xref: /linux/fs/btrfs/ctree.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17 #include "tree-mod-log.h"
18 
19 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
20 		      *root, struct btrfs_path *path, int level);
21 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
22 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
23 		      int data_size, int extend);
24 static int push_node_left(struct btrfs_trans_handle *trans,
25 			  struct extent_buffer *dst,
26 			  struct extent_buffer *src, int empty);
27 static int balance_node_right(struct btrfs_trans_handle *trans,
28 			      struct extent_buffer *dst_buf,
29 			      struct extent_buffer *src_buf);
30 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
31 		    int level, int slot);
32 
33 static const struct btrfs_csums {
34 	u16		size;
35 	const char	name[10];
36 	const char	driver[12];
37 } btrfs_csums[] = {
38 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
39 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
40 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
41 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
42 				     .driver = "blake2b-256" },
43 };
44 
45 int btrfs_super_csum_size(const struct btrfs_super_block *s)
46 {
47 	u16 t = btrfs_super_csum_type(s);
48 	/*
49 	 * csum type is validated at mount time
50 	 */
51 	return btrfs_csums[t].size;
52 }
53 
54 const char *btrfs_super_csum_name(u16 csum_type)
55 {
56 	/* csum type is validated at mount time */
57 	return btrfs_csums[csum_type].name;
58 }
59 
60 /*
61  * Return driver name if defined, otherwise the name that's also a valid driver
62  * name
63  */
64 const char *btrfs_super_csum_driver(u16 csum_type)
65 {
66 	/* csum type is validated at mount time */
67 	return btrfs_csums[csum_type].driver[0] ?
68 		btrfs_csums[csum_type].driver :
69 		btrfs_csums[csum_type].name;
70 }
71 
72 size_t __attribute_const__ btrfs_get_num_csums(void)
73 {
74 	return ARRAY_SIZE(btrfs_csums);
75 }
76 
77 struct btrfs_path *btrfs_alloc_path(void)
78 {
79 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
80 }
81 
82 /* this also releases the path */
83 void btrfs_free_path(struct btrfs_path *p)
84 {
85 	if (!p)
86 		return;
87 	btrfs_release_path(p);
88 	kmem_cache_free(btrfs_path_cachep, p);
89 }
90 
91 /*
92  * path release drops references on the extent buffers in the path
93  * and it drops any locks held by this path
94  *
95  * It is safe to call this on paths that no locks or extent buffers held.
96  */
97 noinline void btrfs_release_path(struct btrfs_path *p)
98 {
99 	int i;
100 
101 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
102 		p->slots[i] = 0;
103 		if (!p->nodes[i])
104 			continue;
105 		if (p->locks[i]) {
106 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
107 			p->locks[i] = 0;
108 		}
109 		free_extent_buffer(p->nodes[i]);
110 		p->nodes[i] = NULL;
111 	}
112 }
113 
114 /*
115  * safely gets a reference on the root node of a tree.  A lock
116  * is not taken, so a concurrent writer may put a different node
117  * at the root of the tree.  See btrfs_lock_root_node for the
118  * looping required.
119  *
120  * The extent buffer returned by this has a reference taken, so
121  * it won't disappear.  It may stop being the root of the tree
122  * at any time because there are no locks held.
123  */
124 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
125 {
126 	struct extent_buffer *eb;
127 
128 	while (1) {
129 		rcu_read_lock();
130 		eb = rcu_dereference(root->node);
131 
132 		/*
133 		 * RCU really hurts here, we could free up the root node because
134 		 * it was COWed but we may not get the new root node yet so do
135 		 * the inc_not_zero dance and if it doesn't work then
136 		 * synchronize_rcu and try again.
137 		 */
138 		if (atomic_inc_not_zero(&eb->refs)) {
139 			rcu_read_unlock();
140 			break;
141 		}
142 		rcu_read_unlock();
143 		synchronize_rcu();
144 	}
145 	return eb;
146 }
147 
148 /*
149  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
150  * just get put onto a simple dirty list.  Transaction walks this list to make
151  * sure they get properly updated on disk.
152  */
153 static void add_root_to_dirty_list(struct btrfs_root *root)
154 {
155 	struct btrfs_fs_info *fs_info = root->fs_info;
156 
157 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
158 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
159 		return;
160 
161 	spin_lock(&fs_info->trans_lock);
162 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
163 		/* Want the extent tree to be the last on the list */
164 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
165 			list_move_tail(&root->dirty_list,
166 				       &fs_info->dirty_cowonly_roots);
167 		else
168 			list_move(&root->dirty_list,
169 				  &fs_info->dirty_cowonly_roots);
170 	}
171 	spin_unlock(&fs_info->trans_lock);
172 }
173 
174 /*
175  * used by snapshot creation to make a copy of a root for a tree with
176  * a given objectid.  The buffer with the new root node is returned in
177  * cow_ret, and this func returns zero on success or a negative error code.
178  */
179 int btrfs_copy_root(struct btrfs_trans_handle *trans,
180 		      struct btrfs_root *root,
181 		      struct extent_buffer *buf,
182 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
183 {
184 	struct btrfs_fs_info *fs_info = root->fs_info;
185 	struct extent_buffer *cow;
186 	int ret = 0;
187 	int level;
188 	struct btrfs_disk_key disk_key;
189 
190 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
191 		trans->transid != fs_info->running_transaction->transid);
192 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
193 		trans->transid != root->last_trans);
194 
195 	level = btrfs_header_level(buf);
196 	if (level == 0)
197 		btrfs_item_key(buf, &disk_key, 0);
198 	else
199 		btrfs_node_key(buf, &disk_key, 0);
200 
201 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
202 				     &disk_key, level, buf->start, 0,
203 				     BTRFS_NESTING_NEW_ROOT);
204 	if (IS_ERR(cow))
205 		return PTR_ERR(cow);
206 
207 	copy_extent_buffer_full(cow, buf);
208 	btrfs_set_header_bytenr(cow, cow->start);
209 	btrfs_set_header_generation(cow, trans->transid);
210 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
211 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
212 				     BTRFS_HEADER_FLAG_RELOC);
213 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
214 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
215 	else
216 		btrfs_set_header_owner(cow, new_root_objectid);
217 
218 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
219 
220 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
221 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
222 		ret = btrfs_inc_ref(trans, root, cow, 1);
223 	else
224 		ret = btrfs_inc_ref(trans, root, cow, 0);
225 	if (ret) {
226 		btrfs_tree_unlock(cow);
227 		free_extent_buffer(cow);
228 		btrfs_abort_transaction(trans, ret);
229 		return ret;
230 	}
231 
232 	btrfs_mark_buffer_dirty(cow);
233 	*cow_ret = cow;
234 	return 0;
235 }
236 
237 /*
238  * check if the tree block can be shared by multiple trees
239  */
240 int btrfs_block_can_be_shared(struct btrfs_root *root,
241 			      struct extent_buffer *buf)
242 {
243 	/*
244 	 * Tree blocks not in shareable trees and tree roots are never shared.
245 	 * If a block was allocated after the last snapshot and the block was
246 	 * not allocated by tree relocation, we know the block is not shared.
247 	 */
248 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
249 	    buf != root->node && buf != root->commit_root &&
250 	    (btrfs_header_generation(buf) <=
251 	     btrfs_root_last_snapshot(&root->root_item) ||
252 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
253 		return 1;
254 
255 	return 0;
256 }
257 
258 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
259 				       struct btrfs_root *root,
260 				       struct extent_buffer *buf,
261 				       struct extent_buffer *cow,
262 				       int *last_ref)
263 {
264 	struct btrfs_fs_info *fs_info = root->fs_info;
265 	u64 refs;
266 	u64 owner;
267 	u64 flags;
268 	u64 new_flags = 0;
269 	int ret;
270 
271 	/*
272 	 * Backrefs update rules:
273 	 *
274 	 * Always use full backrefs for extent pointers in tree block
275 	 * allocated by tree relocation.
276 	 *
277 	 * If a shared tree block is no longer referenced by its owner
278 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
279 	 * use full backrefs for extent pointers in tree block.
280 	 *
281 	 * If a tree block is been relocating
282 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
283 	 * use full backrefs for extent pointers in tree block.
284 	 * The reason for this is some operations (such as drop tree)
285 	 * are only allowed for blocks use full backrefs.
286 	 */
287 
288 	if (btrfs_block_can_be_shared(root, buf)) {
289 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
290 					       btrfs_header_level(buf), 1,
291 					       &refs, &flags);
292 		if (ret)
293 			return ret;
294 		if (refs == 0) {
295 			ret = -EROFS;
296 			btrfs_handle_fs_error(fs_info, ret, NULL);
297 			return ret;
298 		}
299 	} else {
300 		refs = 1;
301 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
302 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
303 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
304 		else
305 			flags = 0;
306 	}
307 
308 	owner = btrfs_header_owner(buf);
309 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
310 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
311 
312 	if (refs > 1) {
313 		if ((owner == root->root_key.objectid ||
314 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
315 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
316 			ret = btrfs_inc_ref(trans, root, buf, 1);
317 			if (ret)
318 				return ret;
319 
320 			if (root->root_key.objectid ==
321 			    BTRFS_TREE_RELOC_OBJECTID) {
322 				ret = btrfs_dec_ref(trans, root, buf, 0);
323 				if (ret)
324 					return ret;
325 				ret = btrfs_inc_ref(trans, root, cow, 1);
326 				if (ret)
327 					return ret;
328 			}
329 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
330 		} else {
331 
332 			if (root->root_key.objectid ==
333 			    BTRFS_TREE_RELOC_OBJECTID)
334 				ret = btrfs_inc_ref(trans, root, cow, 1);
335 			else
336 				ret = btrfs_inc_ref(trans, root, cow, 0);
337 			if (ret)
338 				return ret;
339 		}
340 		if (new_flags != 0) {
341 			int level = btrfs_header_level(buf);
342 
343 			ret = btrfs_set_disk_extent_flags(trans, buf,
344 							  new_flags, level, 0);
345 			if (ret)
346 				return ret;
347 		}
348 	} else {
349 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
350 			if (root->root_key.objectid ==
351 			    BTRFS_TREE_RELOC_OBJECTID)
352 				ret = btrfs_inc_ref(trans, root, cow, 1);
353 			else
354 				ret = btrfs_inc_ref(trans, root, cow, 0);
355 			if (ret)
356 				return ret;
357 			ret = btrfs_dec_ref(trans, root, buf, 1);
358 			if (ret)
359 				return ret;
360 		}
361 		btrfs_clean_tree_block(buf);
362 		*last_ref = 1;
363 	}
364 	return 0;
365 }
366 
367 static struct extent_buffer *alloc_tree_block_no_bg_flush(
368 					  struct btrfs_trans_handle *trans,
369 					  struct btrfs_root *root,
370 					  u64 parent_start,
371 					  const struct btrfs_disk_key *disk_key,
372 					  int level,
373 					  u64 hint,
374 					  u64 empty_size,
375 					  enum btrfs_lock_nesting nest)
376 {
377 	struct btrfs_fs_info *fs_info = root->fs_info;
378 	struct extent_buffer *ret;
379 
380 	/*
381 	 * If we are COWing a node/leaf from the extent, chunk, device or free
382 	 * space trees, make sure that we do not finish block group creation of
383 	 * pending block groups. We do this to avoid a deadlock.
384 	 * COWing can result in allocation of a new chunk, and flushing pending
385 	 * block groups (btrfs_create_pending_block_groups()) can be triggered
386 	 * when finishing allocation of a new chunk. Creation of a pending block
387 	 * group modifies the extent, chunk, device and free space trees,
388 	 * therefore we could deadlock with ourselves since we are holding a
389 	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
390 	 * try to COW later.
391 	 * For similar reasons, we also need to delay flushing pending block
392 	 * groups when splitting a leaf or node, from one of those trees, since
393 	 * we are holding a write lock on it and its parent or when inserting a
394 	 * new root node for one of those trees.
395 	 */
396 	if (root == fs_info->extent_root ||
397 	    root == fs_info->chunk_root ||
398 	    root == fs_info->dev_root ||
399 	    root == fs_info->free_space_root)
400 		trans->can_flush_pending_bgs = false;
401 
402 	ret = btrfs_alloc_tree_block(trans, root, parent_start,
403 				     root->root_key.objectid, disk_key, level,
404 				     hint, empty_size, nest);
405 	trans->can_flush_pending_bgs = true;
406 
407 	return ret;
408 }
409 
410 /*
411  * does the dirty work in cow of a single block.  The parent block (if
412  * supplied) is updated to point to the new cow copy.  The new buffer is marked
413  * dirty and returned locked.  If you modify the block it needs to be marked
414  * dirty again.
415  *
416  * search_start -- an allocation hint for the new block
417  *
418  * empty_size -- a hint that you plan on doing more cow.  This is the size in
419  * bytes the allocator should try to find free next to the block it returns.
420  * This is just a hint and may be ignored by the allocator.
421  */
422 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
423 			     struct btrfs_root *root,
424 			     struct extent_buffer *buf,
425 			     struct extent_buffer *parent, int parent_slot,
426 			     struct extent_buffer **cow_ret,
427 			     u64 search_start, u64 empty_size,
428 			     enum btrfs_lock_nesting nest)
429 {
430 	struct btrfs_fs_info *fs_info = root->fs_info;
431 	struct btrfs_disk_key disk_key;
432 	struct extent_buffer *cow;
433 	int level, ret;
434 	int last_ref = 0;
435 	int unlock_orig = 0;
436 	u64 parent_start = 0;
437 
438 	if (*cow_ret == buf)
439 		unlock_orig = 1;
440 
441 	btrfs_assert_tree_locked(buf);
442 
443 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
444 		trans->transid != fs_info->running_transaction->transid);
445 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
446 		trans->transid != root->last_trans);
447 
448 	level = btrfs_header_level(buf);
449 
450 	if (level == 0)
451 		btrfs_item_key(buf, &disk_key, 0);
452 	else
453 		btrfs_node_key(buf, &disk_key, 0);
454 
455 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
456 		parent_start = parent->start;
457 
458 	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
459 					   level, search_start, empty_size, nest);
460 	if (IS_ERR(cow))
461 		return PTR_ERR(cow);
462 
463 	/* cow is set to blocking by btrfs_init_new_buffer */
464 
465 	copy_extent_buffer_full(cow, buf);
466 	btrfs_set_header_bytenr(cow, cow->start);
467 	btrfs_set_header_generation(cow, trans->transid);
468 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
469 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
470 				     BTRFS_HEADER_FLAG_RELOC);
471 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
472 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
473 	else
474 		btrfs_set_header_owner(cow, root->root_key.objectid);
475 
476 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
477 
478 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
479 	if (ret) {
480 		btrfs_tree_unlock(cow);
481 		free_extent_buffer(cow);
482 		btrfs_abort_transaction(trans, ret);
483 		return ret;
484 	}
485 
486 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
487 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
488 		if (ret) {
489 			btrfs_tree_unlock(cow);
490 			free_extent_buffer(cow);
491 			btrfs_abort_transaction(trans, ret);
492 			return ret;
493 		}
494 	}
495 
496 	if (buf == root->node) {
497 		WARN_ON(parent && parent != buf);
498 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
499 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
500 			parent_start = buf->start;
501 
502 		atomic_inc(&cow->refs);
503 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
504 		BUG_ON(ret < 0);
505 		rcu_assign_pointer(root->node, cow);
506 
507 		btrfs_free_tree_block(trans, root, buf, parent_start,
508 				      last_ref);
509 		free_extent_buffer(buf);
510 		add_root_to_dirty_list(root);
511 	} else {
512 		WARN_ON(trans->transid != btrfs_header_generation(parent));
513 		btrfs_tree_mod_log_insert_key(parent, parent_slot,
514 					      BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
515 		btrfs_set_node_blockptr(parent, parent_slot,
516 					cow->start);
517 		btrfs_set_node_ptr_generation(parent, parent_slot,
518 					      trans->transid);
519 		btrfs_mark_buffer_dirty(parent);
520 		if (last_ref) {
521 			ret = btrfs_tree_mod_log_free_eb(buf);
522 			if (ret) {
523 				btrfs_tree_unlock(cow);
524 				free_extent_buffer(cow);
525 				btrfs_abort_transaction(trans, ret);
526 				return ret;
527 			}
528 		}
529 		btrfs_free_tree_block(trans, root, buf, parent_start,
530 				      last_ref);
531 	}
532 	if (unlock_orig)
533 		btrfs_tree_unlock(buf);
534 	free_extent_buffer_stale(buf);
535 	btrfs_mark_buffer_dirty(cow);
536 	*cow_ret = cow;
537 	return 0;
538 }
539 
540 static inline int should_cow_block(struct btrfs_trans_handle *trans,
541 				   struct btrfs_root *root,
542 				   struct extent_buffer *buf)
543 {
544 	if (btrfs_is_testing(root->fs_info))
545 		return 0;
546 
547 	/* Ensure we can see the FORCE_COW bit */
548 	smp_mb__before_atomic();
549 
550 	/*
551 	 * We do not need to cow a block if
552 	 * 1) this block is not created or changed in this transaction;
553 	 * 2) this block does not belong to TREE_RELOC tree;
554 	 * 3) the root is not forced COW.
555 	 *
556 	 * What is forced COW:
557 	 *    when we create snapshot during committing the transaction,
558 	 *    after we've finished copying src root, we must COW the shared
559 	 *    block to ensure the metadata consistency.
560 	 */
561 	if (btrfs_header_generation(buf) == trans->transid &&
562 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
563 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
564 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
565 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
566 		return 0;
567 	return 1;
568 }
569 
570 /*
571  * cows a single block, see __btrfs_cow_block for the real work.
572  * This version of it has extra checks so that a block isn't COWed more than
573  * once per transaction, as long as it hasn't been written yet
574  */
575 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
576 		    struct btrfs_root *root, struct extent_buffer *buf,
577 		    struct extent_buffer *parent, int parent_slot,
578 		    struct extent_buffer **cow_ret,
579 		    enum btrfs_lock_nesting nest)
580 {
581 	struct btrfs_fs_info *fs_info = root->fs_info;
582 	u64 search_start;
583 	int ret;
584 
585 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
586 		btrfs_err(fs_info,
587 			"COW'ing blocks on a fs root that's being dropped");
588 
589 	if (trans->transaction != fs_info->running_transaction)
590 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
591 		       trans->transid,
592 		       fs_info->running_transaction->transid);
593 
594 	if (trans->transid != fs_info->generation)
595 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
596 		       trans->transid, fs_info->generation);
597 
598 	if (!should_cow_block(trans, root, buf)) {
599 		trans->dirty = true;
600 		*cow_ret = buf;
601 		return 0;
602 	}
603 
604 	search_start = buf->start & ~((u64)SZ_1G - 1);
605 
606 	/*
607 	 * Before CoWing this block for later modification, check if it's
608 	 * the subtree root and do the delayed subtree trace if needed.
609 	 *
610 	 * Also We don't care about the error, as it's handled internally.
611 	 */
612 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
613 	ret = __btrfs_cow_block(trans, root, buf, parent,
614 				 parent_slot, cow_ret, search_start, 0, nest);
615 
616 	trace_btrfs_cow_block(root, buf, *cow_ret);
617 
618 	return ret;
619 }
620 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
621 
622 /*
623  * helper function for defrag to decide if two blocks pointed to by a
624  * node are actually close by
625  */
626 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
627 {
628 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
629 		return 1;
630 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
631 		return 1;
632 	return 0;
633 }
634 
635 #ifdef __LITTLE_ENDIAN
636 
637 /*
638  * Compare two keys, on little-endian the disk order is same as CPU order and
639  * we can avoid the conversion.
640  */
641 static int comp_keys(const struct btrfs_disk_key *disk_key,
642 		     const struct btrfs_key *k2)
643 {
644 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
645 
646 	return btrfs_comp_cpu_keys(k1, k2);
647 }
648 
649 #else
650 
651 /*
652  * compare two keys in a memcmp fashion
653  */
654 static int comp_keys(const struct btrfs_disk_key *disk,
655 		     const struct btrfs_key *k2)
656 {
657 	struct btrfs_key k1;
658 
659 	btrfs_disk_key_to_cpu(&k1, disk);
660 
661 	return btrfs_comp_cpu_keys(&k1, k2);
662 }
663 #endif
664 
665 /*
666  * same as comp_keys only with two btrfs_key's
667  */
668 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
669 {
670 	if (k1->objectid > k2->objectid)
671 		return 1;
672 	if (k1->objectid < k2->objectid)
673 		return -1;
674 	if (k1->type > k2->type)
675 		return 1;
676 	if (k1->type < k2->type)
677 		return -1;
678 	if (k1->offset > k2->offset)
679 		return 1;
680 	if (k1->offset < k2->offset)
681 		return -1;
682 	return 0;
683 }
684 
685 /*
686  * this is used by the defrag code to go through all the
687  * leaves pointed to by a node and reallocate them so that
688  * disk order is close to key order
689  */
690 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
691 		       struct btrfs_root *root, struct extent_buffer *parent,
692 		       int start_slot, u64 *last_ret,
693 		       struct btrfs_key *progress)
694 {
695 	struct btrfs_fs_info *fs_info = root->fs_info;
696 	struct extent_buffer *cur;
697 	u64 blocknr;
698 	u64 search_start = *last_ret;
699 	u64 last_block = 0;
700 	u64 other;
701 	u32 parent_nritems;
702 	int end_slot;
703 	int i;
704 	int err = 0;
705 	u32 blocksize;
706 	int progress_passed = 0;
707 	struct btrfs_disk_key disk_key;
708 
709 	WARN_ON(trans->transaction != fs_info->running_transaction);
710 	WARN_ON(trans->transid != fs_info->generation);
711 
712 	parent_nritems = btrfs_header_nritems(parent);
713 	blocksize = fs_info->nodesize;
714 	end_slot = parent_nritems - 1;
715 
716 	if (parent_nritems <= 1)
717 		return 0;
718 
719 	for (i = start_slot; i <= end_slot; i++) {
720 		int close = 1;
721 
722 		btrfs_node_key(parent, &disk_key, i);
723 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
724 			continue;
725 
726 		progress_passed = 1;
727 		blocknr = btrfs_node_blockptr(parent, i);
728 		if (last_block == 0)
729 			last_block = blocknr;
730 
731 		if (i > 0) {
732 			other = btrfs_node_blockptr(parent, i - 1);
733 			close = close_blocks(blocknr, other, blocksize);
734 		}
735 		if (!close && i < end_slot) {
736 			other = btrfs_node_blockptr(parent, i + 1);
737 			close = close_blocks(blocknr, other, blocksize);
738 		}
739 		if (close) {
740 			last_block = blocknr;
741 			continue;
742 		}
743 
744 		cur = btrfs_read_node_slot(parent, i);
745 		if (IS_ERR(cur))
746 			return PTR_ERR(cur);
747 		if (search_start == 0)
748 			search_start = last_block;
749 
750 		btrfs_tree_lock(cur);
751 		err = __btrfs_cow_block(trans, root, cur, parent, i,
752 					&cur, search_start,
753 					min(16 * blocksize,
754 					    (end_slot - i) * blocksize),
755 					BTRFS_NESTING_COW);
756 		if (err) {
757 			btrfs_tree_unlock(cur);
758 			free_extent_buffer(cur);
759 			break;
760 		}
761 		search_start = cur->start;
762 		last_block = cur->start;
763 		*last_ret = search_start;
764 		btrfs_tree_unlock(cur);
765 		free_extent_buffer(cur);
766 	}
767 	return err;
768 }
769 
770 /*
771  * search for key in the extent_buffer.  The items start at offset p,
772  * and they are item_size apart.  There are 'max' items in p.
773  *
774  * the slot in the array is returned via slot, and it points to
775  * the place where you would insert key if it is not found in
776  * the array.
777  *
778  * slot may point to max if the key is bigger than all of the keys
779  */
780 static noinline int generic_bin_search(struct extent_buffer *eb,
781 				       unsigned long p, int item_size,
782 				       const struct btrfs_key *key,
783 				       int max, int *slot)
784 {
785 	int low = 0;
786 	int high = max;
787 	int ret;
788 	const int key_size = sizeof(struct btrfs_disk_key);
789 
790 	if (low > high) {
791 		btrfs_err(eb->fs_info,
792 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
793 			  __func__, low, high, eb->start,
794 			  btrfs_header_owner(eb), btrfs_header_level(eb));
795 		return -EINVAL;
796 	}
797 
798 	while (low < high) {
799 		unsigned long oip;
800 		unsigned long offset;
801 		struct btrfs_disk_key *tmp;
802 		struct btrfs_disk_key unaligned;
803 		int mid;
804 
805 		mid = (low + high) / 2;
806 		offset = p + mid * item_size;
807 		oip = offset_in_page(offset);
808 
809 		if (oip + key_size <= PAGE_SIZE) {
810 			const unsigned long idx = get_eb_page_index(offset);
811 			char *kaddr = page_address(eb->pages[idx]);
812 
813 			oip = get_eb_offset_in_page(eb, offset);
814 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
815 		} else {
816 			read_extent_buffer(eb, &unaligned, offset, key_size);
817 			tmp = &unaligned;
818 		}
819 
820 		ret = comp_keys(tmp, key);
821 
822 		if (ret < 0)
823 			low = mid + 1;
824 		else if (ret > 0)
825 			high = mid;
826 		else {
827 			*slot = mid;
828 			return 0;
829 		}
830 	}
831 	*slot = low;
832 	return 1;
833 }
834 
835 /*
836  * simple bin_search frontend that does the right thing for
837  * leaves vs nodes
838  */
839 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
840 		     int *slot)
841 {
842 	if (btrfs_header_level(eb) == 0)
843 		return generic_bin_search(eb,
844 					  offsetof(struct btrfs_leaf, items),
845 					  sizeof(struct btrfs_item),
846 					  key, btrfs_header_nritems(eb),
847 					  slot);
848 	else
849 		return generic_bin_search(eb,
850 					  offsetof(struct btrfs_node, ptrs),
851 					  sizeof(struct btrfs_key_ptr),
852 					  key, btrfs_header_nritems(eb),
853 					  slot);
854 }
855 
856 static void root_add_used(struct btrfs_root *root, u32 size)
857 {
858 	spin_lock(&root->accounting_lock);
859 	btrfs_set_root_used(&root->root_item,
860 			    btrfs_root_used(&root->root_item) + size);
861 	spin_unlock(&root->accounting_lock);
862 }
863 
864 static void root_sub_used(struct btrfs_root *root, u32 size)
865 {
866 	spin_lock(&root->accounting_lock);
867 	btrfs_set_root_used(&root->root_item,
868 			    btrfs_root_used(&root->root_item) - size);
869 	spin_unlock(&root->accounting_lock);
870 }
871 
872 /* given a node and slot number, this reads the blocks it points to.  The
873  * extent buffer is returned with a reference taken (but unlocked).
874  */
875 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
876 					   int slot)
877 {
878 	int level = btrfs_header_level(parent);
879 	struct extent_buffer *eb;
880 	struct btrfs_key first_key;
881 
882 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
883 		return ERR_PTR(-ENOENT);
884 
885 	BUG_ON(level == 0);
886 
887 	btrfs_node_key_to_cpu(parent, &first_key, slot);
888 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
889 			     btrfs_header_owner(parent),
890 			     btrfs_node_ptr_generation(parent, slot),
891 			     level - 1, &first_key);
892 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
893 		free_extent_buffer(eb);
894 		eb = ERR_PTR(-EIO);
895 	}
896 
897 	return eb;
898 }
899 
900 /*
901  * node level balancing, used to make sure nodes are in proper order for
902  * item deletion.  We balance from the top down, so we have to make sure
903  * that a deletion won't leave an node completely empty later on.
904  */
905 static noinline int balance_level(struct btrfs_trans_handle *trans,
906 			 struct btrfs_root *root,
907 			 struct btrfs_path *path, int level)
908 {
909 	struct btrfs_fs_info *fs_info = root->fs_info;
910 	struct extent_buffer *right = NULL;
911 	struct extent_buffer *mid;
912 	struct extent_buffer *left = NULL;
913 	struct extent_buffer *parent = NULL;
914 	int ret = 0;
915 	int wret;
916 	int pslot;
917 	int orig_slot = path->slots[level];
918 	u64 orig_ptr;
919 
920 	ASSERT(level > 0);
921 
922 	mid = path->nodes[level];
923 
924 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
925 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
926 
927 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
928 
929 	if (level < BTRFS_MAX_LEVEL - 1) {
930 		parent = path->nodes[level + 1];
931 		pslot = path->slots[level + 1];
932 	}
933 
934 	/*
935 	 * deal with the case where there is only one pointer in the root
936 	 * by promoting the node below to a root
937 	 */
938 	if (!parent) {
939 		struct extent_buffer *child;
940 
941 		if (btrfs_header_nritems(mid) != 1)
942 			return 0;
943 
944 		/* promote the child to a root */
945 		child = btrfs_read_node_slot(mid, 0);
946 		if (IS_ERR(child)) {
947 			ret = PTR_ERR(child);
948 			btrfs_handle_fs_error(fs_info, ret, NULL);
949 			goto enospc;
950 		}
951 
952 		btrfs_tree_lock(child);
953 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
954 				      BTRFS_NESTING_COW);
955 		if (ret) {
956 			btrfs_tree_unlock(child);
957 			free_extent_buffer(child);
958 			goto enospc;
959 		}
960 
961 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
962 		BUG_ON(ret < 0);
963 		rcu_assign_pointer(root->node, child);
964 
965 		add_root_to_dirty_list(root);
966 		btrfs_tree_unlock(child);
967 
968 		path->locks[level] = 0;
969 		path->nodes[level] = NULL;
970 		btrfs_clean_tree_block(mid);
971 		btrfs_tree_unlock(mid);
972 		/* once for the path */
973 		free_extent_buffer(mid);
974 
975 		root_sub_used(root, mid->len);
976 		btrfs_free_tree_block(trans, root, mid, 0, 1);
977 		/* once for the root ptr */
978 		free_extent_buffer_stale(mid);
979 		return 0;
980 	}
981 	if (btrfs_header_nritems(mid) >
982 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
983 		return 0;
984 
985 	left = btrfs_read_node_slot(parent, pslot - 1);
986 	if (IS_ERR(left))
987 		left = NULL;
988 
989 	if (left) {
990 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
991 		wret = btrfs_cow_block(trans, root, left,
992 				       parent, pslot - 1, &left,
993 				       BTRFS_NESTING_LEFT_COW);
994 		if (wret) {
995 			ret = wret;
996 			goto enospc;
997 		}
998 	}
999 
1000 	right = btrfs_read_node_slot(parent, pslot + 1);
1001 	if (IS_ERR(right))
1002 		right = NULL;
1003 
1004 	if (right) {
1005 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1006 		wret = btrfs_cow_block(trans, root, right,
1007 				       parent, pslot + 1, &right,
1008 				       BTRFS_NESTING_RIGHT_COW);
1009 		if (wret) {
1010 			ret = wret;
1011 			goto enospc;
1012 		}
1013 	}
1014 
1015 	/* first, try to make some room in the middle buffer */
1016 	if (left) {
1017 		orig_slot += btrfs_header_nritems(left);
1018 		wret = push_node_left(trans, left, mid, 1);
1019 		if (wret < 0)
1020 			ret = wret;
1021 	}
1022 
1023 	/*
1024 	 * then try to empty the right most buffer into the middle
1025 	 */
1026 	if (right) {
1027 		wret = push_node_left(trans, mid, right, 1);
1028 		if (wret < 0 && wret != -ENOSPC)
1029 			ret = wret;
1030 		if (btrfs_header_nritems(right) == 0) {
1031 			btrfs_clean_tree_block(right);
1032 			btrfs_tree_unlock(right);
1033 			del_ptr(root, path, level + 1, pslot + 1);
1034 			root_sub_used(root, right->len);
1035 			btrfs_free_tree_block(trans, root, right, 0, 1);
1036 			free_extent_buffer_stale(right);
1037 			right = NULL;
1038 		} else {
1039 			struct btrfs_disk_key right_key;
1040 			btrfs_node_key(right, &right_key, 0);
1041 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1042 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1043 			BUG_ON(ret < 0);
1044 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1045 			btrfs_mark_buffer_dirty(parent);
1046 		}
1047 	}
1048 	if (btrfs_header_nritems(mid) == 1) {
1049 		/*
1050 		 * we're not allowed to leave a node with one item in the
1051 		 * tree during a delete.  A deletion from lower in the tree
1052 		 * could try to delete the only pointer in this node.
1053 		 * So, pull some keys from the left.
1054 		 * There has to be a left pointer at this point because
1055 		 * otherwise we would have pulled some pointers from the
1056 		 * right
1057 		 */
1058 		if (!left) {
1059 			ret = -EROFS;
1060 			btrfs_handle_fs_error(fs_info, ret, NULL);
1061 			goto enospc;
1062 		}
1063 		wret = balance_node_right(trans, mid, left);
1064 		if (wret < 0) {
1065 			ret = wret;
1066 			goto enospc;
1067 		}
1068 		if (wret == 1) {
1069 			wret = push_node_left(trans, left, mid, 1);
1070 			if (wret < 0)
1071 				ret = wret;
1072 		}
1073 		BUG_ON(wret == 1);
1074 	}
1075 	if (btrfs_header_nritems(mid) == 0) {
1076 		btrfs_clean_tree_block(mid);
1077 		btrfs_tree_unlock(mid);
1078 		del_ptr(root, path, level + 1, pslot);
1079 		root_sub_used(root, mid->len);
1080 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1081 		free_extent_buffer_stale(mid);
1082 		mid = NULL;
1083 	} else {
1084 		/* update the parent key to reflect our changes */
1085 		struct btrfs_disk_key mid_key;
1086 		btrfs_node_key(mid, &mid_key, 0);
1087 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1088 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1089 		BUG_ON(ret < 0);
1090 		btrfs_set_node_key(parent, &mid_key, pslot);
1091 		btrfs_mark_buffer_dirty(parent);
1092 	}
1093 
1094 	/* update the path */
1095 	if (left) {
1096 		if (btrfs_header_nritems(left) > orig_slot) {
1097 			atomic_inc(&left->refs);
1098 			/* left was locked after cow */
1099 			path->nodes[level] = left;
1100 			path->slots[level + 1] -= 1;
1101 			path->slots[level] = orig_slot;
1102 			if (mid) {
1103 				btrfs_tree_unlock(mid);
1104 				free_extent_buffer(mid);
1105 			}
1106 		} else {
1107 			orig_slot -= btrfs_header_nritems(left);
1108 			path->slots[level] = orig_slot;
1109 		}
1110 	}
1111 	/* double check we haven't messed things up */
1112 	if (orig_ptr !=
1113 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1114 		BUG();
1115 enospc:
1116 	if (right) {
1117 		btrfs_tree_unlock(right);
1118 		free_extent_buffer(right);
1119 	}
1120 	if (left) {
1121 		if (path->nodes[level] != left)
1122 			btrfs_tree_unlock(left);
1123 		free_extent_buffer(left);
1124 	}
1125 	return ret;
1126 }
1127 
1128 /* Node balancing for insertion.  Here we only split or push nodes around
1129  * when they are completely full.  This is also done top down, so we
1130  * have to be pessimistic.
1131  */
1132 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1133 					  struct btrfs_root *root,
1134 					  struct btrfs_path *path, int level)
1135 {
1136 	struct btrfs_fs_info *fs_info = root->fs_info;
1137 	struct extent_buffer *right = NULL;
1138 	struct extent_buffer *mid;
1139 	struct extent_buffer *left = NULL;
1140 	struct extent_buffer *parent = NULL;
1141 	int ret = 0;
1142 	int wret;
1143 	int pslot;
1144 	int orig_slot = path->slots[level];
1145 
1146 	if (level == 0)
1147 		return 1;
1148 
1149 	mid = path->nodes[level];
1150 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1151 
1152 	if (level < BTRFS_MAX_LEVEL - 1) {
1153 		parent = path->nodes[level + 1];
1154 		pslot = path->slots[level + 1];
1155 	}
1156 
1157 	if (!parent)
1158 		return 1;
1159 
1160 	left = btrfs_read_node_slot(parent, pslot - 1);
1161 	if (IS_ERR(left))
1162 		left = NULL;
1163 
1164 	/* first, try to make some room in the middle buffer */
1165 	if (left) {
1166 		u32 left_nr;
1167 
1168 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1169 
1170 		left_nr = btrfs_header_nritems(left);
1171 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1172 			wret = 1;
1173 		} else {
1174 			ret = btrfs_cow_block(trans, root, left, parent,
1175 					      pslot - 1, &left,
1176 					      BTRFS_NESTING_LEFT_COW);
1177 			if (ret)
1178 				wret = 1;
1179 			else {
1180 				wret = push_node_left(trans, left, mid, 0);
1181 			}
1182 		}
1183 		if (wret < 0)
1184 			ret = wret;
1185 		if (wret == 0) {
1186 			struct btrfs_disk_key disk_key;
1187 			orig_slot += left_nr;
1188 			btrfs_node_key(mid, &disk_key, 0);
1189 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1190 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1191 			BUG_ON(ret < 0);
1192 			btrfs_set_node_key(parent, &disk_key, pslot);
1193 			btrfs_mark_buffer_dirty(parent);
1194 			if (btrfs_header_nritems(left) > orig_slot) {
1195 				path->nodes[level] = left;
1196 				path->slots[level + 1] -= 1;
1197 				path->slots[level] = orig_slot;
1198 				btrfs_tree_unlock(mid);
1199 				free_extent_buffer(mid);
1200 			} else {
1201 				orig_slot -=
1202 					btrfs_header_nritems(left);
1203 				path->slots[level] = orig_slot;
1204 				btrfs_tree_unlock(left);
1205 				free_extent_buffer(left);
1206 			}
1207 			return 0;
1208 		}
1209 		btrfs_tree_unlock(left);
1210 		free_extent_buffer(left);
1211 	}
1212 	right = btrfs_read_node_slot(parent, pslot + 1);
1213 	if (IS_ERR(right))
1214 		right = NULL;
1215 
1216 	/*
1217 	 * then try to empty the right most buffer into the middle
1218 	 */
1219 	if (right) {
1220 		u32 right_nr;
1221 
1222 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1223 
1224 		right_nr = btrfs_header_nritems(right);
1225 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1226 			wret = 1;
1227 		} else {
1228 			ret = btrfs_cow_block(trans, root, right,
1229 					      parent, pslot + 1,
1230 					      &right, BTRFS_NESTING_RIGHT_COW);
1231 			if (ret)
1232 				wret = 1;
1233 			else {
1234 				wret = balance_node_right(trans, right, mid);
1235 			}
1236 		}
1237 		if (wret < 0)
1238 			ret = wret;
1239 		if (wret == 0) {
1240 			struct btrfs_disk_key disk_key;
1241 
1242 			btrfs_node_key(right, &disk_key, 0);
1243 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1244 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1245 			BUG_ON(ret < 0);
1246 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1247 			btrfs_mark_buffer_dirty(parent);
1248 
1249 			if (btrfs_header_nritems(mid) <= orig_slot) {
1250 				path->nodes[level] = right;
1251 				path->slots[level + 1] += 1;
1252 				path->slots[level] = orig_slot -
1253 					btrfs_header_nritems(mid);
1254 				btrfs_tree_unlock(mid);
1255 				free_extent_buffer(mid);
1256 			} else {
1257 				btrfs_tree_unlock(right);
1258 				free_extent_buffer(right);
1259 			}
1260 			return 0;
1261 		}
1262 		btrfs_tree_unlock(right);
1263 		free_extent_buffer(right);
1264 	}
1265 	return 1;
1266 }
1267 
1268 /*
1269  * readahead one full node of leaves, finding things that are close
1270  * to the block in 'slot', and triggering ra on them.
1271  */
1272 static void reada_for_search(struct btrfs_fs_info *fs_info,
1273 			     struct btrfs_path *path,
1274 			     int level, int slot, u64 objectid)
1275 {
1276 	struct extent_buffer *node;
1277 	struct btrfs_disk_key disk_key;
1278 	u32 nritems;
1279 	u64 search;
1280 	u64 target;
1281 	u64 nread = 0;
1282 	u64 nread_max;
1283 	struct extent_buffer *eb;
1284 	u32 nr;
1285 	u32 blocksize;
1286 	u32 nscan = 0;
1287 
1288 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1289 		return;
1290 
1291 	if (!path->nodes[level])
1292 		return;
1293 
1294 	node = path->nodes[level];
1295 
1296 	/*
1297 	 * Since the time between visiting leaves is much shorter than the time
1298 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1299 	 * much IO at once (possibly random).
1300 	 */
1301 	if (path->reada == READA_FORWARD_ALWAYS) {
1302 		if (level > 1)
1303 			nread_max = node->fs_info->nodesize;
1304 		else
1305 			nread_max = SZ_128K;
1306 	} else {
1307 		nread_max = SZ_64K;
1308 	}
1309 
1310 	search = btrfs_node_blockptr(node, slot);
1311 	blocksize = fs_info->nodesize;
1312 	eb = find_extent_buffer(fs_info, search);
1313 	if (eb) {
1314 		free_extent_buffer(eb);
1315 		return;
1316 	}
1317 
1318 	target = search;
1319 
1320 	nritems = btrfs_header_nritems(node);
1321 	nr = slot;
1322 
1323 	while (1) {
1324 		if (path->reada == READA_BACK) {
1325 			if (nr == 0)
1326 				break;
1327 			nr--;
1328 		} else if (path->reada == READA_FORWARD ||
1329 			   path->reada == READA_FORWARD_ALWAYS) {
1330 			nr++;
1331 			if (nr >= nritems)
1332 				break;
1333 		}
1334 		if (path->reada == READA_BACK && objectid) {
1335 			btrfs_node_key(node, &disk_key, nr);
1336 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1337 				break;
1338 		}
1339 		search = btrfs_node_blockptr(node, nr);
1340 		if (path->reada == READA_FORWARD_ALWAYS ||
1341 		    (search <= target && target - search <= 65536) ||
1342 		    (search > target && search - target <= 65536)) {
1343 			btrfs_readahead_node_child(node, nr);
1344 			nread += blocksize;
1345 		}
1346 		nscan++;
1347 		if (nread > nread_max || nscan > 32)
1348 			break;
1349 	}
1350 }
1351 
1352 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1353 {
1354 	struct extent_buffer *parent;
1355 	int slot;
1356 	int nritems;
1357 
1358 	parent = path->nodes[level + 1];
1359 	if (!parent)
1360 		return;
1361 
1362 	nritems = btrfs_header_nritems(parent);
1363 	slot = path->slots[level + 1];
1364 
1365 	if (slot > 0)
1366 		btrfs_readahead_node_child(parent, slot - 1);
1367 	if (slot + 1 < nritems)
1368 		btrfs_readahead_node_child(parent, slot + 1);
1369 }
1370 
1371 
1372 /*
1373  * when we walk down the tree, it is usually safe to unlock the higher layers
1374  * in the tree.  The exceptions are when our path goes through slot 0, because
1375  * operations on the tree might require changing key pointers higher up in the
1376  * tree.
1377  *
1378  * callers might also have set path->keep_locks, which tells this code to keep
1379  * the lock if the path points to the last slot in the block.  This is part of
1380  * walking through the tree, and selecting the next slot in the higher block.
1381  *
1382  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1383  * if lowest_unlock is 1, level 0 won't be unlocked
1384  */
1385 static noinline void unlock_up(struct btrfs_path *path, int level,
1386 			       int lowest_unlock, int min_write_lock_level,
1387 			       int *write_lock_level)
1388 {
1389 	int i;
1390 	int skip_level = level;
1391 	int no_skips = 0;
1392 	struct extent_buffer *t;
1393 
1394 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1395 		if (!path->nodes[i])
1396 			break;
1397 		if (!path->locks[i])
1398 			break;
1399 		if (!no_skips && path->slots[i] == 0) {
1400 			skip_level = i + 1;
1401 			continue;
1402 		}
1403 		if (!no_skips && path->keep_locks) {
1404 			u32 nritems;
1405 			t = path->nodes[i];
1406 			nritems = btrfs_header_nritems(t);
1407 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1408 				skip_level = i + 1;
1409 				continue;
1410 			}
1411 		}
1412 		if (skip_level < i && i >= lowest_unlock)
1413 			no_skips = 1;
1414 
1415 		t = path->nodes[i];
1416 		if (i >= lowest_unlock && i > skip_level) {
1417 			btrfs_tree_unlock_rw(t, path->locks[i]);
1418 			path->locks[i] = 0;
1419 			if (write_lock_level &&
1420 			    i > min_write_lock_level &&
1421 			    i <= *write_lock_level) {
1422 				*write_lock_level = i - 1;
1423 			}
1424 		}
1425 	}
1426 }
1427 
1428 /*
1429  * helper function for btrfs_search_slot.  The goal is to find a block
1430  * in cache without setting the path to blocking.  If we find the block
1431  * we return zero and the path is unchanged.
1432  *
1433  * If we can't find the block, we set the path blocking and do some
1434  * reada.  -EAGAIN is returned and the search must be repeated.
1435  */
1436 static int
1437 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1438 		      struct extent_buffer **eb_ret, int level, int slot,
1439 		      const struct btrfs_key *key)
1440 {
1441 	struct btrfs_fs_info *fs_info = root->fs_info;
1442 	u64 blocknr;
1443 	u64 gen;
1444 	struct extent_buffer *tmp;
1445 	struct btrfs_key first_key;
1446 	int ret;
1447 	int parent_level;
1448 
1449 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1450 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1451 	parent_level = btrfs_header_level(*eb_ret);
1452 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1453 
1454 	tmp = find_extent_buffer(fs_info, blocknr);
1455 	if (tmp) {
1456 		if (p->reada == READA_FORWARD_ALWAYS)
1457 			reada_for_search(fs_info, p, level, slot, key->objectid);
1458 
1459 		/* first we do an atomic uptodate check */
1460 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1461 			/*
1462 			 * Do extra check for first_key, eb can be stale due to
1463 			 * being cached, read from scrub, or have multiple
1464 			 * parents (shared tree blocks).
1465 			 */
1466 			if (btrfs_verify_level_key(tmp,
1467 					parent_level - 1, &first_key, gen)) {
1468 				free_extent_buffer(tmp);
1469 				return -EUCLEAN;
1470 			}
1471 			*eb_ret = tmp;
1472 			return 0;
1473 		}
1474 
1475 		/* now we're allowed to do a blocking uptodate check */
1476 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1477 		if (!ret) {
1478 			*eb_ret = tmp;
1479 			return 0;
1480 		}
1481 		free_extent_buffer(tmp);
1482 		btrfs_release_path(p);
1483 		return -EIO;
1484 	}
1485 
1486 	/*
1487 	 * reduce lock contention at high levels
1488 	 * of the btree by dropping locks before
1489 	 * we read.  Don't release the lock on the current
1490 	 * level because we need to walk this node to figure
1491 	 * out which blocks to read.
1492 	 */
1493 	btrfs_unlock_up_safe(p, level + 1);
1494 
1495 	if (p->reada != READA_NONE)
1496 		reada_for_search(fs_info, p, level, slot, key->objectid);
1497 
1498 	ret = -EAGAIN;
1499 	tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1500 			      gen, parent_level - 1, &first_key);
1501 	if (!IS_ERR(tmp)) {
1502 		/*
1503 		 * If the read above didn't mark this buffer up to date,
1504 		 * it will never end up being up to date.  Set ret to EIO now
1505 		 * and give up so that our caller doesn't loop forever
1506 		 * on our EAGAINs.
1507 		 */
1508 		if (!extent_buffer_uptodate(tmp))
1509 			ret = -EIO;
1510 		free_extent_buffer(tmp);
1511 	} else {
1512 		ret = PTR_ERR(tmp);
1513 	}
1514 
1515 	btrfs_release_path(p);
1516 	return ret;
1517 }
1518 
1519 /*
1520  * helper function for btrfs_search_slot.  This does all of the checks
1521  * for node-level blocks and does any balancing required based on
1522  * the ins_len.
1523  *
1524  * If no extra work was required, zero is returned.  If we had to
1525  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1526  * start over
1527  */
1528 static int
1529 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1530 		       struct btrfs_root *root, struct btrfs_path *p,
1531 		       struct extent_buffer *b, int level, int ins_len,
1532 		       int *write_lock_level)
1533 {
1534 	struct btrfs_fs_info *fs_info = root->fs_info;
1535 	int ret = 0;
1536 
1537 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1538 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1539 
1540 		if (*write_lock_level < level + 1) {
1541 			*write_lock_level = level + 1;
1542 			btrfs_release_path(p);
1543 			return -EAGAIN;
1544 		}
1545 
1546 		reada_for_balance(p, level);
1547 		ret = split_node(trans, root, p, level);
1548 
1549 		b = p->nodes[level];
1550 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1551 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1552 
1553 		if (*write_lock_level < level + 1) {
1554 			*write_lock_level = level + 1;
1555 			btrfs_release_path(p);
1556 			return -EAGAIN;
1557 		}
1558 
1559 		reada_for_balance(p, level);
1560 		ret = balance_level(trans, root, p, level);
1561 		if (ret)
1562 			return ret;
1563 
1564 		b = p->nodes[level];
1565 		if (!b) {
1566 			btrfs_release_path(p);
1567 			return -EAGAIN;
1568 		}
1569 		BUG_ON(btrfs_header_nritems(b) == 1);
1570 	}
1571 	return ret;
1572 }
1573 
1574 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1575 		u64 iobjectid, u64 ioff, u8 key_type,
1576 		struct btrfs_key *found_key)
1577 {
1578 	int ret;
1579 	struct btrfs_key key;
1580 	struct extent_buffer *eb;
1581 
1582 	ASSERT(path);
1583 	ASSERT(found_key);
1584 
1585 	key.type = key_type;
1586 	key.objectid = iobjectid;
1587 	key.offset = ioff;
1588 
1589 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1590 	if (ret < 0)
1591 		return ret;
1592 
1593 	eb = path->nodes[0];
1594 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1595 		ret = btrfs_next_leaf(fs_root, path);
1596 		if (ret)
1597 			return ret;
1598 		eb = path->nodes[0];
1599 	}
1600 
1601 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1602 	if (found_key->type != key.type ||
1603 			found_key->objectid != key.objectid)
1604 		return 1;
1605 
1606 	return 0;
1607 }
1608 
1609 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1610 							struct btrfs_path *p,
1611 							int write_lock_level)
1612 {
1613 	struct btrfs_fs_info *fs_info = root->fs_info;
1614 	struct extent_buffer *b;
1615 	int root_lock;
1616 	int level = 0;
1617 
1618 	/* We try very hard to do read locks on the root */
1619 	root_lock = BTRFS_READ_LOCK;
1620 
1621 	if (p->search_commit_root) {
1622 		/*
1623 		 * The commit roots are read only so we always do read locks,
1624 		 * and we always must hold the commit_root_sem when doing
1625 		 * searches on them, the only exception is send where we don't
1626 		 * want to block transaction commits for a long time, so
1627 		 * we need to clone the commit root in order to avoid races
1628 		 * with transaction commits that create a snapshot of one of
1629 		 * the roots used by a send operation.
1630 		 */
1631 		if (p->need_commit_sem) {
1632 			down_read(&fs_info->commit_root_sem);
1633 			b = btrfs_clone_extent_buffer(root->commit_root);
1634 			up_read(&fs_info->commit_root_sem);
1635 			if (!b)
1636 				return ERR_PTR(-ENOMEM);
1637 
1638 		} else {
1639 			b = root->commit_root;
1640 			atomic_inc(&b->refs);
1641 		}
1642 		level = btrfs_header_level(b);
1643 		/*
1644 		 * Ensure that all callers have set skip_locking when
1645 		 * p->search_commit_root = 1.
1646 		 */
1647 		ASSERT(p->skip_locking == 1);
1648 
1649 		goto out;
1650 	}
1651 
1652 	if (p->skip_locking) {
1653 		b = btrfs_root_node(root);
1654 		level = btrfs_header_level(b);
1655 		goto out;
1656 	}
1657 
1658 	/*
1659 	 * If the level is set to maximum, we can skip trying to get the read
1660 	 * lock.
1661 	 */
1662 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1663 		/*
1664 		 * We don't know the level of the root node until we actually
1665 		 * have it read locked
1666 		 */
1667 		b = btrfs_read_lock_root_node(root);
1668 		level = btrfs_header_level(b);
1669 		if (level > write_lock_level)
1670 			goto out;
1671 
1672 		/* Whoops, must trade for write lock */
1673 		btrfs_tree_read_unlock(b);
1674 		free_extent_buffer(b);
1675 	}
1676 
1677 	b = btrfs_lock_root_node(root);
1678 	root_lock = BTRFS_WRITE_LOCK;
1679 
1680 	/* The level might have changed, check again */
1681 	level = btrfs_header_level(b);
1682 
1683 out:
1684 	p->nodes[level] = b;
1685 	if (!p->skip_locking)
1686 		p->locks[level] = root_lock;
1687 	/*
1688 	 * Callers are responsible for dropping b's references.
1689 	 */
1690 	return b;
1691 }
1692 
1693 
1694 /*
1695  * btrfs_search_slot - look for a key in a tree and perform necessary
1696  * modifications to preserve tree invariants.
1697  *
1698  * @trans:	Handle of transaction, used when modifying the tree
1699  * @p:		Holds all btree nodes along the search path
1700  * @root:	The root node of the tree
1701  * @key:	The key we are looking for
1702  * @ins_len:	Indicates purpose of search:
1703  *              >0  for inserts it's size of item inserted (*)
1704  *              <0  for deletions
1705  *               0  for plain searches, not modifying the tree
1706  *
1707  *              (*) If size of item inserted doesn't include
1708  *              sizeof(struct btrfs_item), then p->search_for_extension must
1709  *              be set.
1710  * @cow:	boolean should CoW operations be performed. Must always be 1
1711  *		when modifying the tree.
1712  *
1713  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1714  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1715  *
1716  * If @key is found, 0 is returned and you can find the item in the leaf level
1717  * of the path (level 0)
1718  *
1719  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1720  * points to the slot where it should be inserted
1721  *
1722  * If an error is encountered while searching the tree a negative error number
1723  * is returned
1724  */
1725 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1726 		      const struct btrfs_key *key, struct btrfs_path *p,
1727 		      int ins_len, int cow)
1728 {
1729 	struct extent_buffer *b;
1730 	int slot;
1731 	int ret;
1732 	int err;
1733 	int level;
1734 	int lowest_unlock = 1;
1735 	/* everything at write_lock_level or lower must be write locked */
1736 	int write_lock_level = 0;
1737 	u8 lowest_level = 0;
1738 	int min_write_lock_level;
1739 	int prev_cmp;
1740 
1741 	lowest_level = p->lowest_level;
1742 	WARN_ON(lowest_level && ins_len > 0);
1743 	WARN_ON(p->nodes[0] != NULL);
1744 	BUG_ON(!cow && ins_len);
1745 
1746 	if (ins_len < 0) {
1747 		lowest_unlock = 2;
1748 
1749 		/* when we are removing items, we might have to go up to level
1750 		 * two as we update tree pointers  Make sure we keep write
1751 		 * for those levels as well
1752 		 */
1753 		write_lock_level = 2;
1754 	} else if (ins_len > 0) {
1755 		/*
1756 		 * for inserting items, make sure we have a write lock on
1757 		 * level 1 so we can update keys
1758 		 */
1759 		write_lock_level = 1;
1760 	}
1761 
1762 	if (!cow)
1763 		write_lock_level = -1;
1764 
1765 	if (cow && (p->keep_locks || p->lowest_level))
1766 		write_lock_level = BTRFS_MAX_LEVEL;
1767 
1768 	min_write_lock_level = write_lock_level;
1769 
1770 again:
1771 	prev_cmp = -1;
1772 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
1773 	if (IS_ERR(b)) {
1774 		ret = PTR_ERR(b);
1775 		goto done;
1776 	}
1777 
1778 	while (b) {
1779 		int dec = 0;
1780 
1781 		level = btrfs_header_level(b);
1782 
1783 		if (cow) {
1784 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1785 
1786 			/*
1787 			 * if we don't really need to cow this block
1788 			 * then we don't want to set the path blocking,
1789 			 * so we test it here
1790 			 */
1791 			if (!should_cow_block(trans, root, b)) {
1792 				trans->dirty = true;
1793 				goto cow_done;
1794 			}
1795 
1796 			/*
1797 			 * must have write locks on this node and the
1798 			 * parent
1799 			 */
1800 			if (level > write_lock_level ||
1801 			    (level + 1 > write_lock_level &&
1802 			    level + 1 < BTRFS_MAX_LEVEL &&
1803 			    p->nodes[level + 1])) {
1804 				write_lock_level = level + 1;
1805 				btrfs_release_path(p);
1806 				goto again;
1807 			}
1808 
1809 			if (last_level)
1810 				err = btrfs_cow_block(trans, root, b, NULL, 0,
1811 						      &b,
1812 						      BTRFS_NESTING_COW);
1813 			else
1814 				err = btrfs_cow_block(trans, root, b,
1815 						      p->nodes[level + 1],
1816 						      p->slots[level + 1], &b,
1817 						      BTRFS_NESTING_COW);
1818 			if (err) {
1819 				ret = err;
1820 				goto done;
1821 			}
1822 		}
1823 cow_done:
1824 		p->nodes[level] = b;
1825 		/*
1826 		 * Leave path with blocking locks to avoid massive
1827 		 * lock context switch, this is made on purpose.
1828 		 */
1829 
1830 		/*
1831 		 * we have a lock on b and as long as we aren't changing
1832 		 * the tree, there is no way to for the items in b to change.
1833 		 * It is safe to drop the lock on our parent before we
1834 		 * go through the expensive btree search on b.
1835 		 *
1836 		 * If we're inserting or deleting (ins_len != 0), then we might
1837 		 * be changing slot zero, which may require changing the parent.
1838 		 * So, we can't drop the lock until after we know which slot
1839 		 * we're operating on.
1840 		 */
1841 		if (!ins_len && !p->keep_locks) {
1842 			int u = level + 1;
1843 
1844 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1845 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1846 				p->locks[u] = 0;
1847 			}
1848 		}
1849 
1850 		/*
1851 		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
1852 		 * we can safely assume the target key will always be in slot 0
1853 		 * on lower levels due to the invariants BTRFS' btree provides,
1854 		 * namely that a btrfs_key_ptr entry always points to the
1855 		 * lowest key in the child node, thus we can skip searching
1856 		 * lower levels
1857 		 */
1858 		if (prev_cmp == 0) {
1859 			slot = 0;
1860 			ret = 0;
1861 		} else {
1862 			ret = btrfs_bin_search(b, key, &slot);
1863 			prev_cmp = ret;
1864 			if (ret < 0)
1865 				goto done;
1866 		}
1867 
1868 		if (level == 0) {
1869 			p->slots[level] = slot;
1870 			/*
1871 			 * Item key already exists. In this case, if we are
1872 			 * allowed to insert the item (for example, in dir_item
1873 			 * case, item key collision is allowed), it will be
1874 			 * merged with the original item. Only the item size
1875 			 * grows, no new btrfs item will be added. If
1876 			 * search_for_extension is not set, ins_len already
1877 			 * accounts the size btrfs_item, deduct it here so leaf
1878 			 * space check will be correct.
1879 			 */
1880 			if (ret == 0 && ins_len > 0 && !p->search_for_extension) {
1881 				ASSERT(ins_len >= sizeof(struct btrfs_item));
1882 				ins_len -= sizeof(struct btrfs_item);
1883 			}
1884 			if (ins_len > 0 &&
1885 			    btrfs_leaf_free_space(b) < ins_len) {
1886 				if (write_lock_level < 1) {
1887 					write_lock_level = 1;
1888 					btrfs_release_path(p);
1889 					goto again;
1890 				}
1891 
1892 				err = split_leaf(trans, root, key,
1893 						 p, ins_len, ret == 0);
1894 
1895 				BUG_ON(err > 0);
1896 				if (err) {
1897 					ret = err;
1898 					goto done;
1899 				}
1900 			}
1901 			if (!p->search_for_split)
1902 				unlock_up(p, level, lowest_unlock,
1903 					  min_write_lock_level, NULL);
1904 			goto done;
1905 		}
1906 		if (ret && slot > 0) {
1907 			dec = 1;
1908 			slot--;
1909 		}
1910 		p->slots[level] = slot;
1911 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
1912 					     &write_lock_level);
1913 		if (err == -EAGAIN)
1914 			goto again;
1915 		if (err) {
1916 			ret = err;
1917 			goto done;
1918 		}
1919 		b = p->nodes[level];
1920 		slot = p->slots[level];
1921 
1922 		/*
1923 		 * Slot 0 is special, if we change the key we have to update
1924 		 * the parent pointer which means we must have a write lock on
1925 		 * the parent
1926 		 */
1927 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
1928 			write_lock_level = level + 1;
1929 			btrfs_release_path(p);
1930 			goto again;
1931 		}
1932 
1933 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
1934 			  &write_lock_level);
1935 
1936 		if (level == lowest_level) {
1937 			if (dec)
1938 				p->slots[level]++;
1939 			goto done;
1940 		}
1941 
1942 		err = read_block_for_search(root, p, &b, level, slot, key);
1943 		if (err == -EAGAIN)
1944 			goto again;
1945 		if (err) {
1946 			ret = err;
1947 			goto done;
1948 		}
1949 
1950 		if (!p->skip_locking) {
1951 			level = btrfs_header_level(b);
1952 			if (level <= write_lock_level) {
1953 				btrfs_tree_lock(b);
1954 				p->locks[level] = BTRFS_WRITE_LOCK;
1955 			} else {
1956 				btrfs_tree_read_lock(b);
1957 				p->locks[level] = BTRFS_READ_LOCK;
1958 			}
1959 			p->nodes[level] = b;
1960 		}
1961 	}
1962 	ret = 1;
1963 done:
1964 	if (ret < 0 && !p->skip_release_on_error)
1965 		btrfs_release_path(p);
1966 	return ret;
1967 }
1968 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
1969 
1970 /*
1971  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
1972  * current state of the tree together with the operations recorded in the tree
1973  * modification log to search for the key in a previous version of this tree, as
1974  * denoted by the time_seq parameter.
1975  *
1976  * Naturally, there is no support for insert, delete or cow operations.
1977  *
1978  * The resulting path and return value will be set up as if we called
1979  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
1980  */
1981 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
1982 			  struct btrfs_path *p, u64 time_seq)
1983 {
1984 	struct btrfs_fs_info *fs_info = root->fs_info;
1985 	struct extent_buffer *b;
1986 	int slot;
1987 	int ret;
1988 	int err;
1989 	int level;
1990 	int lowest_unlock = 1;
1991 	u8 lowest_level = 0;
1992 
1993 	lowest_level = p->lowest_level;
1994 	WARN_ON(p->nodes[0] != NULL);
1995 
1996 	if (p->search_commit_root) {
1997 		BUG_ON(time_seq);
1998 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
1999 	}
2000 
2001 again:
2002 	b = btrfs_get_old_root(root, time_seq);
2003 	if (!b) {
2004 		ret = -EIO;
2005 		goto done;
2006 	}
2007 	level = btrfs_header_level(b);
2008 	p->locks[level] = BTRFS_READ_LOCK;
2009 
2010 	while (b) {
2011 		int dec = 0;
2012 
2013 		level = btrfs_header_level(b);
2014 		p->nodes[level] = b;
2015 
2016 		/*
2017 		 * we have a lock on b and as long as we aren't changing
2018 		 * the tree, there is no way to for the items in b to change.
2019 		 * It is safe to drop the lock on our parent before we
2020 		 * go through the expensive btree search on b.
2021 		 */
2022 		btrfs_unlock_up_safe(p, level + 1);
2023 
2024 		ret = btrfs_bin_search(b, key, &slot);
2025 		if (ret < 0)
2026 			goto done;
2027 
2028 		if (level == 0) {
2029 			p->slots[level] = slot;
2030 			unlock_up(p, level, lowest_unlock, 0, NULL);
2031 			goto done;
2032 		}
2033 
2034 		if (ret && slot > 0) {
2035 			dec = 1;
2036 			slot--;
2037 		}
2038 		p->slots[level] = slot;
2039 		unlock_up(p, level, lowest_unlock, 0, NULL);
2040 
2041 		if (level == lowest_level) {
2042 			if (dec)
2043 				p->slots[level]++;
2044 			goto done;
2045 		}
2046 
2047 		err = read_block_for_search(root, p, &b, level, slot, key);
2048 		if (err == -EAGAIN)
2049 			goto again;
2050 		if (err) {
2051 			ret = err;
2052 			goto done;
2053 		}
2054 
2055 		level = btrfs_header_level(b);
2056 		btrfs_tree_read_lock(b);
2057 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2058 		if (!b) {
2059 			ret = -ENOMEM;
2060 			goto done;
2061 		}
2062 		p->locks[level] = BTRFS_READ_LOCK;
2063 		p->nodes[level] = b;
2064 	}
2065 	ret = 1;
2066 done:
2067 	if (ret < 0)
2068 		btrfs_release_path(p);
2069 
2070 	return ret;
2071 }
2072 
2073 /*
2074  * helper to use instead of search slot if no exact match is needed but
2075  * instead the next or previous item should be returned.
2076  * When find_higher is true, the next higher item is returned, the next lower
2077  * otherwise.
2078  * When return_any and find_higher are both true, and no higher item is found,
2079  * return the next lower instead.
2080  * When return_any is true and find_higher is false, and no lower item is found,
2081  * return the next higher instead.
2082  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2083  * < 0 on error
2084  */
2085 int btrfs_search_slot_for_read(struct btrfs_root *root,
2086 			       const struct btrfs_key *key,
2087 			       struct btrfs_path *p, int find_higher,
2088 			       int return_any)
2089 {
2090 	int ret;
2091 	struct extent_buffer *leaf;
2092 
2093 again:
2094 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2095 	if (ret <= 0)
2096 		return ret;
2097 	/*
2098 	 * a return value of 1 means the path is at the position where the
2099 	 * item should be inserted. Normally this is the next bigger item,
2100 	 * but in case the previous item is the last in a leaf, path points
2101 	 * to the first free slot in the previous leaf, i.e. at an invalid
2102 	 * item.
2103 	 */
2104 	leaf = p->nodes[0];
2105 
2106 	if (find_higher) {
2107 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2108 			ret = btrfs_next_leaf(root, p);
2109 			if (ret <= 0)
2110 				return ret;
2111 			if (!return_any)
2112 				return 1;
2113 			/*
2114 			 * no higher item found, return the next
2115 			 * lower instead
2116 			 */
2117 			return_any = 0;
2118 			find_higher = 0;
2119 			btrfs_release_path(p);
2120 			goto again;
2121 		}
2122 	} else {
2123 		if (p->slots[0] == 0) {
2124 			ret = btrfs_prev_leaf(root, p);
2125 			if (ret < 0)
2126 				return ret;
2127 			if (!ret) {
2128 				leaf = p->nodes[0];
2129 				if (p->slots[0] == btrfs_header_nritems(leaf))
2130 					p->slots[0]--;
2131 				return 0;
2132 			}
2133 			if (!return_any)
2134 				return 1;
2135 			/*
2136 			 * no lower item found, return the next
2137 			 * higher instead
2138 			 */
2139 			return_any = 0;
2140 			find_higher = 1;
2141 			btrfs_release_path(p);
2142 			goto again;
2143 		} else {
2144 			--p->slots[0];
2145 		}
2146 	}
2147 	return 0;
2148 }
2149 
2150 /*
2151  * adjust the pointers going up the tree, starting at level
2152  * making sure the right key of each node is points to 'key'.
2153  * This is used after shifting pointers to the left, so it stops
2154  * fixing up pointers when a given leaf/node is not in slot 0 of the
2155  * higher levels
2156  *
2157  */
2158 static void fixup_low_keys(struct btrfs_path *path,
2159 			   struct btrfs_disk_key *key, int level)
2160 {
2161 	int i;
2162 	struct extent_buffer *t;
2163 	int ret;
2164 
2165 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2166 		int tslot = path->slots[i];
2167 
2168 		if (!path->nodes[i])
2169 			break;
2170 		t = path->nodes[i];
2171 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2172 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2173 		BUG_ON(ret < 0);
2174 		btrfs_set_node_key(t, key, tslot);
2175 		btrfs_mark_buffer_dirty(path->nodes[i]);
2176 		if (tslot != 0)
2177 			break;
2178 	}
2179 }
2180 
2181 /*
2182  * update item key.
2183  *
2184  * This function isn't completely safe. It's the caller's responsibility
2185  * that the new key won't break the order
2186  */
2187 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2188 			     struct btrfs_path *path,
2189 			     const struct btrfs_key *new_key)
2190 {
2191 	struct btrfs_disk_key disk_key;
2192 	struct extent_buffer *eb;
2193 	int slot;
2194 
2195 	eb = path->nodes[0];
2196 	slot = path->slots[0];
2197 	if (slot > 0) {
2198 		btrfs_item_key(eb, &disk_key, slot - 1);
2199 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2200 			btrfs_crit(fs_info,
2201 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2202 				   slot, btrfs_disk_key_objectid(&disk_key),
2203 				   btrfs_disk_key_type(&disk_key),
2204 				   btrfs_disk_key_offset(&disk_key),
2205 				   new_key->objectid, new_key->type,
2206 				   new_key->offset);
2207 			btrfs_print_leaf(eb);
2208 			BUG();
2209 		}
2210 	}
2211 	if (slot < btrfs_header_nritems(eb) - 1) {
2212 		btrfs_item_key(eb, &disk_key, slot + 1);
2213 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2214 			btrfs_crit(fs_info,
2215 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2216 				   slot, btrfs_disk_key_objectid(&disk_key),
2217 				   btrfs_disk_key_type(&disk_key),
2218 				   btrfs_disk_key_offset(&disk_key),
2219 				   new_key->objectid, new_key->type,
2220 				   new_key->offset);
2221 			btrfs_print_leaf(eb);
2222 			BUG();
2223 		}
2224 	}
2225 
2226 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2227 	btrfs_set_item_key(eb, &disk_key, slot);
2228 	btrfs_mark_buffer_dirty(eb);
2229 	if (slot == 0)
2230 		fixup_low_keys(path, &disk_key, 1);
2231 }
2232 
2233 /*
2234  * Check key order of two sibling extent buffers.
2235  *
2236  * Return true if something is wrong.
2237  * Return false if everything is fine.
2238  *
2239  * Tree-checker only works inside one tree block, thus the following
2240  * corruption can not be detected by tree-checker:
2241  *
2242  * Leaf @left			| Leaf @right
2243  * --------------------------------------------------------------
2244  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2245  *
2246  * Key f6 in leaf @left itself is valid, but not valid when the next
2247  * key in leaf @right is 7.
2248  * This can only be checked at tree block merge time.
2249  * And since tree checker has ensured all key order in each tree block
2250  * is correct, we only need to bother the last key of @left and the first
2251  * key of @right.
2252  */
2253 static bool check_sibling_keys(struct extent_buffer *left,
2254 			       struct extent_buffer *right)
2255 {
2256 	struct btrfs_key left_last;
2257 	struct btrfs_key right_first;
2258 	int level = btrfs_header_level(left);
2259 	int nr_left = btrfs_header_nritems(left);
2260 	int nr_right = btrfs_header_nritems(right);
2261 
2262 	/* No key to check in one of the tree blocks */
2263 	if (!nr_left || !nr_right)
2264 		return false;
2265 
2266 	if (level) {
2267 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2268 		btrfs_node_key_to_cpu(right, &right_first, 0);
2269 	} else {
2270 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2271 		btrfs_item_key_to_cpu(right, &right_first, 0);
2272 	}
2273 
2274 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2275 		btrfs_crit(left->fs_info,
2276 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2277 			   left_last.objectid, left_last.type,
2278 			   left_last.offset, right_first.objectid,
2279 			   right_first.type, right_first.offset);
2280 		return true;
2281 	}
2282 	return false;
2283 }
2284 
2285 /*
2286  * try to push data from one node into the next node left in the
2287  * tree.
2288  *
2289  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2290  * error, and > 0 if there was no room in the left hand block.
2291  */
2292 static int push_node_left(struct btrfs_trans_handle *trans,
2293 			  struct extent_buffer *dst,
2294 			  struct extent_buffer *src, int empty)
2295 {
2296 	struct btrfs_fs_info *fs_info = trans->fs_info;
2297 	int push_items = 0;
2298 	int src_nritems;
2299 	int dst_nritems;
2300 	int ret = 0;
2301 
2302 	src_nritems = btrfs_header_nritems(src);
2303 	dst_nritems = btrfs_header_nritems(dst);
2304 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2305 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2306 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2307 
2308 	if (!empty && src_nritems <= 8)
2309 		return 1;
2310 
2311 	if (push_items <= 0)
2312 		return 1;
2313 
2314 	if (empty) {
2315 		push_items = min(src_nritems, push_items);
2316 		if (push_items < src_nritems) {
2317 			/* leave at least 8 pointers in the node if
2318 			 * we aren't going to empty it
2319 			 */
2320 			if (src_nritems - push_items < 8) {
2321 				if (push_items <= 8)
2322 					return 1;
2323 				push_items -= 8;
2324 			}
2325 		}
2326 	} else
2327 		push_items = min(src_nritems - 8, push_items);
2328 
2329 	/* dst is the left eb, src is the middle eb */
2330 	if (check_sibling_keys(dst, src)) {
2331 		ret = -EUCLEAN;
2332 		btrfs_abort_transaction(trans, ret);
2333 		return ret;
2334 	}
2335 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2336 	if (ret) {
2337 		btrfs_abort_transaction(trans, ret);
2338 		return ret;
2339 	}
2340 	copy_extent_buffer(dst, src,
2341 			   btrfs_node_key_ptr_offset(dst_nritems),
2342 			   btrfs_node_key_ptr_offset(0),
2343 			   push_items * sizeof(struct btrfs_key_ptr));
2344 
2345 	if (push_items < src_nritems) {
2346 		/*
2347 		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2348 		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2349 		 */
2350 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2351 				      btrfs_node_key_ptr_offset(push_items),
2352 				      (src_nritems - push_items) *
2353 				      sizeof(struct btrfs_key_ptr));
2354 	}
2355 	btrfs_set_header_nritems(src, src_nritems - push_items);
2356 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2357 	btrfs_mark_buffer_dirty(src);
2358 	btrfs_mark_buffer_dirty(dst);
2359 
2360 	return ret;
2361 }
2362 
2363 /*
2364  * try to push data from one node into the next node right in the
2365  * tree.
2366  *
2367  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2368  * error, and > 0 if there was no room in the right hand block.
2369  *
2370  * this will  only push up to 1/2 the contents of the left node over
2371  */
2372 static int balance_node_right(struct btrfs_trans_handle *trans,
2373 			      struct extent_buffer *dst,
2374 			      struct extent_buffer *src)
2375 {
2376 	struct btrfs_fs_info *fs_info = trans->fs_info;
2377 	int push_items = 0;
2378 	int max_push;
2379 	int src_nritems;
2380 	int dst_nritems;
2381 	int ret = 0;
2382 
2383 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2384 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2385 
2386 	src_nritems = btrfs_header_nritems(src);
2387 	dst_nritems = btrfs_header_nritems(dst);
2388 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2389 	if (push_items <= 0)
2390 		return 1;
2391 
2392 	if (src_nritems < 4)
2393 		return 1;
2394 
2395 	max_push = src_nritems / 2 + 1;
2396 	/* don't try to empty the node */
2397 	if (max_push >= src_nritems)
2398 		return 1;
2399 
2400 	if (max_push < push_items)
2401 		push_items = max_push;
2402 
2403 	/* dst is the right eb, src is the middle eb */
2404 	if (check_sibling_keys(src, dst)) {
2405 		ret = -EUCLEAN;
2406 		btrfs_abort_transaction(trans, ret);
2407 		return ret;
2408 	}
2409 	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2410 	BUG_ON(ret < 0);
2411 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2412 				      btrfs_node_key_ptr_offset(0),
2413 				      (dst_nritems) *
2414 				      sizeof(struct btrfs_key_ptr));
2415 
2416 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2417 					 push_items);
2418 	if (ret) {
2419 		btrfs_abort_transaction(trans, ret);
2420 		return ret;
2421 	}
2422 	copy_extent_buffer(dst, src,
2423 			   btrfs_node_key_ptr_offset(0),
2424 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2425 			   push_items * sizeof(struct btrfs_key_ptr));
2426 
2427 	btrfs_set_header_nritems(src, src_nritems - push_items);
2428 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2429 
2430 	btrfs_mark_buffer_dirty(src);
2431 	btrfs_mark_buffer_dirty(dst);
2432 
2433 	return ret;
2434 }
2435 
2436 /*
2437  * helper function to insert a new root level in the tree.
2438  * A new node is allocated, and a single item is inserted to
2439  * point to the existing root
2440  *
2441  * returns zero on success or < 0 on failure.
2442  */
2443 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2444 			   struct btrfs_root *root,
2445 			   struct btrfs_path *path, int level)
2446 {
2447 	struct btrfs_fs_info *fs_info = root->fs_info;
2448 	u64 lower_gen;
2449 	struct extent_buffer *lower;
2450 	struct extent_buffer *c;
2451 	struct extent_buffer *old;
2452 	struct btrfs_disk_key lower_key;
2453 	int ret;
2454 
2455 	BUG_ON(path->nodes[level]);
2456 	BUG_ON(path->nodes[level-1] != root->node);
2457 
2458 	lower = path->nodes[level-1];
2459 	if (level == 1)
2460 		btrfs_item_key(lower, &lower_key, 0);
2461 	else
2462 		btrfs_node_key(lower, &lower_key, 0);
2463 
2464 	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
2465 					 root->node->start, 0,
2466 					 BTRFS_NESTING_NEW_ROOT);
2467 	if (IS_ERR(c))
2468 		return PTR_ERR(c);
2469 
2470 	root_add_used(root, fs_info->nodesize);
2471 
2472 	btrfs_set_header_nritems(c, 1);
2473 	btrfs_set_node_key(c, &lower_key, 0);
2474 	btrfs_set_node_blockptr(c, 0, lower->start);
2475 	lower_gen = btrfs_header_generation(lower);
2476 	WARN_ON(lower_gen != trans->transid);
2477 
2478 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2479 
2480 	btrfs_mark_buffer_dirty(c);
2481 
2482 	old = root->node;
2483 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2484 	BUG_ON(ret < 0);
2485 	rcu_assign_pointer(root->node, c);
2486 
2487 	/* the super has an extra ref to root->node */
2488 	free_extent_buffer(old);
2489 
2490 	add_root_to_dirty_list(root);
2491 	atomic_inc(&c->refs);
2492 	path->nodes[level] = c;
2493 	path->locks[level] = BTRFS_WRITE_LOCK;
2494 	path->slots[level] = 0;
2495 	return 0;
2496 }
2497 
2498 /*
2499  * worker function to insert a single pointer in a node.
2500  * the node should have enough room for the pointer already
2501  *
2502  * slot and level indicate where you want the key to go, and
2503  * blocknr is the block the key points to.
2504  */
2505 static void insert_ptr(struct btrfs_trans_handle *trans,
2506 		       struct btrfs_path *path,
2507 		       struct btrfs_disk_key *key, u64 bytenr,
2508 		       int slot, int level)
2509 {
2510 	struct extent_buffer *lower;
2511 	int nritems;
2512 	int ret;
2513 
2514 	BUG_ON(!path->nodes[level]);
2515 	btrfs_assert_tree_locked(path->nodes[level]);
2516 	lower = path->nodes[level];
2517 	nritems = btrfs_header_nritems(lower);
2518 	BUG_ON(slot > nritems);
2519 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2520 	if (slot != nritems) {
2521 		if (level) {
2522 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2523 					slot, nritems - slot);
2524 			BUG_ON(ret < 0);
2525 		}
2526 		memmove_extent_buffer(lower,
2527 			      btrfs_node_key_ptr_offset(slot + 1),
2528 			      btrfs_node_key_ptr_offset(slot),
2529 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2530 	}
2531 	if (level) {
2532 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2533 					    BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2534 		BUG_ON(ret < 0);
2535 	}
2536 	btrfs_set_node_key(lower, key, slot);
2537 	btrfs_set_node_blockptr(lower, slot, bytenr);
2538 	WARN_ON(trans->transid == 0);
2539 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2540 	btrfs_set_header_nritems(lower, nritems + 1);
2541 	btrfs_mark_buffer_dirty(lower);
2542 }
2543 
2544 /*
2545  * split the node at the specified level in path in two.
2546  * The path is corrected to point to the appropriate node after the split
2547  *
2548  * Before splitting this tries to make some room in the node by pushing
2549  * left and right, if either one works, it returns right away.
2550  *
2551  * returns 0 on success and < 0 on failure
2552  */
2553 static noinline int split_node(struct btrfs_trans_handle *trans,
2554 			       struct btrfs_root *root,
2555 			       struct btrfs_path *path, int level)
2556 {
2557 	struct btrfs_fs_info *fs_info = root->fs_info;
2558 	struct extent_buffer *c;
2559 	struct extent_buffer *split;
2560 	struct btrfs_disk_key disk_key;
2561 	int mid;
2562 	int ret;
2563 	u32 c_nritems;
2564 
2565 	c = path->nodes[level];
2566 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2567 	if (c == root->node) {
2568 		/*
2569 		 * trying to split the root, lets make a new one
2570 		 *
2571 		 * tree mod log: We don't log_removal old root in
2572 		 * insert_new_root, because that root buffer will be kept as a
2573 		 * normal node. We are going to log removal of half of the
2574 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2575 		 * holding a tree lock on the buffer, which is why we cannot
2576 		 * race with other tree_mod_log users.
2577 		 */
2578 		ret = insert_new_root(trans, root, path, level + 1);
2579 		if (ret)
2580 			return ret;
2581 	} else {
2582 		ret = push_nodes_for_insert(trans, root, path, level);
2583 		c = path->nodes[level];
2584 		if (!ret && btrfs_header_nritems(c) <
2585 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2586 			return 0;
2587 		if (ret < 0)
2588 			return ret;
2589 	}
2590 
2591 	c_nritems = btrfs_header_nritems(c);
2592 	mid = (c_nritems + 1) / 2;
2593 	btrfs_node_key(c, &disk_key, mid);
2594 
2595 	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
2596 					     c->start, 0, BTRFS_NESTING_SPLIT);
2597 	if (IS_ERR(split))
2598 		return PTR_ERR(split);
2599 
2600 	root_add_used(root, fs_info->nodesize);
2601 	ASSERT(btrfs_header_level(c) == level);
2602 
2603 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2604 	if (ret) {
2605 		btrfs_abort_transaction(trans, ret);
2606 		return ret;
2607 	}
2608 	copy_extent_buffer(split, c,
2609 			   btrfs_node_key_ptr_offset(0),
2610 			   btrfs_node_key_ptr_offset(mid),
2611 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2612 	btrfs_set_header_nritems(split, c_nritems - mid);
2613 	btrfs_set_header_nritems(c, mid);
2614 
2615 	btrfs_mark_buffer_dirty(c);
2616 	btrfs_mark_buffer_dirty(split);
2617 
2618 	insert_ptr(trans, path, &disk_key, split->start,
2619 		   path->slots[level + 1] + 1, level + 1);
2620 
2621 	if (path->slots[level] >= mid) {
2622 		path->slots[level] -= mid;
2623 		btrfs_tree_unlock(c);
2624 		free_extent_buffer(c);
2625 		path->nodes[level] = split;
2626 		path->slots[level + 1] += 1;
2627 	} else {
2628 		btrfs_tree_unlock(split);
2629 		free_extent_buffer(split);
2630 	}
2631 	return 0;
2632 }
2633 
2634 /*
2635  * how many bytes are required to store the items in a leaf.  start
2636  * and nr indicate which items in the leaf to check.  This totals up the
2637  * space used both by the item structs and the item data
2638  */
2639 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2640 {
2641 	struct btrfs_item *start_item;
2642 	struct btrfs_item *end_item;
2643 	int data_len;
2644 	int nritems = btrfs_header_nritems(l);
2645 	int end = min(nritems, start + nr) - 1;
2646 
2647 	if (!nr)
2648 		return 0;
2649 	start_item = btrfs_item_nr(start);
2650 	end_item = btrfs_item_nr(end);
2651 	data_len = btrfs_item_offset(l, start_item) +
2652 		   btrfs_item_size(l, start_item);
2653 	data_len = data_len - btrfs_item_offset(l, end_item);
2654 	data_len += sizeof(struct btrfs_item) * nr;
2655 	WARN_ON(data_len < 0);
2656 	return data_len;
2657 }
2658 
2659 /*
2660  * The space between the end of the leaf items and
2661  * the start of the leaf data.  IOW, how much room
2662  * the leaf has left for both items and data
2663  */
2664 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2665 {
2666 	struct btrfs_fs_info *fs_info = leaf->fs_info;
2667 	int nritems = btrfs_header_nritems(leaf);
2668 	int ret;
2669 
2670 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2671 	if (ret < 0) {
2672 		btrfs_crit(fs_info,
2673 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2674 			   ret,
2675 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2676 			   leaf_space_used(leaf, 0, nritems), nritems);
2677 	}
2678 	return ret;
2679 }
2680 
2681 /*
2682  * min slot controls the lowest index we're willing to push to the
2683  * right.  We'll push up to and including min_slot, but no lower
2684  */
2685 static noinline int __push_leaf_right(struct btrfs_path *path,
2686 				      int data_size, int empty,
2687 				      struct extent_buffer *right,
2688 				      int free_space, u32 left_nritems,
2689 				      u32 min_slot)
2690 {
2691 	struct btrfs_fs_info *fs_info = right->fs_info;
2692 	struct extent_buffer *left = path->nodes[0];
2693 	struct extent_buffer *upper = path->nodes[1];
2694 	struct btrfs_map_token token;
2695 	struct btrfs_disk_key disk_key;
2696 	int slot;
2697 	u32 i;
2698 	int push_space = 0;
2699 	int push_items = 0;
2700 	struct btrfs_item *item;
2701 	u32 nr;
2702 	u32 right_nritems;
2703 	u32 data_end;
2704 	u32 this_item_size;
2705 
2706 	if (empty)
2707 		nr = 0;
2708 	else
2709 		nr = max_t(u32, 1, min_slot);
2710 
2711 	if (path->slots[0] >= left_nritems)
2712 		push_space += data_size;
2713 
2714 	slot = path->slots[1];
2715 	i = left_nritems - 1;
2716 	while (i >= nr) {
2717 		item = btrfs_item_nr(i);
2718 
2719 		if (!empty && push_items > 0) {
2720 			if (path->slots[0] > i)
2721 				break;
2722 			if (path->slots[0] == i) {
2723 				int space = btrfs_leaf_free_space(left);
2724 
2725 				if (space + push_space * 2 > free_space)
2726 					break;
2727 			}
2728 		}
2729 
2730 		if (path->slots[0] == i)
2731 			push_space += data_size;
2732 
2733 		this_item_size = btrfs_item_size(left, item);
2734 		if (this_item_size + sizeof(*item) + push_space > free_space)
2735 			break;
2736 
2737 		push_items++;
2738 		push_space += this_item_size + sizeof(*item);
2739 		if (i == 0)
2740 			break;
2741 		i--;
2742 	}
2743 
2744 	if (push_items == 0)
2745 		goto out_unlock;
2746 
2747 	WARN_ON(!empty && push_items == left_nritems);
2748 
2749 	/* push left to right */
2750 	right_nritems = btrfs_header_nritems(right);
2751 
2752 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2753 	push_space -= leaf_data_end(left);
2754 
2755 	/* make room in the right data area */
2756 	data_end = leaf_data_end(right);
2757 	memmove_extent_buffer(right,
2758 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2759 			      BTRFS_LEAF_DATA_OFFSET + data_end,
2760 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2761 
2762 	/* copy from the left data area */
2763 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2764 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2765 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2766 		     push_space);
2767 
2768 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2769 			      btrfs_item_nr_offset(0),
2770 			      right_nritems * sizeof(struct btrfs_item));
2771 
2772 	/* copy the items from left to right */
2773 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2774 		   btrfs_item_nr_offset(left_nritems - push_items),
2775 		   push_items * sizeof(struct btrfs_item));
2776 
2777 	/* update the item pointers */
2778 	btrfs_init_map_token(&token, right);
2779 	right_nritems += push_items;
2780 	btrfs_set_header_nritems(right, right_nritems);
2781 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2782 	for (i = 0; i < right_nritems; i++) {
2783 		item = btrfs_item_nr(i);
2784 		push_space -= btrfs_token_item_size(&token, item);
2785 		btrfs_set_token_item_offset(&token, item, push_space);
2786 	}
2787 
2788 	left_nritems -= push_items;
2789 	btrfs_set_header_nritems(left, left_nritems);
2790 
2791 	if (left_nritems)
2792 		btrfs_mark_buffer_dirty(left);
2793 	else
2794 		btrfs_clean_tree_block(left);
2795 
2796 	btrfs_mark_buffer_dirty(right);
2797 
2798 	btrfs_item_key(right, &disk_key, 0);
2799 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2800 	btrfs_mark_buffer_dirty(upper);
2801 
2802 	/* then fixup the leaf pointer in the path */
2803 	if (path->slots[0] >= left_nritems) {
2804 		path->slots[0] -= left_nritems;
2805 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2806 			btrfs_clean_tree_block(path->nodes[0]);
2807 		btrfs_tree_unlock(path->nodes[0]);
2808 		free_extent_buffer(path->nodes[0]);
2809 		path->nodes[0] = right;
2810 		path->slots[1] += 1;
2811 	} else {
2812 		btrfs_tree_unlock(right);
2813 		free_extent_buffer(right);
2814 	}
2815 	return 0;
2816 
2817 out_unlock:
2818 	btrfs_tree_unlock(right);
2819 	free_extent_buffer(right);
2820 	return 1;
2821 }
2822 
2823 /*
2824  * push some data in the path leaf to the right, trying to free up at
2825  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2826  *
2827  * returns 1 if the push failed because the other node didn't have enough
2828  * room, 0 if everything worked out and < 0 if there were major errors.
2829  *
2830  * this will push starting from min_slot to the end of the leaf.  It won't
2831  * push any slot lower than min_slot
2832  */
2833 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2834 			   *root, struct btrfs_path *path,
2835 			   int min_data_size, int data_size,
2836 			   int empty, u32 min_slot)
2837 {
2838 	struct extent_buffer *left = path->nodes[0];
2839 	struct extent_buffer *right;
2840 	struct extent_buffer *upper;
2841 	int slot;
2842 	int free_space;
2843 	u32 left_nritems;
2844 	int ret;
2845 
2846 	if (!path->nodes[1])
2847 		return 1;
2848 
2849 	slot = path->slots[1];
2850 	upper = path->nodes[1];
2851 	if (slot >= btrfs_header_nritems(upper) - 1)
2852 		return 1;
2853 
2854 	btrfs_assert_tree_locked(path->nodes[1]);
2855 
2856 	right = btrfs_read_node_slot(upper, slot + 1);
2857 	/*
2858 	 * slot + 1 is not valid or we fail to read the right node,
2859 	 * no big deal, just return.
2860 	 */
2861 	if (IS_ERR(right))
2862 		return 1;
2863 
2864 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2865 
2866 	free_space = btrfs_leaf_free_space(right);
2867 	if (free_space < data_size)
2868 		goto out_unlock;
2869 
2870 	/* cow and double check */
2871 	ret = btrfs_cow_block(trans, root, right, upper,
2872 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2873 	if (ret)
2874 		goto out_unlock;
2875 
2876 	free_space = btrfs_leaf_free_space(right);
2877 	if (free_space < data_size)
2878 		goto out_unlock;
2879 
2880 	left_nritems = btrfs_header_nritems(left);
2881 	if (left_nritems == 0)
2882 		goto out_unlock;
2883 
2884 	if (check_sibling_keys(left, right)) {
2885 		ret = -EUCLEAN;
2886 		btrfs_tree_unlock(right);
2887 		free_extent_buffer(right);
2888 		return ret;
2889 	}
2890 	if (path->slots[0] == left_nritems && !empty) {
2891 		/* Key greater than all keys in the leaf, right neighbor has
2892 		 * enough room for it and we're not emptying our leaf to delete
2893 		 * it, therefore use right neighbor to insert the new item and
2894 		 * no need to touch/dirty our left leaf. */
2895 		btrfs_tree_unlock(left);
2896 		free_extent_buffer(left);
2897 		path->nodes[0] = right;
2898 		path->slots[0] = 0;
2899 		path->slots[1]++;
2900 		return 0;
2901 	}
2902 
2903 	return __push_leaf_right(path, min_data_size, empty,
2904 				right, free_space, left_nritems, min_slot);
2905 out_unlock:
2906 	btrfs_tree_unlock(right);
2907 	free_extent_buffer(right);
2908 	return 1;
2909 }
2910 
2911 /*
2912  * push some data in the path leaf to the left, trying to free up at
2913  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2914  *
2915  * max_slot can put a limit on how far into the leaf we'll push items.  The
2916  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2917  * items
2918  */
2919 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
2920 				     int empty, struct extent_buffer *left,
2921 				     int free_space, u32 right_nritems,
2922 				     u32 max_slot)
2923 {
2924 	struct btrfs_fs_info *fs_info = left->fs_info;
2925 	struct btrfs_disk_key disk_key;
2926 	struct extent_buffer *right = path->nodes[0];
2927 	int i;
2928 	int push_space = 0;
2929 	int push_items = 0;
2930 	struct btrfs_item *item;
2931 	u32 old_left_nritems;
2932 	u32 nr;
2933 	int ret = 0;
2934 	u32 this_item_size;
2935 	u32 old_left_item_size;
2936 	struct btrfs_map_token token;
2937 
2938 	if (empty)
2939 		nr = min(right_nritems, max_slot);
2940 	else
2941 		nr = min(right_nritems - 1, max_slot);
2942 
2943 	for (i = 0; i < nr; i++) {
2944 		item = btrfs_item_nr(i);
2945 
2946 		if (!empty && push_items > 0) {
2947 			if (path->slots[0] < i)
2948 				break;
2949 			if (path->slots[0] == i) {
2950 				int space = btrfs_leaf_free_space(right);
2951 
2952 				if (space + push_space * 2 > free_space)
2953 					break;
2954 			}
2955 		}
2956 
2957 		if (path->slots[0] == i)
2958 			push_space += data_size;
2959 
2960 		this_item_size = btrfs_item_size(right, item);
2961 		if (this_item_size + sizeof(*item) + push_space > free_space)
2962 			break;
2963 
2964 		push_items++;
2965 		push_space += this_item_size + sizeof(*item);
2966 	}
2967 
2968 	if (push_items == 0) {
2969 		ret = 1;
2970 		goto out;
2971 	}
2972 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
2973 
2974 	/* push data from right to left */
2975 	copy_extent_buffer(left, right,
2976 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2977 			   btrfs_item_nr_offset(0),
2978 			   push_items * sizeof(struct btrfs_item));
2979 
2980 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
2981 		     btrfs_item_offset_nr(right, push_items - 1);
2982 
2983 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2984 		     leaf_data_end(left) - push_space,
2985 		     BTRFS_LEAF_DATA_OFFSET +
2986 		     btrfs_item_offset_nr(right, push_items - 1),
2987 		     push_space);
2988 	old_left_nritems = btrfs_header_nritems(left);
2989 	BUG_ON(old_left_nritems <= 0);
2990 
2991 	btrfs_init_map_token(&token, left);
2992 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2993 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2994 		u32 ioff;
2995 
2996 		item = btrfs_item_nr(i);
2997 
2998 		ioff = btrfs_token_item_offset(&token, item);
2999 		btrfs_set_token_item_offset(&token, item,
3000 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3001 	}
3002 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3003 
3004 	/* fixup right node */
3005 	if (push_items > right_nritems)
3006 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3007 		       right_nritems);
3008 
3009 	if (push_items < right_nritems) {
3010 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3011 						  leaf_data_end(right);
3012 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3013 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3014 				      BTRFS_LEAF_DATA_OFFSET +
3015 				      leaf_data_end(right), push_space);
3016 
3017 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3018 			      btrfs_item_nr_offset(push_items),
3019 			     (btrfs_header_nritems(right) - push_items) *
3020 			     sizeof(struct btrfs_item));
3021 	}
3022 
3023 	btrfs_init_map_token(&token, right);
3024 	right_nritems -= push_items;
3025 	btrfs_set_header_nritems(right, right_nritems);
3026 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3027 	for (i = 0; i < right_nritems; i++) {
3028 		item = btrfs_item_nr(i);
3029 
3030 		push_space = push_space - btrfs_token_item_size(&token, item);
3031 		btrfs_set_token_item_offset(&token, item, push_space);
3032 	}
3033 
3034 	btrfs_mark_buffer_dirty(left);
3035 	if (right_nritems)
3036 		btrfs_mark_buffer_dirty(right);
3037 	else
3038 		btrfs_clean_tree_block(right);
3039 
3040 	btrfs_item_key(right, &disk_key, 0);
3041 	fixup_low_keys(path, &disk_key, 1);
3042 
3043 	/* then fixup the leaf pointer in the path */
3044 	if (path->slots[0] < push_items) {
3045 		path->slots[0] += old_left_nritems;
3046 		btrfs_tree_unlock(path->nodes[0]);
3047 		free_extent_buffer(path->nodes[0]);
3048 		path->nodes[0] = left;
3049 		path->slots[1] -= 1;
3050 	} else {
3051 		btrfs_tree_unlock(left);
3052 		free_extent_buffer(left);
3053 		path->slots[0] -= push_items;
3054 	}
3055 	BUG_ON(path->slots[0] < 0);
3056 	return ret;
3057 out:
3058 	btrfs_tree_unlock(left);
3059 	free_extent_buffer(left);
3060 	return ret;
3061 }
3062 
3063 /*
3064  * push some data in the path leaf to the left, trying to free up at
3065  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3066  *
3067  * max_slot can put a limit on how far into the leaf we'll push items.  The
3068  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3069  * items
3070  */
3071 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3072 			  *root, struct btrfs_path *path, int min_data_size,
3073 			  int data_size, int empty, u32 max_slot)
3074 {
3075 	struct extent_buffer *right = path->nodes[0];
3076 	struct extent_buffer *left;
3077 	int slot;
3078 	int free_space;
3079 	u32 right_nritems;
3080 	int ret = 0;
3081 
3082 	slot = path->slots[1];
3083 	if (slot == 0)
3084 		return 1;
3085 	if (!path->nodes[1])
3086 		return 1;
3087 
3088 	right_nritems = btrfs_header_nritems(right);
3089 	if (right_nritems == 0)
3090 		return 1;
3091 
3092 	btrfs_assert_tree_locked(path->nodes[1]);
3093 
3094 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3095 	/*
3096 	 * slot - 1 is not valid or we fail to read the left node,
3097 	 * no big deal, just return.
3098 	 */
3099 	if (IS_ERR(left))
3100 		return 1;
3101 
3102 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3103 
3104 	free_space = btrfs_leaf_free_space(left);
3105 	if (free_space < data_size) {
3106 		ret = 1;
3107 		goto out;
3108 	}
3109 
3110 	/* cow and double check */
3111 	ret = btrfs_cow_block(trans, root, left,
3112 			      path->nodes[1], slot - 1, &left,
3113 			      BTRFS_NESTING_LEFT_COW);
3114 	if (ret) {
3115 		/* we hit -ENOSPC, but it isn't fatal here */
3116 		if (ret == -ENOSPC)
3117 			ret = 1;
3118 		goto out;
3119 	}
3120 
3121 	free_space = btrfs_leaf_free_space(left);
3122 	if (free_space < data_size) {
3123 		ret = 1;
3124 		goto out;
3125 	}
3126 
3127 	if (check_sibling_keys(left, right)) {
3128 		ret = -EUCLEAN;
3129 		goto out;
3130 	}
3131 	return __push_leaf_left(path, min_data_size,
3132 			       empty, left, free_space, right_nritems,
3133 			       max_slot);
3134 out:
3135 	btrfs_tree_unlock(left);
3136 	free_extent_buffer(left);
3137 	return ret;
3138 }
3139 
3140 /*
3141  * split the path's leaf in two, making sure there is at least data_size
3142  * available for the resulting leaf level of the path.
3143  */
3144 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3145 				    struct btrfs_path *path,
3146 				    struct extent_buffer *l,
3147 				    struct extent_buffer *right,
3148 				    int slot, int mid, int nritems)
3149 {
3150 	struct btrfs_fs_info *fs_info = trans->fs_info;
3151 	int data_copy_size;
3152 	int rt_data_off;
3153 	int i;
3154 	struct btrfs_disk_key disk_key;
3155 	struct btrfs_map_token token;
3156 
3157 	nritems = nritems - mid;
3158 	btrfs_set_header_nritems(right, nritems);
3159 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
3160 
3161 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3162 			   btrfs_item_nr_offset(mid),
3163 			   nritems * sizeof(struct btrfs_item));
3164 
3165 	copy_extent_buffer(right, l,
3166 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3167 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3168 		     leaf_data_end(l), data_copy_size);
3169 
3170 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
3171 
3172 	btrfs_init_map_token(&token, right);
3173 	for (i = 0; i < nritems; i++) {
3174 		struct btrfs_item *item = btrfs_item_nr(i);
3175 		u32 ioff;
3176 
3177 		ioff = btrfs_token_item_offset(&token, item);
3178 		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
3179 	}
3180 
3181 	btrfs_set_header_nritems(l, mid);
3182 	btrfs_item_key(right, &disk_key, 0);
3183 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3184 
3185 	btrfs_mark_buffer_dirty(right);
3186 	btrfs_mark_buffer_dirty(l);
3187 	BUG_ON(path->slots[0] != slot);
3188 
3189 	if (mid <= slot) {
3190 		btrfs_tree_unlock(path->nodes[0]);
3191 		free_extent_buffer(path->nodes[0]);
3192 		path->nodes[0] = right;
3193 		path->slots[0] -= mid;
3194 		path->slots[1] += 1;
3195 	} else {
3196 		btrfs_tree_unlock(right);
3197 		free_extent_buffer(right);
3198 	}
3199 
3200 	BUG_ON(path->slots[0] < 0);
3201 }
3202 
3203 /*
3204  * double splits happen when we need to insert a big item in the middle
3205  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3206  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3207  *          A                 B                 C
3208  *
3209  * We avoid this by trying to push the items on either side of our target
3210  * into the adjacent leaves.  If all goes well we can avoid the double split
3211  * completely.
3212  */
3213 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3214 					  struct btrfs_root *root,
3215 					  struct btrfs_path *path,
3216 					  int data_size)
3217 {
3218 	int ret;
3219 	int progress = 0;
3220 	int slot;
3221 	u32 nritems;
3222 	int space_needed = data_size;
3223 
3224 	slot = path->slots[0];
3225 	if (slot < btrfs_header_nritems(path->nodes[0]))
3226 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3227 
3228 	/*
3229 	 * try to push all the items after our slot into the
3230 	 * right leaf
3231 	 */
3232 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3233 	if (ret < 0)
3234 		return ret;
3235 
3236 	if (ret == 0)
3237 		progress++;
3238 
3239 	nritems = btrfs_header_nritems(path->nodes[0]);
3240 	/*
3241 	 * our goal is to get our slot at the start or end of a leaf.  If
3242 	 * we've done so we're done
3243 	 */
3244 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3245 		return 0;
3246 
3247 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3248 		return 0;
3249 
3250 	/* try to push all the items before our slot into the next leaf */
3251 	slot = path->slots[0];
3252 	space_needed = data_size;
3253 	if (slot > 0)
3254 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3255 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3256 	if (ret < 0)
3257 		return ret;
3258 
3259 	if (ret == 0)
3260 		progress++;
3261 
3262 	if (progress)
3263 		return 0;
3264 	return 1;
3265 }
3266 
3267 /*
3268  * split the path's leaf in two, making sure there is at least data_size
3269  * available for the resulting leaf level of the path.
3270  *
3271  * returns 0 if all went well and < 0 on failure.
3272  */
3273 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3274 			       struct btrfs_root *root,
3275 			       const struct btrfs_key *ins_key,
3276 			       struct btrfs_path *path, int data_size,
3277 			       int extend)
3278 {
3279 	struct btrfs_disk_key disk_key;
3280 	struct extent_buffer *l;
3281 	u32 nritems;
3282 	int mid;
3283 	int slot;
3284 	struct extent_buffer *right;
3285 	struct btrfs_fs_info *fs_info = root->fs_info;
3286 	int ret = 0;
3287 	int wret;
3288 	int split;
3289 	int num_doubles = 0;
3290 	int tried_avoid_double = 0;
3291 
3292 	l = path->nodes[0];
3293 	slot = path->slots[0];
3294 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3295 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3296 		return -EOVERFLOW;
3297 
3298 	/* first try to make some room by pushing left and right */
3299 	if (data_size && path->nodes[1]) {
3300 		int space_needed = data_size;
3301 
3302 		if (slot < btrfs_header_nritems(l))
3303 			space_needed -= btrfs_leaf_free_space(l);
3304 
3305 		wret = push_leaf_right(trans, root, path, space_needed,
3306 				       space_needed, 0, 0);
3307 		if (wret < 0)
3308 			return wret;
3309 		if (wret) {
3310 			space_needed = data_size;
3311 			if (slot > 0)
3312 				space_needed -= btrfs_leaf_free_space(l);
3313 			wret = push_leaf_left(trans, root, path, space_needed,
3314 					      space_needed, 0, (u32)-1);
3315 			if (wret < 0)
3316 				return wret;
3317 		}
3318 		l = path->nodes[0];
3319 
3320 		/* did the pushes work? */
3321 		if (btrfs_leaf_free_space(l) >= data_size)
3322 			return 0;
3323 	}
3324 
3325 	if (!path->nodes[1]) {
3326 		ret = insert_new_root(trans, root, path, 1);
3327 		if (ret)
3328 			return ret;
3329 	}
3330 again:
3331 	split = 1;
3332 	l = path->nodes[0];
3333 	slot = path->slots[0];
3334 	nritems = btrfs_header_nritems(l);
3335 	mid = (nritems + 1) / 2;
3336 
3337 	if (mid <= slot) {
3338 		if (nritems == 1 ||
3339 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3340 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3341 			if (slot >= nritems) {
3342 				split = 0;
3343 			} else {
3344 				mid = slot;
3345 				if (mid != nritems &&
3346 				    leaf_space_used(l, mid, nritems - mid) +
3347 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3348 					if (data_size && !tried_avoid_double)
3349 						goto push_for_double;
3350 					split = 2;
3351 				}
3352 			}
3353 		}
3354 	} else {
3355 		if (leaf_space_used(l, 0, mid) + data_size >
3356 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3357 			if (!extend && data_size && slot == 0) {
3358 				split = 0;
3359 			} else if ((extend || !data_size) && slot == 0) {
3360 				mid = 1;
3361 			} else {
3362 				mid = slot;
3363 				if (mid != nritems &&
3364 				    leaf_space_used(l, mid, nritems - mid) +
3365 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3366 					if (data_size && !tried_avoid_double)
3367 						goto push_for_double;
3368 					split = 2;
3369 				}
3370 			}
3371 		}
3372 	}
3373 
3374 	if (split == 0)
3375 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3376 	else
3377 		btrfs_item_key(l, &disk_key, mid);
3378 
3379 	/*
3380 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3381 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3382 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3383 	 * out.  In the future we could add a
3384 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3385 	 * use BTRFS_NESTING_NEW_ROOT.
3386 	 */
3387 	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
3388 					     l->start, 0, num_doubles ?
3389 					     BTRFS_NESTING_NEW_ROOT :
3390 					     BTRFS_NESTING_SPLIT);
3391 	if (IS_ERR(right))
3392 		return PTR_ERR(right);
3393 
3394 	root_add_used(root, fs_info->nodesize);
3395 
3396 	if (split == 0) {
3397 		if (mid <= slot) {
3398 			btrfs_set_header_nritems(right, 0);
3399 			insert_ptr(trans, path, &disk_key,
3400 				   right->start, path->slots[1] + 1, 1);
3401 			btrfs_tree_unlock(path->nodes[0]);
3402 			free_extent_buffer(path->nodes[0]);
3403 			path->nodes[0] = right;
3404 			path->slots[0] = 0;
3405 			path->slots[1] += 1;
3406 		} else {
3407 			btrfs_set_header_nritems(right, 0);
3408 			insert_ptr(trans, path, &disk_key,
3409 				   right->start, path->slots[1], 1);
3410 			btrfs_tree_unlock(path->nodes[0]);
3411 			free_extent_buffer(path->nodes[0]);
3412 			path->nodes[0] = right;
3413 			path->slots[0] = 0;
3414 			if (path->slots[1] == 0)
3415 				fixup_low_keys(path, &disk_key, 1);
3416 		}
3417 		/*
3418 		 * We create a new leaf 'right' for the required ins_len and
3419 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3420 		 * the content of ins_len to 'right'.
3421 		 */
3422 		return ret;
3423 	}
3424 
3425 	copy_for_split(trans, path, l, right, slot, mid, nritems);
3426 
3427 	if (split == 2) {
3428 		BUG_ON(num_doubles != 0);
3429 		num_doubles++;
3430 		goto again;
3431 	}
3432 
3433 	return 0;
3434 
3435 push_for_double:
3436 	push_for_double_split(trans, root, path, data_size);
3437 	tried_avoid_double = 1;
3438 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3439 		return 0;
3440 	goto again;
3441 }
3442 
3443 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3444 					 struct btrfs_root *root,
3445 					 struct btrfs_path *path, int ins_len)
3446 {
3447 	struct btrfs_key key;
3448 	struct extent_buffer *leaf;
3449 	struct btrfs_file_extent_item *fi;
3450 	u64 extent_len = 0;
3451 	u32 item_size;
3452 	int ret;
3453 
3454 	leaf = path->nodes[0];
3455 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3456 
3457 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3458 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3459 
3460 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3461 		return 0;
3462 
3463 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3464 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3465 		fi = btrfs_item_ptr(leaf, path->slots[0],
3466 				    struct btrfs_file_extent_item);
3467 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3468 	}
3469 	btrfs_release_path(path);
3470 
3471 	path->keep_locks = 1;
3472 	path->search_for_split = 1;
3473 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3474 	path->search_for_split = 0;
3475 	if (ret > 0)
3476 		ret = -EAGAIN;
3477 	if (ret < 0)
3478 		goto err;
3479 
3480 	ret = -EAGAIN;
3481 	leaf = path->nodes[0];
3482 	/* if our item isn't there, return now */
3483 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3484 		goto err;
3485 
3486 	/* the leaf has  changed, it now has room.  return now */
3487 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3488 		goto err;
3489 
3490 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3491 		fi = btrfs_item_ptr(leaf, path->slots[0],
3492 				    struct btrfs_file_extent_item);
3493 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3494 			goto err;
3495 	}
3496 
3497 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3498 	if (ret)
3499 		goto err;
3500 
3501 	path->keep_locks = 0;
3502 	btrfs_unlock_up_safe(path, 1);
3503 	return 0;
3504 err:
3505 	path->keep_locks = 0;
3506 	return ret;
3507 }
3508 
3509 static noinline int split_item(struct btrfs_path *path,
3510 			       const struct btrfs_key *new_key,
3511 			       unsigned long split_offset)
3512 {
3513 	struct extent_buffer *leaf;
3514 	struct btrfs_item *item;
3515 	struct btrfs_item *new_item;
3516 	int slot;
3517 	char *buf;
3518 	u32 nritems;
3519 	u32 item_size;
3520 	u32 orig_offset;
3521 	struct btrfs_disk_key disk_key;
3522 
3523 	leaf = path->nodes[0];
3524 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3525 
3526 	item = btrfs_item_nr(path->slots[0]);
3527 	orig_offset = btrfs_item_offset(leaf, item);
3528 	item_size = btrfs_item_size(leaf, item);
3529 
3530 	buf = kmalloc(item_size, GFP_NOFS);
3531 	if (!buf)
3532 		return -ENOMEM;
3533 
3534 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3535 			    path->slots[0]), item_size);
3536 
3537 	slot = path->slots[0] + 1;
3538 	nritems = btrfs_header_nritems(leaf);
3539 	if (slot != nritems) {
3540 		/* shift the items */
3541 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3542 				btrfs_item_nr_offset(slot),
3543 				(nritems - slot) * sizeof(struct btrfs_item));
3544 	}
3545 
3546 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3547 	btrfs_set_item_key(leaf, &disk_key, slot);
3548 
3549 	new_item = btrfs_item_nr(slot);
3550 
3551 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3552 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3553 
3554 	btrfs_set_item_offset(leaf, item,
3555 			      orig_offset + item_size - split_offset);
3556 	btrfs_set_item_size(leaf, item, split_offset);
3557 
3558 	btrfs_set_header_nritems(leaf, nritems + 1);
3559 
3560 	/* write the data for the start of the original item */
3561 	write_extent_buffer(leaf, buf,
3562 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3563 			    split_offset);
3564 
3565 	/* write the data for the new item */
3566 	write_extent_buffer(leaf, buf + split_offset,
3567 			    btrfs_item_ptr_offset(leaf, slot),
3568 			    item_size - split_offset);
3569 	btrfs_mark_buffer_dirty(leaf);
3570 
3571 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3572 	kfree(buf);
3573 	return 0;
3574 }
3575 
3576 /*
3577  * This function splits a single item into two items,
3578  * giving 'new_key' to the new item and splitting the
3579  * old one at split_offset (from the start of the item).
3580  *
3581  * The path may be released by this operation.  After
3582  * the split, the path is pointing to the old item.  The
3583  * new item is going to be in the same node as the old one.
3584  *
3585  * Note, the item being split must be smaller enough to live alone on
3586  * a tree block with room for one extra struct btrfs_item
3587  *
3588  * This allows us to split the item in place, keeping a lock on the
3589  * leaf the entire time.
3590  */
3591 int btrfs_split_item(struct btrfs_trans_handle *trans,
3592 		     struct btrfs_root *root,
3593 		     struct btrfs_path *path,
3594 		     const struct btrfs_key *new_key,
3595 		     unsigned long split_offset)
3596 {
3597 	int ret;
3598 	ret = setup_leaf_for_split(trans, root, path,
3599 				   sizeof(struct btrfs_item));
3600 	if (ret)
3601 		return ret;
3602 
3603 	ret = split_item(path, new_key, split_offset);
3604 	return ret;
3605 }
3606 
3607 /*
3608  * This function duplicate a item, giving 'new_key' to the new item.
3609  * It guarantees both items live in the same tree leaf and the new item
3610  * is contiguous with the original item.
3611  *
3612  * This allows us to split file extent in place, keeping a lock on the
3613  * leaf the entire time.
3614  */
3615 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3616 			 struct btrfs_root *root,
3617 			 struct btrfs_path *path,
3618 			 const struct btrfs_key *new_key)
3619 {
3620 	struct extent_buffer *leaf;
3621 	int ret;
3622 	u32 item_size;
3623 
3624 	leaf = path->nodes[0];
3625 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3626 	ret = setup_leaf_for_split(trans, root, path,
3627 				   item_size + sizeof(struct btrfs_item));
3628 	if (ret)
3629 		return ret;
3630 
3631 	path->slots[0]++;
3632 	setup_items_for_insert(root, path, new_key, &item_size, 1);
3633 	leaf = path->nodes[0];
3634 	memcpy_extent_buffer(leaf,
3635 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3636 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3637 			     item_size);
3638 	return 0;
3639 }
3640 
3641 /*
3642  * make the item pointed to by the path smaller.  new_size indicates
3643  * how small to make it, and from_end tells us if we just chop bytes
3644  * off the end of the item or if we shift the item to chop bytes off
3645  * the front.
3646  */
3647 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3648 {
3649 	int slot;
3650 	struct extent_buffer *leaf;
3651 	struct btrfs_item *item;
3652 	u32 nritems;
3653 	unsigned int data_end;
3654 	unsigned int old_data_start;
3655 	unsigned int old_size;
3656 	unsigned int size_diff;
3657 	int i;
3658 	struct btrfs_map_token token;
3659 
3660 	leaf = path->nodes[0];
3661 	slot = path->slots[0];
3662 
3663 	old_size = btrfs_item_size_nr(leaf, slot);
3664 	if (old_size == new_size)
3665 		return;
3666 
3667 	nritems = btrfs_header_nritems(leaf);
3668 	data_end = leaf_data_end(leaf);
3669 
3670 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3671 
3672 	size_diff = old_size - new_size;
3673 
3674 	BUG_ON(slot < 0);
3675 	BUG_ON(slot >= nritems);
3676 
3677 	/*
3678 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3679 	 */
3680 	/* first correct the data pointers */
3681 	btrfs_init_map_token(&token, leaf);
3682 	for (i = slot; i < nritems; i++) {
3683 		u32 ioff;
3684 		item = btrfs_item_nr(i);
3685 
3686 		ioff = btrfs_token_item_offset(&token, item);
3687 		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
3688 	}
3689 
3690 	/* shift the data */
3691 	if (from_end) {
3692 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3693 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3694 			      data_end, old_data_start + new_size - data_end);
3695 	} else {
3696 		struct btrfs_disk_key disk_key;
3697 		u64 offset;
3698 
3699 		btrfs_item_key(leaf, &disk_key, slot);
3700 
3701 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3702 			unsigned long ptr;
3703 			struct btrfs_file_extent_item *fi;
3704 
3705 			fi = btrfs_item_ptr(leaf, slot,
3706 					    struct btrfs_file_extent_item);
3707 			fi = (struct btrfs_file_extent_item *)(
3708 			     (unsigned long)fi - size_diff);
3709 
3710 			if (btrfs_file_extent_type(leaf, fi) ==
3711 			    BTRFS_FILE_EXTENT_INLINE) {
3712 				ptr = btrfs_item_ptr_offset(leaf, slot);
3713 				memmove_extent_buffer(leaf, ptr,
3714 				      (unsigned long)fi,
3715 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3716 			}
3717 		}
3718 
3719 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3720 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3721 			      data_end, old_data_start - data_end);
3722 
3723 		offset = btrfs_disk_key_offset(&disk_key);
3724 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3725 		btrfs_set_item_key(leaf, &disk_key, slot);
3726 		if (slot == 0)
3727 			fixup_low_keys(path, &disk_key, 1);
3728 	}
3729 
3730 	item = btrfs_item_nr(slot);
3731 	btrfs_set_item_size(leaf, item, new_size);
3732 	btrfs_mark_buffer_dirty(leaf);
3733 
3734 	if (btrfs_leaf_free_space(leaf) < 0) {
3735 		btrfs_print_leaf(leaf);
3736 		BUG();
3737 	}
3738 }
3739 
3740 /*
3741  * make the item pointed to by the path bigger, data_size is the added size.
3742  */
3743 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3744 {
3745 	int slot;
3746 	struct extent_buffer *leaf;
3747 	struct btrfs_item *item;
3748 	u32 nritems;
3749 	unsigned int data_end;
3750 	unsigned int old_data;
3751 	unsigned int old_size;
3752 	int i;
3753 	struct btrfs_map_token token;
3754 
3755 	leaf = path->nodes[0];
3756 
3757 	nritems = btrfs_header_nritems(leaf);
3758 	data_end = leaf_data_end(leaf);
3759 
3760 	if (btrfs_leaf_free_space(leaf) < data_size) {
3761 		btrfs_print_leaf(leaf);
3762 		BUG();
3763 	}
3764 	slot = path->slots[0];
3765 	old_data = btrfs_item_end_nr(leaf, slot);
3766 
3767 	BUG_ON(slot < 0);
3768 	if (slot >= nritems) {
3769 		btrfs_print_leaf(leaf);
3770 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3771 			   slot, nritems);
3772 		BUG();
3773 	}
3774 
3775 	/*
3776 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3777 	 */
3778 	/* first correct the data pointers */
3779 	btrfs_init_map_token(&token, leaf);
3780 	for (i = slot; i < nritems; i++) {
3781 		u32 ioff;
3782 		item = btrfs_item_nr(i);
3783 
3784 		ioff = btrfs_token_item_offset(&token, item);
3785 		btrfs_set_token_item_offset(&token, item, ioff - data_size);
3786 	}
3787 
3788 	/* shift the data */
3789 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3790 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3791 		      data_end, old_data - data_end);
3792 
3793 	data_end = old_data;
3794 	old_size = btrfs_item_size_nr(leaf, slot);
3795 	item = btrfs_item_nr(slot);
3796 	btrfs_set_item_size(leaf, item, old_size + data_size);
3797 	btrfs_mark_buffer_dirty(leaf);
3798 
3799 	if (btrfs_leaf_free_space(leaf) < 0) {
3800 		btrfs_print_leaf(leaf);
3801 		BUG();
3802 	}
3803 }
3804 
3805 /**
3806  * setup_items_for_insert - Helper called before inserting one or more items
3807  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3808  * in a function that doesn't call btrfs_search_slot
3809  *
3810  * @root:	root we are inserting items to
3811  * @path:	points to the leaf/slot where we are going to insert new items
3812  * @cpu_key:	array of keys for items to be inserted
3813  * @data_size:	size of the body of each item we are going to insert
3814  * @nr:		size of @cpu_key/@data_size arrays
3815  */
3816 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3817 			    const struct btrfs_key *cpu_key, u32 *data_size,
3818 			    int nr)
3819 {
3820 	struct btrfs_fs_info *fs_info = root->fs_info;
3821 	struct btrfs_item *item;
3822 	int i;
3823 	u32 nritems;
3824 	unsigned int data_end;
3825 	struct btrfs_disk_key disk_key;
3826 	struct extent_buffer *leaf;
3827 	int slot;
3828 	struct btrfs_map_token token;
3829 	u32 total_size;
3830 	u32 total_data = 0;
3831 
3832 	for (i = 0; i < nr; i++)
3833 		total_data += data_size[i];
3834 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3835 
3836 	if (path->slots[0] == 0) {
3837 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3838 		fixup_low_keys(path, &disk_key, 1);
3839 	}
3840 	btrfs_unlock_up_safe(path, 1);
3841 
3842 	leaf = path->nodes[0];
3843 	slot = path->slots[0];
3844 
3845 	nritems = btrfs_header_nritems(leaf);
3846 	data_end = leaf_data_end(leaf);
3847 
3848 	if (btrfs_leaf_free_space(leaf) < total_size) {
3849 		btrfs_print_leaf(leaf);
3850 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
3851 			   total_size, btrfs_leaf_free_space(leaf));
3852 		BUG();
3853 	}
3854 
3855 	btrfs_init_map_token(&token, leaf);
3856 	if (slot != nritems) {
3857 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3858 
3859 		if (old_data < data_end) {
3860 			btrfs_print_leaf(leaf);
3861 			btrfs_crit(fs_info,
3862 		"item at slot %d with data offset %u beyond data end of leaf %u",
3863 				   slot, old_data, data_end);
3864 			BUG();
3865 		}
3866 		/*
3867 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3868 		 */
3869 		/* first correct the data pointers */
3870 		for (i = slot; i < nritems; i++) {
3871 			u32 ioff;
3872 
3873 			item = btrfs_item_nr(i);
3874 			ioff = btrfs_token_item_offset(&token, item);
3875 			btrfs_set_token_item_offset(&token, item,
3876 						    ioff - total_data);
3877 		}
3878 		/* shift the items */
3879 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3880 			      btrfs_item_nr_offset(slot),
3881 			      (nritems - slot) * sizeof(struct btrfs_item));
3882 
3883 		/* shift the data */
3884 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3885 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
3886 			      data_end, old_data - data_end);
3887 		data_end = old_data;
3888 	}
3889 
3890 	/* setup the item for the new data */
3891 	for (i = 0; i < nr; i++) {
3892 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3893 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3894 		item = btrfs_item_nr(slot + i);
3895 		data_end -= data_size[i];
3896 		btrfs_set_token_item_offset(&token, item, data_end);
3897 		btrfs_set_token_item_size(&token, item, data_size[i]);
3898 	}
3899 
3900 	btrfs_set_header_nritems(leaf, nritems + nr);
3901 	btrfs_mark_buffer_dirty(leaf);
3902 
3903 	if (btrfs_leaf_free_space(leaf) < 0) {
3904 		btrfs_print_leaf(leaf);
3905 		BUG();
3906 	}
3907 }
3908 
3909 /*
3910  * Given a key and some data, insert items into the tree.
3911  * This does all the path init required, making room in the tree if needed.
3912  */
3913 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3914 			    struct btrfs_root *root,
3915 			    struct btrfs_path *path,
3916 			    const struct btrfs_key *cpu_key, u32 *data_size,
3917 			    int nr)
3918 {
3919 	int ret = 0;
3920 	int slot;
3921 	int i;
3922 	u32 total_size = 0;
3923 	u32 total_data = 0;
3924 
3925 	for (i = 0; i < nr; i++)
3926 		total_data += data_size[i];
3927 
3928 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3929 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3930 	if (ret == 0)
3931 		return -EEXIST;
3932 	if (ret < 0)
3933 		return ret;
3934 
3935 	slot = path->slots[0];
3936 	BUG_ON(slot < 0);
3937 
3938 	setup_items_for_insert(root, path, cpu_key, data_size, nr);
3939 	return 0;
3940 }
3941 
3942 /*
3943  * Given a key and some data, insert an item into the tree.
3944  * This does all the path init required, making room in the tree if needed.
3945  */
3946 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3947 		      const struct btrfs_key *cpu_key, void *data,
3948 		      u32 data_size)
3949 {
3950 	int ret = 0;
3951 	struct btrfs_path *path;
3952 	struct extent_buffer *leaf;
3953 	unsigned long ptr;
3954 
3955 	path = btrfs_alloc_path();
3956 	if (!path)
3957 		return -ENOMEM;
3958 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3959 	if (!ret) {
3960 		leaf = path->nodes[0];
3961 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3962 		write_extent_buffer(leaf, data, ptr, data_size);
3963 		btrfs_mark_buffer_dirty(leaf);
3964 	}
3965 	btrfs_free_path(path);
3966 	return ret;
3967 }
3968 
3969 /*
3970  * delete the pointer from a given node.
3971  *
3972  * the tree should have been previously balanced so the deletion does not
3973  * empty a node.
3974  */
3975 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
3976 		    int level, int slot)
3977 {
3978 	struct extent_buffer *parent = path->nodes[level];
3979 	u32 nritems;
3980 	int ret;
3981 
3982 	nritems = btrfs_header_nritems(parent);
3983 	if (slot != nritems - 1) {
3984 		if (level) {
3985 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
3986 					slot + 1, nritems - slot - 1);
3987 			BUG_ON(ret < 0);
3988 		}
3989 		memmove_extent_buffer(parent,
3990 			      btrfs_node_key_ptr_offset(slot),
3991 			      btrfs_node_key_ptr_offset(slot + 1),
3992 			      sizeof(struct btrfs_key_ptr) *
3993 			      (nritems - slot - 1));
3994 	} else if (level) {
3995 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
3996 				BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
3997 		BUG_ON(ret < 0);
3998 	}
3999 
4000 	nritems--;
4001 	btrfs_set_header_nritems(parent, nritems);
4002 	if (nritems == 0 && parent == root->node) {
4003 		BUG_ON(btrfs_header_level(root->node) != 1);
4004 		/* just turn the root into a leaf and break */
4005 		btrfs_set_header_level(root->node, 0);
4006 	} else if (slot == 0) {
4007 		struct btrfs_disk_key disk_key;
4008 
4009 		btrfs_node_key(parent, &disk_key, 0);
4010 		fixup_low_keys(path, &disk_key, level + 1);
4011 	}
4012 	btrfs_mark_buffer_dirty(parent);
4013 }
4014 
4015 /*
4016  * a helper function to delete the leaf pointed to by path->slots[1] and
4017  * path->nodes[1].
4018  *
4019  * This deletes the pointer in path->nodes[1] and frees the leaf
4020  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4021  *
4022  * The path must have already been setup for deleting the leaf, including
4023  * all the proper balancing.  path->nodes[1] must be locked.
4024  */
4025 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4026 				    struct btrfs_root *root,
4027 				    struct btrfs_path *path,
4028 				    struct extent_buffer *leaf)
4029 {
4030 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4031 	del_ptr(root, path, 1, path->slots[1]);
4032 
4033 	/*
4034 	 * btrfs_free_extent is expensive, we want to make sure we
4035 	 * aren't holding any locks when we call it
4036 	 */
4037 	btrfs_unlock_up_safe(path, 0);
4038 
4039 	root_sub_used(root, leaf->len);
4040 
4041 	atomic_inc(&leaf->refs);
4042 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4043 	free_extent_buffer_stale(leaf);
4044 }
4045 /*
4046  * delete the item at the leaf level in path.  If that empties
4047  * the leaf, remove it from the tree
4048  */
4049 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4050 		    struct btrfs_path *path, int slot, int nr)
4051 {
4052 	struct btrfs_fs_info *fs_info = root->fs_info;
4053 	struct extent_buffer *leaf;
4054 	struct btrfs_item *item;
4055 	u32 last_off;
4056 	u32 dsize = 0;
4057 	int ret = 0;
4058 	int wret;
4059 	int i;
4060 	u32 nritems;
4061 
4062 	leaf = path->nodes[0];
4063 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4064 
4065 	for (i = 0; i < nr; i++)
4066 		dsize += btrfs_item_size_nr(leaf, slot + i);
4067 
4068 	nritems = btrfs_header_nritems(leaf);
4069 
4070 	if (slot + nr != nritems) {
4071 		int data_end = leaf_data_end(leaf);
4072 		struct btrfs_map_token token;
4073 
4074 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4075 			      data_end + dsize,
4076 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4077 			      last_off - data_end);
4078 
4079 		btrfs_init_map_token(&token, leaf);
4080 		for (i = slot + nr; i < nritems; i++) {
4081 			u32 ioff;
4082 
4083 			item = btrfs_item_nr(i);
4084 			ioff = btrfs_token_item_offset(&token, item);
4085 			btrfs_set_token_item_offset(&token, item, ioff + dsize);
4086 		}
4087 
4088 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4089 			      btrfs_item_nr_offset(slot + nr),
4090 			      sizeof(struct btrfs_item) *
4091 			      (nritems - slot - nr));
4092 	}
4093 	btrfs_set_header_nritems(leaf, nritems - nr);
4094 	nritems -= nr;
4095 
4096 	/* delete the leaf if we've emptied it */
4097 	if (nritems == 0) {
4098 		if (leaf == root->node) {
4099 			btrfs_set_header_level(leaf, 0);
4100 		} else {
4101 			btrfs_clean_tree_block(leaf);
4102 			btrfs_del_leaf(trans, root, path, leaf);
4103 		}
4104 	} else {
4105 		int used = leaf_space_used(leaf, 0, nritems);
4106 		if (slot == 0) {
4107 			struct btrfs_disk_key disk_key;
4108 
4109 			btrfs_item_key(leaf, &disk_key, 0);
4110 			fixup_low_keys(path, &disk_key, 1);
4111 		}
4112 
4113 		/* delete the leaf if it is mostly empty */
4114 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4115 			/* push_leaf_left fixes the path.
4116 			 * make sure the path still points to our leaf
4117 			 * for possible call to del_ptr below
4118 			 */
4119 			slot = path->slots[1];
4120 			atomic_inc(&leaf->refs);
4121 
4122 			wret = push_leaf_left(trans, root, path, 1, 1,
4123 					      1, (u32)-1);
4124 			if (wret < 0 && wret != -ENOSPC)
4125 				ret = wret;
4126 
4127 			if (path->nodes[0] == leaf &&
4128 			    btrfs_header_nritems(leaf)) {
4129 				wret = push_leaf_right(trans, root, path, 1,
4130 						       1, 1, 0);
4131 				if (wret < 0 && wret != -ENOSPC)
4132 					ret = wret;
4133 			}
4134 
4135 			if (btrfs_header_nritems(leaf) == 0) {
4136 				path->slots[1] = slot;
4137 				btrfs_del_leaf(trans, root, path, leaf);
4138 				free_extent_buffer(leaf);
4139 				ret = 0;
4140 			} else {
4141 				/* if we're still in the path, make sure
4142 				 * we're dirty.  Otherwise, one of the
4143 				 * push_leaf functions must have already
4144 				 * dirtied this buffer
4145 				 */
4146 				if (path->nodes[0] == leaf)
4147 					btrfs_mark_buffer_dirty(leaf);
4148 				free_extent_buffer(leaf);
4149 			}
4150 		} else {
4151 			btrfs_mark_buffer_dirty(leaf);
4152 		}
4153 	}
4154 	return ret;
4155 }
4156 
4157 /*
4158  * search the tree again to find a leaf with lesser keys
4159  * returns 0 if it found something or 1 if there are no lesser leaves.
4160  * returns < 0 on io errors.
4161  *
4162  * This may release the path, and so you may lose any locks held at the
4163  * time you call it.
4164  */
4165 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4166 {
4167 	struct btrfs_key key;
4168 	struct btrfs_disk_key found_key;
4169 	int ret;
4170 
4171 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4172 
4173 	if (key.offset > 0) {
4174 		key.offset--;
4175 	} else if (key.type > 0) {
4176 		key.type--;
4177 		key.offset = (u64)-1;
4178 	} else if (key.objectid > 0) {
4179 		key.objectid--;
4180 		key.type = (u8)-1;
4181 		key.offset = (u64)-1;
4182 	} else {
4183 		return 1;
4184 	}
4185 
4186 	btrfs_release_path(path);
4187 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4188 	if (ret < 0)
4189 		return ret;
4190 	btrfs_item_key(path->nodes[0], &found_key, 0);
4191 	ret = comp_keys(&found_key, &key);
4192 	/*
4193 	 * We might have had an item with the previous key in the tree right
4194 	 * before we released our path. And after we released our path, that
4195 	 * item might have been pushed to the first slot (0) of the leaf we
4196 	 * were holding due to a tree balance. Alternatively, an item with the
4197 	 * previous key can exist as the only element of a leaf (big fat item).
4198 	 * Therefore account for these 2 cases, so that our callers (like
4199 	 * btrfs_previous_item) don't miss an existing item with a key matching
4200 	 * the previous key we computed above.
4201 	 */
4202 	if (ret <= 0)
4203 		return 0;
4204 	return 1;
4205 }
4206 
4207 /*
4208  * A helper function to walk down the tree starting at min_key, and looking
4209  * for nodes or leaves that are have a minimum transaction id.
4210  * This is used by the btree defrag code, and tree logging
4211  *
4212  * This does not cow, but it does stuff the starting key it finds back
4213  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4214  * key and get a writable path.
4215  *
4216  * This honors path->lowest_level to prevent descent past a given level
4217  * of the tree.
4218  *
4219  * min_trans indicates the oldest transaction that you are interested
4220  * in walking through.  Any nodes or leaves older than min_trans are
4221  * skipped over (without reading them).
4222  *
4223  * returns zero if something useful was found, < 0 on error and 1 if there
4224  * was nothing in the tree that matched the search criteria.
4225  */
4226 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4227 			 struct btrfs_path *path,
4228 			 u64 min_trans)
4229 {
4230 	struct extent_buffer *cur;
4231 	struct btrfs_key found_key;
4232 	int slot;
4233 	int sret;
4234 	u32 nritems;
4235 	int level;
4236 	int ret = 1;
4237 	int keep_locks = path->keep_locks;
4238 
4239 	path->keep_locks = 1;
4240 again:
4241 	cur = btrfs_read_lock_root_node(root);
4242 	level = btrfs_header_level(cur);
4243 	WARN_ON(path->nodes[level]);
4244 	path->nodes[level] = cur;
4245 	path->locks[level] = BTRFS_READ_LOCK;
4246 
4247 	if (btrfs_header_generation(cur) < min_trans) {
4248 		ret = 1;
4249 		goto out;
4250 	}
4251 	while (1) {
4252 		nritems = btrfs_header_nritems(cur);
4253 		level = btrfs_header_level(cur);
4254 		sret = btrfs_bin_search(cur, min_key, &slot);
4255 		if (sret < 0) {
4256 			ret = sret;
4257 			goto out;
4258 		}
4259 
4260 		/* at the lowest level, we're done, setup the path and exit */
4261 		if (level == path->lowest_level) {
4262 			if (slot >= nritems)
4263 				goto find_next_key;
4264 			ret = 0;
4265 			path->slots[level] = slot;
4266 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4267 			goto out;
4268 		}
4269 		if (sret && slot > 0)
4270 			slot--;
4271 		/*
4272 		 * check this node pointer against the min_trans parameters.
4273 		 * If it is too old, skip to the next one.
4274 		 */
4275 		while (slot < nritems) {
4276 			u64 gen;
4277 
4278 			gen = btrfs_node_ptr_generation(cur, slot);
4279 			if (gen < min_trans) {
4280 				slot++;
4281 				continue;
4282 			}
4283 			break;
4284 		}
4285 find_next_key:
4286 		/*
4287 		 * we didn't find a candidate key in this node, walk forward
4288 		 * and find another one
4289 		 */
4290 		if (slot >= nritems) {
4291 			path->slots[level] = slot;
4292 			sret = btrfs_find_next_key(root, path, min_key, level,
4293 						  min_trans);
4294 			if (sret == 0) {
4295 				btrfs_release_path(path);
4296 				goto again;
4297 			} else {
4298 				goto out;
4299 			}
4300 		}
4301 		/* save our key for returning back */
4302 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4303 		path->slots[level] = slot;
4304 		if (level == path->lowest_level) {
4305 			ret = 0;
4306 			goto out;
4307 		}
4308 		cur = btrfs_read_node_slot(cur, slot);
4309 		if (IS_ERR(cur)) {
4310 			ret = PTR_ERR(cur);
4311 			goto out;
4312 		}
4313 
4314 		btrfs_tree_read_lock(cur);
4315 
4316 		path->locks[level - 1] = BTRFS_READ_LOCK;
4317 		path->nodes[level - 1] = cur;
4318 		unlock_up(path, level, 1, 0, NULL);
4319 	}
4320 out:
4321 	path->keep_locks = keep_locks;
4322 	if (ret == 0) {
4323 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4324 		memcpy(min_key, &found_key, sizeof(found_key));
4325 	}
4326 	return ret;
4327 }
4328 
4329 /*
4330  * this is similar to btrfs_next_leaf, but does not try to preserve
4331  * and fixup the path.  It looks for and returns the next key in the
4332  * tree based on the current path and the min_trans parameters.
4333  *
4334  * 0 is returned if another key is found, < 0 if there are any errors
4335  * and 1 is returned if there are no higher keys in the tree
4336  *
4337  * path->keep_locks should be set to 1 on the search made before
4338  * calling this function.
4339  */
4340 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4341 			struct btrfs_key *key, int level, u64 min_trans)
4342 {
4343 	int slot;
4344 	struct extent_buffer *c;
4345 
4346 	WARN_ON(!path->keep_locks && !path->skip_locking);
4347 	while (level < BTRFS_MAX_LEVEL) {
4348 		if (!path->nodes[level])
4349 			return 1;
4350 
4351 		slot = path->slots[level] + 1;
4352 		c = path->nodes[level];
4353 next:
4354 		if (slot >= btrfs_header_nritems(c)) {
4355 			int ret;
4356 			int orig_lowest;
4357 			struct btrfs_key cur_key;
4358 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4359 			    !path->nodes[level + 1])
4360 				return 1;
4361 
4362 			if (path->locks[level + 1] || path->skip_locking) {
4363 				level++;
4364 				continue;
4365 			}
4366 
4367 			slot = btrfs_header_nritems(c) - 1;
4368 			if (level == 0)
4369 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4370 			else
4371 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4372 
4373 			orig_lowest = path->lowest_level;
4374 			btrfs_release_path(path);
4375 			path->lowest_level = level;
4376 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4377 						0, 0);
4378 			path->lowest_level = orig_lowest;
4379 			if (ret < 0)
4380 				return ret;
4381 
4382 			c = path->nodes[level];
4383 			slot = path->slots[level];
4384 			if (ret == 0)
4385 				slot++;
4386 			goto next;
4387 		}
4388 
4389 		if (level == 0)
4390 			btrfs_item_key_to_cpu(c, key, slot);
4391 		else {
4392 			u64 gen = btrfs_node_ptr_generation(c, slot);
4393 
4394 			if (gen < min_trans) {
4395 				slot++;
4396 				goto next;
4397 			}
4398 			btrfs_node_key_to_cpu(c, key, slot);
4399 		}
4400 		return 0;
4401 	}
4402 	return 1;
4403 }
4404 
4405 /*
4406  * search the tree again to find a leaf with greater keys
4407  * returns 0 if it found something or 1 if there are no greater leaves.
4408  * returns < 0 on io errors.
4409  */
4410 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4411 {
4412 	return btrfs_next_old_leaf(root, path, 0);
4413 }
4414 
4415 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4416 			u64 time_seq)
4417 {
4418 	int slot;
4419 	int level;
4420 	struct extent_buffer *c;
4421 	struct extent_buffer *next;
4422 	struct btrfs_key key;
4423 	u32 nritems;
4424 	int ret;
4425 	int i;
4426 
4427 	nritems = btrfs_header_nritems(path->nodes[0]);
4428 	if (nritems == 0)
4429 		return 1;
4430 
4431 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4432 again:
4433 	level = 1;
4434 	next = NULL;
4435 	btrfs_release_path(path);
4436 
4437 	path->keep_locks = 1;
4438 
4439 	if (time_seq)
4440 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4441 	else
4442 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4443 	path->keep_locks = 0;
4444 
4445 	if (ret < 0)
4446 		return ret;
4447 
4448 	nritems = btrfs_header_nritems(path->nodes[0]);
4449 	/*
4450 	 * by releasing the path above we dropped all our locks.  A balance
4451 	 * could have added more items next to the key that used to be
4452 	 * at the very end of the block.  So, check again here and
4453 	 * advance the path if there are now more items available.
4454 	 */
4455 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4456 		if (ret == 0)
4457 			path->slots[0]++;
4458 		ret = 0;
4459 		goto done;
4460 	}
4461 	/*
4462 	 * So the above check misses one case:
4463 	 * - after releasing the path above, someone has removed the item that
4464 	 *   used to be at the very end of the block, and balance between leafs
4465 	 *   gets another one with bigger key.offset to replace it.
4466 	 *
4467 	 * This one should be returned as well, or we can get leaf corruption
4468 	 * later(esp. in __btrfs_drop_extents()).
4469 	 *
4470 	 * And a bit more explanation about this check,
4471 	 * with ret > 0, the key isn't found, the path points to the slot
4472 	 * where it should be inserted, so the path->slots[0] item must be the
4473 	 * bigger one.
4474 	 */
4475 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4476 		ret = 0;
4477 		goto done;
4478 	}
4479 
4480 	while (level < BTRFS_MAX_LEVEL) {
4481 		if (!path->nodes[level]) {
4482 			ret = 1;
4483 			goto done;
4484 		}
4485 
4486 		slot = path->slots[level] + 1;
4487 		c = path->nodes[level];
4488 		if (slot >= btrfs_header_nritems(c)) {
4489 			level++;
4490 			if (level == BTRFS_MAX_LEVEL) {
4491 				ret = 1;
4492 				goto done;
4493 			}
4494 			continue;
4495 		}
4496 
4497 
4498 		/*
4499 		 * Our current level is where we're going to start from, and to
4500 		 * make sure lockdep doesn't complain we need to drop our locks
4501 		 * and nodes from 0 to our current level.
4502 		 */
4503 		for (i = 0; i < level; i++) {
4504 			if (path->locks[level]) {
4505 				btrfs_tree_read_unlock(path->nodes[i]);
4506 				path->locks[i] = 0;
4507 			}
4508 			free_extent_buffer(path->nodes[i]);
4509 			path->nodes[i] = NULL;
4510 		}
4511 
4512 		next = c;
4513 		ret = read_block_for_search(root, path, &next, level,
4514 					    slot, &key);
4515 		if (ret == -EAGAIN)
4516 			goto again;
4517 
4518 		if (ret < 0) {
4519 			btrfs_release_path(path);
4520 			goto done;
4521 		}
4522 
4523 		if (!path->skip_locking) {
4524 			ret = btrfs_try_tree_read_lock(next);
4525 			if (!ret && time_seq) {
4526 				/*
4527 				 * If we don't get the lock, we may be racing
4528 				 * with push_leaf_left, holding that lock while
4529 				 * itself waiting for the leaf we've currently
4530 				 * locked. To solve this situation, we give up
4531 				 * on our lock and cycle.
4532 				 */
4533 				free_extent_buffer(next);
4534 				btrfs_release_path(path);
4535 				cond_resched();
4536 				goto again;
4537 			}
4538 			if (!ret)
4539 				btrfs_tree_read_lock(next);
4540 		}
4541 		break;
4542 	}
4543 	path->slots[level] = slot;
4544 	while (1) {
4545 		level--;
4546 		path->nodes[level] = next;
4547 		path->slots[level] = 0;
4548 		if (!path->skip_locking)
4549 			path->locks[level] = BTRFS_READ_LOCK;
4550 		if (!level)
4551 			break;
4552 
4553 		ret = read_block_for_search(root, path, &next, level,
4554 					    0, &key);
4555 		if (ret == -EAGAIN)
4556 			goto again;
4557 
4558 		if (ret < 0) {
4559 			btrfs_release_path(path);
4560 			goto done;
4561 		}
4562 
4563 		if (!path->skip_locking)
4564 			btrfs_tree_read_lock(next);
4565 	}
4566 	ret = 0;
4567 done:
4568 	unlock_up(path, 0, 1, 0, NULL);
4569 
4570 	return ret;
4571 }
4572 
4573 /*
4574  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4575  * searching until it gets past min_objectid or finds an item of 'type'
4576  *
4577  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4578  */
4579 int btrfs_previous_item(struct btrfs_root *root,
4580 			struct btrfs_path *path, u64 min_objectid,
4581 			int type)
4582 {
4583 	struct btrfs_key found_key;
4584 	struct extent_buffer *leaf;
4585 	u32 nritems;
4586 	int ret;
4587 
4588 	while (1) {
4589 		if (path->slots[0] == 0) {
4590 			ret = btrfs_prev_leaf(root, path);
4591 			if (ret != 0)
4592 				return ret;
4593 		} else {
4594 			path->slots[0]--;
4595 		}
4596 		leaf = path->nodes[0];
4597 		nritems = btrfs_header_nritems(leaf);
4598 		if (nritems == 0)
4599 			return 1;
4600 		if (path->slots[0] == nritems)
4601 			path->slots[0]--;
4602 
4603 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4604 		if (found_key.objectid < min_objectid)
4605 			break;
4606 		if (found_key.type == type)
4607 			return 0;
4608 		if (found_key.objectid == min_objectid &&
4609 		    found_key.type < type)
4610 			break;
4611 	}
4612 	return 1;
4613 }
4614 
4615 /*
4616  * search in extent tree to find a previous Metadata/Data extent item with
4617  * min objecitd.
4618  *
4619  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4620  */
4621 int btrfs_previous_extent_item(struct btrfs_root *root,
4622 			struct btrfs_path *path, u64 min_objectid)
4623 {
4624 	struct btrfs_key found_key;
4625 	struct extent_buffer *leaf;
4626 	u32 nritems;
4627 	int ret;
4628 
4629 	while (1) {
4630 		if (path->slots[0] == 0) {
4631 			ret = btrfs_prev_leaf(root, path);
4632 			if (ret != 0)
4633 				return ret;
4634 		} else {
4635 			path->slots[0]--;
4636 		}
4637 		leaf = path->nodes[0];
4638 		nritems = btrfs_header_nritems(leaf);
4639 		if (nritems == 0)
4640 			return 1;
4641 		if (path->slots[0] == nritems)
4642 			path->slots[0]--;
4643 
4644 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4645 		if (found_key.objectid < min_objectid)
4646 			break;
4647 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4648 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
4649 			return 0;
4650 		if (found_key.objectid == min_objectid &&
4651 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
4652 			break;
4653 	}
4654 	return 1;
4655 }
4656