xref: /linux/fs/btrfs/compression.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 
32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
33 
34 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
35 {
36 	switch (type) {
37 	case BTRFS_COMPRESS_ZLIB:
38 	case BTRFS_COMPRESS_LZO:
39 	case BTRFS_COMPRESS_ZSTD:
40 	case BTRFS_COMPRESS_NONE:
41 		return btrfs_compress_types[type];
42 	default:
43 		break;
44 	}
45 
46 	return NULL;
47 }
48 
49 bool btrfs_compress_is_valid_type(const char *str, size_t len)
50 {
51 	int i;
52 
53 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
54 		size_t comp_len = strlen(btrfs_compress_types[i]);
55 
56 		if (len < comp_len)
57 			continue;
58 
59 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
60 			return true;
61 	}
62 	return false;
63 }
64 
65 static int compression_compress_pages(int type, struct list_head *ws,
66                struct address_space *mapping, u64 start, struct page **pages,
67                unsigned long *out_pages, unsigned long *total_in,
68                unsigned long *total_out)
69 {
70 	switch (type) {
71 	case BTRFS_COMPRESS_ZLIB:
72 		return zlib_compress_pages(ws, mapping, start, pages,
73 				out_pages, total_in, total_out);
74 	case BTRFS_COMPRESS_LZO:
75 		return lzo_compress_pages(ws, mapping, start, pages,
76 				out_pages, total_in, total_out);
77 	case BTRFS_COMPRESS_ZSTD:
78 		return zstd_compress_pages(ws, mapping, start, pages,
79 				out_pages, total_in, total_out);
80 	case BTRFS_COMPRESS_NONE:
81 	default:
82 		/*
83 		 * This can't happen, the type is validated several times
84 		 * before we get here. As a sane fallback, return what the
85 		 * callers will understand as 'no compression happened'.
86 		 */
87 		return -E2BIG;
88 	}
89 }
90 
91 static int compression_decompress_bio(int type, struct list_head *ws,
92 		struct compressed_bio *cb)
93 {
94 	switch (type) {
95 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
96 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
97 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
98 	case BTRFS_COMPRESS_NONE:
99 	default:
100 		/*
101 		 * This can't happen, the type is validated several times
102 		 * before we get here.
103 		 */
104 		BUG();
105 	}
106 }
107 
108 static int compression_decompress(int type, struct list_head *ws,
109                unsigned char *data_in, struct page *dest_page,
110                unsigned long start_byte, size_t srclen, size_t destlen)
111 {
112 	switch (type) {
113 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
114 						start_byte, srclen, destlen);
115 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
116 						start_byte, srclen, destlen);
117 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
118 						start_byte, srclen, destlen);
119 	case BTRFS_COMPRESS_NONE:
120 	default:
121 		/*
122 		 * This can't happen, the type is validated several times
123 		 * before we get here.
124 		 */
125 		BUG();
126 	}
127 }
128 
129 static int btrfs_decompress_bio(struct compressed_bio *cb);
130 
131 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
132 				      unsigned long disk_size)
133 {
134 	return sizeof(struct compressed_bio) +
135 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
136 }
137 
138 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
139 				 u64 disk_start)
140 {
141 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
142 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
143 	const u32 csum_size = fs_info->csum_size;
144 	struct page *page;
145 	unsigned long i;
146 	char *kaddr;
147 	u8 csum[BTRFS_CSUM_SIZE];
148 	struct compressed_bio *cb = bio->bi_private;
149 	u8 *cb_sum = cb->sums;
150 
151 	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
152 		return 0;
153 
154 	shash->tfm = fs_info->csum_shash;
155 
156 	for (i = 0; i < cb->nr_pages; i++) {
157 		page = cb->compressed_pages[i];
158 
159 		kaddr = kmap_atomic(page);
160 		crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
161 		kunmap_atomic(kaddr);
162 
163 		if (memcmp(&csum, cb_sum, csum_size)) {
164 			btrfs_print_data_csum_error(inode, disk_start,
165 					csum, cb_sum, cb->mirror_num);
166 			if (btrfs_io_bio(bio)->device)
167 				btrfs_dev_stat_inc_and_print(
168 					btrfs_io_bio(bio)->device,
169 					BTRFS_DEV_STAT_CORRUPTION_ERRS);
170 			return -EIO;
171 		}
172 		cb_sum += csum_size;
173 	}
174 	return 0;
175 }
176 
177 /* when we finish reading compressed pages from the disk, we
178  * decompress them and then run the bio end_io routines on the
179  * decompressed pages (in the inode address space).
180  *
181  * This allows the checksumming and other IO error handling routines
182  * to work normally
183  *
184  * The compressed pages are freed here, and it must be run
185  * in process context
186  */
187 static void end_compressed_bio_read(struct bio *bio)
188 {
189 	struct compressed_bio *cb = bio->bi_private;
190 	struct inode *inode;
191 	struct page *page;
192 	unsigned long index;
193 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
194 	int ret = 0;
195 
196 	if (bio->bi_status)
197 		cb->errors = 1;
198 
199 	/* if there are more bios still pending for this compressed
200 	 * extent, just exit
201 	 */
202 	if (!refcount_dec_and_test(&cb->pending_bios))
203 		goto out;
204 
205 	/*
206 	 * Record the correct mirror_num in cb->orig_bio so that
207 	 * read-repair can work properly.
208 	 */
209 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
210 	cb->mirror_num = mirror;
211 
212 	/*
213 	 * Some IO in this cb have failed, just skip checksum as there
214 	 * is no way it could be correct.
215 	 */
216 	if (cb->errors == 1)
217 		goto csum_failed;
218 
219 	inode = cb->inode;
220 	ret = check_compressed_csum(BTRFS_I(inode), bio,
221 				    bio->bi_iter.bi_sector << 9);
222 	if (ret)
223 		goto csum_failed;
224 
225 	/* ok, we're the last bio for this extent, lets start
226 	 * the decompression.
227 	 */
228 	ret = btrfs_decompress_bio(cb);
229 
230 csum_failed:
231 	if (ret)
232 		cb->errors = 1;
233 
234 	/* release the compressed pages */
235 	index = 0;
236 	for (index = 0; index < cb->nr_pages; index++) {
237 		page = cb->compressed_pages[index];
238 		page->mapping = NULL;
239 		put_page(page);
240 	}
241 
242 	/* do io completion on the original bio */
243 	if (cb->errors) {
244 		bio_io_error(cb->orig_bio);
245 	} else {
246 		struct bio_vec *bvec;
247 		struct bvec_iter_all iter_all;
248 
249 		/*
250 		 * we have verified the checksum already, set page
251 		 * checked so the end_io handlers know about it
252 		 */
253 		ASSERT(!bio_flagged(bio, BIO_CLONED));
254 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
255 			SetPageChecked(bvec->bv_page);
256 
257 		bio_endio(cb->orig_bio);
258 	}
259 
260 	/* finally free the cb struct */
261 	kfree(cb->compressed_pages);
262 	kfree(cb);
263 out:
264 	bio_put(bio);
265 }
266 
267 /*
268  * Clear the writeback bits on all of the file
269  * pages for a compressed write
270  */
271 static noinline void end_compressed_writeback(struct inode *inode,
272 					      const struct compressed_bio *cb)
273 {
274 	unsigned long index = cb->start >> PAGE_SHIFT;
275 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
276 	struct page *pages[16];
277 	unsigned long nr_pages = end_index - index + 1;
278 	int i;
279 	int ret;
280 
281 	if (cb->errors)
282 		mapping_set_error(inode->i_mapping, -EIO);
283 
284 	while (nr_pages > 0) {
285 		ret = find_get_pages_contig(inode->i_mapping, index,
286 				     min_t(unsigned long,
287 				     nr_pages, ARRAY_SIZE(pages)), pages);
288 		if (ret == 0) {
289 			nr_pages -= 1;
290 			index += 1;
291 			continue;
292 		}
293 		for (i = 0; i < ret; i++) {
294 			if (cb->errors)
295 				SetPageError(pages[i]);
296 			end_page_writeback(pages[i]);
297 			put_page(pages[i]);
298 		}
299 		nr_pages -= ret;
300 		index += ret;
301 	}
302 	/* the inode may be gone now */
303 }
304 
305 /*
306  * do the cleanup once all the compressed pages hit the disk.
307  * This will clear writeback on the file pages and free the compressed
308  * pages.
309  *
310  * This also calls the writeback end hooks for the file pages so that
311  * metadata and checksums can be updated in the file.
312  */
313 static void end_compressed_bio_write(struct bio *bio)
314 {
315 	struct compressed_bio *cb = bio->bi_private;
316 	struct inode *inode;
317 	struct page *page;
318 	unsigned long index;
319 
320 	if (bio->bi_status)
321 		cb->errors = 1;
322 
323 	/* if there are more bios still pending for this compressed
324 	 * extent, just exit
325 	 */
326 	if (!refcount_dec_and_test(&cb->pending_bios))
327 		goto out;
328 
329 	/* ok, we're the last bio for this extent, step one is to
330 	 * call back into the FS and do all the end_io operations
331 	 */
332 	inode = cb->inode;
333 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
334 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
335 			cb->start, cb->start + cb->len - 1,
336 			bio->bi_status == BLK_STS_OK);
337 	cb->compressed_pages[0]->mapping = NULL;
338 
339 	end_compressed_writeback(inode, cb);
340 	/* note, our inode could be gone now */
341 
342 	/*
343 	 * release the compressed pages, these came from alloc_page and
344 	 * are not attached to the inode at all
345 	 */
346 	index = 0;
347 	for (index = 0; index < cb->nr_pages; index++) {
348 		page = cb->compressed_pages[index];
349 		page->mapping = NULL;
350 		put_page(page);
351 	}
352 
353 	/* finally free the cb struct */
354 	kfree(cb->compressed_pages);
355 	kfree(cb);
356 out:
357 	bio_put(bio);
358 }
359 
360 /*
361  * worker function to build and submit bios for previously compressed pages.
362  * The corresponding pages in the inode should be marked for writeback
363  * and the compressed pages should have a reference on them for dropping
364  * when the IO is complete.
365  *
366  * This also checksums the file bytes and gets things ready for
367  * the end io hooks.
368  */
369 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
370 				 unsigned long len, u64 disk_start,
371 				 unsigned long compressed_len,
372 				 struct page **compressed_pages,
373 				 unsigned long nr_pages,
374 				 unsigned int write_flags,
375 				 struct cgroup_subsys_state *blkcg_css)
376 {
377 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
378 	struct bio *bio = NULL;
379 	struct compressed_bio *cb;
380 	unsigned long bytes_left;
381 	int pg_index = 0;
382 	struct page *page;
383 	u64 first_byte = disk_start;
384 	blk_status_t ret;
385 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
386 
387 	WARN_ON(!PAGE_ALIGNED(start));
388 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
389 	if (!cb)
390 		return BLK_STS_RESOURCE;
391 	refcount_set(&cb->pending_bios, 0);
392 	cb->errors = 0;
393 	cb->inode = &inode->vfs_inode;
394 	cb->start = start;
395 	cb->len = len;
396 	cb->mirror_num = 0;
397 	cb->compressed_pages = compressed_pages;
398 	cb->compressed_len = compressed_len;
399 	cb->orig_bio = NULL;
400 	cb->nr_pages = nr_pages;
401 
402 	bio = btrfs_bio_alloc(first_byte);
403 	bio->bi_opf = REQ_OP_WRITE | write_flags;
404 	bio->bi_private = cb;
405 	bio->bi_end_io = end_compressed_bio_write;
406 
407 	if (blkcg_css) {
408 		bio->bi_opf |= REQ_CGROUP_PUNT;
409 		kthread_associate_blkcg(blkcg_css);
410 	}
411 	refcount_set(&cb->pending_bios, 1);
412 
413 	/* create and submit bios for the compressed pages */
414 	bytes_left = compressed_len;
415 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
416 		int submit = 0;
417 
418 		page = compressed_pages[pg_index];
419 		page->mapping = inode->vfs_inode.i_mapping;
420 		if (bio->bi_iter.bi_size)
421 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
422 							  0);
423 
424 		page->mapping = NULL;
425 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
426 		    PAGE_SIZE) {
427 			/*
428 			 * inc the count before we submit the bio so
429 			 * we know the end IO handler won't happen before
430 			 * we inc the count.  Otherwise, the cb might get
431 			 * freed before we're done setting it up
432 			 */
433 			refcount_inc(&cb->pending_bios);
434 			ret = btrfs_bio_wq_end_io(fs_info, bio,
435 						  BTRFS_WQ_ENDIO_DATA);
436 			BUG_ON(ret); /* -ENOMEM */
437 
438 			if (!skip_sum) {
439 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
440 				BUG_ON(ret); /* -ENOMEM */
441 			}
442 
443 			ret = btrfs_map_bio(fs_info, bio, 0);
444 			if (ret) {
445 				bio->bi_status = ret;
446 				bio_endio(bio);
447 			}
448 
449 			bio = btrfs_bio_alloc(first_byte);
450 			bio->bi_opf = REQ_OP_WRITE | write_flags;
451 			bio->bi_private = cb;
452 			bio->bi_end_io = end_compressed_bio_write;
453 			if (blkcg_css)
454 				bio->bi_opf |= REQ_CGROUP_PUNT;
455 			bio_add_page(bio, page, PAGE_SIZE, 0);
456 		}
457 		if (bytes_left < PAGE_SIZE) {
458 			btrfs_info(fs_info,
459 					"bytes left %lu compress len %lu nr %lu",
460 			       bytes_left, cb->compressed_len, cb->nr_pages);
461 		}
462 		bytes_left -= PAGE_SIZE;
463 		first_byte += PAGE_SIZE;
464 		cond_resched();
465 	}
466 
467 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
468 	BUG_ON(ret); /* -ENOMEM */
469 
470 	if (!skip_sum) {
471 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
472 		BUG_ON(ret); /* -ENOMEM */
473 	}
474 
475 	ret = btrfs_map_bio(fs_info, bio, 0);
476 	if (ret) {
477 		bio->bi_status = ret;
478 		bio_endio(bio);
479 	}
480 
481 	if (blkcg_css)
482 		kthread_associate_blkcg(NULL);
483 
484 	return 0;
485 }
486 
487 static u64 bio_end_offset(struct bio *bio)
488 {
489 	struct bio_vec *last = bio_last_bvec_all(bio);
490 
491 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
492 }
493 
494 static noinline int add_ra_bio_pages(struct inode *inode,
495 				     u64 compressed_end,
496 				     struct compressed_bio *cb)
497 {
498 	unsigned long end_index;
499 	unsigned long pg_index;
500 	u64 last_offset;
501 	u64 isize = i_size_read(inode);
502 	int ret;
503 	struct page *page;
504 	unsigned long nr_pages = 0;
505 	struct extent_map *em;
506 	struct address_space *mapping = inode->i_mapping;
507 	struct extent_map_tree *em_tree;
508 	struct extent_io_tree *tree;
509 	u64 end;
510 	int misses = 0;
511 
512 	last_offset = bio_end_offset(cb->orig_bio);
513 	em_tree = &BTRFS_I(inode)->extent_tree;
514 	tree = &BTRFS_I(inode)->io_tree;
515 
516 	if (isize == 0)
517 		return 0;
518 
519 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
520 
521 	while (last_offset < compressed_end) {
522 		pg_index = last_offset >> PAGE_SHIFT;
523 
524 		if (pg_index > end_index)
525 			break;
526 
527 		page = xa_load(&mapping->i_pages, pg_index);
528 		if (page && !xa_is_value(page)) {
529 			misses++;
530 			if (misses > 4)
531 				break;
532 			goto next;
533 		}
534 
535 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
536 								 ~__GFP_FS));
537 		if (!page)
538 			break;
539 
540 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
541 			put_page(page);
542 			goto next;
543 		}
544 
545 		end = last_offset + PAGE_SIZE - 1;
546 		/*
547 		 * at this point, we have a locked page in the page cache
548 		 * for these bytes in the file.  But, we have to make
549 		 * sure they map to this compressed extent on disk.
550 		 */
551 		set_page_extent_mapped(page);
552 		lock_extent(tree, last_offset, end);
553 		read_lock(&em_tree->lock);
554 		em = lookup_extent_mapping(em_tree, last_offset,
555 					   PAGE_SIZE);
556 		read_unlock(&em_tree->lock);
557 
558 		if (!em || last_offset < em->start ||
559 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
560 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
561 			free_extent_map(em);
562 			unlock_extent(tree, last_offset, end);
563 			unlock_page(page);
564 			put_page(page);
565 			break;
566 		}
567 		free_extent_map(em);
568 
569 		if (page->index == end_index) {
570 			char *userpage;
571 			size_t zero_offset = offset_in_page(isize);
572 
573 			if (zero_offset) {
574 				int zeros;
575 				zeros = PAGE_SIZE - zero_offset;
576 				userpage = kmap_atomic(page);
577 				memset(userpage + zero_offset, 0, zeros);
578 				flush_dcache_page(page);
579 				kunmap_atomic(userpage);
580 			}
581 		}
582 
583 		ret = bio_add_page(cb->orig_bio, page,
584 				   PAGE_SIZE, 0);
585 
586 		if (ret == PAGE_SIZE) {
587 			nr_pages++;
588 			put_page(page);
589 		} else {
590 			unlock_extent(tree, last_offset, end);
591 			unlock_page(page);
592 			put_page(page);
593 			break;
594 		}
595 next:
596 		last_offset += PAGE_SIZE;
597 	}
598 	return 0;
599 }
600 
601 /*
602  * for a compressed read, the bio we get passed has all the inode pages
603  * in it.  We don't actually do IO on those pages but allocate new ones
604  * to hold the compressed pages on disk.
605  *
606  * bio->bi_iter.bi_sector points to the compressed extent on disk
607  * bio->bi_io_vec points to all of the inode pages
608  *
609  * After the compressed pages are read, we copy the bytes into the
610  * bio we were passed and then call the bio end_io calls
611  */
612 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
613 				 int mirror_num, unsigned long bio_flags)
614 {
615 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
616 	struct extent_map_tree *em_tree;
617 	struct compressed_bio *cb;
618 	unsigned long compressed_len;
619 	unsigned long nr_pages;
620 	unsigned long pg_index;
621 	struct page *page;
622 	struct bio *comp_bio;
623 	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
624 	u64 em_len;
625 	u64 em_start;
626 	struct extent_map *em;
627 	blk_status_t ret = BLK_STS_RESOURCE;
628 	int faili = 0;
629 	u8 *sums;
630 
631 	em_tree = &BTRFS_I(inode)->extent_tree;
632 
633 	/* we need the actual starting offset of this extent in the file */
634 	read_lock(&em_tree->lock);
635 	em = lookup_extent_mapping(em_tree,
636 				   page_offset(bio_first_page_all(bio)),
637 				   PAGE_SIZE);
638 	read_unlock(&em_tree->lock);
639 	if (!em)
640 		return BLK_STS_IOERR;
641 
642 	compressed_len = em->block_len;
643 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
644 	if (!cb)
645 		goto out;
646 
647 	refcount_set(&cb->pending_bios, 0);
648 	cb->errors = 0;
649 	cb->inode = inode;
650 	cb->mirror_num = mirror_num;
651 	sums = cb->sums;
652 
653 	cb->start = em->orig_start;
654 	em_len = em->len;
655 	em_start = em->start;
656 
657 	free_extent_map(em);
658 	em = NULL;
659 
660 	cb->len = bio->bi_iter.bi_size;
661 	cb->compressed_len = compressed_len;
662 	cb->compress_type = extent_compress_type(bio_flags);
663 	cb->orig_bio = bio;
664 
665 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
666 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
667 				       GFP_NOFS);
668 	if (!cb->compressed_pages)
669 		goto fail1;
670 
671 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
672 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
673 							      __GFP_HIGHMEM);
674 		if (!cb->compressed_pages[pg_index]) {
675 			faili = pg_index - 1;
676 			ret = BLK_STS_RESOURCE;
677 			goto fail2;
678 		}
679 	}
680 	faili = nr_pages - 1;
681 	cb->nr_pages = nr_pages;
682 
683 	add_ra_bio_pages(inode, em_start + em_len, cb);
684 
685 	/* include any pages we added in add_ra-bio_pages */
686 	cb->len = bio->bi_iter.bi_size;
687 
688 	comp_bio = btrfs_bio_alloc(cur_disk_byte);
689 	comp_bio->bi_opf = REQ_OP_READ;
690 	comp_bio->bi_private = cb;
691 	comp_bio->bi_end_io = end_compressed_bio_read;
692 	refcount_set(&cb->pending_bios, 1);
693 
694 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
695 		int submit = 0;
696 
697 		page = cb->compressed_pages[pg_index];
698 		page->mapping = inode->i_mapping;
699 		page->index = em_start >> PAGE_SHIFT;
700 
701 		if (comp_bio->bi_iter.bi_size)
702 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
703 							  comp_bio, 0);
704 
705 		page->mapping = NULL;
706 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
707 		    PAGE_SIZE) {
708 			unsigned int nr_sectors;
709 
710 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
711 						  BTRFS_WQ_ENDIO_DATA);
712 			BUG_ON(ret); /* -ENOMEM */
713 
714 			/*
715 			 * inc the count before we submit the bio so
716 			 * we know the end IO handler won't happen before
717 			 * we inc the count.  Otherwise, the cb might get
718 			 * freed before we're done setting it up
719 			 */
720 			refcount_inc(&cb->pending_bios);
721 
722 			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
723 			BUG_ON(ret); /* -ENOMEM */
724 
725 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
726 						  fs_info->sectorsize);
727 			sums += fs_info->csum_size * nr_sectors;
728 
729 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
730 			if (ret) {
731 				comp_bio->bi_status = ret;
732 				bio_endio(comp_bio);
733 			}
734 
735 			comp_bio = btrfs_bio_alloc(cur_disk_byte);
736 			comp_bio->bi_opf = REQ_OP_READ;
737 			comp_bio->bi_private = cb;
738 			comp_bio->bi_end_io = end_compressed_bio_read;
739 
740 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
741 		}
742 		cur_disk_byte += PAGE_SIZE;
743 	}
744 
745 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
746 	BUG_ON(ret); /* -ENOMEM */
747 
748 	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
749 	BUG_ON(ret); /* -ENOMEM */
750 
751 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
752 	if (ret) {
753 		comp_bio->bi_status = ret;
754 		bio_endio(comp_bio);
755 	}
756 
757 	return 0;
758 
759 fail2:
760 	while (faili >= 0) {
761 		__free_page(cb->compressed_pages[faili]);
762 		faili--;
763 	}
764 
765 	kfree(cb->compressed_pages);
766 fail1:
767 	kfree(cb);
768 out:
769 	free_extent_map(em);
770 	return ret;
771 }
772 
773 /*
774  * Heuristic uses systematic sampling to collect data from the input data
775  * range, the logic can be tuned by the following constants:
776  *
777  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
778  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
779  */
780 #define SAMPLING_READ_SIZE	(16)
781 #define SAMPLING_INTERVAL	(256)
782 
783 /*
784  * For statistical analysis of the input data we consider bytes that form a
785  * Galois Field of 256 objects. Each object has an attribute count, ie. how
786  * many times the object appeared in the sample.
787  */
788 #define BUCKET_SIZE		(256)
789 
790 /*
791  * The size of the sample is based on a statistical sampling rule of thumb.
792  * The common way is to perform sampling tests as long as the number of
793  * elements in each cell is at least 5.
794  *
795  * Instead of 5, we choose 32 to obtain more accurate results.
796  * If the data contain the maximum number of symbols, which is 256, we obtain a
797  * sample size bound by 8192.
798  *
799  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
800  * from up to 512 locations.
801  */
802 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
803 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
804 
805 struct bucket_item {
806 	u32 count;
807 };
808 
809 struct heuristic_ws {
810 	/* Partial copy of input data */
811 	u8 *sample;
812 	u32 sample_size;
813 	/* Buckets store counters for each byte value */
814 	struct bucket_item *bucket;
815 	/* Sorting buffer */
816 	struct bucket_item *bucket_b;
817 	struct list_head list;
818 };
819 
820 static struct workspace_manager heuristic_wsm;
821 
822 static void free_heuristic_ws(struct list_head *ws)
823 {
824 	struct heuristic_ws *workspace;
825 
826 	workspace = list_entry(ws, struct heuristic_ws, list);
827 
828 	kvfree(workspace->sample);
829 	kfree(workspace->bucket);
830 	kfree(workspace->bucket_b);
831 	kfree(workspace);
832 }
833 
834 static struct list_head *alloc_heuristic_ws(unsigned int level)
835 {
836 	struct heuristic_ws *ws;
837 
838 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
839 	if (!ws)
840 		return ERR_PTR(-ENOMEM);
841 
842 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
843 	if (!ws->sample)
844 		goto fail;
845 
846 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
847 	if (!ws->bucket)
848 		goto fail;
849 
850 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
851 	if (!ws->bucket_b)
852 		goto fail;
853 
854 	INIT_LIST_HEAD(&ws->list);
855 	return &ws->list;
856 fail:
857 	free_heuristic_ws(&ws->list);
858 	return ERR_PTR(-ENOMEM);
859 }
860 
861 const struct btrfs_compress_op btrfs_heuristic_compress = {
862 	.workspace_manager = &heuristic_wsm,
863 };
864 
865 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
866 	/* The heuristic is represented as compression type 0 */
867 	&btrfs_heuristic_compress,
868 	&btrfs_zlib_compress,
869 	&btrfs_lzo_compress,
870 	&btrfs_zstd_compress,
871 };
872 
873 static struct list_head *alloc_workspace(int type, unsigned int level)
874 {
875 	switch (type) {
876 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
877 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
878 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
879 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
880 	default:
881 		/*
882 		 * This can't happen, the type is validated several times
883 		 * before we get here.
884 		 */
885 		BUG();
886 	}
887 }
888 
889 static void free_workspace(int type, struct list_head *ws)
890 {
891 	switch (type) {
892 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
893 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
894 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
895 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
896 	default:
897 		/*
898 		 * This can't happen, the type is validated several times
899 		 * before we get here.
900 		 */
901 		BUG();
902 	}
903 }
904 
905 static void btrfs_init_workspace_manager(int type)
906 {
907 	struct workspace_manager *wsm;
908 	struct list_head *workspace;
909 
910 	wsm = btrfs_compress_op[type]->workspace_manager;
911 	INIT_LIST_HEAD(&wsm->idle_ws);
912 	spin_lock_init(&wsm->ws_lock);
913 	atomic_set(&wsm->total_ws, 0);
914 	init_waitqueue_head(&wsm->ws_wait);
915 
916 	/*
917 	 * Preallocate one workspace for each compression type so we can
918 	 * guarantee forward progress in the worst case
919 	 */
920 	workspace = alloc_workspace(type, 0);
921 	if (IS_ERR(workspace)) {
922 		pr_warn(
923 	"BTRFS: cannot preallocate compression workspace, will try later\n");
924 	} else {
925 		atomic_set(&wsm->total_ws, 1);
926 		wsm->free_ws = 1;
927 		list_add(workspace, &wsm->idle_ws);
928 	}
929 }
930 
931 static void btrfs_cleanup_workspace_manager(int type)
932 {
933 	struct workspace_manager *wsman;
934 	struct list_head *ws;
935 
936 	wsman = btrfs_compress_op[type]->workspace_manager;
937 	while (!list_empty(&wsman->idle_ws)) {
938 		ws = wsman->idle_ws.next;
939 		list_del(ws);
940 		free_workspace(type, ws);
941 		atomic_dec(&wsman->total_ws);
942 	}
943 }
944 
945 /*
946  * This finds an available workspace or allocates a new one.
947  * If it's not possible to allocate a new one, waits until there's one.
948  * Preallocation makes a forward progress guarantees and we do not return
949  * errors.
950  */
951 struct list_head *btrfs_get_workspace(int type, unsigned int level)
952 {
953 	struct workspace_manager *wsm;
954 	struct list_head *workspace;
955 	int cpus = num_online_cpus();
956 	unsigned nofs_flag;
957 	struct list_head *idle_ws;
958 	spinlock_t *ws_lock;
959 	atomic_t *total_ws;
960 	wait_queue_head_t *ws_wait;
961 	int *free_ws;
962 
963 	wsm = btrfs_compress_op[type]->workspace_manager;
964 	idle_ws	 = &wsm->idle_ws;
965 	ws_lock	 = &wsm->ws_lock;
966 	total_ws = &wsm->total_ws;
967 	ws_wait	 = &wsm->ws_wait;
968 	free_ws	 = &wsm->free_ws;
969 
970 again:
971 	spin_lock(ws_lock);
972 	if (!list_empty(idle_ws)) {
973 		workspace = idle_ws->next;
974 		list_del(workspace);
975 		(*free_ws)--;
976 		spin_unlock(ws_lock);
977 		return workspace;
978 
979 	}
980 	if (atomic_read(total_ws) > cpus) {
981 		DEFINE_WAIT(wait);
982 
983 		spin_unlock(ws_lock);
984 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
985 		if (atomic_read(total_ws) > cpus && !*free_ws)
986 			schedule();
987 		finish_wait(ws_wait, &wait);
988 		goto again;
989 	}
990 	atomic_inc(total_ws);
991 	spin_unlock(ws_lock);
992 
993 	/*
994 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
995 	 * to turn it off here because we might get called from the restricted
996 	 * context of btrfs_compress_bio/btrfs_compress_pages
997 	 */
998 	nofs_flag = memalloc_nofs_save();
999 	workspace = alloc_workspace(type, level);
1000 	memalloc_nofs_restore(nofs_flag);
1001 
1002 	if (IS_ERR(workspace)) {
1003 		atomic_dec(total_ws);
1004 		wake_up(ws_wait);
1005 
1006 		/*
1007 		 * Do not return the error but go back to waiting. There's a
1008 		 * workspace preallocated for each type and the compression
1009 		 * time is bounded so we get to a workspace eventually. This
1010 		 * makes our caller's life easier.
1011 		 *
1012 		 * To prevent silent and low-probability deadlocks (when the
1013 		 * initial preallocation fails), check if there are any
1014 		 * workspaces at all.
1015 		 */
1016 		if (atomic_read(total_ws) == 0) {
1017 			static DEFINE_RATELIMIT_STATE(_rs,
1018 					/* once per minute */ 60 * HZ,
1019 					/* no burst */ 1);
1020 
1021 			if (__ratelimit(&_rs)) {
1022 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1023 			}
1024 		}
1025 		goto again;
1026 	}
1027 	return workspace;
1028 }
1029 
1030 static struct list_head *get_workspace(int type, int level)
1031 {
1032 	switch (type) {
1033 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1034 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1035 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1036 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1037 	default:
1038 		/*
1039 		 * This can't happen, the type is validated several times
1040 		 * before we get here.
1041 		 */
1042 		BUG();
1043 	}
1044 }
1045 
1046 /*
1047  * put a workspace struct back on the list or free it if we have enough
1048  * idle ones sitting around
1049  */
1050 void btrfs_put_workspace(int type, struct list_head *ws)
1051 {
1052 	struct workspace_manager *wsm;
1053 	struct list_head *idle_ws;
1054 	spinlock_t *ws_lock;
1055 	atomic_t *total_ws;
1056 	wait_queue_head_t *ws_wait;
1057 	int *free_ws;
1058 
1059 	wsm = btrfs_compress_op[type]->workspace_manager;
1060 	idle_ws	 = &wsm->idle_ws;
1061 	ws_lock	 = &wsm->ws_lock;
1062 	total_ws = &wsm->total_ws;
1063 	ws_wait	 = &wsm->ws_wait;
1064 	free_ws	 = &wsm->free_ws;
1065 
1066 	spin_lock(ws_lock);
1067 	if (*free_ws <= num_online_cpus()) {
1068 		list_add(ws, idle_ws);
1069 		(*free_ws)++;
1070 		spin_unlock(ws_lock);
1071 		goto wake;
1072 	}
1073 	spin_unlock(ws_lock);
1074 
1075 	free_workspace(type, ws);
1076 	atomic_dec(total_ws);
1077 wake:
1078 	cond_wake_up(ws_wait);
1079 }
1080 
1081 static void put_workspace(int type, struct list_head *ws)
1082 {
1083 	switch (type) {
1084 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1085 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1086 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1087 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1088 	default:
1089 		/*
1090 		 * This can't happen, the type is validated several times
1091 		 * before we get here.
1092 		 */
1093 		BUG();
1094 	}
1095 }
1096 
1097 /*
1098  * Adjust @level according to the limits of the compression algorithm or
1099  * fallback to default
1100  */
1101 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1102 {
1103 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1104 
1105 	if (level == 0)
1106 		level = ops->default_level;
1107 	else
1108 		level = min(level, ops->max_level);
1109 
1110 	return level;
1111 }
1112 
1113 /*
1114  * Given an address space and start and length, compress the bytes into @pages
1115  * that are allocated on demand.
1116  *
1117  * @type_level is encoded algorithm and level, where level 0 means whatever
1118  * default the algorithm chooses and is opaque here;
1119  * - compression algo are 0-3
1120  * - the level are bits 4-7
1121  *
1122  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1123  * and returns number of actually allocated pages
1124  *
1125  * @total_in is used to return the number of bytes actually read.  It
1126  * may be smaller than the input length if we had to exit early because we
1127  * ran out of room in the pages array or because we cross the
1128  * max_out threshold.
1129  *
1130  * @total_out is an in/out parameter, must be set to the input length and will
1131  * be also used to return the total number of compressed bytes
1132  *
1133  * @max_out tells us the max number of bytes that we're allowed to
1134  * stuff into pages
1135  */
1136 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1137 			 u64 start, struct page **pages,
1138 			 unsigned long *out_pages,
1139 			 unsigned long *total_in,
1140 			 unsigned long *total_out)
1141 {
1142 	int type = btrfs_compress_type(type_level);
1143 	int level = btrfs_compress_level(type_level);
1144 	struct list_head *workspace;
1145 	int ret;
1146 
1147 	level = btrfs_compress_set_level(type, level);
1148 	workspace = get_workspace(type, level);
1149 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1150 					 out_pages, total_in, total_out);
1151 	put_workspace(type, workspace);
1152 	return ret;
1153 }
1154 
1155 /*
1156  * pages_in is an array of pages with compressed data.
1157  *
1158  * disk_start is the starting logical offset of this array in the file
1159  *
1160  * orig_bio contains the pages from the file that we want to decompress into
1161  *
1162  * srclen is the number of bytes in pages_in
1163  *
1164  * The basic idea is that we have a bio that was created by readpages.
1165  * The pages in the bio are for the uncompressed data, and they may not
1166  * be contiguous.  They all correspond to the range of bytes covered by
1167  * the compressed extent.
1168  */
1169 static int btrfs_decompress_bio(struct compressed_bio *cb)
1170 {
1171 	struct list_head *workspace;
1172 	int ret;
1173 	int type = cb->compress_type;
1174 
1175 	workspace = get_workspace(type, 0);
1176 	ret = compression_decompress_bio(type, workspace, cb);
1177 	put_workspace(type, workspace);
1178 
1179 	return ret;
1180 }
1181 
1182 /*
1183  * a less complex decompression routine.  Our compressed data fits in a
1184  * single page, and we want to read a single page out of it.
1185  * start_byte tells us the offset into the compressed data we're interested in
1186  */
1187 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1188 		     unsigned long start_byte, size_t srclen, size_t destlen)
1189 {
1190 	struct list_head *workspace;
1191 	int ret;
1192 
1193 	workspace = get_workspace(type, 0);
1194 	ret = compression_decompress(type, workspace, data_in, dest_page,
1195 				     start_byte, srclen, destlen);
1196 	put_workspace(type, workspace);
1197 
1198 	return ret;
1199 }
1200 
1201 void __init btrfs_init_compress(void)
1202 {
1203 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1204 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1205 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1206 	zstd_init_workspace_manager();
1207 }
1208 
1209 void __cold btrfs_exit_compress(void)
1210 {
1211 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1212 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1213 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1214 	zstd_cleanup_workspace_manager();
1215 }
1216 
1217 /*
1218  * Copy uncompressed data from working buffer to pages.
1219  *
1220  * buf_start is the byte offset we're of the start of our workspace buffer.
1221  *
1222  * total_out is the last byte of the buffer
1223  */
1224 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1225 			      unsigned long total_out, u64 disk_start,
1226 			      struct bio *bio)
1227 {
1228 	unsigned long buf_offset;
1229 	unsigned long current_buf_start;
1230 	unsigned long start_byte;
1231 	unsigned long prev_start_byte;
1232 	unsigned long working_bytes = total_out - buf_start;
1233 	unsigned long bytes;
1234 	char *kaddr;
1235 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1236 
1237 	/*
1238 	 * start byte is the first byte of the page we're currently
1239 	 * copying into relative to the start of the compressed data.
1240 	 */
1241 	start_byte = page_offset(bvec.bv_page) - disk_start;
1242 
1243 	/* we haven't yet hit data corresponding to this page */
1244 	if (total_out <= start_byte)
1245 		return 1;
1246 
1247 	/*
1248 	 * the start of the data we care about is offset into
1249 	 * the middle of our working buffer
1250 	 */
1251 	if (total_out > start_byte && buf_start < start_byte) {
1252 		buf_offset = start_byte - buf_start;
1253 		working_bytes -= buf_offset;
1254 	} else {
1255 		buf_offset = 0;
1256 	}
1257 	current_buf_start = buf_start;
1258 
1259 	/* copy bytes from the working buffer into the pages */
1260 	while (working_bytes > 0) {
1261 		bytes = min_t(unsigned long, bvec.bv_len,
1262 				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1263 		bytes = min(bytes, working_bytes);
1264 
1265 		kaddr = kmap_atomic(bvec.bv_page);
1266 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1267 		kunmap_atomic(kaddr);
1268 		flush_dcache_page(bvec.bv_page);
1269 
1270 		buf_offset += bytes;
1271 		working_bytes -= bytes;
1272 		current_buf_start += bytes;
1273 
1274 		/* check if we need to pick another page */
1275 		bio_advance(bio, bytes);
1276 		if (!bio->bi_iter.bi_size)
1277 			return 0;
1278 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1279 		prev_start_byte = start_byte;
1280 		start_byte = page_offset(bvec.bv_page) - disk_start;
1281 
1282 		/*
1283 		 * We need to make sure we're only adjusting
1284 		 * our offset into compression working buffer when
1285 		 * we're switching pages.  Otherwise we can incorrectly
1286 		 * keep copying when we were actually done.
1287 		 */
1288 		if (start_byte != prev_start_byte) {
1289 			/*
1290 			 * make sure our new page is covered by this
1291 			 * working buffer
1292 			 */
1293 			if (total_out <= start_byte)
1294 				return 1;
1295 
1296 			/*
1297 			 * the next page in the biovec might not be adjacent
1298 			 * to the last page, but it might still be found
1299 			 * inside this working buffer. bump our offset pointer
1300 			 */
1301 			if (total_out > start_byte &&
1302 			    current_buf_start < start_byte) {
1303 				buf_offset = start_byte - buf_start;
1304 				working_bytes = total_out - start_byte;
1305 				current_buf_start = buf_start + buf_offset;
1306 			}
1307 		}
1308 	}
1309 
1310 	return 1;
1311 }
1312 
1313 /*
1314  * Shannon Entropy calculation
1315  *
1316  * Pure byte distribution analysis fails to determine compressibility of data.
1317  * Try calculating entropy to estimate the average minimum number of bits
1318  * needed to encode the sampled data.
1319  *
1320  * For convenience, return the percentage of needed bits, instead of amount of
1321  * bits directly.
1322  *
1323  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1324  *			    and can be compressible with high probability
1325  *
1326  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1327  *
1328  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1329  */
1330 #define ENTROPY_LVL_ACEPTABLE		(65)
1331 #define ENTROPY_LVL_HIGH		(80)
1332 
1333 /*
1334  * For increasead precision in shannon_entropy calculation,
1335  * let's do pow(n, M) to save more digits after comma:
1336  *
1337  * - maximum int bit length is 64
1338  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1339  * - 13 * 4 = 52 < 64		-> M = 4
1340  *
1341  * So use pow(n, 4).
1342  */
1343 static inline u32 ilog2_w(u64 n)
1344 {
1345 	return ilog2(n * n * n * n);
1346 }
1347 
1348 static u32 shannon_entropy(struct heuristic_ws *ws)
1349 {
1350 	const u32 entropy_max = 8 * ilog2_w(2);
1351 	u32 entropy_sum = 0;
1352 	u32 p, p_base, sz_base;
1353 	u32 i;
1354 
1355 	sz_base = ilog2_w(ws->sample_size);
1356 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1357 		p = ws->bucket[i].count;
1358 		p_base = ilog2_w(p);
1359 		entropy_sum += p * (sz_base - p_base);
1360 	}
1361 
1362 	entropy_sum /= ws->sample_size;
1363 	return entropy_sum * 100 / entropy_max;
1364 }
1365 
1366 #define RADIX_BASE		4U
1367 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1368 
1369 static u8 get4bits(u64 num, int shift) {
1370 	u8 low4bits;
1371 
1372 	num >>= shift;
1373 	/* Reverse order */
1374 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1375 	return low4bits;
1376 }
1377 
1378 /*
1379  * Use 4 bits as radix base
1380  * Use 16 u32 counters for calculating new position in buf array
1381  *
1382  * @array     - array that will be sorted
1383  * @array_buf - buffer array to store sorting results
1384  *              must be equal in size to @array
1385  * @num       - array size
1386  */
1387 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1388 		       int num)
1389 {
1390 	u64 max_num;
1391 	u64 buf_num;
1392 	u32 counters[COUNTERS_SIZE];
1393 	u32 new_addr;
1394 	u32 addr;
1395 	int bitlen;
1396 	int shift;
1397 	int i;
1398 
1399 	/*
1400 	 * Try avoid useless loop iterations for small numbers stored in big
1401 	 * counters.  Example: 48 33 4 ... in 64bit array
1402 	 */
1403 	max_num = array[0].count;
1404 	for (i = 1; i < num; i++) {
1405 		buf_num = array[i].count;
1406 		if (buf_num > max_num)
1407 			max_num = buf_num;
1408 	}
1409 
1410 	buf_num = ilog2(max_num);
1411 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1412 
1413 	shift = 0;
1414 	while (shift < bitlen) {
1415 		memset(counters, 0, sizeof(counters));
1416 
1417 		for (i = 0; i < num; i++) {
1418 			buf_num = array[i].count;
1419 			addr = get4bits(buf_num, shift);
1420 			counters[addr]++;
1421 		}
1422 
1423 		for (i = 1; i < COUNTERS_SIZE; i++)
1424 			counters[i] += counters[i - 1];
1425 
1426 		for (i = num - 1; i >= 0; i--) {
1427 			buf_num = array[i].count;
1428 			addr = get4bits(buf_num, shift);
1429 			counters[addr]--;
1430 			new_addr = counters[addr];
1431 			array_buf[new_addr] = array[i];
1432 		}
1433 
1434 		shift += RADIX_BASE;
1435 
1436 		/*
1437 		 * Normal radix expects to move data from a temporary array, to
1438 		 * the main one.  But that requires some CPU time. Avoid that
1439 		 * by doing another sort iteration to original array instead of
1440 		 * memcpy()
1441 		 */
1442 		memset(counters, 0, sizeof(counters));
1443 
1444 		for (i = 0; i < num; i ++) {
1445 			buf_num = array_buf[i].count;
1446 			addr = get4bits(buf_num, shift);
1447 			counters[addr]++;
1448 		}
1449 
1450 		for (i = 1; i < COUNTERS_SIZE; i++)
1451 			counters[i] += counters[i - 1];
1452 
1453 		for (i = num - 1; i >= 0; i--) {
1454 			buf_num = array_buf[i].count;
1455 			addr = get4bits(buf_num, shift);
1456 			counters[addr]--;
1457 			new_addr = counters[addr];
1458 			array[new_addr] = array_buf[i];
1459 		}
1460 
1461 		shift += RADIX_BASE;
1462 	}
1463 }
1464 
1465 /*
1466  * Size of the core byte set - how many bytes cover 90% of the sample
1467  *
1468  * There are several types of structured binary data that use nearly all byte
1469  * values. The distribution can be uniform and counts in all buckets will be
1470  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1471  *
1472  * Other possibility is normal (Gaussian) distribution, where the data could
1473  * be potentially compressible, but we have to take a few more steps to decide
1474  * how much.
1475  *
1476  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1477  *                       compression algo can easy fix that
1478  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1479  *                       probability is not compressible
1480  */
1481 #define BYTE_CORE_SET_LOW		(64)
1482 #define BYTE_CORE_SET_HIGH		(200)
1483 
1484 static int byte_core_set_size(struct heuristic_ws *ws)
1485 {
1486 	u32 i;
1487 	u32 coreset_sum = 0;
1488 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1489 	struct bucket_item *bucket = ws->bucket;
1490 
1491 	/* Sort in reverse order */
1492 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1493 
1494 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1495 		coreset_sum += bucket[i].count;
1496 
1497 	if (coreset_sum > core_set_threshold)
1498 		return i;
1499 
1500 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1501 		coreset_sum += bucket[i].count;
1502 		if (coreset_sum > core_set_threshold)
1503 			break;
1504 	}
1505 
1506 	return i;
1507 }
1508 
1509 /*
1510  * Count byte values in buckets.
1511  * This heuristic can detect textual data (configs, xml, json, html, etc).
1512  * Because in most text-like data byte set is restricted to limited number of
1513  * possible characters, and that restriction in most cases makes data easy to
1514  * compress.
1515  *
1516  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1517  *	less - compressible
1518  *	more - need additional analysis
1519  */
1520 #define BYTE_SET_THRESHOLD		(64)
1521 
1522 static u32 byte_set_size(const struct heuristic_ws *ws)
1523 {
1524 	u32 i;
1525 	u32 byte_set_size = 0;
1526 
1527 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1528 		if (ws->bucket[i].count > 0)
1529 			byte_set_size++;
1530 	}
1531 
1532 	/*
1533 	 * Continue collecting count of byte values in buckets.  If the byte
1534 	 * set size is bigger then the threshold, it's pointless to continue,
1535 	 * the detection technique would fail for this type of data.
1536 	 */
1537 	for (; i < BUCKET_SIZE; i++) {
1538 		if (ws->bucket[i].count > 0) {
1539 			byte_set_size++;
1540 			if (byte_set_size > BYTE_SET_THRESHOLD)
1541 				return byte_set_size;
1542 		}
1543 	}
1544 
1545 	return byte_set_size;
1546 }
1547 
1548 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1549 {
1550 	const u32 half_of_sample = ws->sample_size / 2;
1551 	const u8 *data = ws->sample;
1552 
1553 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1554 }
1555 
1556 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1557 				     struct heuristic_ws *ws)
1558 {
1559 	struct page *page;
1560 	u64 index, index_end;
1561 	u32 i, curr_sample_pos;
1562 	u8 *in_data;
1563 
1564 	/*
1565 	 * Compression handles the input data by chunks of 128KiB
1566 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1567 	 *
1568 	 * We do the same for the heuristic and loop over the whole range.
1569 	 *
1570 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1571 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1572 	 */
1573 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1574 		end = start + BTRFS_MAX_UNCOMPRESSED;
1575 
1576 	index = start >> PAGE_SHIFT;
1577 	index_end = end >> PAGE_SHIFT;
1578 
1579 	/* Don't miss unaligned end */
1580 	if (!IS_ALIGNED(end, PAGE_SIZE))
1581 		index_end++;
1582 
1583 	curr_sample_pos = 0;
1584 	while (index < index_end) {
1585 		page = find_get_page(inode->i_mapping, index);
1586 		in_data = kmap(page);
1587 		/* Handle case where the start is not aligned to PAGE_SIZE */
1588 		i = start % PAGE_SIZE;
1589 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1590 			/* Don't sample any garbage from the last page */
1591 			if (start > end - SAMPLING_READ_SIZE)
1592 				break;
1593 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1594 					SAMPLING_READ_SIZE);
1595 			i += SAMPLING_INTERVAL;
1596 			start += SAMPLING_INTERVAL;
1597 			curr_sample_pos += SAMPLING_READ_SIZE;
1598 		}
1599 		kunmap(page);
1600 		put_page(page);
1601 
1602 		index++;
1603 	}
1604 
1605 	ws->sample_size = curr_sample_pos;
1606 }
1607 
1608 /*
1609  * Compression heuristic.
1610  *
1611  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1612  * quickly (compared to direct compression) detect data characteristics
1613  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1614  * data.
1615  *
1616  * The following types of analysis can be performed:
1617  * - detect mostly zero data
1618  * - detect data with low "byte set" size (text, etc)
1619  * - detect data with low/high "core byte" set
1620  *
1621  * Return non-zero if the compression should be done, 0 otherwise.
1622  */
1623 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1624 {
1625 	struct list_head *ws_list = get_workspace(0, 0);
1626 	struct heuristic_ws *ws;
1627 	u32 i;
1628 	u8 byte;
1629 	int ret = 0;
1630 
1631 	ws = list_entry(ws_list, struct heuristic_ws, list);
1632 
1633 	heuristic_collect_sample(inode, start, end, ws);
1634 
1635 	if (sample_repeated_patterns(ws)) {
1636 		ret = 1;
1637 		goto out;
1638 	}
1639 
1640 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1641 
1642 	for (i = 0; i < ws->sample_size; i++) {
1643 		byte = ws->sample[i];
1644 		ws->bucket[byte].count++;
1645 	}
1646 
1647 	i = byte_set_size(ws);
1648 	if (i < BYTE_SET_THRESHOLD) {
1649 		ret = 2;
1650 		goto out;
1651 	}
1652 
1653 	i = byte_core_set_size(ws);
1654 	if (i <= BYTE_CORE_SET_LOW) {
1655 		ret = 3;
1656 		goto out;
1657 	}
1658 
1659 	if (i >= BYTE_CORE_SET_HIGH) {
1660 		ret = 0;
1661 		goto out;
1662 	}
1663 
1664 	i = shannon_entropy(ws);
1665 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1666 		ret = 4;
1667 		goto out;
1668 	}
1669 
1670 	/*
1671 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1672 	 * needed to give green light to compression.
1673 	 *
1674 	 * For now just assume that compression at that level is not worth the
1675 	 * resources because:
1676 	 *
1677 	 * 1. it is possible to defrag the data later
1678 	 *
1679 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1680 	 * values, every bucket has counter at level ~54. The heuristic would
1681 	 * be confused. This can happen when data have some internal repeated
1682 	 * patterns like "abbacbbc...". This can be detected by analyzing
1683 	 * pairs of bytes, which is too costly.
1684 	 */
1685 	if (i < ENTROPY_LVL_HIGH) {
1686 		ret = 5;
1687 		goto out;
1688 	} else {
1689 		ret = 0;
1690 		goto out;
1691 	}
1692 
1693 out:
1694 	put_workspace(0, ws_list);
1695 	return ret;
1696 }
1697 
1698 /*
1699  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1700  * level, unrecognized string will set the default level
1701  */
1702 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1703 {
1704 	unsigned int level = 0;
1705 	int ret;
1706 
1707 	if (!type)
1708 		return 0;
1709 
1710 	if (str[0] == ':') {
1711 		ret = kstrtouint(str + 1, 10, &level);
1712 		if (ret)
1713 			level = 0;
1714 	}
1715 
1716 	level = btrfs_compress_set_level(type, level);
1717 
1718 	return level;
1719 }
1720