1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/pagevec.h> 12 #include <linux/highmem.h> 13 #include <linux/kthread.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/psi.h> 20 #include <linux/slab.h> 21 #include <linux/sched/mm.h> 22 #include <linux/log2.h> 23 #include <crypto/hash.h> 24 #include "misc.h" 25 #include "ctree.h" 26 #include "fs.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "btrfs_inode.h" 30 #include "bio.h" 31 #include "ordered-data.h" 32 #include "compression.h" 33 #include "extent_io.h" 34 #include "extent_map.h" 35 #include "subpage.h" 36 #include "zoned.h" 37 #include "file-item.h" 38 #include "super.h" 39 40 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 41 42 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 43 { 44 switch (type) { 45 case BTRFS_COMPRESS_ZLIB: 46 case BTRFS_COMPRESS_LZO: 47 case BTRFS_COMPRESS_ZSTD: 48 case BTRFS_COMPRESS_NONE: 49 return btrfs_compress_types[type]; 50 default: 51 break; 52 } 53 54 return NULL; 55 } 56 57 bool btrfs_compress_is_valid_type(const char *str, size_t len) 58 { 59 int i; 60 61 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 62 size_t comp_len = strlen(btrfs_compress_types[i]); 63 64 if (len < comp_len) 65 continue; 66 67 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 68 return true; 69 } 70 return false; 71 } 72 73 static int compression_compress_pages(int type, struct list_head *ws, 74 struct address_space *mapping, u64 start, struct page **pages, 75 unsigned long *out_pages, unsigned long *total_in, 76 unsigned long *total_out) 77 { 78 switch (type) { 79 case BTRFS_COMPRESS_ZLIB: 80 return zlib_compress_pages(ws, mapping, start, pages, 81 out_pages, total_in, total_out); 82 case BTRFS_COMPRESS_LZO: 83 return lzo_compress_pages(ws, mapping, start, pages, 84 out_pages, total_in, total_out); 85 case BTRFS_COMPRESS_ZSTD: 86 return zstd_compress_pages(ws, mapping, start, pages, 87 out_pages, total_in, total_out); 88 case BTRFS_COMPRESS_NONE: 89 default: 90 /* 91 * This can happen when compression races with remount setting 92 * it to 'no compress', while caller doesn't call 93 * inode_need_compress() to check if we really need to 94 * compress. 95 * 96 * Not a big deal, just need to inform caller that we 97 * haven't allocated any pages yet. 98 */ 99 *out_pages = 0; 100 return -E2BIG; 101 } 102 } 103 104 static int compression_decompress_bio(struct list_head *ws, 105 struct compressed_bio *cb) 106 { 107 switch (cb->compress_type) { 108 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 109 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 110 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 111 case BTRFS_COMPRESS_NONE: 112 default: 113 /* 114 * This can't happen, the type is validated several times 115 * before we get here. 116 */ 117 BUG(); 118 } 119 } 120 121 static int compression_decompress(int type, struct list_head *ws, 122 const u8 *data_in, struct page *dest_page, 123 unsigned long start_byte, size_t srclen, size_t destlen) 124 { 125 switch (type) { 126 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 127 start_byte, srclen, destlen); 128 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 129 start_byte, srclen, destlen); 130 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 131 start_byte, srclen, destlen); 132 case BTRFS_COMPRESS_NONE: 133 default: 134 /* 135 * This can't happen, the type is validated several times 136 * before we get here. 137 */ 138 BUG(); 139 } 140 } 141 142 static int btrfs_decompress_bio(struct compressed_bio *cb); 143 144 static void finish_compressed_bio_read(struct compressed_bio *cb) 145 { 146 unsigned int index; 147 struct page *page; 148 149 if (cb->status == BLK_STS_OK) 150 cb->status = errno_to_blk_status(btrfs_decompress_bio(cb)); 151 152 /* Release the compressed pages */ 153 for (index = 0; index < cb->nr_pages; index++) { 154 page = cb->compressed_pages[index]; 155 page->mapping = NULL; 156 put_page(page); 157 } 158 159 /* Do io completion on the original bio */ 160 btrfs_bio_end_io(btrfs_bio(cb->orig_bio), cb->status); 161 162 /* Finally free the cb struct */ 163 kfree(cb->compressed_pages); 164 kfree(cb); 165 } 166 167 /* 168 * Verify the checksums and kick off repair if needed on the uncompressed data 169 * before decompressing it into the original bio and freeing the uncompressed 170 * pages. 171 */ 172 static void end_compressed_bio_read(struct btrfs_bio *bbio) 173 { 174 struct compressed_bio *cb = bbio->private; 175 struct inode *inode = cb->inode; 176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 177 struct btrfs_inode *bi = BTRFS_I(inode); 178 bool csum = !(bi->flags & BTRFS_INODE_NODATASUM) && 179 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 180 blk_status_t status = bbio->bio.bi_status; 181 struct bvec_iter iter; 182 struct bio_vec bv; 183 u32 offset; 184 185 btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) { 186 u64 start = bbio->file_offset + offset; 187 188 if (!status && 189 (!csum || !btrfs_check_data_csum(bi, bbio, offset, 190 bv.bv_page, bv.bv_offset))) { 191 btrfs_clean_io_failure(bi, start, bv.bv_page, 192 bv.bv_offset); 193 } else { 194 int ret; 195 196 refcount_inc(&cb->pending_ios); 197 ret = btrfs_repair_one_sector(BTRFS_I(inode), bbio, offset, 198 bv.bv_page, bv.bv_offset, 199 true); 200 if (ret) { 201 refcount_dec(&cb->pending_ios); 202 status = errno_to_blk_status(ret); 203 } 204 } 205 } 206 207 if (status) 208 cb->status = status; 209 210 if (refcount_dec_and_test(&cb->pending_ios)) 211 finish_compressed_bio_read(cb); 212 btrfs_bio_free_csum(bbio); 213 bio_put(&bbio->bio); 214 } 215 216 /* 217 * Clear the writeback bits on all of the file 218 * pages for a compressed write 219 */ 220 static noinline void end_compressed_writeback(struct inode *inode, 221 const struct compressed_bio *cb) 222 { 223 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 224 unsigned long index = cb->start >> PAGE_SHIFT; 225 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 226 struct folio_batch fbatch; 227 const int errno = blk_status_to_errno(cb->status); 228 int i; 229 int ret; 230 231 if (errno) 232 mapping_set_error(inode->i_mapping, errno); 233 234 folio_batch_init(&fbatch); 235 while (index <= end_index) { 236 ret = filemap_get_folios(inode->i_mapping, &index, end_index, 237 &fbatch); 238 239 if (ret == 0) 240 return; 241 242 for (i = 0; i < ret; i++) { 243 struct folio *folio = fbatch.folios[i]; 244 245 if (errno) 246 folio_set_error(folio); 247 btrfs_page_clamp_clear_writeback(fs_info, &folio->page, 248 cb->start, cb->len); 249 } 250 folio_batch_release(&fbatch); 251 } 252 /* the inode may be gone now */ 253 } 254 255 static void finish_compressed_bio_write(struct compressed_bio *cb) 256 { 257 struct inode *inode = cb->inode; 258 unsigned int index; 259 260 /* 261 * Ok, we're the last bio for this extent, step one is to call back 262 * into the FS and do all the end_io operations. 263 */ 264 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL, 265 cb->start, cb->start + cb->len - 1, 266 cb->status == BLK_STS_OK); 267 268 if (cb->writeback) 269 end_compressed_writeback(inode, cb); 270 /* Note, our inode could be gone now */ 271 272 /* 273 * Release the compressed pages, these came from alloc_page and 274 * are not attached to the inode at all 275 */ 276 for (index = 0; index < cb->nr_pages; index++) { 277 struct page *page = cb->compressed_pages[index]; 278 279 page->mapping = NULL; 280 put_page(page); 281 } 282 283 /* Finally free the cb struct */ 284 kfree(cb->compressed_pages); 285 kfree(cb); 286 } 287 288 static void btrfs_finish_compressed_write_work(struct work_struct *work) 289 { 290 struct compressed_bio *cb = 291 container_of(work, struct compressed_bio, write_end_work); 292 293 finish_compressed_bio_write(cb); 294 } 295 296 /* 297 * Do the cleanup once all the compressed pages hit the disk. This will clear 298 * writeback on the file pages and free the compressed pages. 299 * 300 * This also calls the writeback end hooks for the file pages so that metadata 301 * and checksums can be updated in the file. 302 */ 303 static void end_compressed_bio_write(struct btrfs_bio *bbio) 304 { 305 struct compressed_bio *cb = bbio->private; 306 307 if (bbio->bio.bi_status) 308 cb->status = bbio->bio.bi_status; 309 310 if (refcount_dec_and_test(&cb->pending_ios)) { 311 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb); 312 313 btrfs_record_physical_zoned(cb->inode, cb->start, &bbio->bio); 314 queue_work(fs_info->compressed_write_workers, &cb->write_end_work); 315 } 316 bio_put(&bbio->bio); 317 } 318 319 /* 320 * Allocate a compressed_bio, which will be used to read/write on-disk 321 * (aka, compressed) * data. 322 * 323 * @cb: The compressed_bio structure, which records all the needed 324 * information to bind the compressed data to the uncompressed 325 * page cache. 326 * @disk_byten: The logical bytenr where the compressed data will be read 327 * from or written to. 328 * @endio_func: The endio function to call after the IO for compressed data 329 * is finished. 330 * @next_stripe_start: Return value of logical bytenr of where next stripe starts. 331 * Let the caller know to only fill the bio up to the stripe 332 * boundary. 333 */ 334 335 336 static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr, 337 blk_opf_t opf, 338 btrfs_bio_end_io_t endio_func, 339 u64 *next_stripe_start) 340 { 341 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb); 342 struct btrfs_io_geometry geom; 343 struct extent_map *em; 344 struct bio *bio; 345 int ret; 346 347 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, endio_func, cb); 348 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 349 350 em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize); 351 if (IS_ERR(em)) { 352 bio_put(bio); 353 return ERR_CAST(em); 354 } 355 356 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 357 bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev); 358 359 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom); 360 free_extent_map(em); 361 if (ret < 0) { 362 bio_put(bio); 363 return ERR_PTR(ret); 364 } 365 *next_stripe_start = disk_bytenr + geom.len; 366 refcount_inc(&cb->pending_ios); 367 return bio; 368 } 369 370 /* 371 * worker function to build and submit bios for previously compressed pages. 372 * The corresponding pages in the inode should be marked for writeback 373 * and the compressed pages should have a reference on them for dropping 374 * when the IO is complete. 375 * 376 * This also checksums the file bytes and gets things ready for 377 * the end io hooks. 378 */ 379 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 380 unsigned int len, u64 disk_start, 381 unsigned int compressed_len, 382 struct page **compressed_pages, 383 unsigned int nr_pages, 384 blk_opf_t write_flags, 385 struct cgroup_subsys_state *blkcg_css, 386 bool writeback) 387 { 388 struct btrfs_fs_info *fs_info = inode->root->fs_info; 389 struct bio *bio = NULL; 390 struct compressed_bio *cb; 391 u64 cur_disk_bytenr = disk_start; 392 u64 next_stripe_start; 393 blk_status_t ret = BLK_STS_OK; 394 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; 395 const bool use_append = btrfs_use_zone_append(inode, disk_start); 396 const enum req_op bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE; 397 398 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 399 IS_ALIGNED(len, fs_info->sectorsize)); 400 cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS); 401 if (!cb) 402 return BLK_STS_RESOURCE; 403 refcount_set(&cb->pending_ios, 1); 404 cb->status = BLK_STS_OK; 405 cb->inode = &inode->vfs_inode; 406 cb->start = start; 407 cb->len = len; 408 cb->compressed_pages = compressed_pages; 409 cb->compressed_len = compressed_len; 410 cb->writeback = writeback; 411 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work); 412 cb->nr_pages = nr_pages; 413 414 if (blkcg_css) 415 kthread_associate_blkcg(blkcg_css); 416 417 while (cur_disk_bytenr < disk_start + compressed_len) { 418 u64 offset = cur_disk_bytenr - disk_start; 419 unsigned int index = offset >> PAGE_SHIFT; 420 unsigned int real_size; 421 unsigned int added; 422 struct page *page = compressed_pages[index]; 423 bool submit = false; 424 425 /* Allocate new bio if submitted or not yet allocated */ 426 if (!bio) { 427 bio = alloc_compressed_bio(cb, cur_disk_bytenr, 428 bio_op | write_flags, end_compressed_bio_write, 429 &next_stripe_start); 430 if (IS_ERR(bio)) { 431 ret = errno_to_blk_status(PTR_ERR(bio)); 432 break; 433 } 434 if (blkcg_css) 435 bio->bi_opf |= REQ_CGROUP_PUNT; 436 } 437 /* 438 * We should never reach next_stripe_start start as we will 439 * submit comp_bio when reach the boundary immediately. 440 */ 441 ASSERT(cur_disk_bytenr != next_stripe_start); 442 443 /* 444 * We have various limits on the real read size: 445 * - stripe boundary 446 * - page boundary 447 * - compressed length boundary 448 */ 449 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr); 450 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset)); 451 real_size = min_t(u64, real_size, compressed_len - offset); 452 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize)); 453 454 if (use_append) 455 added = bio_add_zone_append_page(bio, page, real_size, 456 offset_in_page(offset)); 457 else 458 added = bio_add_page(bio, page, real_size, 459 offset_in_page(offset)); 460 /* Reached zoned boundary */ 461 if (added == 0) 462 submit = true; 463 464 cur_disk_bytenr += added; 465 /* Reached stripe boundary */ 466 if (cur_disk_bytenr == next_stripe_start) 467 submit = true; 468 469 /* Finished the range */ 470 if (cur_disk_bytenr == disk_start + compressed_len) 471 submit = true; 472 473 if (submit) { 474 if (!skip_sum) { 475 ret = btrfs_csum_one_bio(inode, bio, start, true); 476 if (ret) { 477 btrfs_bio_end_io(btrfs_bio(bio), ret); 478 break; 479 } 480 } 481 482 ASSERT(bio->bi_iter.bi_size); 483 btrfs_submit_bio(fs_info, bio, 0); 484 bio = NULL; 485 } 486 cond_resched(); 487 } 488 489 if (blkcg_css) 490 kthread_associate_blkcg(NULL); 491 492 if (refcount_dec_and_test(&cb->pending_ios)) 493 finish_compressed_bio_write(cb); 494 return ret; 495 } 496 497 static u64 bio_end_offset(struct bio *bio) 498 { 499 struct bio_vec *last = bio_last_bvec_all(bio); 500 501 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 502 } 503 504 /* 505 * Add extra pages in the same compressed file extent so that we don't need to 506 * re-read the same extent again and again. 507 * 508 * NOTE: this won't work well for subpage, as for subpage read, we lock the 509 * full page then submit bio for each compressed/regular extents. 510 * 511 * This means, if we have several sectors in the same page points to the same 512 * on-disk compressed data, we will re-read the same extent many times and 513 * this function can only help for the next page. 514 */ 515 static noinline int add_ra_bio_pages(struct inode *inode, 516 u64 compressed_end, 517 struct compressed_bio *cb, 518 int *memstall, unsigned long *pflags) 519 { 520 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 521 unsigned long end_index; 522 u64 cur = bio_end_offset(cb->orig_bio); 523 u64 isize = i_size_read(inode); 524 int ret; 525 struct page *page; 526 struct extent_map *em; 527 struct address_space *mapping = inode->i_mapping; 528 struct extent_map_tree *em_tree; 529 struct extent_io_tree *tree; 530 int sectors_missed = 0; 531 532 em_tree = &BTRFS_I(inode)->extent_tree; 533 tree = &BTRFS_I(inode)->io_tree; 534 535 if (isize == 0) 536 return 0; 537 538 /* 539 * For current subpage support, we only support 64K page size, 540 * which means maximum compressed extent size (128K) is just 2x page 541 * size. 542 * This makes readahead less effective, so here disable readahead for 543 * subpage for now, until full compressed write is supported. 544 */ 545 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE) 546 return 0; 547 548 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 549 550 while (cur < compressed_end) { 551 u64 page_end; 552 u64 pg_index = cur >> PAGE_SHIFT; 553 u32 add_size; 554 555 if (pg_index > end_index) 556 break; 557 558 page = xa_load(&mapping->i_pages, pg_index); 559 if (page && !xa_is_value(page)) { 560 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >> 561 fs_info->sectorsize_bits; 562 563 /* Beyond threshold, no need to continue */ 564 if (sectors_missed > 4) 565 break; 566 567 /* 568 * Jump to next page start as we already have page for 569 * current offset. 570 */ 571 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 572 continue; 573 } 574 575 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 576 ~__GFP_FS)); 577 if (!page) 578 break; 579 580 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 581 put_page(page); 582 /* There is already a page, skip to page end */ 583 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 584 continue; 585 } 586 587 if (!*memstall && PageWorkingset(page)) { 588 psi_memstall_enter(pflags); 589 *memstall = 1; 590 } 591 592 ret = set_page_extent_mapped(page); 593 if (ret < 0) { 594 unlock_page(page); 595 put_page(page); 596 break; 597 } 598 599 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1; 600 lock_extent(tree, cur, page_end, NULL); 601 read_lock(&em_tree->lock); 602 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur); 603 read_unlock(&em_tree->lock); 604 605 /* 606 * At this point, we have a locked page in the page cache for 607 * these bytes in the file. But, we have to make sure they map 608 * to this compressed extent on disk. 609 */ 610 if (!em || cur < em->start || 611 (cur + fs_info->sectorsize > extent_map_end(em)) || 612 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 613 free_extent_map(em); 614 unlock_extent(tree, cur, page_end, NULL); 615 unlock_page(page); 616 put_page(page); 617 break; 618 } 619 free_extent_map(em); 620 621 if (page->index == end_index) { 622 size_t zero_offset = offset_in_page(isize); 623 624 if (zero_offset) { 625 int zeros; 626 zeros = PAGE_SIZE - zero_offset; 627 memzero_page(page, zero_offset, zeros); 628 } 629 } 630 631 add_size = min(em->start + em->len, page_end + 1) - cur; 632 ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur)); 633 if (ret != add_size) { 634 unlock_extent(tree, cur, page_end, NULL); 635 unlock_page(page); 636 put_page(page); 637 break; 638 } 639 /* 640 * If it's subpage, we also need to increase its 641 * subpage::readers number, as at endio we will decrease 642 * subpage::readers and to unlock the page. 643 */ 644 if (fs_info->sectorsize < PAGE_SIZE) 645 btrfs_subpage_start_reader(fs_info, page, cur, add_size); 646 put_page(page); 647 cur += add_size; 648 } 649 return 0; 650 } 651 652 /* 653 * for a compressed read, the bio we get passed has all the inode pages 654 * in it. We don't actually do IO on those pages but allocate new ones 655 * to hold the compressed pages on disk. 656 * 657 * bio->bi_iter.bi_sector points to the compressed extent on disk 658 * bio->bi_io_vec points to all of the inode pages 659 * 660 * After the compressed pages are read, we copy the bytes into the 661 * bio we were passed and then call the bio end_io calls 662 */ 663 void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 664 int mirror_num) 665 { 666 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 667 struct extent_map_tree *em_tree; 668 struct compressed_bio *cb; 669 unsigned int compressed_len; 670 struct bio *comp_bio = NULL; 671 const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 672 u64 cur_disk_byte = disk_bytenr; 673 u64 next_stripe_start; 674 u64 file_offset; 675 u64 em_len; 676 u64 em_start; 677 struct extent_map *em; 678 unsigned long pflags; 679 int memstall = 0; 680 blk_status_t ret; 681 int ret2; 682 int i; 683 684 em_tree = &BTRFS_I(inode)->extent_tree; 685 686 file_offset = bio_first_bvec_all(bio)->bv_offset + 687 page_offset(bio_first_page_all(bio)); 688 689 /* we need the actual starting offset of this extent in the file */ 690 read_lock(&em_tree->lock); 691 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); 692 read_unlock(&em_tree->lock); 693 if (!em) { 694 ret = BLK_STS_IOERR; 695 goto out; 696 } 697 698 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE); 699 compressed_len = em->block_len; 700 cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS); 701 if (!cb) { 702 ret = BLK_STS_RESOURCE; 703 goto out; 704 } 705 706 refcount_set(&cb->pending_ios, 1); 707 cb->status = BLK_STS_OK; 708 cb->inode = inode; 709 710 cb->start = em->orig_start; 711 em_len = em->len; 712 em_start = em->start; 713 714 cb->len = bio->bi_iter.bi_size; 715 cb->compressed_len = compressed_len; 716 cb->compress_type = em->compress_type; 717 cb->orig_bio = bio; 718 719 free_extent_map(em); 720 em = NULL; 721 722 cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 723 cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS); 724 if (!cb->compressed_pages) { 725 ret = BLK_STS_RESOURCE; 726 goto fail; 727 } 728 729 ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages); 730 if (ret2) { 731 ret = BLK_STS_RESOURCE; 732 goto fail; 733 } 734 735 add_ra_bio_pages(inode, em_start + em_len, cb, &memstall, &pflags); 736 737 /* include any pages we added in add_ra-bio_pages */ 738 cb->len = bio->bi_iter.bi_size; 739 740 while (cur_disk_byte < disk_bytenr + compressed_len) { 741 u64 offset = cur_disk_byte - disk_bytenr; 742 unsigned int index = offset >> PAGE_SHIFT; 743 unsigned int real_size; 744 unsigned int added; 745 struct page *page = cb->compressed_pages[index]; 746 bool submit = false; 747 748 /* Allocate new bio if submitted or not yet allocated */ 749 if (!comp_bio) { 750 comp_bio = alloc_compressed_bio(cb, cur_disk_byte, 751 REQ_OP_READ, end_compressed_bio_read, 752 &next_stripe_start); 753 if (IS_ERR(comp_bio)) { 754 cb->status = errno_to_blk_status(PTR_ERR(comp_bio)); 755 break; 756 } 757 } 758 /* 759 * We should never reach next_stripe_start start as we will 760 * submit comp_bio when reach the boundary immediately. 761 */ 762 ASSERT(cur_disk_byte != next_stripe_start); 763 /* 764 * We have various limit on the real read size: 765 * - stripe boundary 766 * - page boundary 767 * - compressed length boundary 768 */ 769 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte); 770 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset)); 771 real_size = min_t(u64, real_size, compressed_len - offset); 772 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize)); 773 774 added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset)); 775 /* 776 * Maximum compressed extent is smaller than bio size limit, 777 * thus bio_add_page() should always success. 778 */ 779 ASSERT(added == real_size); 780 cur_disk_byte += added; 781 782 /* Reached stripe boundary, need to submit */ 783 if (cur_disk_byte == next_stripe_start) 784 submit = true; 785 786 /* Has finished the range, need to submit */ 787 if (cur_disk_byte == disk_bytenr + compressed_len) 788 submit = true; 789 790 if (submit) { 791 /* Save the original iter for read repair */ 792 if (bio_op(comp_bio) == REQ_OP_READ) 793 btrfs_bio(comp_bio)->iter = comp_bio->bi_iter; 794 795 /* 796 * Save the initial offset of this chunk, as there 797 * is no direct correlation between compressed pages and 798 * the original file offset. The field is only used for 799 * priting error messages. 800 */ 801 btrfs_bio(comp_bio)->file_offset = file_offset; 802 803 ret = btrfs_lookup_bio_sums(inode, comp_bio, NULL); 804 if (ret) { 805 btrfs_bio_end_io(btrfs_bio(comp_bio), ret); 806 break; 807 } 808 809 ASSERT(comp_bio->bi_iter.bi_size); 810 btrfs_submit_bio(fs_info, comp_bio, mirror_num); 811 comp_bio = NULL; 812 } 813 } 814 815 if (memstall) 816 psi_memstall_leave(&pflags); 817 818 if (refcount_dec_and_test(&cb->pending_ios)) 819 finish_compressed_bio_read(cb); 820 return; 821 822 fail: 823 if (cb->compressed_pages) { 824 for (i = 0; i < cb->nr_pages; i++) { 825 if (cb->compressed_pages[i]) 826 __free_page(cb->compressed_pages[i]); 827 } 828 } 829 830 kfree(cb->compressed_pages); 831 kfree(cb); 832 out: 833 free_extent_map(em); 834 btrfs_bio_end_io(btrfs_bio(bio), ret); 835 return; 836 } 837 838 /* 839 * Heuristic uses systematic sampling to collect data from the input data 840 * range, the logic can be tuned by the following constants: 841 * 842 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 843 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 844 */ 845 #define SAMPLING_READ_SIZE (16) 846 #define SAMPLING_INTERVAL (256) 847 848 /* 849 * For statistical analysis of the input data we consider bytes that form a 850 * Galois Field of 256 objects. Each object has an attribute count, ie. how 851 * many times the object appeared in the sample. 852 */ 853 #define BUCKET_SIZE (256) 854 855 /* 856 * The size of the sample is based on a statistical sampling rule of thumb. 857 * The common way is to perform sampling tests as long as the number of 858 * elements in each cell is at least 5. 859 * 860 * Instead of 5, we choose 32 to obtain more accurate results. 861 * If the data contain the maximum number of symbols, which is 256, we obtain a 862 * sample size bound by 8192. 863 * 864 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 865 * from up to 512 locations. 866 */ 867 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 868 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 869 870 struct bucket_item { 871 u32 count; 872 }; 873 874 struct heuristic_ws { 875 /* Partial copy of input data */ 876 u8 *sample; 877 u32 sample_size; 878 /* Buckets store counters for each byte value */ 879 struct bucket_item *bucket; 880 /* Sorting buffer */ 881 struct bucket_item *bucket_b; 882 struct list_head list; 883 }; 884 885 static struct workspace_manager heuristic_wsm; 886 887 static void free_heuristic_ws(struct list_head *ws) 888 { 889 struct heuristic_ws *workspace; 890 891 workspace = list_entry(ws, struct heuristic_ws, list); 892 893 kvfree(workspace->sample); 894 kfree(workspace->bucket); 895 kfree(workspace->bucket_b); 896 kfree(workspace); 897 } 898 899 static struct list_head *alloc_heuristic_ws(unsigned int level) 900 { 901 struct heuristic_ws *ws; 902 903 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 904 if (!ws) 905 return ERR_PTR(-ENOMEM); 906 907 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 908 if (!ws->sample) 909 goto fail; 910 911 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 912 if (!ws->bucket) 913 goto fail; 914 915 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 916 if (!ws->bucket_b) 917 goto fail; 918 919 INIT_LIST_HEAD(&ws->list); 920 return &ws->list; 921 fail: 922 free_heuristic_ws(&ws->list); 923 return ERR_PTR(-ENOMEM); 924 } 925 926 const struct btrfs_compress_op btrfs_heuristic_compress = { 927 .workspace_manager = &heuristic_wsm, 928 }; 929 930 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 931 /* The heuristic is represented as compression type 0 */ 932 &btrfs_heuristic_compress, 933 &btrfs_zlib_compress, 934 &btrfs_lzo_compress, 935 &btrfs_zstd_compress, 936 }; 937 938 static struct list_head *alloc_workspace(int type, unsigned int level) 939 { 940 switch (type) { 941 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 942 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 943 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 944 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 945 default: 946 /* 947 * This can't happen, the type is validated several times 948 * before we get here. 949 */ 950 BUG(); 951 } 952 } 953 954 static void free_workspace(int type, struct list_head *ws) 955 { 956 switch (type) { 957 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 958 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 959 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 960 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 961 default: 962 /* 963 * This can't happen, the type is validated several times 964 * before we get here. 965 */ 966 BUG(); 967 } 968 } 969 970 static void btrfs_init_workspace_manager(int type) 971 { 972 struct workspace_manager *wsm; 973 struct list_head *workspace; 974 975 wsm = btrfs_compress_op[type]->workspace_manager; 976 INIT_LIST_HEAD(&wsm->idle_ws); 977 spin_lock_init(&wsm->ws_lock); 978 atomic_set(&wsm->total_ws, 0); 979 init_waitqueue_head(&wsm->ws_wait); 980 981 /* 982 * Preallocate one workspace for each compression type so we can 983 * guarantee forward progress in the worst case 984 */ 985 workspace = alloc_workspace(type, 0); 986 if (IS_ERR(workspace)) { 987 pr_warn( 988 "BTRFS: cannot preallocate compression workspace, will try later\n"); 989 } else { 990 atomic_set(&wsm->total_ws, 1); 991 wsm->free_ws = 1; 992 list_add(workspace, &wsm->idle_ws); 993 } 994 } 995 996 static void btrfs_cleanup_workspace_manager(int type) 997 { 998 struct workspace_manager *wsman; 999 struct list_head *ws; 1000 1001 wsman = btrfs_compress_op[type]->workspace_manager; 1002 while (!list_empty(&wsman->idle_ws)) { 1003 ws = wsman->idle_ws.next; 1004 list_del(ws); 1005 free_workspace(type, ws); 1006 atomic_dec(&wsman->total_ws); 1007 } 1008 } 1009 1010 /* 1011 * This finds an available workspace or allocates a new one. 1012 * If it's not possible to allocate a new one, waits until there's one. 1013 * Preallocation makes a forward progress guarantees and we do not return 1014 * errors. 1015 */ 1016 struct list_head *btrfs_get_workspace(int type, unsigned int level) 1017 { 1018 struct workspace_manager *wsm; 1019 struct list_head *workspace; 1020 int cpus = num_online_cpus(); 1021 unsigned nofs_flag; 1022 struct list_head *idle_ws; 1023 spinlock_t *ws_lock; 1024 atomic_t *total_ws; 1025 wait_queue_head_t *ws_wait; 1026 int *free_ws; 1027 1028 wsm = btrfs_compress_op[type]->workspace_manager; 1029 idle_ws = &wsm->idle_ws; 1030 ws_lock = &wsm->ws_lock; 1031 total_ws = &wsm->total_ws; 1032 ws_wait = &wsm->ws_wait; 1033 free_ws = &wsm->free_ws; 1034 1035 again: 1036 spin_lock(ws_lock); 1037 if (!list_empty(idle_ws)) { 1038 workspace = idle_ws->next; 1039 list_del(workspace); 1040 (*free_ws)--; 1041 spin_unlock(ws_lock); 1042 return workspace; 1043 1044 } 1045 if (atomic_read(total_ws) > cpus) { 1046 DEFINE_WAIT(wait); 1047 1048 spin_unlock(ws_lock); 1049 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1050 if (atomic_read(total_ws) > cpus && !*free_ws) 1051 schedule(); 1052 finish_wait(ws_wait, &wait); 1053 goto again; 1054 } 1055 atomic_inc(total_ws); 1056 spin_unlock(ws_lock); 1057 1058 /* 1059 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1060 * to turn it off here because we might get called from the restricted 1061 * context of btrfs_compress_bio/btrfs_compress_pages 1062 */ 1063 nofs_flag = memalloc_nofs_save(); 1064 workspace = alloc_workspace(type, level); 1065 memalloc_nofs_restore(nofs_flag); 1066 1067 if (IS_ERR(workspace)) { 1068 atomic_dec(total_ws); 1069 wake_up(ws_wait); 1070 1071 /* 1072 * Do not return the error but go back to waiting. There's a 1073 * workspace preallocated for each type and the compression 1074 * time is bounded so we get to a workspace eventually. This 1075 * makes our caller's life easier. 1076 * 1077 * To prevent silent and low-probability deadlocks (when the 1078 * initial preallocation fails), check if there are any 1079 * workspaces at all. 1080 */ 1081 if (atomic_read(total_ws) == 0) { 1082 static DEFINE_RATELIMIT_STATE(_rs, 1083 /* once per minute */ 60 * HZ, 1084 /* no burst */ 1); 1085 1086 if (__ratelimit(&_rs)) { 1087 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1088 } 1089 } 1090 goto again; 1091 } 1092 return workspace; 1093 } 1094 1095 static struct list_head *get_workspace(int type, int level) 1096 { 1097 switch (type) { 1098 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1099 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1100 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1101 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1102 default: 1103 /* 1104 * This can't happen, the type is validated several times 1105 * before we get here. 1106 */ 1107 BUG(); 1108 } 1109 } 1110 1111 /* 1112 * put a workspace struct back on the list or free it if we have enough 1113 * idle ones sitting around 1114 */ 1115 void btrfs_put_workspace(int type, struct list_head *ws) 1116 { 1117 struct workspace_manager *wsm; 1118 struct list_head *idle_ws; 1119 spinlock_t *ws_lock; 1120 atomic_t *total_ws; 1121 wait_queue_head_t *ws_wait; 1122 int *free_ws; 1123 1124 wsm = btrfs_compress_op[type]->workspace_manager; 1125 idle_ws = &wsm->idle_ws; 1126 ws_lock = &wsm->ws_lock; 1127 total_ws = &wsm->total_ws; 1128 ws_wait = &wsm->ws_wait; 1129 free_ws = &wsm->free_ws; 1130 1131 spin_lock(ws_lock); 1132 if (*free_ws <= num_online_cpus()) { 1133 list_add(ws, idle_ws); 1134 (*free_ws)++; 1135 spin_unlock(ws_lock); 1136 goto wake; 1137 } 1138 spin_unlock(ws_lock); 1139 1140 free_workspace(type, ws); 1141 atomic_dec(total_ws); 1142 wake: 1143 cond_wake_up(ws_wait); 1144 } 1145 1146 static void put_workspace(int type, struct list_head *ws) 1147 { 1148 switch (type) { 1149 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1150 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1151 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1152 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1153 default: 1154 /* 1155 * This can't happen, the type is validated several times 1156 * before we get here. 1157 */ 1158 BUG(); 1159 } 1160 } 1161 1162 /* 1163 * Adjust @level according to the limits of the compression algorithm or 1164 * fallback to default 1165 */ 1166 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1167 { 1168 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1169 1170 if (level == 0) 1171 level = ops->default_level; 1172 else 1173 level = min(level, ops->max_level); 1174 1175 return level; 1176 } 1177 1178 /* 1179 * Given an address space and start and length, compress the bytes into @pages 1180 * that are allocated on demand. 1181 * 1182 * @type_level is encoded algorithm and level, where level 0 means whatever 1183 * default the algorithm chooses and is opaque here; 1184 * - compression algo are 0-3 1185 * - the level are bits 4-7 1186 * 1187 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1188 * and returns number of actually allocated pages 1189 * 1190 * @total_in is used to return the number of bytes actually read. It 1191 * may be smaller than the input length if we had to exit early because we 1192 * ran out of room in the pages array or because we cross the 1193 * max_out threshold. 1194 * 1195 * @total_out is an in/out parameter, must be set to the input length and will 1196 * be also used to return the total number of compressed bytes 1197 */ 1198 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1199 u64 start, struct page **pages, 1200 unsigned long *out_pages, 1201 unsigned long *total_in, 1202 unsigned long *total_out) 1203 { 1204 int type = btrfs_compress_type(type_level); 1205 int level = btrfs_compress_level(type_level); 1206 struct list_head *workspace; 1207 int ret; 1208 1209 level = btrfs_compress_set_level(type, level); 1210 workspace = get_workspace(type, level); 1211 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1212 out_pages, total_in, total_out); 1213 put_workspace(type, workspace); 1214 return ret; 1215 } 1216 1217 static int btrfs_decompress_bio(struct compressed_bio *cb) 1218 { 1219 struct list_head *workspace; 1220 int ret; 1221 int type = cb->compress_type; 1222 1223 workspace = get_workspace(type, 0); 1224 ret = compression_decompress_bio(workspace, cb); 1225 put_workspace(type, workspace); 1226 1227 return ret; 1228 } 1229 1230 /* 1231 * a less complex decompression routine. Our compressed data fits in a 1232 * single page, and we want to read a single page out of it. 1233 * start_byte tells us the offset into the compressed data we're interested in 1234 */ 1235 int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page, 1236 unsigned long start_byte, size_t srclen, size_t destlen) 1237 { 1238 struct list_head *workspace; 1239 int ret; 1240 1241 workspace = get_workspace(type, 0); 1242 ret = compression_decompress(type, workspace, data_in, dest_page, 1243 start_byte, srclen, destlen); 1244 put_workspace(type, workspace); 1245 1246 return ret; 1247 } 1248 1249 int __init btrfs_init_compress(void) 1250 { 1251 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1252 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1253 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1254 zstd_init_workspace_manager(); 1255 return 0; 1256 } 1257 1258 void __cold btrfs_exit_compress(void) 1259 { 1260 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1261 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1262 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1263 zstd_cleanup_workspace_manager(); 1264 } 1265 1266 /* 1267 * Copy decompressed data from working buffer to pages. 1268 * 1269 * @buf: The decompressed data buffer 1270 * @buf_len: The decompressed data length 1271 * @decompressed: Number of bytes that are already decompressed inside the 1272 * compressed extent 1273 * @cb: The compressed extent descriptor 1274 * @orig_bio: The original bio that the caller wants to read for 1275 * 1276 * An easier to understand graph is like below: 1277 * 1278 * |<- orig_bio ->| |<- orig_bio->| 1279 * |<------- full decompressed extent ----->| 1280 * |<----------- @cb range ---->| 1281 * | |<-- @buf_len -->| 1282 * |<--- @decompressed --->| 1283 * 1284 * Note that, @cb can be a subpage of the full decompressed extent, but 1285 * @cb->start always has the same as the orig_file_offset value of the full 1286 * decompressed extent. 1287 * 1288 * When reading compressed extent, we have to read the full compressed extent, 1289 * while @orig_bio may only want part of the range. 1290 * Thus this function will ensure only data covered by @orig_bio will be copied 1291 * to. 1292 * 1293 * Return 0 if we have copied all needed contents for @orig_bio. 1294 * Return >0 if we need continue decompress. 1295 */ 1296 int btrfs_decompress_buf2page(const char *buf, u32 buf_len, 1297 struct compressed_bio *cb, u32 decompressed) 1298 { 1299 struct bio *orig_bio = cb->orig_bio; 1300 /* Offset inside the full decompressed extent */ 1301 u32 cur_offset; 1302 1303 cur_offset = decompressed; 1304 /* The main loop to do the copy */ 1305 while (cur_offset < decompressed + buf_len) { 1306 struct bio_vec bvec; 1307 size_t copy_len; 1308 u32 copy_start; 1309 /* Offset inside the full decompressed extent */ 1310 u32 bvec_offset; 1311 1312 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); 1313 /* 1314 * cb->start may underflow, but subtracting that value can still 1315 * give us correct offset inside the full decompressed extent. 1316 */ 1317 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start; 1318 1319 /* Haven't reached the bvec range, exit */ 1320 if (decompressed + buf_len <= bvec_offset) 1321 return 1; 1322 1323 copy_start = max(cur_offset, bvec_offset); 1324 copy_len = min(bvec_offset + bvec.bv_len, 1325 decompressed + buf_len) - copy_start; 1326 ASSERT(copy_len); 1327 1328 /* 1329 * Extra range check to ensure we didn't go beyond 1330 * @buf + @buf_len. 1331 */ 1332 ASSERT(copy_start - decompressed < buf_len); 1333 memcpy_to_page(bvec.bv_page, bvec.bv_offset, 1334 buf + copy_start - decompressed, copy_len); 1335 cur_offset += copy_len; 1336 1337 bio_advance(orig_bio, copy_len); 1338 /* Finished the bio */ 1339 if (!orig_bio->bi_iter.bi_size) 1340 return 0; 1341 } 1342 return 1; 1343 } 1344 1345 /* 1346 * Shannon Entropy calculation 1347 * 1348 * Pure byte distribution analysis fails to determine compressibility of data. 1349 * Try calculating entropy to estimate the average minimum number of bits 1350 * needed to encode the sampled data. 1351 * 1352 * For convenience, return the percentage of needed bits, instead of amount of 1353 * bits directly. 1354 * 1355 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1356 * and can be compressible with high probability 1357 * 1358 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1359 * 1360 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1361 */ 1362 #define ENTROPY_LVL_ACEPTABLE (65) 1363 #define ENTROPY_LVL_HIGH (80) 1364 1365 /* 1366 * For increasead precision in shannon_entropy calculation, 1367 * let's do pow(n, M) to save more digits after comma: 1368 * 1369 * - maximum int bit length is 64 1370 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1371 * - 13 * 4 = 52 < 64 -> M = 4 1372 * 1373 * So use pow(n, 4). 1374 */ 1375 static inline u32 ilog2_w(u64 n) 1376 { 1377 return ilog2(n * n * n * n); 1378 } 1379 1380 static u32 shannon_entropy(struct heuristic_ws *ws) 1381 { 1382 const u32 entropy_max = 8 * ilog2_w(2); 1383 u32 entropy_sum = 0; 1384 u32 p, p_base, sz_base; 1385 u32 i; 1386 1387 sz_base = ilog2_w(ws->sample_size); 1388 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1389 p = ws->bucket[i].count; 1390 p_base = ilog2_w(p); 1391 entropy_sum += p * (sz_base - p_base); 1392 } 1393 1394 entropy_sum /= ws->sample_size; 1395 return entropy_sum * 100 / entropy_max; 1396 } 1397 1398 #define RADIX_BASE 4U 1399 #define COUNTERS_SIZE (1U << RADIX_BASE) 1400 1401 static u8 get4bits(u64 num, int shift) { 1402 u8 low4bits; 1403 1404 num >>= shift; 1405 /* Reverse order */ 1406 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1407 return low4bits; 1408 } 1409 1410 /* 1411 * Use 4 bits as radix base 1412 * Use 16 u32 counters for calculating new position in buf array 1413 * 1414 * @array - array that will be sorted 1415 * @array_buf - buffer array to store sorting results 1416 * must be equal in size to @array 1417 * @num - array size 1418 */ 1419 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1420 int num) 1421 { 1422 u64 max_num; 1423 u64 buf_num; 1424 u32 counters[COUNTERS_SIZE]; 1425 u32 new_addr; 1426 u32 addr; 1427 int bitlen; 1428 int shift; 1429 int i; 1430 1431 /* 1432 * Try avoid useless loop iterations for small numbers stored in big 1433 * counters. Example: 48 33 4 ... in 64bit array 1434 */ 1435 max_num = array[0].count; 1436 for (i = 1; i < num; i++) { 1437 buf_num = array[i].count; 1438 if (buf_num > max_num) 1439 max_num = buf_num; 1440 } 1441 1442 buf_num = ilog2(max_num); 1443 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1444 1445 shift = 0; 1446 while (shift < bitlen) { 1447 memset(counters, 0, sizeof(counters)); 1448 1449 for (i = 0; i < num; i++) { 1450 buf_num = array[i].count; 1451 addr = get4bits(buf_num, shift); 1452 counters[addr]++; 1453 } 1454 1455 for (i = 1; i < COUNTERS_SIZE; i++) 1456 counters[i] += counters[i - 1]; 1457 1458 for (i = num - 1; i >= 0; i--) { 1459 buf_num = array[i].count; 1460 addr = get4bits(buf_num, shift); 1461 counters[addr]--; 1462 new_addr = counters[addr]; 1463 array_buf[new_addr] = array[i]; 1464 } 1465 1466 shift += RADIX_BASE; 1467 1468 /* 1469 * Normal radix expects to move data from a temporary array, to 1470 * the main one. But that requires some CPU time. Avoid that 1471 * by doing another sort iteration to original array instead of 1472 * memcpy() 1473 */ 1474 memset(counters, 0, sizeof(counters)); 1475 1476 for (i = 0; i < num; i ++) { 1477 buf_num = array_buf[i].count; 1478 addr = get4bits(buf_num, shift); 1479 counters[addr]++; 1480 } 1481 1482 for (i = 1; i < COUNTERS_SIZE; i++) 1483 counters[i] += counters[i - 1]; 1484 1485 for (i = num - 1; i >= 0; i--) { 1486 buf_num = array_buf[i].count; 1487 addr = get4bits(buf_num, shift); 1488 counters[addr]--; 1489 new_addr = counters[addr]; 1490 array[new_addr] = array_buf[i]; 1491 } 1492 1493 shift += RADIX_BASE; 1494 } 1495 } 1496 1497 /* 1498 * Size of the core byte set - how many bytes cover 90% of the sample 1499 * 1500 * There are several types of structured binary data that use nearly all byte 1501 * values. The distribution can be uniform and counts in all buckets will be 1502 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1503 * 1504 * Other possibility is normal (Gaussian) distribution, where the data could 1505 * be potentially compressible, but we have to take a few more steps to decide 1506 * how much. 1507 * 1508 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1509 * compression algo can easy fix that 1510 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1511 * probability is not compressible 1512 */ 1513 #define BYTE_CORE_SET_LOW (64) 1514 #define BYTE_CORE_SET_HIGH (200) 1515 1516 static int byte_core_set_size(struct heuristic_ws *ws) 1517 { 1518 u32 i; 1519 u32 coreset_sum = 0; 1520 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1521 struct bucket_item *bucket = ws->bucket; 1522 1523 /* Sort in reverse order */ 1524 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1525 1526 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1527 coreset_sum += bucket[i].count; 1528 1529 if (coreset_sum > core_set_threshold) 1530 return i; 1531 1532 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1533 coreset_sum += bucket[i].count; 1534 if (coreset_sum > core_set_threshold) 1535 break; 1536 } 1537 1538 return i; 1539 } 1540 1541 /* 1542 * Count byte values in buckets. 1543 * This heuristic can detect textual data (configs, xml, json, html, etc). 1544 * Because in most text-like data byte set is restricted to limited number of 1545 * possible characters, and that restriction in most cases makes data easy to 1546 * compress. 1547 * 1548 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1549 * less - compressible 1550 * more - need additional analysis 1551 */ 1552 #define BYTE_SET_THRESHOLD (64) 1553 1554 static u32 byte_set_size(const struct heuristic_ws *ws) 1555 { 1556 u32 i; 1557 u32 byte_set_size = 0; 1558 1559 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1560 if (ws->bucket[i].count > 0) 1561 byte_set_size++; 1562 } 1563 1564 /* 1565 * Continue collecting count of byte values in buckets. If the byte 1566 * set size is bigger then the threshold, it's pointless to continue, 1567 * the detection technique would fail for this type of data. 1568 */ 1569 for (; i < BUCKET_SIZE; i++) { 1570 if (ws->bucket[i].count > 0) { 1571 byte_set_size++; 1572 if (byte_set_size > BYTE_SET_THRESHOLD) 1573 return byte_set_size; 1574 } 1575 } 1576 1577 return byte_set_size; 1578 } 1579 1580 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1581 { 1582 const u32 half_of_sample = ws->sample_size / 2; 1583 const u8 *data = ws->sample; 1584 1585 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1586 } 1587 1588 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1589 struct heuristic_ws *ws) 1590 { 1591 struct page *page; 1592 u64 index, index_end; 1593 u32 i, curr_sample_pos; 1594 u8 *in_data; 1595 1596 /* 1597 * Compression handles the input data by chunks of 128KiB 1598 * (defined by BTRFS_MAX_UNCOMPRESSED) 1599 * 1600 * We do the same for the heuristic and loop over the whole range. 1601 * 1602 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1603 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1604 */ 1605 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1606 end = start + BTRFS_MAX_UNCOMPRESSED; 1607 1608 index = start >> PAGE_SHIFT; 1609 index_end = end >> PAGE_SHIFT; 1610 1611 /* Don't miss unaligned end */ 1612 if (!IS_ALIGNED(end, PAGE_SIZE)) 1613 index_end++; 1614 1615 curr_sample_pos = 0; 1616 while (index < index_end) { 1617 page = find_get_page(inode->i_mapping, index); 1618 in_data = kmap_local_page(page); 1619 /* Handle case where the start is not aligned to PAGE_SIZE */ 1620 i = start % PAGE_SIZE; 1621 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1622 /* Don't sample any garbage from the last page */ 1623 if (start > end - SAMPLING_READ_SIZE) 1624 break; 1625 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1626 SAMPLING_READ_SIZE); 1627 i += SAMPLING_INTERVAL; 1628 start += SAMPLING_INTERVAL; 1629 curr_sample_pos += SAMPLING_READ_SIZE; 1630 } 1631 kunmap_local(in_data); 1632 put_page(page); 1633 1634 index++; 1635 } 1636 1637 ws->sample_size = curr_sample_pos; 1638 } 1639 1640 /* 1641 * Compression heuristic. 1642 * 1643 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1644 * quickly (compared to direct compression) detect data characteristics 1645 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1646 * data. 1647 * 1648 * The following types of analysis can be performed: 1649 * - detect mostly zero data 1650 * - detect data with low "byte set" size (text, etc) 1651 * - detect data with low/high "core byte" set 1652 * 1653 * Return non-zero if the compression should be done, 0 otherwise. 1654 */ 1655 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1656 { 1657 struct list_head *ws_list = get_workspace(0, 0); 1658 struct heuristic_ws *ws; 1659 u32 i; 1660 u8 byte; 1661 int ret = 0; 1662 1663 ws = list_entry(ws_list, struct heuristic_ws, list); 1664 1665 heuristic_collect_sample(inode, start, end, ws); 1666 1667 if (sample_repeated_patterns(ws)) { 1668 ret = 1; 1669 goto out; 1670 } 1671 1672 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1673 1674 for (i = 0; i < ws->sample_size; i++) { 1675 byte = ws->sample[i]; 1676 ws->bucket[byte].count++; 1677 } 1678 1679 i = byte_set_size(ws); 1680 if (i < BYTE_SET_THRESHOLD) { 1681 ret = 2; 1682 goto out; 1683 } 1684 1685 i = byte_core_set_size(ws); 1686 if (i <= BYTE_CORE_SET_LOW) { 1687 ret = 3; 1688 goto out; 1689 } 1690 1691 if (i >= BYTE_CORE_SET_HIGH) { 1692 ret = 0; 1693 goto out; 1694 } 1695 1696 i = shannon_entropy(ws); 1697 if (i <= ENTROPY_LVL_ACEPTABLE) { 1698 ret = 4; 1699 goto out; 1700 } 1701 1702 /* 1703 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1704 * needed to give green light to compression. 1705 * 1706 * For now just assume that compression at that level is not worth the 1707 * resources because: 1708 * 1709 * 1. it is possible to defrag the data later 1710 * 1711 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1712 * values, every bucket has counter at level ~54. The heuristic would 1713 * be confused. This can happen when data have some internal repeated 1714 * patterns like "abbacbbc...". This can be detected by analyzing 1715 * pairs of bytes, which is too costly. 1716 */ 1717 if (i < ENTROPY_LVL_HIGH) { 1718 ret = 5; 1719 goto out; 1720 } else { 1721 ret = 0; 1722 goto out; 1723 } 1724 1725 out: 1726 put_workspace(0, ws_list); 1727 return ret; 1728 } 1729 1730 /* 1731 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1732 * level, unrecognized string will set the default level 1733 */ 1734 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1735 { 1736 unsigned int level = 0; 1737 int ret; 1738 1739 if (!type) 1740 return 0; 1741 1742 if (str[0] == ':') { 1743 ret = kstrtouint(str + 1, 10, &level); 1744 if (ret) 1745 level = 0; 1746 } 1747 1748 level = btrfs_compress_set_level(type, level); 1749 1750 return level; 1751 } 1752