1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include <crypto/hash.h> 21 #include "misc.h" 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "ordered-data.h" 28 #include "compression.h" 29 #include "extent_io.h" 30 #include "extent_map.h" 31 #include "zoned.h" 32 33 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 34 35 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 36 { 37 switch (type) { 38 case BTRFS_COMPRESS_ZLIB: 39 case BTRFS_COMPRESS_LZO: 40 case BTRFS_COMPRESS_ZSTD: 41 case BTRFS_COMPRESS_NONE: 42 return btrfs_compress_types[type]; 43 default: 44 break; 45 } 46 47 return NULL; 48 } 49 50 bool btrfs_compress_is_valid_type(const char *str, size_t len) 51 { 52 int i; 53 54 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 55 size_t comp_len = strlen(btrfs_compress_types[i]); 56 57 if (len < comp_len) 58 continue; 59 60 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 61 return true; 62 } 63 return false; 64 } 65 66 static int compression_compress_pages(int type, struct list_head *ws, 67 struct address_space *mapping, u64 start, struct page **pages, 68 unsigned long *out_pages, unsigned long *total_in, 69 unsigned long *total_out) 70 { 71 switch (type) { 72 case BTRFS_COMPRESS_ZLIB: 73 return zlib_compress_pages(ws, mapping, start, pages, 74 out_pages, total_in, total_out); 75 case BTRFS_COMPRESS_LZO: 76 return lzo_compress_pages(ws, mapping, start, pages, 77 out_pages, total_in, total_out); 78 case BTRFS_COMPRESS_ZSTD: 79 return zstd_compress_pages(ws, mapping, start, pages, 80 out_pages, total_in, total_out); 81 case BTRFS_COMPRESS_NONE: 82 default: 83 /* 84 * This can happen when compression races with remount setting 85 * it to 'no compress', while caller doesn't call 86 * inode_need_compress() to check if we really need to 87 * compress. 88 * 89 * Not a big deal, just need to inform caller that we 90 * haven't allocated any pages yet. 91 */ 92 *out_pages = 0; 93 return -E2BIG; 94 } 95 } 96 97 static int compression_decompress_bio(int type, struct list_head *ws, 98 struct compressed_bio *cb) 99 { 100 switch (type) { 101 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 102 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 103 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 104 case BTRFS_COMPRESS_NONE: 105 default: 106 /* 107 * This can't happen, the type is validated several times 108 * before we get here. 109 */ 110 BUG(); 111 } 112 } 113 114 static int compression_decompress(int type, struct list_head *ws, 115 unsigned char *data_in, struct page *dest_page, 116 unsigned long start_byte, size_t srclen, size_t destlen) 117 { 118 switch (type) { 119 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 120 start_byte, srclen, destlen); 121 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 122 start_byte, srclen, destlen); 123 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 124 start_byte, srclen, destlen); 125 case BTRFS_COMPRESS_NONE: 126 default: 127 /* 128 * This can't happen, the type is validated several times 129 * before we get here. 130 */ 131 BUG(); 132 } 133 } 134 135 static int btrfs_decompress_bio(struct compressed_bio *cb); 136 137 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 138 unsigned long disk_size) 139 { 140 return sizeof(struct compressed_bio) + 141 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size; 142 } 143 144 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio, 145 u64 disk_start) 146 { 147 struct btrfs_fs_info *fs_info = inode->root->fs_info; 148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 149 const u32 csum_size = fs_info->csum_size; 150 const u32 sectorsize = fs_info->sectorsize; 151 struct page *page; 152 unsigned int i; 153 char *kaddr; 154 u8 csum[BTRFS_CSUM_SIZE]; 155 struct compressed_bio *cb = bio->bi_private; 156 u8 *cb_sum = cb->sums; 157 158 if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM)) 159 return 0; 160 161 shash->tfm = fs_info->csum_shash; 162 163 for (i = 0; i < cb->nr_pages; i++) { 164 u32 pg_offset; 165 u32 bytes_left = PAGE_SIZE; 166 page = cb->compressed_pages[i]; 167 168 /* Determine the remaining bytes inside the page first */ 169 if (i == cb->nr_pages - 1) 170 bytes_left = cb->compressed_len - i * PAGE_SIZE; 171 172 /* Hash through the page sector by sector */ 173 for (pg_offset = 0; pg_offset < bytes_left; 174 pg_offset += sectorsize) { 175 kaddr = kmap_atomic(page); 176 crypto_shash_digest(shash, kaddr + pg_offset, 177 sectorsize, csum); 178 kunmap_atomic(kaddr); 179 180 if (memcmp(&csum, cb_sum, csum_size) != 0) { 181 btrfs_print_data_csum_error(inode, disk_start, 182 csum, cb_sum, cb->mirror_num); 183 if (btrfs_io_bio(bio)->device) 184 btrfs_dev_stat_inc_and_print( 185 btrfs_io_bio(bio)->device, 186 BTRFS_DEV_STAT_CORRUPTION_ERRS); 187 return -EIO; 188 } 189 cb_sum += csum_size; 190 disk_start += sectorsize; 191 } 192 } 193 return 0; 194 } 195 196 /* when we finish reading compressed pages from the disk, we 197 * decompress them and then run the bio end_io routines on the 198 * decompressed pages (in the inode address space). 199 * 200 * This allows the checksumming and other IO error handling routines 201 * to work normally 202 * 203 * The compressed pages are freed here, and it must be run 204 * in process context 205 */ 206 static void end_compressed_bio_read(struct bio *bio) 207 { 208 struct compressed_bio *cb = bio->bi_private; 209 struct inode *inode; 210 struct page *page; 211 unsigned int index; 212 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 213 int ret = 0; 214 215 if (bio->bi_status) 216 cb->errors = 1; 217 218 /* if there are more bios still pending for this compressed 219 * extent, just exit 220 */ 221 if (!refcount_dec_and_test(&cb->pending_bios)) 222 goto out; 223 224 /* 225 * Record the correct mirror_num in cb->orig_bio so that 226 * read-repair can work properly. 227 */ 228 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 229 cb->mirror_num = mirror; 230 231 /* 232 * Some IO in this cb have failed, just skip checksum as there 233 * is no way it could be correct. 234 */ 235 if (cb->errors == 1) 236 goto csum_failed; 237 238 inode = cb->inode; 239 ret = check_compressed_csum(BTRFS_I(inode), bio, 240 bio->bi_iter.bi_sector << 9); 241 if (ret) 242 goto csum_failed; 243 244 /* ok, we're the last bio for this extent, lets start 245 * the decompression. 246 */ 247 ret = btrfs_decompress_bio(cb); 248 249 csum_failed: 250 if (ret) 251 cb->errors = 1; 252 253 /* release the compressed pages */ 254 index = 0; 255 for (index = 0; index < cb->nr_pages; index++) { 256 page = cb->compressed_pages[index]; 257 page->mapping = NULL; 258 put_page(page); 259 } 260 261 /* do io completion on the original bio */ 262 if (cb->errors) { 263 bio_io_error(cb->orig_bio); 264 } else { 265 struct bio_vec *bvec; 266 struct bvec_iter_all iter_all; 267 268 /* 269 * we have verified the checksum already, set page 270 * checked so the end_io handlers know about it 271 */ 272 ASSERT(!bio_flagged(bio, BIO_CLONED)); 273 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) 274 SetPageChecked(bvec->bv_page); 275 276 bio_endio(cb->orig_bio); 277 } 278 279 /* finally free the cb struct */ 280 kfree(cb->compressed_pages); 281 kfree(cb); 282 out: 283 bio_put(bio); 284 } 285 286 /* 287 * Clear the writeback bits on all of the file 288 * pages for a compressed write 289 */ 290 static noinline void end_compressed_writeback(struct inode *inode, 291 const struct compressed_bio *cb) 292 { 293 unsigned long index = cb->start >> PAGE_SHIFT; 294 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 295 struct page *pages[16]; 296 unsigned long nr_pages = end_index - index + 1; 297 int i; 298 int ret; 299 300 if (cb->errors) 301 mapping_set_error(inode->i_mapping, -EIO); 302 303 while (nr_pages > 0) { 304 ret = find_get_pages_contig(inode->i_mapping, index, 305 min_t(unsigned long, 306 nr_pages, ARRAY_SIZE(pages)), pages); 307 if (ret == 0) { 308 nr_pages -= 1; 309 index += 1; 310 continue; 311 } 312 for (i = 0; i < ret; i++) { 313 if (cb->errors) 314 SetPageError(pages[i]); 315 end_page_writeback(pages[i]); 316 put_page(pages[i]); 317 } 318 nr_pages -= ret; 319 index += ret; 320 } 321 /* the inode may be gone now */ 322 } 323 324 /* 325 * do the cleanup once all the compressed pages hit the disk. 326 * This will clear writeback on the file pages and free the compressed 327 * pages. 328 * 329 * This also calls the writeback end hooks for the file pages so that 330 * metadata and checksums can be updated in the file. 331 */ 332 static void end_compressed_bio_write(struct bio *bio) 333 { 334 struct compressed_bio *cb = bio->bi_private; 335 struct inode *inode; 336 struct page *page; 337 unsigned int index; 338 339 if (bio->bi_status) 340 cb->errors = 1; 341 342 /* if there are more bios still pending for this compressed 343 * extent, just exit 344 */ 345 if (!refcount_dec_and_test(&cb->pending_bios)) 346 goto out; 347 348 /* ok, we're the last bio for this extent, step one is to 349 * call back into the FS and do all the end_io operations 350 */ 351 inode = cb->inode; 352 btrfs_record_physical_zoned(inode, cb->start, bio); 353 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL, 354 cb->start, cb->start + cb->len - 1, 355 !cb->errors); 356 357 end_compressed_writeback(inode, cb); 358 /* note, our inode could be gone now */ 359 360 /* 361 * release the compressed pages, these came from alloc_page and 362 * are not attached to the inode at all 363 */ 364 index = 0; 365 for (index = 0; index < cb->nr_pages; index++) { 366 page = cb->compressed_pages[index]; 367 page->mapping = NULL; 368 put_page(page); 369 } 370 371 /* finally free the cb struct */ 372 kfree(cb->compressed_pages); 373 kfree(cb); 374 out: 375 bio_put(bio); 376 } 377 378 /* 379 * worker function to build and submit bios for previously compressed pages. 380 * The corresponding pages in the inode should be marked for writeback 381 * and the compressed pages should have a reference on them for dropping 382 * when the IO is complete. 383 * 384 * This also checksums the file bytes and gets things ready for 385 * the end io hooks. 386 */ 387 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 388 unsigned int len, u64 disk_start, 389 unsigned int compressed_len, 390 struct page **compressed_pages, 391 unsigned int nr_pages, 392 unsigned int write_flags, 393 struct cgroup_subsys_state *blkcg_css) 394 { 395 struct btrfs_fs_info *fs_info = inode->root->fs_info; 396 struct bio *bio = NULL; 397 struct compressed_bio *cb; 398 unsigned long bytes_left; 399 int pg_index = 0; 400 struct page *page; 401 u64 first_byte = disk_start; 402 blk_status_t ret; 403 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; 404 const bool use_append = btrfs_use_zone_append(inode, disk_start); 405 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE; 406 407 WARN_ON(!PAGE_ALIGNED(start)); 408 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 409 if (!cb) 410 return BLK_STS_RESOURCE; 411 refcount_set(&cb->pending_bios, 0); 412 cb->errors = 0; 413 cb->inode = &inode->vfs_inode; 414 cb->start = start; 415 cb->len = len; 416 cb->mirror_num = 0; 417 cb->compressed_pages = compressed_pages; 418 cb->compressed_len = compressed_len; 419 cb->orig_bio = NULL; 420 cb->nr_pages = nr_pages; 421 422 bio = btrfs_bio_alloc(first_byte); 423 bio->bi_opf = bio_op | write_flags; 424 bio->bi_private = cb; 425 bio->bi_end_io = end_compressed_bio_write; 426 427 if (use_append) { 428 struct btrfs_device *device; 429 430 device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE); 431 if (IS_ERR(device)) { 432 kfree(cb); 433 bio_put(bio); 434 return BLK_STS_NOTSUPP; 435 } 436 437 bio_set_dev(bio, device->bdev); 438 } 439 440 if (blkcg_css) { 441 bio->bi_opf |= REQ_CGROUP_PUNT; 442 kthread_associate_blkcg(blkcg_css); 443 } 444 refcount_set(&cb->pending_bios, 1); 445 446 /* create and submit bios for the compressed pages */ 447 bytes_left = compressed_len; 448 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 449 int submit = 0; 450 int len = 0; 451 452 page = compressed_pages[pg_index]; 453 page->mapping = inode->vfs_inode.i_mapping; 454 if (bio->bi_iter.bi_size) 455 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 456 0); 457 458 /* 459 * Page can only be added to bio if the current bio fits in 460 * stripe. 461 */ 462 if (!submit) { 463 if (pg_index == 0 && use_append) 464 len = bio_add_zone_append_page(bio, page, 465 PAGE_SIZE, 0); 466 else 467 len = bio_add_page(bio, page, PAGE_SIZE, 0); 468 } 469 470 page->mapping = NULL; 471 if (submit || len < PAGE_SIZE) { 472 /* 473 * inc the count before we submit the bio so 474 * we know the end IO handler won't happen before 475 * we inc the count. Otherwise, the cb might get 476 * freed before we're done setting it up 477 */ 478 refcount_inc(&cb->pending_bios); 479 ret = btrfs_bio_wq_end_io(fs_info, bio, 480 BTRFS_WQ_ENDIO_DATA); 481 BUG_ON(ret); /* -ENOMEM */ 482 483 if (!skip_sum) { 484 ret = btrfs_csum_one_bio(inode, bio, start, 1); 485 BUG_ON(ret); /* -ENOMEM */ 486 } 487 488 ret = btrfs_map_bio(fs_info, bio, 0); 489 if (ret) { 490 bio->bi_status = ret; 491 bio_endio(bio); 492 } 493 494 bio = btrfs_bio_alloc(first_byte); 495 bio->bi_opf = bio_op | write_flags; 496 bio->bi_private = cb; 497 bio->bi_end_io = end_compressed_bio_write; 498 if (blkcg_css) 499 bio->bi_opf |= REQ_CGROUP_PUNT; 500 /* 501 * Use bio_add_page() to ensure the bio has at least one 502 * page. 503 */ 504 bio_add_page(bio, page, PAGE_SIZE, 0); 505 } 506 if (bytes_left < PAGE_SIZE) { 507 btrfs_info(fs_info, 508 "bytes left %lu compress len %u nr %u", 509 bytes_left, cb->compressed_len, cb->nr_pages); 510 } 511 bytes_left -= PAGE_SIZE; 512 first_byte += PAGE_SIZE; 513 cond_resched(); 514 } 515 516 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 517 BUG_ON(ret); /* -ENOMEM */ 518 519 if (!skip_sum) { 520 ret = btrfs_csum_one_bio(inode, bio, start, 1); 521 BUG_ON(ret); /* -ENOMEM */ 522 } 523 524 ret = btrfs_map_bio(fs_info, bio, 0); 525 if (ret) { 526 bio->bi_status = ret; 527 bio_endio(bio); 528 } 529 530 if (blkcg_css) 531 kthread_associate_blkcg(NULL); 532 533 return 0; 534 } 535 536 static u64 bio_end_offset(struct bio *bio) 537 { 538 struct bio_vec *last = bio_last_bvec_all(bio); 539 540 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 541 } 542 543 static noinline int add_ra_bio_pages(struct inode *inode, 544 u64 compressed_end, 545 struct compressed_bio *cb) 546 { 547 unsigned long end_index; 548 unsigned long pg_index; 549 u64 last_offset; 550 u64 isize = i_size_read(inode); 551 int ret; 552 struct page *page; 553 unsigned long nr_pages = 0; 554 struct extent_map *em; 555 struct address_space *mapping = inode->i_mapping; 556 struct extent_map_tree *em_tree; 557 struct extent_io_tree *tree; 558 u64 end; 559 int misses = 0; 560 561 last_offset = bio_end_offset(cb->orig_bio); 562 em_tree = &BTRFS_I(inode)->extent_tree; 563 tree = &BTRFS_I(inode)->io_tree; 564 565 if (isize == 0) 566 return 0; 567 568 /* 569 * For current subpage support, we only support 64K page size, 570 * which means maximum compressed extent size (128K) is just 2x page 571 * size. 572 * This makes readahead less effective, so here disable readahead for 573 * subpage for now, until full compressed write is supported. 574 */ 575 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE) 576 return 0; 577 578 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 579 580 while (last_offset < compressed_end) { 581 pg_index = last_offset >> PAGE_SHIFT; 582 583 if (pg_index > end_index) 584 break; 585 586 page = xa_load(&mapping->i_pages, pg_index); 587 if (page && !xa_is_value(page)) { 588 misses++; 589 if (misses > 4) 590 break; 591 goto next; 592 } 593 594 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 595 ~__GFP_FS)); 596 if (!page) 597 break; 598 599 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 600 put_page(page); 601 goto next; 602 } 603 604 /* 605 * at this point, we have a locked page in the page cache 606 * for these bytes in the file. But, we have to make 607 * sure they map to this compressed extent on disk. 608 */ 609 ret = set_page_extent_mapped(page); 610 if (ret < 0) { 611 unlock_page(page); 612 put_page(page); 613 break; 614 } 615 616 end = last_offset + PAGE_SIZE - 1; 617 lock_extent(tree, last_offset, end); 618 read_lock(&em_tree->lock); 619 em = lookup_extent_mapping(em_tree, last_offset, 620 PAGE_SIZE); 621 read_unlock(&em_tree->lock); 622 623 if (!em || last_offset < em->start || 624 (last_offset + PAGE_SIZE > extent_map_end(em)) || 625 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 626 free_extent_map(em); 627 unlock_extent(tree, last_offset, end); 628 unlock_page(page); 629 put_page(page); 630 break; 631 } 632 free_extent_map(em); 633 634 if (page->index == end_index) { 635 size_t zero_offset = offset_in_page(isize); 636 637 if (zero_offset) { 638 int zeros; 639 zeros = PAGE_SIZE - zero_offset; 640 memzero_page(page, zero_offset, zeros); 641 flush_dcache_page(page); 642 } 643 } 644 645 ret = bio_add_page(cb->orig_bio, page, 646 PAGE_SIZE, 0); 647 648 if (ret == PAGE_SIZE) { 649 nr_pages++; 650 put_page(page); 651 } else { 652 unlock_extent(tree, last_offset, end); 653 unlock_page(page); 654 put_page(page); 655 break; 656 } 657 next: 658 last_offset += PAGE_SIZE; 659 } 660 return 0; 661 } 662 663 /* 664 * for a compressed read, the bio we get passed has all the inode pages 665 * in it. We don't actually do IO on those pages but allocate new ones 666 * to hold the compressed pages on disk. 667 * 668 * bio->bi_iter.bi_sector points to the compressed extent on disk 669 * bio->bi_io_vec points to all of the inode pages 670 * 671 * After the compressed pages are read, we copy the bytes into the 672 * bio we were passed and then call the bio end_io calls 673 */ 674 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 675 int mirror_num, unsigned long bio_flags) 676 { 677 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 678 struct extent_map_tree *em_tree; 679 struct compressed_bio *cb; 680 unsigned int compressed_len; 681 unsigned int nr_pages; 682 unsigned int pg_index; 683 struct page *page; 684 struct bio *comp_bio; 685 u64 cur_disk_byte = bio->bi_iter.bi_sector << 9; 686 u64 file_offset; 687 u64 em_len; 688 u64 em_start; 689 struct extent_map *em; 690 blk_status_t ret = BLK_STS_RESOURCE; 691 int faili = 0; 692 u8 *sums; 693 694 em_tree = &BTRFS_I(inode)->extent_tree; 695 696 file_offset = bio_first_bvec_all(bio)->bv_offset + 697 page_offset(bio_first_page_all(bio)); 698 699 /* we need the actual starting offset of this extent in the file */ 700 read_lock(&em_tree->lock); 701 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); 702 read_unlock(&em_tree->lock); 703 if (!em) 704 return BLK_STS_IOERR; 705 706 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE); 707 compressed_len = em->block_len; 708 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 709 if (!cb) 710 goto out; 711 712 refcount_set(&cb->pending_bios, 0); 713 cb->errors = 0; 714 cb->inode = inode; 715 cb->mirror_num = mirror_num; 716 sums = cb->sums; 717 718 cb->start = em->orig_start; 719 em_len = em->len; 720 em_start = em->start; 721 722 free_extent_map(em); 723 em = NULL; 724 725 cb->len = bio->bi_iter.bi_size; 726 cb->compressed_len = compressed_len; 727 cb->compress_type = extent_compress_type(bio_flags); 728 cb->orig_bio = bio; 729 730 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 731 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 732 GFP_NOFS); 733 if (!cb->compressed_pages) 734 goto fail1; 735 736 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 737 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS); 738 if (!cb->compressed_pages[pg_index]) { 739 faili = pg_index - 1; 740 ret = BLK_STS_RESOURCE; 741 goto fail2; 742 } 743 } 744 faili = nr_pages - 1; 745 cb->nr_pages = nr_pages; 746 747 add_ra_bio_pages(inode, em_start + em_len, cb); 748 749 /* include any pages we added in add_ra-bio_pages */ 750 cb->len = bio->bi_iter.bi_size; 751 752 comp_bio = btrfs_bio_alloc(cur_disk_byte); 753 comp_bio->bi_opf = REQ_OP_READ; 754 comp_bio->bi_private = cb; 755 comp_bio->bi_end_io = end_compressed_bio_read; 756 refcount_set(&cb->pending_bios, 1); 757 758 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 759 u32 pg_len = PAGE_SIZE; 760 int submit = 0; 761 762 /* 763 * To handle subpage case, we need to make sure the bio only 764 * covers the range we need. 765 * 766 * If we're at the last page, truncate the length to only cover 767 * the remaining part. 768 */ 769 if (pg_index == nr_pages - 1) 770 pg_len = min_t(u32, PAGE_SIZE, 771 compressed_len - pg_index * PAGE_SIZE); 772 773 page = cb->compressed_pages[pg_index]; 774 page->mapping = inode->i_mapping; 775 page->index = em_start >> PAGE_SHIFT; 776 777 if (comp_bio->bi_iter.bi_size) 778 submit = btrfs_bio_fits_in_stripe(page, pg_len, 779 comp_bio, 0); 780 781 page->mapping = NULL; 782 if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) { 783 unsigned int nr_sectors; 784 785 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 786 BTRFS_WQ_ENDIO_DATA); 787 BUG_ON(ret); /* -ENOMEM */ 788 789 /* 790 * inc the count before we submit the bio so 791 * we know the end IO handler won't happen before 792 * we inc the count. Otherwise, the cb might get 793 * freed before we're done setting it up 794 */ 795 refcount_inc(&cb->pending_bios); 796 797 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 798 BUG_ON(ret); /* -ENOMEM */ 799 800 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 801 fs_info->sectorsize); 802 sums += fs_info->csum_size * nr_sectors; 803 804 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 805 if (ret) { 806 comp_bio->bi_status = ret; 807 bio_endio(comp_bio); 808 } 809 810 comp_bio = btrfs_bio_alloc(cur_disk_byte); 811 comp_bio->bi_opf = REQ_OP_READ; 812 comp_bio->bi_private = cb; 813 comp_bio->bi_end_io = end_compressed_bio_read; 814 815 bio_add_page(comp_bio, page, pg_len, 0); 816 } 817 cur_disk_byte += pg_len; 818 } 819 820 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 821 BUG_ON(ret); /* -ENOMEM */ 822 823 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 824 BUG_ON(ret); /* -ENOMEM */ 825 826 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 827 if (ret) { 828 comp_bio->bi_status = ret; 829 bio_endio(comp_bio); 830 } 831 832 return 0; 833 834 fail2: 835 while (faili >= 0) { 836 __free_page(cb->compressed_pages[faili]); 837 faili--; 838 } 839 840 kfree(cb->compressed_pages); 841 fail1: 842 kfree(cb); 843 out: 844 free_extent_map(em); 845 return ret; 846 } 847 848 /* 849 * Heuristic uses systematic sampling to collect data from the input data 850 * range, the logic can be tuned by the following constants: 851 * 852 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 853 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 854 */ 855 #define SAMPLING_READ_SIZE (16) 856 #define SAMPLING_INTERVAL (256) 857 858 /* 859 * For statistical analysis of the input data we consider bytes that form a 860 * Galois Field of 256 objects. Each object has an attribute count, ie. how 861 * many times the object appeared in the sample. 862 */ 863 #define BUCKET_SIZE (256) 864 865 /* 866 * The size of the sample is based on a statistical sampling rule of thumb. 867 * The common way is to perform sampling tests as long as the number of 868 * elements in each cell is at least 5. 869 * 870 * Instead of 5, we choose 32 to obtain more accurate results. 871 * If the data contain the maximum number of symbols, which is 256, we obtain a 872 * sample size bound by 8192. 873 * 874 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 875 * from up to 512 locations. 876 */ 877 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 878 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 879 880 struct bucket_item { 881 u32 count; 882 }; 883 884 struct heuristic_ws { 885 /* Partial copy of input data */ 886 u8 *sample; 887 u32 sample_size; 888 /* Buckets store counters for each byte value */ 889 struct bucket_item *bucket; 890 /* Sorting buffer */ 891 struct bucket_item *bucket_b; 892 struct list_head list; 893 }; 894 895 static struct workspace_manager heuristic_wsm; 896 897 static void free_heuristic_ws(struct list_head *ws) 898 { 899 struct heuristic_ws *workspace; 900 901 workspace = list_entry(ws, struct heuristic_ws, list); 902 903 kvfree(workspace->sample); 904 kfree(workspace->bucket); 905 kfree(workspace->bucket_b); 906 kfree(workspace); 907 } 908 909 static struct list_head *alloc_heuristic_ws(unsigned int level) 910 { 911 struct heuristic_ws *ws; 912 913 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 914 if (!ws) 915 return ERR_PTR(-ENOMEM); 916 917 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 918 if (!ws->sample) 919 goto fail; 920 921 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 922 if (!ws->bucket) 923 goto fail; 924 925 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 926 if (!ws->bucket_b) 927 goto fail; 928 929 INIT_LIST_HEAD(&ws->list); 930 return &ws->list; 931 fail: 932 free_heuristic_ws(&ws->list); 933 return ERR_PTR(-ENOMEM); 934 } 935 936 const struct btrfs_compress_op btrfs_heuristic_compress = { 937 .workspace_manager = &heuristic_wsm, 938 }; 939 940 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 941 /* The heuristic is represented as compression type 0 */ 942 &btrfs_heuristic_compress, 943 &btrfs_zlib_compress, 944 &btrfs_lzo_compress, 945 &btrfs_zstd_compress, 946 }; 947 948 static struct list_head *alloc_workspace(int type, unsigned int level) 949 { 950 switch (type) { 951 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 952 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 953 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 954 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 955 default: 956 /* 957 * This can't happen, the type is validated several times 958 * before we get here. 959 */ 960 BUG(); 961 } 962 } 963 964 static void free_workspace(int type, struct list_head *ws) 965 { 966 switch (type) { 967 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 968 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 969 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 970 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 971 default: 972 /* 973 * This can't happen, the type is validated several times 974 * before we get here. 975 */ 976 BUG(); 977 } 978 } 979 980 static void btrfs_init_workspace_manager(int type) 981 { 982 struct workspace_manager *wsm; 983 struct list_head *workspace; 984 985 wsm = btrfs_compress_op[type]->workspace_manager; 986 INIT_LIST_HEAD(&wsm->idle_ws); 987 spin_lock_init(&wsm->ws_lock); 988 atomic_set(&wsm->total_ws, 0); 989 init_waitqueue_head(&wsm->ws_wait); 990 991 /* 992 * Preallocate one workspace for each compression type so we can 993 * guarantee forward progress in the worst case 994 */ 995 workspace = alloc_workspace(type, 0); 996 if (IS_ERR(workspace)) { 997 pr_warn( 998 "BTRFS: cannot preallocate compression workspace, will try later\n"); 999 } else { 1000 atomic_set(&wsm->total_ws, 1); 1001 wsm->free_ws = 1; 1002 list_add(workspace, &wsm->idle_ws); 1003 } 1004 } 1005 1006 static void btrfs_cleanup_workspace_manager(int type) 1007 { 1008 struct workspace_manager *wsman; 1009 struct list_head *ws; 1010 1011 wsman = btrfs_compress_op[type]->workspace_manager; 1012 while (!list_empty(&wsman->idle_ws)) { 1013 ws = wsman->idle_ws.next; 1014 list_del(ws); 1015 free_workspace(type, ws); 1016 atomic_dec(&wsman->total_ws); 1017 } 1018 } 1019 1020 /* 1021 * This finds an available workspace or allocates a new one. 1022 * If it's not possible to allocate a new one, waits until there's one. 1023 * Preallocation makes a forward progress guarantees and we do not return 1024 * errors. 1025 */ 1026 struct list_head *btrfs_get_workspace(int type, unsigned int level) 1027 { 1028 struct workspace_manager *wsm; 1029 struct list_head *workspace; 1030 int cpus = num_online_cpus(); 1031 unsigned nofs_flag; 1032 struct list_head *idle_ws; 1033 spinlock_t *ws_lock; 1034 atomic_t *total_ws; 1035 wait_queue_head_t *ws_wait; 1036 int *free_ws; 1037 1038 wsm = btrfs_compress_op[type]->workspace_manager; 1039 idle_ws = &wsm->idle_ws; 1040 ws_lock = &wsm->ws_lock; 1041 total_ws = &wsm->total_ws; 1042 ws_wait = &wsm->ws_wait; 1043 free_ws = &wsm->free_ws; 1044 1045 again: 1046 spin_lock(ws_lock); 1047 if (!list_empty(idle_ws)) { 1048 workspace = idle_ws->next; 1049 list_del(workspace); 1050 (*free_ws)--; 1051 spin_unlock(ws_lock); 1052 return workspace; 1053 1054 } 1055 if (atomic_read(total_ws) > cpus) { 1056 DEFINE_WAIT(wait); 1057 1058 spin_unlock(ws_lock); 1059 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1060 if (atomic_read(total_ws) > cpus && !*free_ws) 1061 schedule(); 1062 finish_wait(ws_wait, &wait); 1063 goto again; 1064 } 1065 atomic_inc(total_ws); 1066 spin_unlock(ws_lock); 1067 1068 /* 1069 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1070 * to turn it off here because we might get called from the restricted 1071 * context of btrfs_compress_bio/btrfs_compress_pages 1072 */ 1073 nofs_flag = memalloc_nofs_save(); 1074 workspace = alloc_workspace(type, level); 1075 memalloc_nofs_restore(nofs_flag); 1076 1077 if (IS_ERR(workspace)) { 1078 atomic_dec(total_ws); 1079 wake_up(ws_wait); 1080 1081 /* 1082 * Do not return the error but go back to waiting. There's a 1083 * workspace preallocated for each type and the compression 1084 * time is bounded so we get to a workspace eventually. This 1085 * makes our caller's life easier. 1086 * 1087 * To prevent silent and low-probability deadlocks (when the 1088 * initial preallocation fails), check if there are any 1089 * workspaces at all. 1090 */ 1091 if (atomic_read(total_ws) == 0) { 1092 static DEFINE_RATELIMIT_STATE(_rs, 1093 /* once per minute */ 60 * HZ, 1094 /* no burst */ 1); 1095 1096 if (__ratelimit(&_rs)) { 1097 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1098 } 1099 } 1100 goto again; 1101 } 1102 return workspace; 1103 } 1104 1105 static struct list_head *get_workspace(int type, int level) 1106 { 1107 switch (type) { 1108 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1109 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1110 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1111 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1112 default: 1113 /* 1114 * This can't happen, the type is validated several times 1115 * before we get here. 1116 */ 1117 BUG(); 1118 } 1119 } 1120 1121 /* 1122 * put a workspace struct back on the list or free it if we have enough 1123 * idle ones sitting around 1124 */ 1125 void btrfs_put_workspace(int type, struct list_head *ws) 1126 { 1127 struct workspace_manager *wsm; 1128 struct list_head *idle_ws; 1129 spinlock_t *ws_lock; 1130 atomic_t *total_ws; 1131 wait_queue_head_t *ws_wait; 1132 int *free_ws; 1133 1134 wsm = btrfs_compress_op[type]->workspace_manager; 1135 idle_ws = &wsm->idle_ws; 1136 ws_lock = &wsm->ws_lock; 1137 total_ws = &wsm->total_ws; 1138 ws_wait = &wsm->ws_wait; 1139 free_ws = &wsm->free_ws; 1140 1141 spin_lock(ws_lock); 1142 if (*free_ws <= num_online_cpus()) { 1143 list_add(ws, idle_ws); 1144 (*free_ws)++; 1145 spin_unlock(ws_lock); 1146 goto wake; 1147 } 1148 spin_unlock(ws_lock); 1149 1150 free_workspace(type, ws); 1151 atomic_dec(total_ws); 1152 wake: 1153 cond_wake_up(ws_wait); 1154 } 1155 1156 static void put_workspace(int type, struct list_head *ws) 1157 { 1158 switch (type) { 1159 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1160 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1161 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1162 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1163 default: 1164 /* 1165 * This can't happen, the type is validated several times 1166 * before we get here. 1167 */ 1168 BUG(); 1169 } 1170 } 1171 1172 /* 1173 * Adjust @level according to the limits of the compression algorithm or 1174 * fallback to default 1175 */ 1176 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1177 { 1178 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1179 1180 if (level == 0) 1181 level = ops->default_level; 1182 else 1183 level = min(level, ops->max_level); 1184 1185 return level; 1186 } 1187 1188 /* 1189 * Given an address space and start and length, compress the bytes into @pages 1190 * that are allocated on demand. 1191 * 1192 * @type_level is encoded algorithm and level, where level 0 means whatever 1193 * default the algorithm chooses and is opaque here; 1194 * - compression algo are 0-3 1195 * - the level are bits 4-7 1196 * 1197 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1198 * and returns number of actually allocated pages 1199 * 1200 * @total_in is used to return the number of bytes actually read. It 1201 * may be smaller than the input length if we had to exit early because we 1202 * ran out of room in the pages array or because we cross the 1203 * max_out threshold. 1204 * 1205 * @total_out is an in/out parameter, must be set to the input length and will 1206 * be also used to return the total number of compressed bytes 1207 */ 1208 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1209 u64 start, struct page **pages, 1210 unsigned long *out_pages, 1211 unsigned long *total_in, 1212 unsigned long *total_out) 1213 { 1214 int type = btrfs_compress_type(type_level); 1215 int level = btrfs_compress_level(type_level); 1216 struct list_head *workspace; 1217 int ret; 1218 1219 level = btrfs_compress_set_level(type, level); 1220 workspace = get_workspace(type, level); 1221 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1222 out_pages, total_in, total_out); 1223 put_workspace(type, workspace); 1224 return ret; 1225 } 1226 1227 static int btrfs_decompress_bio(struct compressed_bio *cb) 1228 { 1229 struct list_head *workspace; 1230 int ret; 1231 int type = cb->compress_type; 1232 1233 workspace = get_workspace(type, 0); 1234 ret = compression_decompress_bio(type, workspace, cb); 1235 put_workspace(type, workspace); 1236 1237 return ret; 1238 } 1239 1240 /* 1241 * a less complex decompression routine. Our compressed data fits in a 1242 * single page, and we want to read a single page out of it. 1243 * start_byte tells us the offset into the compressed data we're interested in 1244 */ 1245 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1246 unsigned long start_byte, size_t srclen, size_t destlen) 1247 { 1248 struct list_head *workspace; 1249 int ret; 1250 1251 workspace = get_workspace(type, 0); 1252 ret = compression_decompress(type, workspace, data_in, dest_page, 1253 start_byte, srclen, destlen); 1254 put_workspace(type, workspace); 1255 1256 return ret; 1257 } 1258 1259 void __init btrfs_init_compress(void) 1260 { 1261 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1262 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1263 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1264 zstd_init_workspace_manager(); 1265 } 1266 1267 void __cold btrfs_exit_compress(void) 1268 { 1269 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1270 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1271 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1272 zstd_cleanup_workspace_manager(); 1273 } 1274 1275 /* 1276 * Copy decompressed data from working buffer to pages. 1277 * 1278 * @buf: The decompressed data buffer 1279 * @buf_len: The decompressed data length 1280 * @decompressed: Number of bytes that are already decompressed inside the 1281 * compressed extent 1282 * @cb: The compressed extent descriptor 1283 * @orig_bio: The original bio that the caller wants to read for 1284 * 1285 * An easier to understand graph is like below: 1286 * 1287 * |<- orig_bio ->| |<- orig_bio->| 1288 * |<------- full decompressed extent ----->| 1289 * |<----------- @cb range ---->| 1290 * | |<-- @buf_len -->| 1291 * |<--- @decompressed --->| 1292 * 1293 * Note that, @cb can be a subpage of the full decompressed extent, but 1294 * @cb->start always has the same as the orig_file_offset value of the full 1295 * decompressed extent. 1296 * 1297 * When reading compressed extent, we have to read the full compressed extent, 1298 * while @orig_bio may only want part of the range. 1299 * Thus this function will ensure only data covered by @orig_bio will be copied 1300 * to. 1301 * 1302 * Return 0 if we have copied all needed contents for @orig_bio. 1303 * Return >0 if we need continue decompress. 1304 */ 1305 int btrfs_decompress_buf2page(const char *buf, u32 buf_len, 1306 struct compressed_bio *cb, u32 decompressed) 1307 { 1308 struct bio *orig_bio = cb->orig_bio; 1309 /* Offset inside the full decompressed extent */ 1310 u32 cur_offset; 1311 1312 cur_offset = decompressed; 1313 /* The main loop to do the copy */ 1314 while (cur_offset < decompressed + buf_len) { 1315 struct bio_vec bvec; 1316 size_t copy_len; 1317 u32 copy_start; 1318 /* Offset inside the full decompressed extent */ 1319 u32 bvec_offset; 1320 1321 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); 1322 /* 1323 * cb->start may underflow, but subtracting that value can still 1324 * give us correct offset inside the full decompressed extent. 1325 */ 1326 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start; 1327 1328 /* Haven't reached the bvec range, exit */ 1329 if (decompressed + buf_len <= bvec_offset) 1330 return 1; 1331 1332 copy_start = max(cur_offset, bvec_offset); 1333 copy_len = min(bvec_offset + bvec.bv_len, 1334 decompressed + buf_len) - copy_start; 1335 ASSERT(copy_len); 1336 1337 /* 1338 * Extra range check to ensure we didn't go beyond 1339 * @buf + @buf_len. 1340 */ 1341 ASSERT(copy_start - decompressed < buf_len); 1342 memcpy_to_page(bvec.bv_page, bvec.bv_offset, 1343 buf + copy_start - decompressed, copy_len); 1344 flush_dcache_page(bvec.bv_page); 1345 cur_offset += copy_len; 1346 1347 bio_advance(orig_bio, copy_len); 1348 /* Finished the bio */ 1349 if (!orig_bio->bi_iter.bi_size) 1350 return 0; 1351 } 1352 return 1; 1353 } 1354 1355 /* 1356 * Shannon Entropy calculation 1357 * 1358 * Pure byte distribution analysis fails to determine compressibility of data. 1359 * Try calculating entropy to estimate the average minimum number of bits 1360 * needed to encode the sampled data. 1361 * 1362 * For convenience, return the percentage of needed bits, instead of amount of 1363 * bits directly. 1364 * 1365 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1366 * and can be compressible with high probability 1367 * 1368 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1369 * 1370 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1371 */ 1372 #define ENTROPY_LVL_ACEPTABLE (65) 1373 #define ENTROPY_LVL_HIGH (80) 1374 1375 /* 1376 * For increasead precision in shannon_entropy calculation, 1377 * let's do pow(n, M) to save more digits after comma: 1378 * 1379 * - maximum int bit length is 64 1380 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1381 * - 13 * 4 = 52 < 64 -> M = 4 1382 * 1383 * So use pow(n, 4). 1384 */ 1385 static inline u32 ilog2_w(u64 n) 1386 { 1387 return ilog2(n * n * n * n); 1388 } 1389 1390 static u32 shannon_entropy(struct heuristic_ws *ws) 1391 { 1392 const u32 entropy_max = 8 * ilog2_w(2); 1393 u32 entropy_sum = 0; 1394 u32 p, p_base, sz_base; 1395 u32 i; 1396 1397 sz_base = ilog2_w(ws->sample_size); 1398 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1399 p = ws->bucket[i].count; 1400 p_base = ilog2_w(p); 1401 entropy_sum += p * (sz_base - p_base); 1402 } 1403 1404 entropy_sum /= ws->sample_size; 1405 return entropy_sum * 100 / entropy_max; 1406 } 1407 1408 #define RADIX_BASE 4U 1409 #define COUNTERS_SIZE (1U << RADIX_BASE) 1410 1411 static u8 get4bits(u64 num, int shift) { 1412 u8 low4bits; 1413 1414 num >>= shift; 1415 /* Reverse order */ 1416 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1417 return low4bits; 1418 } 1419 1420 /* 1421 * Use 4 bits as radix base 1422 * Use 16 u32 counters for calculating new position in buf array 1423 * 1424 * @array - array that will be sorted 1425 * @array_buf - buffer array to store sorting results 1426 * must be equal in size to @array 1427 * @num - array size 1428 */ 1429 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1430 int num) 1431 { 1432 u64 max_num; 1433 u64 buf_num; 1434 u32 counters[COUNTERS_SIZE]; 1435 u32 new_addr; 1436 u32 addr; 1437 int bitlen; 1438 int shift; 1439 int i; 1440 1441 /* 1442 * Try avoid useless loop iterations for small numbers stored in big 1443 * counters. Example: 48 33 4 ... in 64bit array 1444 */ 1445 max_num = array[0].count; 1446 for (i = 1; i < num; i++) { 1447 buf_num = array[i].count; 1448 if (buf_num > max_num) 1449 max_num = buf_num; 1450 } 1451 1452 buf_num = ilog2(max_num); 1453 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1454 1455 shift = 0; 1456 while (shift < bitlen) { 1457 memset(counters, 0, sizeof(counters)); 1458 1459 for (i = 0; i < num; i++) { 1460 buf_num = array[i].count; 1461 addr = get4bits(buf_num, shift); 1462 counters[addr]++; 1463 } 1464 1465 for (i = 1; i < COUNTERS_SIZE; i++) 1466 counters[i] += counters[i - 1]; 1467 1468 for (i = num - 1; i >= 0; i--) { 1469 buf_num = array[i].count; 1470 addr = get4bits(buf_num, shift); 1471 counters[addr]--; 1472 new_addr = counters[addr]; 1473 array_buf[new_addr] = array[i]; 1474 } 1475 1476 shift += RADIX_BASE; 1477 1478 /* 1479 * Normal radix expects to move data from a temporary array, to 1480 * the main one. But that requires some CPU time. Avoid that 1481 * by doing another sort iteration to original array instead of 1482 * memcpy() 1483 */ 1484 memset(counters, 0, sizeof(counters)); 1485 1486 for (i = 0; i < num; i ++) { 1487 buf_num = array_buf[i].count; 1488 addr = get4bits(buf_num, shift); 1489 counters[addr]++; 1490 } 1491 1492 for (i = 1; i < COUNTERS_SIZE; i++) 1493 counters[i] += counters[i - 1]; 1494 1495 for (i = num - 1; i >= 0; i--) { 1496 buf_num = array_buf[i].count; 1497 addr = get4bits(buf_num, shift); 1498 counters[addr]--; 1499 new_addr = counters[addr]; 1500 array[new_addr] = array_buf[i]; 1501 } 1502 1503 shift += RADIX_BASE; 1504 } 1505 } 1506 1507 /* 1508 * Size of the core byte set - how many bytes cover 90% of the sample 1509 * 1510 * There are several types of structured binary data that use nearly all byte 1511 * values. The distribution can be uniform and counts in all buckets will be 1512 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1513 * 1514 * Other possibility is normal (Gaussian) distribution, where the data could 1515 * be potentially compressible, but we have to take a few more steps to decide 1516 * how much. 1517 * 1518 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1519 * compression algo can easy fix that 1520 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1521 * probability is not compressible 1522 */ 1523 #define BYTE_CORE_SET_LOW (64) 1524 #define BYTE_CORE_SET_HIGH (200) 1525 1526 static int byte_core_set_size(struct heuristic_ws *ws) 1527 { 1528 u32 i; 1529 u32 coreset_sum = 0; 1530 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1531 struct bucket_item *bucket = ws->bucket; 1532 1533 /* Sort in reverse order */ 1534 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1535 1536 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1537 coreset_sum += bucket[i].count; 1538 1539 if (coreset_sum > core_set_threshold) 1540 return i; 1541 1542 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1543 coreset_sum += bucket[i].count; 1544 if (coreset_sum > core_set_threshold) 1545 break; 1546 } 1547 1548 return i; 1549 } 1550 1551 /* 1552 * Count byte values in buckets. 1553 * This heuristic can detect textual data (configs, xml, json, html, etc). 1554 * Because in most text-like data byte set is restricted to limited number of 1555 * possible characters, and that restriction in most cases makes data easy to 1556 * compress. 1557 * 1558 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1559 * less - compressible 1560 * more - need additional analysis 1561 */ 1562 #define BYTE_SET_THRESHOLD (64) 1563 1564 static u32 byte_set_size(const struct heuristic_ws *ws) 1565 { 1566 u32 i; 1567 u32 byte_set_size = 0; 1568 1569 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1570 if (ws->bucket[i].count > 0) 1571 byte_set_size++; 1572 } 1573 1574 /* 1575 * Continue collecting count of byte values in buckets. If the byte 1576 * set size is bigger then the threshold, it's pointless to continue, 1577 * the detection technique would fail for this type of data. 1578 */ 1579 for (; i < BUCKET_SIZE; i++) { 1580 if (ws->bucket[i].count > 0) { 1581 byte_set_size++; 1582 if (byte_set_size > BYTE_SET_THRESHOLD) 1583 return byte_set_size; 1584 } 1585 } 1586 1587 return byte_set_size; 1588 } 1589 1590 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1591 { 1592 const u32 half_of_sample = ws->sample_size / 2; 1593 const u8 *data = ws->sample; 1594 1595 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1596 } 1597 1598 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1599 struct heuristic_ws *ws) 1600 { 1601 struct page *page; 1602 u64 index, index_end; 1603 u32 i, curr_sample_pos; 1604 u8 *in_data; 1605 1606 /* 1607 * Compression handles the input data by chunks of 128KiB 1608 * (defined by BTRFS_MAX_UNCOMPRESSED) 1609 * 1610 * We do the same for the heuristic and loop over the whole range. 1611 * 1612 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1613 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1614 */ 1615 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1616 end = start + BTRFS_MAX_UNCOMPRESSED; 1617 1618 index = start >> PAGE_SHIFT; 1619 index_end = end >> PAGE_SHIFT; 1620 1621 /* Don't miss unaligned end */ 1622 if (!IS_ALIGNED(end, PAGE_SIZE)) 1623 index_end++; 1624 1625 curr_sample_pos = 0; 1626 while (index < index_end) { 1627 page = find_get_page(inode->i_mapping, index); 1628 in_data = kmap_local_page(page); 1629 /* Handle case where the start is not aligned to PAGE_SIZE */ 1630 i = start % PAGE_SIZE; 1631 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1632 /* Don't sample any garbage from the last page */ 1633 if (start > end - SAMPLING_READ_SIZE) 1634 break; 1635 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1636 SAMPLING_READ_SIZE); 1637 i += SAMPLING_INTERVAL; 1638 start += SAMPLING_INTERVAL; 1639 curr_sample_pos += SAMPLING_READ_SIZE; 1640 } 1641 kunmap_local(in_data); 1642 put_page(page); 1643 1644 index++; 1645 } 1646 1647 ws->sample_size = curr_sample_pos; 1648 } 1649 1650 /* 1651 * Compression heuristic. 1652 * 1653 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1654 * quickly (compared to direct compression) detect data characteristics 1655 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1656 * data. 1657 * 1658 * The following types of analysis can be performed: 1659 * - detect mostly zero data 1660 * - detect data with low "byte set" size (text, etc) 1661 * - detect data with low/high "core byte" set 1662 * 1663 * Return non-zero if the compression should be done, 0 otherwise. 1664 */ 1665 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1666 { 1667 struct list_head *ws_list = get_workspace(0, 0); 1668 struct heuristic_ws *ws; 1669 u32 i; 1670 u8 byte; 1671 int ret = 0; 1672 1673 ws = list_entry(ws_list, struct heuristic_ws, list); 1674 1675 heuristic_collect_sample(inode, start, end, ws); 1676 1677 if (sample_repeated_patterns(ws)) { 1678 ret = 1; 1679 goto out; 1680 } 1681 1682 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1683 1684 for (i = 0; i < ws->sample_size; i++) { 1685 byte = ws->sample[i]; 1686 ws->bucket[byte].count++; 1687 } 1688 1689 i = byte_set_size(ws); 1690 if (i < BYTE_SET_THRESHOLD) { 1691 ret = 2; 1692 goto out; 1693 } 1694 1695 i = byte_core_set_size(ws); 1696 if (i <= BYTE_CORE_SET_LOW) { 1697 ret = 3; 1698 goto out; 1699 } 1700 1701 if (i >= BYTE_CORE_SET_HIGH) { 1702 ret = 0; 1703 goto out; 1704 } 1705 1706 i = shannon_entropy(ws); 1707 if (i <= ENTROPY_LVL_ACEPTABLE) { 1708 ret = 4; 1709 goto out; 1710 } 1711 1712 /* 1713 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1714 * needed to give green light to compression. 1715 * 1716 * For now just assume that compression at that level is not worth the 1717 * resources because: 1718 * 1719 * 1. it is possible to defrag the data later 1720 * 1721 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1722 * values, every bucket has counter at level ~54. The heuristic would 1723 * be confused. This can happen when data have some internal repeated 1724 * patterns like "abbacbbc...". This can be detected by analyzing 1725 * pairs of bytes, which is too costly. 1726 */ 1727 if (i < ENTROPY_LVL_HIGH) { 1728 ret = 5; 1729 goto out; 1730 } else { 1731 ret = 0; 1732 goto out; 1733 } 1734 1735 out: 1736 put_workspace(0, ws_list); 1737 return ret; 1738 } 1739 1740 /* 1741 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1742 * level, unrecognized string will set the default level 1743 */ 1744 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1745 { 1746 unsigned int level = 0; 1747 int ret; 1748 1749 if (!type) 1750 return 0; 1751 1752 if (str[0] == ':') { 1753 ret = kstrtouint(str + 1, 10, &level); 1754 if (ret) 1755 level = 0; 1756 } 1757 1758 level = btrfs_compress_set_level(type, level); 1759 1760 return level; 1761 } 1762