1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/slab.h> 35 #include <linux/sched/mm.h> 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "ordered-data.h" 42 #include "compression.h" 43 #include "extent_io.h" 44 #include "extent_map.h" 45 46 static int btrfs_decompress_bio(struct compressed_bio *cb); 47 48 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 49 unsigned long disk_size) 50 { 51 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 52 53 return sizeof(struct compressed_bio) + 54 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 55 } 56 57 static int check_compressed_csum(struct btrfs_inode *inode, 58 struct compressed_bio *cb, 59 u64 disk_start) 60 { 61 int ret; 62 struct page *page; 63 unsigned long i; 64 char *kaddr; 65 u32 csum; 66 u32 *cb_sum = &cb->sums; 67 68 if (inode->flags & BTRFS_INODE_NODATASUM) 69 return 0; 70 71 for (i = 0; i < cb->nr_pages; i++) { 72 page = cb->compressed_pages[i]; 73 csum = ~(u32)0; 74 75 kaddr = kmap_atomic(page); 76 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE); 77 btrfs_csum_final(csum, (u8 *)&csum); 78 kunmap_atomic(kaddr); 79 80 if (csum != *cb_sum) { 81 btrfs_print_data_csum_error(inode, disk_start, csum, 82 *cb_sum, cb->mirror_num); 83 ret = -EIO; 84 goto fail; 85 } 86 cb_sum++; 87 88 } 89 ret = 0; 90 fail: 91 return ret; 92 } 93 94 /* when we finish reading compressed pages from the disk, we 95 * decompress them and then run the bio end_io routines on the 96 * decompressed pages (in the inode address space). 97 * 98 * This allows the checksumming and other IO error handling routines 99 * to work normally 100 * 101 * The compressed pages are freed here, and it must be run 102 * in process context 103 */ 104 static void end_compressed_bio_read(struct bio *bio) 105 { 106 struct compressed_bio *cb = bio->bi_private; 107 struct inode *inode; 108 struct page *page; 109 unsigned long index; 110 int ret; 111 112 if (bio->bi_status) 113 cb->errors = 1; 114 115 /* if there are more bios still pending for this compressed 116 * extent, just exit 117 */ 118 if (!refcount_dec_and_test(&cb->pending_bios)) 119 goto out; 120 121 inode = cb->inode; 122 ret = check_compressed_csum(BTRFS_I(inode), cb, 123 (u64)bio->bi_iter.bi_sector << 9); 124 if (ret) 125 goto csum_failed; 126 127 /* ok, we're the last bio for this extent, lets start 128 * the decompression. 129 */ 130 ret = btrfs_decompress_bio(cb); 131 132 csum_failed: 133 if (ret) 134 cb->errors = 1; 135 136 /* release the compressed pages */ 137 index = 0; 138 for (index = 0; index < cb->nr_pages; index++) { 139 page = cb->compressed_pages[index]; 140 page->mapping = NULL; 141 put_page(page); 142 } 143 144 /* do io completion on the original bio */ 145 if (cb->errors) { 146 bio_io_error(cb->orig_bio); 147 } else { 148 int i; 149 struct bio_vec *bvec; 150 151 /* 152 * we have verified the checksum already, set page 153 * checked so the end_io handlers know about it 154 */ 155 bio_for_each_segment_all(bvec, cb->orig_bio, i) 156 SetPageChecked(bvec->bv_page); 157 158 bio_endio(cb->orig_bio); 159 } 160 161 /* finally free the cb struct */ 162 kfree(cb->compressed_pages); 163 kfree(cb); 164 out: 165 bio_put(bio); 166 } 167 168 /* 169 * Clear the writeback bits on all of the file 170 * pages for a compressed write 171 */ 172 static noinline void end_compressed_writeback(struct inode *inode, 173 const struct compressed_bio *cb) 174 { 175 unsigned long index = cb->start >> PAGE_SHIFT; 176 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 177 struct page *pages[16]; 178 unsigned long nr_pages = end_index - index + 1; 179 int i; 180 int ret; 181 182 if (cb->errors) 183 mapping_set_error(inode->i_mapping, -EIO); 184 185 while (nr_pages > 0) { 186 ret = find_get_pages_contig(inode->i_mapping, index, 187 min_t(unsigned long, 188 nr_pages, ARRAY_SIZE(pages)), pages); 189 if (ret == 0) { 190 nr_pages -= 1; 191 index += 1; 192 continue; 193 } 194 for (i = 0; i < ret; i++) { 195 if (cb->errors) 196 SetPageError(pages[i]); 197 end_page_writeback(pages[i]); 198 put_page(pages[i]); 199 } 200 nr_pages -= ret; 201 index += ret; 202 } 203 /* the inode may be gone now */ 204 } 205 206 /* 207 * do the cleanup once all the compressed pages hit the disk. 208 * This will clear writeback on the file pages and free the compressed 209 * pages. 210 * 211 * This also calls the writeback end hooks for the file pages so that 212 * metadata and checksums can be updated in the file. 213 */ 214 static void end_compressed_bio_write(struct bio *bio) 215 { 216 struct extent_io_tree *tree; 217 struct compressed_bio *cb = bio->bi_private; 218 struct inode *inode; 219 struct page *page; 220 unsigned long index; 221 222 if (bio->bi_status) 223 cb->errors = 1; 224 225 /* if there are more bios still pending for this compressed 226 * extent, just exit 227 */ 228 if (!refcount_dec_and_test(&cb->pending_bios)) 229 goto out; 230 231 /* ok, we're the last bio for this extent, step one is to 232 * call back into the FS and do all the end_io operations 233 */ 234 inode = cb->inode; 235 tree = &BTRFS_I(inode)->io_tree; 236 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 237 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 238 cb->start, 239 cb->start + cb->len - 1, 240 NULL, 241 bio->bi_status ? 0 : 1); 242 cb->compressed_pages[0]->mapping = NULL; 243 244 end_compressed_writeback(inode, cb); 245 /* note, our inode could be gone now */ 246 247 /* 248 * release the compressed pages, these came from alloc_page and 249 * are not attached to the inode at all 250 */ 251 index = 0; 252 for (index = 0; index < cb->nr_pages; index++) { 253 page = cb->compressed_pages[index]; 254 page->mapping = NULL; 255 put_page(page); 256 } 257 258 /* finally free the cb struct */ 259 kfree(cb->compressed_pages); 260 kfree(cb); 261 out: 262 bio_put(bio); 263 } 264 265 /* 266 * worker function to build and submit bios for previously compressed pages. 267 * The corresponding pages in the inode should be marked for writeback 268 * and the compressed pages should have a reference on them for dropping 269 * when the IO is complete. 270 * 271 * This also checksums the file bytes and gets things ready for 272 * the end io hooks. 273 */ 274 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start, 275 unsigned long len, u64 disk_start, 276 unsigned long compressed_len, 277 struct page **compressed_pages, 278 unsigned long nr_pages) 279 { 280 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 281 struct bio *bio = NULL; 282 struct compressed_bio *cb; 283 unsigned long bytes_left; 284 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 285 int pg_index = 0; 286 struct page *page; 287 u64 first_byte = disk_start; 288 struct block_device *bdev; 289 blk_status_t ret; 290 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 291 292 WARN_ON(start & ((u64)PAGE_SIZE - 1)); 293 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 294 if (!cb) 295 return BLK_STS_RESOURCE; 296 refcount_set(&cb->pending_bios, 0); 297 cb->errors = 0; 298 cb->inode = inode; 299 cb->start = start; 300 cb->len = len; 301 cb->mirror_num = 0; 302 cb->compressed_pages = compressed_pages; 303 cb->compressed_len = compressed_len; 304 cb->orig_bio = NULL; 305 cb->nr_pages = nr_pages; 306 307 bdev = fs_info->fs_devices->latest_bdev; 308 309 bio = btrfs_bio_alloc(bdev, first_byte); 310 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 311 bio->bi_private = cb; 312 bio->bi_end_io = end_compressed_bio_write; 313 refcount_set(&cb->pending_bios, 1); 314 315 /* create and submit bios for the compressed pages */ 316 bytes_left = compressed_len; 317 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 318 int submit = 0; 319 320 page = compressed_pages[pg_index]; 321 page->mapping = inode->i_mapping; 322 if (bio->bi_iter.bi_size) 323 submit = io_tree->ops->merge_bio_hook(page, 0, 324 PAGE_SIZE, 325 bio, 0); 326 327 page->mapping = NULL; 328 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 329 PAGE_SIZE) { 330 bio_get(bio); 331 332 /* 333 * inc the count before we submit the bio so 334 * we know the end IO handler won't happen before 335 * we inc the count. Otherwise, the cb might get 336 * freed before we're done setting it up 337 */ 338 refcount_inc(&cb->pending_bios); 339 ret = btrfs_bio_wq_end_io(fs_info, bio, 340 BTRFS_WQ_ENDIO_DATA); 341 BUG_ON(ret); /* -ENOMEM */ 342 343 if (!skip_sum) { 344 ret = btrfs_csum_one_bio(inode, bio, start, 1); 345 BUG_ON(ret); /* -ENOMEM */ 346 } 347 348 ret = btrfs_map_bio(fs_info, bio, 0, 1); 349 if (ret) { 350 bio->bi_status = ret; 351 bio_endio(bio); 352 } 353 354 bio_put(bio); 355 356 bio = btrfs_bio_alloc(bdev, first_byte); 357 bio_set_op_attrs(bio, REQ_OP_WRITE, 0); 358 bio->bi_private = cb; 359 bio->bi_end_io = end_compressed_bio_write; 360 bio_add_page(bio, page, PAGE_SIZE, 0); 361 } 362 if (bytes_left < PAGE_SIZE) { 363 btrfs_info(fs_info, 364 "bytes left %lu compress len %lu nr %lu", 365 bytes_left, cb->compressed_len, cb->nr_pages); 366 } 367 bytes_left -= PAGE_SIZE; 368 first_byte += PAGE_SIZE; 369 cond_resched(); 370 } 371 bio_get(bio); 372 373 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 374 BUG_ON(ret); /* -ENOMEM */ 375 376 if (!skip_sum) { 377 ret = btrfs_csum_one_bio(inode, bio, start, 1); 378 BUG_ON(ret); /* -ENOMEM */ 379 } 380 381 ret = btrfs_map_bio(fs_info, bio, 0, 1); 382 if (ret) { 383 bio->bi_status = ret; 384 bio_endio(bio); 385 } 386 387 bio_put(bio); 388 return 0; 389 } 390 391 static u64 bio_end_offset(struct bio *bio) 392 { 393 struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1]; 394 395 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 396 } 397 398 static noinline int add_ra_bio_pages(struct inode *inode, 399 u64 compressed_end, 400 struct compressed_bio *cb) 401 { 402 unsigned long end_index; 403 unsigned long pg_index; 404 u64 last_offset; 405 u64 isize = i_size_read(inode); 406 int ret; 407 struct page *page; 408 unsigned long nr_pages = 0; 409 struct extent_map *em; 410 struct address_space *mapping = inode->i_mapping; 411 struct extent_map_tree *em_tree; 412 struct extent_io_tree *tree; 413 u64 end; 414 int misses = 0; 415 416 last_offset = bio_end_offset(cb->orig_bio); 417 em_tree = &BTRFS_I(inode)->extent_tree; 418 tree = &BTRFS_I(inode)->io_tree; 419 420 if (isize == 0) 421 return 0; 422 423 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 424 425 while (last_offset < compressed_end) { 426 pg_index = last_offset >> PAGE_SHIFT; 427 428 if (pg_index > end_index) 429 break; 430 431 rcu_read_lock(); 432 page = radix_tree_lookup(&mapping->page_tree, pg_index); 433 rcu_read_unlock(); 434 if (page && !radix_tree_exceptional_entry(page)) { 435 misses++; 436 if (misses > 4) 437 break; 438 goto next; 439 } 440 441 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 442 ~__GFP_FS)); 443 if (!page) 444 break; 445 446 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 447 put_page(page); 448 goto next; 449 } 450 451 end = last_offset + PAGE_SIZE - 1; 452 /* 453 * at this point, we have a locked page in the page cache 454 * for these bytes in the file. But, we have to make 455 * sure they map to this compressed extent on disk. 456 */ 457 set_page_extent_mapped(page); 458 lock_extent(tree, last_offset, end); 459 read_lock(&em_tree->lock); 460 em = lookup_extent_mapping(em_tree, last_offset, 461 PAGE_SIZE); 462 read_unlock(&em_tree->lock); 463 464 if (!em || last_offset < em->start || 465 (last_offset + PAGE_SIZE > extent_map_end(em)) || 466 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 467 free_extent_map(em); 468 unlock_extent(tree, last_offset, end); 469 unlock_page(page); 470 put_page(page); 471 break; 472 } 473 free_extent_map(em); 474 475 if (page->index == end_index) { 476 char *userpage; 477 size_t zero_offset = isize & (PAGE_SIZE - 1); 478 479 if (zero_offset) { 480 int zeros; 481 zeros = PAGE_SIZE - zero_offset; 482 userpage = kmap_atomic(page); 483 memset(userpage + zero_offset, 0, zeros); 484 flush_dcache_page(page); 485 kunmap_atomic(userpage); 486 } 487 } 488 489 ret = bio_add_page(cb->orig_bio, page, 490 PAGE_SIZE, 0); 491 492 if (ret == PAGE_SIZE) { 493 nr_pages++; 494 put_page(page); 495 } else { 496 unlock_extent(tree, last_offset, end); 497 unlock_page(page); 498 put_page(page); 499 break; 500 } 501 next: 502 last_offset += PAGE_SIZE; 503 } 504 return 0; 505 } 506 507 /* 508 * for a compressed read, the bio we get passed has all the inode pages 509 * in it. We don't actually do IO on those pages but allocate new ones 510 * to hold the compressed pages on disk. 511 * 512 * bio->bi_iter.bi_sector points to the compressed extent on disk 513 * bio->bi_io_vec points to all of the inode pages 514 * 515 * After the compressed pages are read, we copy the bytes into the 516 * bio we were passed and then call the bio end_io calls 517 */ 518 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 519 int mirror_num, unsigned long bio_flags) 520 { 521 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 522 struct extent_io_tree *tree; 523 struct extent_map_tree *em_tree; 524 struct compressed_bio *cb; 525 unsigned long compressed_len; 526 unsigned long nr_pages; 527 unsigned long pg_index; 528 struct page *page; 529 struct block_device *bdev; 530 struct bio *comp_bio; 531 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 532 u64 em_len; 533 u64 em_start; 534 struct extent_map *em; 535 blk_status_t ret = BLK_STS_RESOURCE; 536 int faili = 0; 537 u32 *sums; 538 539 tree = &BTRFS_I(inode)->io_tree; 540 em_tree = &BTRFS_I(inode)->extent_tree; 541 542 /* we need the actual starting offset of this extent in the file */ 543 read_lock(&em_tree->lock); 544 em = lookup_extent_mapping(em_tree, 545 page_offset(bio->bi_io_vec->bv_page), 546 PAGE_SIZE); 547 read_unlock(&em_tree->lock); 548 if (!em) 549 return BLK_STS_IOERR; 550 551 compressed_len = em->block_len; 552 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 553 if (!cb) 554 goto out; 555 556 refcount_set(&cb->pending_bios, 0); 557 cb->errors = 0; 558 cb->inode = inode; 559 cb->mirror_num = mirror_num; 560 sums = &cb->sums; 561 562 cb->start = em->orig_start; 563 em_len = em->len; 564 em_start = em->start; 565 566 free_extent_map(em); 567 em = NULL; 568 569 cb->len = bio->bi_iter.bi_size; 570 cb->compressed_len = compressed_len; 571 cb->compress_type = extent_compress_type(bio_flags); 572 cb->orig_bio = bio; 573 574 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 575 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 576 GFP_NOFS); 577 if (!cb->compressed_pages) 578 goto fail1; 579 580 bdev = fs_info->fs_devices->latest_bdev; 581 582 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 583 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 584 __GFP_HIGHMEM); 585 if (!cb->compressed_pages[pg_index]) { 586 faili = pg_index - 1; 587 ret = BLK_STS_RESOURCE; 588 goto fail2; 589 } 590 } 591 faili = nr_pages - 1; 592 cb->nr_pages = nr_pages; 593 594 add_ra_bio_pages(inode, em_start + em_len, cb); 595 596 /* include any pages we added in add_ra-bio_pages */ 597 cb->len = bio->bi_iter.bi_size; 598 599 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 600 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0); 601 comp_bio->bi_private = cb; 602 comp_bio->bi_end_io = end_compressed_bio_read; 603 refcount_set(&cb->pending_bios, 1); 604 605 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 606 int submit = 0; 607 608 page = cb->compressed_pages[pg_index]; 609 page->mapping = inode->i_mapping; 610 page->index = em_start >> PAGE_SHIFT; 611 612 if (comp_bio->bi_iter.bi_size) 613 submit = tree->ops->merge_bio_hook(page, 0, 614 PAGE_SIZE, 615 comp_bio, 0); 616 617 page->mapping = NULL; 618 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 619 PAGE_SIZE) { 620 bio_get(comp_bio); 621 622 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 623 BTRFS_WQ_ENDIO_DATA); 624 BUG_ON(ret); /* -ENOMEM */ 625 626 /* 627 * inc the count before we submit the bio so 628 * we know the end IO handler won't happen before 629 * we inc the count. Otherwise, the cb might get 630 * freed before we're done setting it up 631 */ 632 refcount_inc(&cb->pending_bios); 633 634 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 635 ret = btrfs_lookup_bio_sums(inode, comp_bio, 636 sums); 637 BUG_ON(ret); /* -ENOMEM */ 638 } 639 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 640 fs_info->sectorsize); 641 642 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 643 if (ret) { 644 comp_bio->bi_status = ret; 645 bio_endio(comp_bio); 646 } 647 648 bio_put(comp_bio); 649 650 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 651 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0); 652 comp_bio->bi_private = cb; 653 comp_bio->bi_end_io = end_compressed_bio_read; 654 655 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 656 } 657 cur_disk_byte += PAGE_SIZE; 658 } 659 bio_get(comp_bio); 660 661 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 662 BUG_ON(ret); /* -ENOMEM */ 663 664 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 665 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 666 BUG_ON(ret); /* -ENOMEM */ 667 } 668 669 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 670 if (ret) { 671 comp_bio->bi_status = ret; 672 bio_endio(comp_bio); 673 } 674 675 bio_put(comp_bio); 676 return 0; 677 678 fail2: 679 while (faili >= 0) { 680 __free_page(cb->compressed_pages[faili]); 681 faili--; 682 } 683 684 kfree(cb->compressed_pages); 685 fail1: 686 kfree(cb); 687 out: 688 free_extent_map(em); 689 return ret; 690 } 691 692 static struct { 693 struct list_head idle_ws; 694 spinlock_t ws_lock; 695 /* Number of free workspaces */ 696 int free_ws; 697 /* Total number of allocated workspaces */ 698 atomic_t total_ws; 699 /* Waiters for a free workspace */ 700 wait_queue_head_t ws_wait; 701 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES]; 702 703 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 704 &btrfs_zlib_compress, 705 &btrfs_lzo_compress, 706 }; 707 708 void __init btrfs_init_compress(void) 709 { 710 int i; 711 712 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 713 struct list_head *workspace; 714 715 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws); 716 spin_lock_init(&btrfs_comp_ws[i].ws_lock); 717 atomic_set(&btrfs_comp_ws[i].total_ws, 0); 718 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait); 719 720 /* 721 * Preallocate one workspace for each compression type so 722 * we can guarantee forward progress in the worst case 723 */ 724 workspace = btrfs_compress_op[i]->alloc_workspace(); 725 if (IS_ERR(workspace)) { 726 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n"); 727 } else { 728 atomic_set(&btrfs_comp_ws[i].total_ws, 1); 729 btrfs_comp_ws[i].free_ws = 1; 730 list_add(workspace, &btrfs_comp_ws[i].idle_ws); 731 } 732 } 733 } 734 735 /* 736 * This finds an available workspace or allocates a new one. 737 * If it's not possible to allocate a new one, waits until there's one. 738 * Preallocation makes a forward progress guarantees and we do not return 739 * errors. 740 */ 741 static struct list_head *find_workspace(int type) 742 { 743 struct list_head *workspace; 744 int cpus = num_online_cpus(); 745 int idx = type - 1; 746 unsigned nofs_flag; 747 748 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws; 749 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock; 750 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws; 751 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait; 752 int *free_ws = &btrfs_comp_ws[idx].free_ws; 753 again: 754 spin_lock(ws_lock); 755 if (!list_empty(idle_ws)) { 756 workspace = idle_ws->next; 757 list_del(workspace); 758 (*free_ws)--; 759 spin_unlock(ws_lock); 760 return workspace; 761 762 } 763 if (atomic_read(total_ws) > cpus) { 764 DEFINE_WAIT(wait); 765 766 spin_unlock(ws_lock); 767 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 768 if (atomic_read(total_ws) > cpus && !*free_ws) 769 schedule(); 770 finish_wait(ws_wait, &wait); 771 goto again; 772 } 773 atomic_inc(total_ws); 774 spin_unlock(ws_lock); 775 776 /* 777 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 778 * to turn it off here because we might get called from the restricted 779 * context of btrfs_compress_bio/btrfs_compress_pages 780 */ 781 nofs_flag = memalloc_nofs_save(); 782 workspace = btrfs_compress_op[idx]->alloc_workspace(); 783 memalloc_nofs_restore(nofs_flag); 784 785 if (IS_ERR(workspace)) { 786 atomic_dec(total_ws); 787 wake_up(ws_wait); 788 789 /* 790 * Do not return the error but go back to waiting. There's a 791 * workspace preallocated for each type and the compression 792 * time is bounded so we get to a workspace eventually. This 793 * makes our caller's life easier. 794 * 795 * To prevent silent and low-probability deadlocks (when the 796 * initial preallocation fails), check if there are any 797 * workspaces at all. 798 */ 799 if (atomic_read(total_ws) == 0) { 800 static DEFINE_RATELIMIT_STATE(_rs, 801 /* once per minute */ 60 * HZ, 802 /* no burst */ 1); 803 804 if (__ratelimit(&_rs)) { 805 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 806 } 807 } 808 goto again; 809 } 810 return workspace; 811 } 812 813 /* 814 * put a workspace struct back on the list or free it if we have enough 815 * idle ones sitting around 816 */ 817 static void free_workspace(int type, struct list_head *workspace) 818 { 819 int idx = type - 1; 820 struct list_head *idle_ws = &btrfs_comp_ws[idx].idle_ws; 821 spinlock_t *ws_lock = &btrfs_comp_ws[idx].ws_lock; 822 atomic_t *total_ws = &btrfs_comp_ws[idx].total_ws; 823 wait_queue_head_t *ws_wait = &btrfs_comp_ws[idx].ws_wait; 824 int *free_ws = &btrfs_comp_ws[idx].free_ws; 825 826 spin_lock(ws_lock); 827 if (*free_ws < num_online_cpus()) { 828 list_add(workspace, idle_ws); 829 (*free_ws)++; 830 spin_unlock(ws_lock); 831 goto wake; 832 } 833 spin_unlock(ws_lock); 834 835 btrfs_compress_op[idx]->free_workspace(workspace); 836 atomic_dec(total_ws); 837 wake: 838 /* 839 * Make sure counter is updated before we wake up waiters. 840 */ 841 smp_mb(); 842 if (waitqueue_active(ws_wait)) 843 wake_up(ws_wait); 844 } 845 846 /* 847 * cleanup function for module exit 848 */ 849 static void free_workspaces(void) 850 { 851 struct list_head *workspace; 852 int i; 853 854 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 855 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) { 856 workspace = btrfs_comp_ws[i].idle_ws.next; 857 list_del(workspace); 858 btrfs_compress_op[i]->free_workspace(workspace); 859 atomic_dec(&btrfs_comp_ws[i].total_ws); 860 } 861 } 862 } 863 864 /* 865 * Given an address space and start and length, compress the bytes into @pages 866 * that are allocated on demand. 867 * 868 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 869 * and returns number of actually allocated pages 870 * 871 * @total_in is used to return the number of bytes actually read. It 872 * may be smaller than the input length if we had to exit early because we 873 * ran out of room in the pages array or because we cross the 874 * max_out threshold. 875 * 876 * @total_out is an in/out parameter, must be set to the input length and will 877 * be also used to return the total number of compressed bytes 878 * 879 * @max_out tells us the max number of bytes that we're allowed to 880 * stuff into pages 881 */ 882 int btrfs_compress_pages(int type, struct address_space *mapping, 883 u64 start, struct page **pages, 884 unsigned long *out_pages, 885 unsigned long *total_in, 886 unsigned long *total_out) 887 { 888 struct list_head *workspace; 889 int ret; 890 891 workspace = find_workspace(type); 892 893 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 894 start, pages, 895 out_pages, 896 total_in, total_out); 897 free_workspace(type, workspace); 898 return ret; 899 } 900 901 /* 902 * pages_in is an array of pages with compressed data. 903 * 904 * disk_start is the starting logical offset of this array in the file 905 * 906 * orig_bio contains the pages from the file that we want to decompress into 907 * 908 * srclen is the number of bytes in pages_in 909 * 910 * The basic idea is that we have a bio that was created by readpages. 911 * The pages in the bio are for the uncompressed data, and they may not 912 * be contiguous. They all correspond to the range of bytes covered by 913 * the compressed extent. 914 */ 915 static int btrfs_decompress_bio(struct compressed_bio *cb) 916 { 917 struct list_head *workspace; 918 int ret; 919 int type = cb->compress_type; 920 921 workspace = find_workspace(type); 922 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb); 923 free_workspace(type, workspace); 924 925 return ret; 926 } 927 928 /* 929 * a less complex decompression routine. Our compressed data fits in a 930 * single page, and we want to read a single page out of it. 931 * start_byte tells us the offset into the compressed data we're interested in 932 */ 933 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 934 unsigned long start_byte, size_t srclen, size_t destlen) 935 { 936 struct list_head *workspace; 937 int ret; 938 939 workspace = find_workspace(type); 940 941 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 942 dest_page, start_byte, 943 srclen, destlen); 944 945 free_workspace(type, workspace); 946 return ret; 947 } 948 949 void btrfs_exit_compress(void) 950 { 951 free_workspaces(); 952 } 953 954 /* 955 * Copy uncompressed data from working buffer to pages. 956 * 957 * buf_start is the byte offset we're of the start of our workspace buffer. 958 * 959 * total_out is the last byte of the buffer 960 */ 961 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 962 unsigned long total_out, u64 disk_start, 963 struct bio *bio) 964 { 965 unsigned long buf_offset; 966 unsigned long current_buf_start; 967 unsigned long start_byte; 968 unsigned long prev_start_byte; 969 unsigned long working_bytes = total_out - buf_start; 970 unsigned long bytes; 971 char *kaddr; 972 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 973 974 /* 975 * start byte is the first byte of the page we're currently 976 * copying into relative to the start of the compressed data. 977 */ 978 start_byte = page_offset(bvec.bv_page) - disk_start; 979 980 /* we haven't yet hit data corresponding to this page */ 981 if (total_out <= start_byte) 982 return 1; 983 984 /* 985 * the start of the data we care about is offset into 986 * the middle of our working buffer 987 */ 988 if (total_out > start_byte && buf_start < start_byte) { 989 buf_offset = start_byte - buf_start; 990 working_bytes -= buf_offset; 991 } else { 992 buf_offset = 0; 993 } 994 current_buf_start = buf_start; 995 996 /* copy bytes from the working buffer into the pages */ 997 while (working_bytes > 0) { 998 bytes = min_t(unsigned long, bvec.bv_len, 999 PAGE_SIZE - buf_offset); 1000 bytes = min(bytes, working_bytes); 1001 1002 kaddr = kmap_atomic(bvec.bv_page); 1003 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1004 kunmap_atomic(kaddr); 1005 flush_dcache_page(bvec.bv_page); 1006 1007 buf_offset += bytes; 1008 working_bytes -= bytes; 1009 current_buf_start += bytes; 1010 1011 /* check if we need to pick another page */ 1012 bio_advance(bio, bytes); 1013 if (!bio->bi_iter.bi_size) 1014 return 0; 1015 bvec = bio_iter_iovec(bio, bio->bi_iter); 1016 prev_start_byte = start_byte; 1017 start_byte = page_offset(bvec.bv_page) - disk_start; 1018 1019 /* 1020 * We need to make sure we're only adjusting 1021 * our offset into compression working buffer when 1022 * we're switching pages. Otherwise we can incorrectly 1023 * keep copying when we were actually done. 1024 */ 1025 if (start_byte != prev_start_byte) { 1026 /* 1027 * make sure our new page is covered by this 1028 * working buffer 1029 */ 1030 if (total_out <= start_byte) 1031 return 1; 1032 1033 /* 1034 * the next page in the biovec might not be adjacent 1035 * to the last page, but it might still be found 1036 * inside this working buffer. bump our offset pointer 1037 */ 1038 if (total_out > start_byte && 1039 current_buf_start < start_byte) { 1040 buf_offset = start_byte - buf_start; 1041 working_bytes = total_out - start_byte; 1042 current_buf_start = buf_start + buf_offset; 1043 } 1044 } 1045 } 1046 1047 return 1; 1048 } 1049