1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/pagevec.h> 12 #include <linux/highmem.h> 13 #include <linux/kthread.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/psi.h> 20 #include <linux/slab.h> 21 #include <linux/sched/mm.h> 22 #include <linux/log2.h> 23 #include <linux/shrinker.h> 24 #include <crypto/hash.h> 25 #include "misc.h" 26 #include "ctree.h" 27 #include "fs.h" 28 #include "disk-io.h" 29 #include "transaction.h" 30 #include "btrfs_inode.h" 31 #include "bio.h" 32 #include "ordered-data.h" 33 #include "compression.h" 34 #include "extent_io.h" 35 #include "extent_map.h" 36 #include "subpage.h" 37 #include "zoned.h" 38 #include "file-item.h" 39 #include "super.h" 40 41 static struct bio_set btrfs_compressed_bioset; 42 43 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 44 45 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 46 { 47 switch (type) { 48 case BTRFS_COMPRESS_ZLIB: 49 case BTRFS_COMPRESS_LZO: 50 case BTRFS_COMPRESS_ZSTD: 51 case BTRFS_COMPRESS_NONE: 52 return btrfs_compress_types[type]; 53 default: 54 break; 55 } 56 57 return NULL; 58 } 59 60 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio) 61 { 62 return container_of(bbio, struct compressed_bio, bbio); 63 } 64 65 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode, 66 u64 start, blk_opf_t op, 67 btrfs_bio_end_io_t end_io) 68 { 69 struct btrfs_bio *bbio; 70 71 bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op, 72 GFP_NOFS, &btrfs_compressed_bioset)); 73 btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL); 74 bbio->inode = inode; 75 bbio->file_offset = start; 76 return to_compressed_bio(bbio); 77 } 78 79 bool btrfs_compress_is_valid_type(const char *str, size_t len) 80 { 81 int i; 82 83 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 84 size_t comp_len = strlen(btrfs_compress_types[i]); 85 86 if (len < comp_len) 87 continue; 88 89 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 90 return true; 91 } 92 return false; 93 } 94 95 static int compression_compress_pages(int type, struct list_head *ws, 96 struct address_space *mapping, u64 start, struct page **pages, 97 unsigned long *out_pages, unsigned long *total_in, 98 unsigned long *total_out) 99 { 100 switch (type) { 101 case BTRFS_COMPRESS_ZLIB: 102 return zlib_compress_pages(ws, mapping, start, pages, 103 out_pages, total_in, total_out); 104 case BTRFS_COMPRESS_LZO: 105 return lzo_compress_pages(ws, mapping, start, pages, 106 out_pages, total_in, total_out); 107 case BTRFS_COMPRESS_ZSTD: 108 return zstd_compress_pages(ws, mapping, start, pages, 109 out_pages, total_in, total_out); 110 case BTRFS_COMPRESS_NONE: 111 default: 112 /* 113 * This can happen when compression races with remount setting 114 * it to 'no compress', while caller doesn't call 115 * inode_need_compress() to check if we really need to 116 * compress. 117 * 118 * Not a big deal, just need to inform caller that we 119 * haven't allocated any pages yet. 120 */ 121 *out_pages = 0; 122 return -E2BIG; 123 } 124 } 125 126 static int compression_decompress_bio(struct list_head *ws, 127 struct compressed_bio *cb) 128 { 129 switch (cb->compress_type) { 130 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 131 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 132 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 133 case BTRFS_COMPRESS_NONE: 134 default: 135 /* 136 * This can't happen, the type is validated several times 137 * before we get here. 138 */ 139 BUG(); 140 } 141 } 142 143 static int compression_decompress(int type, struct list_head *ws, 144 const u8 *data_in, struct page *dest_page, 145 unsigned long start_byte, size_t srclen, size_t destlen) 146 { 147 switch (type) { 148 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 149 start_byte, srclen, destlen); 150 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 151 start_byte, srclen, destlen); 152 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 153 start_byte, srclen, destlen); 154 case BTRFS_COMPRESS_NONE: 155 default: 156 /* 157 * This can't happen, the type is validated several times 158 * before we get here. 159 */ 160 BUG(); 161 } 162 } 163 164 static void btrfs_free_compressed_pages(struct compressed_bio *cb) 165 { 166 for (unsigned int i = 0; i < cb->nr_pages; i++) 167 btrfs_free_compr_page(cb->compressed_pages[i]); 168 kfree(cb->compressed_pages); 169 } 170 171 static int btrfs_decompress_bio(struct compressed_bio *cb); 172 173 /* 174 * Global cache of last unused pages for compression/decompression. 175 */ 176 static struct btrfs_compr_pool { 177 struct shrinker *shrinker; 178 spinlock_t lock; 179 struct list_head list; 180 int count; 181 int thresh; 182 } compr_pool; 183 184 static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc) 185 { 186 int ret; 187 188 /* 189 * We must not read the values more than once if 'ret' gets expanded in 190 * the return statement so we don't accidentally return a negative 191 * number, even if the first condition finds it positive. 192 */ 193 ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh); 194 195 return ret > 0 ? ret : 0; 196 } 197 198 static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc) 199 { 200 struct list_head remove; 201 struct list_head *tmp, *next; 202 int freed; 203 204 if (compr_pool.count == 0) 205 return SHRINK_STOP; 206 207 INIT_LIST_HEAD(&remove); 208 209 /* For now, just simply drain the whole list. */ 210 spin_lock(&compr_pool.lock); 211 list_splice_init(&compr_pool.list, &remove); 212 freed = compr_pool.count; 213 compr_pool.count = 0; 214 spin_unlock(&compr_pool.lock); 215 216 list_for_each_safe(tmp, next, &remove) { 217 struct page *page = list_entry(tmp, struct page, lru); 218 219 ASSERT(page_ref_count(page) == 1); 220 put_page(page); 221 } 222 223 return freed; 224 } 225 226 /* 227 * Common wrappers for page allocation from compression wrappers 228 */ 229 struct page *btrfs_alloc_compr_page(void) 230 { 231 struct page *page = NULL; 232 233 spin_lock(&compr_pool.lock); 234 if (compr_pool.count > 0) { 235 page = list_first_entry(&compr_pool.list, struct page, lru); 236 list_del_init(&page->lru); 237 compr_pool.count--; 238 } 239 spin_unlock(&compr_pool.lock); 240 241 if (page) 242 return page; 243 244 return alloc_page(GFP_NOFS); 245 } 246 247 void btrfs_free_compr_page(struct page *page) 248 { 249 bool do_free = false; 250 251 spin_lock(&compr_pool.lock); 252 if (compr_pool.count > compr_pool.thresh) { 253 do_free = true; 254 } else { 255 list_add(&page->lru, &compr_pool.list); 256 compr_pool.count++; 257 } 258 spin_unlock(&compr_pool.lock); 259 260 if (!do_free) 261 return; 262 263 ASSERT(page_ref_count(page) == 1); 264 put_page(page); 265 } 266 267 static void end_bbio_comprssed_read(struct btrfs_bio *bbio) 268 { 269 struct compressed_bio *cb = to_compressed_bio(bbio); 270 blk_status_t status = bbio->bio.bi_status; 271 272 if (!status) 273 status = errno_to_blk_status(btrfs_decompress_bio(cb)); 274 275 btrfs_free_compressed_pages(cb); 276 btrfs_bio_end_io(cb->orig_bbio, status); 277 bio_put(&bbio->bio); 278 } 279 280 /* 281 * Clear the writeback bits on all of the file 282 * pages for a compressed write 283 */ 284 static noinline void end_compressed_writeback(const struct compressed_bio *cb) 285 { 286 struct inode *inode = &cb->bbio.inode->vfs_inode; 287 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 288 unsigned long index = cb->start >> PAGE_SHIFT; 289 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 290 struct folio_batch fbatch; 291 const int error = blk_status_to_errno(cb->bbio.bio.bi_status); 292 int i; 293 int ret; 294 295 if (error) 296 mapping_set_error(inode->i_mapping, error); 297 298 folio_batch_init(&fbatch); 299 while (index <= end_index) { 300 ret = filemap_get_folios(inode->i_mapping, &index, end_index, 301 &fbatch); 302 303 if (ret == 0) 304 return; 305 306 for (i = 0; i < ret; i++) { 307 struct folio *folio = fbatch.folios[i]; 308 309 btrfs_folio_clamp_clear_writeback(fs_info, folio, 310 cb->start, cb->len); 311 } 312 folio_batch_release(&fbatch); 313 } 314 /* the inode may be gone now */ 315 } 316 317 static void btrfs_finish_compressed_write_work(struct work_struct *work) 318 { 319 struct compressed_bio *cb = 320 container_of(work, struct compressed_bio, write_end_work); 321 322 btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len, 323 cb->bbio.bio.bi_status == BLK_STS_OK); 324 325 if (cb->writeback) 326 end_compressed_writeback(cb); 327 /* Note, our inode could be gone now */ 328 329 btrfs_free_compressed_pages(cb); 330 bio_put(&cb->bbio.bio); 331 } 332 333 /* 334 * Do the cleanup once all the compressed pages hit the disk. This will clear 335 * writeback on the file pages and free the compressed pages. 336 * 337 * This also calls the writeback end hooks for the file pages so that metadata 338 * and checksums can be updated in the file. 339 */ 340 static void end_bbio_comprssed_write(struct btrfs_bio *bbio) 341 { 342 struct compressed_bio *cb = to_compressed_bio(bbio); 343 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 344 345 queue_work(fs_info->compressed_write_workers, &cb->write_end_work); 346 } 347 348 static void btrfs_add_compressed_bio_pages(struct compressed_bio *cb) 349 { 350 struct bio *bio = &cb->bbio.bio; 351 u32 offset = 0; 352 353 while (offset < cb->compressed_len) { 354 u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE); 355 356 /* Maximum compressed extent is smaller than bio size limit. */ 357 __bio_add_page(bio, cb->compressed_pages[offset >> PAGE_SHIFT], 358 len, 0); 359 offset += len; 360 } 361 } 362 363 /* 364 * worker function to build and submit bios for previously compressed pages. 365 * The corresponding pages in the inode should be marked for writeback 366 * and the compressed pages should have a reference on them for dropping 367 * when the IO is complete. 368 * 369 * This also checksums the file bytes and gets things ready for 370 * the end io hooks. 371 */ 372 void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered, 373 struct page **compressed_pages, 374 unsigned int nr_pages, 375 blk_opf_t write_flags, 376 bool writeback) 377 { 378 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 379 struct btrfs_fs_info *fs_info = inode->root->fs_info; 380 struct compressed_bio *cb; 381 382 ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize)); 383 ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize)); 384 385 cb = alloc_compressed_bio(inode, ordered->file_offset, 386 REQ_OP_WRITE | write_flags, 387 end_bbio_comprssed_write); 388 cb->start = ordered->file_offset; 389 cb->len = ordered->num_bytes; 390 cb->compressed_pages = compressed_pages; 391 cb->compressed_len = ordered->disk_num_bytes; 392 cb->writeback = writeback; 393 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work); 394 cb->nr_pages = nr_pages; 395 cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT; 396 cb->bbio.ordered = ordered; 397 btrfs_add_compressed_bio_pages(cb); 398 399 btrfs_submit_bio(&cb->bbio, 0); 400 } 401 402 /* 403 * Add extra pages in the same compressed file extent so that we don't need to 404 * re-read the same extent again and again. 405 * 406 * NOTE: this won't work well for subpage, as for subpage read, we lock the 407 * full page then submit bio for each compressed/regular extents. 408 * 409 * This means, if we have several sectors in the same page points to the same 410 * on-disk compressed data, we will re-read the same extent many times and 411 * this function can only help for the next page. 412 */ 413 static noinline int add_ra_bio_pages(struct inode *inode, 414 u64 compressed_end, 415 struct compressed_bio *cb, 416 int *memstall, unsigned long *pflags) 417 { 418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 419 unsigned long end_index; 420 struct bio *orig_bio = &cb->orig_bbio->bio; 421 u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size; 422 u64 isize = i_size_read(inode); 423 int ret; 424 struct page *page; 425 struct extent_map *em; 426 struct address_space *mapping = inode->i_mapping; 427 struct extent_map_tree *em_tree; 428 struct extent_io_tree *tree; 429 int sectors_missed = 0; 430 431 em_tree = &BTRFS_I(inode)->extent_tree; 432 tree = &BTRFS_I(inode)->io_tree; 433 434 if (isize == 0) 435 return 0; 436 437 /* 438 * For current subpage support, we only support 64K page size, 439 * which means maximum compressed extent size (128K) is just 2x page 440 * size. 441 * This makes readahead less effective, so here disable readahead for 442 * subpage for now, until full compressed write is supported. 443 */ 444 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE) 445 return 0; 446 447 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 448 449 while (cur < compressed_end) { 450 u64 page_end; 451 u64 pg_index = cur >> PAGE_SHIFT; 452 u32 add_size; 453 454 if (pg_index > end_index) 455 break; 456 457 page = xa_load(&mapping->i_pages, pg_index); 458 if (page && !xa_is_value(page)) { 459 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >> 460 fs_info->sectorsize_bits; 461 462 /* Beyond threshold, no need to continue */ 463 if (sectors_missed > 4) 464 break; 465 466 /* 467 * Jump to next page start as we already have page for 468 * current offset. 469 */ 470 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 471 continue; 472 } 473 474 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 475 ~__GFP_FS)); 476 if (!page) 477 break; 478 479 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 480 put_page(page); 481 /* There is already a page, skip to page end */ 482 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 483 continue; 484 } 485 486 if (!*memstall && PageWorkingset(page)) { 487 psi_memstall_enter(pflags); 488 *memstall = 1; 489 } 490 491 ret = set_page_extent_mapped(page); 492 if (ret < 0) { 493 unlock_page(page); 494 put_page(page); 495 break; 496 } 497 498 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1; 499 lock_extent(tree, cur, page_end, NULL); 500 read_lock(&em_tree->lock); 501 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur); 502 read_unlock(&em_tree->lock); 503 504 /* 505 * At this point, we have a locked page in the page cache for 506 * these bytes in the file. But, we have to make sure they map 507 * to this compressed extent on disk. 508 */ 509 if (!em || cur < em->start || 510 (cur + fs_info->sectorsize > extent_map_end(em)) || 511 (em->block_start >> SECTOR_SHIFT) != orig_bio->bi_iter.bi_sector) { 512 free_extent_map(em); 513 unlock_extent(tree, cur, page_end, NULL); 514 unlock_page(page); 515 put_page(page); 516 break; 517 } 518 free_extent_map(em); 519 520 if (page->index == end_index) { 521 size_t zero_offset = offset_in_page(isize); 522 523 if (zero_offset) { 524 int zeros; 525 zeros = PAGE_SIZE - zero_offset; 526 memzero_page(page, zero_offset, zeros); 527 } 528 } 529 530 add_size = min(em->start + em->len, page_end + 1) - cur; 531 ret = bio_add_page(orig_bio, page, add_size, offset_in_page(cur)); 532 if (ret != add_size) { 533 unlock_extent(tree, cur, page_end, NULL); 534 unlock_page(page); 535 put_page(page); 536 break; 537 } 538 /* 539 * If it's subpage, we also need to increase its 540 * subpage::readers number, as at endio we will decrease 541 * subpage::readers and to unlock the page. 542 */ 543 if (fs_info->sectorsize < PAGE_SIZE) 544 btrfs_subpage_start_reader(fs_info, page_folio(page), 545 cur, add_size); 546 put_page(page); 547 cur += add_size; 548 } 549 return 0; 550 } 551 552 /* 553 * for a compressed read, the bio we get passed has all the inode pages 554 * in it. We don't actually do IO on those pages but allocate new ones 555 * to hold the compressed pages on disk. 556 * 557 * bio->bi_iter.bi_sector points to the compressed extent on disk 558 * bio->bi_io_vec points to all of the inode pages 559 * 560 * After the compressed pages are read, we copy the bytes into the 561 * bio we were passed and then call the bio end_io calls 562 */ 563 void btrfs_submit_compressed_read(struct btrfs_bio *bbio) 564 { 565 struct btrfs_inode *inode = bbio->inode; 566 struct btrfs_fs_info *fs_info = inode->root->fs_info; 567 struct extent_map_tree *em_tree = &inode->extent_tree; 568 struct compressed_bio *cb; 569 unsigned int compressed_len; 570 u64 file_offset = bbio->file_offset; 571 u64 em_len; 572 u64 em_start; 573 struct extent_map *em; 574 unsigned long pflags; 575 int memstall = 0; 576 blk_status_t ret; 577 int ret2; 578 579 /* we need the actual starting offset of this extent in the file */ 580 read_lock(&em_tree->lock); 581 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); 582 read_unlock(&em_tree->lock); 583 if (!em) { 584 ret = BLK_STS_IOERR; 585 goto out; 586 } 587 588 ASSERT(extent_map_is_compressed(em)); 589 compressed_len = em->block_len; 590 591 cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ, 592 end_bbio_comprssed_read); 593 594 cb->start = em->orig_start; 595 em_len = em->len; 596 em_start = em->start; 597 598 cb->len = bbio->bio.bi_iter.bi_size; 599 cb->compressed_len = compressed_len; 600 cb->compress_type = extent_map_compression(em); 601 cb->orig_bbio = bbio; 602 603 free_extent_map(em); 604 605 cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 606 cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS); 607 if (!cb->compressed_pages) { 608 ret = BLK_STS_RESOURCE; 609 goto out_free_bio; 610 } 611 612 ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages, 0); 613 if (ret2) { 614 ret = BLK_STS_RESOURCE; 615 goto out_free_compressed_pages; 616 } 617 618 add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall, 619 &pflags); 620 621 /* include any pages we added in add_ra-bio_pages */ 622 cb->len = bbio->bio.bi_iter.bi_size; 623 cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector; 624 btrfs_add_compressed_bio_pages(cb); 625 626 if (memstall) 627 psi_memstall_leave(&pflags); 628 629 btrfs_submit_bio(&cb->bbio, 0); 630 return; 631 632 out_free_compressed_pages: 633 kfree(cb->compressed_pages); 634 out_free_bio: 635 bio_put(&cb->bbio.bio); 636 out: 637 btrfs_bio_end_io(bbio, ret); 638 } 639 640 /* 641 * Heuristic uses systematic sampling to collect data from the input data 642 * range, the logic can be tuned by the following constants: 643 * 644 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 645 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 646 */ 647 #define SAMPLING_READ_SIZE (16) 648 #define SAMPLING_INTERVAL (256) 649 650 /* 651 * For statistical analysis of the input data we consider bytes that form a 652 * Galois Field of 256 objects. Each object has an attribute count, ie. how 653 * many times the object appeared in the sample. 654 */ 655 #define BUCKET_SIZE (256) 656 657 /* 658 * The size of the sample is based on a statistical sampling rule of thumb. 659 * The common way is to perform sampling tests as long as the number of 660 * elements in each cell is at least 5. 661 * 662 * Instead of 5, we choose 32 to obtain more accurate results. 663 * If the data contain the maximum number of symbols, which is 256, we obtain a 664 * sample size bound by 8192. 665 * 666 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 667 * from up to 512 locations. 668 */ 669 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 670 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 671 672 struct bucket_item { 673 u32 count; 674 }; 675 676 struct heuristic_ws { 677 /* Partial copy of input data */ 678 u8 *sample; 679 u32 sample_size; 680 /* Buckets store counters for each byte value */ 681 struct bucket_item *bucket; 682 /* Sorting buffer */ 683 struct bucket_item *bucket_b; 684 struct list_head list; 685 }; 686 687 static struct workspace_manager heuristic_wsm; 688 689 static void free_heuristic_ws(struct list_head *ws) 690 { 691 struct heuristic_ws *workspace; 692 693 workspace = list_entry(ws, struct heuristic_ws, list); 694 695 kvfree(workspace->sample); 696 kfree(workspace->bucket); 697 kfree(workspace->bucket_b); 698 kfree(workspace); 699 } 700 701 static struct list_head *alloc_heuristic_ws(unsigned int level) 702 { 703 struct heuristic_ws *ws; 704 705 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 706 if (!ws) 707 return ERR_PTR(-ENOMEM); 708 709 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 710 if (!ws->sample) 711 goto fail; 712 713 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 714 if (!ws->bucket) 715 goto fail; 716 717 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 718 if (!ws->bucket_b) 719 goto fail; 720 721 INIT_LIST_HEAD(&ws->list); 722 return &ws->list; 723 fail: 724 free_heuristic_ws(&ws->list); 725 return ERR_PTR(-ENOMEM); 726 } 727 728 const struct btrfs_compress_op btrfs_heuristic_compress = { 729 .workspace_manager = &heuristic_wsm, 730 }; 731 732 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 733 /* The heuristic is represented as compression type 0 */ 734 &btrfs_heuristic_compress, 735 &btrfs_zlib_compress, 736 &btrfs_lzo_compress, 737 &btrfs_zstd_compress, 738 }; 739 740 static struct list_head *alloc_workspace(int type, unsigned int level) 741 { 742 switch (type) { 743 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 744 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 745 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 746 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 747 default: 748 /* 749 * This can't happen, the type is validated several times 750 * before we get here. 751 */ 752 BUG(); 753 } 754 } 755 756 static void free_workspace(int type, struct list_head *ws) 757 { 758 switch (type) { 759 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 760 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 761 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 762 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 763 default: 764 /* 765 * This can't happen, the type is validated several times 766 * before we get here. 767 */ 768 BUG(); 769 } 770 } 771 772 static void btrfs_init_workspace_manager(int type) 773 { 774 struct workspace_manager *wsm; 775 struct list_head *workspace; 776 777 wsm = btrfs_compress_op[type]->workspace_manager; 778 INIT_LIST_HEAD(&wsm->idle_ws); 779 spin_lock_init(&wsm->ws_lock); 780 atomic_set(&wsm->total_ws, 0); 781 init_waitqueue_head(&wsm->ws_wait); 782 783 /* 784 * Preallocate one workspace for each compression type so we can 785 * guarantee forward progress in the worst case 786 */ 787 workspace = alloc_workspace(type, 0); 788 if (IS_ERR(workspace)) { 789 pr_warn( 790 "BTRFS: cannot preallocate compression workspace, will try later\n"); 791 } else { 792 atomic_set(&wsm->total_ws, 1); 793 wsm->free_ws = 1; 794 list_add(workspace, &wsm->idle_ws); 795 } 796 } 797 798 static void btrfs_cleanup_workspace_manager(int type) 799 { 800 struct workspace_manager *wsman; 801 struct list_head *ws; 802 803 wsman = btrfs_compress_op[type]->workspace_manager; 804 while (!list_empty(&wsman->idle_ws)) { 805 ws = wsman->idle_ws.next; 806 list_del(ws); 807 free_workspace(type, ws); 808 atomic_dec(&wsman->total_ws); 809 } 810 } 811 812 /* 813 * This finds an available workspace or allocates a new one. 814 * If it's not possible to allocate a new one, waits until there's one. 815 * Preallocation makes a forward progress guarantees and we do not return 816 * errors. 817 */ 818 struct list_head *btrfs_get_workspace(int type, unsigned int level) 819 { 820 struct workspace_manager *wsm; 821 struct list_head *workspace; 822 int cpus = num_online_cpus(); 823 unsigned nofs_flag; 824 struct list_head *idle_ws; 825 spinlock_t *ws_lock; 826 atomic_t *total_ws; 827 wait_queue_head_t *ws_wait; 828 int *free_ws; 829 830 wsm = btrfs_compress_op[type]->workspace_manager; 831 idle_ws = &wsm->idle_ws; 832 ws_lock = &wsm->ws_lock; 833 total_ws = &wsm->total_ws; 834 ws_wait = &wsm->ws_wait; 835 free_ws = &wsm->free_ws; 836 837 again: 838 spin_lock(ws_lock); 839 if (!list_empty(idle_ws)) { 840 workspace = idle_ws->next; 841 list_del(workspace); 842 (*free_ws)--; 843 spin_unlock(ws_lock); 844 return workspace; 845 846 } 847 if (atomic_read(total_ws) > cpus) { 848 DEFINE_WAIT(wait); 849 850 spin_unlock(ws_lock); 851 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 852 if (atomic_read(total_ws) > cpus && !*free_ws) 853 schedule(); 854 finish_wait(ws_wait, &wait); 855 goto again; 856 } 857 atomic_inc(total_ws); 858 spin_unlock(ws_lock); 859 860 /* 861 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 862 * to turn it off here because we might get called from the restricted 863 * context of btrfs_compress_bio/btrfs_compress_pages 864 */ 865 nofs_flag = memalloc_nofs_save(); 866 workspace = alloc_workspace(type, level); 867 memalloc_nofs_restore(nofs_flag); 868 869 if (IS_ERR(workspace)) { 870 atomic_dec(total_ws); 871 wake_up(ws_wait); 872 873 /* 874 * Do not return the error but go back to waiting. There's a 875 * workspace preallocated for each type and the compression 876 * time is bounded so we get to a workspace eventually. This 877 * makes our caller's life easier. 878 * 879 * To prevent silent and low-probability deadlocks (when the 880 * initial preallocation fails), check if there are any 881 * workspaces at all. 882 */ 883 if (atomic_read(total_ws) == 0) { 884 static DEFINE_RATELIMIT_STATE(_rs, 885 /* once per minute */ 60 * HZ, 886 /* no burst */ 1); 887 888 if (__ratelimit(&_rs)) { 889 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 890 } 891 } 892 goto again; 893 } 894 return workspace; 895 } 896 897 static struct list_head *get_workspace(int type, int level) 898 { 899 switch (type) { 900 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 901 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 902 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 903 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 904 default: 905 /* 906 * This can't happen, the type is validated several times 907 * before we get here. 908 */ 909 BUG(); 910 } 911 } 912 913 /* 914 * put a workspace struct back on the list or free it if we have enough 915 * idle ones sitting around 916 */ 917 void btrfs_put_workspace(int type, struct list_head *ws) 918 { 919 struct workspace_manager *wsm; 920 struct list_head *idle_ws; 921 spinlock_t *ws_lock; 922 atomic_t *total_ws; 923 wait_queue_head_t *ws_wait; 924 int *free_ws; 925 926 wsm = btrfs_compress_op[type]->workspace_manager; 927 idle_ws = &wsm->idle_ws; 928 ws_lock = &wsm->ws_lock; 929 total_ws = &wsm->total_ws; 930 ws_wait = &wsm->ws_wait; 931 free_ws = &wsm->free_ws; 932 933 spin_lock(ws_lock); 934 if (*free_ws <= num_online_cpus()) { 935 list_add(ws, idle_ws); 936 (*free_ws)++; 937 spin_unlock(ws_lock); 938 goto wake; 939 } 940 spin_unlock(ws_lock); 941 942 free_workspace(type, ws); 943 atomic_dec(total_ws); 944 wake: 945 cond_wake_up(ws_wait); 946 } 947 948 static void put_workspace(int type, struct list_head *ws) 949 { 950 switch (type) { 951 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 952 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 953 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 954 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 955 default: 956 /* 957 * This can't happen, the type is validated several times 958 * before we get here. 959 */ 960 BUG(); 961 } 962 } 963 964 /* 965 * Adjust @level according to the limits of the compression algorithm or 966 * fallback to default 967 */ 968 static unsigned int btrfs_compress_set_level(int type, unsigned level) 969 { 970 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 971 972 if (level == 0) 973 level = ops->default_level; 974 else 975 level = min(level, ops->max_level); 976 977 return level; 978 } 979 980 /* 981 * Given an address space and start and length, compress the bytes into @pages 982 * that are allocated on demand. 983 * 984 * @type_level is encoded algorithm and level, where level 0 means whatever 985 * default the algorithm chooses and is opaque here; 986 * - compression algo are 0-3 987 * - the level are bits 4-7 988 * 989 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 990 * and returns number of actually allocated pages 991 * 992 * @total_in is used to return the number of bytes actually read. It 993 * may be smaller than the input length if we had to exit early because we 994 * ran out of room in the pages array or because we cross the 995 * max_out threshold. 996 * 997 * @total_out is an in/out parameter, must be set to the input length and will 998 * be also used to return the total number of compressed bytes 999 */ 1000 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1001 u64 start, struct page **pages, 1002 unsigned long *out_pages, 1003 unsigned long *total_in, 1004 unsigned long *total_out) 1005 { 1006 int type = btrfs_compress_type(type_level); 1007 int level = btrfs_compress_level(type_level); 1008 struct list_head *workspace; 1009 int ret; 1010 1011 level = btrfs_compress_set_level(type, level); 1012 workspace = get_workspace(type, level); 1013 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1014 out_pages, total_in, total_out); 1015 put_workspace(type, workspace); 1016 return ret; 1017 } 1018 1019 static int btrfs_decompress_bio(struct compressed_bio *cb) 1020 { 1021 struct list_head *workspace; 1022 int ret; 1023 int type = cb->compress_type; 1024 1025 workspace = get_workspace(type, 0); 1026 ret = compression_decompress_bio(workspace, cb); 1027 put_workspace(type, workspace); 1028 1029 if (!ret) 1030 zero_fill_bio(&cb->orig_bbio->bio); 1031 return ret; 1032 } 1033 1034 /* 1035 * a less complex decompression routine. Our compressed data fits in a 1036 * single page, and we want to read a single page out of it. 1037 * start_byte tells us the offset into the compressed data we're interested in 1038 */ 1039 int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page, 1040 unsigned long start_byte, size_t srclen, size_t destlen) 1041 { 1042 struct list_head *workspace; 1043 int ret; 1044 1045 workspace = get_workspace(type, 0); 1046 ret = compression_decompress(type, workspace, data_in, dest_page, 1047 start_byte, srclen, destlen); 1048 put_workspace(type, workspace); 1049 1050 return ret; 1051 } 1052 1053 int __init btrfs_init_compress(void) 1054 { 1055 if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE, 1056 offsetof(struct compressed_bio, bbio.bio), 1057 BIOSET_NEED_BVECS)) 1058 return -ENOMEM; 1059 1060 compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages"); 1061 if (!compr_pool.shrinker) 1062 return -ENOMEM; 1063 1064 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1065 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1066 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1067 zstd_init_workspace_manager(); 1068 1069 spin_lock_init(&compr_pool.lock); 1070 INIT_LIST_HEAD(&compr_pool.list); 1071 compr_pool.count = 0; 1072 /* 128K / 4K = 32, for 8 threads is 256 pages. */ 1073 compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8; 1074 compr_pool.shrinker->count_objects = btrfs_compr_pool_count; 1075 compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan; 1076 compr_pool.shrinker->batch = 32; 1077 compr_pool.shrinker->seeks = DEFAULT_SEEKS; 1078 shrinker_register(compr_pool.shrinker); 1079 1080 return 0; 1081 } 1082 1083 void __cold btrfs_exit_compress(void) 1084 { 1085 /* For now scan drains all pages and does not touch the parameters. */ 1086 btrfs_compr_pool_scan(NULL, NULL); 1087 shrinker_free(compr_pool.shrinker); 1088 1089 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1090 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1091 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1092 zstd_cleanup_workspace_manager(); 1093 bioset_exit(&btrfs_compressed_bioset); 1094 } 1095 1096 /* 1097 * Copy decompressed data from working buffer to pages. 1098 * 1099 * @buf: The decompressed data buffer 1100 * @buf_len: The decompressed data length 1101 * @decompressed: Number of bytes that are already decompressed inside the 1102 * compressed extent 1103 * @cb: The compressed extent descriptor 1104 * @orig_bio: The original bio that the caller wants to read for 1105 * 1106 * An easier to understand graph is like below: 1107 * 1108 * |<- orig_bio ->| |<- orig_bio->| 1109 * |<------- full decompressed extent ----->| 1110 * |<----------- @cb range ---->| 1111 * | |<-- @buf_len -->| 1112 * |<--- @decompressed --->| 1113 * 1114 * Note that, @cb can be a subpage of the full decompressed extent, but 1115 * @cb->start always has the same as the orig_file_offset value of the full 1116 * decompressed extent. 1117 * 1118 * When reading compressed extent, we have to read the full compressed extent, 1119 * while @orig_bio may only want part of the range. 1120 * Thus this function will ensure only data covered by @orig_bio will be copied 1121 * to. 1122 * 1123 * Return 0 if we have copied all needed contents for @orig_bio. 1124 * Return >0 if we need continue decompress. 1125 */ 1126 int btrfs_decompress_buf2page(const char *buf, u32 buf_len, 1127 struct compressed_bio *cb, u32 decompressed) 1128 { 1129 struct bio *orig_bio = &cb->orig_bbio->bio; 1130 /* Offset inside the full decompressed extent */ 1131 u32 cur_offset; 1132 1133 cur_offset = decompressed; 1134 /* The main loop to do the copy */ 1135 while (cur_offset < decompressed + buf_len) { 1136 struct bio_vec bvec; 1137 size_t copy_len; 1138 u32 copy_start; 1139 /* Offset inside the full decompressed extent */ 1140 u32 bvec_offset; 1141 1142 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); 1143 /* 1144 * cb->start may underflow, but subtracting that value can still 1145 * give us correct offset inside the full decompressed extent. 1146 */ 1147 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start; 1148 1149 /* Haven't reached the bvec range, exit */ 1150 if (decompressed + buf_len <= bvec_offset) 1151 return 1; 1152 1153 copy_start = max(cur_offset, bvec_offset); 1154 copy_len = min(bvec_offset + bvec.bv_len, 1155 decompressed + buf_len) - copy_start; 1156 ASSERT(copy_len); 1157 1158 /* 1159 * Extra range check to ensure we didn't go beyond 1160 * @buf + @buf_len. 1161 */ 1162 ASSERT(copy_start - decompressed < buf_len); 1163 memcpy_to_page(bvec.bv_page, bvec.bv_offset, 1164 buf + copy_start - decompressed, copy_len); 1165 cur_offset += copy_len; 1166 1167 bio_advance(orig_bio, copy_len); 1168 /* Finished the bio */ 1169 if (!orig_bio->bi_iter.bi_size) 1170 return 0; 1171 } 1172 return 1; 1173 } 1174 1175 /* 1176 * Shannon Entropy calculation 1177 * 1178 * Pure byte distribution analysis fails to determine compressibility of data. 1179 * Try calculating entropy to estimate the average minimum number of bits 1180 * needed to encode the sampled data. 1181 * 1182 * For convenience, return the percentage of needed bits, instead of amount of 1183 * bits directly. 1184 * 1185 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1186 * and can be compressible with high probability 1187 * 1188 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1189 * 1190 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1191 */ 1192 #define ENTROPY_LVL_ACEPTABLE (65) 1193 #define ENTROPY_LVL_HIGH (80) 1194 1195 /* 1196 * For increasead precision in shannon_entropy calculation, 1197 * let's do pow(n, M) to save more digits after comma: 1198 * 1199 * - maximum int bit length is 64 1200 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1201 * - 13 * 4 = 52 < 64 -> M = 4 1202 * 1203 * So use pow(n, 4). 1204 */ 1205 static inline u32 ilog2_w(u64 n) 1206 { 1207 return ilog2(n * n * n * n); 1208 } 1209 1210 static u32 shannon_entropy(struct heuristic_ws *ws) 1211 { 1212 const u32 entropy_max = 8 * ilog2_w(2); 1213 u32 entropy_sum = 0; 1214 u32 p, p_base, sz_base; 1215 u32 i; 1216 1217 sz_base = ilog2_w(ws->sample_size); 1218 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1219 p = ws->bucket[i].count; 1220 p_base = ilog2_w(p); 1221 entropy_sum += p * (sz_base - p_base); 1222 } 1223 1224 entropy_sum /= ws->sample_size; 1225 return entropy_sum * 100 / entropy_max; 1226 } 1227 1228 #define RADIX_BASE 4U 1229 #define COUNTERS_SIZE (1U << RADIX_BASE) 1230 1231 static u8 get4bits(u64 num, int shift) { 1232 u8 low4bits; 1233 1234 num >>= shift; 1235 /* Reverse order */ 1236 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1237 return low4bits; 1238 } 1239 1240 /* 1241 * Use 4 bits as radix base 1242 * Use 16 u32 counters for calculating new position in buf array 1243 * 1244 * @array - array that will be sorted 1245 * @array_buf - buffer array to store sorting results 1246 * must be equal in size to @array 1247 * @num - array size 1248 */ 1249 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1250 int num) 1251 { 1252 u64 max_num; 1253 u64 buf_num; 1254 u32 counters[COUNTERS_SIZE]; 1255 u32 new_addr; 1256 u32 addr; 1257 int bitlen; 1258 int shift; 1259 int i; 1260 1261 /* 1262 * Try avoid useless loop iterations for small numbers stored in big 1263 * counters. Example: 48 33 4 ... in 64bit array 1264 */ 1265 max_num = array[0].count; 1266 for (i = 1; i < num; i++) { 1267 buf_num = array[i].count; 1268 if (buf_num > max_num) 1269 max_num = buf_num; 1270 } 1271 1272 buf_num = ilog2(max_num); 1273 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1274 1275 shift = 0; 1276 while (shift < bitlen) { 1277 memset(counters, 0, sizeof(counters)); 1278 1279 for (i = 0; i < num; i++) { 1280 buf_num = array[i].count; 1281 addr = get4bits(buf_num, shift); 1282 counters[addr]++; 1283 } 1284 1285 for (i = 1; i < COUNTERS_SIZE; i++) 1286 counters[i] += counters[i - 1]; 1287 1288 for (i = num - 1; i >= 0; i--) { 1289 buf_num = array[i].count; 1290 addr = get4bits(buf_num, shift); 1291 counters[addr]--; 1292 new_addr = counters[addr]; 1293 array_buf[new_addr] = array[i]; 1294 } 1295 1296 shift += RADIX_BASE; 1297 1298 /* 1299 * Normal radix expects to move data from a temporary array, to 1300 * the main one. But that requires some CPU time. Avoid that 1301 * by doing another sort iteration to original array instead of 1302 * memcpy() 1303 */ 1304 memset(counters, 0, sizeof(counters)); 1305 1306 for (i = 0; i < num; i ++) { 1307 buf_num = array_buf[i].count; 1308 addr = get4bits(buf_num, shift); 1309 counters[addr]++; 1310 } 1311 1312 for (i = 1; i < COUNTERS_SIZE; i++) 1313 counters[i] += counters[i - 1]; 1314 1315 for (i = num - 1; i >= 0; i--) { 1316 buf_num = array_buf[i].count; 1317 addr = get4bits(buf_num, shift); 1318 counters[addr]--; 1319 new_addr = counters[addr]; 1320 array[new_addr] = array_buf[i]; 1321 } 1322 1323 shift += RADIX_BASE; 1324 } 1325 } 1326 1327 /* 1328 * Size of the core byte set - how many bytes cover 90% of the sample 1329 * 1330 * There are several types of structured binary data that use nearly all byte 1331 * values. The distribution can be uniform and counts in all buckets will be 1332 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1333 * 1334 * Other possibility is normal (Gaussian) distribution, where the data could 1335 * be potentially compressible, but we have to take a few more steps to decide 1336 * how much. 1337 * 1338 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1339 * compression algo can easy fix that 1340 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1341 * probability is not compressible 1342 */ 1343 #define BYTE_CORE_SET_LOW (64) 1344 #define BYTE_CORE_SET_HIGH (200) 1345 1346 static int byte_core_set_size(struct heuristic_ws *ws) 1347 { 1348 u32 i; 1349 u32 coreset_sum = 0; 1350 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1351 struct bucket_item *bucket = ws->bucket; 1352 1353 /* Sort in reverse order */ 1354 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1355 1356 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1357 coreset_sum += bucket[i].count; 1358 1359 if (coreset_sum > core_set_threshold) 1360 return i; 1361 1362 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1363 coreset_sum += bucket[i].count; 1364 if (coreset_sum > core_set_threshold) 1365 break; 1366 } 1367 1368 return i; 1369 } 1370 1371 /* 1372 * Count byte values in buckets. 1373 * This heuristic can detect textual data (configs, xml, json, html, etc). 1374 * Because in most text-like data byte set is restricted to limited number of 1375 * possible characters, and that restriction in most cases makes data easy to 1376 * compress. 1377 * 1378 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1379 * less - compressible 1380 * more - need additional analysis 1381 */ 1382 #define BYTE_SET_THRESHOLD (64) 1383 1384 static u32 byte_set_size(const struct heuristic_ws *ws) 1385 { 1386 u32 i; 1387 u32 byte_set_size = 0; 1388 1389 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1390 if (ws->bucket[i].count > 0) 1391 byte_set_size++; 1392 } 1393 1394 /* 1395 * Continue collecting count of byte values in buckets. If the byte 1396 * set size is bigger then the threshold, it's pointless to continue, 1397 * the detection technique would fail for this type of data. 1398 */ 1399 for (; i < BUCKET_SIZE; i++) { 1400 if (ws->bucket[i].count > 0) { 1401 byte_set_size++; 1402 if (byte_set_size > BYTE_SET_THRESHOLD) 1403 return byte_set_size; 1404 } 1405 } 1406 1407 return byte_set_size; 1408 } 1409 1410 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1411 { 1412 const u32 half_of_sample = ws->sample_size / 2; 1413 const u8 *data = ws->sample; 1414 1415 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1416 } 1417 1418 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1419 struct heuristic_ws *ws) 1420 { 1421 struct page *page; 1422 u64 index, index_end; 1423 u32 i, curr_sample_pos; 1424 u8 *in_data; 1425 1426 /* 1427 * Compression handles the input data by chunks of 128KiB 1428 * (defined by BTRFS_MAX_UNCOMPRESSED) 1429 * 1430 * We do the same for the heuristic and loop over the whole range. 1431 * 1432 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1433 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1434 */ 1435 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1436 end = start + BTRFS_MAX_UNCOMPRESSED; 1437 1438 index = start >> PAGE_SHIFT; 1439 index_end = end >> PAGE_SHIFT; 1440 1441 /* Don't miss unaligned end */ 1442 if (!PAGE_ALIGNED(end)) 1443 index_end++; 1444 1445 curr_sample_pos = 0; 1446 while (index < index_end) { 1447 page = find_get_page(inode->i_mapping, index); 1448 in_data = kmap_local_page(page); 1449 /* Handle case where the start is not aligned to PAGE_SIZE */ 1450 i = start % PAGE_SIZE; 1451 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1452 /* Don't sample any garbage from the last page */ 1453 if (start > end - SAMPLING_READ_SIZE) 1454 break; 1455 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1456 SAMPLING_READ_SIZE); 1457 i += SAMPLING_INTERVAL; 1458 start += SAMPLING_INTERVAL; 1459 curr_sample_pos += SAMPLING_READ_SIZE; 1460 } 1461 kunmap_local(in_data); 1462 put_page(page); 1463 1464 index++; 1465 } 1466 1467 ws->sample_size = curr_sample_pos; 1468 } 1469 1470 /* 1471 * Compression heuristic. 1472 * 1473 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1474 * quickly (compared to direct compression) detect data characteristics 1475 * (compressible/incompressible) to avoid wasting CPU time on incompressible 1476 * data. 1477 * 1478 * The following types of analysis can be performed: 1479 * - detect mostly zero data 1480 * - detect data with low "byte set" size (text, etc) 1481 * - detect data with low/high "core byte" set 1482 * 1483 * Return non-zero if the compression should be done, 0 otherwise. 1484 */ 1485 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1486 { 1487 struct list_head *ws_list = get_workspace(0, 0); 1488 struct heuristic_ws *ws; 1489 u32 i; 1490 u8 byte; 1491 int ret = 0; 1492 1493 ws = list_entry(ws_list, struct heuristic_ws, list); 1494 1495 heuristic_collect_sample(inode, start, end, ws); 1496 1497 if (sample_repeated_patterns(ws)) { 1498 ret = 1; 1499 goto out; 1500 } 1501 1502 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1503 1504 for (i = 0; i < ws->sample_size; i++) { 1505 byte = ws->sample[i]; 1506 ws->bucket[byte].count++; 1507 } 1508 1509 i = byte_set_size(ws); 1510 if (i < BYTE_SET_THRESHOLD) { 1511 ret = 2; 1512 goto out; 1513 } 1514 1515 i = byte_core_set_size(ws); 1516 if (i <= BYTE_CORE_SET_LOW) { 1517 ret = 3; 1518 goto out; 1519 } 1520 1521 if (i >= BYTE_CORE_SET_HIGH) { 1522 ret = 0; 1523 goto out; 1524 } 1525 1526 i = shannon_entropy(ws); 1527 if (i <= ENTROPY_LVL_ACEPTABLE) { 1528 ret = 4; 1529 goto out; 1530 } 1531 1532 /* 1533 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1534 * needed to give green light to compression. 1535 * 1536 * For now just assume that compression at that level is not worth the 1537 * resources because: 1538 * 1539 * 1. it is possible to defrag the data later 1540 * 1541 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1542 * values, every bucket has counter at level ~54. The heuristic would 1543 * be confused. This can happen when data have some internal repeated 1544 * patterns like "abbacbbc...". This can be detected by analyzing 1545 * pairs of bytes, which is too costly. 1546 */ 1547 if (i < ENTROPY_LVL_HIGH) { 1548 ret = 5; 1549 goto out; 1550 } else { 1551 ret = 0; 1552 goto out; 1553 } 1554 1555 out: 1556 put_workspace(0, ws_list); 1557 return ret; 1558 } 1559 1560 /* 1561 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1562 * level, unrecognized string will set the default level 1563 */ 1564 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1565 { 1566 unsigned int level = 0; 1567 int ret; 1568 1569 if (!type) 1570 return 0; 1571 1572 if (str[0] == ':') { 1573 ret = kstrtouint(str + 1, 10, &level); 1574 if (ret) 1575 level = 0; 1576 } 1577 1578 level = btrfs_compress_set_level(type, level); 1579 1580 return level; 1581 } 1582