nritems - push_items),
2388 		   push_items * sizeof(struct btrfs_item));
2389 
2390 	/* update the item pointers */
2391 	right_nritems += push_items;
2392 	btrfs_set_header_nritems(right, right_nritems);
2393 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2394 	for (i = 0; i < right_nritems; i++) {
2395 		item = btrfs_item_nr(right, i);
2396 		push_space -= btrfs_item_size(right, item);
2397 		btrfs_set_item_offset(right, item, push_space);
2398 	}
2399 
2400 	left_nritems -= push_items;
2401 	btrfs_set_header_nritems(left, left_nritems);
2402 
2403 	if (left_nritems)
2404 		btrfs_mark_buffer_dirty(left);
2405 	else
2406 		clean_tree_block(trans, root, left);
2407 
2408 	btrfs_mark_buffer_dirty(right);
2409 
2410 	btrfs_item_key(right, &disk_key, 0);
2411 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2412 	btrfs_mark_buffer_dirty(upper);
2413 
2414 	/* then fixup the leaf pointer in the path */
2415 	if (path->slots[0] >= left_nritems) {
2416 		path->slots[0] -= left_nritems;
2417 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2418 			clean_tree_block(trans, root, path->nodes[0]);
2419 		btrfs_tree_unlock(path->nodes[0]);
2420 		free_extent_buffer(path->nodes[0]);
2421 		path->nodes[0] = right;
2422 		path->slots[1] += 1;
2423 	} else {
2424 		btrfs_tree_unlock(right);
2425 		free_extent_buffer(right);
2426 	}
2427 	return 0;
2428 
2429 out_unlock:
2430 	btrfs_tree_unlock(right);
2431 	free_extent_buffer(right);
2432 	return 1;
2433 }
2434 
2435 /*
2436  * push some data in the path leaf to the right, trying to free up at
2437  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2438  *
2439  * returns 1 if the push failed because the other node didn't have enough
2440  * room, 0 if everything worked out and < 0 if there were major errors.
2441  *
2442  * this will push starting from min_slot to the end of the leaf.  It won't
2443  * push any slot lower than min_slot
2444  */
2445 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2446 			   *root, struct btrfs_path *path,
2447 			   int min_data_size, int data_size,
2448 			   int empty, u32 min_slot)
2449 {
2450 	struct extent_buffer *left = path->nodes[0];
2451 	struct extent_buffer *right;
2452 	struct extent_buffer *upper;
2453 	int slot;
2454 	int free_space;
2455 	u32 left_nritems;
2456 	int ret;
2457 
2458 	if (!path->nodes[1])
2459 		return 1;
2460 
2461 	slot = path->slots[1];
2462 	upper = path->nodes[1];
2463 	if (slot >= btrfs_header_nritems(upper) - 1)
2464 		return 1;
2465 
2466 	btrfs_assert_tree_locked(path->nodes[1]);
2467 
2468 	right = read_node_slot(root, upper, slot + 1);
2469 	if (right == NULL)
2470 		return 1;
2471 
2472 	btrfs_tree_lock(right);
2473 	btrfs_set_lock_blocking(right);
2474 
2475 	free_space = btrfs_leaf_free_space(root, right);
2476 	if (free_space < data_size)
2477 		goto out_unlock;
2478 
2479 	/* cow and double check */
2480 	ret = btrfs_cow_block(trans, root, right, upper,
2481 			      slot + 1, &right);
2482 	if (ret)
2483 		goto out_unlock;
2484 
2485 	free_space = btrfs_leaf_free_space(root, right);
2486 	if (free_space < data_size)
2487 		goto out_unlock;
2488 
2489 	left_nritems = btrfs_header_nritems(left);
2490 	if (left_nritems == 0)
2491 		goto out_unlock;
2492 
2493 	return __push_leaf_right(trans, root, path, min_data_size, empty,
2494 				right, free_space, left_nritems, min_slot);
2495 out_unlock:
2496 	btrfs_tree_unlock(right);
2497 	free_extent_buffer(right);
2498 	return 1;
2499 }
2500 
2501 /*
2502  * push some data in the path leaf to the left, trying to free up at
2503  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2504  *
2505  * max_slot can put a limit on how far into the leaf we'll push items.  The
2506  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2507  * items
2508  */
2509 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2510 				     struct btrfs_root *root,
2511 				     struct btrfs_path *path, int data_size,
2512 				     int empty, struct extent_buffer *left,
2513 				     int free_space, u32 right_nritems,
2514 				     u32 max_slot)
2515 {
2516 	struct btrfs_disk_key disk_key;
2517 	struct extent_buffer *right = path->nodes[0];
2518 	int i;
2519 	int push_space = 0;
2520 	int push_items = 0;
2521 	struct btrfs_item *item;
2522 	u32 old_left_nritems;
2523 	u32 nr;
2524 	int ret = 0;
2525 	int wret;
2526 	u32 this_item_size;
2527 	u32 old_left_item_size;
2528 
2529 	if (empty)
2530 		nr = min(right_nritems, max_slot);
2531 	else
2532 		nr = min(right_nritems - 1, max_slot);
2533 
2534 	for (i = 0; i < nr; i++) {
2535 		item = btrfs_item_nr(right, i);
2536 
2537 		if (!empty && push_items > 0) {
2538 			if (path->slots[0] < i)
2539 				break;
2540 			if (path->slots[0] == i) {
2541 				int space = btrfs_leaf_free_space(root, right);
2542 				if (space + push_space * 2 > free_space)
2543 					break;
2544 			}
2545 		}
2546 
2547 		if (path->slots[0] == i)
2548 			push_space += data_size;
2549 
2550 		this_item_size = btrfs_item_size(right, item);
2551 		if (this_item_size + sizeof(*item) + push_space > free_space)
2552 			break;
2553 
2554 		push_items++;
2555 		push_space += this_item_size + sizeof(*item);
2556 	}
2557 
2558 	if (push_items == 0) {
2559 		ret = 1;
2560 		goto out;
2561 	}
2562 	if (!empty && push_items == btrfs_header_nritems(right))
2563 		WARN_ON(1);
2564 
2565 	/* push data from right to left */
2566 	copy_extent_buffer(left, right,
2567 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2568 			   btrfs_item_nr_offset(0),
2569 			   push_items * sizeof(struct btrfs_item));
2570 
2571 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2572 		     btrfs_item_offset_nr(right, push_items - 1);
2573 
2574 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2575 		     leaf_data_end(root, left) - push_space,
2576 		     btrfs_leaf_data(right) +
2577 		     btrfs_item_offset_nr(right, push_items - 1),
2578 		     push_space);
2579 	old_left_nritems = btrfs_header_nritems(left);
2580 	BUG_ON(old_left_nritems <= 0);
2581 
2582 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2583 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2584 		u32 ioff;
2585 
2586 		item = btrfs_item_nr(left, i);
2587 
2588 		ioff = btrfs_item_offset(left, item);
2589 		btrfs_set_item_offset(left, item,
2590 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2591 	}
2592 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2593 
2594 	/* fixup right node */
2595 	if (push_items > right_nritems) {
2596 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2597 		       right_nritems);
2598 		WARN_ON(1);
2599 	}
2600 
2601 	if (push_items < right_nritems) {
2602 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2603 						  leaf_data_end(root, right);
2604 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2605 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2606 				      btrfs_leaf_data(right) +
2607 				      leaf_data_end(root, right), push_space);
2608 
2609 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2610 			      btrfs_item_nr_offset(push_items),
2611 			     (btrfs_header_nritems(right) - push_items) *
2612 			     sizeof(struct btrfs_item));
2613 	}
2614 	right_nritems -= push_items;
2615 	btrfs_set_header_nritems(right, right_nritems);
2616 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2617 	for (i = 0; i < right_nritems; i++) {
2618 		item = btrfs_item_nr(right, i);
2619 
2620 		push_space = push_space - btrfs_item_size(right, item);
2621 		btrfs_set_item_offset(right, item, push_space);
2622 	}
2623 
2624 	btrfs_mark_buffer_dirty(left);
2625 	if (right_nritems)
2626 		btrfs_mark_buffer_dirty(right);
2627 	else
2628 		clean_tree_block(trans, root, right);
2629 
2630 	btrfs_item_key(right, &disk_key, 0);
2631 	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2632 	if (wret)
2633 		ret = wret;
2634 
2635 	/* then fixup the leaf pointer in the path */
2636 	if (path->slots[0] < push_items) {
2637 		path->slots[0] += old_left_nritems;
2638 		btrfs_tree_unlock(path->nodes[0]);
2639 		free_extent_buffer(path->nodes[0]);
2640 		path->nodes[0] = left;
2641 		path->slots[1] -= 1;
2642 	} else {
2643 		btrfs_tree_unlock(left);
2644 		free_extent_buffer(left);
2645 		path->slots[0] -= push_items;
2646 	}
2647 	BUG_ON(path->slots[0] < 0);
2648 	return ret;
2649 out:
2650 	btrfs_tree_unlock(left);
2651 	free_extent_buffer(left);
2652 	return ret;
2653 }
2654 
2655 /*
2656  * push some data in the path leaf to the left, trying to free up at
2657  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2658  *
2659  * max_slot can put a limit on how far into the leaf we'll push items.  The
2660  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2661  * items
2662  */
2663 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2664 			  *root, struct btrfs_path *path, int min_data_size,
2665 			  int data_size, int empty, u32 max_slot)
2666 {
2667 	struct extent_buffer *right = path->nodes[0];
2668 	struct extent_buffer *left;
2669 	int slot;
2670 	int free_space;
2671 	u32 right_nritems;
2672 	int ret = 0;
2673 
2674 	slot = path->slots[1];
2675 	if (slot == 0)
2676 		return 1;
2677 	if (!path->nodes[1])
2678 		return 1;
2679 
2680 	right_nritems = btrfs_header_nritems(right);
2681 	if (right_nritems == 0)
2682 		return 1;
2683 
2684 	btrfs_assert_tree_locked(path->nodes[1]);
2685 
2686 	left = read_node_slot(root, path->nodes[1], slot - 1);
2687 	if (left == NULL)
2688 		return 1;
2689 
2690 	btrfs_tree_lock(left);
2691 	btrfs_set_lock_blocking(left);
2692 
2693 	free_space = btrfs_leaf_free_space(root, left);
2694 	if (free_space < data_size) {
2695 		ret = 1;
2696 		goto out;
2697 	}
2698 
2699 	/* cow and double check */
2700 	ret = btrfs_cow_block(trans, root, left,
2701 			      path->nodes[1], slot - 1, &left);
2702 	if (ret) {
2703 		/* we hit -ENOSPC, but it isn't fatal here */
2704 		ret = 1;
2705 		goto out;
2706 	}
2707 
2708 	free_space = btrfs_leaf_free_space(root, left);
2709 	if (free_space < data_size) {
2710 		ret = 1;
2711 		goto out;
2712 	}
2713 
2714 	return __push_leaf_left(trans, root, path, min_data_size,
2715 			       empty, left, free_space, right_nritems,
2716 			       max_slot);
2717 out:
2718 	btrfs_tree_unlock(left);
2719 	free_extent_buffer(left);
2720 	return ret;
2721 }
2722 
2723 /*
2724  * split the path's leaf in two, making sure there is at least data_size
2725  * available for the resulting leaf level of the path.
2726  *
2727  * returns 0 if all went well and < 0 on failure.
2728  */
2729 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2730 			       struct btrfs_root *root,
2731 			       struct btrfs_path *path,
2732 			       struct extent_buffer *l,
2733 			       struct extent_buffer *right,
2734 			       int slot, int mid, int nritems)
2735 {
2736 	int data_copy_size;
2737 	int rt_data_off;
2738 	int i;
2739 	int ret = 0;
2740 	int wret;
2741 	struct btrfs_disk_key disk_key;
2742 
2743 	nritems = nritems - mid;
2744 	btrfs_set_header_nritems(right, nritems);
2745 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2746 
2747 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2748 			   btrfs_item_nr_offset(mid),
2749 			   nritems * sizeof(struct btrfs_item));
2750 
2751 	copy_extent_buffer(right, l,
2752 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2753 		     data_copy_size, btrfs_leaf_data(l) +
2754 		     leaf_data_end(root, l), data_copy_size);
2755 
2756 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2757 		      btrfs_item_end_nr(l, mid);
2758 
2759 	for (i = 0; i < nritems; i++) {
2760 		struct btrfs_item *item = btrfs_item_nr(right, i);
2761 		u32 ioff;
2762 
2763 		ioff = btrfs_item_offset(right, item);
2764 		btrfs_set_item_offset(right, item, ioff + rt_data_off);
2765 	}
2766 
2767 	btrfs_set_header_nritems(l, mid);
2768 	ret = 0;
2769 	btrfs_item_key(right, &disk_key, 0);
2770 	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2771 			  path->slots[1] + 1, 1);
2772 	if (wret)
2773 		ret = wret;
2774 
2775 	btrfs_mark_buffer_dirty(right);
2776 	btrfs_mark_buffer_dirty(l);
2777 	BUG_ON(path->slots[0] != slot);
2778 
2779 	if (mid <= slot) {
2780 		btrfs_tree_unlock(path->nodes[0]);
2781 		free_extent_buffer(path->nodes[0]);
2782 		path->nodes[0] = right;
2783 		path->slots[0] -= mid;
2784 		path->slots[1] += 1;
2785 	} else {
2786 		btrfs_tree_unlock(right);
2787 		free_extent_buffer(right);
2788 	}
2789 
2790 	BUG_ON(path->slots[0] < 0);
2791 
2792 	return ret;
2793 }
2794 
2795 /*
2796  * double splits happen when we need to insert a big item in the middle
2797  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2798  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2799  *          A                 B                 C
2800  *
2801  * We avoid this by trying to push the items on either side of our target
2802  * into the adjacent leaves.  If all goes well we can avoid the double split
2803  * completely.
2804  */
2805 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2806 					  struct btrfs_root *root,
2807 					  struct btrfs_path *path,
2808 					  int data_size)
2809 {
2810 	int ret;
2811 	int progress = 0;
2812 	int slot;
2813 	u32 nritems;
2814 
2815 	slot = path->slots[0];
2816 
2817 	/*
2818 	 * try to push all the items after our slot into the
2819 	 * right leaf
2820 	 */
2821 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2822 	if (ret < 0)
2823 		return ret;
2824 
2825 	if (ret == 0)
2826 		progress++;
2827 
2828 	nritems = btrfs_header_nritems(path->nodes[0]);
2829 	/*
2830 	 * our goal is to get our slot at the start or end of a leaf.  If
2831 	 * we've done so we're done
2832 	 */
2833 	if (path->slots[0] == 0 || path->slots[0] == nritems)
2834 		return 0;
2835 
2836 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2837 		return 0;
2838 
2839 	/* try to push all the items before our slot into the next leaf */
2840 	slot = path->slots[0];
2841 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2842 	if (ret < 0)
2843 		return ret;
2844 
2845 	if (ret == 0)
2846 		progress++;
2847 
2848 	if (progress)
2849 		return 0;
2850 	return 1;
2851 }
2852 
2853 /*
2854  * split the path's leaf in two, making sure there is at least data_size
2855  * available for the resulting leaf level of the path.
2856  *
2857  * returns 0 if all went well and < 0 on failure.
2858  */
2859 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2860 			       struct btrfs_root *root,
2861 			       struct btrfs_key *ins_key,
2862 			       struct btrfs_path *path, int data_size,
2863 			       int extend)
2864 {
2865 	struct btrfs_disk_key disk_key;
2866 	struct extent_buffer *l;
2867 	u32 nritems;
2868 	int mid;
2869 	int slot;
2870 	struct extent_buffer *right;
2871 	int ret = 0;
2872 	int wret;
2873 	int split;
2874 	int num_doubles = 0;
2875 	int tried_avoid_double = 0;
2876 
2877 	l = path->nodes[0];
2878 	slot = path->slots[0];
2879 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
2880 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2881 		return -EOVERFLOW;
2882 
2883 	/* first try to make some room by pushing left and right */
2884 	if (data_size) {
2885 		wret = push_leaf_right(trans, root, path, data_size,
2886 				       data_size, 0, 0);
2887 		if (wret < 0)
2888 			return wret;
2889 		if (wret) {
2890 			wret = push_leaf_left(trans, root, path, data_size,
2891 					      data_size, 0, (u32)-1);
2892 			if (wret < 0)
2893 				return wret;
2894 		}
2895 		l = path->nodes[0];
2896 
2897 		/* did the pushes work? */
2898 		if (btrfs_leaf_free_space(root, l) >= data_size)
2899 			return 0;
2900 	}
2901 
2902 	if (!path->nodes[1]) {
2903 		ret = insert_new_root(trans, root, path, 1);
2904 		if (ret)
2905 			return ret;
2906 	}
2907 again:
2908 	split = 1;
2909 	l = path->nodes[0];
2910 	slot = path->slots[0];
2911 	nritems = btrfs_header_nritems(l);
2912 	mid = (nritems + 1) / 2;
2913 
2914 	if (mid <= slot) {
2915 		if (nritems == 1 ||
2916 		    leaf_space_used(l, mid, nritems - mid) + data_size >
2917 			BTRFS_LEAF_DATA_SIZE(root)) {
2918 			if (slot >= nritems) {
2919 				split = 0;
2920 			} else {
2921 				mid = slot;
2922 				if (mid != nritems &&
2923 				    leaf_space_used(l, mid, nritems - mid) +
2924 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2925 					if (data_size && !tried_avoid_double)
2926 						goto push_for_double;
2927 					split = 2;
2928 				}
2929 			}
2930 		}
2931 	} else {
2932 		if (leaf_space_used(l, 0, mid) + data_size >
2933 			BTRFS_LEAF_DATA_SIZE(root)) {
2934 			if (!extend && data_size && slot == 0) {
2935 				split = 0;
2936 			} else if ((extend || !data_size) && slot == 0) {
2937 				mid = 1;
2938 			} else {
2939 				mid = slot;
2940 				if (mid != nritems &&
2941 				    leaf_space_used(l, mid, nritems - mid) +
2942 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2943 					if (data_size && !tried_avoid_double)
2944 						goto push_for_double;
2945 					split = 2 ;
2946 				}
2947 			}
2948 		}
2949 	}
2950 
2951 	if (split == 0)
2952 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
2953 	else
2954 		btrfs_item_key(l, &disk_key, mid);
2955 
2956 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2957 					root->root_key.objectid,
2958 					&disk_key, 0, l->start, 0);
2959 	if (IS_ERR(right))
2960 		return PTR_ERR(right);
2961 
2962 	root_add_used(root, root->leafsize);
2963 
2964 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2965 	btrfs_set_header_bytenr(right, right->start);
2966 	btrfs_set_header_generation(right, trans->transid);
2967 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2968 	btrfs_set_header_owner(right, root->root_key.objectid);
2969 	btrfs_set_header_level(right, 0);
2970 	write_extent_buffer(right, root->fs_info->fsid,
2971 			    (unsigned long)btrfs_header_fsid(right),
2972 			    BTRFS_FSID_SIZE);
2973 
2974 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2975 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
2976 			    BTRFS_UUID_SIZE);
2977 
2978 	if (split == 0) {
2979 		if (mid <= slot) {
2980 			btrfs_set_header_nritems(right, 0);
2981 			wret = insert_ptr(trans, root, path,
2982 					  &disk_key, right->start,
2983 					  path->slots[1] + 1, 1);
2984 			if (wret)
2985 				ret = wret;
2986 
2987 			btrfs_tree_unlock(path->nodes[0]);
2988 			free_extent_buffer(path->nodes[0]);
2989 			path->nodes[0] = right;
2990 			path->slots[0] = 0;
2991 			path->slots[1] += 1;
2992 		} else {
2993 			btrfs_set_header_nritems(right, 0);
2994 			wret = insert_ptr(trans, root, path,
2995 					  &disk_key,
2996 					  right->start,
2997 					  path->slots[1], 1);
2998 			if (wret)
2999 				ret = wret;
3000 			btrfs_tree_unlock(path->nodes[0]);
3001 			free_extent_buffer(path->nodes[0]);
3002 			path->nodes[0] = right;
3003 			path->slots[0] = 0;
3004 			if (path->slots[1] == 0) {
3005 				wret = fixup_low_keys(trans, root,
3006 						path, &disk_key, 1);
3007 				if (wret)
3008 					ret = wret;
3009 			}
3010 		}
3011 		btrfs_mark_buffer_dirty(right);
3012 		return ret;
3013 	}
3014 
3015 	ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3016 	BUG_ON(ret);
3017 
3018 	if (split == 2) {
3019 		BUG_ON(num_doubles != 0);
3020 		num_doubles++;
3021 		goto again;
3022 	}
3023 
3024 	return ret;
3025 
3026 push_for_double:
3027 	push_for_double_split(trans, root, path, data_size);
3028 	tried_avoid_double = 1;
3029 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3030 		return 0;
3031 	goto again;
3032 }
3033 
3034 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3035 					 struct btrfs_root *root,
3036 					 struct btrfs_path *path, int ins_len)
3037 {
3038 	struct btrfs_key key;
3039 	struct extent_buffer *leaf;
3040 	struct btrfs_file_extent_item *fi;
3041 	u64 extent_len = 0;
3042 	u32 item_size;
3043 	int ret;
3044 
3045 	leaf = path->nodes[0];
3046 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3047 
3048 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3049 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3050 
3051 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3052 		return 0;
3053 
3054 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3055 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3056 		fi = btrfs_item_ptr(leaf, path->slots[0],
3057 				    struct btrfs_file_extent_item);
3058 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3059 	}
3060 	btrfs_release_path(path);
3061 
3062 	path->keep_locks = 1;
3063 	path->search_for_split = 1;
3064 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3065 	path->search_for_split = 0;
3066 	if (ret < 0)
3067 		goto err;
3068 
3069 	ret = -EAGAIN;
3070 	leaf = path->nodes[0];
3071 	/* if our item isn't there or got smaller, return now */
3072 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3073 		goto err;
3074 
3075 	/* the leaf has  changed, it now has room.  return now */
3076 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3077 		goto err;
3078 
3079 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3080 		fi = btrfs_item_ptr(leaf, path->slots[0],
3081 				    struct btrfs_file_extent_item);
3082 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3083 			goto err;
3084 	}
3085 
3086 	btrfs_set_path_blocking(path);
3087 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3088 	if (ret)
3089 		goto err;
3090 
3091 	path->keep_locks = 0;
3092 	btrfs_unlock_up_safe(path, 1);
3093 	return 0;
3094 err:
3095 	path->keep_locks = 0;
3096 	return ret;
3097 }
3098 
3099 static noinline int split_item(struct btrfs_trans_handle *trans,
3100 			       struct btrfs_root *root,
3101 			       struct btrfs_path *path,
3102 			       struct btrfs_key *new_key,
3103 			       unsigned long split_offset)
3104 {
3105 	struct extent_buffer *leaf;
3106 	struct btrfs_item *item;
3107 	struct btrfs_item *new_item;
3108 	int slot;
3109 	char *buf;
3110 	u32 nritems;
3111 	u32 item_size;
3112 	u32 orig_offset;
3113 	struct btrfs_disk_key disk_key;
3114 
3115 	leaf = path->nodes[0];
3116 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3117 
3118 	btrfs_set_path_blocking(path);
3119 
3120 	item = btrfs_item_nr(leaf, path->slots[0]);
3121 	orig_offset = btrfs_item_offset(leaf, item);
3122 	item_size = btrfs_item_size(leaf, item);
3123 
3124 	buf = kmalloc(item_size, GFP_NOFS);
3125 	if (!buf)
3126 		return -ENOMEM;
3127 
3128 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3129 			    path->slots[0]), item_size);
3130 
3131 	slot = path->slots[0] + 1;
3132 	nritems = btrfs_header_nritems(leaf);
3133 	if (slot != nritems) {
3134 		/* shift the items */
3135 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3136 				btrfs_item_nr_offset(slot),
3137 				(nritems - slot) * sizeof(struct btrfs_item));
3138 	}
3139 
3140 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3141 	btrfs_set_item_key(leaf, &disk_key, slot);
3142 
3143 	new_item = btrfs_item_nr(leaf, slot);
3144 
3145 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3146 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3147 
3148 	btrfs_set_item_offset(leaf, item,
3149 			      orig_offset + item_size - split_offset);
3150 	btrfs_set_item_size(leaf, item, split_offset);
3151 
3152 	btrfs_set_header_nritems(leaf, nritems + 1);
3153 
3154 	/* write the data for the start of the original item */
3155 	write_extent_buffer(leaf, buf,
3156 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3157 			    split_offset);
3158 
3159 	/* write the data for the new item */
3160 	write_extent_buffer(leaf, buf + split_offset,
3161 			    btrfs_item_ptr_offset(leaf, slot),
3162 			    item_size - split_offset);
3163 	btrfs_mark_buffer_dirty(leaf);
3164 
3165 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3166 	kfree(buf);
3167 	return 0;
3168 }
3169 
3170 /*
3171  * This function splits a single item into two items,
3172  * giving 'new_key' to the new item and splitting the
3173  * old one at split_offset (from the start of the item).
3174  *
3175  * The path may be released by this operation.  After
3176  * the split, the path is pointing to the old item.  The
3177  * new item is going to be in the same node as the old one.
3178  *
3179  * Note, the item being split must be smaller enough to live alone on
3180  * a tree block with room for one extra struct btrfs_item
3181  *
3182  * This allows us to split the item in place, keeping a lock on the
3183  * leaf the entire time.
3184  */
3185 int btrfs_split_item(struct btrfs_trans_handle *trans,
3186 		     struct btrfs_root *root,
3187 		     struct btrfs_path *path,
3188 		     struct btrfs_key *new_key,
3189 		     unsigned long split_offset)
3190 {
3191 	int ret;
3192 	ret = setup_leaf_for_split(trans, root, path,
3193 				   sizeof(struct btrfs_item));
3194 	if (ret)
3195 		return ret;
3196 
3197 	ret = split_item(trans, root, path, new_key, split_offset);
3198 	return ret;
3199 }
3200 
3201 /*
3202  * This function duplicate a item, giving 'new_key' to the new item.
3203  * It guarantees both items live in the same tree leaf and the new item
3204  * is contiguous with the original item.
3205  *
3206  * This allows us to split file extent in place, keeping a lock on the
3207  * leaf the entire time.
3208  */
3209 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3210 			 struct btrfs_root *root,
3211 			 struct btrfs_path *path,
3212 			 struct btrfs_key *new_key)
3213 {
3214 	struct extent_buffer *leaf;
3215 	int ret;
3216 	u32 item_size;
3217 
3218 	leaf = path->nodes[0];
3219 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3220 	ret = setup_leaf_for_split(trans, root, path,
3221 				   item_size + sizeof(struct btrfs_item));
3222 	if (ret)
3223 		return ret;
3224 
3225 	path->slots[0]++;
3226 	ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3227 				     item_size, item_size +
3228 				     sizeof(struct btrfs_item), 1);
3229 	BUG_ON(ret);
3230 
3231 	leaf = path->nodes[0];
3232 	memcpy_extent_buffer(leaf,
3233 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3234 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3235 			     item_size);
3236 	return 0;
3237 }
3238 
3239 /*
3240  * make the item pointed to by the path smaller.  new_size indicates
3241  * how small to make it, and from_end tells us if we just chop bytes
3242  * off the end of the item or if we shift the item to chop bytes off
3243  * the front.
3244  */
3245 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3246 			struct btrfs_root *root,
3247 			struct btrfs_path *path,
3248 			u32 new_size, int from_end)
3249 {
3250 	int slot;
3251 	struct extent_buffer *leaf;
3252 	struct btrfs_item *item;
3253 	u32 nritems;
3254 	unsigned int data_end;
3255 	unsigned int old_data_start;
3256 	unsigned int old_size;
3257 	unsigned int size_diff;
3258 	int i;
3259 
3260 	leaf = path->nodes[0];
3261 	slot = path->slots[0];
3262 
3263 	old_size = btrfs_item_size_nr(leaf, slot);
3264 	if (old_size == new_size)
3265 		return 0;
3266 
3267 	nritems = btrfs_header_nritems(leaf);
3268 	data_end = leaf_data_end(root, leaf);
3269 
3270 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3271 
3272 	size_diff = old_size - new_size;
3273 
3274 	BUG_ON(slot < 0);
3275 	BUG_ON(slot >= nritems);
3276 
3277 	/*
3278 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3279 	 */
3280 	/* first correct the data pointers */
3281 	for (i = slot; i < nritems; i++) {
3282 		u32 ioff;
3283 		item = btrfs_item_nr(leaf, i);
3284 
3285 		ioff = btrfs_item_offset(leaf, item);
3286 		btrfs_set_item_offset(leaf, item, ioff + size_diff);
3287 	}
3288 
3289 	/* shift the data */
3290 	if (from_end) {
3291 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3292 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3293 			      data_end, old_data_start + new_size - data_end);
3294 	} else {
3295 		struct btrfs_disk_key disk_key;
3296 		u64 offset;
3297 
3298 		btrfs_item_key(leaf, &disk_key, slot);
3299 
3300 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3301 			unsigned long ptr;
3302 			struct btrfs_file_extent_item *fi;
3303 
3304 			fi = btrfs_item_ptr(leaf, slot,
3305 					    struct btrfs_file_extent_item);
3306 			fi = (struct btrfs_file_extent_item *)(
3307 			     (unsigned long)fi - size_diff);
3308 
3309 			if (btrfs_file_extent_type(leaf, fi) ==
3310 			    BTRFS_FILE_EXTENT_INLINE) {
3311 				ptr = btrfs_item_ptr_offset(leaf, slot);
3312 				memmove_extent_buffer(leaf, ptr,
3313 				      (unsigned long)fi,
3314 				      offsetof(struct btrfs_file_extent_item,
3315 						 disk_bytenr));
3316 			}
3317 		}
3318 
3319 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3320 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3321 			      data_end, old_data_start - data_end);
3322 
3323 		offset = btrfs_disk_key_offset(&disk_key);
3324 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3325 		btrfs_set_item_key(leaf, &disk_key, slot);
3326 		if (slot == 0)
3327 			fixup_low_keys(trans, root, path, &disk_key, 1);
3328 	}
3329 
3330 	item = btrfs_item_nr(leaf, slot);
3331 	btrfs_set_item_size(leaf, item, new_size);
3332 	btrfs_mark_buffer_dirty(leaf);
3333 
3334 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3335 		btrfs_print_leaf(root, leaf);
3336 		BUG();
3337 	}
3338 	return 0;
3339 }
3340 
3341 /*
3342  * make the item pointed to by the path bigger, data_size is the new size.
3343  */
3344 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3345 		      struct btrfs_root *root, struct btrfs_path *path,
3346 		      u32 data_size)
3347 {
3348 	int slot;
3349 	struct extent_buffer *leaf;
3350 	struct btrfs_item *item;
3351 	u32 nritems;
3352 	unsigned int data_end;
3353 	unsigned int old_data;
3354 	unsigned int old_size;
3355 	int i;
3356 
3357 	leaf = path->nodes[0];
3358 
3359 	nritems = btrfs_header_nritems(leaf);
3360 	data_end = leaf_data_end(root, leaf);
3361 
3362 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3363 		btrfs_print_leaf(root, leaf);
3364 		BUG();
3365 	}
3366 	slot = path->slots[0];
3367 	old_data = btrfs_item_end_nr(leaf, slot);
3368 
3369 	BUG_ON(slot < 0);
3370 	if (slot >= nritems) {
3371 		btrfs_print_leaf(root, leaf);
3372 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3373 		       slot, nritems);
3374 		BUG_ON(1);
3375 	}
3376 
3377 	/*
3378 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3379 	 */
3380 	/* first correct the data pointers */
3381 	for (i = slot; i < nritems; i++) {
3382 		u32 ioff;
3383 		item = btrfs_item_nr(leaf, i);
3384 
3385 		ioff = btrfs_item_offset(leaf, item);
3386 		btrfs_set_item_offset(leaf, item, ioff - data_size);
3387 	}
3388 
3389 	/* shift the data */
3390 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3391 		      data_end - data_size, btrfs_leaf_data(leaf) +
3392 		      data_end, old_data - data_end);
3393 
3394 	data_end = old_data;
3395 	old_size = btrfs_item_size_nr(leaf, slot);
3396 	item = btrfs_item_nr(leaf, slot);
3397 	btrfs_set_item_size(leaf, item, old_size + data_size);
3398 	btrfs_mark_buffer_dirty(leaf);
3399 
3400 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3401 		btrfs_print_leaf(root, leaf);
3402 		BUG();
3403 	}
3404 	return 0;
3405 }
3406 
3407 /*
3408  * Given a key and some data, insert items into the tree.
3409  * This does all the path init required, making room in the tree if needed.
3410  * Returns the number of keys that were inserted.
3411  */
3412 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3413 			    struct btrfs_root *root,
3414 			    struct btrfs_path *path,
3415 			    struct btrfs_key *cpu_key, u32 *data_size,
3416 			    int nr)
3417 {
3418 	struct extent_buffer *leaf;
3419 	struct btrfs_item *item;
3420 	int ret = 0;
3421 	int slot;
3422 	int i;
3423 	u32 nritems;
3424 	u32 total_data = 0;
3425 	u32 total_size = 0;
3426 	unsigned int data_end;
3427 	struct btrfs_disk_key disk_key;
3428 	struct btrfs_key found_key;
3429 
3430 	for (i = 0; i < nr; i++) {
3431 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3432 		    BTRFS_LEAF_DATA_SIZE(root)) {
3433 			break;
3434 			nr = i;
3435 		}
3436 		total_data += data_size[i];
3437 		total_size += data_size[i] + sizeof(struct btrfs_item);
3438 	}
3439 	BUG_ON(nr == 0);
3440 
3441 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3442 	if (ret == 0)
3443 		return -EEXIST;
3444 	if (ret < 0)
3445 		goto out;
3446 
3447 	leaf = path->nodes[0];
3448 
3449 	nritems = btrfs_header_nritems(leaf);
3450 	data_end = leaf_data_end(root, leaf);
3451 
3452 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3453 		for (i = nr; i >= 0; i--) {
3454 			total_data -= data_size[i];
3455 			total_size -= data_size[i] + sizeof(struct btrfs_item);
3456 			if (total_size < btrfs_leaf_free_space(root, leaf))
3457 				break;
3458 		}
3459 		nr = i;
3460 	}
3461 
3462 	slot = path->slots[0];
3463 	BUG_ON(slot < 0);
3464 
3465 	if (slot != nritems) {
3466 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3467 
3468 		item = btrfs_item_nr(leaf, slot);
3469 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3470 
3471 		/* figure out how many keys we can insert in here */
3472 		total_data = data_size[0];
3473 		for (i = 1; i < nr; i++) {
3474 			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3475 				break;
3476 			total_data += data_size[i];
3477 		}
3478 		nr = i;
3479 
3480 		if (old_data < data_end) {
3481 			btrfs_print_leaf(root, leaf);
3482 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3483 			       slot, old_data, data_end);
3484 			BUG_ON(1);
3485 		}
3486 		/*
3487 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3488 		 */
3489 		/* first correct the data pointers */
3490 		for (i = slot; i < nritems; i++) {
3491 			u32 ioff;
3492 
3493 			item = btrfs_item_nr(leaf, i);
3494 			ioff = btrfs_item_offset(leaf, item);
3495 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3496 		}
3497 		/* shift the items */
3498 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3499 			      btrfs_item_nr_offset(slot),
3500 			      (nritems - slot) * sizeof(struct btrfs_item));
3501 
3502 		/* shift the data */
3503 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3504 			      data_end - total_data, btrfs_leaf_data(leaf) +
3505 			      data_end, old_data - data_end);
3506 		data_end = old_data;
3507 	} else {
3508 		/*
3509 		 * this sucks but it has to be done, if we are inserting at
3510 		 * the end of the leaf only insert 1 of the items, since we
3511 		 * have no way of knowing whats on the next leaf and we'd have
3512 		 * to drop our current locks to figure it out
3513 		 */
3514 		nr = 1;
3515 	}
3516 
3517 	/* setup the item for the new data */
3518 	for (i = 0; i < nr; i++) {
3519 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3520 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3521 		item = btrfs_item_nr(leaf, slot + i);
3522 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3523 		data_end -= data_size[i];
3524 		btrfs_set_item_size(leaf, item, data_size[i]);
3525 	}
3526 	btrfs_set_header_nritems(leaf, nritems + nr);
3527 	btrfs_mark_buffer_dirty(leaf);
3528 
3529 	ret = 0;
3530 	if (slot == 0) {
3531 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3532 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3533 	}
3534 
3535 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3536 		btrfs_print_leaf(root, leaf);
3537 		BUG();
3538 	}
3539 out:
3540 	if (!ret)
3541 		ret = nr;
3542 	return ret;
3543 }
3544 
3545 /*
3546  * this is a helper for btrfs_insert_empty_items, the main goal here is
3547  * to save stack depth by doing the bulk of the work in a function
3548  * that doesn't call btrfs_search_slot
3549  */
3550 int setup_items_for_insert(struct btrfs_trans_handle *trans,
3551 			   struct btrfs_root *root, struct btrfs_path *path,
3552 			   struct btrfs_key *cpu_key, u32 *data_size,
3553 			   u32 total_data, u32 total_size, int nr)
3554 {
3555 	struct btrfs_item *item;
3556 	int i;
3557 	u32 nritems;
3558 	unsigned int data_end;
3559 	struct btrfs_disk_key disk_key;
3560 	int ret;
3561 	struct extent_buffer *leaf;
3562 	int slot;
3563 
3564 	leaf = path->nodes[0];
3565 	slot = path->slots[0];
3566 
3567 	nritems = btrfs_header_nritems(leaf);
3568 	data_end = leaf_data_end(root, leaf);
3569 
3570 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3571 		btrfs_print_leaf(root, leaf);
3572 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3573 		       total_size, btrfs_leaf_free_space(root, leaf));
3574 		BUG();
3575 	}
3576 
3577 	if (slot != nritems) {
3578 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3579 
3580 		if (old_data < data_end) {
3581 			btrfs_print_leaf(root, leaf);
3582 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3583 			       slot, old_data, data_end);
3584 			BUG_ON(1);
3585 		}
3586 		/*
3587 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3588 		 */
3589 		/* first correct the data pointers */
3590 		for (i = slot; i < nritems; i++) {
3591 			u32 ioff;
3592 
3593 			item = btrfs_item_nr(leaf, i);
3594 			ioff = btrfs_item_offset(leaf, item);
3595 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3596 		}
3597 		/* shift the items */
3598 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3599 			      btrfs_item_nr_offset(slot),
3600 			      (nritems - slot) * sizeof(struct btrfs_item));
3601 
3602 		/* shift the data */
3603 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3604 			      data_end - total_data, btrfs_leaf_data(leaf) +
3605 			      data_end, old_data - data_end);
3606 		data_end = old_data;
3607 	}
3608 
3609 	/* setup the item for the new data */
3610 	for (i = 0; i < nr; i++) {
3611 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3612 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3613 		item = btrfs_item_nr(leaf, slot + i);
3614 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3615 		data_end -= data_size[i];
3616 		btrfs_set_item_size(leaf, item, data_size[i]);
3617 	}
3618 
3619 	btrfs_set_header_nritems(leaf, nritems + nr);
3620 
3621 	ret = 0;
3622 	if (slot == 0) {
3623 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3624 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3625 	}
3626 	btrfs_unlock_up_safe(path, 1);
3627 	btrfs_mark_buffer_dirty(leaf);
3628 
3629 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3630 		btrfs_print_leaf(root, leaf);
3631 		BUG();
3632 	}
3633 	return ret;
3634 }
3635 
3636 /*
3637  * Given a key and some data, insert items into the tree.
3638  * This does all the path init required, making room in the tree if needed.
3639  */
3640 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3641 			    struct btrfs_root *root,
3642 			    struct btrfs_path *path,
3643 			    struct btrfs_key *cpu_key, u32 *data_size,
3644 			    int nr)
3645 {
3646 	int ret = 0;
3647 	int slot;
3648 	int i;
3649 	u32 total_size = 0;
3650 	u32 total_data = 0;
3651 
3652 	for (i = 0; i < nr; i++)
3653 		total_data += data_size[i];
3654 
3655 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3656 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3657 	if (ret == 0)
3658 		return -EEXIST;
3659 	if (ret < 0)
3660 		goto out;
3661 
3662 	slot = path->slots[0];
3663 	BUG_ON(slot < 0);
3664 
3665 	ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3666 			       total_data, total_size, nr);
3667 
3668 out:
3669 	return ret;
3670 }
3671 
3672 /*
3673  * Given a key and some data, insert an item into the tree.
3674  * This does all the path init required, making room in the tree if needed.
3675  */
3676 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3677 		      *root, struct btrfs_key *cpu_key, void *data, u32
3678 		      data_size)
3679 {
3680 	int ret = 0;
3681 	struct btrfs_path *path;
3682 	struct extent_buffer *leaf;
3683 	unsigned long ptr;
3684 
3685 	path = btrfs_alloc_path();
3686 	if (!path)
3687 		return -ENOMEM;
3688 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3689 	if (!ret) {
3690 		leaf = path->nodes[0];
3691 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3692 		write_extent_buffer(leaf, data, ptr, data_size);
3693 		btrfs_mark_buffer_dirty(leaf);
3694 	}
3695 	btrfs_free_path(path);
3696 	return ret;
3697 }
3698 
3699 /*
3700  * delete the pointer from a given node.
3701  *
3702  * the tree should have been previously balanced so the deletion does not
3703  * empty a node.
3704  */
3705 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3706 		   struct btrfs_path *path, int level, int slot)
3707 {
3708 	struct extent_buffer *parent = path->nodes[level];
3709 	u32 nritems;
3710 	int ret = 0;
3711 	int wret;
3712 
3713 	nritems = btrfs_header_nritems(parent);
3714 	if (slot != nritems - 1) {
3715 		memmove_extent_buffer(parent,
3716 			      btrfs_node_key_ptr_offset(slot),
3717 			      btrfs_node_key_ptr_offset(slot + 1),
3718 			      sizeof(struct btrfs_key_ptr) *
3719 			      (nritems - slot - 1));
3720 	}
3721 	nritems--;
3722 	btrfs_set_header_nritems(parent, nritems);
3723 	if (nritems == 0 && parent == root->node) {
3724 		BUG_ON(btrfs_header_level(root->node) != 1);
3725 		/* just turn the root into a leaf and break */
3726 		btrfs_set_header_level(root->node, 0);
3727 	} else if (slot == 0) {
3728 		struct btrfs_disk_key disk_key;
3729 
3730 		btrfs_node_key(parent, &disk_key, 0);
3731 		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3732 		if (wret)
3733 			ret = wret;
3734 	}
3735 	btrfs_mark_buffer_dirty(parent);
3736 	return ret;
3737 }
3738 
3739 /*
3740  * a helper function to delete the leaf pointed to by path->slots[1] and
3741  * path->nodes[1].
3742  *
3743  * This deletes the pointer in path->nodes[1] and frees the leaf
3744  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3745  *
3746  * The path must have already been setup for deleting the leaf, including
3747  * all the proper balancing.  path->nodes[1] must be locked.
3748  */
3749 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3750 				   struct btrfs_root *root,
3751 				   struct btrfs_path *path,
3752 				   struct extent_buffer *leaf)
3753 {
3754 	int ret;
3755 
3756 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3757 	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3758 	if (ret)
3759 		return ret;
3760 
3761 	/*
3762 	 * btrfs_free_extent is expensive, we want to make sure we
3763 	 * aren't holding any locks when we call it
3764 	 */
3765 	btrfs_unlock_up_safe(path, 0);
3766 
3767 	root_sub_used(root, leaf->len);
3768 
3769 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
3770 	return 0;
3771 }
3772 /*
3773  * delete the item at the leaf level in path.  If that empties
3774  * the leaf, remove it from the tree
3775  */
3776 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3777 		    struct btrfs_path *path, int slot, int nr)
3778 {
3779 	struct extent_buffer *leaf;
3780 	struct btrfs_item *item;
3781 	int last_off;
3782 	int dsize = 0;
3783 	int ret = 0;
3784 	int wret;
3785 	int i;
3786 	u32 nritems;
3787 
3788 	leaf = path->nodes[0];
3789 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3790 
3791 	for (i = 0; i < nr; i++)
3792 		dsize += btrfs_item_size_nr(leaf, slot + i);
3793 
3794 	nritems = btrfs_header_nritems(leaf);
3795 
3796 	if (slot + nr != nritems) {
3797 		int data_end = leaf_data_end(root, leaf);
3798 
3799 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3800 			      data_end + dsize,
3801 			      btrfs_leaf_data(leaf) + data_end,
3802 			      last_off - data_end);
3803 
3804 		for (i = slot + nr; i < nritems; i++) {
3805 			u32 ioff;
3806 
3807 			item = btrfs_item_nr(leaf, i);
3808 			ioff = btrfs_item_offset(leaf, item);
3809 			btrfs_set_item_offset(leaf, item, ioff + dsize);
3810 		}
3811 
3812 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3813 			      btrfs_item_nr_offset(slot + nr),
3814 			      sizeof(struct btrfs_item) *
3815 			      (nritems - slot - nr));
3816 	}
3817 	btrfs_set_header_nritems(leaf, nritems - nr);
3818 	nritems -= nr;
3819 
3820 	/* delete the leaf if we've emptied it */
3821 	if (nritems == 0) {
3822 		if (leaf == root->node) {
3823 			btrfs_set_header_level(leaf, 0);
3824 		} else {
3825 			btrfs_set_path_blocking(path);
3826 			clean_tree_block(trans, root, leaf);
3827 			ret = btrfs_del_leaf(trans, root, path, leaf);
3828 			BUG_ON(ret);
3829 		}
3830 	} else {
3831 		int used = leaf_space_used(leaf, 0, nritems);
3832 		if (slot == 0) {
3833 			struct btrfs_disk_key disk_key;
3834 
3835 			btrfs_item_key(leaf, &disk_key, 0);
3836 			wret = fixup_low_keys(trans, root, path,
3837 					      &disk_key, 1);
3838 			if (wret)
3839 				ret = wret;
3840 		}
3841 
3842 		/* delete the leaf if it is mostly empty */
3843 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3844 			/* push_leaf_left fixes the path.
3845 			 * make sure the path still points to our leaf
3846 			 * for possible call to del_ptr below
3847 			 */
3848 			slot = path->slots[1];
3849 			extent_buffer_get(leaf);
3850 
3851 			btrfs_set_path_blocking(path);
3852 			wret = push_leaf_left(trans, root, path, 1, 1,
3853 					      1, (u32)-1);
3854 			if (wret < 0 && wret != -ENOSPC)
3855 				ret = wret;
3856 
3857 			if (path->nodes[0] == leaf &&
3858 			    btrfs_header_nritems(leaf)) {
3859 				wret = push_leaf_right(trans, root, path, 1,
3860 						       1, 1, 0);
3861 				if (wret < 0 && wret != -ENOSPC)
3862 					ret = wret;
3863 			}
3864 
3865 			if (btrfs_header_nritems(leaf) == 0) {
3866 				path->slots[1] = slot;
3867 				ret = btrfs_del_leaf(trans, root, path, leaf);
3868 				BUG_ON(ret);
3869 				free_extent_buffer(leaf);
3870 			} else {
3871 				/* if we're still in the path, make sure
3872 				 * we're dirty.  Otherwise, one of the
3873 				 * push_leaf functions must have already
3874 				 * dirtied this buffer
3875 				 */
3876 				if (path->nodes[0] == leaf)
3877 					btrfs_mark_buffer_dirty(leaf);
3878 				free_extent_buffer(leaf);
3879 			}
3880 		} else {
3881 			btrfs_mark_buffer_dirty(leaf);
3882 		}
3883 	}
3884 	return ret;
3885 }
3886 
3887 /*
3888  * search the tree again to find a leaf with lesser keys
3889  * returns 0 if it found something or 1 if there are no lesser leaves.
3890  * returns < 0 on io errors.
3891  *
3892  * This may release the path, and so you may lose any locks held at the
3893  * time you call it.
3894  */
3895 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3896 {
3897 	struct btrfs_key key;
3898 	struct btrfs_disk_key found_key;
3899 	int ret;
3900 
3901 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3902 
3903 	if (key.offset > 0)
3904 		key.offset--;
3905 	else if (key.type > 0)
3906 		key.type--;
3907 	else if (key.objectid > 0)
3908 		key.objectid--;
3909 	else
3910 		return 1;
3911 
3912 	btrfs_release_path(path);
3913 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3914 	if (ret < 0)
3915 		return ret;
3916 	btrfs_item_key(path->nodes[0], &found_key, 0);
3917 	ret = comp_keys(&found_key, &key);
3918 	if (ret < 0)
3919 		return 0;
3920 	return 1;
3921 }
3922 
3923 /*
3924  * A helper function to walk down the tree starting at min_key, and looking
3925  * for nodes or leaves that are either in cache or have a minimum
3926  * transaction id.  This is used by the btree defrag code, and tree logging
3927  *
3928  * This does not cow, but it does stuff the starting key it finds back
3929  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3930  * key and get a writable path.
3931  *
3932  * This does lock as it descends, and path->keep_locks should be set
3933  * to 1 by the caller.
3934  *
3935  * This honors path->lowest_level to prevent descent past a given level
3936  * of the tree.
3937  *
3938  * min_trans indicates the oldest transaction that you are interested
3939  * in walking through.  Any nodes or leaves older than min_trans are
3940  * skipped over (without reading them).
3941  *
3942  * returns zero if something useful was found, < 0 on error and 1 if there
3943  * was nothing in the tree that matched the search criteria.
3944  */
3945 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3946 			 struct btrfs_key *max_key,
3947 			 struct btrfs_path *path, int cache_only,
3948 			 u64 min_trans)
3949 {
3950 	struct extent_buffer *cur;
3951 	struct btrfs_key found_key;
3952 	int slot;
3953 	int sret;
3954 	u32 nritems;
3955 	int level;
3956 	int ret = 1;
3957 
3958 	WARN_ON(!path->keep_locks);
3959 again:
3960 	cur = btrfs_read_lock_root_node(root);
3961 	level = btrfs_header_level(cur);
3962 	WARN_ON(path->nodes[level]);
3963 	path->nodes[level] = cur;
3964 	path->locks[level] = BTRFS_READ_LOCK;
3965 
3966 	if (btrfs_header_generation(cur) < min_trans) {
3967 		ret = 1;
3968 		goto out;
3969 	}
3970 	while (1) {
3971 		nritems = btrfs_header_nritems(cur);
3972 		level = btrfs_header_level(cur);
3973 		sret = bin_search(cur, min_key, level, &slot);
3974 
3975 		/* at the lowest level, we're done, setup the path and exit */
3976 		if (level == path->lowest_level) {
3977 			if (slot >= nritems)
3978 				goto find_next_key;
3979 			ret = 0;
3980 			path->slots[level] = slot;
3981 			btrfs_item_key_to_cpu(cur, &found_key, slot);
3982 			goto out;
3983 		}
3984 		if (sret && slot > 0)
3985 			slot--;
3986 		/*
3987 		 * check this node pointer against the cache_only and
3988 		 * min_trans parameters.  If it isn't in cache or is too
3989 		 * old, skip to the next one.
3990 		 */
3991 		while (slot < nritems) {
3992 			u64 blockptr;
3993 			u64 gen;
3994 			struct extent_buffer *tmp;
3995 			struct btrfs_disk_key disk_key;
3996 
3997 			blockptr = btrfs_node_blockptr(cur, slot);
3998 			gen = btrfs_node_ptr_generation(cur, slot);
3999 			if (gen < min_trans) {
4000 				slot++;
4001 				continue;
4002 			}
4003 			if (!cache_only)
4004 				break;
4005 
4006 			if (max_key) {
4007 				btrfs_node_key(cur, &disk_key, slot);
4008 				if (comp_keys(&disk_key, max_key) >= 0) {
4009 					ret = 1;
4010 					goto out;
4011 				}
4012 			}
4013 
4014 			tmp = btrfs_find_tree_block(root, blockptr,
4015 					    btrfs_level_size(root, level - 1));
4016 
4017 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4018 				free_extent_buffer(tmp);
4019 				break;
4020 			}
4021 			if (tmp)
4022 				free_extent_buffer(tmp);
4023 			slot++;
4024 		}
4025 find_next_key:
4026 		/*
4027 		 * we didn't find a candidate key in this node, walk forward
4028 		 * and find another one
4029 		 */
4030 		if (slot >= nritems) {
4031 			path->slots[level] = slot;
4032 			btrfs_set_path_blocking(path);
4033 			sret = btrfs_find_next_key(root, path, min_key, level,
4034 						  cache_only, min_trans);
4035 			if (sret == 0) {
4036 				btrfs_release_path(path);
4037 				goto again;
4038 			} else {
4039 				goto out;
4040 			}
4041 		}
4042 		/* save our key for returning back */
4043 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4044 		path->slots[level] = slot;
4045 		if (level == path->lowest_level) {
4046 			ret = 0;
4047 			unlock_up(path, level, 1);
4048 			goto out;
4049 		}
4050 		btrfs_set_path_blocking(path);
4051 		cur = read_node_slot(root, cur, slot);
4052 		BUG_ON(!cur);
4053 
4054 		btrfs_tree_read_lock(cur);
4055 
4056 		path->locks[level - 1] = BTRFS_READ_LOCK;
4057 		path->nodes[level - 1] = cur;
4058 		unlock_up(path, level, 1);
4059 		btrfs_clear_path_blocking(path, NULL, 0);
4060 	}
4061 out:
4062 	if (ret == 0)
4063 		memcpy(min_key, &found_key, sizeof(found_key));
4064 	btrfs_set_path_blocking(path);
4065 	return ret;
4066 }
4067 
4068 /*
4069  * this is similar to btrfs_next_leaf, but does not try to preserve
4070  * and fixup the path.  It looks for and returns the next key in the
4071  * tree based on the current path and the cache_only and min_trans
4072  * parameters.
4073  *
4074  * 0 is returned if another key is found, < 0 if there are any errors
4075  * and 1 is returned if there are no higher keys in the tree
4076  *
4077  * path->keep_locks should be set to 1 on the search made before
4078  * calling this function.
4079  */
4080 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4081 			struct btrfs_key *key, int level,
4082 			int cache_only, u64 min_trans)
4083 {
4084 	int slot;
4085 	struct extent_buffer *c;
4086 
4087 	WARN_ON(!path->keep_locks);
4088 	while (level < BTRFS_MAX_LEVEL) {
4089 		if (!path->nodes[level])
4090 			return 1;
4091 
4092 		slot = path->slots[level] + 1;
4093 		c = path->nodes[level];
4094 next:
4095 		if (slot >= btrfs_header_nritems(c)) {
4096 			int ret;
4097 			int orig_lowest;
4098 			struct btrfs_key cur_key;
4099 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4100 			    !path->nodes[level + 1])
4101 				return 1;
4102 
4103 			if (path->locks[level + 1]) {
4104 				level++;
4105 				continue;
4106 			}
4107 
4108 			slot = btrfs_header_nritems(c) - 1;
4109 			if (level == 0)
4110 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4111 			else
4112 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4113 
4114 			orig_lowest = path->lowest_level;
4115 			btrfs_release_path(path);
4116 			path->lowest_level = level;
4117 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4118 						0, 0);
4119 			path->lowest_level = orig_lowest;
4120 			if (ret < 0)
4121 				return ret;
4122 
4123 			c = path->nodes[level];
4124 			slot = path->slots[level];
4125 			if (ret == 0)
4126 				slot++;
4127 			goto next;
4128 		}
4129 
4130 		if (level == 0)
4131 			btrfs_item_key_to_cpu(c, key, slot);
4132 		else {
4133 			u64 blockptr = btrfs_node_blockptr(c, slot);
4134 			u64 gen = btrfs_node_ptr_generation(c, slot);
4135 
4136 			if (cache_only) {
4137 				struct extent_buffer *cur;
4138 				cur = btrfs_find_tree_block(root, blockptr,
4139 					    btrfs_level_size(root, level - 1));
4140 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4141 					slot++;
4142 					if (cur)
4143 						free_extent_buffer(cur);
4144 					goto next;
4145 				}
4146 				free_extent_buffer(cur);
4147 			}
4148 			if (gen < min_trans) {
4149 				slot++;
4150 				goto next;
4151 			}
4152 			btrfs_node_key_to_cpu(c, key, slot);
4153 		}
4154 		return 0;
4155 	}
4156 	return 1;
4157 }
4158 
4159 /*
4160  * search the tree again to find a leaf with greater keys
4161  * returns 0 if it found something or 1 if there are no greater leaves.
4162  * returns < 0 on io errors.
4163  */
4164 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4165 {
4166 	int slot;
4167 	int level;
4168 	struct extent_buffer *c;
4169 	struct extent_buffer *next;
4170 	struct btrfs_key key;
4171 	u32 nritems;
4172 	int ret;
4173 	int old_spinning = path->leave_spinning;
4174 	int next_rw_lock = 0;
4175 
4176 	nritems = btrfs_header_nritems(path->nodes[0]);
4177 	if (nritems == 0)
4178 		return 1;
4179 
4180 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4181 again:
4182 	level = 1;
4183 	next = NULL;
4184 	next_rw_lock = 0;
4185 	btrfs_release_path(path);
4186 
4187 	path->keep_locks = 1;
4188 	path->leave_spinning = 1;
4189 
4190 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4191 	path->keep_locks = 0;
4192 
4193 	if (ret < 0)
4194 		return ret;
4195 
4196 	nritems = btrfs_header_nritems(path->nodes[0]);
4197 	/*
4198 	 * by releasing the path above we dropped all our locks.  A balance
4199 	 * could have added more items next to the key that used to be
4200 	 * at the very end of the block.  So, check again here and
4201 	 * advance the path if there are now more items available.
4202 	 */
4203 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4204 		if (ret == 0)
4205 			path->slots[0]++;
4206 		ret = 0;
4207 		goto done;
4208 	}
4209 
4210 	while (level < BTRFS_MAX_LEVEL) {
4211 		if (!path->nodes[level]) {
4212 			ret = 1;
4213 			goto done;
4214 		}
4215 
4216 		slot = path->slots[level] + 1;
4217 		c = path->nodes[level];
4218 		if (slot >= btrfs_header_nritems(c)) {
4219 			level++;
4220 			if (level == BTRFS_MAX_LEVEL) {
4221 				ret = 1;
4222 				goto done;
4223 			}
4224 			continue;
4225 		}
4226 
4227 		if (next) {
4228 			btrfs_tree_unlock_rw(next, next_rw_lock);
4229 			free_extent_buffer(next);
4230 		}
4231 
4232 		next = c;
4233 		next_rw_lock = path->locks[level];
4234 		ret = read_block_for_search(NULL, root, path, &next, level,
4235 					    slot, &key);
4236 		if (ret == -EAGAIN)
4237 			goto again;
4238 
4239 		if (ret < 0) {
4240 			btrfs_release_path(path);
4241 			goto done;
4242 		}
4243 
4244 		if (!path->skip_locking) {
4245 			ret = btrfs_try_tree_read_lock(next);
4246 			if (!ret) {
4247 				btrfs_set_path_blocking(path);
4248 				btrfs_tree_read_lock(next);
4249 				btrfs_clear_path_blocking(path, next,
4250 							  BTRFS_READ_LOCK);
4251 			}
4252 			next_rw_lock = BTRFS_READ_LOCK;
4253 		}
4254 		break;
4255 	}
4256 	path->slots[level] = slot;
4257 	while (1) {
4258 		level--;
4259 		c = path->nodes[level];
4260 		if (path->locks[level])
4261 			btrfs_tree_unlock_rw(c, path->locks[level]);
4262 
4263 		free_extent_buffer(c);
4264 		path->nodes[level] = next;
4265 		path->slots[level] = 0;
4266 		if (!path->skip_locking)
4267 			path->locks[level] = next_rw_lock;
4268 		if (!level)
4269 			break;
4270 
4271 		ret = read_block_for_search(NULL, root, path, &next, level,
4272 					    0, &key);
4273 		if (ret == -EAGAIN)
4274 			goto again;
4275 
4276 		if (ret < 0) {
4277 			btrfs_release_path(path);
4278 			goto done;
4279 		}
4280 
4281 		if (!path->skip_locking) {
4282 			ret = btrfs_try_tree_read_lock(next);
4283 			if (!ret) {
4284 				btrfs_set_path_blocking(path);
4285 				btrfs_tree_read_lock(next);
4286 				btrfs_clear_path_blocking(path, next,
4287 							  BTRFS_READ_LOCK);
4288 			}
4289 			next_rw_lock = BTRFS_READ_LOCK;
4290 		}
4291 	}
4292 	ret = 0;
4293 done:
4294 	unlock_up(path, 0, 1);
4295 	path->leave_spinning = old_spinning;
4296 	if (!old_spinning)
4297 		btrfs_set_path_blocking(path);
4298 
4299 	return ret;
4300 }
4301 
4302 /*
4303  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4304  * searching until it gets past min_objectid or finds an item of 'type'
4305  *
4306  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4307  */
4308 int btrfs_previous_item(struct btrfs_root *root,
4309 			struct btrfs_path *path, u64 min_objectid,
4310 			int type)
4311 {
4312 	struct btrfs_key found_key;
4313 	struct extent_buffer *leaf;
4314 	u32 nritems;
4315 	int ret;
4316 
4317 	while (1) {
4318 		if (path->slots[0] == 0) {
4319 			btrfs_set_path_blocking(path);
4320 			ret = btrfs_prev_leaf(root, path);
4321 			if (ret != 0)
4322 				return ret;
4323 		} else {
4324 			path->slots[0]--;
4325 		}
4326 		leaf = path->nodes[0];
4327 		nritems = btrfs_header_nritems(leaf);
4328 		if (nritems == 0)
4329 			return 1;
4330 		if (path->slots[0] == nritems)
4331 			path->slots[0]--;
4332 
4333 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4334 		if (found_key.objectid < min_objectid)
4335 			break;
4336 		if (found_key.type == type)
4337 			return 0;
4338 		if (found_key.objectid == min_objectid &&
4339 		    found_key.type < type)
4340 			break;
4341 	}
4342 	return 1;
4343 }
4344