xref: /linux/fs/btrfs/compression.c (revision c23504c60ebbc27f9418e01a45e5d4111c4d5f8b)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include <linux/sched/mm.h>
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45 
46 static int btrfs_decompress_bio(struct compressed_bio *cb);
47 
48 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
49 				      unsigned long disk_size)
50 {
51 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
52 
53 	return sizeof(struct compressed_bio) +
54 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
55 }
56 
57 static int check_compressed_csum(struct btrfs_inode *inode,
58 				 struct compressed_bio *cb,
59 				 u64 disk_start)
60 {
61 	int ret;
62 	struct page *page;
63 	unsigned long i;
64 	char *kaddr;
65 	u32 csum;
66 	u32 *cb_sum = &cb->sums;
67 
68 	if (inode->flags & BTRFS_INODE_NODATASUM)
69 		return 0;
70 
71 	for (i = 0; i < cb->nr_pages; i++) {
72 		page = cb->compressed_pages[i];
73 		csum = ~(u32)0;
74 
75 		kaddr = kmap_atomic(page);
76 		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
77 		btrfs_csum_final(csum, (u8 *)&csum);
78 		kunmap_atomic(kaddr);
79 
80 		if (csum != *cb_sum) {
81 			btrfs_print_data_csum_error(inode, disk_start, csum,
82 					*cb_sum, cb->mirror_num);
83 			ret = -EIO;
84 			goto fail;
85 		}
86 		cb_sum++;
87 
88 	}
89 	ret = 0;
90 fail:
91 	return ret;
92 }
93 
94 /* when we finish reading compressed pages from the disk, we
95  * decompress them and then run the bio end_io routines on the
96  * decompressed pages (in the inode address space).
97  *
98  * This allows the checksumming and other IO error handling routines
99  * to work normally
100  *
101  * The compressed pages are freed here, and it must be run
102  * in process context
103  */
104 static void end_compressed_bio_read(struct bio *bio)
105 {
106 	struct compressed_bio *cb = bio->bi_private;
107 	struct inode *inode;
108 	struct page *page;
109 	unsigned long index;
110 	int ret;
111 
112 	if (bio->bi_status)
113 		cb->errors = 1;
114 
115 	/* if there are more bios still pending for this compressed
116 	 * extent, just exit
117 	 */
118 	if (!refcount_dec_and_test(&cb->pending_bios))
119 		goto out;
120 
121 	inode = cb->inode;
122 	ret = check_compressed_csum(BTRFS_I(inode), cb,
123 				    (u64)bio->bi_iter.bi_sector << 9);
124 	if (ret)
125 		goto csum_failed;
126 
127 	/* ok, we're the last bio for this extent, lets start
128 	 * the decompression.
129 	 */
130 	ret = btrfs_decompress_bio(cb);
131 
132 csum_failed:
133 	if (ret)
134 		cb->errors = 1;
135 
136 	/* release the compressed pages */
137 	index = 0;
138 	for (index = 0; index < cb->nr_pages; index++) {
139 		page = cb->compressed_pages[index];
140 		page->mapping = NULL;
141 		put_page(page);
142 	}
143 
144 	/* do io completion on the original bio */
145 	if (cb->errors) {
146 		bio_io_error(cb->orig_bio);
147 	} else {
148 		int i;
149 		struct bio_vec *bvec;
150 
151 		/*
152 		 * we have verified the checksum already, set page
153 		 * checked so the end_io handlers know about it
154 		 */
155 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
156 			SetPageChecked(bvec->bv_page);
157 
158 		bio_endio(cb->orig_bio);
159 	}
160 
161 	/* finally free the cb struct */
162 	kfree(cb->compressed_pages);
163 	kfree(cb);
164 out:
165 	bio_put(bio);
166 }
167 
168 /*
169  * Clear the writeback bits on all of the file
170  * pages for a compressed write
171  */
172 static noinline void end_compressed_writeback(struct inode *inode,
173 					      const struct compressed_bio *cb)
174 {
175 	unsigned long index = cb->start >> PAGE_SHIFT;
176 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
177 	struct page *pages[16];
178 	unsigned long nr_pages = end_index - index + 1;
179 	int i;
180 	int ret;
181 
182 	if (cb->errors)
183 		mapping_set_error(inode->i_mapping, -EIO);
184 
185 	while (nr_pages > 0) {
186 		ret = find_get_pages_contig(inode->i_mapping, index,
187 				     min_t(unsigned long,
188 				     nr_pages, ARRAY_SIZE(pages)), pages);
189 		if (ret == 0) {
190 			nr_pages -= 1;
191 			index += 1;
192 			continue;
193 		}
194 		for (i = 0; i < ret; i++) {
195 			if (cb->errors)
196 				SetPageError(pages[i]);
197 			end_page_writeback(pages[i]);
198 			put_page(pages[i]);
199 		}
200 		nr_pages -= ret;
201 		index += ret;
202 	}
203 	/* the inode may be gone now */
204 }
205 
206 /*
207  * do the cleanup once all the compressed pages hit the disk.
208  * This will clear writeback on the file pages and free the compressed
209  * pages.
210  *
211  * This also calls the writeback end hooks for the file pages so that
212  * metadata and checksums can be updated in the file.
213  */
214 static void end_compressed_bio_write(struct bio *bio)
215 {
216 	struct extent_io_tree *tree;
217 	struct compressed_bio *cb = bio->bi_private;
218 	struct inode *inode;
219 	struct page *page;
220 	unsigned long index;
221 
222 	if (bio->bi_status)
223 		cb->errors = 1;
224 
225 	/* if there are more bios still pending for this compressed
226 	 * extent, just exit
227 	 */
228 	if (!refcount_dec_and_test(&cb->pending_bios))
229 		goto out;
230 
231 	/* ok, we're the last bio for this extent, step one is to
232 	 * call back into the FS and do all the end_io operations
233 	 */
234 	inode = cb->inode;
235 	tree = &BTRFS_I(inode)->io_tree;
236 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
237 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
238 					 cb->start,
239 					 cb->start + cb->len - 1,
240 					 NULL,
241 					 bio->bi_status ? 0 : 1);
242 	cb->compressed_pages[0]->mapping = NULL;
243 
244 	end_compressed_writeback(inode, cb);
245 	/* note, our inode could be gone now */
246 
247 	/*
248 	 * release the compressed pages, these came from alloc_page and
249 	 * are not attached to the inode at all
250 	 */
251 	index = 0;
252 	for (index = 0; index < cb->nr_pages; index++) {
253 		page = cb->compressed_pages[index];
254 		page->mapping = NULL;
255 		put_page(page);
256 	}
257 
258 	/* finally free the cb struct */
259 	kfree(cb->compressed_pages);
260 	kfree(cb);
261 out:
262 	bio_put(bio);
263 }
264 
265 /*
266  * worker function to build and submit bios for previously compressed pages.
267  * The corresponding pages in the inode should be marked for writeback
268  * and the compressed pages should have a reference on them for dropping
269  * when the IO is complete.
270  *
271  * This also checksums the file bytes and gets things ready for
272  * the end io hooks.
273  */
274 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
275 				 unsigned long len, u64 disk_start,
276 				 unsigned long compressed_len,
277 				 struct page **compressed_pages,
278 				 unsigned long nr_pages)
279 {
280 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
281 	struct bio *bio = NULL;
282 	struct compressed_bio *cb;
283 	unsigned long bytes_left;
284 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
285 	int pg_index = 0;
286 	struct page *page;
287 	u64 first_byte = disk_start;
288 	struct block_device *bdev;
289 	blk_status_t ret;
290 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
291 
292 	WARN_ON(start & ((u64)PAGE_SIZE - 1));
293 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
294 	if (!cb)
295 		return BLK_STS_RESOURCE;
296 	refcount_set(&cb->pending_bios, 0);
297 	cb->errors = 0;
298 	cb->inode = inode;
299 	cb->start = start;
300 	cb->len = len;
301 	cb->mirror_num = 0;
302 	cb->compressed_pages = compressed_pages;
303 	cb->compressed_len = compressed_len;
304 	cb->orig_bio = NULL;
305 	cb->nr_pages = nr_pages;
306 
307 	bdev = fs_info->fs_devices->latest_bdev;
308 
309 	bio = btrfs_bio_alloc(bdev, first_byte);
310 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
311 	bio->bi_private = cb;
312 	bio->bi_end_io = end_compressed_bio_write;
313 	refcount_set(&cb->pending_bios, 1);
314 
315 	/* create and submit bios for the compressed pages */
316 	bytes_left = compressed_len;
317 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
318 		int submit = 0;
319 
320 		page = compressed_pages[pg_index];
321 		page->mapping = inode->i_mapping;
322 		if (bio->bi_iter.bi_size)
323 			submit = io_tree->ops->merge_bio_hook(page, 0,
324 							   PAGE_SIZE,
325 							   bio, 0);
326 
327 		page->mapping = NULL;
328 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
329 		    PAGE_SIZE) {
330 			bio_get(bio);
331 
332 			/*
333 			 * inc the count before we submit the bio so
334 			 * we know the end IO handler won't happen before
335 			 * we inc the count.  Otherwise, the cb might get
336 			 * freed before we're done setting it up
337 			 */
338 			refcount_inc(&cb->pending_bios);
339 			ret = btrfs_bio_wq_end_io(fs_info, bio,
340 						  BTRFS_WQ_ENDIO_DATA);
341 			BUG_ON(ret); /* -ENOMEM */
342 
343 			if (!skip_sum) {
344 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
345 				BUG_ON(ret); /* -ENOMEM */
346 			}
347 
348 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
349 			if (ret) {
350 				bio->bi_status = ret;
351 				bio_endio(bio);
352 			}
353 
354 			bio_put(bio);
355 
356 			bio = btrfs_bio_alloc(bdev, first_byte);
357 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
358 			bio->bi_private = cb;
359 			bio->bi_end_io = end_compressed_bio_write;
360 			bio_add_page(bio, page, PAGE_SIZE, 0);
361 		}
362 		if (bytes_left < PAGE_SIZE) {
363 			btrfs_info(fs_info,
364 					"bytes left %lu compress len %lu nr %lu",
365 			       bytes_left, cb->compressed_len, cb->nr_pages);
366 		}
367 		bytes_left -= PAGE_SIZE;
368 		first_byte += PAGE_SIZE;
369 		cond_resched();
370 	}
371 	bio_get(bio);
372 
373 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
374 	BUG_ON(ret); /* -ENOMEM */
375 
376 	if (!skip_sum) {
377 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
378 		BUG_ON(ret); /* -ENOMEM */
379 	}
380 
381 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
382 	if (ret) {
383 		bio->bi_status = ret;
384 		bio_endio(bio);
385 	}
386 
387 	bio_put(bio);
388 	return 0;
389 }
390 
391 static u64 bio_end_offset(struct bio *bio)
392 {
393 	struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
394 
395 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
396 }
397 
398 static noinline int add_ra_bio_pages(struct inode *inode,
399 				     u64 compressed_end,
400 				     struct compressed_bio *cb)
401 {
402 	unsigned long end_index;
403 	unsigned long pg_index;
404 	u64 last_offset;
405 	u64 isize = i_size_read(inode);
406 	int ret;
407 	struct page *page;
408 	unsigned long nr_pages = 0;
409 	struct extent_map *em;
410 	struct address_space *mapping = inode->i_mapping;
411 	struct extent_map_tree *em_tree;
412 	struct extent_io_tree *tree;
413 	u64 end;
414 	int misses = 0;
415 
416 	last_offset = bio_end_offset(cb->orig_bio);
417 	em_tree = &BTRFS_I(inode)->extent_tree;
418 	tree = &BTRFS_I(inode)->io_tree;
419 
420 	if (isize == 0)
421 		return 0;
422 
423 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
424 
425 	while (last_offset < compressed_end) {
426 		pg_index = last_offset >> PAGE_SHIFT;
427 
428 		if (pg_index > end_index)
429 			break;
430 
431 		rcu_read_lock();
432 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
433 		rcu_read_unlock();
434 		if (page && !radix_tree_exceptional_entry(page)) {
435 			misses++;
436 			if (misses > 4)
437 				break;
438 			goto next;
439 		}
440 
441 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
442 								 ~__GFP_FS));
443 		if (!page)
444 			break;
445 
446 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
447 			put_page(page);
448 			goto next;
449 		}
450 
451 		end = last_offset + PAGE_SIZE - 1;
452 		/*
453 		 * at this point, we have a locked page in the page cache
454 		 * for these bytes in the file.  But, we have to make
455 		 * sure they map to this compressed extent on disk.
456 		 */
457 		set_page_extent_mapped(page);
458 		lock_extent(tree, last_offset, end);
459 		read_lock(&em_tree->lock);
460 		em = lookup_extent_mapping(em_tree, last_offset,
461 					   PAGE_SIZE);
462 		read_unlock(&em_tree->lock);
463 
464 		if (!em || last_offset < em->start ||
465 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
466 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
467 			free_extent_map(em);
468 			unlock_extent(tree, last_offset, end);
469 			unlock_page(page);
470 			put_page(page);
471 			break;
472 		}
473 		free_extent_map(em);
474 
475 		if (page->index == end_index) {
476 			char *userpage;
477 			size_t zero_offset = isize & (PAGE_SIZE - 1);
478 
479 			if (zero_offset) {
480 				int zeros;
481 				zeros = PAGE_SIZE - zero_offset;
482 				userpage = kmap_atomic(page);
483 				memset(userpage + zero_offset, 0, zeros);
484 				flush_dcache_page(page);
485 				kunmap_atomic(userpage);
486 			}
487 		}
488 
489 		ret = bio_add_page(cb->orig_bio, page,
490 				   PAGE_SIZE, 0);
491 
492 		if (ret == PAGE_SIZE) {
493 			nr_pages++;
494 			put_page(page);
495 		} else {
496 			unlock_extent(tree, last_offset, end);
497 			unlock_page(page);
498 			put_page(page);
499 			break;
500 		}
501 next:
502 		last_offset += PAGE_SIZE;
503 	}
504 	return 0;
505 }
506 
507 /*
508  * for a compressed read, the bio we get passed has all the inode pages
509  * in it.  We don't actually do IO on those pages but allocate new ones
510  * to hold the compressed pages on disk.
511  *
512  * bio->bi_iter.bi_sector points to the compressed extent on disk
513  * bio->bi_io_vec points to all of the inode pages
514  *
515  * After the compressed pages are read, we copy the bytes into the
516  * bio we were passed and then call the bio end_io calls
517  */
518 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
519 				 int mirror_num, unsigned long bio_flags)
520 {
521 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
522 	struct extent_io_tree *tree;
523 	struct extent_map_tree *em_tree;
524 	struct compressed_bio *cb;
525 	unsigned long compressed_len;
526 	unsigned long nr_pages;
527 	unsigned long pg_index;
528 	struct page *page;
529 	struct block_device *bdev;
530 	struct bio *comp_bio;
531 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
532 	u64 em_len;
533 	u64 em_start;
534 	struct extent_map *em;
535 	blk_status_t ret = BLK_STS_RESOURCE;
536 	int faili = 0;
537 	u32 *sums;
538 
539 	tree = &BTRFS_I(inode)->io_tree;
540 	em_tree = &BTRFS_I(inode)->extent_tree;
541 
542 	/* we need the actual starting offset of this extent in the file */
543 	read_lock(&em_tree->lock);
544 	em = lookup_extent_mapping(em_tree,
545 				   page_offset(bio->bi_io_vec->bv_page),
546 				   PAGE_SIZE);
547 	read_unlock(&em_tree->lock);
548 	if (!em)
549 		return BLK_STS_IOERR;
550 
551 	compressed_len = em->block_len;
552 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
553 	if (!cb)
554 		goto out;
555 
556 	refcount_set(&cb->pending_bios, 0);
557 	cb->errors = 0;
558 	cb->inode = inode;
559 	cb->mirror_num = mirror_num;
560 	sums = &cb->sums;
561 
562 	cb->start = em->orig_start;
563 	em_len = em->len;
564 	em_start = em->start;
565 
566 	free_extent_map(em);
567 	em = NULL;
568 
569 	cb->len = bio->bi_iter.bi_size;
570 	cb->compressed_len = compressed_len;
571 	cb->compress_type = extent_compress_type(bio_flags);
572 	cb->orig_bio = bio;
573 
574 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
575 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
576 				       GFP_NOFS);
577 	if (!cb->compressed_pages)
578 		goto fail1;
579 
580 	bdev = fs_info->fs_devices->latest_bdev;
581 
582 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
583 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
584 							      __GFP_HIGHMEM);
585 		if (!cb->compressed_pages[pg_index]) {
586 			faili = pg_index - 1;
587 			ret = BLK_STS_RESOURCE;
588 			goto fail2;
589 		}
590 	}
591 	faili = nr_pages - 1;
592 	cb->nr_pages = nr_pages;
593 
594 	add_ra_bio_pages(inode, em_start + em_len, cb);
595 
596 	/* include any pages we added in add_ra-bio_pages */
597 	cb->len = bio->bi_iter.bi_size;
598 
599 	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
600 	bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
601 	comp_bio->bi_private = cb;
602 	comp_bio->bi_end_io = end_compressed_bio_read;
603 	refcount_set(&cb->pending_bios, 1);
604 
605 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
606 		int submit = 0;
607 
608 		page = cb->compressed_pages[pg_index];
609 		page->mapping = inode->i_mapping;
610 		page->index = em_start >> PAGE_SHIFT;
611 
612 		if (comp_bio->bi_iter.bi_size)
613 			submit = tree->ops->merge_bio_hook(page, 0,
614 							PAGE_SIZE,
615 							comp_bio, 0);
616 
617 		page->mapping = NULL;
618 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
619 		    PAGE_SIZE) {
620 			bio_get(comp_bio);
621 
622 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
623 						  BTRFS_WQ_ENDIO_DATA);
624 			BUG_ON(ret); /* -ENOMEM */
625 
626 			/*
627 			 * inc the count before we submit the bio so
628 			 * we know the end IO handler won't happen before
629 			 * we inc the count.  Otherwise, the cb might get
630 			 * freed before we're done setting it up
631 			 */
632 			refcount_inc(&cb->pending_bios);
633 
634 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
635 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
636 							    sums);
637 				BUG_ON(ret); /* -ENOMEM */
638 			}
639 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
640 					     fs_info->sectorsize);
641 
642 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
643 			if (ret) {
644 				comp_bio->bi_status = ret;
645 				bio_endio(comp_bio);
646 			}
647 
648 			bio_put(comp_bio);
649 
650 			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
651 			bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
652 			comp_bio->bi_private = cb;
653 			comp_bio->bi_end_io = end_compressed_bio_read;
654 
655 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
656 		}
657 		cur_disk_byte += PAGE_SIZE;
658 	}
659 	bio_get(comp_bio);
660 
661 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
662 	BUG_ON(ret); /* -ENOMEM */
663 
664 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
665 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
666 		BUG_ON(ret); /* -ENOMEM */
667 	}
668 
669 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
670 	if (ret) {
671 		comp_bio->bi_status = ret;
672 		bio_endio(comp_bio);
673 	}
674 
675 	bio_put(comp_bio);
676 	return 0;
677 
678 fail2:
679 	while (faili >= 0) {
680 		__free_page(cb->compressed_pages[faili]);
681 		faili--;
682 	}
683 
684 	kfree(cb->compressed_pages);
685 fail1:
686 	kfree(cb);
687 out:
688 	free_extent_map(em);
689 	return ret;
690 }
691 
692 static struct {
693 	struct list_head idle_ws;
694 	spinlock_t ws_lock;
695 	/* Number of free workspaces */
696 	int free_ws;
697 	/* Total number of allocated workspaces */
698 	atomic_t total_ws;
699 	/* Waiters for a free workspace */
700 	wait_queue_head_t ws_wait;
701 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
702 
703 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
704 	&btrfs_zlib_compress,
705 	&btrfs_lzo_compress,
706 };
707 
708 void __init btrfs_init_compress(void)
709 {
710 	int i;
711 
712 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
713 		struct list_head *workspace;
714 
715 		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
716 		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
717 		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
718 		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
719 
720 		/*
721 		 * Preallocate one workspace for each compression type so
722 		 * we can guarantee forward progress in the worst case
723 		 */
724 		workspace = btrfs_compress_op[i]->alloc_workspace();
725 		if (IS_ERR(workspace)) {
726 			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
727 		} else {
728 			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
729 			btrfs_comp_ws[i].free_ws = 1;
730 			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
731 		}
732 	}
733 }
734 
735 /*
736  * This finds an available workspace or allocates a new one.
737  * If it's not possible to allocate a new one, waits until there's one.
738  * Preallocation makes a forward progress guarantees and we do not return
739  * errors.
740  */
741 static struct list_head *find_workspace(int type)
742 {
743 	struct list_head *workspace;
744 	int cpus = num_online_cpus();
745 	int idx = type - 1;
746 	unsigned nofs_flag;
747 
748 	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
749 	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
750 	atomic_t *total_ws		= &btrfs_comp_ws[idx].total_ws;
751 	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
752 	int *free_ws			= &btrfs_comp_ws[idx].free_ws;
753 again:
754 	spin_lock(ws_lock);
755 	if (!list_empty(idle_ws)) {
756 		workspace = idle_ws->next;
757 		list_del(workspace);
758 		(*free_ws)--;
759 		spin_unlock(ws_lock);
760 		return workspace;
761 
762 	}
763 	if (atomic_read(total_ws) > cpus) {
764 		DEFINE_WAIT(wait);
765 
766 		spin_unlock(ws_lock);
767 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
768 		if (atomic_read(total_ws) > cpus && !*free_ws)
769 			schedule();
770 		finish_wait(ws_wait, &wait);
771 		goto again;
772 	}
773 	atomic_inc(total_ws);
774 	spin_unlock(ws_lock);
775 
776 	/*
777 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
778 	 * to turn it off here because we might get called from the restricted
779 	 * context of btrfs_compress_bio/btrfs_compress_pages
780 	 */
781 	nofs_flag = memalloc_nofs_save();
782 	workspace = btrfs_compress_op[idx]->alloc_workspace();
783 	memalloc_nofs_restore(nofs_flag);
784 
785 	if (IS_ERR(workspace)) {
786 		atomic_dec(total_ws);
787 		wake_up(ws_wait);
788 
789 		/*
790 		 * Do not return the error but go back to waiting. There's a
791 		 * workspace preallocated for each type and the compression
792 		 * time is bounded so we get to a workspace eventually. This
793 		 * makes our caller's life easier.
794 		 *
795 		 * To prevent silent and low-probability deadlocks (when the
796 		 * initial preallocation fails), check if there are any
797 		 * workspaces at all.
798 		 */
799 		if (atomic_read(total_ws) == 0) {
800 			static DEFINE_RATELIMIT_STATE(_rs,
801 					/* once per minute */ 60 * HZ,
802 					/* no burst */ 1);
803 
804 			if (__ratelimit(&_rs)) {
805 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
806 			}
807 		}
808 		goto again;
809 	}
810 	return workspace;
811 }
812 
813 /*
814  * put a workspace struct back on the list or free it if we have enough
815  * idle ones sitting around
816  */
817 static void free_workspace(int type, struct list_head *workspace)
818 {
819 	int idx = type - 1;
820 	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
821 	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
822 	atomic_t *total_ws		= &btrfs_comp_ws[idx].total_ws;
823 	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
824 	int *free_ws			= &btrfs_comp_ws[idx].free_ws;
825 
826 	spin_lock(ws_lock);
827 	if (*free_ws < num_online_cpus()) {
828 		list_add(workspace, idle_ws);
829 		(*free_ws)++;
830 		spin_unlock(ws_lock);
831 		goto wake;
832 	}
833 	spin_unlock(ws_lock);
834 
835 	btrfs_compress_op[idx]->free_workspace(workspace);
836 	atomic_dec(total_ws);
837 wake:
838 	/*
839 	 * Make sure counter is updated before we wake up waiters.
840 	 */
841 	smp_mb();
842 	if (waitqueue_active(ws_wait))
843 		wake_up(ws_wait);
844 }
845 
846 /*
847  * cleanup function for module exit
848  */
849 static void free_workspaces(void)
850 {
851 	struct list_head *workspace;
852 	int i;
853 
854 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
855 		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
856 			workspace = btrfs_comp_ws[i].idle_ws.next;
857 			list_del(workspace);
858 			btrfs_compress_op[i]->free_workspace(workspace);
859 			atomic_dec(&btrfs_comp_ws[i].total_ws);
860 		}
861 	}
862 }
863 
864 /*
865  * Given an address space and start and length, compress the bytes into @pages
866  * that are allocated on demand.
867  *
868  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
869  * and returns number of actually allocated pages
870  *
871  * @total_in is used to return the number of bytes actually read.  It
872  * may be smaller than the input length if we had to exit early because we
873  * ran out of room in the pages array or because we cross the
874  * max_out threshold.
875  *
876  * @total_out is an in/out parameter, must be set to the input length and will
877  * be also used to return the total number of compressed bytes
878  *
879  * @max_out tells us the max number of bytes that we're allowed to
880  * stuff into pages
881  */
882 int btrfs_compress_pages(int type, struct address_space *mapping,
883 			 u64 start, struct page **pages,
884 			 unsigned long *out_pages,
885 			 unsigned long *total_in,
886 			 unsigned long *total_out)
887 {
888 	struct list_head *workspace;
889 	int ret;
890 
891 	workspace = find_workspace(type);
892 
893 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
894 						      start, pages,
895 						      out_pages,
896 						      total_in, total_out);
897 	free_workspace(type, workspace);
898 	return ret;
899 }
900 
901 /*
902  * pages_in is an array of pages with compressed data.
903  *
904  * disk_start is the starting logical offset of this array in the file
905  *
906  * orig_bio contains the pages from the file that we want to decompress into
907  *
908  * srclen is the number of bytes in pages_in
909  *
910  * The basic idea is that we have a bio that was created by readpages.
911  * The pages in the bio are for the uncompressed data, and they may not
912  * be contiguous.  They all correspond to the range of bytes covered by
913  * the compressed extent.
914  */
915 static int btrfs_decompress_bio(struct compressed_bio *cb)
916 {
917 	struct list_head *workspace;
918 	int ret;
919 	int type = cb->compress_type;
920 
921 	workspace = find_workspace(type);
922 	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
923 	free_workspace(type, workspace);
924 
925 	return ret;
926 }
927 
928 /*
929  * a less complex decompression routine.  Our compressed data fits in a
930  * single page, and we want to read a single page out of it.
931  * start_byte tells us the offset into the compressed data we're interested in
932  */
933 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
934 		     unsigned long start_byte, size_t srclen, size_t destlen)
935 {
936 	struct list_head *workspace;
937 	int ret;
938 
939 	workspace = find_workspace(type);
940 
941 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
942 						  dest_page, start_byte,
943 						  srclen, destlen);
944 
945 	free_workspace(type, workspace);
946 	return ret;
947 }
948 
949 void btrfs_exit_compress(void)
950 {
951 	free_workspaces();
952 }
953 
954 /*
955  * Copy uncompressed data from working buffer to pages.
956  *
957  * buf_start is the byte offset we're of the start of our workspace buffer.
958  *
959  * total_out is the last byte of the buffer
960  */
961 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
962 			      unsigned long total_out, u64 disk_start,
963 			      struct bio *bio)
964 {
965 	unsigned long buf_offset;
966 	unsigned long current_buf_start;
967 	unsigned long start_byte;
968 	unsigned long prev_start_byte;
969 	unsigned long working_bytes = total_out - buf_start;
970 	unsigned long bytes;
971 	char *kaddr;
972 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
973 
974 	/*
975 	 * start byte is the first byte of the page we're currently
976 	 * copying into relative to the start of the compressed data.
977 	 */
978 	start_byte = page_offset(bvec.bv_page) - disk_start;
979 
980 	/* we haven't yet hit data corresponding to this page */
981 	if (total_out <= start_byte)
982 		return 1;
983 
984 	/*
985 	 * the start of the data we care about is offset into
986 	 * the middle of our working buffer
987 	 */
988 	if (total_out > start_byte && buf_start < start_byte) {
989 		buf_offset = start_byte - buf_start;
990 		working_bytes -= buf_offset;
991 	} else {
992 		buf_offset = 0;
993 	}
994 	current_buf_start = buf_start;
995 
996 	/* copy bytes from the working buffer into the pages */
997 	while (working_bytes > 0) {
998 		bytes = min_t(unsigned long, bvec.bv_len,
999 				PAGE_SIZE - buf_offset);
1000 		bytes = min(bytes, working_bytes);
1001 
1002 		kaddr = kmap_atomic(bvec.bv_page);
1003 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1004 		kunmap_atomic(kaddr);
1005 		flush_dcache_page(bvec.bv_page);
1006 
1007 		buf_offset += bytes;
1008 		working_bytes -= bytes;
1009 		current_buf_start += bytes;
1010 
1011 		/* check if we need to pick another page */
1012 		bio_advance(bio, bytes);
1013 		if (!bio->bi_iter.bi_size)
1014 			return 0;
1015 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1016 		prev_start_byte = start_byte;
1017 		start_byte = page_offset(bvec.bv_page) - disk_start;
1018 
1019 		/*
1020 		 * We need to make sure we're only adjusting
1021 		 * our offset into compression working buffer when
1022 		 * we're switching pages.  Otherwise we can incorrectly
1023 		 * keep copying when we were actually done.
1024 		 */
1025 		if (start_byte != prev_start_byte) {
1026 			/*
1027 			 * make sure our new page is covered by this
1028 			 * working buffer
1029 			 */
1030 			if (total_out <= start_byte)
1031 				return 1;
1032 
1033 			/*
1034 			 * the next page in the biovec might not be adjacent
1035 			 * to the last page, but it might still be found
1036 			 * inside this working buffer. bump our offset pointer
1037 			 */
1038 			if (total_out > start_byte &&
1039 			    current_buf_start < start_byte) {
1040 				buf_offset = start_byte - buf_start;
1041 				working_bytes = total_out - start_byte;
1042 				current_buf_start = buf_start + buf_offset;
1043 			}
1044 		}
1045 	}
1046 
1047 	return 1;
1048 }
1049