xref: /linux/fs/btrfs/compression.c (revision b8265621f4888af9494e1d685620871ec81bc33d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 
32 int zlib_compress_pages(struct list_head *ws, struct address_space *mapping,
33 		u64 start, struct page **pages, unsigned long *out_pages,
34 		unsigned long *total_in, unsigned long *total_out);
35 int zlib_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
36 int zlib_decompress(struct list_head *ws, unsigned char *data_in,
37 		struct page *dest_page, unsigned long start_byte, size_t srclen,
38 		size_t destlen);
39 struct list_head *zlib_alloc_workspace(unsigned int level);
40 void zlib_free_workspace(struct list_head *ws);
41 struct list_head *zlib_get_workspace(unsigned int level);
42 
43 int lzo_compress_pages(struct list_head *ws, struct address_space *mapping,
44 		u64 start, struct page **pages, unsigned long *out_pages,
45 		unsigned long *total_in, unsigned long *total_out);
46 int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
47 int lzo_decompress(struct list_head *ws, unsigned char *data_in,
48 		struct page *dest_page, unsigned long start_byte, size_t srclen,
49 		size_t destlen);
50 struct list_head *lzo_alloc_workspace(unsigned int level);
51 void lzo_free_workspace(struct list_head *ws);
52 
53 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
54 		u64 start, struct page **pages, unsigned long *out_pages,
55 		unsigned long *total_in, unsigned long *total_out);
56 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
57 int zstd_decompress(struct list_head *ws, unsigned char *data_in,
58 		struct page *dest_page, unsigned long start_byte, size_t srclen,
59 		size_t destlen);
60 void zstd_init_workspace_manager(void);
61 void zstd_cleanup_workspace_manager(void);
62 struct list_head *zstd_alloc_workspace(unsigned int level);
63 void zstd_free_workspace(struct list_head *ws);
64 struct list_head *zstd_get_workspace(unsigned int level);
65 void zstd_put_workspace(struct list_head *ws);
66 
67 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
68 
69 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
70 {
71 	switch (type) {
72 	case BTRFS_COMPRESS_ZLIB:
73 	case BTRFS_COMPRESS_LZO:
74 	case BTRFS_COMPRESS_ZSTD:
75 	case BTRFS_COMPRESS_NONE:
76 		return btrfs_compress_types[type];
77 	default:
78 		break;
79 	}
80 
81 	return NULL;
82 }
83 
84 bool btrfs_compress_is_valid_type(const char *str, size_t len)
85 {
86 	int i;
87 
88 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
89 		size_t comp_len = strlen(btrfs_compress_types[i]);
90 
91 		if (len < comp_len)
92 			continue;
93 
94 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
95 			return true;
96 	}
97 	return false;
98 }
99 
100 static int compression_compress_pages(int type, struct list_head *ws,
101                struct address_space *mapping, u64 start, struct page **pages,
102                unsigned long *out_pages, unsigned long *total_in,
103                unsigned long *total_out)
104 {
105 	switch (type) {
106 	case BTRFS_COMPRESS_ZLIB:
107 		return zlib_compress_pages(ws, mapping, start, pages,
108 				out_pages, total_in, total_out);
109 	case BTRFS_COMPRESS_LZO:
110 		return lzo_compress_pages(ws, mapping, start, pages,
111 				out_pages, total_in, total_out);
112 	case BTRFS_COMPRESS_ZSTD:
113 		return zstd_compress_pages(ws, mapping, start, pages,
114 				out_pages, total_in, total_out);
115 	case BTRFS_COMPRESS_NONE:
116 	default:
117 		/*
118 		 * This can't happen, the type is validated several times
119 		 * before we get here. As a sane fallback, return what the
120 		 * callers will understand as 'no compression happened'.
121 		 */
122 		return -E2BIG;
123 	}
124 }
125 
126 static int compression_decompress_bio(int type, struct list_head *ws,
127 		struct compressed_bio *cb)
128 {
129 	switch (type) {
130 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
131 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
132 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
133 	case BTRFS_COMPRESS_NONE:
134 	default:
135 		/*
136 		 * This can't happen, the type is validated several times
137 		 * before we get here.
138 		 */
139 		BUG();
140 	}
141 }
142 
143 static int compression_decompress(int type, struct list_head *ws,
144                unsigned char *data_in, struct page *dest_page,
145                unsigned long start_byte, size_t srclen, size_t destlen)
146 {
147 	switch (type) {
148 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
149 						start_byte, srclen, destlen);
150 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
151 						start_byte, srclen, destlen);
152 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
153 						start_byte, srclen, destlen);
154 	case BTRFS_COMPRESS_NONE:
155 	default:
156 		/*
157 		 * This can't happen, the type is validated several times
158 		 * before we get here.
159 		 */
160 		BUG();
161 	}
162 }
163 
164 static int btrfs_decompress_bio(struct compressed_bio *cb);
165 
166 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
167 				      unsigned long disk_size)
168 {
169 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
170 
171 	return sizeof(struct compressed_bio) +
172 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
173 }
174 
175 static int check_compressed_csum(struct btrfs_inode *inode,
176 				 struct compressed_bio *cb,
177 				 u64 disk_start)
178 {
179 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
180 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
181 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
182 	int ret;
183 	struct page *page;
184 	unsigned long i;
185 	char *kaddr;
186 	u8 csum[BTRFS_CSUM_SIZE];
187 	u8 *cb_sum = cb->sums;
188 
189 	if (inode->flags & BTRFS_INODE_NODATASUM)
190 		return 0;
191 
192 	shash->tfm = fs_info->csum_shash;
193 
194 	for (i = 0; i < cb->nr_pages; i++) {
195 		page = cb->compressed_pages[i];
196 
197 		kaddr = kmap_atomic(page);
198 		crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
199 		kunmap_atomic(kaddr);
200 
201 		if (memcmp(&csum, cb_sum, csum_size)) {
202 			btrfs_print_data_csum_error(inode, disk_start,
203 					csum, cb_sum, cb->mirror_num);
204 			ret = -EIO;
205 			goto fail;
206 		}
207 		cb_sum += csum_size;
208 
209 	}
210 	ret = 0;
211 fail:
212 	return ret;
213 }
214 
215 /* when we finish reading compressed pages from the disk, we
216  * decompress them and then run the bio end_io routines on the
217  * decompressed pages (in the inode address space).
218  *
219  * This allows the checksumming and other IO error handling routines
220  * to work normally
221  *
222  * The compressed pages are freed here, and it must be run
223  * in process context
224  */
225 static void end_compressed_bio_read(struct bio *bio)
226 {
227 	struct compressed_bio *cb = bio->bi_private;
228 	struct inode *inode;
229 	struct page *page;
230 	unsigned long index;
231 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
232 	int ret = 0;
233 
234 	if (bio->bi_status)
235 		cb->errors = 1;
236 
237 	/* if there are more bios still pending for this compressed
238 	 * extent, just exit
239 	 */
240 	if (!refcount_dec_and_test(&cb->pending_bios))
241 		goto out;
242 
243 	/*
244 	 * Record the correct mirror_num in cb->orig_bio so that
245 	 * read-repair can work properly.
246 	 */
247 	ASSERT(btrfs_io_bio(cb->orig_bio));
248 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
249 	cb->mirror_num = mirror;
250 
251 	/*
252 	 * Some IO in this cb have failed, just skip checksum as there
253 	 * is no way it could be correct.
254 	 */
255 	if (cb->errors == 1)
256 		goto csum_failed;
257 
258 	inode = cb->inode;
259 	ret = check_compressed_csum(BTRFS_I(inode), cb,
260 				    (u64)bio->bi_iter.bi_sector << 9);
261 	if (ret)
262 		goto csum_failed;
263 
264 	/* ok, we're the last bio for this extent, lets start
265 	 * the decompression.
266 	 */
267 	ret = btrfs_decompress_bio(cb);
268 
269 csum_failed:
270 	if (ret)
271 		cb->errors = 1;
272 
273 	/* release the compressed pages */
274 	index = 0;
275 	for (index = 0; index < cb->nr_pages; index++) {
276 		page = cb->compressed_pages[index];
277 		page->mapping = NULL;
278 		put_page(page);
279 	}
280 
281 	/* do io completion on the original bio */
282 	if (cb->errors) {
283 		bio_io_error(cb->orig_bio);
284 	} else {
285 		struct bio_vec *bvec;
286 		struct bvec_iter_all iter_all;
287 
288 		/*
289 		 * we have verified the checksum already, set page
290 		 * checked so the end_io handlers know about it
291 		 */
292 		ASSERT(!bio_flagged(bio, BIO_CLONED));
293 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
294 			SetPageChecked(bvec->bv_page);
295 
296 		bio_endio(cb->orig_bio);
297 	}
298 
299 	/* finally free the cb struct */
300 	kfree(cb->compressed_pages);
301 	kfree(cb);
302 out:
303 	bio_put(bio);
304 }
305 
306 /*
307  * Clear the writeback bits on all of the file
308  * pages for a compressed write
309  */
310 static noinline void end_compressed_writeback(struct inode *inode,
311 					      const struct compressed_bio *cb)
312 {
313 	unsigned long index = cb->start >> PAGE_SHIFT;
314 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
315 	struct page *pages[16];
316 	unsigned long nr_pages = end_index - index + 1;
317 	int i;
318 	int ret;
319 
320 	if (cb->errors)
321 		mapping_set_error(inode->i_mapping, -EIO);
322 
323 	while (nr_pages > 0) {
324 		ret = find_get_pages_contig(inode->i_mapping, index,
325 				     min_t(unsigned long,
326 				     nr_pages, ARRAY_SIZE(pages)), pages);
327 		if (ret == 0) {
328 			nr_pages -= 1;
329 			index += 1;
330 			continue;
331 		}
332 		for (i = 0; i < ret; i++) {
333 			if (cb->errors)
334 				SetPageError(pages[i]);
335 			end_page_writeback(pages[i]);
336 			put_page(pages[i]);
337 		}
338 		nr_pages -= ret;
339 		index += ret;
340 	}
341 	/* the inode may be gone now */
342 }
343 
344 /*
345  * do the cleanup once all the compressed pages hit the disk.
346  * This will clear writeback on the file pages and free the compressed
347  * pages.
348  *
349  * This also calls the writeback end hooks for the file pages so that
350  * metadata and checksums can be updated in the file.
351  */
352 static void end_compressed_bio_write(struct bio *bio)
353 {
354 	struct compressed_bio *cb = bio->bi_private;
355 	struct inode *inode;
356 	struct page *page;
357 	unsigned long index;
358 
359 	if (bio->bi_status)
360 		cb->errors = 1;
361 
362 	/* if there are more bios still pending for this compressed
363 	 * extent, just exit
364 	 */
365 	if (!refcount_dec_and_test(&cb->pending_bios))
366 		goto out;
367 
368 	/* ok, we're the last bio for this extent, step one is to
369 	 * call back into the FS and do all the end_io operations
370 	 */
371 	inode = cb->inode;
372 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
373 	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
374 			cb->start, cb->start + cb->len - 1,
375 			bio->bi_status == BLK_STS_OK);
376 	cb->compressed_pages[0]->mapping = NULL;
377 
378 	end_compressed_writeback(inode, cb);
379 	/* note, our inode could be gone now */
380 
381 	/*
382 	 * release the compressed pages, these came from alloc_page and
383 	 * are not attached to the inode at all
384 	 */
385 	index = 0;
386 	for (index = 0; index < cb->nr_pages; index++) {
387 		page = cb->compressed_pages[index];
388 		page->mapping = NULL;
389 		put_page(page);
390 	}
391 
392 	/* finally free the cb struct */
393 	kfree(cb->compressed_pages);
394 	kfree(cb);
395 out:
396 	bio_put(bio);
397 }
398 
399 /*
400  * worker function to build and submit bios for previously compressed pages.
401  * The corresponding pages in the inode should be marked for writeback
402  * and the compressed pages should have a reference on them for dropping
403  * when the IO is complete.
404  *
405  * This also checksums the file bytes and gets things ready for
406  * the end io hooks.
407  */
408 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
409 				 unsigned long len, u64 disk_start,
410 				 unsigned long compressed_len,
411 				 struct page **compressed_pages,
412 				 unsigned long nr_pages,
413 				 unsigned int write_flags,
414 				 struct cgroup_subsys_state *blkcg_css)
415 {
416 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
417 	struct bio *bio = NULL;
418 	struct compressed_bio *cb;
419 	unsigned long bytes_left;
420 	int pg_index = 0;
421 	struct page *page;
422 	u64 first_byte = disk_start;
423 	blk_status_t ret;
424 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
425 
426 	WARN_ON(!PAGE_ALIGNED(start));
427 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
428 	if (!cb)
429 		return BLK_STS_RESOURCE;
430 	refcount_set(&cb->pending_bios, 0);
431 	cb->errors = 0;
432 	cb->inode = inode;
433 	cb->start = start;
434 	cb->len = len;
435 	cb->mirror_num = 0;
436 	cb->compressed_pages = compressed_pages;
437 	cb->compressed_len = compressed_len;
438 	cb->orig_bio = NULL;
439 	cb->nr_pages = nr_pages;
440 
441 	bio = btrfs_bio_alloc(first_byte);
442 	bio->bi_opf = REQ_OP_WRITE | write_flags;
443 	bio->bi_private = cb;
444 	bio->bi_end_io = end_compressed_bio_write;
445 
446 	if (blkcg_css) {
447 		bio->bi_opf |= REQ_CGROUP_PUNT;
448 		kthread_associate_blkcg(blkcg_css);
449 	}
450 	refcount_set(&cb->pending_bios, 1);
451 
452 	/* create and submit bios for the compressed pages */
453 	bytes_left = compressed_len;
454 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
455 		int submit = 0;
456 
457 		page = compressed_pages[pg_index];
458 		page->mapping = inode->i_mapping;
459 		if (bio->bi_iter.bi_size)
460 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
461 							  0);
462 
463 		page->mapping = NULL;
464 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
465 		    PAGE_SIZE) {
466 			/*
467 			 * inc the count before we submit the bio so
468 			 * we know the end IO handler won't happen before
469 			 * we inc the count.  Otherwise, the cb might get
470 			 * freed before we're done setting it up
471 			 */
472 			refcount_inc(&cb->pending_bios);
473 			ret = btrfs_bio_wq_end_io(fs_info, bio,
474 						  BTRFS_WQ_ENDIO_DATA);
475 			BUG_ON(ret); /* -ENOMEM */
476 
477 			if (!skip_sum) {
478 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
479 				BUG_ON(ret); /* -ENOMEM */
480 			}
481 
482 			ret = btrfs_map_bio(fs_info, bio, 0);
483 			if (ret) {
484 				bio->bi_status = ret;
485 				bio_endio(bio);
486 			}
487 
488 			bio = btrfs_bio_alloc(first_byte);
489 			bio->bi_opf = REQ_OP_WRITE | write_flags;
490 			bio->bi_private = cb;
491 			bio->bi_end_io = end_compressed_bio_write;
492 			if (blkcg_css)
493 				bio->bi_opf |= REQ_CGROUP_PUNT;
494 			bio_add_page(bio, page, PAGE_SIZE, 0);
495 		}
496 		if (bytes_left < PAGE_SIZE) {
497 			btrfs_info(fs_info,
498 					"bytes left %lu compress len %lu nr %lu",
499 			       bytes_left, cb->compressed_len, cb->nr_pages);
500 		}
501 		bytes_left -= PAGE_SIZE;
502 		first_byte += PAGE_SIZE;
503 		cond_resched();
504 	}
505 
506 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
507 	BUG_ON(ret); /* -ENOMEM */
508 
509 	if (!skip_sum) {
510 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
511 		BUG_ON(ret); /* -ENOMEM */
512 	}
513 
514 	ret = btrfs_map_bio(fs_info, bio, 0);
515 	if (ret) {
516 		bio->bi_status = ret;
517 		bio_endio(bio);
518 	}
519 
520 	if (blkcg_css)
521 		kthread_associate_blkcg(NULL);
522 
523 	return 0;
524 }
525 
526 static u64 bio_end_offset(struct bio *bio)
527 {
528 	struct bio_vec *last = bio_last_bvec_all(bio);
529 
530 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
531 }
532 
533 static noinline int add_ra_bio_pages(struct inode *inode,
534 				     u64 compressed_end,
535 				     struct compressed_bio *cb)
536 {
537 	unsigned long end_index;
538 	unsigned long pg_index;
539 	u64 last_offset;
540 	u64 isize = i_size_read(inode);
541 	int ret;
542 	struct page *page;
543 	unsigned long nr_pages = 0;
544 	struct extent_map *em;
545 	struct address_space *mapping = inode->i_mapping;
546 	struct extent_map_tree *em_tree;
547 	struct extent_io_tree *tree;
548 	u64 end;
549 	int misses = 0;
550 
551 	last_offset = bio_end_offset(cb->orig_bio);
552 	em_tree = &BTRFS_I(inode)->extent_tree;
553 	tree = &BTRFS_I(inode)->io_tree;
554 
555 	if (isize == 0)
556 		return 0;
557 
558 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
559 
560 	while (last_offset < compressed_end) {
561 		pg_index = last_offset >> PAGE_SHIFT;
562 
563 		if (pg_index > end_index)
564 			break;
565 
566 		page = xa_load(&mapping->i_pages, pg_index);
567 		if (page && !xa_is_value(page)) {
568 			misses++;
569 			if (misses > 4)
570 				break;
571 			goto next;
572 		}
573 
574 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
575 								 ~__GFP_FS));
576 		if (!page)
577 			break;
578 
579 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
580 			put_page(page);
581 			goto next;
582 		}
583 
584 		end = last_offset + PAGE_SIZE - 1;
585 		/*
586 		 * at this point, we have a locked page in the page cache
587 		 * for these bytes in the file.  But, we have to make
588 		 * sure they map to this compressed extent on disk.
589 		 */
590 		set_page_extent_mapped(page);
591 		lock_extent(tree, last_offset, end);
592 		read_lock(&em_tree->lock);
593 		em = lookup_extent_mapping(em_tree, last_offset,
594 					   PAGE_SIZE);
595 		read_unlock(&em_tree->lock);
596 
597 		if (!em || last_offset < em->start ||
598 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
599 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
600 			free_extent_map(em);
601 			unlock_extent(tree, last_offset, end);
602 			unlock_page(page);
603 			put_page(page);
604 			break;
605 		}
606 		free_extent_map(em);
607 
608 		if (page->index == end_index) {
609 			char *userpage;
610 			size_t zero_offset = offset_in_page(isize);
611 
612 			if (zero_offset) {
613 				int zeros;
614 				zeros = PAGE_SIZE - zero_offset;
615 				userpage = kmap_atomic(page);
616 				memset(userpage + zero_offset, 0, zeros);
617 				flush_dcache_page(page);
618 				kunmap_atomic(userpage);
619 			}
620 		}
621 
622 		ret = bio_add_page(cb->orig_bio, page,
623 				   PAGE_SIZE, 0);
624 
625 		if (ret == PAGE_SIZE) {
626 			nr_pages++;
627 			put_page(page);
628 		} else {
629 			unlock_extent(tree, last_offset, end);
630 			unlock_page(page);
631 			put_page(page);
632 			break;
633 		}
634 next:
635 		last_offset += PAGE_SIZE;
636 	}
637 	return 0;
638 }
639 
640 /*
641  * for a compressed read, the bio we get passed has all the inode pages
642  * in it.  We don't actually do IO on those pages but allocate new ones
643  * to hold the compressed pages on disk.
644  *
645  * bio->bi_iter.bi_sector points to the compressed extent on disk
646  * bio->bi_io_vec points to all of the inode pages
647  *
648  * After the compressed pages are read, we copy the bytes into the
649  * bio we were passed and then call the bio end_io calls
650  */
651 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
652 				 int mirror_num, unsigned long bio_flags)
653 {
654 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
655 	struct extent_map_tree *em_tree;
656 	struct compressed_bio *cb;
657 	unsigned long compressed_len;
658 	unsigned long nr_pages;
659 	unsigned long pg_index;
660 	struct page *page;
661 	struct bio *comp_bio;
662 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
663 	u64 em_len;
664 	u64 em_start;
665 	struct extent_map *em;
666 	blk_status_t ret = BLK_STS_RESOURCE;
667 	int faili = 0;
668 	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
669 	u8 *sums;
670 
671 	em_tree = &BTRFS_I(inode)->extent_tree;
672 
673 	/* we need the actual starting offset of this extent in the file */
674 	read_lock(&em_tree->lock);
675 	em = lookup_extent_mapping(em_tree,
676 				   page_offset(bio_first_page_all(bio)),
677 				   PAGE_SIZE);
678 	read_unlock(&em_tree->lock);
679 	if (!em)
680 		return BLK_STS_IOERR;
681 
682 	compressed_len = em->block_len;
683 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
684 	if (!cb)
685 		goto out;
686 
687 	refcount_set(&cb->pending_bios, 0);
688 	cb->errors = 0;
689 	cb->inode = inode;
690 	cb->mirror_num = mirror_num;
691 	sums = cb->sums;
692 
693 	cb->start = em->orig_start;
694 	em_len = em->len;
695 	em_start = em->start;
696 
697 	free_extent_map(em);
698 	em = NULL;
699 
700 	cb->len = bio->bi_iter.bi_size;
701 	cb->compressed_len = compressed_len;
702 	cb->compress_type = extent_compress_type(bio_flags);
703 	cb->orig_bio = bio;
704 
705 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
706 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
707 				       GFP_NOFS);
708 	if (!cb->compressed_pages)
709 		goto fail1;
710 
711 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
712 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
713 							      __GFP_HIGHMEM);
714 		if (!cb->compressed_pages[pg_index]) {
715 			faili = pg_index - 1;
716 			ret = BLK_STS_RESOURCE;
717 			goto fail2;
718 		}
719 	}
720 	faili = nr_pages - 1;
721 	cb->nr_pages = nr_pages;
722 
723 	add_ra_bio_pages(inode, em_start + em_len, cb);
724 
725 	/* include any pages we added in add_ra-bio_pages */
726 	cb->len = bio->bi_iter.bi_size;
727 
728 	comp_bio = btrfs_bio_alloc(cur_disk_byte);
729 	comp_bio->bi_opf = REQ_OP_READ;
730 	comp_bio->bi_private = cb;
731 	comp_bio->bi_end_io = end_compressed_bio_read;
732 	refcount_set(&cb->pending_bios, 1);
733 
734 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
735 		int submit = 0;
736 
737 		page = cb->compressed_pages[pg_index];
738 		page->mapping = inode->i_mapping;
739 		page->index = em_start >> PAGE_SHIFT;
740 
741 		if (comp_bio->bi_iter.bi_size)
742 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
743 							  comp_bio, 0);
744 
745 		page->mapping = NULL;
746 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
747 		    PAGE_SIZE) {
748 			unsigned int nr_sectors;
749 
750 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
751 						  BTRFS_WQ_ENDIO_DATA);
752 			BUG_ON(ret); /* -ENOMEM */
753 
754 			/*
755 			 * inc the count before we submit the bio so
756 			 * we know the end IO handler won't happen before
757 			 * we inc the count.  Otherwise, the cb might get
758 			 * freed before we're done setting it up
759 			 */
760 			refcount_inc(&cb->pending_bios);
761 
762 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
763 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
764 							    (u64)-1, sums);
765 				BUG_ON(ret); /* -ENOMEM */
766 			}
767 
768 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
769 						  fs_info->sectorsize);
770 			sums += csum_size * nr_sectors;
771 
772 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
773 			if (ret) {
774 				comp_bio->bi_status = ret;
775 				bio_endio(comp_bio);
776 			}
777 
778 			comp_bio = btrfs_bio_alloc(cur_disk_byte);
779 			comp_bio->bi_opf = REQ_OP_READ;
780 			comp_bio->bi_private = cb;
781 			comp_bio->bi_end_io = end_compressed_bio_read;
782 
783 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
784 		}
785 		cur_disk_byte += PAGE_SIZE;
786 	}
787 
788 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
789 	BUG_ON(ret); /* -ENOMEM */
790 
791 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
792 		ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums);
793 		BUG_ON(ret); /* -ENOMEM */
794 	}
795 
796 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
797 	if (ret) {
798 		comp_bio->bi_status = ret;
799 		bio_endio(comp_bio);
800 	}
801 
802 	return 0;
803 
804 fail2:
805 	while (faili >= 0) {
806 		__free_page(cb->compressed_pages[faili]);
807 		faili--;
808 	}
809 
810 	kfree(cb->compressed_pages);
811 fail1:
812 	kfree(cb);
813 out:
814 	free_extent_map(em);
815 	return ret;
816 }
817 
818 /*
819  * Heuristic uses systematic sampling to collect data from the input data
820  * range, the logic can be tuned by the following constants:
821  *
822  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
823  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
824  */
825 #define SAMPLING_READ_SIZE	(16)
826 #define SAMPLING_INTERVAL	(256)
827 
828 /*
829  * For statistical analysis of the input data we consider bytes that form a
830  * Galois Field of 256 objects. Each object has an attribute count, ie. how
831  * many times the object appeared in the sample.
832  */
833 #define BUCKET_SIZE		(256)
834 
835 /*
836  * The size of the sample is based on a statistical sampling rule of thumb.
837  * The common way is to perform sampling tests as long as the number of
838  * elements in each cell is at least 5.
839  *
840  * Instead of 5, we choose 32 to obtain more accurate results.
841  * If the data contain the maximum number of symbols, which is 256, we obtain a
842  * sample size bound by 8192.
843  *
844  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
845  * from up to 512 locations.
846  */
847 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
848 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
849 
850 struct bucket_item {
851 	u32 count;
852 };
853 
854 struct heuristic_ws {
855 	/* Partial copy of input data */
856 	u8 *sample;
857 	u32 sample_size;
858 	/* Buckets store counters for each byte value */
859 	struct bucket_item *bucket;
860 	/* Sorting buffer */
861 	struct bucket_item *bucket_b;
862 	struct list_head list;
863 };
864 
865 static struct workspace_manager heuristic_wsm;
866 
867 static void free_heuristic_ws(struct list_head *ws)
868 {
869 	struct heuristic_ws *workspace;
870 
871 	workspace = list_entry(ws, struct heuristic_ws, list);
872 
873 	kvfree(workspace->sample);
874 	kfree(workspace->bucket);
875 	kfree(workspace->bucket_b);
876 	kfree(workspace);
877 }
878 
879 static struct list_head *alloc_heuristic_ws(unsigned int level)
880 {
881 	struct heuristic_ws *ws;
882 
883 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
884 	if (!ws)
885 		return ERR_PTR(-ENOMEM);
886 
887 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
888 	if (!ws->sample)
889 		goto fail;
890 
891 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
892 	if (!ws->bucket)
893 		goto fail;
894 
895 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
896 	if (!ws->bucket_b)
897 		goto fail;
898 
899 	INIT_LIST_HEAD(&ws->list);
900 	return &ws->list;
901 fail:
902 	free_heuristic_ws(&ws->list);
903 	return ERR_PTR(-ENOMEM);
904 }
905 
906 const struct btrfs_compress_op btrfs_heuristic_compress = {
907 	.workspace_manager = &heuristic_wsm,
908 };
909 
910 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
911 	/* The heuristic is represented as compression type 0 */
912 	&btrfs_heuristic_compress,
913 	&btrfs_zlib_compress,
914 	&btrfs_lzo_compress,
915 	&btrfs_zstd_compress,
916 };
917 
918 static struct list_head *alloc_workspace(int type, unsigned int level)
919 {
920 	switch (type) {
921 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
922 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
923 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
924 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
925 	default:
926 		/*
927 		 * This can't happen, the type is validated several times
928 		 * before we get here.
929 		 */
930 		BUG();
931 	}
932 }
933 
934 static void free_workspace(int type, struct list_head *ws)
935 {
936 	switch (type) {
937 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
938 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
939 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
940 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
941 	default:
942 		/*
943 		 * This can't happen, the type is validated several times
944 		 * before we get here.
945 		 */
946 		BUG();
947 	}
948 }
949 
950 static void btrfs_init_workspace_manager(int type)
951 {
952 	struct workspace_manager *wsm;
953 	struct list_head *workspace;
954 
955 	wsm = btrfs_compress_op[type]->workspace_manager;
956 	INIT_LIST_HEAD(&wsm->idle_ws);
957 	spin_lock_init(&wsm->ws_lock);
958 	atomic_set(&wsm->total_ws, 0);
959 	init_waitqueue_head(&wsm->ws_wait);
960 
961 	/*
962 	 * Preallocate one workspace for each compression type so we can
963 	 * guarantee forward progress in the worst case
964 	 */
965 	workspace = alloc_workspace(type, 0);
966 	if (IS_ERR(workspace)) {
967 		pr_warn(
968 	"BTRFS: cannot preallocate compression workspace, will try later\n");
969 	} else {
970 		atomic_set(&wsm->total_ws, 1);
971 		wsm->free_ws = 1;
972 		list_add(workspace, &wsm->idle_ws);
973 	}
974 }
975 
976 static void btrfs_cleanup_workspace_manager(int type)
977 {
978 	struct workspace_manager *wsman;
979 	struct list_head *ws;
980 
981 	wsman = btrfs_compress_op[type]->workspace_manager;
982 	while (!list_empty(&wsman->idle_ws)) {
983 		ws = wsman->idle_ws.next;
984 		list_del(ws);
985 		free_workspace(type, ws);
986 		atomic_dec(&wsman->total_ws);
987 	}
988 }
989 
990 /*
991  * This finds an available workspace or allocates a new one.
992  * If it's not possible to allocate a new one, waits until there's one.
993  * Preallocation makes a forward progress guarantees and we do not return
994  * errors.
995  */
996 struct list_head *btrfs_get_workspace(int type, unsigned int level)
997 {
998 	struct workspace_manager *wsm;
999 	struct list_head *workspace;
1000 	int cpus = num_online_cpus();
1001 	unsigned nofs_flag;
1002 	struct list_head *idle_ws;
1003 	spinlock_t *ws_lock;
1004 	atomic_t *total_ws;
1005 	wait_queue_head_t *ws_wait;
1006 	int *free_ws;
1007 
1008 	wsm = btrfs_compress_op[type]->workspace_manager;
1009 	idle_ws	 = &wsm->idle_ws;
1010 	ws_lock	 = &wsm->ws_lock;
1011 	total_ws = &wsm->total_ws;
1012 	ws_wait	 = &wsm->ws_wait;
1013 	free_ws	 = &wsm->free_ws;
1014 
1015 again:
1016 	spin_lock(ws_lock);
1017 	if (!list_empty(idle_ws)) {
1018 		workspace = idle_ws->next;
1019 		list_del(workspace);
1020 		(*free_ws)--;
1021 		spin_unlock(ws_lock);
1022 		return workspace;
1023 
1024 	}
1025 	if (atomic_read(total_ws) > cpus) {
1026 		DEFINE_WAIT(wait);
1027 
1028 		spin_unlock(ws_lock);
1029 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1030 		if (atomic_read(total_ws) > cpus && !*free_ws)
1031 			schedule();
1032 		finish_wait(ws_wait, &wait);
1033 		goto again;
1034 	}
1035 	atomic_inc(total_ws);
1036 	spin_unlock(ws_lock);
1037 
1038 	/*
1039 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1040 	 * to turn it off here because we might get called from the restricted
1041 	 * context of btrfs_compress_bio/btrfs_compress_pages
1042 	 */
1043 	nofs_flag = memalloc_nofs_save();
1044 	workspace = alloc_workspace(type, level);
1045 	memalloc_nofs_restore(nofs_flag);
1046 
1047 	if (IS_ERR(workspace)) {
1048 		atomic_dec(total_ws);
1049 		wake_up(ws_wait);
1050 
1051 		/*
1052 		 * Do not return the error but go back to waiting. There's a
1053 		 * workspace preallocated for each type and the compression
1054 		 * time is bounded so we get to a workspace eventually. This
1055 		 * makes our caller's life easier.
1056 		 *
1057 		 * To prevent silent and low-probability deadlocks (when the
1058 		 * initial preallocation fails), check if there are any
1059 		 * workspaces at all.
1060 		 */
1061 		if (atomic_read(total_ws) == 0) {
1062 			static DEFINE_RATELIMIT_STATE(_rs,
1063 					/* once per minute */ 60 * HZ,
1064 					/* no burst */ 1);
1065 
1066 			if (__ratelimit(&_rs)) {
1067 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1068 			}
1069 		}
1070 		goto again;
1071 	}
1072 	return workspace;
1073 }
1074 
1075 static struct list_head *get_workspace(int type, int level)
1076 {
1077 	switch (type) {
1078 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1079 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1080 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1081 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1082 	default:
1083 		/*
1084 		 * This can't happen, the type is validated several times
1085 		 * before we get here.
1086 		 */
1087 		BUG();
1088 	}
1089 }
1090 
1091 /*
1092  * put a workspace struct back on the list or free it if we have enough
1093  * idle ones sitting around
1094  */
1095 void btrfs_put_workspace(int type, struct list_head *ws)
1096 {
1097 	struct workspace_manager *wsm;
1098 	struct list_head *idle_ws;
1099 	spinlock_t *ws_lock;
1100 	atomic_t *total_ws;
1101 	wait_queue_head_t *ws_wait;
1102 	int *free_ws;
1103 
1104 	wsm = btrfs_compress_op[type]->workspace_manager;
1105 	idle_ws	 = &wsm->idle_ws;
1106 	ws_lock	 = &wsm->ws_lock;
1107 	total_ws = &wsm->total_ws;
1108 	ws_wait	 = &wsm->ws_wait;
1109 	free_ws	 = &wsm->free_ws;
1110 
1111 	spin_lock(ws_lock);
1112 	if (*free_ws <= num_online_cpus()) {
1113 		list_add(ws, idle_ws);
1114 		(*free_ws)++;
1115 		spin_unlock(ws_lock);
1116 		goto wake;
1117 	}
1118 	spin_unlock(ws_lock);
1119 
1120 	free_workspace(type, ws);
1121 	atomic_dec(total_ws);
1122 wake:
1123 	cond_wake_up(ws_wait);
1124 }
1125 
1126 static void put_workspace(int type, struct list_head *ws)
1127 {
1128 	switch (type) {
1129 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1130 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1131 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1132 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1133 	default:
1134 		/*
1135 		 * This can't happen, the type is validated several times
1136 		 * before we get here.
1137 		 */
1138 		BUG();
1139 	}
1140 }
1141 
1142 /*
1143  * Adjust @level according to the limits of the compression algorithm or
1144  * fallback to default
1145  */
1146 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1147 {
1148 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1149 
1150 	if (level == 0)
1151 		level = ops->default_level;
1152 	else
1153 		level = min(level, ops->max_level);
1154 
1155 	return level;
1156 }
1157 
1158 /*
1159  * Given an address space and start and length, compress the bytes into @pages
1160  * that are allocated on demand.
1161  *
1162  * @type_level is encoded algorithm and level, where level 0 means whatever
1163  * default the algorithm chooses and is opaque here;
1164  * - compression algo are 0-3
1165  * - the level are bits 4-7
1166  *
1167  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1168  * and returns number of actually allocated pages
1169  *
1170  * @total_in is used to return the number of bytes actually read.  It
1171  * may be smaller than the input length if we had to exit early because we
1172  * ran out of room in the pages array or because we cross the
1173  * max_out threshold.
1174  *
1175  * @total_out is an in/out parameter, must be set to the input length and will
1176  * be also used to return the total number of compressed bytes
1177  *
1178  * @max_out tells us the max number of bytes that we're allowed to
1179  * stuff into pages
1180  */
1181 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1182 			 u64 start, struct page **pages,
1183 			 unsigned long *out_pages,
1184 			 unsigned long *total_in,
1185 			 unsigned long *total_out)
1186 {
1187 	int type = btrfs_compress_type(type_level);
1188 	int level = btrfs_compress_level(type_level);
1189 	struct list_head *workspace;
1190 	int ret;
1191 
1192 	level = btrfs_compress_set_level(type, level);
1193 	workspace = get_workspace(type, level);
1194 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1195 					 out_pages, total_in, total_out);
1196 	put_workspace(type, workspace);
1197 	return ret;
1198 }
1199 
1200 /*
1201  * pages_in is an array of pages with compressed data.
1202  *
1203  * disk_start is the starting logical offset of this array in the file
1204  *
1205  * orig_bio contains the pages from the file that we want to decompress into
1206  *
1207  * srclen is the number of bytes in pages_in
1208  *
1209  * The basic idea is that we have a bio that was created by readpages.
1210  * The pages in the bio are for the uncompressed data, and they may not
1211  * be contiguous.  They all correspond to the range of bytes covered by
1212  * the compressed extent.
1213  */
1214 static int btrfs_decompress_bio(struct compressed_bio *cb)
1215 {
1216 	struct list_head *workspace;
1217 	int ret;
1218 	int type = cb->compress_type;
1219 
1220 	workspace = get_workspace(type, 0);
1221 	ret = compression_decompress_bio(type, workspace, cb);
1222 	put_workspace(type, workspace);
1223 
1224 	return ret;
1225 }
1226 
1227 /*
1228  * a less complex decompression routine.  Our compressed data fits in a
1229  * single page, and we want to read a single page out of it.
1230  * start_byte tells us the offset into the compressed data we're interested in
1231  */
1232 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1233 		     unsigned long start_byte, size_t srclen, size_t destlen)
1234 {
1235 	struct list_head *workspace;
1236 	int ret;
1237 
1238 	workspace = get_workspace(type, 0);
1239 	ret = compression_decompress(type, workspace, data_in, dest_page,
1240 				     start_byte, srclen, destlen);
1241 	put_workspace(type, workspace);
1242 
1243 	return ret;
1244 }
1245 
1246 void __init btrfs_init_compress(void)
1247 {
1248 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1249 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1250 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1251 	zstd_init_workspace_manager();
1252 }
1253 
1254 void __cold btrfs_exit_compress(void)
1255 {
1256 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1257 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1258 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1259 	zstd_cleanup_workspace_manager();
1260 }
1261 
1262 /*
1263  * Copy uncompressed data from working buffer to pages.
1264  *
1265  * buf_start is the byte offset we're of the start of our workspace buffer.
1266  *
1267  * total_out is the last byte of the buffer
1268  */
1269 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1270 			      unsigned long total_out, u64 disk_start,
1271 			      struct bio *bio)
1272 {
1273 	unsigned long buf_offset;
1274 	unsigned long current_buf_start;
1275 	unsigned long start_byte;
1276 	unsigned long prev_start_byte;
1277 	unsigned long working_bytes = total_out - buf_start;
1278 	unsigned long bytes;
1279 	char *kaddr;
1280 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1281 
1282 	/*
1283 	 * start byte is the first byte of the page we're currently
1284 	 * copying into relative to the start of the compressed data.
1285 	 */
1286 	start_byte = page_offset(bvec.bv_page) - disk_start;
1287 
1288 	/* we haven't yet hit data corresponding to this page */
1289 	if (total_out <= start_byte)
1290 		return 1;
1291 
1292 	/*
1293 	 * the start of the data we care about is offset into
1294 	 * the middle of our working buffer
1295 	 */
1296 	if (total_out > start_byte && buf_start < start_byte) {
1297 		buf_offset = start_byte - buf_start;
1298 		working_bytes -= buf_offset;
1299 	} else {
1300 		buf_offset = 0;
1301 	}
1302 	current_buf_start = buf_start;
1303 
1304 	/* copy bytes from the working buffer into the pages */
1305 	while (working_bytes > 0) {
1306 		bytes = min_t(unsigned long, bvec.bv_len,
1307 				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1308 		bytes = min(bytes, working_bytes);
1309 
1310 		kaddr = kmap_atomic(bvec.bv_page);
1311 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1312 		kunmap_atomic(kaddr);
1313 		flush_dcache_page(bvec.bv_page);
1314 
1315 		buf_offset += bytes;
1316 		working_bytes -= bytes;
1317 		current_buf_start += bytes;
1318 
1319 		/* check if we need to pick another page */
1320 		bio_advance(bio, bytes);
1321 		if (!bio->bi_iter.bi_size)
1322 			return 0;
1323 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1324 		prev_start_byte = start_byte;
1325 		start_byte = page_offset(bvec.bv_page) - disk_start;
1326 
1327 		/*
1328 		 * We need to make sure we're only adjusting
1329 		 * our offset into compression working buffer when
1330 		 * we're switching pages.  Otherwise we can incorrectly
1331 		 * keep copying when we were actually done.
1332 		 */
1333 		if (start_byte != prev_start_byte) {
1334 			/*
1335 			 * make sure our new page is covered by this
1336 			 * working buffer
1337 			 */
1338 			if (total_out <= start_byte)
1339 				return 1;
1340 
1341 			/*
1342 			 * the next page in the biovec might not be adjacent
1343 			 * to the last page, but it might still be found
1344 			 * inside this working buffer. bump our offset pointer
1345 			 */
1346 			if (total_out > start_byte &&
1347 			    current_buf_start < start_byte) {
1348 				buf_offset = start_byte - buf_start;
1349 				working_bytes = total_out - start_byte;
1350 				current_buf_start = buf_start + buf_offset;
1351 			}
1352 		}
1353 	}
1354 
1355 	return 1;
1356 }
1357 
1358 /*
1359  * Shannon Entropy calculation
1360  *
1361  * Pure byte distribution analysis fails to determine compressibility of data.
1362  * Try calculating entropy to estimate the average minimum number of bits
1363  * needed to encode the sampled data.
1364  *
1365  * For convenience, return the percentage of needed bits, instead of amount of
1366  * bits directly.
1367  *
1368  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1369  *			    and can be compressible with high probability
1370  *
1371  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1372  *
1373  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1374  */
1375 #define ENTROPY_LVL_ACEPTABLE		(65)
1376 #define ENTROPY_LVL_HIGH		(80)
1377 
1378 /*
1379  * For increasead precision in shannon_entropy calculation,
1380  * let's do pow(n, M) to save more digits after comma:
1381  *
1382  * - maximum int bit length is 64
1383  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1384  * - 13 * 4 = 52 < 64		-> M = 4
1385  *
1386  * So use pow(n, 4).
1387  */
1388 static inline u32 ilog2_w(u64 n)
1389 {
1390 	return ilog2(n * n * n * n);
1391 }
1392 
1393 static u32 shannon_entropy(struct heuristic_ws *ws)
1394 {
1395 	const u32 entropy_max = 8 * ilog2_w(2);
1396 	u32 entropy_sum = 0;
1397 	u32 p, p_base, sz_base;
1398 	u32 i;
1399 
1400 	sz_base = ilog2_w(ws->sample_size);
1401 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1402 		p = ws->bucket[i].count;
1403 		p_base = ilog2_w(p);
1404 		entropy_sum += p * (sz_base - p_base);
1405 	}
1406 
1407 	entropy_sum /= ws->sample_size;
1408 	return entropy_sum * 100 / entropy_max;
1409 }
1410 
1411 #define RADIX_BASE		4U
1412 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1413 
1414 static u8 get4bits(u64 num, int shift) {
1415 	u8 low4bits;
1416 
1417 	num >>= shift;
1418 	/* Reverse order */
1419 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1420 	return low4bits;
1421 }
1422 
1423 /*
1424  * Use 4 bits as radix base
1425  * Use 16 u32 counters for calculating new position in buf array
1426  *
1427  * @array     - array that will be sorted
1428  * @array_buf - buffer array to store sorting results
1429  *              must be equal in size to @array
1430  * @num       - array size
1431  */
1432 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1433 		       int num)
1434 {
1435 	u64 max_num;
1436 	u64 buf_num;
1437 	u32 counters[COUNTERS_SIZE];
1438 	u32 new_addr;
1439 	u32 addr;
1440 	int bitlen;
1441 	int shift;
1442 	int i;
1443 
1444 	/*
1445 	 * Try avoid useless loop iterations for small numbers stored in big
1446 	 * counters.  Example: 48 33 4 ... in 64bit array
1447 	 */
1448 	max_num = array[0].count;
1449 	for (i = 1; i < num; i++) {
1450 		buf_num = array[i].count;
1451 		if (buf_num > max_num)
1452 			max_num = buf_num;
1453 	}
1454 
1455 	buf_num = ilog2(max_num);
1456 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1457 
1458 	shift = 0;
1459 	while (shift < bitlen) {
1460 		memset(counters, 0, sizeof(counters));
1461 
1462 		for (i = 0; i < num; i++) {
1463 			buf_num = array[i].count;
1464 			addr = get4bits(buf_num, shift);
1465 			counters[addr]++;
1466 		}
1467 
1468 		for (i = 1; i < COUNTERS_SIZE; i++)
1469 			counters[i] += counters[i - 1];
1470 
1471 		for (i = num - 1; i >= 0; i--) {
1472 			buf_num = array[i].count;
1473 			addr = get4bits(buf_num, shift);
1474 			counters[addr]--;
1475 			new_addr = counters[addr];
1476 			array_buf[new_addr] = array[i];
1477 		}
1478 
1479 		shift += RADIX_BASE;
1480 
1481 		/*
1482 		 * Normal radix expects to move data from a temporary array, to
1483 		 * the main one.  But that requires some CPU time. Avoid that
1484 		 * by doing another sort iteration to original array instead of
1485 		 * memcpy()
1486 		 */
1487 		memset(counters, 0, sizeof(counters));
1488 
1489 		for (i = 0; i < num; i ++) {
1490 			buf_num = array_buf[i].count;
1491 			addr = get4bits(buf_num, shift);
1492 			counters[addr]++;
1493 		}
1494 
1495 		for (i = 1; i < COUNTERS_SIZE; i++)
1496 			counters[i] += counters[i - 1];
1497 
1498 		for (i = num - 1; i >= 0; i--) {
1499 			buf_num = array_buf[i].count;
1500 			addr = get4bits(buf_num, shift);
1501 			counters[addr]--;
1502 			new_addr = counters[addr];
1503 			array[new_addr] = array_buf[i];
1504 		}
1505 
1506 		shift += RADIX_BASE;
1507 	}
1508 }
1509 
1510 /*
1511  * Size of the core byte set - how many bytes cover 90% of the sample
1512  *
1513  * There are several types of structured binary data that use nearly all byte
1514  * values. The distribution can be uniform and counts in all buckets will be
1515  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1516  *
1517  * Other possibility is normal (Gaussian) distribution, where the data could
1518  * be potentially compressible, but we have to take a few more steps to decide
1519  * how much.
1520  *
1521  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1522  *                       compression algo can easy fix that
1523  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1524  *                       probability is not compressible
1525  */
1526 #define BYTE_CORE_SET_LOW		(64)
1527 #define BYTE_CORE_SET_HIGH		(200)
1528 
1529 static int byte_core_set_size(struct heuristic_ws *ws)
1530 {
1531 	u32 i;
1532 	u32 coreset_sum = 0;
1533 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1534 	struct bucket_item *bucket = ws->bucket;
1535 
1536 	/* Sort in reverse order */
1537 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1538 
1539 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1540 		coreset_sum += bucket[i].count;
1541 
1542 	if (coreset_sum > core_set_threshold)
1543 		return i;
1544 
1545 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1546 		coreset_sum += bucket[i].count;
1547 		if (coreset_sum > core_set_threshold)
1548 			break;
1549 	}
1550 
1551 	return i;
1552 }
1553 
1554 /*
1555  * Count byte values in buckets.
1556  * This heuristic can detect textual data (configs, xml, json, html, etc).
1557  * Because in most text-like data byte set is restricted to limited number of
1558  * possible characters, and that restriction in most cases makes data easy to
1559  * compress.
1560  *
1561  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1562  *	less - compressible
1563  *	more - need additional analysis
1564  */
1565 #define BYTE_SET_THRESHOLD		(64)
1566 
1567 static u32 byte_set_size(const struct heuristic_ws *ws)
1568 {
1569 	u32 i;
1570 	u32 byte_set_size = 0;
1571 
1572 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1573 		if (ws->bucket[i].count > 0)
1574 			byte_set_size++;
1575 	}
1576 
1577 	/*
1578 	 * Continue collecting count of byte values in buckets.  If the byte
1579 	 * set size is bigger then the threshold, it's pointless to continue,
1580 	 * the detection technique would fail for this type of data.
1581 	 */
1582 	for (; i < BUCKET_SIZE; i++) {
1583 		if (ws->bucket[i].count > 0) {
1584 			byte_set_size++;
1585 			if (byte_set_size > BYTE_SET_THRESHOLD)
1586 				return byte_set_size;
1587 		}
1588 	}
1589 
1590 	return byte_set_size;
1591 }
1592 
1593 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1594 {
1595 	const u32 half_of_sample = ws->sample_size / 2;
1596 	const u8 *data = ws->sample;
1597 
1598 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1599 }
1600 
1601 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1602 				     struct heuristic_ws *ws)
1603 {
1604 	struct page *page;
1605 	u64 index, index_end;
1606 	u32 i, curr_sample_pos;
1607 	u8 *in_data;
1608 
1609 	/*
1610 	 * Compression handles the input data by chunks of 128KiB
1611 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1612 	 *
1613 	 * We do the same for the heuristic and loop over the whole range.
1614 	 *
1615 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1616 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1617 	 */
1618 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1619 		end = start + BTRFS_MAX_UNCOMPRESSED;
1620 
1621 	index = start >> PAGE_SHIFT;
1622 	index_end = end >> PAGE_SHIFT;
1623 
1624 	/* Don't miss unaligned end */
1625 	if (!IS_ALIGNED(end, PAGE_SIZE))
1626 		index_end++;
1627 
1628 	curr_sample_pos = 0;
1629 	while (index < index_end) {
1630 		page = find_get_page(inode->i_mapping, index);
1631 		in_data = kmap(page);
1632 		/* Handle case where the start is not aligned to PAGE_SIZE */
1633 		i = start % PAGE_SIZE;
1634 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1635 			/* Don't sample any garbage from the last page */
1636 			if (start > end - SAMPLING_READ_SIZE)
1637 				break;
1638 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1639 					SAMPLING_READ_SIZE);
1640 			i += SAMPLING_INTERVAL;
1641 			start += SAMPLING_INTERVAL;
1642 			curr_sample_pos += SAMPLING_READ_SIZE;
1643 		}
1644 		kunmap(page);
1645 		put_page(page);
1646 
1647 		index++;
1648 	}
1649 
1650 	ws->sample_size = curr_sample_pos;
1651 }
1652 
1653 /*
1654  * Compression heuristic.
1655  *
1656  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1657  * quickly (compared to direct compression) detect data characteristics
1658  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1659  * data.
1660  *
1661  * The following types of analysis can be performed:
1662  * - detect mostly zero data
1663  * - detect data with low "byte set" size (text, etc)
1664  * - detect data with low/high "core byte" set
1665  *
1666  * Return non-zero if the compression should be done, 0 otherwise.
1667  */
1668 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1669 {
1670 	struct list_head *ws_list = get_workspace(0, 0);
1671 	struct heuristic_ws *ws;
1672 	u32 i;
1673 	u8 byte;
1674 	int ret = 0;
1675 
1676 	ws = list_entry(ws_list, struct heuristic_ws, list);
1677 
1678 	heuristic_collect_sample(inode, start, end, ws);
1679 
1680 	if (sample_repeated_patterns(ws)) {
1681 		ret = 1;
1682 		goto out;
1683 	}
1684 
1685 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1686 
1687 	for (i = 0; i < ws->sample_size; i++) {
1688 		byte = ws->sample[i];
1689 		ws->bucket[byte].count++;
1690 	}
1691 
1692 	i = byte_set_size(ws);
1693 	if (i < BYTE_SET_THRESHOLD) {
1694 		ret = 2;
1695 		goto out;
1696 	}
1697 
1698 	i = byte_core_set_size(ws);
1699 	if (i <= BYTE_CORE_SET_LOW) {
1700 		ret = 3;
1701 		goto out;
1702 	}
1703 
1704 	if (i >= BYTE_CORE_SET_HIGH) {
1705 		ret = 0;
1706 		goto out;
1707 	}
1708 
1709 	i = shannon_entropy(ws);
1710 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1711 		ret = 4;
1712 		goto out;
1713 	}
1714 
1715 	/*
1716 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1717 	 * needed to give green light to compression.
1718 	 *
1719 	 * For now just assume that compression at that level is not worth the
1720 	 * resources because:
1721 	 *
1722 	 * 1. it is possible to defrag the data later
1723 	 *
1724 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1725 	 * values, every bucket has counter at level ~54. The heuristic would
1726 	 * be confused. This can happen when data have some internal repeated
1727 	 * patterns like "abbacbbc...". This can be detected by analyzing
1728 	 * pairs of bytes, which is too costly.
1729 	 */
1730 	if (i < ENTROPY_LVL_HIGH) {
1731 		ret = 5;
1732 		goto out;
1733 	} else {
1734 		ret = 0;
1735 		goto out;
1736 	}
1737 
1738 out:
1739 	put_workspace(0, ws_list);
1740 	return ret;
1741 }
1742 
1743 /*
1744  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1745  * level, unrecognized string will set the default level
1746  */
1747 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1748 {
1749 	unsigned int level = 0;
1750 	int ret;
1751 
1752 	if (!type)
1753 		return 0;
1754 
1755 	if (str[0] == ':') {
1756 		ret = kstrtouint(str + 1, 10, &level);
1757 		if (ret)
1758 			level = 0;
1759 	}
1760 
1761 	level = btrfs_compress_set_level(type, level);
1762 
1763 	return level;
1764 }
1765