xref: /linux/fs/btrfs/compression.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "volumes.h"
25 #include "ordered-data.h"
26 #include "compression.h"
27 #include "extent_io.h"
28 #include "extent_map.h"
29 
30 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
31 
32 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
33 {
34 	switch (type) {
35 	case BTRFS_COMPRESS_ZLIB:
36 	case BTRFS_COMPRESS_LZO:
37 	case BTRFS_COMPRESS_ZSTD:
38 	case BTRFS_COMPRESS_NONE:
39 		return btrfs_compress_types[type];
40 	}
41 
42 	return NULL;
43 }
44 
45 static int btrfs_decompress_bio(struct compressed_bio *cb);
46 
47 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
48 				      unsigned long disk_size)
49 {
50 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
51 
52 	return sizeof(struct compressed_bio) +
53 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
54 }
55 
56 static int check_compressed_csum(struct btrfs_inode *inode,
57 				 struct compressed_bio *cb,
58 				 u64 disk_start)
59 {
60 	int ret;
61 	struct page *page;
62 	unsigned long i;
63 	char *kaddr;
64 	u32 csum;
65 	u32 *cb_sum = &cb->sums;
66 
67 	if (inode->flags & BTRFS_INODE_NODATASUM)
68 		return 0;
69 
70 	for (i = 0; i < cb->nr_pages; i++) {
71 		page = cb->compressed_pages[i];
72 		csum = ~(u32)0;
73 
74 		kaddr = kmap_atomic(page);
75 		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
76 		btrfs_csum_final(csum, (u8 *)&csum);
77 		kunmap_atomic(kaddr);
78 
79 		if (csum != *cb_sum) {
80 			btrfs_print_data_csum_error(inode, disk_start, csum,
81 					*cb_sum, cb->mirror_num);
82 			ret = -EIO;
83 			goto fail;
84 		}
85 		cb_sum++;
86 
87 	}
88 	ret = 0;
89 fail:
90 	return ret;
91 }
92 
93 /* when we finish reading compressed pages from the disk, we
94  * decompress them and then run the bio end_io routines on the
95  * decompressed pages (in the inode address space).
96  *
97  * This allows the checksumming and other IO error handling routines
98  * to work normally
99  *
100  * The compressed pages are freed here, and it must be run
101  * in process context
102  */
103 static void end_compressed_bio_read(struct bio *bio)
104 {
105 	struct compressed_bio *cb = bio->bi_private;
106 	struct inode *inode;
107 	struct page *page;
108 	unsigned long index;
109 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
110 	int ret = 0;
111 
112 	if (bio->bi_status)
113 		cb->errors = 1;
114 
115 	/* if there are more bios still pending for this compressed
116 	 * extent, just exit
117 	 */
118 	if (!refcount_dec_and_test(&cb->pending_bios))
119 		goto out;
120 
121 	/*
122 	 * Record the correct mirror_num in cb->orig_bio so that
123 	 * read-repair can work properly.
124 	 */
125 	ASSERT(btrfs_io_bio(cb->orig_bio));
126 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
127 	cb->mirror_num = mirror;
128 
129 	/*
130 	 * Some IO in this cb have failed, just skip checksum as there
131 	 * is no way it could be correct.
132 	 */
133 	if (cb->errors == 1)
134 		goto csum_failed;
135 
136 	inode = cb->inode;
137 	ret = check_compressed_csum(BTRFS_I(inode), cb,
138 				    (u64)bio->bi_iter.bi_sector << 9);
139 	if (ret)
140 		goto csum_failed;
141 
142 	/* ok, we're the last bio for this extent, lets start
143 	 * the decompression.
144 	 */
145 	ret = btrfs_decompress_bio(cb);
146 
147 csum_failed:
148 	if (ret)
149 		cb->errors = 1;
150 
151 	/* release the compressed pages */
152 	index = 0;
153 	for (index = 0; index < cb->nr_pages; index++) {
154 		page = cb->compressed_pages[index];
155 		page->mapping = NULL;
156 		put_page(page);
157 	}
158 
159 	/* do io completion on the original bio */
160 	if (cb->errors) {
161 		bio_io_error(cb->orig_bio);
162 	} else {
163 		int i;
164 		struct bio_vec *bvec;
165 
166 		/*
167 		 * we have verified the checksum already, set page
168 		 * checked so the end_io handlers know about it
169 		 */
170 		ASSERT(!bio_flagged(bio, BIO_CLONED));
171 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
172 			SetPageChecked(bvec->bv_page);
173 
174 		bio_endio(cb->orig_bio);
175 	}
176 
177 	/* finally free the cb struct */
178 	kfree(cb->compressed_pages);
179 	kfree(cb);
180 out:
181 	bio_put(bio);
182 }
183 
184 /*
185  * Clear the writeback bits on all of the file
186  * pages for a compressed write
187  */
188 static noinline void end_compressed_writeback(struct inode *inode,
189 					      const struct compressed_bio *cb)
190 {
191 	unsigned long index = cb->start >> PAGE_SHIFT;
192 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
193 	struct page *pages[16];
194 	unsigned long nr_pages = end_index - index + 1;
195 	int i;
196 	int ret;
197 
198 	if (cb->errors)
199 		mapping_set_error(inode->i_mapping, -EIO);
200 
201 	while (nr_pages > 0) {
202 		ret = find_get_pages_contig(inode->i_mapping, index,
203 				     min_t(unsigned long,
204 				     nr_pages, ARRAY_SIZE(pages)), pages);
205 		if (ret == 0) {
206 			nr_pages -= 1;
207 			index += 1;
208 			continue;
209 		}
210 		for (i = 0; i < ret; i++) {
211 			if (cb->errors)
212 				SetPageError(pages[i]);
213 			end_page_writeback(pages[i]);
214 			put_page(pages[i]);
215 		}
216 		nr_pages -= ret;
217 		index += ret;
218 	}
219 	/* the inode may be gone now */
220 }
221 
222 /*
223  * do the cleanup once all the compressed pages hit the disk.
224  * This will clear writeback on the file pages and free the compressed
225  * pages.
226  *
227  * This also calls the writeback end hooks for the file pages so that
228  * metadata and checksums can be updated in the file.
229  */
230 static void end_compressed_bio_write(struct bio *bio)
231 {
232 	struct compressed_bio *cb = bio->bi_private;
233 	struct inode *inode;
234 	struct page *page;
235 	unsigned long index;
236 
237 	if (bio->bi_status)
238 		cb->errors = 1;
239 
240 	/* if there are more bios still pending for this compressed
241 	 * extent, just exit
242 	 */
243 	if (!refcount_dec_and_test(&cb->pending_bios))
244 		goto out;
245 
246 	/* ok, we're the last bio for this extent, step one is to
247 	 * call back into the FS and do all the end_io operations
248 	 */
249 	inode = cb->inode;
250 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
251 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
252 			cb->start, cb->start + cb->len - 1,
253 			bio->bi_status ? BLK_STS_OK : BLK_STS_NOTSUPP);
254 	cb->compressed_pages[0]->mapping = NULL;
255 
256 	end_compressed_writeback(inode, cb);
257 	/* note, our inode could be gone now */
258 
259 	/*
260 	 * release the compressed pages, these came from alloc_page and
261 	 * are not attached to the inode at all
262 	 */
263 	index = 0;
264 	for (index = 0; index < cb->nr_pages; index++) {
265 		page = cb->compressed_pages[index];
266 		page->mapping = NULL;
267 		put_page(page);
268 	}
269 
270 	/* finally free the cb struct */
271 	kfree(cb->compressed_pages);
272 	kfree(cb);
273 out:
274 	bio_put(bio);
275 }
276 
277 /*
278  * worker function to build and submit bios for previously compressed pages.
279  * The corresponding pages in the inode should be marked for writeback
280  * and the compressed pages should have a reference on them for dropping
281  * when the IO is complete.
282  *
283  * This also checksums the file bytes and gets things ready for
284  * the end io hooks.
285  */
286 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
287 				 unsigned long len, u64 disk_start,
288 				 unsigned long compressed_len,
289 				 struct page **compressed_pages,
290 				 unsigned long nr_pages,
291 				 unsigned int write_flags)
292 {
293 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
294 	struct bio *bio = NULL;
295 	struct compressed_bio *cb;
296 	unsigned long bytes_left;
297 	int pg_index = 0;
298 	struct page *page;
299 	u64 first_byte = disk_start;
300 	struct block_device *bdev;
301 	blk_status_t ret;
302 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
303 
304 	WARN_ON(!PAGE_ALIGNED(start));
305 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
306 	if (!cb)
307 		return BLK_STS_RESOURCE;
308 	refcount_set(&cb->pending_bios, 0);
309 	cb->errors = 0;
310 	cb->inode = inode;
311 	cb->start = start;
312 	cb->len = len;
313 	cb->mirror_num = 0;
314 	cb->compressed_pages = compressed_pages;
315 	cb->compressed_len = compressed_len;
316 	cb->orig_bio = NULL;
317 	cb->nr_pages = nr_pages;
318 
319 	bdev = fs_info->fs_devices->latest_bdev;
320 
321 	bio = btrfs_bio_alloc(bdev, first_byte);
322 	bio->bi_opf = REQ_OP_WRITE | write_flags;
323 	bio->bi_private = cb;
324 	bio->bi_end_io = end_compressed_bio_write;
325 	refcount_set(&cb->pending_bios, 1);
326 
327 	/* create and submit bios for the compressed pages */
328 	bytes_left = compressed_len;
329 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
330 		int submit = 0;
331 
332 		page = compressed_pages[pg_index];
333 		page->mapping = inode->i_mapping;
334 		if (bio->bi_iter.bi_size)
335 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
336 							  0);
337 
338 		page->mapping = NULL;
339 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
340 		    PAGE_SIZE) {
341 			/*
342 			 * inc the count before we submit the bio so
343 			 * we know the end IO handler won't happen before
344 			 * we inc the count.  Otherwise, the cb might get
345 			 * freed before we're done setting it up
346 			 */
347 			refcount_inc(&cb->pending_bios);
348 			ret = btrfs_bio_wq_end_io(fs_info, bio,
349 						  BTRFS_WQ_ENDIO_DATA);
350 			BUG_ON(ret); /* -ENOMEM */
351 
352 			if (!skip_sum) {
353 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
354 				BUG_ON(ret); /* -ENOMEM */
355 			}
356 
357 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
358 			if (ret) {
359 				bio->bi_status = ret;
360 				bio_endio(bio);
361 			}
362 
363 			bio = btrfs_bio_alloc(bdev, first_byte);
364 			bio->bi_opf = REQ_OP_WRITE | write_flags;
365 			bio->bi_private = cb;
366 			bio->bi_end_io = end_compressed_bio_write;
367 			bio_add_page(bio, page, PAGE_SIZE, 0);
368 		}
369 		if (bytes_left < PAGE_SIZE) {
370 			btrfs_info(fs_info,
371 					"bytes left %lu compress len %lu nr %lu",
372 			       bytes_left, cb->compressed_len, cb->nr_pages);
373 		}
374 		bytes_left -= PAGE_SIZE;
375 		first_byte += PAGE_SIZE;
376 		cond_resched();
377 	}
378 
379 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
380 	BUG_ON(ret); /* -ENOMEM */
381 
382 	if (!skip_sum) {
383 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
384 		BUG_ON(ret); /* -ENOMEM */
385 	}
386 
387 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
388 	if (ret) {
389 		bio->bi_status = ret;
390 		bio_endio(bio);
391 	}
392 
393 	return 0;
394 }
395 
396 static u64 bio_end_offset(struct bio *bio)
397 {
398 	struct bio_vec *last = bio_last_bvec_all(bio);
399 
400 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
401 }
402 
403 static noinline int add_ra_bio_pages(struct inode *inode,
404 				     u64 compressed_end,
405 				     struct compressed_bio *cb)
406 {
407 	unsigned long end_index;
408 	unsigned long pg_index;
409 	u64 last_offset;
410 	u64 isize = i_size_read(inode);
411 	int ret;
412 	struct page *page;
413 	unsigned long nr_pages = 0;
414 	struct extent_map *em;
415 	struct address_space *mapping = inode->i_mapping;
416 	struct extent_map_tree *em_tree;
417 	struct extent_io_tree *tree;
418 	u64 end;
419 	int misses = 0;
420 
421 	last_offset = bio_end_offset(cb->orig_bio);
422 	em_tree = &BTRFS_I(inode)->extent_tree;
423 	tree = &BTRFS_I(inode)->io_tree;
424 
425 	if (isize == 0)
426 		return 0;
427 
428 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
429 
430 	while (last_offset < compressed_end) {
431 		pg_index = last_offset >> PAGE_SHIFT;
432 
433 		if (pg_index > end_index)
434 			break;
435 
436 		page = xa_load(&mapping->i_pages, pg_index);
437 		if (page && !xa_is_value(page)) {
438 			misses++;
439 			if (misses > 4)
440 				break;
441 			goto next;
442 		}
443 
444 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
445 								 ~__GFP_FS));
446 		if (!page)
447 			break;
448 
449 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
450 			put_page(page);
451 			goto next;
452 		}
453 
454 		end = last_offset + PAGE_SIZE - 1;
455 		/*
456 		 * at this point, we have a locked page in the page cache
457 		 * for these bytes in the file.  But, we have to make
458 		 * sure they map to this compressed extent on disk.
459 		 */
460 		set_page_extent_mapped(page);
461 		lock_extent(tree, last_offset, end);
462 		read_lock(&em_tree->lock);
463 		em = lookup_extent_mapping(em_tree, last_offset,
464 					   PAGE_SIZE);
465 		read_unlock(&em_tree->lock);
466 
467 		if (!em || last_offset < em->start ||
468 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
469 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
470 			free_extent_map(em);
471 			unlock_extent(tree, last_offset, end);
472 			unlock_page(page);
473 			put_page(page);
474 			break;
475 		}
476 		free_extent_map(em);
477 
478 		if (page->index == end_index) {
479 			char *userpage;
480 			size_t zero_offset = offset_in_page(isize);
481 
482 			if (zero_offset) {
483 				int zeros;
484 				zeros = PAGE_SIZE - zero_offset;
485 				userpage = kmap_atomic(page);
486 				memset(userpage + zero_offset, 0, zeros);
487 				flush_dcache_page(page);
488 				kunmap_atomic(userpage);
489 			}
490 		}
491 
492 		ret = bio_add_page(cb->orig_bio, page,
493 				   PAGE_SIZE, 0);
494 
495 		if (ret == PAGE_SIZE) {
496 			nr_pages++;
497 			put_page(page);
498 		} else {
499 			unlock_extent(tree, last_offset, end);
500 			unlock_page(page);
501 			put_page(page);
502 			break;
503 		}
504 next:
505 		last_offset += PAGE_SIZE;
506 	}
507 	return 0;
508 }
509 
510 /*
511  * for a compressed read, the bio we get passed has all the inode pages
512  * in it.  We don't actually do IO on those pages but allocate new ones
513  * to hold the compressed pages on disk.
514  *
515  * bio->bi_iter.bi_sector points to the compressed extent on disk
516  * bio->bi_io_vec points to all of the inode pages
517  *
518  * After the compressed pages are read, we copy the bytes into the
519  * bio we were passed and then call the bio end_io calls
520  */
521 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
522 				 int mirror_num, unsigned long bio_flags)
523 {
524 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
525 	struct extent_map_tree *em_tree;
526 	struct compressed_bio *cb;
527 	unsigned long compressed_len;
528 	unsigned long nr_pages;
529 	unsigned long pg_index;
530 	struct page *page;
531 	struct block_device *bdev;
532 	struct bio *comp_bio;
533 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
534 	u64 em_len;
535 	u64 em_start;
536 	struct extent_map *em;
537 	blk_status_t ret = BLK_STS_RESOURCE;
538 	int faili = 0;
539 	u32 *sums;
540 
541 	em_tree = &BTRFS_I(inode)->extent_tree;
542 
543 	/* we need the actual starting offset of this extent in the file */
544 	read_lock(&em_tree->lock);
545 	em = lookup_extent_mapping(em_tree,
546 				   page_offset(bio_first_page_all(bio)),
547 				   PAGE_SIZE);
548 	read_unlock(&em_tree->lock);
549 	if (!em)
550 		return BLK_STS_IOERR;
551 
552 	compressed_len = em->block_len;
553 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
554 	if (!cb)
555 		goto out;
556 
557 	refcount_set(&cb->pending_bios, 0);
558 	cb->errors = 0;
559 	cb->inode = inode;
560 	cb->mirror_num = mirror_num;
561 	sums = &cb->sums;
562 
563 	cb->start = em->orig_start;
564 	em_len = em->len;
565 	em_start = em->start;
566 
567 	free_extent_map(em);
568 	em = NULL;
569 
570 	cb->len = bio->bi_iter.bi_size;
571 	cb->compressed_len = compressed_len;
572 	cb->compress_type = extent_compress_type(bio_flags);
573 	cb->orig_bio = bio;
574 
575 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
576 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
577 				       GFP_NOFS);
578 	if (!cb->compressed_pages)
579 		goto fail1;
580 
581 	bdev = fs_info->fs_devices->latest_bdev;
582 
583 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
584 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
585 							      __GFP_HIGHMEM);
586 		if (!cb->compressed_pages[pg_index]) {
587 			faili = pg_index - 1;
588 			ret = BLK_STS_RESOURCE;
589 			goto fail2;
590 		}
591 	}
592 	faili = nr_pages - 1;
593 	cb->nr_pages = nr_pages;
594 
595 	add_ra_bio_pages(inode, em_start + em_len, cb);
596 
597 	/* include any pages we added in add_ra-bio_pages */
598 	cb->len = bio->bi_iter.bi_size;
599 
600 	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
601 	comp_bio->bi_opf = REQ_OP_READ;
602 	comp_bio->bi_private = cb;
603 	comp_bio->bi_end_io = end_compressed_bio_read;
604 	refcount_set(&cb->pending_bios, 1);
605 
606 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
607 		int submit = 0;
608 
609 		page = cb->compressed_pages[pg_index];
610 		page->mapping = inode->i_mapping;
611 		page->index = em_start >> PAGE_SHIFT;
612 
613 		if (comp_bio->bi_iter.bi_size)
614 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
615 							  comp_bio, 0);
616 
617 		page->mapping = NULL;
618 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
619 		    PAGE_SIZE) {
620 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
621 						  BTRFS_WQ_ENDIO_DATA);
622 			BUG_ON(ret); /* -ENOMEM */
623 
624 			/*
625 			 * inc the count before we submit the bio so
626 			 * we know the end IO handler won't happen before
627 			 * we inc the count.  Otherwise, the cb might get
628 			 * freed before we're done setting it up
629 			 */
630 			refcount_inc(&cb->pending_bios);
631 
632 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
633 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
634 							    sums);
635 				BUG_ON(ret); /* -ENOMEM */
636 			}
637 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
638 					     fs_info->sectorsize);
639 
640 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
641 			if (ret) {
642 				comp_bio->bi_status = ret;
643 				bio_endio(comp_bio);
644 			}
645 
646 			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
647 			comp_bio->bi_opf = REQ_OP_READ;
648 			comp_bio->bi_private = cb;
649 			comp_bio->bi_end_io = end_compressed_bio_read;
650 
651 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
652 		}
653 		cur_disk_byte += PAGE_SIZE;
654 	}
655 
656 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
657 	BUG_ON(ret); /* -ENOMEM */
658 
659 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
660 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
661 		BUG_ON(ret); /* -ENOMEM */
662 	}
663 
664 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
665 	if (ret) {
666 		comp_bio->bi_status = ret;
667 		bio_endio(comp_bio);
668 	}
669 
670 	return 0;
671 
672 fail2:
673 	while (faili >= 0) {
674 		__free_page(cb->compressed_pages[faili]);
675 		faili--;
676 	}
677 
678 	kfree(cb->compressed_pages);
679 fail1:
680 	kfree(cb);
681 out:
682 	free_extent_map(em);
683 	return ret;
684 }
685 
686 /*
687  * Heuristic uses systematic sampling to collect data from the input data
688  * range, the logic can be tuned by the following constants:
689  *
690  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
691  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
692  */
693 #define SAMPLING_READ_SIZE	(16)
694 #define SAMPLING_INTERVAL	(256)
695 
696 /*
697  * For statistical analysis of the input data we consider bytes that form a
698  * Galois Field of 256 objects. Each object has an attribute count, ie. how
699  * many times the object appeared in the sample.
700  */
701 #define BUCKET_SIZE		(256)
702 
703 /*
704  * The size of the sample is based on a statistical sampling rule of thumb.
705  * The common way is to perform sampling tests as long as the number of
706  * elements in each cell is at least 5.
707  *
708  * Instead of 5, we choose 32 to obtain more accurate results.
709  * If the data contain the maximum number of symbols, which is 256, we obtain a
710  * sample size bound by 8192.
711  *
712  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
713  * from up to 512 locations.
714  */
715 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
716 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
717 
718 struct bucket_item {
719 	u32 count;
720 };
721 
722 struct heuristic_ws {
723 	/* Partial copy of input data */
724 	u8 *sample;
725 	u32 sample_size;
726 	/* Buckets store counters for each byte value */
727 	struct bucket_item *bucket;
728 	/* Sorting buffer */
729 	struct bucket_item *bucket_b;
730 	struct list_head list;
731 };
732 
733 static void free_heuristic_ws(struct list_head *ws)
734 {
735 	struct heuristic_ws *workspace;
736 
737 	workspace = list_entry(ws, struct heuristic_ws, list);
738 
739 	kvfree(workspace->sample);
740 	kfree(workspace->bucket);
741 	kfree(workspace->bucket_b);
742 	kfree(workspace);
743 }
744 
745 static struct list_head *alloc_heuristic_ws(void)
746 {
747 	struct heuristic_ws *ws;
748 
749 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
750 	if (!ws)
751 		return ERR_PTR(-ENOMEM);
752 
753 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
754 	if (!ws->sample)
755 		goto fail;
756 
757 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
758 	if (!ws->bucket)
759 		goto fail;
760 
761 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
762 	if (!ws->bucket_b)
763 		goto fail;
764 
765 	INIT_LIST_HEAD(&ws->list);
766 	return &ws->list;
767 fail:
768 	free_heuristic_ws(&ws->list);
769 	return ERR_PTR(-ENOMEM);
770 }
771 
772 struct workspaces_list {
773 	struct list_head idle_ws;
774 	spinlock_t ws_lock;
775 	/* Number of free workspaces */
776 	int free_ws;
777 	/* Total number of allocated workspaces */
778 	atomic_t total_ws;
779 	/* Waiters for a free workspace */
780 	wait_queue_head_t ws_wait;
781 };
782 
783 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
784 
785 static struct workspaces_list btrfs_heuristic_ws;
786 
787 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
788 	&btrfs_zlib_compress,
789 	&btrfs_lzo_compress,
790 	&btrfs_zstd_compress,
791 };
792 
793 void __init btrfs_init_compress(void)
794 {
795 	struct list_head *workspace;
796 	int i;
797 
798 	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
799 	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
800 	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
801 	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
802 
803 	workspace = alloc_heuristic_ws();
804 	if (IS_ERR(workspace)) {
805 		pr_warn(
806 	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
807 	} else {
808 		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
809 		btrfs_heuristic_ws.free_ws = 1;
810 		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
811 	}
812 
813 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
814 		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
815 		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
816 		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
817 		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
818 
819 		/*
820 		 * Preallocate one workspace for each compression type so
821 		 * we can guarantee forward progress in the worst case
822 		 */
823 		workspace = btrfs_compress_op[i]->alloc_workspace();
824 		if (IS_ERR(workspace)) {
825 			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
826 		} else {
827 			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
828 			btrfs_comp_ws[i].free_ws = 1;
829 			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
830 		}
831 	}
832 }
833 
834 /*
835  * This finds an available workspace or allocates a new one.
836  * If it's not possible to allocate a new one, waits until there's one.
837  * Preallocation makes a forward progress guarantees and we do not return
838  * errors.
839  */
840 static struct list_head *__find_workspace(int type, bool heuristic)
841 {
842 	struct list_head *workspace;
843 	int cpus = num_online_cpus();
844 	int idx = type - 1;
845 	unsigned nofs_flag;
846 	struct list_head *idle_ws;
847 	spinlock_t *ws_lock;
848 	atomic_t *total_ws;
849 	wait_queue_head_t *ws_wait;
850 	int *free_ws;
851 
852 	if (heuristic) {
853 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
854 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
855 		total_ws = &btrfs_heuristic_ws.total_ws;
856 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
857 		free_ws	 = &btrfs_heuristic_ws.free_ws;
858 	} else {
859 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
860 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
861 		total_ws = &btrfs_comp_ws[idx].total_ws;
862 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
863 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
864 	}
865 
866 again:
867 	spin_lock(ws_lock);
868 	if (!list_empty(idle_ws)) {
869 		workspace = idle_ws->next;
870 		list_del(workspace);
871 		(*free_ws)--;
872 		spin_unlock(ws_lock);
873 		return workspace;
874 
875 	}
876 	if (atomic_read(total_ws) > cpus) {
877 		DEFINE_WAIT(wait);
878 
879 		spin_unlock(ws_lock);
880 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
881 		if (atomic_read(total_ws) > cpus && !*free_ws)
882 			schedule();
883 		finish_wait(ws_wait, &wait);
884 		goto again;
885 	}
886 	atomic_inc(total_ws);
887 	spin_unlock(ws_lock);
888 
889 	/*
890 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
891 	 * to turn it off here because we might get called from the restricted
892 	 * context of btrfs_compress_bio/btrfs_compress_pages
893 	 */
894 	nofs_flag = memalloc_nofs_save();
895 	if (heuristic)
896 		workspace = alloc_heuristic_ws();
897 	else
898 		workspace = btrfs_compress_op[idx]->alloc_workspace();
899 	memalloc_nofs_restore(nofs_flag);
900 
901 	if (IS_ERR(workspace)) {
902 		atomic_dec(total_ws);
903 		wake_up(ws_wait);
904 
905 		/*
906 		 * Do not return the error but go back to waiting. There's a
907 		 * workspace preallocated for each type and the compression
908 		 * time is bounded so we get to a workspace eventually. This
909 		 * makes our caller's life easier.
910 		 *
911 		 * To prevent silent and low-probability deadlocks (when the
912 		 * initial preallocation fails), check if there are any
913 		 * workspaces at all.
914 		 */
915 		if (atomic_read(total_ws) == 0) {
916 			static DEFINE_RATELIMIT_STATE(_rs,
917 					/* once per minute */ 60 * HZ,
918 					/* no burst */ 1);
919 
920 			if (__ratelimit(&_rs)) {
921 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
922 			}
923 		}
924 		goto again;
925 	}
926 	return workspace;
927 }
928 
929 static struct list_head *find_workspace(int type)
930 {
931 	return __find_workspace(type, false);
932 }
933 
934 /*
935  * put a workspace struct back on the list or free it if we have enough
936  * idle ones sitting around
937  */
938 static void __free_workspace(int type, struct list_head *workspace,
939 			     bool heuristic)
940 {
941 	int idx = type - 1;
942 	struct list_head *idle_ws;
943 	spinlock_t *ws_lock;
944 	atomic_t *total_ws;
945 	wait_queue_head_t *ws_wait;
946 	int *free_ws;
947 
948 	if (heuristic) {
949 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
950 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
951 		total_ws = &btrfs_heuristic_ws.total_ws;
952 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
953 		free_ws	 = &btrfs_heuristic_ws.free_ws;
954 	} else {
955 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
956 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
957 		total_ws = &btrfs_comp_ws[idx].total_ws;
958 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
959 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
960 	}
961 
962 	spin_lock(ws_lock);
963 	if (*free_ws <= num_online_cpus()) {
964 		list_add(workspace, idle_ws);
965 		(*free_ws)++;
966 		spin_unlock(ws_lock);
967 		goto wake;
968 	}
969 	spin_unlock(ws_lock);
970 
971 	if (heuristic)
972 		free_heuristic_ws(workspace);
973 	else
974 		btrfs_compress_op[idx]->free_workspace(workspace);
975 	atomic_dec(total_ws);
976 wake:
977 	cond_wake_up(ws_wait);
978 }
979 
980 static void free_workspace(int type, struct list_head *ws)
981 {
982 	return __free_workspace(type, ws, false);
983 }
984 
985 /*
986  * cleanup function for module exit
987  */
988 static void free_workspaces(void)
989 {
990 	struct list_head *workspace;
991 	int i;
992 
993 	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
994 		workspace = btrfs_heuristic_ws.idle_ws.next;
995 		list_del(workspace);
996 		free_heuristic_ws(workspace);
997 		atomic_dec(&btrfs_heuristic_ws.total_ws);
998 	}
999 
1000 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1001 		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1002 			workspace = btrfs_comp_ws[i].idle_ws.next;
1003 			list_del(workspace);
1004 			btrfs_compress_op[i]->free_workspace(workspace);
1005 			atomic_dec(&btrfs_comp_ws[i].total_ws);
1006 		}
1007 	}
1008 }
1009 
1010 /*
1011  * Given an address space and start and length, compress the bytes into @pages
1012  * that are allocated on demand.
1013  *
1014  * @type_level is encoded algorithm and level, where level 0 means whatever
1015  * default the algorithm chooses and is opaque here;
1016  * - compression algo are 0-3
1017  * - the level are bits 4-7
1018  *
1019  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1020  * and returns number of actually allocated pages
1021  *
1022  * @total_in is used to return the number of bytes actually read.  It
1023  * may be smaller than the input length if we had to exit early because we
1024  * ran out of room in the pages array or because we cross the
1025  * max_out threshold.
1026  *
1027  * @total_out is an in/out parameter, must be set to the input length and will
1028  * be also used to return the total number of compressed bytes
1029  *
1030  * @max_out tells us the max number of bytes that we're allowed to
1031  * stuff into pages
1032  */
1033 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1034 			 u64 start, struct page **pages,
1035 			 unsigned long *out_pages,
1036 			 unsigned long *total_in,
1037 			 unsigned long *total_out)
1038 {
1039 	struct list_head *workspace;
1040 	int ret;
1041 	int type = type_level & 0xF;
1042 
1043 	workspace = find_workspace(type);
1044 
1045 	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1046 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1047 						      start, pages,
1048 						      out_pages,
1049 						      total_in, total_out);
1050 	free_workspace(type, workspace);
1051 	return ret;
1052 }
1053 
1054 /*
1055  * pages_in is an array of pages with compressed data.
1056  *
1057  * disk_start is the starting logical offset of this array in the file
1058  *
1059  * orig_bio contains the pages from the file that we want to decompress into
1060  *
1061  * srclen is the number of bytes in pages_in
1062  *
1063  * The basic idea is that we have a bio that was created by readpages.
1064  * The pages in the bio are for the uncompressed data, and they may not
1065  * be contiguous.  They all correspond to the range of bytes covered by
1066  * the compressed extent.
1067  */
1068 static int btrfs_decompress_bio(struct compressed_bio *cb)
1069 {
1070 	struct list_head *workspace;
1071 	int ret;
1072 	int type = cb->compress_type;
1073 
1074 	workspace = find_workspace(type);
1075 	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1076 	free_workspace(type, workspace);
1077 
1078 	return ret;
1079 }
1080 
1081 /*
1082  * a less complex decompression routine.  Our compressed data fits in a
1083  * single page, and we want to read a single page out of it.
1084  * start_byte tells us the offset into the compressed data we're interested in
1085  */
1086 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1087 		     unsigned long start_byte, size_t srclen, size_t destlen)
1088 {
1089 	struct list_head *workspace;
1090 	int ret;
1091 
1092 	workspace = find_workspace(type);
1093 
1094 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1095 						  dest_page, start_byte,
1096 						  srclen, destlen);
1097 
1098 	free_workspace(type, workspace);
1099 	return ret;
1100 }
1101 
1102 void __cold btrfs_exit_compress(void)
1103 {
1104 	free_workspaces();
1105 }
1106 
1107 /*
1108  * Copy uncompressed data from working buffer to pages.
1109  *
1110  * buf_start is the byte offset we're of the start of our workspace buffer.
1111  *
1112  * total_out is the last byte of the buffer
1113  */
1114 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1115 			      unsigned long total_out, u64 disk_start,
1116 			      struct bio *bio)
1117 {
1118 	unsigned long buf_offset;
1119 	unsigned long current_buf_start;
1120 	unsigned long start_byte;
1121 	unsigned long prev_start_byte;
1122 	unsigned long working_bytes = total_out - buf_start;
1123 	unsigned long bytes;
1124 	char *kaddr;
1125 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1126 
1127 	/*
1128 	 * start byte is the first byte of the page we're currently
1129 	 * copying into relative to the start of the compressed data.
1130 	 */
1131 	start_byte = page_offset(bvec.bv_page) - disk_start;
1132 
1133 	/* we haven't yet hit data corresponding to this page */
1134 	if (total_out <= start_byte)
1135 		return 1;
1136 
1137 	/*
1138 	 * the start of the data we care about is offset into
1139 	 * the middle of our working buffer
1140 	 */
1141 	if (total_out > start_byte && buf_start < start_byte) {
1142 		buf_offset = start_byte - buf_start;
1143 		working_bytes -= buf_offset;
1144 	} else {
1145 		buf_offset = 0;
1146 	}
1147 	current_buf_start = buf_start;
1148 
1149 	/* copy bytes from the working buffer into the pages */
1150 	while (working_bytes > 0) {
1151 		bytes = min_t(unsigned long, bvec.bv_len,
1152 				PAGE_SIZE - buf_offset);
1153 		bytes = min(bytes, working_bytes);
1154 
1155 		kaddr = kmap_atomic(bvec.bv_page);
1156 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1157 		kunmap_atomic(kaddr);
1158 		flush_dcache_page(bvec.bv_page);
1159 
1160 		buf_offset += bytes;
1161 		working_bytes -= bytes;
1162 		current_buf_start += bytes;
1163 
1164 		/* check if we need to pick another page */
1165 		bio_advance(bio, bytes);
1166 		if (!bio->bi_iter.bi_size)
1167 			return 0;
1168 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1169 		prev_start_byte = start_byte;
1170 		start_byte = page_offset(bvec.bv_page) - disk_start;
1171 
1172 		/*
1173 		 * We need to make sure we're only adjusting
1174 		 * our offset into compression working buffer when
1175 		 * we're switching pages.  Otherwise we can incorrectly
1176 		 * keep copying when we were actually done.
1177 		 */
1178 		if (start_byte != prev_start_byte) {
1179 			/*
1180 			 * make sure our new page is covered by this
1181 			 * working buffer
1182 			 */
1183 			if (total_out <= start_byte)
1184 				return 1;
1185 
1186 			/*
1187 			 * the next page in the biovec might not be adjacent
1188 			 * to the last page, but it might still be found
1189 			 * inside this working buffer. bump our offset pointer
1190 			 */
1191 			if (total_out > start_byte &&
1192 			    current_buf_start < start_byte) {
1193 				buf_offset = start_byte - buf_start;
1194 				working_bytes = total_out - start_byte;
1195 				current_buf_start = buf_start + buf_offset;
1196 			}
1197 		}
1198 	}
1199 
1200 	return 1;
1201 }
1202 
1203 /*
1204  * Shannon Entropy calculation
1205  *
1206  * Pure byte distribution analysis fails to determine compressibility of data.
1207  * Try calculating entropy to estimate the average minimum number of bits
1208  * needed to encode the sampled data.
1209  *
1210  * For convenience, return the percentage of needed bits, instead of amount of
1211  * bits directly.
1212  *
1213  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1214  *			    and can be compressible with high probability
1215  *
1216  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1217  *
1218  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1219  */
1220 #define ENTROPY_LVL_ACEPTABLE		(65)
1221 #define ENTROPY_LVL_HIGH		(80)
1222 
1223 /*
1224  * For increasead precision in shannon_entropy calculation,
1225  * let's do pow(n, M) to save more digits after comma:
1226  *
1227  * - maximum int bit length is 64
1228  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1229  * - 13 * 4 = 52 < 64		-> M = 4
1230  *
1231  * So use pow(n, 4).
1232  */
1233 static inline u32 ilog2_w(u64 n)
1234 {
1235 	return ilog2(n * n * n * n);
1236 }
1237 
1238 static u32 shannon_entropy(struct heuristic_ws *ws)
1239 {
1240 	const u32 entropy_max = 8 * ilog2_w(2);
1241 	u32 entropy_sum = 0;
1242 	u32 p, p_base, sz_base;
1243 	u32 i;
1244 
1245 	sz_base = ilog2_w(ws->sample_size);
1246 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1247 		p = ws->bucket[i].count;
1248 		p_base = ilog2_w(p);
1249 		entropy_sum += p * (sz_base - p_base);
1250 	}
1251 
1252 	entropy_sum /= ws->sample_size;
1253 	return entropy_sum * 100 / entropy_max;
1254 }
1255 
1256 #define RADIX_BASE		4U
1257 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1258 
1259 static u8 get4bits(u64 num, int shift) {
1260 	u8 low4bits;
1261 
1262 	num >>= shift;
1263 	/* Reverse order */
1264 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1265 	return low4bits;
1266 }
1267 
1268 /*
1269  * Use 4 bits as radix base
1270  * Use 16 u32 counters for calculating new position in buf array
1271  *
1272  * @array     - array that will be sorted
1273  * @array_buf - buffer array to store sorting results
1274  *              must be equal in size to @array
1275  * @num       - array size
1276  */
1277 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1278 		       int num)
1279 {
1280 	u64 max_num;
1281 	u64 buf_num;
1282 	u32 counters[COUNTERS_SIZE];
1283 	u32 new_addr;
1284 	u32 addr;
1285 	int bitlen;
1286 	int shift;
1287 	int i;
1288 
1289 	/*
1290 	 * Try avoid useless loop iterations for small numbers stored in big
1291 	 * counters.  Example: 48 33 4 ... in 64bit array
1292 	 */
1293 	max_num = array[0].count;
1294 	for (i = 1; i < num; i++) {
1295 		buf_num = array[i].count;
1296 		if (buf_num > max_num)
1297 			max_num = buf_num;
1298 	}
1299 
1300 	buf_num = ilog2(max_num);
1301 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1302 
1303 	shift = 0;
1304 	while (shift < bitlen) {
1305 		memset(counters, 0, sizeof(counters));
1306 
1307 		for (i = 0; i < num; i++) {
1308 			buf_num = array[i].count;
1309 			addr = get4bits(buf_num, shift);
1310 			counters[addr]++;
1311 		}
1312 
1313 		for (i = 1; i < COUNTERS_SIZE; i++)
1314 			counters[i] += counters[i - 1];
1315 
1316 		for (i = num - 1; i >= 0; i--) {
1317 			buf_num = array[i].count;
1318 			addr = get4bits(buf_num, shift);
1319 			counters[addr]--;
1320 			new_addr = counters[addr];
1321 			array_buf[new_addr] = array[i];
1322 		}
1323 
1324 		shift += RADIX_BASE;
1325 
1326 		/*
1327 		 * Normal radix expects to move data from a temporary array, to
1328 		 * the main one.  But that requires some CPU time. Avoid that
1329 		 * by doing another sort iteration to original array instead of
1330 		 * memcpy()
1331 		 */
1332 		memset(counters, 0, sizeof(counters));
1333 
1334 		for (i = 0; i < num; i ++) {
1335 			buf_num = array_buf[i].count;
1336 			addr = get4bits(buf_num, shift);
1337 			counters[addr]++;
1338 		}
1339 
1340 		for (i = 1; i < COUNTERS_SIZE; i++)
1341 			counters[i] += counters[i - 1];
1342 
1343 		for (i = num - 1; i >= 0; i--) {
1344 			buf_num = array_buf[i].count;
1345 			addr = get4bits(buf_num, shift);
1346 			counters[addr]--;
1347 			new_addr = counters[addr];
1348 			array[new_addr] = array_buf[i];
1349 		}
1350 
1351 		shift += RADIX_BASE;
1352 	}
1353 }
1354 
1355 /*
1356  * Size of the core byte set - how many bytes cover 90% of the sample
1357  *
1358  * There are several types of structured binary data that use nearly all byte
1359  * values. The distribution can be uniform and counts in all buckets will be
1360  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1361  *
1362  * Other possibility is normal (Gaussian) distribution, where the data could
1363  * be potentially compressible, but we have to take a few more steps to decide
1364  * how much.
1365  *
1366  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1367  *                       compression algo can easy fix that
1368  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1369  *                       probability is not compressible
1370  */
1371 #define BYTE_CORE_SET_LOW		(64)
1372 #define BYTE_CORE_SET_HIGH		(200)
1373 
1374 static int byte_core_set_size(struct heuristic_ws *ws)
1375 {
1376 	u32 i;
1377 	u32 coreset_sum = 0;
1378 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1379 	struct bucket_item *bucket = ws->bucket;
1380 
1381 	/* Sort in reverse order */
1382 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1383 
1384 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1385 		coreset_sum += bucket[i].count;
1386 
1387 	if (coreset_sum > core_set_threshold)
1388 		return i;
1389 
1390 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1391 		coreset_sum += bucket[i].count;
1392 		if (coreset_sum > core_set_threshold)
1393 			break;
1394 	}
1395 
1396 	return i;
1397 }
1398 
1399 /*
1400  * Count byte values in buckets.
1401  * This heuristic can detect textual data (configs, xml, json, html, etc).
1402  * Because in most text-like data byte set is restricted to limited number of
1403  * possible characters, and that restriction in most cases makes data easy to
1404  * compress.
1405  *
1406  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1407  *	less - compressible
1408  *	more - need additional analysis
1409  */
1410 #define BYTE_SET_THRESHOLD		(64)
1411 
1412 static u32 byte_set_size(const struct heuristic_ws *ws)
1413 {
1414 	u32 i;
1415 	u32 byte_set_size = 0;
1416 
1417 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1418 		if (ws->bucket[i].count > 0)
1419 			byte_set_size++;
1420 	}
1421 
1422 	/*
1423 	 * Continue collecting count of byte values in buckets.  If the byte
1424 	 * set size is bigger then the threshold, it's pointless to continue,
1425 	 * the detection technique would fail for this type of data.
1426 	 */
1427 	for (; i < BUCKET_SIZE; i++) {
1428 		if (ws->bucket[i].count > 0) {
1429 			byte_set_size++;
1430 			if (byte_set_size > BYTE_SET_THRESHOLD)
1431 				return byte_set_size;
1432 		}
1433 	}
1434 
1435 	return byte_set_size;
1436 }
1437 
1438 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1439 {
1440 	const u32 half_of_sample = ws->sample_size / 2;
1441 	const u8 *data = ws->sample;
1442 
1443 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1444 }
1445 
1446 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1447 				     struct heuristic_ws *ws)
1448 {
1449 	struct page *page;
1450 	u64 index, index_end;
1451 	u32 i, curr_sample_pos;
1452 	u8 *in_data;
1453 
1454 	/*
1455 	 * Compression handles the input data by chunks of 128KiB
1456 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1457 	 *
1458 	 * We do the same for the heuristic and loop over the whole range.
1459 	 *
1460 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1461 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1462 	 */
1463 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1464 		end = start + BTRFS_MAX_UNCOMPRESSED;
1465 
1466 	index = start >> PAGE_SHIFT;
1467 	index_end = end >> PAGE_SHIFT;
1468 
1469 	/* Don't miss unaligned end */
1470 	if (!IS_ALIGNED(end, PAGE_SIZE))
1471 		index_end++;
1472 
1473 	curr_sample_pos = 0;
1474 	while (index < index_end) {
1475 		page = find_get_page(inode->i_mapping, index);
1476 		in_data = kmap(page);
1477 		/* Handle case where the start is not aligned to PAGE_SIZE */
1478 		i = start % PAGE_SIZE;
1479 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1480 			/* Don't sample any garbage from the last page */
1481 			if (start > end - SAMPLING_READ_SIZE)
1482 				break;
1483 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1484 					SAMPLING_READ_SIZE);
1485 			i += SAMPLING_INTERVAL;
1486 			start += SAMPLING_INTERVAL;
1487 			curr_sample_pos += SAMPLING_READ_SIZE;
1488 		}
1489 		kunmap(page);
1490 		put_page(page);
1491 
1492 		index++;
1493 	}
1494 
1495 	ws->sample_size = curr_sample_pos;
1496 }
1497 
1498 /*
1499  * Compression heuristic.
1500  *
1501  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1502  * quickly (compared to direct compression) detect data characteristics
1503  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1504  * data.
1505  *
1506  * The following types of analysis can be performed:
1507  * - detect mostly zero data
1508  * - detect data with low "byte set" size (text, etc)
1509  * - detect data with low/high "core byte" set
1510  *
1511  * Return non-zero if the compression should be done, 0 otherwise.
1512  */
1513 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1514 {
1515 	struct list_head *ws_list = __find_workspace(0, true);
1516 	struct heuristic_ws *ws;
1517 	u32 i;
1518 	u8 byte;
1519 	int ret = 0;
1520 
1521 	ws = list_entry(ws_list, struct heuristic_ws, list);
1522 
1523 	heuristic_collect_sample(inode, start, end, ws);
1524 
1525 	if (sample_repeated_patterns(ws)) {
1526 		ret = 1;
1527 		goto out;
1528 	}
1529 
1530 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1531 
1532 	for (i = 0; i < ws->sample_size; i++) {
1533 		byte = ws->sample[i];
1534 		ws->bucket[byte].count++;
1535 	}
1536 
1537 	i = byte_set_size(ws);
1538 	if (i < BYTE_SET_THRESHOLD) {
1539 		ret = 2;
1540 		goto out;
1541 	}
1542 
1543 	i = byte_core_set_size(ws);
1544 	if (i <= BYTE_CORE_SET_LOW) {
1545 		ret = 3;
1546 		goto out;
1547 	}
1548 
1549 	if (i >= BYTE_CORE_SET_HIGH) {
1550 		ret = 0;
1551 		goto out;
1552 	}
1553 
1554 	i = shannon_entropy(ws);
1555 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1556 		ret = 4;
1557 		goto out;
1558 	}
1559 
1560 	/*
1561 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1562 	 * needed to give green light to compression.
1563 	 *
1564 	 * For now just assume that compression at that level is not worth the
1565 	 * resources because:
1566 	 *
1567 	 * 1. it is possible to defrag the data later
1568 	 *
1569 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1570 	 * values, every bucket has counter at level ~54. The heuristic would
1571 	 * be confused. This can happen when data have some internal repeated
1572 	 * patterns like "abbacbbc...". This can be detected by analyzing
1573 	 * pairs of bytes, which is too costly.
1574 	 */
1575 	if (i < ENTROPY_LVL_HIGH) {
1576 		ret = 5;
1577 		goto out;
1578 	} else {
1579 		ret = 0;
1580 		goto out;
1581 	}
1582 
1583 out:
1584 	__free_workspace(0, ws_list, true);
1585 	return ret;
1586 }
1587 
1588 unsigned int btrfs_compress_str2level(const char *str)
1589 {
1590 	if (strncmp(str, "zlib", 4) != 0)
1591 		return 0;
1592 
1593 	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1594 	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1595 		return str[5] - '0';
1596 
1597 	return BTRFS_ZLIB_DEFAULT_LEVEL;
1598 }
1599