xref: /linux/fs/btrfs/compression.c (revision c7546e2c3cb739a3c1a2f5acaf9bb629d401afe5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/pagevec.h>
12 #include <linux/highmem.h>
13 #include <linux/kthread.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/psi.h>
20 #include <linux/slab.h>
21 #include <linux/sched/mm.h>
22 #include <linux/log2.h>
23 #include <linux/shrinker.h>
24 #include <crypto/hash.h>
25 #include "misc.h"
26 #include "ctree.h"
27 #include "fs.h"
28 #include "btrfs_inode.h"
29 #include "bio.h"
30 #include "ordered-data.h"
31 #include "compression.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "subpage.h"
35 #include "messages.h"
36 #include "super.h"
37 
38 static struct bio_set btrfs_compressed_bioset;
39 
40 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
41 
42 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
43 {
44 	switch (type) {
45 	case BTRFS_COMPRESS_ZLIB:
46 	case BTRFS_COMPRESS_LZO:
47 	case BTRFS_COMPRESS_ZSTD:
48 	case BTRFS_COMPRESS_NONE:
49 		return btrfs_compress_types[type];
50 	default:
51 		break;
52 	}
53 
54 	return NULL;
55 }
56 
57 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
58 {
59 	return container_of(bbio, struct compressed_bio, bbio);
60 }
61 
62 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
63 						   u64 start, blk_opf_t op,
64 						   btrfs_bio_end_io_t end_io)
65 {
66 	struct btrfs_bio *bbio;
67 
68 	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
69 					  GFP_NOFS, &btrfs_compressed_bioset));
70 	btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL);
71 	bbio->inode = inode;
72 	bbio->file_offset = start;
73 	return to_compressed_bio(bbio);
74 }
75 
76 bool btrfs_compress_is_valid_type(const char *str, size_t len)
77 {
78 	int i;
79 
80 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
81 		size_t comp_len = strlen(btrfs_compress_types[i]);
82 
83 		if (len < comp_len)
84 			continue;
85 
86 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
87 			return true;
88 	}
89 	return false;
90 }
91 
92 static int compression_compress_pages(int type, struct list_head *ws,
93 				      struct address_space *mapping, u64 start,
94 				      struct folio **folios, unsigned long *out_folios,
95 				      unsigned long *total_in, unsigned long *total_out)
96 {
97 	switch (type) {
98 	case BTRFS_COMPRESS_ZLIB:
99 		return zlib_compress_folios(ws, mapping, start, folios,
100 					    out_folios, total_in, total_out);
101 	case BTRFS_COMPRESS_LZO:
102 		return lzo_compress_folios(ws, mapping, start, folios,
103 					   out_folios, total_in, total_out);
104 	case BTRFS_COMPRESS_ZSTD:
105 		return zstd_compress_folios(ws, mapping, start, folios,
106 					    out_folios, total_in, total_out);
107 	case BTRFS_COMPRESS_NONE:
108 	default:
109 		/*
110 		 * This can happen when compression races with remount setting
111 		 * it to 'no compress', while caller doesn't call
112 		 * inode_need_compress() to check if we really need to
113 		 * compress.
114 		 *
115 		 * Not a big deal, just need to inform caller that we
116 		 * haven't allocated any pages yet.
117 		 */
118 		*out_folios = 0;
119 		return -E2BIG;
120 	}
121 }
122 
123 static int compression_decompress_bio(struct list_head *ws,
124 				      struct compressed_bio *cb)
125 {
126 	switch (cb->compress_type) {
127 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
128 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
129 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
130 	case BTRFS_COMPRESS_NONE:
131 	default:
132 		/*
133 		 * This can't happen, the type is validated several times
134 		 * before we get here.
135 		 */
136 		BUG();
137 	}
138 }
139 
140 static int compression_decompress(int type, struct list_head *ws,
141 		const u8 *data_in, struct folio *dest_folio,
142 		unsigned long dest_pgoff, size_t srclen, size_t destlen)
143 {
144 	switch (type) {
145 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_folio,
146 						dest_pgoff, srclen, destlen);
147 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_folio,
148 						dest_pgoff, srclen, destlen);
149 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_folio,
150 						dest_pgoff, srclen, destlen);
151 	case BTRFS_COMPRESS_NONE:
152 	default:
153 		/*
154 		 * This can't happen, the type is validated several times
155 		 * before we get here.
156 		 */
157 		BUG();
158 	}
159 }
160 
161 static void btrfs_free_compressed_folios(struct compressed_bio *cb)
162 {
163 	for (unsigned int i = 0; i < cb->nr_folios; i++)
164 		btrfs_free_compr_folio(cb->compressed_folios[i]);
165 	kfree(cb->compressed_folios);
166 }
167 
168 static int btrfs_decompress_bio(struct compressed_bio *cb);
169 
170 /*
171  * Global cache of last unused pages for compression/decompression.
172  */
173 static struct btrfs_compr_pool {
174 	struct shrinker *shrinker;
175 	spinlock_t lock;
176 	struct list_head list;
177 	int count;
178 	int thresh;
179 } compr_pool;
180 
181 static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc)
182 {
183 	int ret;
184 
185 	/*
186 	 * We must not read the values more than once if 'ret' gets expanded in
187 	 * the return statement so we don't accidentally return a negative
188 	 * number, even if the first condition finds it positive.
189 	 */
190 	ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh);
191 
192 	return ret > 0 ? ret : 0;
193 }
194 
195 static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc)
196 {
197 	struct list_head remove;
198 	struct list_head *tmp, *next;
199 	int freed;
200 
201 	if (compr_pool.count == 0)
202 		return SHRINK_STOP;
203 
204 	INIT_LIST_HEAD(&remove);
205 
206 	/* For now, just simply drain the whole list. */
207 	spin_lock(&compr_pool.lock);
208 	list_splice_init(&compr_pool.list, &remove);
209 	freed = compr_pool.count;
210 	compr_pool.count = 0;
211 	spin_unlock(&compr_pool.lock);
212 
213 	list_for_each_safe(tmp, next, &remove) {
214 		struct page *page = list_entry(tmp, struct page, lru);
215 
216 		ASSERT(page_ref_count(page) == 1);
217 		put_page(page);
218 	}
219 
220 	return freed;
221 }
222 
223 /*
224  * Common wrappers for page allocation from compression wrappers
225  */
226 struct folio *btrfs_alloc_compr_folio(void)
227 {
228 	struct folio *folio = NULL;
229 
230 	spin_lock(&compr_pool.lock);
231 	if (compr_pool.count > 0) {
232 		folio = list_first_entry(&compr_pool.list, struct folio, lru);
233 		list_del_init(&folio->lru);
234 		compr_pool.count--;
235 	}
236 	spin_unlock(&compr_pool.lock);
237 
238 	if (folio)
239 		return folio;
240 
241 	return folio_alloc(GFP_NOFS, 0);
242 }
243 
244 void btrfs_free_compr_folio(struct folio *folio)
245 {
246 	bool do_free = false;
247 
248 	spin_lock(&compr_pool.lock);
249 	if (compr_pool.count > compr_pool.thresh) {
250 		do_free = true;
251 	} else {
252 		list_add(&folio->lru, &compr_pool.list);
253 		compr_pool.count++;
254 	}
255 	spin_unlock(&compr_pool.lock);
256 
257 	if (!do_free)
258 		return;
259 
260 	ASSERT(folio_ref_count(folio) == 1);
261 	folio_put(folio);
262 }
263 
264 static void end_bbio_compressed_read(struct btrfs_bio *bbio)
265 {
266 	struct compressed_bio *cb = to_compressed_bio(bbio);
267 	blk_status_t status = bbio->bio.bi_status;
268 
269 	if (!status)
270 		status = errno_to_blk_status(btrfs_decompress_bio(cb));
271 
272 	btrfs_free_compressed_folios(cb);
273 	btrfs_bio_end_io(cb->orig_bbio, status);
274 	bio_put(&bbio->bio);
275 }
276 
277 /*
278  * Clear the writeback bits on all of the file
279  * pages for a compressed write
280  */
281 static noinline void end_compressed_writeback(const struct compressed_bio *cb)
282 {
283 	struct inode *inode = &cb->bbio.inode->vfs_inode;
284 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
285 	unsigned long index = cb->start >> PAGE_SHIFT;
286 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
287 	struct folio_batch fbatch;
288 	const int error = blk_status_to_errno(cb->bbio.bio.bi_status);
289 	int i;
290 	int ret;
291 
292 	if (error)
293 		mapping_set_error(inode->i_mapping, error);
294 
295 	folio_batch_init(&fbatch);
296 	while (index <= end_index) {
297 		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
298 				&fbatch);
299 
300 		if (ret == 0)
301 			return;
302 
303 		for (i = 0; i < ret; i++) {
304 			struct folio *folio = fbatch.folios[i];
305 
306 			btrfs_folio_clamp_clear_writeback(fs_info, folio,
307 							  cb->start, cb->len);
308 		}
309 		folio_batch_release(&fbatch);
310 	}
311 	/* the inode may be gone now */
312 }
313 
314 static void btrfs_finish_compressed_write_work(struct work_struct *work)
315 {
316 	struct compressed_bio *cb =
317 		container_of(work, struct compressed_bio, write_end_work);
318 
319 	btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len,
320 				    cb->bbio.bio.bi_status == BLK_STS_OK);
321 
322 	if (cb->writeback)
323 		end_compressed_writeback(cb);
324 	/* Note, our inode could be gone now */
325 
326 	btrfs_free_compressed_folios(cb);
327 	bio_put(&cb->bbio.bio);
328 }
329 
330 /*
331  * Do the cleanup once all the compressed pages hit the disk.  This will clear
332  * writeback on the file pages and free the compressed pages.
333  *
334  * This also calls the writeback end hooks for the file pages so that metadata
335  * and checksums can be updated in the file.
336  */
337 static void end_bbio_compressed_write(struct btrfs_bio *bbio)
338 {
339 	struct compressed_bio *cb = to_compressed_bio(bbio);
340 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
341 
342 	queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
343 }
344 
345 static void btrfs_add_compressed_bio_folios(struct compressed_bio *cb)
346 {
347 	struct bio *bio = &cb->bbio.bio;
348 	u32 offset = 0;
349 
350 	while (offset < cb->compressed_len) {
351 		int ret;
352 		u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE);
353 
354 		/* Maximum compressed extent is smaller than bio size limit. */
355 		ret = bio_add_folio(bio, cb->compressed_folios[offset >> PAGE_SHIFT],
356 				    len, 0);
357 		ASSERT(ret);
358 		offset += len;
359 	}
360 }
361 
362 /*
363  * worker function to build and submit bios for previously compressed pages.
364  * The corresponding pages in the inode should be marked for writeback
365  * and the compressed pages should have a reference on them for dropping
366  * when the IO is complete.
367  *
368  * This also checksums the file bytes and gets things ready for
369  * the end io hooks.
370  */
371 void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered,
372 				   struct folio **compressed_folios,
373 				   unsigned int nr_folios,
374 				   blk_opf_t write_flags,
375 				   bool writeback)
376 {
377 	struct btrfs_inode *inode = ordered->inode;
378 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
379 	struct compressed_bio *cb;
380 
381 	ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize));
382 	ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize));
383 
384 	cb = alloc_compressed_bio(inode, ordered->file_offset,
385 				  REQ_OP_WRITE | write_flags,
386 				  end_bbio_compressed_write);
387 	cb->start = ordered->file_offset;
388 	cb->len = ordered->num_bytes;
389 	cb->compressed_folios = compressed_folios;
390 	cb->compressed_len = ordered->disk_num_bytes;
391 	cb->writeback = writeback;
392 	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
393 	cb->nr_folios = nr_folios;
394 	cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT;
395 	cb->bbio.ordered = ordered;
396 	btrfs_add_compressed_bio_folios(cb);
397 
398 	btrfs_submit_bbio(&cb->bbio, 0);
399 }
400 
401 /*
402  * Add extra pages in the same compressed file extent so that we don't need to
403  * re-read the same extent again and again.
404  *
405  * NOTE: this won't work well for subpage, as for subpage read, we lock the
406  * full page then submit bio for each compressed/regular extents.
407  *
408  * This means, if we have several sectors in the same page points to the same
409  * on-disk compressed data, we will re-read the same extent many times and
410  * this function can only help for the next page.
411  */
412 static noinline int add_ra_bio_pages(struct inode *inode,
413 				     u64 compressed_end,
414 				     struct compressed_bio *cb,
415 				     int *memstall, unsigned long *pflags)
416 {
417 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
418 	unsigned long end_index;
419 	struct bio *orig_bio = &cb->orig_bbio->bio;
420 	u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
421 	u64 isize = i_size_read(inode);
422 	int ret;
423 	struct folio *folio;
424 	struct extent_map *em;
425 	struct address_space *mapping = inode->i_mapping;
426 	struct extent_map_tree *em_tree;
427 	struct extent_io_tree *tree;
428 	int sectors_missed = 0;
429 
430 	em_tree = &BTRFS_I(inode)->extent_tree;
431 	tree = &BTRFS_I(inode)->io_tree;
432 
433 	if (isize == 0)
434 		return 0;
435 
436 	/*
437 	 * For current subpage support, we only support 64K page size,
438 	 * which means maximum compressed extent size (128K) is just 2x page
439 	 * size.
440 	 * This makes readahead less effective, so here disable readahead for
441 	 * subpage for now, until full compressed write is supported.
442 	 */
443 	if (fs_info->sectorsize < PAGE_SIZE)
444 		return 0;
445 
446 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
447 
448 	while (cur < compressed_end) {
449 		u64 page_end;
450 		u64 pg_index = cur >> PAGE_SHIFT;
451 		u32 add_size;
452 
453 		if (pg_index > end_index)
454 			break;
455 
456 		folio = __filemap_get_folio(mapping, pg_index, 0, 0);
457 		if (!IS_ERR(folio)) {
458 			u64 folio_sz = folio_size(folio);
459 			u64 offset = offset_in_folio(folio, cur);
460 
461 			folio_put(folio);
462 			sectors_missed += (folio_sz - offset) >>
463 					  fs_info->sectorsize_bits;
464 
465 			/* Beyond threshold, no need to continue */
466 			if (sectors_missed > 4)
467 				break;
468 
469 			/*
470 			 * Jump to next page start as we already have page for
471 			 * current offset.
472 			 */
473 			cur += (folio_sz - offset);
474 			continue;
475 		}
476 
477 		folio = filemap_alloc_folio(mapping_gfp_constraint(mapping,
478 								   ~__GFP_FS), 0);
479 		if (!folio)
480 			break;
481 
482 		if (filemap_add_folio(mapping, folio, pg_index, GFP_NOFS)) {
483 			/* There is already a page, skip to page end */
484 			cur += folio_size(folio);
485 			folio_put(folio);
486 			continue;
487 		}
488 
489 		if (!*memstall && folio_test_workingset(folio)) {
490 			psi_memstall_enter(pflags);
491 			*memstall = 1;
492 		}
493 
494 		ret = set_folio_extent_mapped(folio);
495 		if (ret < 0) {
496 			folio_unlock(folio);
497 			folio_put(folio);
498 			break;
499 		}
500 
501 		page_end = (pg_index << PAGE_SHIFT) + folio_size(folio) - 1;
502 		lock_extent(tree, cur, page_end, NULL);
503 		read_lock(&em_tree->lock);
504 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
505 		read_unlock(&em_tree->lock);
506 
507 		/*
508 		 * At this point, we have a locked page in the page cache for
509 		 * these bytes in the file.  But, we have to make sure they map
510 		 * to this compressed extent on disk.
511 		 */
512 		if (!em || cur < em->start ||
513 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
514 		    (extent_map_block_start(em) >> SECTOR_SHIFT) !=
515 		    orig_bio->bi_iter.bi_sector) {
516 			free_extent_map(em);
517 			unlock_extent(tree, cur, page_end, NULL);
518 			folio_unlock(folio);
519 			folio_put(folio);
520 			break;
521 		}
522 		add_size = min(em->start + em->len, page_end + 1) - cur;
523 		free_extent_map(em);
524 		unlock_extent(tree, cur, page_end, NULL);
525 
526 		if (folio->index == end_index) {
527 			size_t zero_offset = offset_in_folio(folio, isize);
528 
529 			if (zero_offset) {
530 				int zeros;
531 				zeros = folio_size(folio) - zero_offset;
532 				folio_zero_range(folio, zero_offset, zeros);
533 			}
534 		}
535 
536 		if (!bio_add_folio(orig_bio, folio, add_size,
537 				   offset_in_folio(folio, cur))) {
538 			folio_unlock(folio);
539 			folio_put(folio);
540 			break;
541 		}
542 		/*
543 		 * If it's subpage, we also need to increase its
544 		 * subpage::readers number, as at endio we will decrease
545 		 * subpage::readers and to unlock the page.
546 		 */
547 		if (fs_info->sectorsize < PAGE_SIZE)
548 			btrfs_subpage_start_reader(fs_info, folio, cur,
549 						   add_size);
550 		folio_put(folio);
551 		cur += add_size;
552 	}
553 	return 0;
554 }
555 
556 /*
557  * for a compressed read, the bio we get passed has all the inode pages
558  * in it.  We don't actually do IO on those pages but allocate new ones
559  * to hold the compressed pages on disk.
560  *
561  * bio->bi_iter.bi_sector points to the compressed extent on disk
562  * bio->bi_io_vec points to all of the inode pages
563  *
564  * After the compressed pages are read, we copy the bytes into the
565  * bio we were passed and then call the bio end_io calls
566  */
567 void btrfs_submit_compressed_read(struct btrfs_bio *bbio)
568 {
569 	struct btrfs_inode *inode = bbio->inode;
570 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
571 	struct extent_map_tree *em_tree = &inode->extent_tree;
572 	struct compressed_bio *cb;
573 	unsigned int compressed_len;
574 	u64 file_offset = bbio->file_offset;
575 	u64 em_len;
576 	u64 em_start;
577 	struct extent_map *em;
578 	unsigned long pflags;
579 	int memstall = 0;
580 	blk_status_t ret;
581 	int ret2;
582 
583 	/* we need the actual starting offset of this extent in the file */
584 	read_lock(&em_tree->lock);
585 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
586 	read_unlock(&em_tree->lock);
587 	if (!em) {
588 		ret = BLK_STS_IOERR;
589 		goto out;
590 	}
591 
592 	ASSERT(extent_map_is_compressed(em));
593 	compressed_len = em->disk_num_bytes;
594 
595 	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
596 				  end_bbio_compressed_read);
597 
598 	cb->start = em->start - em->offset;
599 	em_len = em->len;
600 	em_start = em->start;
601 
602 	cb->len = bbio->bio.bi_iter.bi_size;
603 	cb->compressed_len = compressed_len;
604 	cb->compress_type = extent_map_compression(em);
605 	cb->orig_bbio = bbio;
606 
607 	free_extent_map(em);
608 
609 	cb->nr_folios = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
610 	cb->compressed_folios = kcalloc(cb->nr_folios, sizeof(struct page *), GFP_NOFS);
611 	if (!cb->compressed_folios) {
612 		ret = BLK_STS_RESOURCE;
613 		goto out_free_bio;
614 	}
615 
616 	ret2 = btrfs_alloc_folio_array(cb->nr_folios, cb->compressed_folios);
617 	if (ret2) {
618 		ret = BLK_STS_RESOURCE;
619 		goto out_free_compressed_pages;
620 	}
621 
622 	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
623 			 &pflags);
624 
625 	/* include any pages we added in add_ra-bio_pages */
626 	cb->len = bbio->bio.bi_iter.bi_size;
627 	cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
628 	btrfs_add_compressed_bio_folios(cb);
629 
630 	if (memstall)
631 		psi_memstall_leave(&pflags);
632 
633 	btrfs_submit_bbio(&cb->bbio, 0);
634 	return;
635 
636 out_free_compressed_pages:
637 	kfree(cb->compressed_folios);
638 out_free_bio:
639 	bio_put(&cb->bbio.bio);
640 out:
641 	btrfs_bio_end_io(bbio, ret);
642 }
643 
644 /*
645  * Heuristic uses systematic sampling to collect data from the input data
646  * range, the logic can be tuned by the following constants:
647  *
648  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
649  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
650  */
651 #define SAMPLING_READ_SIZE	(16)
652 #define SAMPLING_INTERVAL	(256)
653 
654 /*
655  * For statistical analysis of the input data we consider bytes that form a
656  * Galois Field of 256 objects. Each object has an attribute count, ie. how
657  * many times the object appeared in the sample.
658  */
659 #define BUCKET_SIZE		(256)
660 
661 /*
662  * The size of the sample is based on a statistical sampling rule of thumb.
663  * The common way is to perform sampling tests as long as the number of
664  * elements in each cell is at least 5.
665  *
666  * Instead of 5, we choose 32 to obtain more accurate results.
667  * If the data contain the maximum number of symbols, which is 256, we obtain a
668  * sample size bound by 8192.
669  *
670  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
671  * from up to 512 locations.
672  */
673 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
674 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
675 
676 struct bucket_item {
677 	u32 count;
678 };
679 
680 struct heuristic_ws {
681 	/* Partial copy of input data */
682 	u8 *sample;
683 	u32 sample_size;
684 	/* Buckets store counters for each byte value */
685 	struct bucket_item *bucket;
686 	/* Sorting buffer */
687 	struct bucket_item *bucket_b;
688 	struct list_head list;
689 };
690 
691 static struct workspace_manager heuristic_wsm;
692 
693 static void free_heuristic_ws(struct list_head *ws)
694 {
695 	struct heuristic_ws *workspace;
696 
697 	workspace = list_entry(ws, struct heuristic_ws, list);
698 
699 	kvfree(workspace->sample);
700 	kfree(workspace->bucket);
701 	kfree(workspace->bucket_b);
702 	kfree(workspace);
703 }
704 
705 static struct list_head *alloc_heuristic_ws(unsigned int level)
706 {
707 	struct heuristic_ws *ws;
708 
709 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
710 	if (!ws)
711 		return ERR_PTR(-ENOMEM);
712 
713 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
714 	if (!ws->sample)
715 		goto fail;
716 
717 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
718 	if (!ws->bucket)
719 		goto fail;
720 
721 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
722 	if (!ws->bucket_b)
723 		goto fail;
724 
725 	INIT_LIST_HEAD(&ws->list);
726 	return &ws->list;
727 fail:
728 	free_heuristic_ws(&ws->list);
729 	return ERR_PTR(-ENOMEM);
730 }
731 
732 const struct btrfs_compress_op btrfs_heuristic_compress = {
733 	.workspace_manager = &heuristic_wsm,
734 };
735 
736 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
737 	/* The heuristic is represented as compression type 0 */
738 	&btrfs_heuristic_compress,
739 	&btrfs_zlib_compress,
740 	&btrfs_lzo_compress,
741 	&btrfs_zstd_compress,
742 };
743 
744 static struct list_head *alloc_workspace(int type, unsigned int level)
745 {
746 	switch (type) {
747 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
748 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
749 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
750 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
751 	default:
752 		/*
753 		 * This can't happen, the type is validated several times
754 		 * before we get here.
755 		 */
756 		BUG();
757 	}
758 }
759 
760 static void free_workspace(int type, struct list_head *ws)
761 {
762 	switch (type) {
763 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
764 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
765 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
766 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
767 	default:
768 		/*
769 		 * This can't happen, the type is validated several times
770 		 * before we get here.
771 		 */
772 		BUG();
773 	}
774 }
775 
776 static void btrfs_init_workspace_manager(int type)
777 {
778 	struct workspace_manager *wsm;
779 	struct list_head *workspace;
780 
781 	wsm = btrfs_compress_op[type]->workspace_manager;
782 	INIT_LIST_HEAD(&wsm->idle_ws);
783 	spin_lock_init(&wsm->ws_lock);
784 	atomic_set(&wsm->total_ws, 0);
785 	init_waitqueue_head(&wsm->ws_wait);
786 
787 	/*
788 	 * Preallocate one workspace for each compression type so we can
789 	 * guarantee forward progress in the worst case
790 	 */
791 	workspace = alloc_workspace(type, 0);
792 	if (IS_ERR(workspace)) {
793 		pr_warn(
794 	"BTRFS: cannot preallocate compression workspace, will try later\n");
795 	} else {
796 		atomic_set(&wsm->total_ws, 1);
797 		wsm->free_ws = 1;
798 		list_add(workspace, &wsm->idle_ws);
799 	}
800 }
801 
802 static void btrfs_cleanup_workspace_manager(int type)
803 {
804 	struct workspace_manager *wsman;
805 	struct list_head *ws;
806 
807 	wsman = btrfs_compress_op[type]->workspace_manager;
808 	while (!list_empty(&wsman->idle_ws)) {
809 		ws = wsman->idle_ws.next;
810 		list_del(ws);
811 		free_workspace(type, ws);
812 		atomic_dec(&wsman->total_ws);
813 	}
814 }
815 
816 /*
817  * This finds an available workspace or allocates a new one.
818  * If it's not possible to allocate a new one, waits until there's one.
819  * Preallocation makes a forward progress guarantees and we do not return
820  * errors.
821  */
822 struct list_head *btrfs_get_workspace(int type, unsigned int level)
823 {
824 	struct workspace_manager *wsm;
825 	struct list_head *workspace;
826 	int cpus = num_online_cpus();
827 	unsigned nofs_flag;
828 	struct list_head *idle_ws;
829 	spinlock_t *ws_lock;
830 	atomic_t *total_ws;
831 	wait_queue_head_t *ws_wait;
832 	int *free_ws;
833 
834 	wsm = btrfs_compress_op[type]->workspace_manager;
835 	idle_ws	 = &wsm->idle_ws;
836 	ws_lock	 = &wsm->ws_lock;
837 	total_ws = &wsm->total_ws;
838 	ws_wait	 = &wsm->ws_wait;
839 	free_ws	 = &wsm->free_ws;
840 
841 again:
842 	spin_lock(ws_lock);
843 	if (!list_empty(idle_ws)) {
844 		workspace = idle_ws->next;
845 		list_del(workspace);
846 		(*free_ws)--;
847 		spin_unlock(ws_lock);
848 		return workspace;
849 
850 	}
851 	if (atomic_read(total_ws) > cpus) {
852 		DEFINE_WAIT(wait);
853 
854 		spin_unlock(ws_lock);
855 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
856 		if (atomic_read(total_ws) > cpus && !*free_ws)
857 			schedule();
858 		finish_wait(ws_wait, &wait);
859 		goto again;
860 	}
861 	atomic_inc(total_ws);
862 	spin_unlock(ws_lock);
863 
864 	/*
865 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
866 	 * to turn it off here because we might get called from the restricted
867 	 * context of btrfs_compress_bio/btrfs_compress_pages
868 	 */
869 	nofs_flag = memalloc_nofs_save();
870 	workspace = alloc_workspace(type, level);
871 	memalloc_nofs_restore(nofs_flag);
872 
873 	if (IS_ERR(workspace)) {
874 		atomic_dec(total_ws);
875 		wake_up(ws_wait);
876 
877 		/*
878 		 * Do not return the error but go back to waiting. There's a
879 		 * workspace preallocated for each type and the compression
880 		 * time is bounded so we get to a workspace eventually. This
881 		 * makes our caller's life easier.
882 		 *
883 		 * To prevent silent and low-probability deadlocks (when the
884 		 * initial preallocation fails), check if there are any
885 		 * workspaces at all.
886 		 */
887 		if (atomic_read(total_ws) == 0) {
888 			static DEFINE_RATELIMIT_STATE(_rs,
889 					/* once per minute */ 60 * HZ,
890 					/* no burst */ 1);
891 
892 			if (__ratelimit(&_rs)) {
893 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
894 			}
895 		}
896 		goto again;
897 	}
898 	return workspace;
899 }
900 
901 static struct list_head *get_workspace(int type, int level)
902 {
903 	switch (type) {
904 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
905 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
906 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
907 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
908 	default:
909 		/*
910 		 * This can't happen, the type is validated several times
911 		 * before we get here.
912 		 */
913 		BUG();
914 	}
915 }
916 
917 /*
918  * put a workspace struct back on the list or free it if we have enough
919  * idle ones sitting around
920  */
921 void btrfs_put_workspace(int type, struct list_head *ws)
922 {
923 	struct workspace_manager *wsm;
924 	struct list_head *idle_ws;
925 	spinlock_t *ws_lock;
926 	atomic_t *total_ws;
927 	wait_queue_head_t *ws_wait;
928 	int *free_ws;
929 
930 	wsm = btrfs_compress_op[type]->workspace_manager;
931 	idle_ws	 = &wsm->idle_ws;
932 	ws_lock	 = &wsm->ws_lock;
933 	total_ws = &wsm->total_ws;
934 	ws_wait	 = &wsm->ws_wait;
935 	free_ws	 = &wsm->free_ws;
936 
937 	spin_lock(ws_lock);
938 	if (*free_ws <= num_online_cpus()) {
939 		list_add(ws, idle_ws);
940 		(*free_ws)++;
941 		spin_unlock(ws_lock);
942 		goto wake;
943 	}
944 	spin_unlock(ws_lock);
945 
946 	free_workspace(type, ws);
947 	atomic_dec(total_ws);
948 wake:
949 	cond_wake_up(ws_wait);
950 }
951 
952 static void put_workspace(int type, struct list_head *ws)
953 {
954 	switch (type) {
955 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
956 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
957 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
958 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
959 	default:
960 		/*
961 		 * This can't happen, the type is validated several times
962 		 * before we get here.
963 		 */
964 		BUG();
965 	}
966 }
967 
968 /*
969  * Adjust @level according to the limits of the compression algorithm or
970  * fallback to default
971  */
972 static unsigned int btrfs_compress_set_level(int type, unsigned level)
973 {
974 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
975 
976 	if (level == 0)
977 		level = ops->default_level;
978 	else
979 		level = min(level, ops->max_level);
980 
981 	return level;
982 }
983 
984 /* Wrapper around find_get_page(), with extra error message. */
985 int btrfs_compress_filemap_get_folio(struct address_space *mapping, u64 start,
986 				     struct folio **in_folio_ret)
987 {
988 	struct folio *in_folio;
989 
990 	/*
991 	 * The compressed write path should have the folio locked already, thus
992 	 * we only need to grab one reference.
993 	 */
994 	in_folio = filemap_get_folio(mapping, start >> PAGE_SHIFT);
995 	if (IS_ERR(in_folio)) {
996 		struct btrfs_inode *inode = BTRFS_I(mapping->host);
997 
998 		btrfs_crit(inode->root->fs_info,
999 		"failed to get page cache, root %lld ino %llu file offset %llu",
1000 			   btrfs_root_id(inode->root), btrfs_ino(inode), start);
1001 		return -ENOENT;
1002 	}
1003 	*in_folio_ret = in_folio;
1004 	return 0;
1005 }
1006 
1007 /*
1008  * Given an address space and start and length, compress the bytes into @pages
1009  * that are allocated on demand.
1010  *
1011  * @type_level is encoded algorithm and level, where level 0 means whatever
1012  * default the algorithm chooses and is opaque here;
1013  * - compression algo are 0-3
1014  * - the level are bits 4-7
1015  *
1016  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1017  * and returns number of actually allocated pages
1018  *
1019  * @total_in is used to return the number of bytes actually read.  It
1020  * may be smaller than the input length if we had to exit early because we
1021  * ran out of room in the pages array or because we cross the
1022  * max_out threshold.
1023  *
1024  * @total_out is an in/out parameter, must be set to the input length and will
1025  * be also used to return the total number of compressed bytes
1026  */
1027 int btrfs_compress_folios(unsigned int type_level, struct address_space *mapping,
1028 			 u64 start, struct folio **folios, unsigned long *out_folios,
1029 			 unsigned long *total_in, unsigned long *total_out)
1030 {
1031 	int type = btrfs_compress_type(type_level);
1032 	int level = btrfs_compress_level(type_level);
1033 	struct list_head *workspace;
1034 	int ret;
1035 
1036 	level = btrfs_compress_set_level(type, level);
1037 	workspace = get_workspace(type, level);
1038 	ret = compression_compress_pages(type, workspace, mapping, start, folios,
1039 					 out_folios, total_in, total_out);
1040 	put_workspace(type, workspace);
1041 	return ret;
1042 }
1043 
1044 static int btrfs_decompress_bio(struct compressed_bio *cb)
1045 {
1046 	struct list_head *workspace;
1047 	int ret;
1048 	int type = cb->compress_type;
1049 
1050 	workspace = get_workspace(type, 0);
1051 	ret = compression_decompress_bio(workspace, cb);
1052 	put_workspace(type, workspace);
1053 
1054 	if (!ret)
1055 		zero_fill_bio(&cb->orig_bbio->bio);
1056 	return ret;
1057 }
1058 
1059 /*
1060  * a less complex decompression routine.  Our compressed data fits in a
1061  * single page, and we want to read a single page out of it.
1062  * start_byte tells us the offset into the compressed data we're interested in
1063  */
1064 int btrfs_decompress(int type, const u8 *data_in, struct folio *dest_folio,
1065 		     unsigned long dest_pgoff, size_t srclen, size_t destlen)
1066 {
1067 	struct btrfs_fs_info *fs_info = folio_to_fs_info(dest_folio);
1068 	struct list_head *workspace;
1069 	const u32 sectorsize = fs_info->sectorsize;
1070 	int ret;
1071 
1072 	/*
1073 	 * The full destination page range should not exceed the page size.
1074 	 * And the @destlen should not exceed sectorsize, as this is only called for
1075 	 * inline file extents, which should not exceed sectorsize.
1076 	 */
1077 	ASSERT(dest_pgoff + destlen <= PAGE_SIZE && destlen <= sectorsize);
1078 
1079 	workspace = get_workspace(type, 0);
1080 	ret = compression_decompress(type, workspace, data_in, dest_folio,
1081 				     dest_pgoff, srclen, destlen);
1082 	put_workspace(type, workspace);
1083 
1084 	return ret;
1085 }
1086 
1087 int __init btrfs_init_compress(void)
1088 {
1089 	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
1090 			offsetof(struct compressed_bio, bbio.bio),
1091 			BIOSET_NEED_BVECS))
1092 		return -ENOMEM;
1093 
1094 	compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages");
1095 	if (!compr_pool.shrinker)
1096 		return -ENOMEM;
1097 
1098 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1099 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1100 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1101 	zstd_init_workspace_manager();
1102 
1103 	spin_lock_init(&compr_pool.lock);
1104 	INIT_LIST_HEAD(&compr_pool.list);
1105 	compr_pool.count = 0;
1106 	/* 128K / 4K = 32, for 8 threads is 256 pages. */
1107 	compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8;
1108 	compr_pool.shrinker->count_objects = btrfs_compr_pool_count;
1109 	compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan;
1110 	compr_pool.shrinker->batch = 32;
1111 	compr_pool.shrinker->seeks = DEFAULT_SEEKS;
1112 	shrinker_register(compr_pool.shrinker);
1113 
1114 	return 0;
1115 }
1116 
1117 void __cold btrfs_exit_compress(void)
1118 {
1119 	/* For now scan drains all pages and does not touch the parameters. */
1120 	btrfs_compr_pool_scan(NULL, NULL);
1121 	shrinker_free(compr_pool.shrinker);
1122 
1123 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1124 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1125 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1126 	zstd_cleanup_workspace_manager();
1127 	bioset_exit(&btrfs_compressed_bioset);
1128 }
1129 
1130 /*
1131  * Copy decompressed data from working buffer to pages.
1132  *
1133  * @buf:		The decompressed data buffer
1134  * @buf_len:		The decompressed data length
1135  * @decompressed:	Number of bytes that are already decompressed inside the
1136  * 			compressed extent
1137  * @cb:			The compressed extent descriptor
1138  * @orig_bio:		The original bio that the caller wants to read for
1139  *
1140  * An easier to understand graph is like below:
1141  *
1142  * 		|<- orig_bio ->|     |<- orig_bio->|
1143  * 	|<-------      full decompressed extent      ----->|
1144  * 	|<-----------    @cb range   ---->|
1145  * 	|			|<-- @buf_len -->|
1146  * 	|<--- @decompressed --->|
1147  *
1148  * Note that, @cb can be a subpage of the full decompressed extent, but
1149  * @cb->start always has the same as the orig_file_offset value of the full
1150  * decompressed extent.
1151  *
1152  * When reading compressed extent, we have to read the full compressed extent,
1153  * while @orig_bio may only want part of the range.
1154  * Thus this function will ensure only data covered by @orig_bio will be copied
1155  * to.
1156  *
1157  * Return 0 if we have copied all needed contents for @orig_bio.
1158  * Return >0 if we need continue decompress.
1159  */
1160 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1161 			      struct compressed_bio *cb, u32 decompressed)
1162 {
1163 	struct bio *orig_bio = &cb->orig_bbio->bio;
1164 	/* Offset inside the full decompressed extent */
1165 	u32 cur_offset;
1166 
1167 	cur_offset = decompressed;
1168 	/* The main loop to do the copy */
1169 	while (cur_offset < decompressed + buf_len) {
1170 		struct bio_vec bvec;
1171 		size_t copy_len;
1172 		u32 copy_start;
1173 		/* Offset inside the full decompressed extent */
1174 		u32 bvec_offset;
1175 
1176 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1177 		/*
1178 		 * cb->start may underflow, but subtracting that value can still
1179 		 * give us correct offset inside the full decompressed extent.
1180 		 */
1181 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1182 
1183 		/* Haven't reached the bvec range, exit */
1184 		if (decompressed + buf_len <= bvec_offset)
1185 			return 1;
1186 
1187 		copy_start = max(cur_offset, bvec_offset);
1188 		copy_len = min(bvec_offset + bvec.bv_len,
1189 			       decompressed + buf_len) - copy_start;
1190 		ASSERT(copy_len);
1191 
1192 		/*
1193 		 * Extra range check to ensure we didn't go beyond
1194 		 * @buf + @buf_len.
1195 		 */
1196 		ASSERT(copy_start - decompressed < buf_len);
1197 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1198 			       buf + copy_start - decompressed, copy_len);
1199 		cur_offset += copy_len;
1200 
1201 		bio_advance(orig_bio, copy_len);
1202 		/* Finished the bio */
1203 		if (!orig_bio->bi_iter.bi_size)
1204 			return 0;
1205 	}
1206 	return 1;
1207 }
1208 
1209 /*
1210  * Shannon Entropy calculation
1211  *
1212  * Pure byte distribution analysis fails to determine compressibility of data.
1213  * Try calculating entropy to estimate the average minimum number of bits
1214  * needed to encode the sampled data.
1215  *
1216  * For convenience, return the percentage of needed bits, instead of amount of
1217  * bits directly.
1218  *
1219  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1220  *			    and can be compressible with high probability
1221  *
1222  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1223  *
1224  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1225  */
1226 #define ENTROPY_LVL_ACEPTABLE		(65)
1227 #define ENTROPY_LVL_HIGH		(80)
1228 
1229 /*
1230  * For increasead precision in shannon_entropy calculation,
1231  * let's do pow(n, M) to save more digits after comma:
1232  *
1233  * - maximum int bit length is 64
1234  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1235  * - 13 * 4 = 52 < 64		-> M = 4
1236  *
1237  * So use pow(n, 4).
1238  */
1239 static inline u32 ilog2_w(u64 n)
1240 {
1241 	return ilog2(n * n * n * n);
1242 }
1243 
1244 static u32 shannon_entropy(struct heuristic_ws *ws)
1245 {
1246 	const u32 entropy_max = 8 * ilog2_w(2);
1247 	u32 entropy_sum = 0;
1248 	u32 p, p_base, sz_base;
1249 	u32 i;
1250 
1251 	sz_base = ilog2_w(ws->sample_size);
1252 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1253 		p = ws->bucket[i].count;
1254 		p_base = ilog2_w(p);
1255 		entropy_sum += p * (sz_base - p_base);
1256 	}
1257 
1258 	entropy_sum /= ws->sample_size;
1259 	return entropy_sum * 100 / entropy_max;
1260 }
1261 
1262 #define RADIX_BASE		4U
1263 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1264 
1265 static u8 get4bits(u64 num, int shift) {
1266 	u8 low4bits;
1267 
1268 	num >>= shift;
1269 	/* Reverse order */
1270 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1271 	return low4bits;
1272 }
1273 
1274 /*
1275  * Use 4 bits as radix base
1276  * Use 16 u32 counters for calculating new position in buf array
1277  *
1278  * @array     - array that will be sorted
1279  * @array_buf - buffer array to store sorting results
1280  *              must be equal in size to @array
1281  * @num       - array size
1282  */
1283 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1284 		       int num)
1285 {
1286 	u64 max_num;
1287 	u64 buf_num;
1288 	u32 counters[COUNTERS_SIZE];
1289 	u32 new_addr;
1290 	u32 addr;
1291 	int bitlen;
1292 	int shift;
1293 	int i;
1294 
1295 	/*
1296 	 * Try avoid useless loop iterations for small numbers stored in big
1297 	 * counters.  Example: 48 33 4 ... in 64bit array
1298 	 */
1299 	max_num = array[0].count;
1300 	for (i = 1; i < num; i++) {
1301 		buf_num = array[i].count;
1302 		if (buf_num > max_num)
1303 			max_num = buf_num;
1304 	}
1305 
1306 	buf_num = ilog2(max_num);
1307 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1308 
1309 	shift = 0;
1310 	while (shift < bitlen) {
1311 		memset(counters, 0, sizeof(counters));
1312 
1313 		for (i = 0; i < num; i++) {
1314 			buf_num = array[i].count;
1315 			addr = get4bits(buf_num, shift);
1316 			counters[addr]++;
1317 		}
1318 
1319 		for (i = 1; i < COUNTERS_SIZE; i++)
1320 			counters[i] += counters[i - 1];
1321 
1322 		for (i = num - 1; i >= 0; i--) {
1323 			buf_num = array[i].count;
1324 			addr = get4bits(buf_num, shift);
1325 			counters[addr]--;
1326 			new_addr = counters[addr];
1327 			array_buf[new_addr] = array[i];
1328 		}
1329 
1330 		shift += RADIX_BASE;
1331 
1332 		/*
1333 		 * Normal radix expects to move data from a temporary array, to
1334 		 * the main one.  But that requires some CPU time. Avoid that
1335 		 * by doing another sort iteration to original array instead of
1336 		 * memcpy()
1337 		 */
1338 		memset(counters, 0, sizeof(counters));
1339 
1340 		for (i = 0; i < num; i ++) {
1341 			buf_num = array_buf[i].count;
1342 			addr = get4bits(buf_num, shift);
1343 			counters[addr]++;
1344 		}
1345 
1346 		for (i = 1; i < COUNTERS_SIZE; i++)
1347 			counters[i] += counters[i - 1];
1348 
1349 		for (i = num - 1; i >= 0; i--) {
1350 			buf_num = array_buf[i].count;
1351 			addr = get4bits(buf_num, shift);
1352 			counters[addr]--;
1353 			new_addr = counters[addr];
1354 			array[new_addr] = array_buf[i];
1355 		}
1356 
1357 		shift += RADIX_BASE;
1358 	}
1359 }
1360 
1361 /*
1362  * Size of the core byte set - how many bytes cover 90% of the sample
1363  *
1364  * There are several types of structured binary data that use nearly all byte
1365  * values. The distribution can be uniform and counts in all buckets will be
1366  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1367  *
1368  * Other possibility is normal (Gaussian) distribution, where the data could
1369  * be potentially compressible, but we have to take a few more steps to decide
1370  * how much.
1371  *
1372  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1373  *                       compression algo can easy fix that
1374  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1375  *                       probability is not compressible
1376  */
1377 #define BYTE_CORE_SET_LOW		(64)
1378 #define BYTE_CORE_SET_HIGH		(200)
1379 
1380 static int byte_core_set_size(struct heuristic_ws *ws)
1381 {
1382 	u32 i;
1383 	u32 coreset_sum = 0;
1384 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1385 	struct bucket_item *bucket = ws->bucket;
1386 
1387 	/* Sort in reverse order */
1388 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1389 
1390 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1391 		coreset_sum += bucket[i].count;
1392 
1393 	if (coreset_sum > core_set_threshold)
1394 		return i;
1395 
1396 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1397 		coreset_sum += bucket[i].count;
1398 		if (coreset_sum > core_set_threshold)
1399 			break;
1400 	}
1401 
1402 	return i;
1403 }
1404 
1405 /*
1406  * Count byte values in buckets.
1407  * This heuristic can detect textual data (configs, xml, json, html, etc).
1408  * Because in most text-like data byte set is restricted to limited number of
1409  * possible characters, and that restriction in most cases makes data easy to
1410  * compress.
1411  *
1412  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1413  *	less - compressible
1414  *	more - need additional analysis
1415  */
1416 #define BYTE_SET_THRESHOLD		(64)
1417 
1418 static u32 byte_set_size(const struct heuristic_ws *ws)
1419 {
1420 	u32 i;
1421 	u32 byte_set_size = 0;
1422 
1423 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1424 		if (ws->bucket[i].count > 0)
1425 			byte_set_size++;
1426 	}
1427 
1428 	/*
1429 	 * Continue collecting count of byte values in buckets.  If the byte
1430 	 * set size is bigger then the threshold, it's pointless to continue,
1431 	 * the detection technique would fail for this type of data.
1432 	 */
1433 	for (; i < BUCKET_SIZE; i++) {
1434 		if (ws->bucket[i].count > 0) {
1435 			byte_set_size++;
1436 			if (byte_set_size > BYTE_SET_THRESHOLD)
1437 				return byte_set_size;
1438 		}
1439 	}
1440 
1441 	return byte_set_size;
1442 }
1443 
1444 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1445 {
1446 	const u32 half_of_sample = ws->sample_size / 2;
1447 	const u8 *data = ws->sample;
1448 
1449 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1450 }
1451 
1452 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1453 				     struct heuristic_ws *ws)
1454 {
1455 	struct page *page;
1456 	u64 index, index_end;
1457 	u32 i, curr_sample_pos;
1458 	u8 *in_data;
1459 
1460 	/*
1461 	 * Compression handles the input data by chunks of 128KiB
1462 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1463 	 *
1464 	 * We do the same for the heuristic and loop over the whole range.
1465 	 *
1466 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1467 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1468 	 */
1469 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1470 		end = start + BTRFS_MAX_UNCOMPRESSED;
1471 
1472 	index = start >> PAGE_SHIFT;
1473 	index_end = end >> PAGE_SHIFT;
1474 
1475 	/* Don't miss unaligned end */
1476 	if (!PAGE_ALIGNED(end))
1477 		index_end++;
1478 
1479 	curr_sample_pos = 0;
1480 	while (index < index_end) {
1481 		page = find_get_page(inode->i_mapping, index);
1482 		in_data = kmap_local_page(page);
1483 		/* Handle case where the start is not aligned to PAGE_SIZE */
1484 		i = start % PAGE_SIZE;
1485 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1486 			/* Don't sample any garbage from the last page */
1487 			if (start > end - SAMPLING_READ_SIZE)
1488 				break;
1489 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1490 					SAMPLING_READ_SIZE);
1491 			i += SAMPLING_INTERVAL;
1492 			start += SAMPLING_INTERVAL;
1493 			curr_sample_pos += SAMPLING_READ_SIZE;
1494 		}
1495 		kunmap_local(in_data);
1496 		put_page(page);
1497 
1498 		index++;
1499 	}
1500 
1501 	ws->sample_size = curr_sample_pos;
1502 }
1503 
1504 /*
1505  * Compression heuristic.
1506  *
1507  * The following types of analysis can be performed:
1508  * - detect mostly zero data
1509  * - detect data with low "byte set" size (text, etc)
1510  * - detect data with low/high "core byte" set
1511  *
1512  * Return non-zero if the compression should be done, 0 otherwise.
1513  */
1514 int btrfs_compress_heuristic(struct btrfs_inode *inode, u64 start, u64 end)
1515 {
1516 	struct list_head *ws_list = get_workspace(0, 0);
1517 	struct heuristic_ws *ws;
1518 	u32 i;
1519 	u8 byte;
1520 	int ret = 0;
1521 
1522 	ws = list_entry(ws_list, struct heuristic_ws, list);
1523 
1524 	heuristic_collect_sample(&inode->vfs_inode, start, end, ws);
1525 
1526 	if (sample_repeated_patterns(ws)) {
1527 		ret = 1;
1528 		goto out;
1529 	}
1530 
1531 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1532 
1533 	for (i = 0; i < ws->sample_size; i++) {
1534 		byte = ws->sample[i];
1535 		ws->bucket[byte].count++;
1536 	}
1537 
1538 	i = byte_set_size(ws);
1539 	if (i < BYTE_SET_THRESHOLD) {
1540 		ret = 2;
1541 		goto out;
1542 	}
1543 
1544 	i = byte_core_set_size(ws);
1545 	if (i <= BYTE_CORE_SET_LOW) {
1546 		ret = 3;
1547 		goto out;
1548 	}
1549 
1550 	if (i >= BYTE_CORE_SET_HIGH) {
1551 		ret = 0;
1552 		goto out;
1553 	}
1554 
1555 	i = shannon_entropy(ws);
1556 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1557 		ret = 4;
1558 		goto out;
1559 	}
1560 
1561 	/*
1562 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1563 	 * needed to give green light to compression.
1564 	 *
1565 	 * For now just assume that compression at that level is not worth the
1566 	 * resources because:
1567 	 *
1568 	 * 1. it is possible to defrag the data later
1569 	 *
1570 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1571 	 * values, every bucket has counter at level ~54. The heuristic would
1572 	 * be confused. This can happen when data have some internal repeated
1573 	 * patterns like "abbacbbc...". This can be detected by analyzing
1574 	 * pairs of bytes, which is too costly.
1575 	 */
1576 	if (i < ENTROPY_LVL_HIGH) {
1577 		ret = 5;
1578 		goto out;
1579 	} else {
1580 		ret = 0;
1581 		goto out;
1582 	}
1583 
1584 out:
1585 	put_workspace(0, ws_list);
1586 	return ret;
1587 }
1588 
1589 /*
1590  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1591  * level, unrecognized string will set the default level
1592  */
1593 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1594 {
1595 	unsigned int level = 0;
1596 	int ret;
1597 
1598 	if (!type)
1599 		return 0;
1600 
1601 	if (str[0] == ':') {
1602 		ret = kstrtouint(str + 1, 10, &level);
1603 		if (ret)
1604 			level = 0;
1605 	}
1606 
1607 	level = btrfs_compress_set_level(type, level);
1608 
1609 	return level;
1610 }
1611