xref: /linux/fs/btrfs/compression.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
44 
45 struct compressed_bio {
46 	/* number of bios pending for this compressed extent */
47 	atomic_t pending_bios;
48 
49 	/* the pages with the compressed data on them */
50 	struct page **compressed_pages;
51 
52 	/* inode that owns this data */
53 	struct inode *inode;
54 
55 	/* starting offset in the inode for our pages */
56 	u64 start;
57 
58 	/* number of bytes in the inode we're working on */
59 	unsigned long len;
60 
61 	/* number of bytes on disk */
62 	unsigned long compressed_len;
63 
64 	/* the compression algorithm for this bio */
65 	int compress_type;
66 
67 	/* number of compressed pages in the array */
68 	unsigned long nr_pages;
69 
70 	/* IO errors */
71 	int errors;
72 	int mirror_num;
73 
74 	/* for reads, this is the bio we are copying the data into */
75 	struct bio *orig_bio;
76 
77 	/*
78 	 * the start of a variable length array of checksums only
79 	 * used by reads
80 	 */
81 	u32 sums;
82 };
83 
84 static int btrfs_decompress_biovec(int type, struct page **pages_in,
85 				   u64 disk_start, struct bio_vec *bvec,
86 				   int vcnt, size_t srclen);
87 
88 static inline int compressed_bio_size(struct btrfs_root *root,
89 				      unsigned long disk_size)
90 {
91 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92 
93 	return sizeof(struct compressed_bio) +
94 		(DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
95 }
96 
97 static struct bio *compressed_bio_alloc(struct block_device *bdev,
98 					u64 first_byte, gfp_t gfp_flags)
99 {
100 	return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
101 }
102 
103 static int check_compressed_csum(struct inode *inode,
104 				 struct compressed_bio *cb,
105 				 u64 disk_start)
106 {
107 	int ret;
108 	struct page *page;
109 	unsigned long i;
110 	char *kaddr;
111 	u32 csum;
112 	u32 *cb_sum = &cb->sums;
113 
114 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
115 		return 0;
116 
117 	for (i = 0; i < cb->nr_pages; i++) {
118 		page = cb->compressed_pages[i];
119 		csum = ~(u32)0;
120 
121 		kaddr = kmap_atomic(page);
122 		csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
123 		btrfs_csum_final(csum, (char *)&csum);
124 		kunmap_atomic(kaddr);
125 
126 		if (csum != *cb_sum) {
127 			btrfs_info(BTRFS_I(inode)->root->fs_info,
128 			   "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
129 			   btrfs_ino(inode), disk_start, csum, *cb_sum,
130 			   cb->mirror_num);
131 			ret = -EIO;
132 			goto fail;
133 		}
134 		cb_sum++;
135 
136 	}
137 	ret = 0;
138 fail:
139 	return ret;
140 }
141 
142 /* when we finish reading compressed pages from the disk, we
143  * decompress them and then run the bio end_io routines on the
144  * decompressed pages (in the inode address space).
145  *
146  * This allows the checksumming and other IO error handling routines
147  * to work normally
148  *
149  * The compressed pages are freed here, and it must be run
150  * in process context
151  */
152 static void end_compressed_bio_read(struct bio *bio)
153 {
154 	struct compressed_bio *cb = bio->bi_private;
155 	struct inode *inode;
156 	struct page *page;
157 	unsigned long index;
158 	int ret;
159 
160 	if (bio->bi_error)
161 		cb->errors = 1;
162 
163 	/* if there are more bios still pending for this compressed
164 	 * extent, just exit
165 	 */
166 	if (!atomic_dec_and_test(&cb->pending_bios))
167 		goto out;
168 
169 	inode = cb->inode;
170 	ret = check_compressed_csum(inode, cb,
171 				    (u64)bio->bi_iter.bi_sector << 9);
172 	if (ret)
173 		goto csum_failed;
174 
175 	/* ok, we're the last bio for this extent, lets start
176 	 * the decompression.
177 	 */
178 	ret = btrfs_decompress_biovec(cb->compress_type,
179 				      cb->compressed_pages,
180 				      cb->start,
181 				      cb->orig_bio->bi_io_vec,
182 				      cb->orig_bio->bi_vcnt,
183 				      cb->compressed_len);
184 csum_failed:
185 	if (ret)
186 		cb->errors = 1;
187 
188 	/* release the compressed pages */
189 	index = 0;
190 	for (index = 0; index < cb->nr_pages; index++) {
191 		page = cb->compressed_pages[index];
192 		page->mapping = NULL;
193 		page_cache_release(page);
194 	}
195 
196 	/* do io completion on the original bio */
197 	if (cb->errors) {
198 		bio_io_error(cb->orig_bio);
199 	} else {
200 		int i;
201 		struct bio_vec *bvec;
202 
203 		/*
204 		 * we have verified the checksum already, set page
205 		 * checked so the end_io handlers know about it
206 		 */
207 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
208 			SetPageChecked(bvec->bv_page);
209 
210 		bio_endio(cb->orig_bio);
211 	}
212 
213 	/* finally free the cb struct */
214 	kfree(cb->compressed_pages);
215 	kfree(cb);
216 out:
217 	bio_put(bio);
218 }
219 
220 /*
221  * Clear the writeback bits on all of the file
222  * pages for a compressed write
223  */
224 static noinline void end_compressed_writeback(struct inode *inode,
225 					      const struct compressed_bio *cb)
226 {
227 	unsigned long index = cb->start >> PAGE_CACHE_SHIFT;
228 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_CACHE_SHIFT;
229 	struct page *pages[16];
230 	unsigned long nr_pages = end_index - index + 1;
231 	int i;
232 	int ret;
233 
234 	if (cb->errors)
235 		mapping_set_error(inode->i_mapping, -EIO);
236 
237 	while (nr_pages > 0) {
238 		ret = find_get_pages_contig(inode->i_mapping, index,
239 				     min_t(unsigned long,
240 				     nr_pages, ARRAY_SIZE(pages)), pages);
241 		if (ret == 0) {
242 			nr_pages -= 1;
243 			index += 1;
244 			continue;
245 		}
246 		for (i = 0; i < ret; i++) {
247 			if (cb->errors)
248 				SetPageError(pages[i]);
249 			end_page_writeback(pages[i]);
250 			page_cache_release(pages[i]);
251 		}
252 		nr_pages -= ret;
253 		index += ret;
254 	}
255 	/* the inode may be gone now */
256 }
257 
258 /*
259  * do the cleanup once all the compressed pages hit the disk.
260  * This will clear writeback on the file pages and free the compressed
261  * pages.
262  *
263  * This also calls the writeback end hooks for the file pages so that
264  * metadata and checksums can be updated in the file.
265  */
266 static void end_compressed_bio_write(struct bio *bio)
267 {
268 	struct extent_io_tree *tree;
269 	struct compressed_bio *cb = bio->bi_private;
270 	struct inode *inode;
271 	struct page *page;
272 	unsigned long index;
273 
274 	if (bio->bi_error)
275 		cb->errors = 1;
276 
277 	/* if there are more bios still pending for this compressed
278 	 * extent, just exit
279 	 */
280 	if (!atomic_dec_and_test(&cb->pending_bios))
281 		goto out;
282 
283 	/* ok, we're the last bio for this extent, step one is to
284 	 * call back into the FS and do all the end_io operations
285 	 */
286 	inode = cb->inode;
287 	tree = &BTRFS_I(inode)->io_tree;
288 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
289 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
290 					 cb->start,
291 					 cb->start + cb->len - 1,
292 					 NULL,
293 					 bio->bi_error ? 0 : 1);
294 	cb->compressed_pages[0]->mapping = NULL;
295 
296 	end_compressed_writeback(inode, cb);
297 	/* note, our inode could be gone now */
298 
299 	/*
300 	 * release the compressed pages, these came from alloc_page and
301 	 * are not attached to the inode at all
302 	 */
303 	index = 0;
304 	for (index = 0; index < cb->nr_pages; index++) {
305 		page = cb->compressed_pages[index];
306 		page->mapping = NULL;
307 		page_cache_release(page);
308 	}
309 
310 	/* finally free the cb struct */
311 	kfree(cb->compressed_pages);
312 	kfree(cb);
313 out:
314 	bio_put(bio);
315 }
316 
317 /*
318  * worker function to build and submit bios for previously compressed pages.
319  * The corresponding pages in the inode should be marked for writeback
320  * and the compressed pages should have a reference on them for dropping
321  * when the IO is complete.
322  *
323  * This also checksums the file bytes and gets things ready for
324  * the end io hooks.
325  */
326 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
327 				 unsigned long len, u64 disk_start,
328 				 unsigned long compressed_len,
329 				 struct page **compressed_pages,
330 				 unsigned long nr_pages)
331 {
332 	struct bio *bio = NULL;
333 	struct btrfs_root *root = BTRFS_I(inode)->root;
334 	struct compressed_bio *cb;
335 	unsigned long bytes_left;
336 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
337 	int pg_index = 0;
338 	struct page *page;
339 	u64 first_byte = disk_start;
340 	struct block_device *bdev;
341 	int ret;
342 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
343 
344 	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
345 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
346 	if (!cb)
347 		return -ENOMEM;
348 	atomic_set(&cb->pending_bios, 0);
349 	cb->errors = 0;
350 	cb->inode = inode;
351 	cb->start = start;
352 	cb->len = len;
353 	cb->mirror_num = 0;
354 	cb->compressed_pages = compressed_pages;
355 	cb->compressed_len = compressed_len;
356 	cb->orig_bio = NULL;
357 	cb->nr_pages = nr_pages;
358 
359 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
360 
361 	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
362 	if (!bio) {
363 		kfree(cb);
364 		return -ENOMEM;
365 	}
366 	bio->bi_private = cb;
367 	bio->bi_end_io = end_compressed_bio_write;
368 	atomic_inc(&cb->pending_bios);
369 
370 	/* create and submit bios for the compressed pages */
371 	bytes_left = compressed_len;
372 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
373 		page = compressed_pages[pg_index];
374 		page->mapping = inode->i_mapping;
375 		if (bio->bi_iter.bi_size)
376 			ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
377 							   PAGE_CACHE_SIZE,
378 							   bio, 0);
379 		else
380 			ret = 0;
381 
382 		page->mapping = NULL;
383 		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
384 		    PAGE_CACHE_SIZE) {
385 			bio_get(bio);
386 
387 			/*
388 			 * inc the count before we submit the bio so
389 			 * we know the end IO handler won't happen before
390 			 * we inc the count.  Otherwise, the cb might get
391 			 * freed before we're done setting it up
392 			 */
393 			atomic_inc(&cb->pending_bios);
394 			ret = btrfs_bio_wq_end_io(root->fs_info, bio,
395 					BTRFS_WQ_ENDIO_DATA);
396 			BUG_ON(ret); /* -ENOMEM */
397 
398 			if (!skip_sum) {
399 				ret = btrfs_csum_one_bio(root, inode, bio,
400 							 start, 1);
401 				BUG_ON(ret); /* -ENOMEM */
402 			}
403 
404 			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
405 			BUG_ON(ret); /* -ENOMEM */
406 
407 			bio_put(bio);
408 
409 			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
410 			BUG_ON(!bio);
411 			bio->bi_private = cb;
412 			bio->bi_end_io = end_compressed_bio_write;
413 			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
414 		}
415 		if (bytes_left < PAGE_CACHE_SIZE) {
416 			btrfs_info(BTRFS_I(inode)->root->fs_info,
417 					"bytes left %lu compress len %lu nr %lu",
418 			       bytes_left, cb->compressed_len, cb->nr_pages);
419 		}
420 		bytes_left -= PAGE_CACHE_SIZE;
421 		first_byte += PAGE_CACHE_SIZE;
422 		cond_resched();
423 	}
424 	bio_get(bio);
425 
426 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
427 	BUG_ON(ret); /* -ENOMEM */
428 
429 	if (!skip_sum) {
430 		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
431 		BUG_ON(ret); /* -ENOMEM */
432 	}
433 
434 	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
435 	BUG_ON(ret); /* -ENOMEM */
436 
437 	bio_put(bio);
438 	return 0;
439 }
440 
441 static noinline int add_ra_bio_pages(struct inode *inode,
442 				     u64 compressed_end,
443 				     struct compressed_bio *cb)
444 {
445 	unsigned long end_index;
446 	unsigned long pg_index;
447 	u64 last_offset;
448 	u64 isize = i_size_read(inode);
449 	int ret;
450 	struct page *page;
451 	unsigned long nr_pages = 0;
452 	struct extent_map *em;
453 	struct address_space *mapping = inode->i_mapping;
454 	struct extent_map_tree *em_tree;
455 	struct extent_io_tree *tree;
456 	u64 end;
457 	int misses = 0;
458 
459 	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
460 	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
461 	em_tree = &BTRFS_I(inode)->extent_tree;
462 	tree = &BTRFS_I(inode)->io_tree;
463 
464 	if (isize == 0)
465 		return 0;
466 
467 	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
468 
469 	while (last_offset < compressed_end) {
470 		pg_index = last_offset >> PAGE_CACHE_SHIFT;
471 
472 		if (pg_index > end_index)
473 			break;
474 
475 		rcu_read_lock();
476 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
477 		rcu_read_unlock();
478 		if (page && !radix_tree_exceptional_entry(page)) {
479 			misses++;
480 			if (misses > 4)
481 				break;
482 			goto next;
483 		}
484 
485 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
486 								 ~__GFP_FS));
487 		if (!page)
488 			break;
489 
490 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
491 			page_cache_release(page);
492 			goto next;
493 		}
494 
495 		end = last_offset + PAGE_CACHE_SIZE - 1;
496 		/*
497 		 * at this point, we have a locked page in the page cache
498 		 * for these bytes in the file.  But, we have to make
499 		 * sure they map to this compressed extent on disk.
500 		 */
501 		set_page_extent_mapped(page);
502 		lock_extent(tree, last_offset, end);
503 		read_lock(&em_tree->lock);
504 		em = lookup_extent_mapping(em_tree, last_offset,
505 					   PAGE_CACHE_SIZE);
506 		read_unlock(&em_tree->lock);
507 
508 		if (!em || last_offset < em->start ||
509 		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
510 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
511 			free_extent_map(em);
512 			unlock_extent(tree, last_offset, end);
513 			unlock_page(page);
514 			page_cache_release(page);
515 			break;
516 		}
517 		free_extent_map(em);
518 
519 		if (page->index == end_index) {
520 			char *userpage;
521 			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
522 
523 			if (zero_offset) {
524 				int zeros;
525 				zeros = PAGE_CACHE_SIZE - zero_offset;
526 				userpage = kmap_atomic(page);
527 				memset(userpage + zero_offset, 0, zeros);
528 				flush_dcache_page(page);
529 				kunmap_atomic(userpage);
530 			}
531 		}
532 
533 		ret = bio_add_page(cb->orig_bio, page,
534 				   PAGE_CACHE_SIZE, 0);
535 
536 		if (ret == PAGE_CACHE_SIZE) {
537 			nr_pages++;
538 			page_cache_release(page);
539 		} else {
540 			unlock_extent(tree, last_offset, end);
541 			unlock_page(page);
542 			page_cache_release(page);
543 			break;
544 		}
545 next:
546 		last_offset += PAGE_CACHE_SIZE;
547 	}
548 	return 0;
549 }
550 
551 /*
552  * for a compressed read, the bio we get passed has all the inode pages
553  * in it.  We don't actually do IO on those pages but allocate new ones
554  * to hold the compressed pages on disk.
555  *
556  * bio->bi_iter.bi_sector points to the compressed extent on disk
557  * bio->bi_io_vec points to all of the inode pages
558  * bio->bi_vcnt is a count of pages
559  *
560  * After the compressed pages are read, we copy the bytes into the
561  * bio we were passed and then call the bio end_io calls
562  */
563 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
564 				 int mirror_num, unsigned long bio_flags)
565 {
566 	struct extent_io_tree *tree;
567 	struct extent_map_tree *em_tree;
568 	struct compressed_bio *cb;
569 	struct btrfs_root *root = BTRFS_I(inode)->root;
570 	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
571 	unsigned long compressed_len;
572 	unsigned long nr_pages;
573 	unsigned long pg_index;
574 	struct page *page;
575 	struct block_device *bdev;
576 	struct bio *comp_bio;
577 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
578 	u64 em_len;
579 	u64 em_start;
580 	struct extent_map *em;
581 	int ret = -ENOMEM;
582 	int faili = 0;
583 	u32 *sums;
584 
585 	tree = &BTRFS_I(inode)->io_tree;
586 	em_tree = &BTRFS_I(inode)->extent_tree;
587 
588 	/* we need the actual starting offset of this extent in the file */
589 	read_lock(&em_tree->lock);
590 	em = lookup_extent_mapping(em_tree,
591 				   page_offset(bio->bi_io_vec->bv_page),
592 				   PAGE_CACHE_SIZE);
593 	read_unlock(&em_tree->lock);
594 	if (!em)
595 		return -EIO;
596 
597 	compressed_len = em->block_len;
598 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
599 	if (!cb)
600 		goto out;
601 
602 	atomic_set(&cb->pending_bios, 0);
603 	cb->errors = 0;
604 	cb->inode = inode;
605 	cb->mirror_num = mirror_num;
606 	sums = &cb->sums;
607 
608 	cb->start = em->orig_start;
609 	em_len = em->len;
610 	em_start = em->start;
611 
612 	free_extent_map(em);
613 	em = NULL;
614 
615 	cb->len = uncompressed_len;
616 	cb->compressed_len = compressed_len;
617 	cb->compress_type = extent_compress_type(bio_flags);
618 	cb->orig_bio = bio;
619 
620 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE);
621 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
622 				       GFP_NOFS);
623 	if (!cb->compressed_pages)
624 		goto fail1;
625 
626 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
627 
628 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
629 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
630 							      __GFP_HIGHMEM);
631 		if (!cb->compressed_pages[pg_index]) {
632 			faili = pg_index - 1;
633 			ret = -ENOMEM;
634 			goto fail2;
635 		}
636 	}
637 	faili = nr_pages - 1;
638 	cb->nr_pages = nr_pages;
639 
640 	add_ra_bio_pages(inode, em_start + em_len, cb);
641 
642 	/* include any pages we added in add_ra-bio_pages */
643 	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
644 	cb->len = uncompressed_len;
645 
646 	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
647 	if (!comp_bio)
648 		goto fail2;
649 	comp_bio->bi_private = cb;
650 	comp_bio->bi_end_io = end_compressed_bio_read;
651 	atomic_inc(&cb->pending_bios);
652 
653 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
654 		page = cb->compressed_pages[pg_index];
655 		page->mapping = inode->i_mapping;
656 		page->index = em_start >> PAGE_CACHE_SHIFT;
657 
658 		if (comp_bio->bi_iter.bi_size)
659 			ret = tree->ops->merge_bio_hook(READ, page, 0,
660 							PAGE_CACHE_SIZE,
661 							comp_bio, 0);
662 		else
663 			ret = 0;
664 
665 		page->mapping = NULL;
666 		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
667 		    PAGE_CACHE_SIZE) {
668 			bio_get(comp_bio);
669 
670 			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
671 					BTRFS_WQ_ENDIO_DATA);
672 			BUG_ON(ret); /* -ENOMEM */
673 
674 			/*
675 			 * inc the count before we submit the bio so
676 			 * we know the end IO handler won't happen before
677 			 * we inc the count.  Otherwise, the cb might get
678 			 * freed before we're done setting it up
679 			 */
680 			atomic_inc(&cb->pending_bios);
681 
682 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
683 				ret = btrfs_lookup_bio_sums(root, inode,
684 							comp_bio, sums);
685 				BUG_ON(ret); /* -ENOMEM */
686 			}
687 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
688 					     root->sectorsize);
689 
690 			ret = btrfs_map_bio(root, READ, comp_bio,
691 					    mirror_num, 0);
692 			if (ret) {
693 				bio->bi_error = ret;
694 				bio_endio(comp_bio);
695 			}
696 
697 			bio_put(comp_bio);
698 
699 			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
700 							GFP_NOFS);
701 			BUG_ON(!comp_bio);
702 			comp_bio->bi_private = cb;
703 			comp_bio->bi_end_io = end_compressed_bio_read;
704 
705 			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
706 		}
707 		cur_disk_byte += PAGE_CACHE_SIZE;
708 	}
709 	bio_get(comp_bio);
710 
711 	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
712 			BTRFS_WQ_ENDIO_DATA);
713 	BUG_ON(ret); /* -ENOMEM */
714 
715 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
716 		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
717 		BUG_ON(ret); /* -ENOMEM */
718 	}
719 
720 	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
721 	if (ret) {
722 		bio->bi_error = ret;
723 		bio_endio(comp_bio);
724 	}
725 
726 	bio_put(comp_bio);
727 	return 0;
728 
729 fail2:
730 	while (faili >= 0) {
731 		__free_page(cb->compressed_pages[faili]);
732 		faili--;
733 	}
734 
735 	kfree(cb->compressed_pages);
736 fail1:
737 	kfree(cb);
738 out:
739 	free_extent_map(em);
740 	return ret;
741 }
742 
743 static struct {
744 	struct list_head idle_ws;
745 	spinlock_t ws_lock;
746 	int num_ws;
747 	atomic_t alloc_ws;
748 	wait_queue_head_t ws_wait;
749 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
750 
751 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
752 	&btrfs_zlib_compress,
753 	&btrfs_lzo_compress,
754 };
755 
756 void __init btrfs_init_compress(void)
757 {
758 	int i;
759 
760 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
761 		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
762 		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
763 		atomic_set(&btrfs_comp_ws[i].alloc_ws, 0);
764 		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
765 	}
766 }
767 
768 /*
769  * this finds an available workspace or allocates a new one
770  * ERR_PTR is returned if things go bad.
771  */
772 static struct list_head *find_workspace(int type)
773 {
774 	struct list_head *workspace;
775 	int cpus = num_online_cpus();
776 	int idx = type - 1;
777 
778 	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
779 	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
780 	atomic_t *alloc_ws		= &btrfs_comp_ws[idx].alloc_ws;
781 	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
782 	int *num_ws			= &btrfs_comp_ws[idx].num_ws;
783 again:
784 	spin_lock(ws_lock);
785 	if (!list_empty(idle_ws)) {
786 		workspace = idle_ws->next;
787 		list_del(workspace);
788 		(*num_ws)--;
789 		spin_unlock(ws_lock);
790 		return workspace;
791 
792 	}
793 	if (atomic_read(alloc_ws) > cpus) {
794 		DEFINE_WAIT(wait);
795 
796 		spin_unlock(ws_lock);
797 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
798 		if (atomic_read(alloc_ws) > cpus && !*num_ws)
799 			schedule();
800 		finish_wait(ws_wait, &wait);
801 		goto again;
802 	}
803 	atomic_inc(alloc_ws);
804 	spin_unlock(ws_lock);
805 
806 	workspace = btrfs_compress_op[idx]->alloc_workspace();
807 	if (IS_ERR(workspace)) {
808 		atomic_dec(alloc_ws);
809 		wake_up(ws_wait);
810 	}
811 	return workspace;
812 }
813 
814 /*
815  * put a workspace struct back on the list or free it if we have enough
816  * idle ones sitting around
817  */
818 static void free_workspace(int type, struct list_head *workspace)
819 {
820 	int idx = type - 1;
821 	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
822 	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
823 	atomic_t *alloc_ws		= &btrfs_comp_ws[idx].alloc_ws;
824 	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
825 	int *num_ws			= &btrfs_comp_ws[idx].num_ws;
826 
827 	spin_lock(ws_lock);
828 	if (*num_ws < num_online_cpus()) {
829 		list_add(workspace, idle_ws);
830 		(*num_ws)++;
831 		spin_unlock(ws_lock);
832 		goto wake;
833 	}
834 	spin_unlock(ws_lock);
835 
836 	btrfs_compress_op[idx]->free_workspace(workspace);
837 	atomic_dec(alloc_ws);
838 wake:
839 	/*
840 	 * Make sure counter is updated before we wake up waiters.
841 	 */
842 	smp_mb();
843 	if (waitqueue_active(ws_wait))
844 		wake_up(ws_wait);
845 }
846 
847 /*
848  * cleanup function for module exit
849  */
850 static void free_workspaces(void)
851 {
852 	struct list_head *workspace;
853 	int i;
854 
855 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
856 		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
857 			workspace = btrfs_comp_ws[i].idle_ws.next;
858 			list_del(workspace);
859 			btrfs_compress_op[i]->free_workspace(workspace);
860 			atomic_dec(&btrfs_comp_ws[i].alloc_ws);
861 		}
862 	}
863 }
864 
865 /*
866  * given an address space and start/len, compress the bytes.
867  *
868  * pages are allocated to hold the compressed result and stored
869  * in 'pages'
870  *
871  * out_pages is used to return the number of pages allocated.  There
872  * may be pages allocated even if we return an error
873  *
874  * total_in is used to return the number of bytes actually read.  It
875  * may be smaller then len if we had to exit early because we
876  * ran out of room in the pages array or because we cross the
877  * max_out threshold.
878  *
879  * total_out is used to return the total number of compressed bytes
880  *
881  * max_out tells us the max number of bytes that we're allowed to
882  * stuff into pages
883  */
884 int btrfs_compress_pages(int type, struct address_space *mapping,
885 			 u64 start, unsigned long len,
886 			 struct page **pages,
887 			 unsigned long nr_dest_pages,
888 			 unsigned long *out_pages,
889 			 unsigned long *total_in,
890 			 unsigned long *total_out,
891 			 unsigned long max_out)
892 {
893 	struct list_head *workspace;
894 	int ret;
895 
896 	workspace = find_workspace(type);
897 	if (IS_ERR(workspace))
898 		return PTR_ERR(workspace);
899 
900 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
901 						      start, len, pages,
902 						      nr_dest_pages, out_pages,
903 						      total_in, total_out,
904 						      max_out);
905 	free_workspace(type, workspace);
906 	return ret;
907 }
908 
909 /*
910  * pages_in is an array of pages with compressed data.
911  *
912  * disk_start is the starting logical offset of this array in the file
913  *
914  * bvec is a bio_vec of pages from the file that we want to decompress into
915  *
916  * vcnt is the count of pages in the biovec
917  *
918  * srclen is the number of bytes in pages_in
919  *
920  * The basic idea is that we have a bio that was created by readpages.
921  * The pages in the bio are for the uncompressed data, and they may not
922  * be contiguous.  They all correspond to the range of bytes covered by
923  * the compressed extent.
924  */
925 static int btrfs_decompress_biovec(int type, struct page **pages_in,
926 				   u64 disk_start, struct bio_vec *bvec,
927 				   int vcnt, size_t srclen)
928 {
929 	struct list_head *workspace;
930 	int ret;
931 
932 	workspace = find_workspace(type);
933 	if (IS_ERR(workspace))
934 		return PTR_ERR(workspace);
935 
936 	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
937 							 disk_start,
938 							 bvec, vcnt, srclen);
939 	free_workspace(type, workspace);
940 	return ret;
941 }
942 
943 /*
944  * a less complex decompression routine.  Our compressed data fits in a
945  * single page, and we want to read a single page out of it.
946  * start_byte tells us the offset into the compressed data we're interested in
947  */
948 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
949 		     unsigned long start_byte, size_t srclen, size_t destlen)
950 {
951 	struct list_head *workspace;
952 	int ret;
953 
954 	workspace = find_workspace(type);
955 	if (IS_ERR(workspace))
956 		return PTR_ERR(workspace);
957 
958 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
959 						  dest_page, start_byte,
960 						  srclen, destlen);
961 
962 	free_workspace(type, workspace);
963 	return ret;
964 }
965 
966 void btrfs_exit_compress(void)
967 {
968 	free_workspaces();
969 }
970 
971 /*
972  * Copy uncompressed data from working buffer to pages.
973  *
974  * buf_start is the byte offset we're of the start of our workspace buffer.
975  *
976  * total_out is the last byte of the buffer
977  */
978 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
979 			      unsigned long total_out, u64 disk_start,
980 			      struct bio_vec *bvec, int vcnt,
981 			      unsigned long *pg_index,
982 			      unsigned long *pg_offset)
983 {
984 	unsigned long buf_offset;
985 	unsigned long current_buf_start;
986 	unsigned long start_byte;
987 	unsigned long working_bytes = total_out - buf_start;
988 	unsigned long bytes;
989 	char *kaddr;
990 	struct page *page_out = bvec[*pg_index].bv_page;
991 
992 	/*
993 	 * start byte is the first byte of the page we're currently
994 	 * copying into relative to the start of the compressed data.
995 	 */
996 	start_byte = page_offset(page_out) - disk_start;
997 
998 	/* we haven't yet hit data corresponding to this page */
999 	if (total_out <= start_byte)
1000 		return 1;
1001 
1002 	/*
1003 	 * the start of the data we care about is offset into
1004 	 * the middle of our working buffer
1005 	 */
1006 	if (total_out > start_byte && buf_start < start_byte) {
1007 		buf_offset = start_byte - buf_start;
1008 		working_bytes -= buf_offset;
1009 	} else {
1010 		buf_offset = 0;
1011 	}
1012 	current_buf_start = buf_start;
1013 
1014 	/* copy bytes from the working buffer into the pages */
1015 	while (working_bytes > 0) {
1016 		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1017 			    PAGE_CACHE_SIZE - buf_offset);
1018 		bytes = min(bytes, working_bytes);
1019 		kaddr = kmap_atomic(page_out);
1020 		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1021 		kunmap_atomic(kaddr);
1022 		flush_dcache_page(page_out);
1023 
1024 		*pg_offset += bytes;
1025 		buf_offset += bytes;
1026 		working_bytes -= bytes;
1027 		current_buf_start += bytes;
1028 
1029 		/* check if we need to pick another page */
1030 		if (*pg_offset == PAGE_CACHE_SIZE) {
1031 			(*pg_index)++;
1032 			if (*pg_index >= vcnt)
1033 				return 0;
1034 
1035 			page_out = bvec[*pg_index].bv_page;
1036 			*pg_offset = 0;
1037 			start_byte = page_offset(page_out) - disk_start;
1038 
1039 			/*
1040 			 * make sure our new page is covered by this
1041 			 * working buffer
1042 			 */
1043 			if (total_out <= start_byte)
1044 				return 1;
1045 
1046 			/*
1047 			 * the next page in the biovec might not be adjacent
1048 			 * to the last page, but it might still be found
1049 			 * inside this working buffer. bump our offset pointer
1050 			 */
1051 			if (total_out > start_byte &&
1052 			    current_buf_start < start_byte) {
1053 				buf_offset = start_byte - buf_start;
1054 				working_bytes = total_out - start_byte;
1055 				current_buf_start = buf_start + buf_offset;
1056 			}
1057 		}
1058 	}
1059 
1060 	return 1;
1061 }
1062 
1063 /*
1064  * When uncompressing data, we need to make sure and zero any parts of
1065  * the biovec that were not filled in by the decompression code.  pg_index
1066  * and pg_offset indicate the last page and the last offset of that page
1067  * that have been filled in.  This will zero everything remaining in the
1068  * biovec.
1069  */
1070 void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
1071 				   unsigned long pg_index,
1072 				   unsigned long pg_offset)
1073 {
1074 	while (pg_index < vcnt) {
1075 		struct page *page = bvec[pg_index].bv_page;
1076 		unsigned long off = bvec[pg_index].bv_offset;
1077 		unsigned long len = bvec[pg_index].bv_len;
1078 
1079 		if (pg_offset < off)
1080 			pg_offset = off;
1081 		if (pg_offset < off + len) {
1082 			unsigned long bytes = off + len - pg_offset;
1083 			char *kaddr;
1084 
1085 			kaddr = kmap_atomic(page);
1086 			memset(kaddr + pg_offset, 0, bytes);
1087 			kunmap_atomic(kaddr);
1088 		}
1089 		pg_index++;
1090 		pg_offset = 0;
1091 	}
1092 }
1093