xref: /linux/fs/btrfs/compression.c (revision c9895ed5a84dc3cbc86a9d6d5656d8c187f53380)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45 
46 struct compressed_bio {
47 	/* number of bios pending for this compressed extent */
48 	atomic_t pending_bios;
49 
50 	/* the pages with the compressed data on them */
51 	struct page **compressed_pages;
52 
53 	/* inode that owns this data */
54 	struct inode *inode;
55 
56 	/* starting offset in the inode for our pages */
57 	u64 start;
58 
59 	/* number of bytes in the inode we're working on */
60 	unsigned long len;
61 
62 	/* number of bytes on disk */
63 	unsigned long compressed_len;
64 
65 	/* the compression algorithm for this bio */
66 	int compress_type;
67 
68 	/* number of compressed pages in the array */
69 	unsigned long nr_pages;
70 
71 	/* IO errors */
72 	int errors;
73 	int mirror_num;
74 
75 	/* for reads, this is the bio we are copying the data into */
76 	struct bio *orig_bio;
77 
78 	/*
79 	 * the start of a variable length array of checksums only
80 	 * used by reads
81 	 */
82 	u32 sums;
83 };
84 
85 static inline int compressed_bio_size(struct btrfs_root *root,
86 				      unsigned long disk_size)
87 {
88 	u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
89 	return sizeof(struct compressed_bio) +
90 		((disk_size + root->sectorsize - 1) / root->sectorsize) *
91 		csum_size;
92 }
93 
94 static struct bio *compressed_bio_alloc(struct block_device *bdev,
95 					u64 first_byte, gfp_t gfp_flags)
96 {
97 	int nr_vecs;
98 
99 	nr_vecs = bio_get_nr_vecs(bdev);
100 	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
101 }
102 
103 static int check_compressed_csum(struct inode *inode,
104 				 struct compressed_bio *cb,
105 				 u64 disk_start)
106 {
107 	int ret;
108 	struct btrfs_root *root = BTRFS_I(inode)->root;
109 	struct page *page;
110 	unsigned long i;
111 	char *kaddr;
112 	u32 csum;
113 	u32 *cb_sum = &cb->sums;
114 
115 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
116 		return 0;
117 
118 	for (i = 0; i < cb->nr_pages; i++) {
119 		page = cb->compressed_pages[i];
120 		csum = ~(u32)0;
121 
122 		kaddr = kmap_atomic(page, KM_USER0);
123 		csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
124 		btrfs_csum_final(csum, (char *)&csum);
125 		kunmap_atomic(kaddr, KM_USER0);
126 
127 		if (csum != *cb_sum) {
128 			printk(KERN_INFO "btrfs csum failed ino %lu "
129 			       "extent %llu csum %u "
130 			       "wanted %u mirror %d\n", inode->i_ino,
131 			       (unsigned long long)disk_start,
132 			       csum, *cb_sum, cb->mirror_num);
133 			ret = -EIO;
134 			goto fail;
135 		}
136 		cb_sum++;
137 
138 	}
139 	ret = 0;
140 fail:
141 	return ret;
142 }
143 
144 /* when we finish reading compressed pages from the disk, we
145  * decompress them and then run the bio end_io routines on the
146  * decompressed pages (in the inode address space).
147  *
148  * This allows the checksumming and other IO error handling routines
149  * to work normally
150  *
151  * The compressed pages are freed here, and it must be run
152  * in process context
153  */
154 static void end_compressed_bio_read(struct bio *bio, int err)
155 {
156 	struct compressed_bio *cb = bio->bi_private;
157 	struct inode *inode;
158 	struct page *page;
159 	unsigned long index;
160 	int ret;
161 
162 	if (err)
163 		cb->errors = 1;
164 
165 	/* if there are more bios still pending for this compressed
166 	 * extent, just exit
167 	 */
168 	if (!atomic_dec_and_test(&cb->pending_bios))
169 		goto out;
170 
171 	inode = cb->inode;
172 	ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
173 	if (ret)
174 		goto csum_failed;
175 
176 	/* ok, we're the last bio for this extent, lets start
177 	 * the decompression.
178 	 */
179 	ret = btrfs_decompress_biovec(cb->compress_type,
180 				      cb->compressed_pages,
181 				      cb->start,
182 				      cb->orig_bio->bi_io_vec,
183 				      cb->orig_bio->bi_vcnt,
184 				      cb->compressed_len);
185 csum_failed:
186 	if (ret)
187 		cb->errors = 1;
188 
189 	/* release the compressed pages */
190 	index = 0;
191 	for (index = 0; index < cb->nr_pages; index++) {
192 		page = cb->compressed_pages[index];
193 		page->mapping = NULL;
194 		page_cache_release(page);
195 	}
196 
197 	/* do io completion on the original bio */
198 	if (cb->errors) {
199 		bio_io_error(cb->orig_bio);
200 	} else {
201 		int bio_index = 0;
202 		struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
203 
204 		/*
205 		 * we have verified the checksum already, set page
206 		 * checked so the end_io handlers know about it
207 		 */
208 		while (bio_index < cb->orig_bio->bi_vcnt) {
209 			SetPageChecked(bvec->bv_page);
210 			bvec++;
211 			bio_index++;
212 		}
213 		bio_endio(cb->orig_bio, 0);
214 	}
215 
216 	/* finally free the cb struct */
217 	kfree(cb->compressed_pages);
218 	kfree(cb);
219 out:
220 	bio_put(bio);
221 }
222 
223 /*
224  * Clear the writeback bits on all of the file
225  * pages for a compressed write
226  */
227 static noinline int end_compressed_writeback(struct inode *inode, u64 start,
228 					     unsigned long ram_size)
229 {
230 	unsigned long index = start >> PAGE_CACHE_SHIFT;
231 	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
232 	struct page *pages[16];
233 	unsigned long nr_pages = end_index - index + 1;
234 	int i;
235 	int ret;
236 
237 	while (nr_pages > 0) {
238 		ret = find_get_pages_contig(inode->i_mapping, index,
239 				     min_t(unsigned long,
240 				     nr_pages, ARRAY_SIZE(pages)), pages);
241 		if (ret == 0) {
242 			nr_pages -= 1;
243 			index += 1;
244 			continue;
245 		}
246 		for (i = 0; i < ret; i++) {
247 			end_page_writeback(pages[i]);
248 			page_cache_release(pages[i]);
249 		}
250 		nr_pages -= ret;
251 		index += ret;
252 	}
253 	/* the inode may be gone now */
254 	return 0;
255 }
256 
257 /*
258  * do the cleanup once all the compressed pages hit the disk.
259  * This will clear writeback on the file pages and free the compressed
260  * pages.
261  *
262  * This also calls the writeback end hooks for the file pages so that
263  * metadata and checksums can be updated in the file.
264  */
265 static void end_compressed_bio_write(struct bio *bio, int err)
266 {
267 	struct extent_io_tree *tree;
268 	struct compressed_bio *cb = bio->bi_private;
269 	struct inode *inode;
270 	struct page *page;
271 	unsigned long index;
272 
273 	if (err)
274 		cb->errors = 1;
275 
276 	/* if there are more bios still pending for this compressed
277 	 * extent, just exit
278 	 */
279 	if (!atomic_dec_and_test(&cb->pending_bios))
280 		goto out;
281 
282 	/* ok, we're the last bio for this extent, step one is to
283 	 * call back into the FS and do all the end_io operations
284 	 */
285 	inode = cb->inode;
286 	tree = &BTRFS_I(inode)->io_tree;
287 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
288 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
289 					 cb->start,
290 					 cb->start + cb->len - 1,
291 					 NULL, 1);
292 	cb->compressed_pages[0]->mapping = NULL;
293 
294 	end_compressed_writeback(inode, cb->start, cb->len);
295 	/* note, our inode could be gone now */
296 
297 	/*
298 	 * release the compressed pages, these came from alloc_page and
299 	 * are not attached to the inode at all
300 	 */
301 	index = 0;
302 	for (index = 0; index < cb->nr_pages; index++) {
303 		page = cb->compressed_pages[index];
304 		page->mapping = NULL;
305 		page_cache_release(page);
306 	}
307 
308 	/* finally free the cb struct */
309 	kfree(cb->compressed_pages);
310 	kfree(cb);
311 out:
312 	bio_put(bio);
313 }
314 
315 /*
316  * worker function to build and submit bios for previously compressed pages.
317  * The corresponding pages in the inode should be marked for writeback
318  * and the compressed pages should have a reference on them for dropping
319  * when the IO is complete.
320  *
321  * This also checksums the file bytes and gets things ready for
322  * the end io hooks.
323  */
324 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
325 				 unsigned long len, u64 disk_start,
326 				 unsigned long compressed_len,
327 				 struct page **compressed_pages,
328 				 unsigned long nr_pages)
329 {
330 	struct bio *bio = NULL;
331 	struct btrfs_root *root = BTRFS_I(inode)->root;
332 	struct compressed_bio *cb;
333 	unsigned long bytes_left;
334 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
335 	int page_index = 0;
336 	struct page *page;
337 	u64 first_byte = disk_start;
338 	struct block_device *bdev;
339 	int ret;
340 
341 	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
342 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
343 	atomic_set(&cb->pending_bios, 0);
344 	cb->errors = 0;
345 	cb->inode = inode;
346 	cb->start = start;
347 	cb->len = len;
348 	cb->mirror_num = 0;
349 	cb->compressed_pages = compressed_pages;
350 	cb->compressed_len = compressed_len;
351 	cb->orig_bio = NULL;
352 	cb->nr_pages = nr_pages;
353 
354 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
355 
356 	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
357 	bio->bi_private = cb;
358 	bio->bi_end_io = end_compressed_bio_write;
359 	atomic_inc(&cb->pending_bios);
360 
361 	/* create and submit bios for the compressed pages */
362 	bytes_left = compressed_len;
363 	for (page_index = 0; page_index < cb->nr_pages; page_index++) {
364 		page = compressed_pages[page_index];
365 		page->mapping = inode->i_mapping;
366 		if (bio->bi_size)
367 			ret = io_tree->ops->merge_bio_hook(page, 0,
368 							   PAGE_CACHE_SIZE,
369 							   bio, 0);
370 		else
371 			ret = 0;
372 
373 		page->mapping = NULL;
374 		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
375 		    PAGE_CACHE_SIZE) {
376 			bio_get(bio);
377 
378 			/*
379 			 * inc the count before we submit the bio so
380 			 * we know the end IO handler won't happen before
381 			 * we inc the count.  Otherwise, the cb might get
382 			 * freed before we're done setting it up
383 			 */
384 			atomic_inc(&cb->pending_bios);
385 			ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
386 			BUG_ON(ret);
387 
388 			ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
389 			BUG_ON(ret);
390 
391 			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
392 			BUG_ON(ret);
393 
394 			bio_put(bio);
395 
396 			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
397 			bio->bi_private = cb;
398 			bio->bi_end_io = end_compressed_bio_write;
399 			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
400 		}
401 		if (bytes_left < PAGE_CACHE_SIZE) {
402 			printk("bytes left %lu compress len %lu nr %lu\n",
403 			       bytes_left, cb->compressed_len, cb->nr_pages);
404 		}
405 		bytes_left -= PAGE_CACHE_SIZE;
406 		first_byte += PAGE_CACHE_SIZE;
407 		cond_resched();
408 	}
409 	bio_get(bio);
410 
411 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
412 	BUG_ON(ret);
413 
414 	ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
415 	BUG_ON(ret);
416 
417 	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
418 	BUG_ON(ret);
419 
420 	bio_put(bio);
421 	return 0;
422 }
423 
424 static noinline int add_ra_bio_pages(struct inode *inode,
425 				     u64 compressed_end,
426 				     struct compressed_bio *cb)
427 {
428 	unsigned long end_index;
429 	unsigned long page_index;
430 	u64 last_offset;
431 	u64 isize = i_size_read(inode);
432 	int ret;
433 	struct page *page;
434 	unsigned long nr_pages = 0;
435 	struct extent_map *em;
436 	struct address_space *mapping = inode->i_mapping;
437 	struct extent_map_tree *em_tree;
438 	struct extent_io_tree *tree;
439 	u64 end;
440 	int misses = 0;
441 
442 	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
443 	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
444 	em_tree = &BTRFS_I(inode)->extent_tree;
445 	tree = &BTRFS_I(inode)->io_tree;
446 
447 	if (isize == 0)
448 		return 0;
449 
450 	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
451 
452 	while (last_offset < compressed_end) {
453 		page_index = last_offset >> PAGE_CACHE_SHIFT;
454 
455 		if (page_index > end_index)
456 			break;
457 
458 		rcu_read_lock();
459 		page = radix_tree_lookup(&mapping->page_tree, page_index);
460 		rcu_read_unlock();
461 		if (page) {
462 			misses++;
463 			if (misses > 4)
464 				break;
465 			goto next;
466 		}
467 
468 		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
469 								~__GFP_FS);
470 		if (!page)
471 			break;
472 
473 		if (add_to_page_cache_lru(page, mapping, page_index,
474 								GFP_NOFS)) {
475 			page_cache_release(page);
476 			goto next;
477 		}
478 
479 		end = last_offset + PAGE_CACHE_SIZE - 1;
480 		/*
481 		 * at this point, we have a locked page in the page cache
482 		 * for these bytes in the file.  But, we have to make
483 		 * sure they map to this compressed extent on disk.
484 		 */
485 		set_page_extent_mapped(page);
486 		lock_extent(tree, last_offset, end, GFP_NOFS);
487 		read_lock(&em_tree->lock);
488 		em = lookup_extent_mapping(em_tree, last_offset,
489 					   PAGE_CACHE_SIZE);
490 		read_unlock(&em_tree->lock);
491 
492 		if (!em || last_offset < em->start ||
493 		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
494 		    (em->block_start >> 9) != cb->orig_bio->bi_sector) {
495 			free_extent_map(em);
496 			unlock_extent(tree, last_offset, end, GFP_NOFS);
497 			unlock_page(page);
498 			page_cache_release(page);
499 			break;
500 		}
501 		free_extent_map(em);
502 
503 		if (page->index == end_index) {
504 			char *userpage;
505 			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
506 
507 			if (zero_offset) {
508 				int zeros;
509 				zeros = PAGE_CACHE_SIZE - zero_offset;
510 				userpage = kmap_atomic(page, KM_USER0);
511 				memset(userpage + zero_offset, 0, zeros);
512 				flush_dcache_page(page);
513 				kunmap_atomic(userpage, KM_USER0);
514 			}
515 		}
516 
517 		ret = bio_add_page(cb->orig_bio, page,
518 				   PAGE_CACHE_SIZE, 0);
519 
520 		if (ret == PAGE_CACHE_SIZE) {
521 			nr_pages++;
522 			page_cache_release(page);
523 		} else {
524 			unlock_extent(tree, last_offset, end, GFP_NOFS);
525 			unlock_page(page);
526 			page_cache_release(page);
527 			break;
528 		}
529 next:
530 		last_offset += PAGE_CACHE_SIZE;
531 	}
532 	return 0;
533 }
534 
535 /*
536  * for a compressed read, the bio we get passed has all the inode pages
537  * in it.  We don't actually do IO on those pages but allocate new ones
538  * to hold the compressed pages on disk.
539  *
540  * bio->bi_sector points to the compressed extent on disk
541  * bio->bi_io_vec points to all of the inode pages
542  * bio->bi_vcnt is a count of pages
543  *
544  * After the compressed pages are read, we copy the bytes into the
545  * bio we were passed and then call the bio end_io calls
546  */
547 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
548 				 int mirror_num, unsigned long bio_flags)
549 {
550 	struct extent_io_tree *tree;
551 	struct extent_map_tree *em_tree;
552 	struct compressed_bio *cb;
553 	struct btrfs_root *root = BTRFS_I(inode)->root;
554 	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
555 	unsigned long compressed_len;
556 	unsigned long nr_pages;
557 	unsigned long page_index;
558 	struct page *page;
559 	struct block_device *bdev;
560 	struct bio *comp_bio;
561 	u64 cur_disk_byte = (u64)bio->bi_sector << 9;
562 	u64 em_len;
563 	u64 em_start;
564 	struct extent_map *em;
565 	int ret;
566 	u32 *sums;
567 
568 	tree = &BTRFS_I(inode)->io_tree;
569 	em_tree = &BTRFS_I(inode)->extent_tree;
570 
571 	/* we need the actual starting offset of this extent in the file */
572 	read_lock(&em_tree->lock);
573 	em = lookup_extent_mapping(em_tree,
574 				   page_offset(bio->bi_io_vec->bv_page),
575 				   PAGE_CACHE_SIZE);
576 	read_unlock(&em_tree->lock);
577 
578 	compressed_len = em->block_len;
579 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
580 	atomic_set(&cb->pending_bios, 0);
581 	cb->errors = 0;
582 	cb->inode = inode;
583 	cb->mirror_num = mirror_num;
584 	sums = &cb->sums;
585 
586 	cb->start = em->orig_start;
587 	em_len = em->len;
588 	em_start = em->start;
589 
590 	free_extent_map(em);
591 	em = NULL;
592 
593 	cb->len = uncompressed_len;
594 	cb->compressed_len = compressed_len;
595 	cb->compress_type = extent_compress_type(bio_flags);
596 	cb->orig_bio = bio;
597 
598 	nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
599 				 PAGE_CACHE_SIZE;
600 	cb->compressed_pages = kmalloc(sizeof(struct page *) * nr_pages,
601 				       GFP_NOFS);
602 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
603 
604 	for (page_index = 0; page_index < nr_pages; page_index++) {
605 		cb->compressed_pages[page_index] = alloc_page(GFP_NOFS |
606 							      __GFP_HIGHMEM);
607 	}
608 	cb->nr_pages = nr_pages;
609 
610 	add_ra_bio_pages(inode, em_start + em_len, cb);
611 
612 	/* include any pages we added in add_ra-bio_pages */
613 	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
614 	cb->len = uncompressed_len;
615 
616 	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
617 	comp_bio->bi_private = cb;
618 	comp_bio->bi_end_io = end_compressed_bio_read;
619 	atomic_inc(&cb->pending_bios);
620 
621 	for (page_index = 0; page_index < nr_pages; page_index++) {
622 		page = cb->compressed_pages[page_index];
623 		page->mapping = inode->i_mapping;
624 		page->index = em_start >> PAGE_CACHE_SHIFT;
625 
626 		if (comp_bio->bi_size)
627 			ret = tree->ops->merge_bio_hook(page, 0,
628 							PAGE_CACHE_SIZE,
629 							comp_bio, 0);
630 		else
631 			ret = 0;
632 
633 		page->mapping = NULL;
634 		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
635 		    PAGE_CACHE_SIZE) {
636 			bio_get(comp_bio);
637 
638 			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
639 			BUG_ON(ret);
640 
641 			/*
642 			 * inc the count before we submit the bio so
643 			 * we know the end IO handler won't happen before
644 			 * we inc the count.  Otherwise, the cb might get
645 			 * freed before we're done setting it up
646 			 */
647 			atomic_inc(&cb->pending_bios);
648 
649 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
650 				btrfs_lookup_bio_sums(root, inode, comp_bio,
651 						      sums);
652 			}
653 			sums += (comp_bio->bi_size + root->sectorsize - 1) /
654 				root->sectorsize;
655 
656 			ret = btrfs_map_bio(root, READ, comp_bio,
657 					    mirror_num, 0);
658 			BUG_ON(ret);
659 
660 			bio_put(comp_bio);
661 
662 			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
663 							GFP_NOFS);
664 			comp_bio->bi_private = cb;
665 			comp_bio->bi_end_io = end_compressed_bio_read;
666 
667 			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
668 		}
669 		cur_disk_byte += PAGE_CACHE_SIZE;
670 	}
671 	bio_get(comp_bio);
672 
673 	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
674 	BUG_ON(ret);
675 
676 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
677 		btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
678 
679 	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
680 	BUG_ON(ret);
681 
682 	bio_put(comp_bio);
683 	return 0;
684 }
685 
686 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
687 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
688 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
689 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
690 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
691 
692 struct btrfs_compress_op *btrfs_compress_op[] = {
693 	&btrfs_zlib_compress,
694 	&btrfs_lzo_compress,
695 };
696 
697 int __init btrfs_init_compress(void)
698 {
699 	int i;
700 
701 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
702 		INIT_LIST_HEAD(&comp_idle_workspace[i]);
703 		spin_lock_init(&comp_workspace_lock[i]);
704 		atomic_set(&comp_alloc_workspace[i], 0);
705 		init_waitqueue_head(&comp_workspace_wait[i]);
706 	}
707 	return 0;
708 }
709 
710 /*
711  * this finds an available workspace or allocates a new one
712  * ERR_PTR is returned if things go bad.
713  */
714 static struct list_head *find_workspace(int type)
715 {
716 	struct list_head *workspace;
717 	int cpus = num_online_cpus();
718 	int idx = type - 1;
719 
720 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
721 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
722 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
723 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
724 	int *num_workspace			= &comp_num_workspace[idx];
725 again:
726 	spin_lock(workspace_lock);
727 	if (!list_empty(idle_workspace)) {
728 		workspace = idle_workspace->next;
729 		list_del(workspace);
730 		(*num_workspace)--;
731 		spin_unlock(workspace_lock);
732 		return workspace;
733 
734 	}
735 	if (atomic_read(alloc_workspace) > cpus) {
736 		DEFINE_WAIT(wait);
737 
738 		spin_unlock(workspace_lock);
739 		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
740 		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
741 			schedule();
742 		finish_wait(workspace_wait, &wait);
743 		goto again;
744 	}
745 	atomic_inc(alloc_workspace);
746 	spin_unlock(workspace_lock);
747 
748 	workspace = btrfs_compress_op[idx]->alloc_workspace();
749 	if (IS_ERR(workspace)) {
750 		atomic_dec(alloc_workspace);
751 		wake_up(workspace_wait);
752 	}
753 	return workspace;
754 }
755 
756 /*
757  * put a workspace struct back on the list or free it if we have enough
758  * idle ones sitting around
759  */
760 static void free_workspace(int type, struct list_head *workspace)
761 {
762 	int idx = type - 1;
763 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
764 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
765 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
766 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
767 	int *num_workspace			= &comp_num_workspace[idx];
768 
769 	spin_lock(workspace_lock);
770 	if (*num_workspace < num_online_cpus()) {
771 		list_add_tail(workspace, idle_workspace);
772 		(*num_workspace)++;
773 		spin_unlock(workspace_lock);
774 		goto wake;
775 	}
776 	spin_unlock(workspace_lock);
777 
778 	btrfs_compress_op[idx]->free_workspace(workspace);
779 	atomic_dec(alloc_workspace);
780 wake:
781 	if (waitqueue_active(workspace_wait))
782 		wake_up(workspace_wait);
783 }
784 
785 /*
786  * cleanup function for module exit
787  */
788 static void free_workspaces(void)
789 {
790 	struct list_head *workspace;
791 	int i;
792 
793 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
794 		while (!list_empty(&comp_idle_workspace[i])) {
795 			workspace = comp_idle_workspace[i].next;
796 			list_del(workspace);
797 			btrfs_compress_op[i]->free_workspace(workspace);
798 			atomic_dec(&comp_alloc_workspace[i]);
799 		}
800 	}
801 }
802 
803 /*
804  * given an address space and start/len, compress the bytes.
805  *
806  * pages are allocated to hold the compressed result and stored
807  * in 'pages'
808  *
809  * out_pages is used to return the number of pages allocated.  There
810  * may be pages allocated even if we return an error
811  *
812  * total_in is used to return the number of bytes actually read.  It
813  * may be smaller then len if we had to exit early because we
814  * ran out of room in the pages array or because we cross the
815  * max_out threshold.
816  *
817  * total_out is used to return the total number of compressed bytes
818  *
819  * max_out tells us the max number of bytes that we're allowed to
820  * stuff into pages
821  */
822 int btrfs_compress_pages(int type, struct address_space *mapping,
823 			 u64 start, unsigned long len,
824 			 struct page **pages,
825 			 unsigned long nr_dest_pages,
826 			 unsigned long *out_pages,
827 			 unsigned long *total_in,
828 			 unsigned long *total_out,
829 			 unsigned long max_out)
830 {
831 	struct list_head *workspace;
832 	int ret;
833 
834 	workspace = find_workspace(type);
835 	if (IS_ERR(workspace))
836 		return -1;
837 
838 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
839 						      start, len, pages,
840 						      nr_dest_pages, out_pages,
841 						      total_in, total_out,
842 						      max_out);
843 	free_workspace(type, workspace);
844 	return ret;
845 }
846 
847 /*
848  * pages_in is an array of pages with compressed data.
849  *
850  * disk_start is the starting logical offset of this array in the file
851  *
852  * bvec is a bio_vec of pages from the file that we want to decompress into
853  *
854  * vcnt is the count of pages in the biovec
855  *
856  * srclen is the number of bytes in pages_in
857  *
858  * The basic idea is that we have a bio that was created by readpages.
859  * The pages in the bio are for the uncompressed data, and they may not
860  * be contiguous.  They all correspond to the range of bytes covered by
861  * the compressed extent.
862  */
863 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
864 			    struct bio_vec *bvec, int vcnt, size_t srclen)
865 {
866 	struct list_head *workspace;
867 	int ret;
868 
869 	workspace = find_workspace(type);
870 	if (IS_ERR(workspace))
871 		return -ENOMEM;
872 
873 	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
874 							 disk_start,
875 							 bvec, vcnt, srclen);
876 	free_workspace(type, workspace);
877 	return ret;
878 }
879 
880 /*
881  * a less complex decompression routine.  Our compressed data fits in a
882  * single page, and we want to read a single page out of it.
883  * start_byte tells us the offset into the compressed data we're interested in
884  */
885 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
886 		     unsigned long start_byte, size_t srclen, size_t destlen)
887 {
888 	struct list_head *workspace;
889 	int ret;
890 
891 	workspace = find_workspace(type);
892 	if (IS_ERR(workspace))
893 		return -ENOMEM;
894 
895 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
896 						  dest_page, start_byte,
897 						  srclen, destlen);
898 
899 	free_workspace(type, workspace);
900 	return ret;
901 }
902 
903 void __exit btrfs_exit_compress(void)
904 {
905 	free_workspaces();
906 }
907 
908 /*
909  * Copy uncompressed data from working buffer to pages.
910  *
911  * buf_start is the byte offset we're of the start of our workspace buffer.
912  *
913  * total_out is the last byte of the buffer
914  */
915 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
916 			      unsigned long total_out, u64 disk_start,
917 			      struct bio_vec *bvec, int vcnt,
918 			      unsigned long *page_index,
919 			      unsigned long *pg_offset)
920 {
921 	unsigned long buf_offset;
922 	unsigned long current_buf_start;
923 	unsigned long start_byte;
924 	unsigned long working_bytes = total_out - buf_start;
925 	unsigned long bytes;
926 	char *kaddr;
927 	struct page *page_out = bvec[*page_index].bv_page;
928 
929 	/*
930 	 * start byte is the first byte of the page we're currently
931 	 * copying into relative to the start of the compressed data.
932 	 */
933 	start_byte = page_offset(page_out) - disk_start;
934 
935 	/* we haven't yet hit data corresponding to this page */
936 	if (total_out <= start_byte)
937 		return 1;
938 
939 	/*
940 	 * the start of the data we care about is offset into
941 	 * the middle of our working buffer
942 	 */
943 	if (total_out > start_byte && buf_start < start_byte) {
944 		buf_offset = start_byte - buf_start;
945 		working_bytes -= buf_offset;
946 	} else {
947 		buf_offset = 0;
948 	}
949 	current_buf_start = buf_start;
950 
951 	/* copy bytes from the working buffer into the pages */
952 	while (working_bytes > 0) {
953 		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
954 			    PAGE_CACHE_SIZE - buf_offset);
955 		bytes = min(bytes, working_bytes);
956 		kaddr = kmap_atomic(page_out, KM_USER0);
957 		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
958 		kunmap_atomic(kaddr, KM_USER0);
959 		flush_dcache_page(page_out);
960 
961 		*pg_offset += bytes;
962 		buf_offset += bytes;
963 		working_bytes -= bytes;
964 		current_buf_start += bytes;
965 
966 		/* check if we need to pick another page */
967 		if (*pg_offset == PAGE_CACHE_SIZE) {
968 			(*page_index)++;
969 			if (*page_index >= vcnt)
970 				return 0;
971 
972 			page_out = bvec[*page_index].bv_page;
973 			*pg_offset = 0;
974 			start_byte = page_offset(page_out) - disk_start;
975 
976 			/*
977 			 * make sure our new page is covered by this
978 			 * working buffer
979 			 */
980 			if (total_out <= start_byte)
981 				return 1;
982 
983 			/*
984 			 * the next page in the biovec might not be adjacent
985 			 * to the last page, but it might still be found
986 			 * inside this working buffer. bump our offset pointer
987 			 */
988 			if (total_out > start_byte &&
989 			    current_buf_start < start_byte) {
990 				buf_offset = start_byte - buf_start;
991 				working_bytes = total_out - start_byte;
992 				current_buf_start = buf_start + buf_offset;
993 			}
994 		}
995 	}
996 
997 	return 1;
998 }
999