1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "btrfs_inode.h" 24 #include "volumes.h" 25 #include "ordered-data.h" 26 #include "compression.h" 27 #include "extent_io.h" 28 #include "extent_map.h" 29 30 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 31 32 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 33 { 34 switch (type) { 35 case BTRFS_COMPRESS_ZLIB: 36 case BTRFS_COMPRESS_LZO: 37 case BTRFS_COMPRESS_ZSTD: 38 case BTRFS_COMPRESS_NONE: 39 return btrfs_compress_types[type]; 40 } 41 42 return NULL; 43 } 44 45 static int btrfs_decompress_bio(struct compressed_bio *cb); 46 47 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 48 unsigned long disk_size) 49 { 50 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 51 52 return sizeof(struct compressed_bio) + 53 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size; 54 } 55 56 static int check_compressed_csum(struct btrfs_inode *inode, 57 struct compressed_bio *cb, 58 u64 disk_start) 59 { 60 int ret; 61 struct page *page; 62 unsigned long i; 63 char *kaddr; 64 u32 csum; 65 u32 *cb_sum = &cb->sums; 66 67 if (inode->flags & BTRFS_INODE_NODATASUM) 68 return 0; 69 70 for (i = 0; i < cb->nr_pages; i++) { 71 page = cb->compressed_pages[i]; 72 csum = ~(u32)0; 73 74 kaddr = kmap_atomic(page); 75 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE); 76 btrfs_csum_final(csum, (u8 *)&csum); 77 kunmap_atomic(kaddr); 78 79 if (csum != *cb_sum) { 80 btrfs_print_data_csum_error(inode, disk_start, csum, 81 *cb_sum, cb->mirror_num); 82 ret = -EIO; 83 goto fail; 84 } 85 cb_sum++; 86 87 } 88 ret = 0; 89 fail: 90 return ret; 91 } 92 93 /* when we finish reading compressed pages from the disk, we 94 * decompress them and then run the bio end_io routines on the 95 * decompressed pages (in the inode address space). 96 * 97 * This allows the checksumming and other IO error handling routines 98 * to work normally 99 * 100 * The compressed pages are freed here, and it must be run 101 * in process context 102 */ 103 static void end_compressed_bio_read(struct bio *bio) 104 { 105 struct compressed_bio *cb = bio->bi_private; 106 struct inode *inode; 107 struct page *page; 108 unsigned long index; 109 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 110 int ret = 0; 111 112 if (bio->bi_status) 113 cb->errors = 1; 114 115 /* if there are more bios still pending for this compressed 116 * extent, just exit 117 */ 118 if (!refcount_dec_and_test(&cb->pending_bios)) 119 goto out; 120 121 /* 122 * Record the correct mirror_num in cb->orig_bio so that 123 * read-repair can work properly. 124 */ 125 ASSERT(btrfs_io_bio(cb->orig_bio)); 126 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 127 cb->mirror_num = mirror; 128 129 /* 130 * Some IO in this cb have failed, just skip checksum as there 131 * is no way it could be correct. 132 */ 133 if (cb->errors == 1) 134 goto csum_failed; 135 136 inode = cb->inode; 137 ret = check_compressed_csum(BTRFS_I(inode), cb, 138 (u64)bio->bi_iter.bi_sector << 9); 139 if (ret) 140 goto csum_failed; 141 142 /* ok, we're the last bio for this extent, lets start 143 * the decompression. 144 */ 145 ret = btrfs_decompress_bio(cb); 146 147 csum_failed: 148 if (ret) 149 cb->errors = 1; 150 151 /* release the compressed pages */ 152 index = 0; 153 for (index = 0; index < cb->nr_pages; index++) { 154 page = cb->compressed_pages[index]; 155 page->mapping = NULL; 156 put_page(page); 157 } 158 159 /* do io completion on the original bio */ 160 if (cb->errors) { 161 bio_io_error(cb->orig_bio); 162 } else { 163 int i; 164 struct bio_vec *bvec; 165 166 /* 167 * we have verified the checksum already, set page 168 * checked so the end_io handlers know about it 169 */ 170 ASSERT(!bio_flagged(bio, BIO_CLONED)); 171 bio_for_each_segment_all(bvec, cb->orig_bio, i) 172 SetPageChecked(bvec->bv_page); 173 174 bio_endio(cb->orig_bio); 175 } 176 177 /* finally free the cb struct */ 178 kfree(cb->compressed_pages); 179 kfree(cb); 180 out: 181 bio_put(bio); 182 } 183 184 /* 185 * Clear the writeback bits on all of the file 186 * pages for a compressed write 187 */ 188 static noinline void end_compressed_writeback(struct inode *inode, 189 const struct compressed_bio *cb) 190 { 191 unsigned long index = cb->start >> PAGE_SHIFT; 192 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 193 struct page *pages[16]; 194 unsigned long nr_pages = end_index - index + 1; 195 int i; 196 int ret; 197 198 if (cb->errors) 199 mapping_set_error(inode->i_mapping, -EIO); 200 201 while (nr_pages > 0) { 202 ret = find_get_pages_contig(inode->i_mapping, index, 203 min_t(unsigned long, 204 nr_pages, ARRAY_SIZE(pages)), pages); 205 if (ret == 0) { 206 nr_pages -= 1; 207 index += 1; 208 continue; 209 } 210 for (i = 0; i < ret; i++) { 211 if (cb->errors) 212 SetPageError(pages[i]); 213 end_page_writeback(pages[i]); 214 put_page(pages[i]); 215 } 216 nr_pages -= ret; 217 index += ret; 218 } 219 /* the inode may be gone now */ 220 } 221 222 /* 223 * do the cleanup once all the compressed pages hit the disk. 224 * This will clear writeback on the file pages and free the compressed 225 * pages. 226 * 227 * This also calls the writeback end hooks for the file pages so that 228 * metadata and checksums can be updated in the file. 229 */ 230 static void end_compressed_bio_write(struct bio *bio) 231 { 232 struct extent_io_tree *tree; 233 struct compressed_bio *cb = bio->bi_private; 234 struct inode *inode; 235 struct page *page; 236 unsigned long index; 237 238 if (bio->bi_status) 239 cb->errors = 1; 240 241 /* if there are more bios still pending for this compressed 242 * extent, just exit 243 */ 244 if (!refcount_dec_and_test(&cb->pending_bios)) 245 goto out; 246 247 /* ok, we're the last bio for this extent, step one is to 248 * call back into the FS and do all the end_io operations 249 */ 250 inode = cb->inode; 251 tree = &BTRFS_I(inode)->io_tree; 252 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 253 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 254 cb->start, 255 cb->start + cb->len - 1, 256 NULL, 257 bio->bi_status ? 258 BLK_STS_OK : BLK_STS_NOTSUPP); 259 cb->compressed_pages[0]->mapping = NULL; 260 261 end_compressed_writeback(inode, cb); 262 /* note, our inode could be gone now */ 263 264 /* 265 * release the compressed pages, these came from alloc_page and 266 * are not attached to the inode at all 267 */ 268 index = 0; 269 for (index = 0; index < cb->nr_pages; index++) { 270 page = cb->compressed_pages[index]; 271 page->mapping = NULL; 272 put_page(page); 273 } 274 275 /* finally free the cb struct */ 276 kfree(cb->compressed_pages); 277 kfree(cb); 278 out: 279 bio_put(bio); 280 } 281 282 /* 283 * worker function to build and submit bios for previously compressed pages. 284 * The corresponding pages in the inode should be marked for writeback 285 * and the compressed pages should have a reference on them for dropping 286 * when the IO is complete. 287 * 288 * This also checksums the file bytes and gets things ready for 289 * the end io hooks. 290 */ 291 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start, 292 unsigned long len, u64 disk_start, 293 unsigned long compressed_len, 294 struct page **compressed_pages, 295 unsigned long nr_pages, 296 unsigned int write_flags) 297 { 298 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 299 struct bio *bio = NULL; 300 struct compressed_bio *cb; 301 unsigned long bytes_left; 302 int pg_index = 0; 303 struct page *page; 304 u64 first_byte = disk_start; 305 struct block_device *bdev; 306 blk_status_t ret; 307 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 308 309 WARN_ON(start & ((u64)PAGE_SIZE - 1)); 310 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 311 if (!cb) 312 return BLK_STS_RESOURCE; 313 refcount_set(&cb->pending_bios, 0); 314 cb->errors = 0; 315 cb->inode = inode; 316 cb->start = start; 317 cb->len = len; 318 cb->mirror_num = 0; 319 cb->compressed_pages = compressed_pages; 320 cb->compressed_len = compressed_len; 321 cb->orig_bio = NULL; 322 cb->nr_pages = nr_pages; 323 324 bdev = fs_info->fs_devices->latest_bdev; 325 326 bio = btrfs_bio_alloc(bdev, first_byte); 327 bio->bi_opf = REQ_OP_WRITE | write_flags; 328 bio->bi_private = cb; 329 bio->bi_end_io = end_compressed_bio_write; 330 refcount_set(&cb->pending_bios, 1); 331 332 /* create and submit bios for the compressed pages */ 333 bytes_left = compressed_len; 334 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 335 int submit = 0; 336 337 page = compressed_pages[pg_index]; 338 page->mapping = inode->i_mapping; 339 if (bio->bi_iter.bi_size) 340 submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, bio, 0); 341 342 page->mapping = NULL; 343 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 344 PAGE_SIZE) { 345 /* 346 * inc the count before we submit the bio so 347 * we know the end IO handler won't happen before 348 * we inc the count. Otherwise, the cb might get 349 * freed before we're done setting it up 350 */ 351 refcount_inc(&cb->pending_bios); 352 ret = btrfs_bio_wq_end_io(fs_info, bio, 353 BTRFS_WQ_ENDIO_DATA); 354 BUG_ON(ret); /* -ENOMEM */ 355 356 if (!skip_sum) { 357 ret = btrfs_csum_one_bio(inode, bio, start, 1); 358 BUG_ON(ret); /* -ENOMEM */ 359 } 360 361 ret = btrfs_map_bio(fs_info, bio, 0, 1); 362 if (ret) { 363 bio->bi_status = ret; 364 bio_endio(bio); 365 } 366 367 bio = btrfs_bio_alloc(bdev, first_byte); 368 bio->bi_opf = REQ_OP_WRITE | write_flags; 369 bio->bi_private = cb; 370 bio->bi_end_io = end_compressed_bio_write; 371 bio_add_page(bio, page, PAGE_SIZE, 0); 372 } 373 if (bytes_left < PAGE_SIZE) { 374 btrfs_info(fs_info, 375 "bytes left %lu compress len %lu nr %lu", 376 bytes_left, cb->compressed_len, cb->nr_pages); 377 } 378 bytes_left -= PAGE_SIZE; 379 first_byte += PAGE_SIZE; 380 cond_resched(); 381 } 382 383 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 384 BUG_ON(ret); /* -ENOMEM */ 385 386 if (!skip_sum) { 387 ret = btrfs_csum_one_bio(inode, bio, start, 1); 388 BUG_ON(ret); /* -ENOMEM */ 389 } 390 391 ret = btrfs_map_bio(fs_info, bio, 0, 1); 392 if (ret) { 393 bio->bi_status = ret; 394 bio_endio(bio); 395 } 396 397 return 0; 398 } 399 400 static u64 bio_end_offset(struct bio *bio) 401 { 402 struct bio_vec *last = bio_last_bvec_all(bio); 403 404 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 405 } 406 407 static noinline int add_ra_bio_pages(struct inode *inode, 408 u64 compressed_end, 409 struct compressed_bio *cb) 410 { 411 unsigned long end_index; 412 unsigned long pg_index; 413 u64 last_offset; 414 u64 isize = i_size_read(inode); 415 int ret; 416 struct page *page; 417 unsigned long nr_pages = 0; 418 struct extent_map *em; 419 struct address_space *mapping = inode->i_mapping; 420 struct extent_map_tree *em_tree; 421 struct extent_io_tree *tree; 422 u64 end; 423 int misses = 0; 424 425 last_offset = bio_end_offset(cb->orig_bio); 426 em_tree = &BTRFS_I(inode)->extent_tree; 427 tree = &BTRFS_I(inode)->io_tree; 428 429 if (isize == 0) 430 return 0; 431 432 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 433 434 while (last_offset < compressed_end) { 435 pg_index = last_offset >> PAGE_SHIFT; 436 437 if (pg_index > end_index) 438 break; 439 440 rcu_read_lock(); 441 page = radix_tree_lookup(&mapping->i_pages, pg_index); 442 rcu_read_unlock(); 443 if (page && !radix_tree_exceptional_entry(page)) { 444 misses++; 445 if (misses > 4) 446 break; 447 goto next; 448 } 449 450 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 451 ~__GFP_FS)); 452 if (!page) 453 break; 454 455 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 456 put_page(page); 457 goto next; 458 } 459 460 end = last_offset + PAGE_SIZE - 1; 461 /* 462 * at this point, we have a locked page in the page cache 463 * for these bytes in the file. But, we have to make 464 * sure they map to this compressed extent on disk. 465 */ 466 set_page_extent_mapped(page); 467 lock_extent(tree, last_offset, end); 468 read_lock(&em_tree->lock); 469 em = lookup_extent_mapping(em_tree, last_offset, 470 PAGE_SIZE); 471 read_unlock(&em_tree->lock); 472 473 if (!em || last_offset < em->start || 474 (last_offset + PAGE_SIZE > extent_map_end(em)) || 475 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 476 free_extent_map(em); 477 unlock_extent(tree, last_offset, end); 478 unlock_page(page); 479 put_page(page); 480 break; 481 } 482 free_extent_map(em); 483 484 if (page->index == end_index) { 485 char *userpage; 486 size_t zero_offset = isize & (PAGE_SIZE - 1); 487 488 if (zero_offset) { 489 int zeros; 490 zeros = PAGE_SIZE - zero_offset; 491 userpage = kmap_atomic(page); 492 memset(userpage + zero_offset, 0, zeros); 493 flush_dcache_page(page); 494 kunmap_atomic(userpage); 495 } 496 } 497 498 ret = bio_add_page(cb->orig_bio, page, 499 PAGE_SIZE, 0); 500 501 if (ret == PAGE_SIZE) { 502 nr_pages++; 503 put_page(page); 504 } else { 505 unlock_extent(tree, last_offset, end); 506 unlock_page(page); 507 put_page(page); 508 break; 509 } 510 next: 511 last_offset += PAGE_SIZE; 512 } 513 return 0; 514 } 515 516 /* 517 * for a compressed read, the bio we get passed has all the inode pages 518 * in it. We don't actually do IO on those pages but allocate new ones 519 * to hold the compressed pages on disk. 520 * 521 * bio->bi_iter.bi_sector points to the compressed extent on disk 522 * bio->bi_io_vec points to all of the inode pages 523 * 524 * After the compressed pages are read, we copy the bytes into the 525 * bio we were passed and then call the bio end_io calls 526 */ 527 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 528 int mirror_num, unsigned long bio_flags) 529 { 530 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 531 struct extent_map_tree *em_tree; 532 struct compressed_bio *cb; 533 unsigned long compressed_len; 534 unsigned long nr_pages; 535 unsigned long pg_index; 536 struct page *page; 537 struct block_device *bdev; 538 struct bio *comp_bio; 539 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; 540 u64 em_len; 541 u64 em_start; 542 struct extent_map *em; 543 blk_status_t ret = BLK_STS_RESOURCE; 544 int faili = 0; 545 u32 *sums; 546 547 em_tree = &BTRFS_I(inode)->extent_tree; 548 549 /* we need the actual starting offset of this extent in the file */ 550 read_lock(&em_tree->lock); 551 em = lookup_extent_mapping(em_tree, 552 page_offset(bio_first_page_all(bio)), 553 PAGE_SIZE); 554 read_unlock(&em_tree->lock); 555 if (!em) 556 return BLK_STS_IOERR; 557 558 compressed_len = em->block_len; 559 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 560 if (!cb) 561 goto out; 562 563 refcount_set(&cb->pending_bios, 0); 564 cb->errors = 0; 565 cb->inode = inode; 566 cb->mirror_num = mirror_num; 567 sums = &cb->sums; 568 569 cb->start = em->orig_start; 570 em_len = em->len; 571 em_start = em->start; 572 573 free_extent_map(em); 574 em = NULL; 575 576 cb->len = bio->bi_iter.bi_size; 577 cb->compressed_len = compressed_len; 578 cb->compress_type = extent_compress_type(bio_flags); 579 cb->orig_bio = bio; 580 581 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 582 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 583 GFP_NOFS); 584 if (!cb->compressed_pages) 585 goto fail1; 586 587 bdev = fs_info->fs_devices->latest_bdev; 588 589 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 590 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 591 __GFP_HIGHMEM); 592 if (!cb->compressed_pages[pg_index]) { 593 faili = pg_index - 1; 594 ret = BLK_STS_RESOURCE; 595 goto fail2; 596 } 597 } 598 faili = nr_pages - 1; 599 cb->nr_pages = nr_pages; 600 601 add_ra_bio_pages(inode, em_start + em_len, cb); 602 603 /* include any pages we added in add_ra-bio_pages */ 604 cb->len = bio->bi_iter.bi_size; 605 606 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 607 comp_bio->bi_opf = REQ_OP_READ; 608 comp_bio->bi_private = cb; 609 comp_bio->bi_end_io = end_compressed_bio_read; 610 refcount_set(&cb->pending_bios, 1); 611 612 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 613 int submit = 0; 614 615 page = cb->compressed_pages[pg_index]; 616 page->mapping = inode->i_mapping; 617 page->index = em_start >> PAGE_SHIFT; 618 619 if (comp_bio->bi_iter.bi_size) 620 submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, 621 comp_bio, 0); 622 623 page->mapping = NULL; 624 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 625 PAGE_SIZE) { 626 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 627 BTRFS_WQ_ENDIO_DATA); 628 BUG_ON(ret); /* -ENOMEM */ 629 630 /* 631 * inc the count before we submit the bio so 632 * we know the end IO handler won't happen before 633 * we inc the count. Otherwise, the cb might get 634 * freed before we're done setting it up 635 */ 636 refcount_inc(&cb->pending_bios); 637 638 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 639 ret = btrfs_lookup_bio_sums(inode, comp_bio, 640 sums); 641 BUG_ON(ret); /* -ENOMEM */ 642 } 643 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 644 fs_info->sectorsize); 645 646 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 647 if (ret) { 648 comp_bio->bi_status = ret; 649 bio_endio(comp_bio); 650 } 651 652 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte); 653 comp_bio->bi_opf = REQ_OP_READ; 654 comp_bio->bi_private = cb; 655 comp_bio->bi_end_io = end_compressed_bio_read; 656 657 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 658 } 659 cur_disk_byte += PAGE_SIZE; 660 } 661 662 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 663 BUG_ON(ret); /* -ENOMEM */ 664 665 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 666 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 667 BUG_ON(ret); /* -ENOMEM */ 668 } 669 670 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0); 671 if (ret) { 672 comp_bio->bi_status = ret; 673 bio_endio(comp_bio); 674 } 675 676 return 0; 677 678 fail2: 679 while (faili >= 0) { 680 __free_page(cb->compressed_pages[faili]); 681 faili--; 682 } 683 684 kfree(cb->compressed_pages); 685 fail1: 686 kfree(cb); 687 out: 688 free_extent_map(em); 689 return ret; 690 } 691 692 /* 693 * Heuristic uses systematic sampling to collect data from the input data 694 * range, the logic can be tuned by the following constants: 695 * 696 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 697 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 698 */ 699 #define SAMPLING_READ_SIZE (16) 700 #define SAMPLING_INTERVAL (256) 701 702 /* 703 * For statistical analysis of the input data we consider bytes that form a 704 * Galois Field of 256 objects. Each object has an attribute count, ie. how 705 * many times the object appeared in the sample. 706 */ 707 #define BUCKET_SIZE (256) 708 709 /* 710 * The size of the sample is based on a statistical sampling rule of thumb. 711 * The common way is to perform sampling tests as long as the number of 712 * elements in each cell is at least 5. 713 * 714 * Instead of 5, we choose 32 to obtain more accurate results. 715 * If the data contain the maximum number of symbols, which is 256, we obtain a 716 * sample size bound by 8192. 717 * 718 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 719 * from up to 512 locations. 720 */ 721 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 722 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 723 724 struct bucket_item { 725 u32 count; 726 }; 727 728 struct heuristic_ws { 729 /* Partial copy of input data */ 730 u8 *sample; 731 u32 sample_size; 732 /* Buckets store counters for each byte value */ 733 struct bucket_item *bucket; 734 /* Sorting buffer */ 735 struct bucket_item *bucket_b; 736 struct list_head list; 737 }; 738 739 static void free_heuristic_ws(struct list_head *ws) 740 { 741 struct heuristic_ws *workspace; 742 743 workspace = list_entry(ws, struct heuristic_ws, list); 744 745 kvfree(workspace->sample); 746 kfree(workspace->bucket); 747 kfree(workspace->bucket_b); 748 kfree(workspace); 749 } 750 751 static struct list_head *alloc_heuristic_ws(void) 752 { 753 struct heuristic_ws *ws; 754 755 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 756 if (!ws) 757 return ERR_PTR(-ENOMEM); 758 759 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 760 if (!ws->sample) 761 goto fail; 762 763 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 764 if (!ws->bucket) 765 goto fail; 766 767 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 768 if (!ws->bucket_b) 769 goto fail; 770 771 INIT_LIST_HEAD(&ws->list); 772 return &ws->list; 773 fail: 774 free_heuristic_ws(&ws->list); 775 return ERR_PTR(-ENOMEM); 776 } 777 778 struct workspaces_list { 779 struct list_head idle_ws; 780 spinlock_t ws_lock; 781 /* Number of free workspaces */ 782 int free_ws; 783 /* Total number of allocated workspaces */ 784 atomic_t total_ws; 785 /* Waiters for a free workspace */ 786 wait_queue_head_t ws_wait; 787 }; 788 789 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES]; 790 791 static struct workspaces_list btrfs_heuristic_ws; 792 793 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 794 &btrfs_zlib_compress, 795 &btrfs_lzo_compress, 796 &btrfs_zstd_compress, 797 }; 798 799 void __init btrfs_init_compress(void) 800 { 801 struct list_head *workspace; 802 int i; 803 804 INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws); 805 spin_lock_init(&btrfs_heuristic_ws.ws_lock); 806 atomic_set(&btrfs_heuristic_ws.total_ws, 0); 807 init_waitqueue_head(&btrfs_heuristic_ws.ws_wait); 808 809 workspace = alloc_heuristic_ws(); 810 if (IS_ERR(workspace)) { 811 pr_warn( 812 "BTRFS: cannot preallocate heuristic workspace, will try later\n"); 813 } else { 814 atomic_set(&btrfs_heuristic_ws.total_ws, 1); 815 btrfs_heuristic_ws.free_ws = 1; 816 list_add(workspace, &btrfs_heuristic_ws.idle_ws); 817 } 818 819 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 820 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws); 821 spin_lock_init(&btrfs_comp_ws[i].ws_lock); 822 atomic_set(&btrfs_comp_ws[i].total_ws, 0); 823 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait); 824 825 /* 826 * Preallocate one workspace for each compression type so 827 * we can guarantee forward progress in the worst case 828 */ 829 workspace = btrfs_compress_op[i]->alloc_workspace(); 830 if (IS_ERR(workspace)) { 831 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n"); 832 } else { 833 atomic_set(&btrfs_comp_ws[i].total_ws, 1); 834 btrfs_comp_ws[i].free_ws = 1; 835 list_add(workspace, &btrfs_comp_ws[i].idle_ws); 836 } 837 } 838 } 839 840 /* 841 * This finds an available workspace or allocates a new one. 842 * If it's not possible to allocate a new one, waits until there's one. 843 * Preallocation makes a forward progress guarantees and we do not return 844 * errors. 845 */ 846 static struct list_head *__find_workspace(int type, bool heuristic) 847 { 848 struct list_head *workspace; 849 int cpus = num_online_cpus(); 850 int idx = type - 1; 851 unsigned nofs_flag; 852 struct list_head *idle_ws; 853 spinlock_t *ws_lock; 854 atomic_t *total_ws; 855 wait_queue_head_t *ws_wait; 856 int *free_ws; 857 858 if (heuristic) { 859 idle_ws = &btrfs_heuristic_ws.idle_ws; 860 ws_lock = &btrfs_heuristic_ws.ws_lock; 861 total_ws = &btrfs_heuristic_ws.total_ws; 862 ws_wait = &btrfs_heuristic_ws.ws_wait; 863 free_ws = &btrfs_heuristic_ws.free_ws; 864 } else { 865 idle_ws = &btrfs_comp_ws[idx].idle_ws; 866 ws_lock = &btrfs_comp_ws[idx].ws_lock; 867 total_ws = &btrfs_comp_ws[idx].total_ws; 868 ws_wait = &btrfs_comp_ws[idx].ws_wait; 869 free_ws = &btrfs_comp_ws[idx].free_ws; 870 } 871 872 again: 873 spin_lock(ws_lock); 874 if (!list_empty(idle_ws)) { 875 workspace = idle_ws->next; 876 list_del(workspace); 877 (*free_ws)--; 878 spin_unlock(ws_lock); 879 return workspace; 880 881 } 882 if (atomic_read(total_ws) > cpus) { 883 DEFINE_WAIT(wait); 884 885 spin_unlock(ws_lock); 886 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 887 if (atomic_read(total_ws) > cpus && !*free_ws) 888 schedule(); 889 finish_wait(ws_wait, &wait); 890 goto again; 891 } 892 atomic_inc(total_ws); 893 spin_unlock(ws_lock); 894 895 /* 896 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 897 * to turn it off here because we might get called from the restricted 898 * context of btrfs_compress_bio/btrfs_compress_pages 899 */ 900 nofs_flag = memalloc_nofs_save(); 901 if (heuristic) 902 workspace = alloc_heuristic_ws(); 903 else 904 workspace = btrfs_compress_op[idx]->alloc_workspace(); 905 memalloc_nofs_restore(nofs_flag); 906 907 if (IS_ERR(workspace)) { 908 atomic_dec(total_ws); 909 wake_up(ws_wait); 910 911 /* 912 * Do not return the error but go back to waiting. There's a 913 * workspace preallocated for each type and the compression 914 * time is bounded so we get to a workspace eventually. This 915 * makes our caller's life easier. 916 * 917 * To prevent silent and low-probability deadlocks (when the 918 * initial preallocation fails), check if there are any 919 * workspaces at all. 920 */ 921 if (atomic_read(total_ws) == 0) { 922 static DEFINE_RATELIMIT_STATE(_rs, 923 /* once per minute */ 60 * HZ, 924 /* no burst */ 1); 925 926 if (__ratelimit(&_rs)) { 927 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 928 } 929 } 930 goto again; 931 } 932 return workspace; 933 } 934 935 static struct list_head *find_workspace(int type) 936 { 937 return __find_workspace(type, false); 938 } 939 940 /* 941 * put a workspace struct back on the list or free it if we have enough 942 * idle ones sitting around 943 */ 944 static void __free_workspace(int type, struct list_head *workspace, 945 bool heuristic) 946 { 947 int idx = type - 1; 948 struct list_head *idle_ws; 949 spinlock_t *ws_lock; 950 atomic_t *total_ws; 951 wait_queue_head_t *ws_wait; 952 int *free_ws; 953 954 if (heuristic) { 955 idle_ws = &btrfs_heuristic_ws.idle_ws; 956 ws_lock = &btrfs_heuristic_ws.ws_lock; 957 total_ws = &btrfs_heuristic_ws.total_ws; 958 ws_wait = &btrfs_heuristic_ws.ws_wait; 959 free_ws = &btrfs_heuristic_ws.free_ws; 960 } else { 961 idle_ws = &btrfs_comp_ws[idx].idle_ws; 962 ws_lock = &btrfs_comp_ws[idx].ws_lock; 963 total_ws = &btrfs_comp_ws[idx].total_ws; 964 ws_wait = &btrfs_comp_ws[idx].ws_wait; 965 free_ws = &btrfs_comp_ws[idx].free_ws; 966 } 967 968 spin_lock(ws_lock); 969 if (*free_ws <= num_online_cpus()) { 970 list_add(workspace, idle_ws); 971 (*free_ws)++; 972 spin_unlock(ws_lock); 973 goto wake; 974 } 975 spin_unlock(ws_lock); 976 977 if (heuristic) 978 free_heuristic_ws(workspace); 979 else 980 btrfs_compress_op[idx]->free_workspace(workspace); 981 atomic_dec(total_ws); 982 wake: 983 cond_wake_up(ws_wait); 984 } 985 986 static void free_workspace(int type, struct list_head *ws) 987 { 988 return __free_workspace(type, ws, false); 989 } 990 991 /* 992 * cleanup function for module exit 993 */ 994 static void free_workspaces(void) 995 { 996 struct list_head *workspace; 997 int i; 998 999 while (!list_empty(&btrfs_heuristic_ws.idle_ws)) { 1000 workspace = btrfs_heuristic_ws.idle_ws.next; 1001 list_del(workspace); 1002 free_heuristic_ws(workspace); 1003 atomic_dec(&btrfs_heuristic_ws.total_ws); 1004 } 1005 1006 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 1007 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) { 1008 workspace = btrfs_comp_ws[i].idle_ws.next; 1009 list_del(workspace); 1010 btrfs_compress_op[i]->free_workspace(workspace); 1011 atomic_dec(&btrfs_comp_ws[i].total_ws); 1012 } 1013 } 1014 } 1015 1016 /* 1017 * Given an address space and start and length, compress the bytes into @pages 1018 * that are allocated on demand. 1019 * 1020 * @type_level is encoded algorithm and level, where level 0 means whatever 1021 * default the algorithm chooses and is opaque here; 1022 * - compression algo are 0-3 1023 * - the level are bits 4-7 1024 * 1025 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1026 * and returns number of actually allocated pages 1027 * 1028 * @total_in is used to return the number of bytes actually read. It 1029 * may be smaller than the input length if we had to exit early because we 1030 * ran out of room in the pages array or because we cross the 1031 * max_out threshold. 1032 * 1033 * @total_out is an in/out parameter, must be set to the input length and will 1034 * be also used to return the total number of compressed bytes 1035 * 1036 * @max_out tells us the max number of bytes that we're allowed to 1037 * stuff into pages 1038 */ 1039 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1040 u64 start, struct page **pages, 1041 unsigned long *out_pages, 1042 unsigned long *total_in, 1043 unsigned long *total_out) 1044 { 1045 struct list_head *workspace; 1046 int ret; 1047 int type = type_level & 0xF; 1048 1049 workspace = find_workspace(type); 1050 1051 btrfs_compress_op[type - 1]->set_level(workspace, type_level); 1052 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 1053 start, pages, 1054 out_pages, 1055 total_in, total_out); 1056 free_workspace(type, workspace); 1057 return ret; 1058 } 1059 1060 /* 1061 * pages_in is an array of pages with compressed data. 1062 * 1063 * disk_start is the starting logical offset of this array in the file 1064 * 1065 * orig_bio contains the pages from the file that we want to decompress into 1066 * 1067 * srclen is the number of bytes in pages_in 1068 * 1069 * The basic idea is that we have a bio that was created by readpages. 1070 * The pages in the bio are for the uncompressed data, and they may not 1071 * be contiguous. They all correspond to the range of bytes covered by 1072 * the compressed extent. 1073 */ 1074 static int btrfs_decompress_bio(struct compressed_bio *cb) 1075 { 1076 struct list_head *workspace; 1077 int ret; 1078 int type = cb->compress_type; 1079 1080 workspace = find_workspace(type); 1081 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb); 1082 free_workspace(type, workspace); 1083 1084 return ret; 1085 } 1086 1087 /* 1088 * a less complex decompression routine. Our compressed data fits in a 1089 * single page, and we want to read a single page out of it. 1090 * start_byte tells us the offset into the compressed data we're interested in 1091 */ 1092 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1093 unsigned long start_byte, size_t srclen, size_t destlen) 1094 { 1095 struct list_head *workspace; 1096 int ret; 1097 1098 workspace = find_workspace(type); 1099 1100 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 1101 dest_page, start_byte, 1102 srclen, destlen); 1103 1104 free_workspace(type, workspace); 1105 return ret; 1106 } 1107 1108 void __cold btrfs_exit_compress(void) 1109 { 1110 free_workspaces(); 1111 } 1112 1113 /* 1114 * Copy uncompressed data from working buffer to pages. 1115 * 1116 * buf_start is the byte offset we're of the start of our workspace buffer. 1117 * 1118 * total_out is the last byte of the buffer 1119 */ 1120 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1121 unsigned long total_out, u64 disk_start, 1122 struct bio *bio) 1123 { 1124 unsigned long buf_offset; 1125 unsigned long current_buf_start; 1126 unsigned long start_byte; 1127 unsigned long prev_start_byte; 1128 unsigned long working_bytes = total_out - buf_start; 1129 unsigned long bytes; 1130 char *kaddr; 1131 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1132 1133 /* 1134 * start byte is the first byte of the page we're currently 1135 * copying into relative to the start of the compressed data. 1136 */ 1137 start_byte = page_offset(bvec.bv_page) - disk_start; 1138 1139 /* we haven't yet hit data corresponding to this page */ 1140 if (total_out <= start_byte) 1141 return 1; 1142 1143 /* 1144 * the start of the data we care about is offset into 1145 * the middle of our working buffer 1146 */ 1147 if (total_out > start_byte && buf_start < start_byte) { 1148 buf_offset = start_byte - buf_start; 1149 working_bytes -= buf_offset; 1150 } else { 1151 buf_offset = 0; 1152 } 1153 current_buf_start = buf_start; 1154 1155 /* copy bytes from the working buffer into the pages */ 1156 while (working_bytes > 0) { 1157 bytes = min_t(unsigned long, bvec.bv_len, 1158 PAGE_SIZE - buf_offset); 1159 bytes = min(bytes, working_bytes); 1160 1161 kaddr = kmap_atomic(bvec.bv_page); 1162 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1163 kunmap_atomic(kaddr); 1164 flush_dcache_page(bvec.bv_page); 1165 1166 buf_offset += bytes; 1167 working_bytes -= bytes; 1168 current_buf_start += bytes; 1169 1170 /* check if we need to pick another page */ 1171 bio_advance(bio, bytes); 1172 if (!bio->bi_iter.bi_size) 1173 return 0; 1174 bvec = bio_iter_iovec(bio, bio->bi_iter); 1175 prev_start_byte = start_byte; 1176 start_byte = page_offset(bvec.bv_page) - disk_start; 1177 1178 /* 1179 * We need to make sure we're only adjusting 1180 * our offset into compression working buffer when 1181 * we're switching pages. Otherwise we can incorrectly 1182 * keep copying when we were actually done. 1183 */ 1184 if (start_byte != prev_start_byte) { 1185 /* 1186 * make sure our new page is covered by this 1187 * working buffer 1188 */ 1189 if (total_out <= start_byte) 1190 return 1; 1191 1192 /* 1193 * the next page in the biovec might not be adjacent 1194 * to the last page, but it might still be found 1195 * inside this working buffer. bump our offset pointer 1196 */ 1197 if (total_out > start_byte && 1198 current_buf_start < start_byte) { 1199 buf_offset = start_byte - buf_start; 1200 working_bytes = total_out - start_byte; 1201 current_buf_start = buf_start + buf_offset; 1202 } 1203 } 1204 } 1205 1206 return 1; 1207 } 1208 1209 /* 1210 * Shannon Entropy calculation 1211 * 1212 * Pure byte distribution analysis fails to determine compressiability of data. 1213 * Try calculating entropy to estimate the average minimum number of bits 1214 * needed to encode the sampled data. 1215 * 1216 * For convenience, return the percentage of needed bits, instead of amount of 1217 * bits directly. 1218 * 1219 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1220 * and can be compressible with high probability 1221 * 1222 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1223 * 1224 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1225 */ 1226 #define ENTROPY_LVL_ACEPTABLE (65) 1227 #define ENTROPY_LVL_HIGH (80) 1228 1229 /* 1230 * For increasead precision in shannon_entropy calculation, 1231 * let's do pow(n, M) to save more digits after comma: 1232 * 1233 * - maximum int bit length is 64 1234 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1235 * - 13 * 4 = 52 < 64 -> M = 4 1236 * 1237 * So use pow(n, 4). 1238 */ 1239 static inline u32 ilog2_w(u64 n) 1240 { 1241 return ilog2(n * n * n * n); 1242 } 1243 1244 static u32 shannon_entropy(struct heuristic_ws *ws) 1245 { 1246 const u32 entropy_max = 8 * ilog2_w(2); 1247 u32 entropy_sum = 0; 1248 u32 p, p_base, sz_base; 1249 u32 i; 1250 1251 sz_base = ilog2_w(ws->sample_size); 1252 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1253 p = ws->bucket[i].count; 1254 p_base = ilog2_w(p); 1255 entropy_sum += p * (sz_base - p_base); 1256 } 1257 1258 entropy_sum /= ws->sample_size; 1259 return entropy_sum * 100 / entropy_max; 1260 } 1261 1262 #define RADIX_BASE 4U 1263 #define COUNTERS_SIZE (1U << RADIX_BASE) 1264 1265 static u8 get4bits(u64 num, int shift) { 1266 u8 low4bits; 1267 1268 num >>= shift; 1269 /* Reverse order */ 1270 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1271 return low4bits; 1272 } 1273 1274 /* 1275 * Use 4 bits as radix base 1276 * Use 16 u32 counters for calculating new possition in buf array 1277 * 1278 * @array - array that will be sorted 1279 * @array_buf - buffer array to store sorting results 1280 * must be equal in size to @array 1281 * @num - array size 1282 */ 1283 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1284 int num) 1285 { 1286 u64 max_num; 1287 u64 buf_num; 1288 u32 counters[COUNTERS_SIZE]; 1289 u32 new_addr; 1290 u32 addr; 1291 int bitlen; 1292 int shift; 1293 int i; 1294 1295 /* 1296 * Try avoid useless loop iterations for small numbers stored in big 1297 * counters. Example: 48 33 4 ... in 64bit array 1298 */ 1299 max_num = array[0].count; 1300 for (i = 1; i < num; i++) { 1301 buf_num = array[i].count; 1302 if (buf_num > max_num) 1303 max_num = buf_num; 1304 } 1305 1306 buf_num = ilog2(max_num); 1307 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1308 1309 shift = 0; 1310 while (shift < bitlen) { 1311 memset(counters, 0, sizeof(counters)); 1312 1313 for (i = 0; i < num; i++) { 1314 buf_num = array[i].count; 1315 addr = get4bits(buf_num, shift); 1316 counters[addr]++; 1317 } 1318 1319 for (i = 1; i < COUNTERS_SIZE; i++) 1320 counters[i] += counters[i - 1]; 1321 1322 for (i = num - 1; i >= 0; i--) { 1323 buf_num = array[i].count; 1324 addr = get4bits(buf_num, shift); 1325 counters[addr]--; 1326 new_addr = counters[addr]; 1327 array_buf[new_addr] = array[i]; 1328 } 1329 1330 shift += RADIX_BASE; 1331 1332 /* 1333 * Normal radix expects to move data from a temporary array, to 1334 * the main one. But that requires some CPU time. Avoid that 1335 * by doing another sort iteration to original array instead of 1336 * memcpy() 1337 */ 1338 memset(counters, 0, sizeof(counters)); 1339 1340 for (i = 0; i < num; i ++) { 1341 buf_num = array_buf[i].count; 1342 addr = get4bits(buf_num, shift); 1343 counters[addr]++; 1344 } 1345 1346 for (i = 1; i < COUNTERS_SIZE; i++) 1347 counters[i] += counters[i - 1]; 1348 1349 for (i = num - 1; i >= 0; i--) { 1350 buf_num = array_buf[i].count; 1351 addr = get4bits(buf_num, shift); 1352 counters[addr]--; 1353 new_addr = counters[addr]; 1354 array[new_addr] = array_buf[i]; 1355 } 1356 1357 shift += RADIX_BASE; 1358 } 1359 } 1360 1361 /* 1362 * Size of the core byte set - how many bytes cover 90% of the sample 1363 * 1364 * There are several types of structured binary data that use nearly all byte 1365 * values. The distribution can be uniform and counts in all buckets will be 1366 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1367 * 1368 * Other possibility is normal (Gaussian) distribution, where the data could 1369 * be potentially compressible, but we have to take a few more steps to decide 1370 * how much. 1371 * 1372 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1373 * compression algo can easy fix that 1374 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1375 * probability is not compressible 1376 */ 1377 #define BYTE_CORE_SET_LOW (64) 1378 #define BYTE_CORE_SET_HIGH (200) 1379 1380 static int byte_core_set_size(struct heuristic_ws *ws) 1381 { 1382 u32 i; 1383 u32 coreset_sum = 0; 1384 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1385 struct bucket_item *bucket = ws->bucket; 1386 1387 /* Sort in reverse order */ 1388 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1389 1390 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1391 coreset_sum += bucket[i].count; 1392 1393 if (coreset_sum > core_set_threshold) 1394 return i; 1395 1396 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1397 coreset_sum += bucket[i].count; 1398 if (coreset_sum > core_set_threshold) 1399 break; 1400 } 1401 1402 return i; 1403 } 1404 1405 /* 1406 * Count byte values in buckets. 1407 * This heuristic can detect textual data (configs, xml, json, html, etc). 1408 * Because in most text-like data byte set is restricted to limited number of 1409 * possible characters, and that restriction in most cases makes data easy to 1410 * compress. 1411 * 1412 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1413 * less - compressible 1414 * more - need additional analysis 1415 */ 1416 #define BYTE_SET_THRESHOLD (64) 1417 1418 static u32 byte_set_size(const struct heuristic_ws *ws) 1419 { 1420 u32 i; 1421 u32 byte_set_size = 0; 1422 1423 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1424 if (ws->bucket[i].count > 0) 1425 byte_set_size++; 1426 } 1427 1428 /* 1429 * Continue collecting count of byte values in buckets. If the byte 1430 * set size is bigger then the threshold, it's pointless to continue, 1431 * the detection technique would fail for this type of data. 1432 */ 1433 for (; i < BUCKET_SIZE; i++) { 1434 if (ws->bucket[i].count > 0) { 1435 byte_set_size++; 1436 if (byte_set_size > BYTE_SET_THRESHOLD) 1437 return byte_set_size; 1438 } 1439 } 1440 1441 return byte_set_size; 1442 } 1443 1444 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1445 { 1446 const u32 half_of_sample = ws->sample_size / 2; 1447 const u8 *data = ws->sample; 1448 1449 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1450 } 1451 1452 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1453 struct heuristic_ws *ws) 1454 { 1455 struct page *page; 1456 u64 index, index_end; 1457 u32 i, curr_sample_pos; 1458 u8 *in_data; 1459 1460 /* 1461 * Compression handles the input data by chunks of 128KiB 1462 * (defined by BTRFS_MAX_UNCOMPRESSED) 1463 * 1464 * We do the same for the heuristic and loop over the whole range. 1465 * 1466 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1467 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1468 */ 1469 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1470 end = start + BTRFS_MAX_UNCOMPRESSED; 1471 1472 index = start >> PAGE_SHIFT; 1473 index_end = end >> PAGE_SHIFT; 1474 1475 /* Don't miss unaligned end */ 1476 if (!IS_ALIGNED(end, PAGE_SIZE)) 1477 index_end++; 1478 1479 curr_sample_pos = 0; 1480 while (index < index_end) { 1481 page = find_get_page(inode->i_mapping, index); 1482 in_data = kmap(page); 1483 /* Handle case where the start is not aligned to PAGE_SIZE */ 1484 i = start % PAGE_SIZE; 1485 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1486 /* Don't sample any garbage from the last page */ 1487 if (start > end - SAMPLING_READ_SIZE) 1488 break; 1489 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1490 SAMPLING_READ_SIZE); 1491 i += SAMPLING_INTERVAL; 1492 start += SAMPLING_INTERVAL; 1493 curr_sample_pos += SAMPLING_READ_SIZE; 1494 } 1495 kunmap(page); 1496 put_page(page); 1497 1498 index++; 1499 } 1500 1501 ws->sample_size = curr_sample_pos; 1502 } 1503 1504 /* 1505 * Compression heuristic. 1506 * 1507 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1508 * quickly (compared to direct compression) detect data characteristics 1509 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1510 * data. 1511 * 1512 * The following types of analysis can be performed: 1513 * - detect mostly zero data 1514 * - detect data with low "byte set" size (text, etc) 1515 * - detect data with low/high "core byte" set 1516 * 1517 * Return non-zero if the compression should be done, 0 otherwise. 1518 */ 1519 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1520 { 1521 struct list_head *ws_list = __find_workspace(0, true); 1522 struct heuristic_ws *ws; 1523 u32 i; 1524 u8 byte; 1525 int ret = 0; 1526 1527 ws = list_entry(ws_list, struct heuristic_ws, list); 1528 1529 heuristic_collect_sample(inode, start, end, ws); 1530 1531 if (sample_repeated_patterns(ws)) { 1532 ret = 1; 1533 goto out; 1534 } 1535 1536 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1537 1538 for (i = 0; i < ws->sample_size; i++) { 1539 byte = ws->sample[i]; 1540 ws->bucket[byte].count++; 1541 } 1542 1543 i = byte_set_size(ws); 1544 if (i < BYTE_SET_THRESHOLD) { 1545 ret = 2; 1546 goto out; 1547 } 1548 1549 i = byte_core_set_size(ws); 1550 if (i <= BYTE_CORE_SET_LOW) { 1551 ret = 3; 1552 goto out; 1553 } 1554 1555 if (i >= BYTE_CORE_SET_HIGH) { 1556 ret = 0; 1557 goto out; 1558 } 1559 1560 i = shannon_entropy(ws); 1561 if (i <= ENTROPY_LVL_ACEPTABLE) { 1562 ret = 4; 1563 goto out; 1564 } 1565 1566 /* 1567 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1568 * needed to give green light to compression. 1569 * 1570 * For now just assume that compression at that level is not worth the 1571 * resources because: 1572 * 1573 * 1. it is possible to defrag the data later 1574 * 1575 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1576 * values, every bucket has counter at level ~54. The heuristic would 1577 * be confused. This can happen when data have some internal repeated 1578 * patterns like "abbacbbc...". This can be detected by analyzing 1579 * pairs of bytes, which is too costly. 1580 */ 1581 if (i < ENTROPY_LVL_HIGH) { 1582 ret = 5; 1583 goto out; 1584 } else { 1585 ret = 0; 1586 goto out; 1587 } 1588 1589 out: 1590 __free_workspace(0, ws_list, true); 1591 return ret; 1592 } 1593 1594 unsigned int btrfs_compress_str2level(const char *str) 1595 { 1596 if (strncmp(str, "zlib", 4) != 0) 1597 return 0; 1598 1599 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */ 1600 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0) 1601 return str[5] - '0'; 1602 1603 return BTRFS_ZLIB_DEFAULT_LEVEL; 1604 } 1605