1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/slab.h> 35 #include "compat.h" 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "ordered-data.h" 42 #include "compression.h" 43 #include "extent_io.h" 44 #include "extent_map.h" 45 46 struct compressed_bio { 47 /* number of bios pending for this compressed extent */ 48 atomic_t pending_bios; 49 50 /* the pages with the compressed data on them */ 51 struct page **compressed_pages; 52 53 /* inode that owns this data */ 54 struct inode *inode; 55 56 /* starting offset in the inode for our pages */ 57 u64 start; 58 59 /* number of bytes in the inode we're working on */ 60 unsigned long len; 61 62 /* number of bytes on disk */ 63 unsigned long compressed_len; 64 65 /* the compression algorithm for this bio */ 66 int compress_type; 67 68 /* number of compressed pages in the array */ 69 unsigned long nr_pages; 70 71 /* IO errors */ 72 int errors; 73 int mirror_num; 74 75 /* for reads, this is the bio we are copying the data into */ 76 struct bio *orig_bio; 77 78 /* 79 * the start of a variable length array of checksums only 80 * used by reads 81 */ 82 u32 sums; 83 }; 84 85 static inline int compressed_bio_size(struct btrfs_root *root, 86 unsigned long disk_size) 87 { 88 u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy); 89 return sizeof(struct compressed_bio) + 90 ((disk_size + root->sectorsize - 1) / root->sectorsize) * 91 csum_size; 92 } 93 94 static struct bio *compressed_bio_alloc(struct block_device *bdev, 95 u64 first_byte, gfp_t gfp_flags) 96 { 97 int nr_vecs; 98 99 nr_vecs = bio_get_nr_vecs(bdev); 100 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags); 101 } 102 103 static int check_compressed_csum(struct inode *inode, 104 struct compressed_bio *cb, 105 u64 disk_start) 106 { 107 int ret; 108 struct btrfs_root *root = BTRFS_I(inode)->root; 109 struct page *page; 110 unsigned long i; 111 char *kaddr; 112 u32 csum; 113 u32 *cb_sum = &cb->sums; 114 115 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 116 return 0; 117 118 for (i = 0; i < cb->nr_pages; i++) { 119 page = cb->compressed_pages[i]; 120 csum = ~(u32)0; 121 122 kaddr = kmap_atomic(page, KM_USER0); 123 csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE); 124 btrfs_csum_final(csum, (char *)&csum); 125 kunmap_atomic(kaddr, KM_USER0); 126 127 if (csum != *cb_sum) { 128 printk(KERN_INFO "btrfs csum failed ino %lu " 129 "extent %llu csum %u " 130 "wanted %u mirror %d\n", inode->i_ino, 131 (unsigned long long)disk_start, 132 csum, *cb_sum, cb->mirror_num); 133 ret = -EIO; 134 goto fail; 135 } 136 cb_sum++; 137 138 } 139 ret = 0; 140 fail: 141 return ret; 142 } 143 144 /* when we finish reading compressed pages from the disk, we 145 * decompress them and then run the bio end_io routines on the 146 * decompressed pages (in the inode address space). 147 * 148 * This allows the checksumming and other IO error handling routines 149 * to work normally 150 * 151 * The compressed pages are freed here, and it must be run 152 * in process context 153 */ 154 static void end_compressed_bio_read(struct bio *bio, int err) 155 { 156 struct compressed_bio *cb = bio->bi_private; 157 struct inode *inode; 158 struct page *page; 159 unsigned long index; 160 int ret; 161 162 if (err) 163 cb->errors = 1; 164 165 /* if there are more bios still pending for this compressed 166 * extent, just exit 167 */ 168 if (!atomic_dec_and_test(&cb->pending_bios)) 169 goto out; 170 171 inode = cb->inode; 172 ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9); 173 if (ret) 174 goto csum_failed; 175 176 /* ok, we're the last bio for this extent, lets start 177 * the decompression. 178 */ 179 ret = btrfs_decompress_biovec(cb->compress_type, 180 cb->compressed_pages, 181 cb->start, 182 cb->orig_bio->bi_io_vec, 183 cb->orig_bio->bi_vcnt, 184 cb->compressed_len); 185 csum_failed: 186 if (ret) 187 cb->errors = 1; 188 189 /* release the compressed pages */ 190 index = 0; 191 for (index = 0; index < cb->nr_pages; index++) { 192 page = cb->compressed_pages[index]; 193 page->mapping = NULL; 194 page_cache_release(page); 195 } 196 197 /* do io completion on the original bio */ 198 if (cb->errors) { 199 bio_io_error(cb->orig_bio); 200 } else { 201 int bio_index = 0; 202 struct bio_vec *bvec = cb->orig_bio->bi_io_vec; 203 204 /* 205 * we have verified the checksum already, set page 206 * checked so the end_io handlers know about it 207 */ 208 while (bio_index < cb->orig_bio->bi_vcnt) { 209 SetPageChecked(bvec->bv_page); 210 bvec++; 211 bio_index++; 212 } 213 bio_endio(cb->orig_bio, 0); 214 } 215 216 /* finally free the cb struct */ 217 kfree(cb->compressed_pages); 218 kfree(cb); 219 out: 220 bio_put(bio); 221 } 222 223 /* 224 * Clear the writeback bits on all of the file 225 * pages for a compressed write 226 */ 227 static noinline int end_compressed_writeback(struct inode *inode, u64 start, 228 unsigned long ram_size) 229 { 230 unsigned long index = start >> PAGE_CACHE_SHIFT; 231 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT; 232 struct page *pages[16]; 233 unsigned long nr_pages = end_index - index + 1; 234 int i; 235 int ret; 236 237 while (nr_pages > 0) { 238 ret = find_get_pages_contig(inode->i_mapping, index, 239 min_t(unsigned long, 240 nr_pages, ARRAY_SIZE(pages)), pages); 241 if (ret == 0) { 242 nr_pages -= 1; 243 index += 1; 244 continue; 245 } 246 for (i = 0; i < ret; i++) { 247 end_page_writeback(pages[i]); 248 page_cache_release(pages[i]); 249 } 250 nr_pages -= ret; 251 index += ret; 252 } 253 /* the inode may be gone now */ 254 return 0; 255 } 256 257 /* 258 * do the cleanup once all the compressed pages hit the disk. 259 * This will clear writeback on the file pages and free the compressed 260 * pages. 261 * 262 * This also calls the writeback end hooks for the file pages so that 263 * metadata and checksums can be updated in the file. 264 */ 265 static void end_compressed_bio_write(struct bio *bio, int err) 266 { 267 struct extent_io_tree *tree; 268 struct compressed_bio *cb = bio->bi_private; 269 struct inode *inode; 270 struct page *page; 271 unsigned long index; 272 273 if (err) 274 cb->errors = 1; 275 276 /* if there are more bios still pending for this compressed 277 * extent, just exit 278 */ 279 if (!atomic_dec_and_test(&cb->pending_bios)) 280 goto out; 281 282 /* ok, we're the last bio for this extent, step one is to 283 * call back into the FS and do all the end_io operations 284 */ 285 inode = cb->inode; 286 tree = &BTRFS_I(inode)->io_tree; 287 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 288 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 289 cb->start, 290 cb->start + cb->len - 1, 291 NULL, 1); 292 cb->compressed_pages[0]->mapping = NULL; 293 294 end_compressed_writeback(inode, cb->start, cb->len); 295 /* note, our inode could be gone now */ 296 297 /* 298 * release the compressed pages, these came from alloc_page and 299 * are not attached to the inode at all 300 */ 301 index = 0; 302 for (index = 0; index < cb->nr_pages; index++) { 303 page = cb->compressed_pages[index]; 304 page->mapping = NULL; 305 page_cache_release(page); 306 } 307 308 /* finally free the cb struct */ 309 kfree(cb->compressed_pages); 310 kfree(cb); 311 out: 312 bio_put(bio); 313 } 314 315 /* 316 * worker function to build and submit bios for previously compressed pages. 317 * The corresponding pages in the inode should be marked for writeback 318 * and the compressed pages should have a reference on them for dropping 319 * when the IO is complete. 320 * 321 * This also checksums the file bytes and gets things ready for 322 * the end io hooks. 323 */ 324 int btrfs_submit_compressed_write(struct inode *inode, u64 start, 325 unsigned long len, u64 disk_start, 326 unsigned long compressed_len, 327 struct page **compressed_pages, 328 unsigned long nr_pages) 329 { 330 struct bio *bio = NULL; 331 struct btrfs_root *root = BTRFS_I(inode)->root; 332 struct compressed_bio *cb; 333 unsigned long bytes_left; 334 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 335 int page_index = 0; 336 struct page *page; 337 u64 first_byte = disk_start; 338 struct block_device *bdev; 339 int ret; 340 341 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1)); 342 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 343 atomic_set(&cb->pending_bios, 0); 344 cb->errors = 0; 345 cb->inode = inode; 346 cb->start = start; 347 cb->len = len; 348 cb->mirror_num = 0; 349 cb->compressed_pages = compressed_pages; 350 cb->compressed_len = compressed_len; 351 cb->orig_bio = NULL; 352 cb->nr_pages = nr_pages; 353 354 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 355 356 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 357 bio->bi_private = cb; 358 bio->bi_end_io = end_compressed_bio_write; 359 atomic_inc(&cb->pending_bios); 360 361 /* create and submit bios for the compressed pages */ 362 bytes_left = compressed_len; 363 for (page_index = 0; page_index < cb->nr_pages; page_index++) { 364 page = compressed_pages[page_index]; 365 page->mapping = inode->i_mapping; 366 if (bio->bi_size) 367 ret = io_tree->ops->merge_bio_hook(page, 0, 368 PAGE_CACHE_SIZE, 369 bio, 0); 370 else 371 ret = 0; 372 373 page->mapping = NULL; 374 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < 375 PAGE_CACHE_SIZE) { 376 bio_get(bio); 377 378 /* 379 * inc the count before we submit the bio so 380 * we know the end IO handler won't happen before 381 * we inc the count. Otherwise, the cb might get 382 * freed before we're done setting it up 383 */ 384 atomic_inc(&cb->pending_bios); 385 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 386 BUG_ON(ret); 387 388 ret = btrfs_csum_one_bio(root, inode, bio, start, 1); 389 BUG_ON(ret); 390 391 ret = btrfs_map_bio(root, WRITE, bio, 0, 1); 392 BUG_ON(ret); 393 394 bio_put(bio); 395 396 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 397 bio->bi_private = cb; 398 bio->bi_end_io = end_compressed_bio_write; 399 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 400 } 401 if (bytes_left < PAGE_CACHE_SIZE) { 402 printk("bytes left %lu compress len %lu nr %lu\n", 403 bytes_left, cb->compressed_len, cb->nr_pages); 404 } 405 bytes_left -= PAGE_CACHE_SIZE; 406 first_byte += PAGE_CACHE_SIZE; 407 cond_resched(); 408 } 409 bio_get(bio); 410 411 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 412 BUG_ON(ret); 413 414 ret = btrfs_csum_one_bio(root, inode, bio, start, 1); 415 BUG_ON(ret); 416 417 ret = btrfs_map_bio(root, WRITE, bio, 0, 1); 418 BUG_ON(ret); 419 420 bio_put(bio); 421 return 0; 422 } 423 424 static noinline int add_ra_bio_pages(struct inode *inode, 425 u64 compressed_end, 426 struct compressed_bio *cb) 427 { 428 unsigned long end_index; 429 unsigned long page_index; 430 u64 last_offset; 431 u64 isize = i_size_read(inode); 432 int ret; 433 struct page *page; 434 unsigned long nr_pages = 0; 435 struct extent_map *em; 436 struct address_space *mapping = inode->i_mapping; 437 struct extent_map_tree *em_tree; 438 struct extent_io_tree *tree; 439 u64 end; 440 int misses = 0; 441 442 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page; 443 last_offset = (page_offset(page) + PAGE_CACHE_SIZE); 444 em_tree = &BTRFS_I(inode)->extent_tree; 445 tree = &BTRFS_I(inode)->io_tree; 446 447 if (isize == 0) 448 return 0; 449 450 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; 451 452 while (last_offset < compressed_end) { 453 page_index = last_offset >> PAGE_CACHE_SHIFT; 454 455 if (page_index > end_index) 456 break; 457 458 rcu_read_lock(); 459 page = radix_tree_lookup(&mapping->page_tree, page_index); 460 rcu_read_unlock(); 461 if (page) { 462 misses++; 463 if (misses > 4) 464 break; 465 goto next; 466 } 467 468 page = __page_cache_alloc(mapping_gfp_mask(mapping) & 469 ~__GFP_FS); 470 if (!page) 471 break; 472 473 if (add_to_page_cache_lru(page, mapping, page_index, 474 GFP_NOFS)) { 475 page_cache_release(page); 476 goto next; 477 } 478 479 end = last_offset + PAGE_CACHE_SIZE - 1; 480 /* 481 * at this point, we have a locked page in the page cache 482 * for these bytes in the file. But, we have to make 483 * sure they map to this compressed extent on disk. 484 */ 485 set_page_extent_mapped(page); 486 lock_extent(tree, last_offset, end, GFP_NOFS); 487 read_lock(&em_tree->lock); 488 em = lookup_extent_mapping(em_tree, last_offset, 489 PAGE_CACHE_SIZE); 490 read_unlock(&em_tree->lock); 491 492 if (!em || last_offset < em->start || 493 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) || 494 (em->block_start >> 9) != cb->orig_bio->bi_sector) { 495 free_extent_map(em); 496 unlock_extent(tree, last_offset, end, GFP_NOFS); 497 unlock_page(page); 498 page_cache_release(page); 499 break; 500 } 501 free_extent_map(em); 502 503 if (page->index == end_index) { 504 char *userpage; 505 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1); 506 507 if (zero_offset) { 508 int zeros; 509 zeros = PAGE_CACHE_SIZE - zero_offset; 510 userpage = kmap_atomic(page, KM_USER0); 511 memset(userpage + zero_offset, 0, zeros); 512 flush_dcache_page(page); 513 kunmap_atomic(userpage, KM_USER0); 514 } 515 } 516 517 ret = bio_add_page(cb->orig_bio, page, 518 PAGE_CACHE_SIZE, 0); 519 520 if (ret == PAGE_CACHE_SIZE) { 521 nr_pages++; 522 page_cache_release(page); 523 } else { 524 unlock_extent(tree, last_offset, end, GFP_NOFS); 525 unlock_page(page); 526 page_cache_release(page); 527 break; 528 } 529 next: 530 last_offset += PAGE_CACHE_SIZE; 531 } 532 return 0; 533 } 534 535 /* 536 * for a compressed read, the bio we get passed has all the inode pages 537 * in it. We don't actually do IO on those pages but allocate new ones 538 * to hold the compressed pages on disk. 539 * 540 * bio->bi_sector points to the compressed extent on disk 541 * bio->bi_io_vec points to all of the inode pages 542 * bio->bi_vcnt is a count of pages 543 * 544 * After the compressed pages are read, we copy the bytes into the 545 * bio we were passed and then call the bio end_io calls 546 */ 547 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 548 int mirror_num, unsigned long bio_flags) 549 { 550 struct extent_io_tree *tree; 551 struct extent_map_tree *em_tree; 552 struct compressed_bio *cb; 553 struct btrfs_root *root = BTRFS_I(inode)->root; 554 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; 555 unsigned long compressed_len; 556 unsigned long nr_pages; 557 unsigned long page_index; 558 struct page *page; 559 struct block_device *bdev; 560 struct bio *comp_bio; 561 u64 cur_disk_byte = (u64)bio->bi_sector << 9; 562 u64 em_len; 563 u64 em_start; 564 struct extent_map *em; 565 int ret; 566 u32 *sums; 567 568 tree = &BTRFS_I(inode)->io_tree; 569 em_tree = &BTRFS_I(inode)->extent_tree; 570 571 /* we need the actual starting offset of this extent in the file */ 572 read_lock(&em_tree->lock); 573 em = lookup_extent_mapping(em_tree, 574 page_offset(bio->bi_io_vec->bv_page), 575 PAGE_CACHE_SIZE); 576 read_unlock(&em_tree->lock); 577 578 compressed_len = em->block_len; 579 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 580 atomic_set(&cb->pending_bios, 0); 581 cb->errors = 0; 582 cb->inode = inode; 583 cb->mirror_num = mirror_num; 584 sums = &cb->sums; 585 586 cb->start = em->orig_start; 587 em_len = em->len; 588 em_start = em->start; 589 590 free_extent_map(em); 591 em = NULL; 592 593 cb->len = uncompressed_len; 594 cb->compressed_len = compressed_len; 595 cb->compress_type = extent_compress_type(bio_flags); 596 cb->orig_bio = bio; 597 598 nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) / 599 PAGE_CACHE_SIZE; 600 cb->compressed_pages = kmalloc(sizeof(struct page *) * nr_pages, 601 GFP_NOFS); 602 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 603 604 for (page_index = 0; page_index < nr_pages; page_index++) { 605 cb->compressed_pages[page_index] = alloc_page(GFP_NOFS | 606 __GFP_HIGHMEM); 607 } 608 cb->nr_pages = nr_pages; 609 610 add_ra_bio_pages(inode, em_start + em_len, cb); 611 612 /* include any pages we added in add_ra-bio_pages */ 613 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; 614 cb->len = uncompressed_len; 615 616 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS); 617 comp_bio->bi_private = cb; 618 comp_bio->bi_end_io = end_compressed_bio_read; 619 atomic_inc(&cb->pending_bios); 620 621 for (page_index = 0; page_index < nr_pages; page_index++) { 622 page = cb->compressed_pages[page_index]; 623 page->mapping = inode->i_mapping; 624 page->index = em_start >> PAGE_CACHE_SHIFT; 625 626 if (comp_bio->bi_size) 627 ret = tree->ops->merge_bio_hook(page, 0, 628 PAGE_CACHE_SIZE, 629 comp_bio, 0); 630 else 631 ret = 0; 632 633 page->mapping = NULL; 634 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) < 635 PAGE_CACHE_SIZE) { 636 bio_get(comp_bio); 637 638 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0); 639 BUG_ON(ret); 640 641 /* 642 * inc the count before we submit the bio so 643 * we know the end IO handler won't happen before 644 * we inc the count. Otherwise, the cb might get 645 * freed before we're done setting it up 646 */ 647 atomic_inc(&cb->pending_bios); 648 649 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 650 btrfs_lookup_bio_sums(root, inode, comp_bio, 651 sums); 652 } 653 sums += (comp_bio->bi_size + root->sectorsize - 1) / 654 root->sectorsize; 655 656 ret = btrfs_map_bio(root, READ, comp_bio, 657 mirror_num, 0); 658 BUG_ON(ret); 659 660 bio_put(comp_bio); 661 662 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, 663 GFP_NOFS); 664 comp_bio->bi_private = cb; 665 comp_bio->bi_end_io = end_compressed_bio_read; 666 667 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0); 668 } 669 cur_disk_byte += PAGE_CACHE_SIZE; 670 } 671 bio_get(comp_bio); 672 673 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0); 674 BUG_ON(ret); 675 676 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 677 btrfs_lookup_bio_sums(root, inode, comp_bio, sums); 678 679 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0); 680 BUG_ON(ret); 681 682 bio_put(comp_bio); 683 return 0; 684 } 685 686 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES]; 687 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES]; 688 static int comp_num_workspace[BTRFS_COMPRESS_TYPES]; 689 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES]; 690 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES]; 691 692 struct btrfs_compress_op *btrfs_compress_op[] = { 693 &btrfs_zlib_compress, 694 &btrfs_lzo_compress, 695 }; 696 697 int __init btrfs_init_compress(void) 698 { 699 int i; 700 701 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 702 INIT_LIST_HEAD(&comp_idle_workspace[i]); 703 spin_lock_init(&comp_workspace_lock[i]); 704 atomic_set(&comp_alloc_workspace[i], 0); 705 init_waitqueue_head(&comp_workspace_wait[i]); 706 } 707 return 0; 708 } 709 710 /* 711 * this finds an available workspace or allocates a new one 712 * ERR_PTR is returned if things go bad. 713 */ 714 static struct list_head *find_workspace(int type) 715 { 716 struct list_head *workspace; 717 int cpus = num_online_cpus(); 718 int idx = type - 1; 719 720 struct list_head *idle_workspace = &comp_idle_workspace[idx]; 721 spinlock_t *workspace_lock = &comp_workspace_lock[idx]; 722 atomic_t *alloc_workspace = &comp_alloc_workspace[idx]; 723 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx]; 724 int *num_workspace = &comp_num_workspace[idx]; 725 again: 726 spin_lock(workspace_lock); 727 if (!list_empty(idle_workspace)) { 728 workspace = idle_workspace->next; 729 list_del(workspace); 730 (*num_workspace)--; 731 spin_unlock(workspace_lock); 732 return workspace; 733 734 } 735 if (atomic_read(alloc_workspace) > cpus) { 736 DEFINE_WAIT(wait); 737 738 spin_unlock(workspace_lock); 739 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE); 740 if (atomic_read(alloc_workspace) > cpus && !*num_workspace) 741 schedule(); 742 finish_wait(workspace_wait, &wait); 743 goto again; 744 } 745 atomic_inc(alloc_workspace); 746 spin_unlock(workspace_lock); 747 748 workspace = btrfs_compress_op[idx]->alloc_workspace(); 749 if (IS_ERR(workspace)) { 750 atomic_dec(alloc_workspace); 751 wake_up(workspace_wait); 752 } 753 return workspace; 754 } 755 756 /* 757 * put a workspace struct back on the list or free it if we have enough 758 * idle ones sitting around 759 */ 760 static void free_workspace(int type, struct list_head *workspace) 761 { 762 int idx = type - 1; 763 struct list_head *idle_workspace = &comp_idle_workspace[idx]; 764 spinlock_t *workspace_lock = &comp_workspace_lock[idx]; 765 atomic_t *alloc_workspace = &comp_alloc_workspace[idx]; 766 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx]; 767 int *num_workspace = &comp_num_workspace[idx]; 768 769 spin_lock(workspace_lock); 770 if (*num_workspace < num_online_cpus()) { 771 list_add_tail(workspace, idle_workspace); 772 (*num_workspace)++; 773 spin_unlock(workspace_lock); 774 goto wake; 775 } 776 spin_unlock(workspace_lock); 777 778 btrfs_compress_op[idx]->free_workspace(workspace); 779 atomic_dec(alloc_workspace); 780 wake: 781 if (waitqueue_active(workspace_wait)) 782 wake_up(workspace_wait); 783 } 784 785 /* 786 * cleanup function for module exit 787 */ 788 static void free_workspaces(void) 789 { 790 struct list_head *workspace; 791 int i; 792 793 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 794 while (!list_empty(&comp_idle_workspace[i])) { 795 workspace = comp_idle_workspace[i].next; 796 list_del(workspace); 797 btrfs_compress_op[i]->free_workspace(workspace); 798 atomic_dec(&comp_alloc_workspace[i]); 799 } 800 } 801 } 802 803 /* 804 * given an address space and start/len, compress the bytes. 805 * 806 * pages are allocated to hold the compressed result and stored 807 * in 'pages' 808 * 809 * out_pages is used to return the number of pages allocated. There 810 * may be pages allocated even if we return an error 811 * 812 * total_in is used to return the number of bytes actually read. It 813 * may be smaller then len if we had to exit early because we 814 * ran out of room in the pages array or because we cross the 815 * max_out threshold. 816 * 817 * total_out is used to return the total number of compressed bytes 818 * 819 * max_out tells us the max number of bytes that we're allowed to 820 * stuff into pages 821 */ 822 int btrfs_compress_pages(int type, struct address_space *mapping, 823 u64 start, unsigned long len, 824 struct page **pages, 825 unsigned long nr_dest_pages, 826 unsigned long *out_pages, 827 unsigned long *total_in, 828 unsigned long *total_out, 829 unsigned long max_out) 830 { 831 struct list_head *workspace; 832 int ret; 833 834 workspace = find_workspace(type); 835 if (IS_ERR(workspace)) 836 return -1; 837 838 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 839 start, len, pages, 840 nr_dest_pages, out_pages, 841 total_in, total_out, 842 max_out); 843 free_workspace(type, workspace); 844 return ret; 845 } 846 847 /* 848 * pages_in is an array of pages with compressed data. 849 * 850 * disk_start is the starting logical offset of this array in the file 851 * 852 * bvec is a bio_vec of pages from the file that we want to decompress into 853 * 854 * vcnt is the count of pages in the biovec 855 * 856 * srclen is the number of bytes in pages_in 857 * 858 * The basic idea is that we have a bio that was created by readpages. 859 * The pages in the bio are for the uncompressed data, and they may not 860 * be contiguous. They all correspond to the range of bytes covered by 861 * the compressed extent. 862 */ 863 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start, 864 struct bio_vec *bvec, int vcnt, size_t srclen) 865 { 866 struct list_head *workspace; 867 int ret; 868 869 workspace = find_workspace(type); 870 if (IS_ERR(workspace)) 871 return -ENOMEM; 872 873 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in, 874 disk_start, 875 bvec, vcnt, srclen); 876 free_workspace(type, workspace); 877 return ret; 878 } 879 880 /* 881 * a less complex decompression routine. Our compressed data fits in a 882 * single page, and we want to read a single page out of it. 883 * start_byte tells us the offset into the compressed data we're interested in 884 */ 885 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 886 unsigned long start_byte, size_t srclen, size_t destlen) 887 { 888 struct list_head *workspace; 889 int ret; 890 891 workspace = find_workspace(type); 892 if (IS_ERR(workspace)) 893 return -ENOMEM; 894 895 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 896 dest_page, start_byte, 897 srclen, destlen); 898 899 free_workspace(type, workspace); 900 return ret; 901 } 902 903 void __exit btrfs_exit_compress(void) 904 { 905 free_workspaces(); 906 } 907 908 /* 909 * Copy uncompressed data from working buffer to pages. 910 * 911 * buf_start is the byte offset we're of the start of our workspace buffer. 912 * 913 * total_out is the last byte of the buffer 914 */ 915 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start, 916 unsigned long total_out, u64 disk_start, 917 struct bio_vec *bvec, int vcnt, 918 unsigned long *page_index, 919 unsigned long *pg_offset) 920 { 921 unsigned long buf_offset; 922 unsigned long current_buf_start; 923 unsigned long start_byte; 924 unsigned long working_bytes = total_out - buf_start; 925 unsigned long bytes; 926 char *kaddr; 927 struct page *page_out = bvec[*page_index].bv_page; 928 929 /* 930 * start byte is the first byte of the page we're currently 931 * copying into relative to the start of the compressed data. 932 */ 933 start_byte = page_offset(page_out) - disk_start; 934 935 /* we haven't yet hit data corresponding to this page */ 936 if (total_out <= start_byte) 937 return 1; 938 939 /* 940 * the start of the data we care about is offset into 941 * the middle of our working buffer 942 */ 943 if (total_out > start_byte && buf_start < start_byte) { 944 buf_offset = start_byte - buf_start; 945 working_bytes -= buf_offset; 946 } else { 947 buf_offset = 0; 948 } 949 current_buf_start = buf_start; 950 951 /* copy bytes from the working buffer into the pages */ 952 while (working_bytes > 0) { 953 bytes = min(PAGE_CACHE_SIZE - *pg_offset, 954 PAGE_CACHE_SIZE - buf_offset); 955 bytes = min(bytes, working_bytes); 956 kaddr = kmap_atomic(page_out, KM_USER0); 957 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes); 958 kunmap_atomic(kaddr, KM_USER0); 959 flush_dcache_page(page_out); 960 961 *pg_offset += bytes; 962 buf_offset += bytes; 963 working_bytes -= bytes; 964 current_buf_start += bytes; 965 966 /* check if we need to pick another page */ 967 if (*pg_offset == PAGE_CACHE_SIZE) { 968 (*page_index)++; 969 if (*page_index >= vcnt) 970 return 0; 971 972 page_out = bvec[*page_index].bv_page; 973 *pg_offset = 0; 974 start_byte = page_offset(page_out) - disk_start; 975 976 /* 977 * make sure our new page is covered by this 978 * working buffer 979 */ 980 if (total_out <= start_byte) 981 return 1; 982 983 /* 984 * the next page in the biovec might not be adjacent 985 * to the last page, but it might still be found 986 * inside this working buffer. bump our offset pointer 987 */ 988 if (total_out > start_byte && 989 current_buf_start < start_byte) { 990 buf_offset = start_byte - buf_start; 991 working_bytes = total_out - start_byte; 992 current_buf_start = buf_start + buf_offset; 993 } 994 } 995 } 996 997 return 1; 998 } 999