xref: /linux/fs/btrfs/compression.c (revision b1d29ba82cf2bc784f4c963ddd6a2cf29e229b33)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "volumes.h"
25 #include "ordered-data.h"
26 #include "compression.h"
27 #include "extent_io.h"
28 #include "extent_map.h"
29 
30 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
31 
32 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
33 {
34 	switch (type) {
35 	case BTRFS_COMPRESS_ZLIB:
36 	case BTRFS_COMPRESS_LZO:
37 	case BTRFS_COMPRESS_ZSTD:
38 	case BTRFS_COMPRESS_NONE:
39 		return btrfs_compress_types[type];
40 	}
41 
42 	return NULL;
43 }
44 
45 static int btrfs_decompress_bio(struct compressed_bio *cb);
46 
47 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
48 				      unsigned long disk_size)
49 {
50 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
51 
52 	return sizeof(struct compressed_bio) +
53 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
54 }
55 
56 static int check_compressed_csum(struct btrfs_inode *inode,
57 				 struct compressed_bio *cb,
58 				 u64 disk_start)
59 {
60 	int ret;
61 	struct page *page;
62 	unsigned long i;
63 	char *kaddr;
64 	u32 csum;
65 	u32 *cb_sum = &cb->sums;
66 
67 	if (inode->flags & BTRFS_INODE_NODATASUM)
68 		return 0;
69 
70 	for (i = 0; i < cb->nr_pages; i++) {
71 		page = cb->compressed_pages[i];
72 		csum = ~(u32)0;
73 
74 		kaddr = kmap_atomic(page);
75 		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
76 		btrfs_csum_final(csum, (u8 *)&csum);
77 		kunmap_atomic(kaddr);
78 
79 		if (csum != *cb_sum) {
80 			btrfs_print_data_csum_error(inode, disk_start, csum,
81 					*cb_sum, cb->mirror_num);
82 			ret = -EIO;
83 			goto fail;
84 		}
85 		cb_sum++;
86 
87 	}
88 	ret = 0;
89 fail:
90 	return ret;
91 }
92 
93 /* when we finish reading compressed pages from the disk, we
94  * decompress them and then run the bio end_io routines on the
95  * decompressed pages (in the inode address space).
96  *
97  * This allows the checksumming and other IO error handling routines
98  * to work normally
99  *
100  * The compressed pages are freed here, and it must be run
101  * in process context
102  */
103 static void end_compressed_bio_read(struct bio *bio)
104 {
105 	struct compressed_bio *cb = bio->bi_private;
106 	struct inode *inode;
107 	struct page *page;
108 	unsigned long index;
109 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
110 	int ret = 0;
111 
112 	if (bio->bi_status)
113 		cb->errors = 1;
114 
115 	/* if there are more bios still pending for this compressed
116 	 * extent, just exit
117 	 */
118 	if (!refcount_dec_and_test(&cb->pending_bios))
119 		goto out;
120 
121 	/*
122 	 * Record the correct mirror_num in cb->orig_bio so that
123 	 * read-repair can work properly.
124 	 */
125 	ASSERT(btrfs_io_bio(cb->orig_bio));
126 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
127 	cb->mirror_num = mirror;
128 
129 	/*
130 	 * Some IO in this cb have failed, just skip checksum as there
131 	 * is no way it could be correct.
132 	 */
133 	if (cb->errors == 1)
134 		goto csum_failed;
135 
136 	inode = cb->inode;
137 	ret = check_compressed_csum(BTRFS_I(inode), cb,
138 				    (u64)bio->bi_iter.bi_sector << 9);
139 	if (ret)
140 		goto csum_failed;
141 
142 	/* ok, we're the last bio for this extent, lets start
143 	 * the decompression.
144 	 */
145 	ret = btrfs_decompress_bio(cb);
146 
147 csum_failed:
148 	if (ret)
149 		cb->errors = 1;
150 
151 	/* release the compressed pages */
152 	index = 0;
153 	for (index = 0; index < cb->nr_pages; index++) {
154 		page = cb->compressed_pages[index];
155 		page->mapping = NULL;
156 		put_page(page);
157 	}
158 
159 	/* do io completion on the original bio */
160 	if (cb->errors) {
161 		bio_io_error(cb->orig_bio);
162 	} else {
163 		int i;
164 		struct bio_vec *bvec;
165 
166 		/*
167 		 * we have verified the checksum already, set page
168 		 * checked so the end_io handlers know about it
169 		 */
170 		ASSERT(!bio_flagged(bio, BIO_CLONED));
171 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
172 			SetPageChecked(bvec->bv_page);
173 
174 		bio_endio(cb->orig_bio);
175 	}
176 
177 	/* finally free the cb struct */
178 	kfree(cb->compressed_pages);
179 	kfree(cb);
180 out:
181 	bio_put(bio);
182 }
183 
184 /*
185  * Clear the writeback bits on all of the file
186  * pages for a compressed write
187  */
188 static noinline void end_compressed_writeback(struct inode *inode,
189 					      const struct compressed_bio *cb)
190 {
191 	unsigned long index = cb->start >> PAGE_SHIFT;
192 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
193 	struct page *pages[16];
194 	unsigned long nr_pages = end_index - index + 1;
195 	int i;
196 	int ret;
197 
198 	if (cb->errors)
199 		mapping_set_error(inode->i_mapping, -EIO);
200 
201 	while (nr_pages > 0) {
202 		ret = find_get_pages_contig(inode->i_mapping, index,
203 				     min_t(unsigned long,
204 				     nr_pages, ARRAY_SIZE(pages)), pages);
205 		if (ret == 0) {
206 			nr_pages -= 1;
207 			index += 1;
208 			continue;
209 		}
210 		for (i = 0; i < ret; i++) {
211 			if (cb->errors)
212 				SetPageError(pages[i]);
213 			end_page_writeback(pages[i]);
214 			put_page(pages[i]);
215 		}
216 		nr_pages -= ret;
217 		index += ret;
218 	}
219 	/* the inode may be gone now */
220 }
221 
222 /*
223  * do the cleanup once all the compressed pages hit the disk.
224  * This will clear writeback on the file pages and free the compressed
225  * pages.
226  *
227  * This also calls the writeback end hooks for the file pages so that
228  * metadata and checksums can be updated in the file.
229  */
230 static void end_compressed_bio_write(struct bio *bio)
231 {
232 	struct extent_io_tree *tree;
233 	struct compressed_bio *cb = bio->bi_private;
234 	struct inode *inode;
235 	struct page *page;
236 	unsigned long index;
237 
238 	if (bio->bi_status)
239 		cb->errors = 1;
240 
241 	/* if there are more bios still pending for this compressed
242 	 * extent, just exit
243 	 */
244 	if (!refcount_dec_and_test(&cb->pending_bios))
245 		goto out;
246 
247 	/* ok, we're the last bio for this extent, step one is to
248 	 * call back into the FS and do all the end_io operations
249 	 */
250 	inode = cb->inode;
251 	tree = &BTRFS_I(inode)->io_tree;
252 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
253 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
254 					 cb->start,
255 					 cb->start + cb->len - 1,
256 					 NULL,
257 					 bio->bi_status ?
258 					 BLK_STS_OK : BLK_STS_NOTSUPP);
259 	cb->compressed_pages[0]->mapping = NULL;
260 
261 	end_compressed_writeback(inode, cb);
262 	/* note, our inode could be gone now */
263 
264 	/*
265 	 * release the compressed pages, these came from alloc_page and
266 	 * are not attached to the inode at all
267 	 */
268 	index = 0;
269 	for (index = 0; index < cb->nr_pages; index++) {
270 		page = cb->compressed_pages[index];
271 		page->mapping = NULL;
272 		put_page(page);
273 	}
274 
275 	/* finally free the cb struct */
276 	kfree(cb->compressed_pages);
277 	kfree(cb);
278 out:
279 	bio_put(bio);
280 }
281 
282 /*
283  * worker function to build and submit bios for previously compressed pages.
284  * The corresponding pages in the inode should be marked for writeback
285  * and the compressed pages should have a reference on them for dropping
286  * when the IO is complete.
287  *
288  * This also checksums the file bytes and gets things ready for
289  * the end io hooks.
290  */
291 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
292 				 unsigned long len, u64 disk_start,
293 				 unsigned long compressed_len,
294 				 struct page **compressed_pages,
295 				 unsigned long nr_pages,
296 				 unsigned int write_flags)
297 {
298 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
299 	struct bio *bio = NULL;
300 	struct compressed_bio *cb;
301 	unsigned long bytes_left;
302 	int pg_index = 0;
303 	struct page *page;
304 	u64 first_byte = disk_start;
305 	struct block_device *bdev;
306 	blk_status_t ret;
307 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
308 
309 	WARN_ON(start & ((u64)PAGE_SIZE - 1));
310 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
311 	if (!cb)
312 		return BLK_STS_RESOURCE;
313 	refcount_set(&cb->pending_bios, 0);
314 	cb->errors = 0;
315 	cb->inode = inode;
316 	cb->start = start;
317 	cb->len = len;
318 	cb->mirror_num = 0;
319 	cb->compressed_pages = compressed_pages;
320 	cb->compressed_len = compressed_len;
321 	cb->orig_bio = NULL;
322 	cb->nr_pages = nr_pages;
323 
324 	bdev = fs_info->fs_devices->latest_bdev;
325 
326 	bio = btrfs_bio_alloc(bdev, first_byte);
327 	bio->bi_opf = REQ_OP_WRITE | write_flags;
328 	bio->bi_private = cb;
329 	bio->bi_end_io = end_compressed_bio_write;
330 	refcount_set(&cb->pending_bios, 1);
331 
332 	/* create and submit bios for the compressed pages */
333 	bytes_left = compressed_len;
334 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
335 		int submit = 0;
336 
337 		page = compressed_pages[pg_index];
338 		page->mapping = inode->i_mapping;
339 		if (bio->bi_iter.bi_size)
340 			submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, bio, 0);
341 
342 		page->mapping = NULL;
343 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
344 		    PAGE_SIZE) {
345 			/*
346 			 * inc the count before we submit the bio so
347 			 * we know the end IO handler won't happen before
348 			 * we inc the count.  Otherwise, the cb might get
349 			 * freed before we're done setting it up
350 			 */
351 			refcount_inc(&cb->pending_bios);
352 			ret = btrfs_bio_wq_end_io(fs_info, bio,
353 						  BTRFS_WQ_ENDIO_DATA);
354 			BUG_ON(ret); /* -ENOMEM */
355 
356 			if (!skip_sum) {
357 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
358 				BUG_ON(ret); /* -ENOMEM */
359 			}
360 
361 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
362 			if (ret) {
363 				bio->bi_status = ret;
364 				bio_endio(bio);
365 			}
366 
367 			bio = btrfs_bio_alloc(bdev, first_byte);
368 			bio->bi_opf = REQ_OP_WRITE | write_flags;
369 			bio->bi_private = cb;
370 			bio->bi_end_io = end_compressed_bio_write;
371 			bio_add_page(bio, page, PAGE_SIZE, 0);
372 		}
373 		if (bytes_left < PAGE_SIZE) {
374 			btrfs_info(fs_info,
375 					"bytes left %lu compress len %lu nr %lu",
376 			       bytes_left, cb->compressed_len, cb->nr_pages);
377 		}
378 		bytes_left -= PAGE_SIZE;
379 		first_byte += PAGE_SIZE;
380 		cond_resched();
381 	}
382 
383 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
384 	BUG_ON(ret); /* -ENOMEM */
385 
386 	if (!skip_sum) {
387 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
388 		BUG_ON(ret); /* -ENOMEM */
389 	}
390 
391 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
392 	if (ret) {
393 		bio->bi_status = ret;
394 		bio_endio(bio);
395 	}
396 
397 	return 0;
398 }
399 
400 static u64 bio_end_offset(struct bio *bio)
401 {
402 	struct bio_vec *last = bio_last_bvec_all(bio);
403 
404 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
405 }
406 
407 static noinline int add_ra_bio_pages(struct inode *inode,
408 				     u64 compressed_end,
409 				     struct compressed_bio *cb)
410 {
411 	unsigned long end_index;
412 	unsigned long pg_index;
413 	u64 last_offset;
414 	u64 isize = i_size_read(inode);
415 	int ret;
416 	struct page *page;
417 	unsigned long nr_pages = 0;
418 	struct extent_map *em;
419 	struct address_space *mapping = inode->i_mapping;
420 	struct extent_map_tree *em_tree;
421 	struct extent_io_tree *tree;
422 	u64 end;
423 	int misses = 0;
424 
425 	last_offset = bio_end_offset(cb->orig_bio);
426 	em_tree = &BTRFS_I(inode)->extent_tree;
427 	tree = &BTRFS_I(inode)->io_tree;
428 
429 	if (isize == 0)
430 		return 0;
431 
432 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
433 
434 	while (last_offset < compressed_end) {
435 		pg_index = last_offset >> PAGE_SHIFT;
436 
437 		if (pg_index > end_index)
438 			break;
439 
440 		rcu_read_lock();
441 		page = radix_tree_lookup(&mapping->i_pages, pg_index);
442 		rcu_read_unlock();
443 		if (page && !radix_tree_exceptional_entry(page)) {
444 			misses++;
445 			if (misses > 4)
446 				break;
447 			goto next;
448 		}
449 
450 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
451 								 ~__GFP_FS));
452 		if (!page)
453 			break;
454 
455 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
456 			put_page(page);
457 			goto next;
458 		}
459 
460 		end = last_offset + PAGE_SIZE - 1;
461 		/*
462 		 * at this point, we have a locked page in the page cache
463 		 * for these bytes in the file.  But, we have to make
464 		 * sure they map to this compressed extent on disk.
465 		 */
466 		set_page_extent_mapped(page);
467 		lock_extent(tree, last_offset, end);
468 		read_lock(&em_tree->lock);
469 		em = lookup_extent_mapping(em_tree, last_offset,
470 					   PAGE_SIZE);
471 		read_unlock(&em_tree->lock);
472 
473 		if (!em || last_offset < em->start ||
474 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
475 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
476 			free_extent_map(em);
477 			unlock_extent(tree, last_offset, end);
478 			unlock_page(page);
479 			put_page(page);
480 			break;
481 		}
482 		free_extent_map(em);
483 
484 		if (page->index == end_index) {
485 			char *userpage;
486 			size_t zero_offset = isize & (PAGE_SIZE - 1);
487 
488 			if (zero_offset) {
489 				int zeros;
490 				zeros = PAGE_SIZE - zero_offset;
491 				userpage = kmap_atomic(page);
492 				memset(userpage + zero_offset, 0, zeros);
493 				flush_dcache_page(page);
494 				kunmap_atomic(userpage);
495 			}
496 		}
497 
498 		ret = bio_add_page(cb->orig_bio, page,
499 				   PAGE_SIZE, 0);
500 
501 		if (ret == PAGE_SIZE) {
502 			nr_pages++;
503 			put_page(page);
504 		} else {
505 			unlock_extent(tree, last_offset, end);
506 			unlock_page(page);
507 			put_page(page);
508 			break;
509 		}
510 next:
511 		last_offset += PAGE_SIZE;
512 	}
513 	return 0;
514 }
515 
516 /*
517  * for a compressed read, the bio we get passed has all the inode pages
518  * in it.  We don't actually do IO on those pages but allocate new ones
519  * to hold the compressed pages on disk.
520  *
521  * bio->bi_iter.bi_sector points to the compressed extent on disk
522  * bio->bi_io_vec points to all of the inode pages
523  *
524  * After the compressed pages are read, we copy the bytes into the
525  * bio we were passed and then call the bio end_io calls
526  */
527 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
528 				 int mirror_num, unsigned long bio_flags)
529 {
530 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
531 	struct extent_map_tree *em_tree;
532 	struct compressed_bio *cb;
533 	unsigned long compressed_len;
534 	unsigned long nr_pages;
535 	unsigned long pg_index;
536 	struct page *page;
537 	struct block_device *bdev;
538 	struct bio *comp_bio;
539 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
540 	u64 em_len;
541 	u64 em_start;
542 	struct extent_map *em;
543 	blk_status_t ret = BLK_STS_RESOURCE;
544 	int faili = 0;
545 	u32 *sums;
546 
547 	em_tree = &BTRFS_I(inode)->extent_tree;
548 
549 	/* we need the actual starting offset of this extent in the file */
550 	read_lock(&em_tree->lock);
551 	em = lookup_extent_mapping(em_tree,
552 				   page_offset(bio_first_page_all(bio)),
553 				   PAGE_SIZE);
554 	read_unlock(&em_tree->lock);
555 	if (!em)
556 		return BLK_STS_IOERR;
557 
558 	compressed_len = em->block_len;
559 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
560 	if (!cb)
561 		goto out;
562 
563 	refcount_set(&cb->pending_bios, 0);
564 	cb->errors = 0;
565 	cb->inode = inode;
566 	cb->mirror_num = mirror_num;
567 	sums = &cb->sums;
568 
569 	cb->start = em->orig_start;
570 	em_len = em->len;
571 	em_start = em->start;
572 
573 	free_extent_map(em);
574 	em = NULL;
575 
576 	cb->len = bio->bi_iter.bi_size;
577 	cb->compressed_len = compressed_len;
578 	cb->compress_type = extent_compress_type(bio_flags);
579 	cb->orig_bio = bio;
580 
581 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
582 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
583 				       GFP_NOFS);
584 	if (!cb->compressed_pages)
585 		goto fail1;
586 
587 	bdev = fs_info->fs_devices->latest_bdev;
588 
589 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
590 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
591 							      __GFP_HIGHMEM);
592 		if (!cb->compressed_pages[pg_index]) {
593 			faili = pg_index - 1;
594 			ret = BLK_STS_RESOURCE;
595 			goto fail2;
596 		}
597 	}
598 	faili = nr_pages - 1;
599 	cb->nr_pages = nr_pages;
600 
601 	add_ra_bio_pages(inode, em_start + em_len, cb);
602 
603 	/* include any pages we added in add_ra-bio_pages */
604 	cb->len = bio->bi_iter.bi_size;
605 
606 	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
607 	comp_bio->bi_opf = REQ_OP_READ;
608 	comp_bio->bi_private = cb;
609 	comp_bio->bi_end_io = end_compressed_bio_read;
610 	refcount_set(&cb->pending_bios, 1);
611 
612 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
613 		int submit = 0;
614 
615 		page = cb->compressed_pages[pg_index];
616 		page->mapping = inode->i_mapping;
617 		page->index = em_start >> PAGE_SHIFT;
618 
619 		if (comp_bio->bi_iter.bi_size)
620 			submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE,
621 					comp_bio, 0);
622 
623 		page->mapping = NULL;
624 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
625 		    PAGE_SIZE) {
626 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
627 						  BTRFS_WQ_ENDIO_DATA);
628 			BUG_ON(ret); /* -ENOMEM */
629 
630 			/*
631 			 * inc the count before we submit the bio so
632 			 * we know the end IO handler won't happen before
633 			 * we inc the count.  Otherwise, the cb might get
634 			 * freed before we're done setting it up
635 			 */
636 			refcount_inc(&cb->pending_bios);
637 
638 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
639 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
640 							    sums);
641 				BUG_ON(ret); /* -ENOMEM */
642 			}
643 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
644 					     fs_info->sectorsize);
645 
646 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
647 			if (ret) {
648 				comp_bio->bi_status = ret;
649 				bio_endio(comp_bio);
650 			}
651 
652 			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
653 			comp_bio->bi_opf = REQ_OP_READ;
654 			comp_bio->bi_private = cb;
655 			comp_bio->bi_end_io = end_compressed_bio_read;
656 
657 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
658 		}
659 		cur_disk_byte += PAGE_SIZE;
660 	}
661 
662 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
663 	BUG_ON(ret); /* -ENOMEM */
664 
665 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
666 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
667 		BUG_ON(ret); /* -ENOMEM */
668 	}
669 
670 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
671 	if (ret) {
672 		comp_bio->bi_status = ret;
673 		bio_endio(comp_bio);
674 	}
675 
676 	return 0;
677 
678 fail2:
679 	while (faili >= 0) {
680 		__free_page(cb->compressed_pages[faili]);
681 		faili--;
682 	}
683 
684 	kfree(cb->compressed_pages);
685 fail1:
686 	kfree(cb);
687 out:
688 	free_extent_map(em);
689 	return ret;
690 }
691 
692 /*
693  * Heuristic uses systematic sampling to collect data from the input data
694  * range, the logic can be tuned by the following constants:
695  *
696  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
697  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
698  */
699 #define SAMPLING_READ_SIZE	(16)
700 #define SAMPLING_INTERVAL	(256)
701 
702 /*
703  * For statistical analysis of the input data we consider bytes that form a
704  * Galois Field of 256 objects. Each object has an attribute count, ie. how
705  * many times the object appeared in the sample.
706  */
707 #define BUCKET_SIZE		(256)
708 
709 /*
710  * The size of the sample is based on a statistical sampling rule of thumb.
711  * The common way is to perform sampling tests as long as the number of
712  * elements in each cell is at least 5.
713  *
714  * Instead of 5, we choose 32 to obtain more accurate results.
715  * If the data contain the maximum number of symbols, which is 256, we obtain a
716  * sample size bound by 8192.
717  *
718  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
719  * from up to 512 locations.
720  */
721 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
722 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
723 
724 struct bucket_item {
725 	u32 count;
726 };
727 
728 struct heuristic_ws {
729 	/* Partial copy of input data */
730 	u8 *sample;
731 	u32 sample_size;
732 	/* Buckets store counters for each byte value */
733 	struct bucket_item *bucket;
734 	/* Sorting buffer */
735 	struct bucket_item *bucket_b;
736 	struct list_head list;
737 };
738 
739 static void free_heuristic_ws(struct list_head *ws)
740 {
741 	struct heuristic_ws *workspace;
742 
743 	workspace = list_entry(ws, struct heuristic_ws, list);
744 
745 	kvfree(workspace->sample);
746 	kfree(workspace->bucket);
747 	kfree(workspace->bucket_b);
748 	kfree(workspace);
749 }
750 
751 static struct list_head *alloc_heuristic_ws(void)
752 {
753 	struct heuristic_ws *ws;
754 
755 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
756 	if (!ws)
757 		return ERR_PTR(-ENOMEM);
758 
759 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
760 	if (!ws->sample)
761 		goto fail;
762 
763 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
764 	if (!ws->bucket)
765 		goto fail;
766 
767 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
768 	if (!ws->bucket_b)
769 		goto fail;
770 
771 	INIT_LIST_HEAD(&ws->list);
772 	return &ws->list;
773 fail:
774 	free_heuristic_ws(&ws->list);
775 	return ERR_PTR(-ENOMEM);
776 }
777 
778 struct workspaces_list {
779 	struct list_head idle_ws;
780 	spinlock_t ws_lock;
781 	/* Number of free workspaces */
782 	int free_ws;
783 	/* Total number of allocated workspaces */
784 	atomic_t total_ws;
785 	/* Waiters for a free workspace */
786 	wait_queue_head_t ws_wait;
787 };
788 
789 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
790 
791 static struct workspaces_list btrfs_heuristic_ws;
792 
793 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
794 	&btrfs_zlib_compress,
795 	&btrfs_lzo_compress,
796 	&btrfs_zstd_compress,
797 };
798 
799 void __init btrfs_init_compress(void)
800 {
801 	struct list_head *workspace;
802 	int i;
803 
804 	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
805 	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
806 	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
807 	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
808 
809 	workspace = alloc_heuristic_ws();
810 	if (IS_ERR(workspace)) {
811 		pr_warn(
812 	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
813 	} else {
814 		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
815 		btrfs_heuristic_ws.free_ws = 1;
816 		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
817 	}
818 
819 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
820 		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
821 		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
822 		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
823 		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
824 
825 		/*
826 		 * Preallocate one workspace for each compression type so
827 		 * we can guarantee forward progress in the worst case
828 		 */
829 		workspace = btrfs_compress_op[i]->alloc_workspace();
830 		if (IS_ERR(workspace)) {
831 			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
832 		} else {
833 			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
834 			btrfs_comp_ws[i].free_ws = 1;
835 			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
836 		}
837 	}
838 }
839 
840 /*
841  * This finds an available workspace or allocates a new one.
842  * If it's not possible to allocate a new one, waits until there's one.
843  * Preallocation makes a forward progress guarantees and we do not return
844  * errors.
845  */
846 static struct list_head *__find_workspace(int type, bool heuristic)
847 {
848 	struct list_head *workspace;
849 	int cpus = num_online_cpus();
850 	int idx = type - 1;
851 	unsigned nofs_flag;
852 	struct list_head *idle_ws;
853 	spinlock_t *ws_lock;
854 	atomic_t *total_ws;
855 	wait_queue_head_t *ws_wait;
856 	int *free_ws;
857 
858 	if (heuristic) {
859 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
860 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
861 		total_ws = &btrfs_heuristic_ws.total_ws;
862 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
863 		free_ws	 = &btrfs_heuristic_ws.free_ws;
864 	} else {
865 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
866 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
867 		total_ws = &btrfs_comp_ws[idx].total_ws;
868 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
869 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
870 	}
871 
872 again:
873 	spin_lock(ws_lock);
874 	if (!list_empty(idle_ws)) {
875 		workspace = idle_ws->next;
876 		list_del(workspace);
877 		(*free_ws)--;
878 		spin_unlock(ws_lock);
879 		return workspace;
880 
881 	}
882 	if (atomic_read(total_ws) > cpus) {
883 		DEFINE_WAIT(wait);
884 
885 		spin_unlock(ws_lock);
886 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
887 		if (atomic_read(total_ws) > cpus && !*free_ws)
888 			schedule();
889 		finish_wait(ws_wait, &wait);
890 		goto again;
891 	}
892 	atomic_inc(total_ws);
893 	spin_unlock(ws_lock);
894 
895 	/*
896 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
897 	 * to turn it off here because we might get called from the restricted
898 	 * context of btrfs_compress_bio/btrfs_compress_pages
899 	 */
900 	nofs_flag = memalloc_nofs_save();
901 	if (heuristic)
902 		workspace = alloc_heuristic_ws();
903 	else
904 		workspace = btrfs_compress_op[idx]->alloc_workspace();
905 	memalloc_nofs_restore(nofs_flag);
906 
907 	if (IS_ERR(workspace)) {
908 		atomic_dec(total_ws);
909 		wake_up(ws_wait);
910 
911 		/*
912 		 * Do not return the error but go back to waiting. There's a
913 		 * workspace preallocated for each type and the compression
914 		 * time is bounded so we get to a workspace eventually. This
915 		 * makes our caller's life easier.
916 		 *
917 		 * To prevent silent and low-probability deadlocks (when the
918 		 * initial preallocation fails), check if there are any
919 		 * workspaces at all.
920 		 */
921 		if (atomic_read(total_ws) == 0) {
922 			static DEFINE_RATELIMIT_STATE(_rs,
923 					/* once per minute */ 60 * HZ,
924 					/* no burst */ 1);
925 
926 			if (__ratelimit(&_rs)) {
927 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
928 			}
929 		}
930 		goto again;
931 	}
932 	return workspace;
933 }
934 
935 static struct list_head *find_workspace(int type)
936 {
937 	return __find_workspace(type, false);
938 }
939 
940 /*
941  * put a workspace struct back on the list or free it if we have enough
942  * idle ones sitting around
943  */
944 static void __free_workspace(int type, struct list_head *workspace,
945 			     bool heuristic)
946 {
947 	int idx = type - 1;
948 	struct list_head *idle_ws;
949 	spinlock_t *ws_lock;
950 	atomic_t *total_ws;
951 	wait_queue_head_t *ws_wait;
952 	int *free_ws;
953 
954 	if (heuristic) {
955 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
956 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
957 		total_ws = &btrfs_heuristic_ws.total_ws;
958 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
959 		free_ws	 = &btrfs_heuristic_ws.free_ws;
960 	} else {
961 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
962 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
963 		total_ws = &btrfs_comp_ws[idx].total_ws;
964 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
965 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
966 	}
967 
968 	spin_lock(ws_lock);
969 	if (*free_ws <= num_online_cpus()) {
970 		list_add(workspace, idle_ws);
971 		(*free_ws)++;
972 		spin_unlock(ws_lock);
973 		goto wake;
974 	}
975 	spin_unlock(ws_lock);
976 
977 	if (heuristic)
978 		free_heuristic_ws(workspace);
979 	else
980 		btrfs_compress_op[idx]->free_workspace(workspace);
981 	atomic_dec(total_ws);
982 wake:
983 	cond_wake_up(ws_wait);
984 }
985 
986 static void free_workspace(int type, struct list_head *ws)
987 {
988 	return __free_workspace(type, ws, false);
989 }
990 
991 /*
992  * cleanup function for module exit
993  */
994 static void free_workspaces(void)
995 {
996 	struct list_head *workspace;
997 	int i;
998 
999 	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
1000 		workspace = btrfs_heuristic_ws.idle_ws.next;
1001 		list_del(workspace);
1002 		free_heuristic_ws(workspace);
1003 		atomic_dec(&btrfs_heuristic_ws.total_ws);
1004 	}
1005 
1006 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1007 		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1008 			workspace = btrfs_comp_ws[i].idle_ws.next;
1009 			list_del(workspace);
1010 			btrfs_compress_op[i]->free_workspace(workspace);
1011 			atomic_dec(&btrfs_comp_ws[i].total_ws);
1012 		}
1013 	}
1014 }
1015 
1016 /*
1017  * Given an address space and start and length, compress the bytes into @pages
1018  * that are allocated on demand.
1019  *
1020  * @type_level is encoded algorithm and level, where level 0 means whatever
1021  * default the algorithm chooses and is opaque here;
1022  * - compression algo are 0-3
1023  * - the level are bits 4-7
1024  *
1025  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1026  * and returns number of actually allocated pages
1027  *
1028  * @total_in is used to return the number of bytes actually read.  It
1029  * may be smaller than the input length if we had to exit early because we
1030  * ran out of room in the pages array or because we cross the
1031  * max_out threshold.
1032  *
1033  * @total_out is an in/out parameter, must be set to the input length and will
1034  * be also used to return the total number of compressed bytes
1035  *
1036  * @max_out tells us the max number of bytes that we're allowed to
1037  * stuff into pages
1038  */
1039 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1040 			 u64 start, struct page **pages,
1041 			 unsigned long *out_pages,
1042 			 unsigned long *total_in,
1043 			 unsigned long *total_out)
1044 {
1045 	struct list_head *workspace;
1046 	int ret;
1047 	int type = type_level & 0xF;
1048 
1049 	workspace = find_workspace(type);
1050 
1051 	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1052 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1053 						      start, pages,
1054 						      out_pages,
1055 						      total_in, total_out);
1056 	free_workspace(type, workspace);
1057 	return ret;
1058 }
1059 
1060 /*
1061  * pages_in is an array of pages with compressed data.
1062  *
1063  * disk_start is the starting logical offset of this array in the file
1064  *
1065  * orig_bio contains the pages from the file that we want to decompress into
1066  *
1067  * srclen is the number of bytes in pages_in
1068  *
1069  * The basic idea is that we have a bio that was created by readpages.
1070  * The pages in the bio are for the uncompressed data, and they may not
1071  * be contiguous.  They all correspond to the range of bytes covered by
1072  * the compressed extent.
1073  */
1074 static int btrfs_decompress_bio(struct compressed_bio *cb)
1075 {
1076 	struct list_head *workspace;
1077 	int ret;
1078 	int type = cb->compress_type;
1079 
1080 	workspace = find_workspace(type);
1081 	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1082 	free_workspace(type, workspace);
1083 
1084 	return ret;
1085 }
1086 
1087 /*
1088  * a less complex decompression routine.  Our compressed data fits in a
1089  * single page, and we want to read a single page out of it.
1090  * start_byte tells us the offset into the compressed data we're interested in
1091  */
1092 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1093 		     unsigned long start_byte, size_t srclen, size_t destlen)
1094 {
1095 	struct list_head *workspace;
1096 	int ret;
1097 
1098 	workspace = find_workspace(type);
1099 
1100 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1101 						  dest_page, start_byte,
1102 						  srclen, destlen);
1103 
1104 	free_workspace(type, workspace);
1105 	return ret;
1106 }
1107 
1108 void __cold btrfs_exit_compress(void)
1109 {
1110 	free_workspaces();
1111 }
1112 
1113 /*
1114  * Copy uncompressed data from working buffer to pages.
1115  *
1116  * buf_start is the byte offset we're of the start of our workspace buffer.
1117  *
1118  * total_out is the last byte of the buffer
1119  */
1120 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1121 			      unsigned long total_out, u64 disk_start,
1122 			      struct bio *bio)
1123 {
1124 	unsigned long buf_offset;
1125 	unsigned long current_buf_start;
1126 	unsigned long start_byte;
1127 	unsigned long prev_start_byte;
1128 	unsigned long working_bytes = total_out - buf_start;
1129 	unsigned long bytes;
1130 	char *kaddr;
1131 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1132 
1133 	/*
1134 	 * start byte is the first byte of the page we're currently
1135 	 * copying into relative to the start of the compressed data.
1136 	 */
1137 	start_byte = page_offset(bvec.bv_page) - disk_start;
1138 
1139 	/* we haven't yet hit data corresponding to this page */
1140 	if (total_out <= start_byte)
1141 		return 1;
1142 
1143 	/*
1144 	 * the start of the data we care about is offset into
1145 	 * the middle of our working buffer
1146 	 */
1147 	if (total_out > start_byte && buf_start < start_byte) {
1148 		buf_offset = start_byte - buf_start;
1149 		working_bytes -= buf_offset;
1150 	} else {
1151 		buf_offset = 0;
1152 	}
1153 	current_buf_start = buf_start;
1154 
1155 	/* copy bytes from the working buffer into the pages */
1156 	while (working_bytes > 0) {
1157 		bytes = min_t(unsigned long, bvec.bv_len,
1158 				PAGE_SIZE - buf_offset);
1159 		bytes = min(bytes, working_bytes);
1160 
1161 		kaddr = kmap_atomic(bvec.bv_page);
1162 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1163 		kunmap_atomic(kaddr);
1164 		flush_dcache_page(bvec.bv_page);
1165 
1166 		buf_offset += bytes;
1167 		working_bytes -= bytes;
1168 		current_buf_start += bytes;
1169 
1170 		/* check if we need to pick another page */
1171 		bio_advance(bio, bytes);
1172 		if (!bio->bi_iter.bi_size)
1173 			return 0;
1174 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1175 		prev_start_byte = start_byte;
1176 		start_byte = page_offset(bvec.bv_page) - disk_start;
1177 
1178 		/*
1179 		 * We need to make sure we're only adjusting
1180 		 * our offset into compression working buffer when
1181 		 * we're switching pages.  Otherwise we can incorrectly
1182 		 * keep copying when we were actually done.
1183 		 */
1184 		if (start_byte != prev_start_byte) {
1185 			/*
1186 			 * make sure our new page is covered by this
1187 			 * working buffer
1188 			 */
1189 			if (total_out <= start_byte)
1190 				return 1;
1191 
1192 			/*
1193 			 * the next page in the biovec might not be adjacent
1194 			 * to the last page, but it might still be found
1195 			 * inside this working buffer. bump our offset pointer
1196 			 */
1197 			if (total_out > start_byte &&
1198 			    current_buf_start < start_byte) {
1199 				buf_offset = start_byte - buf_start;
1200 				working_bytes = total_out - start_byte;
1201 				current_buf_start = buf_start + buf_offset;
1202 			}
1203 		}
1204 	}
1205 
1206 	return 1;
1207 }
1208 
1209 /*
1210  * Shannon Entropy calculation
1211  *
1212  * Pure byte distribution analysis fails to determine compressiability of data.
1213  * Try calculating entropy to estimate the average minimum number of bits
1214  * needed to encode the sampled data.
1215  *
1216  * For convenience, return the percentage of needed bits, instead of amount of
1217  * bits directly.
1218  *
1219  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1220  *			    and can be compressible with high probability
1221  *
1222  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1223  *
1224  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1225  */
1226 #define ENTROPY_LVL_ACEPTABLE		(65)
1227 #define ENTROPY_LVL_HIGH		(80)
1228 
1229 /*
1230  * For increasead precision in shannon_entropy calculation,
1231  * let's do pow(n, M) to save more digits after comma:
1232  *
1233  * - maximum int bit length is 64
1234  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1235  * - 13 * 4 = 52 < 64		-> M = 4
1236  *
1237  * So use pow(n, 4).
1238  */
1239 static inline u32 ilog2_w(u64 n)
1240 {
1241 	return ilog2(n * n * n * n);
1242 }
1243 
1244 static u32 shannon_entropy(struct heuristic_ws *ws)
1245 {
1246 	const u32 entropy_max = 8 * ilog2_w(2);
1247 	u32 entropy_sum = 0;
1248 	u32 p, p_base, sz_base;
1249 	u32 i;
1250 
1251 	sz_base = ilog2_w(ws->sample_size);
1252 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1253 		p = ws->bucket[i].count;
1254 		p_base = ilog2_w(p);
1255 		entropy_sum += p * (sz_base - p_base);
1256 	}
1257 
1258 	entropy_sum /= ws->sample_size;
1259 	return entropy_sum * 100 / entropy_max;
1260 }
1261 
1262 #define RADIX_BASE		4U
1263 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1264 
1265 static u8 get4bits(u64 num, int shift) {
1266 	u8 low4bits;
1267 
1268 	num >>= shift;
1269 	/* Reverse order */
1270 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1271 	return low4bits;
1272 }
1273 
1274 /*
1275  * Use 4 bits as radix base
1276  * Use 16 u32 counters for calculating new possition in buf array
1277  *
1278  * @array     - array that will be sorted
1279  * @array_buf - buffer array to store sorting results
1280  *              must be equal in size to @array
1281  * @num       - array size
1282  */
1283 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1284 		       int num)
1285 {
1286 	u64 max_num;
1287 	u64 buf_num;
1288 	u32 counters[COUNTERS_SIZE];
1289 	u32 new_addr;
1290 	u32 addr;
1291 	int bitlen;
1292 	int shift;
1293 	int i;
1294 
1295 	/*
1296 	 * Try avoid useless loop iterations for small numbers stored in big
1297 	 * counters.  Example: 48 33 4 ... in 64bit array
1298 	 */
1299 	max_num = array[0].count;
1300 	for (i = 1; i < num; i++) {
1301 		buf_num = array[i].count;
1302 		if (buf_num > max_num)
1303 			max_num = buf_num;
1304 	}
1305 
1306 	buf_num = ilog2(max_num);
1307 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1308 
1309 	shift = 0;
1310 	while (shift < bitlen) {
1311 		memset(counters, 0, sizeof(counters));
1312 
1313 		for (i = 0; i < num; i++) {
1314 			buf_num = array[i].count;
1315 			addr = get4bits(buf_num, shift);
1316 			counters[addr]++;
1317 		}
1318 
1319 		for (i = 1; i < COUNTERS_SIZE; i++)
1320 			counters[i] += counters[i - 1];
1321 
1322 		for (i = num - 1; i >= 0; i--) {
1323 			buf_num = array[i].count;
1324 			addr = get4bits(buf_num, shift);
1325 			counters[addr]--;
1326 			new_addr = counters[addr];
1327 			array_buf[new_addr] = array[i];
1328 		}
1329 
1330 		shift += RADIX_BASE;
1331 
1332 		/*
1333 		 * Normal radix expects to move data from a temporary array, to
1334 		 * the main one.  But that requires some CPU time. Avoid that
1335 		 * by doing another sort iteration to original array instead of
1336 		 * memcpy()
1337 		 */
1338 		memset(counters, 0, sizeof(counters));
1339 
1340 		for (i = 0; i < num; i ++) {
1341 			buf_num = array_buf[i].count;
1342 			addr = get4bits(buf_num, shift);
1343 			counters[addr]++;
1344 		}
1345 
1346 		for (i = 1; i < COUNTERS_SIZE; i++)
1347 			counters[i] += counters[i - 1];
1348 
1349 		for (i = num - 1; i >= 0; i--) {
1350 			buf_num = array_buf[i].count;
1351 			addr = get4bits(buf_num, shift);
1352 			counters[addr]--;
1353 			new_addr = counters[addr];
1354 			array[new_addr] = array_buf[i];
1355 		}
1356 
1357 		shift += RADIX_BASE;
1358 	}
1359 }
1360 
1361 /*
1362  * Size of the core byte set - how many bytes cover 90% of the sample
1363  *
1364  * There are several types of structured binary data that use nearly all byte
1365  * values. The distribution can be uniform and counts in all buckets will be
1366  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1367  *
1368  * Other possibility is normal (Gaussian) distribution, where the data could
1369  * be potentially compressible, but we have to take a few more steps to decide
1370  * how much.
1371  *
1372  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1373  *                       compression algo can easy fix that
1374  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1375  *                       probability is not compressible
1376  */
1377 #define BYTE_CORE_SET_LOW		(64)
1378 #define BYTE_CORE_SET_HIGH		(200)
1379 
1380 static int byte_core_set_size(struct heuristic_ws *ws)
1381 {
1382 	u32 i;
1383 	u32 coreset_sum = 0;
1384 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1385 	struct bucket_item *bucket = ws->bucket;
1386 
1387 	/* Sort in reverse order */
1388 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1389 
1390 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1391 		coreset_sum += bucket[i].count;
1392 
1393 	if (coreset_sum > core_set_threshold)
1394 		return i;
1395 
1396 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1397 		coreset_sum += bucket[i].count;
1398 		if (coreset_sum > core_set_threshold)
1399 			break;
1400 	}
1401 
1402 	return i;
1403 }
1404 
1405 /*
1406  * Count byte values in buckets.
1407  * This heuristic can detect textual data (configs, xml, json, html, etc).
1408  * Because in most text-like data byte set is restricted to limited number of
1409  * possible characters, and that restriction in most cases makes data easy to
1410  * compress.
1411  *
1412  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1413  *	less - compressible
1414  *	more - need additional analysis
1415  */
1416 #define BYTE_SET_THRESHOLD		(64)
1417 
1418 static u32 byte_set_size(const struct heuristic_ws *ws)
1419 {
1420 	u32 i;
1421 	u32 byte_set_size = 0;
1422 
1423 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1424 		if (ws->bucket[i].count > 0)
1425 			byte_set_size++;
1426 	}
1427 
1428 	/*
1429 	 * Continue collecting count of byte values in buckets.  If the byte
1430 	 * set size is bigger then the threshold, it's pointless to continue,
1431 	 * the detection technique would fail for this type of data.
1432 	 */
1433 	for (; i < BUCKET_SIZE; i++) {
1434 		if (ws->bucket[i].count > 0) {
1435 			byte_set_size++;
1436 			if (byte_set_size > BYTE_SET_THRESHOLD)
1437 				return byte_set_size;
1438 		}
1439 	}
1440 
1441 	return byte_set_size;
1442 }
1443 
1444 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1445 {
1446 	const u32 half_of_sample = ws->sample_size / 2;
1447 	const u8 *data = ws->sample;
1448 
1449 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1450 }
1451 
1452 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1453 				     struct heuristic_ws *ws)
1454 {
1455 	struct page *page;
1456 	u64 index, index_end;
1457 	u32 i, curr_sample_pos;
1458 	u8 *in_data;
1459 
1460 	/*
1461 	 * Compression handles the input data by chunks of 128KiB
1462 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1463 	 *
1464 	 * We do the same for the heuristic and loop over the whole range.
1465 	 *
1466 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1467 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1468 	 */
1469 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1470 		end = start + BTRFS_MAX_UNCOMPRESSED;
1471 
1472 	index = start >> PAGE_SHIFT;
1473 	index_end = end >> PAGE_SHIFT;
1474 
1475 	/* Don't miss unaligned end */
1476 	if (!IS_ALIGNED(end, PAGE_SIZE))
1477 		index_end++;
1478 
1479 	curr_sample_pos = 0;
1480 	while (index < index_end) {
1481 		page = find_get_page(inode->i_mapping, index);
1482 		in_data = kmap(page);
1483 		/* Handle case where the start is not aligned to PAGE_SIZE */
1484 		i = start % PAGE_SIZE;
1485 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1486 			/* Don't sample any garbage from the last page */
1487 			if (start > end - SAMPLING_READ_SIZE)
1488 				break;
1489 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1490 					SAMPLING_READ_SIZE);
1491 			i += SAMPLING_INTERVAL;
1492 			start += SAMPLING_INTERVAL;
1493 			curr_sample_pos += SAMPLING_READ_SIZE;
1494 		}
1495 		kunmap(page);
1496 		put_page(page);
1497 
1498 		index++;
1499 	}
1500 
1501 	ws->sample_size = curr_sample_pos;
1502 }
1503 
1504 /*
1505  * Compression heuristic.
1506  *
1507  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1508  * quickly (compared to direct compression) detect data characteristics
1509  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1510  * data.
1511  *
1512  * The following types of analysis can be performed:
1513  * - detect mostly zero data
1514  * - detect data with low "byte set" size (text, etc)
1515  * - detect data with low/high "core byte" set
1516  *
1517  * Return non-zero if the compression should be done, 0 otherwise.
1518  */
1519 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1520 {
1521 	struct list_head *ws_list = __find_workspace(0, true);
1522 	struct heuristic_ws *ws;
1523 	u32 i;
1524 	u8 byte;
1525 	int ret = 0;
1526 
1527 	ws = list_entry(ws_list, struct heuristic_ws, list);
1528 
1529 	heuristic_collect_sample(inode, start, end, ws);
1530 
1531 	if (sample_repeated_patterns(ws)) {
1532 		ret = 1;
1533 		goto out;
1534 	}
1535 
1536 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1537 
1538 	for (i = 0; i < ws->sample_size; i++) {
1539 		byte = ws->sample[i];
1540 		ws->bucket[byte].count++;
1541 	}
1542 
1543 	i = byte_set_size(ws);
1544 	if (i < BYTE_SET_THRESHOLD) {
1545 		ret = 2;
1546 		goto out;
1547 	}
1548 
1549 	i = byte_core_set_size(ws);
1550 	if (i <= BYTE_CORE_SET_LOW) {
1551 		ret = 3;
1552 		goto out;
1553 	}
1554 
1555 	if (i >= BYTE_CORE_SET_HIGH) {
1556 		ret = 0;
1557 		goto out;
1558 	}
1559 
1560 	i = shannon_entropy(ws);
1561 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1562 		ret = 4;
1563 		goto out;
1564 	}
1565 
1566 	/*
1567 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1568 	 * needed to give green light to compression.
1569 	 *
1570 	 * For now just assume that compression at that level is not worth the
1571 	 * resources because:
1572 	 *
1573 	 * 1. it is possible to defrag the data later
1574 	 *
1575 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1576 	 * values, every bucket has counter at level ~54. The heuristic would
1577 	 * be confused. This can happen when data have some internal repeated
1578 	 * patterns like "abbacbbc...". This can be detected by analyzing
1579 	 * pairs of bytes, which is too costly.
1580 	 */
1581 	if (i < ENTROPY_LVL_HIGH) {
1582 		ret = 5;
1583 		goto out;
1584 	} else {
1585 		ret = 0;
1586 		goto out;
1587 	}
1588 
1589 out:
1590 	__free_workspace(0, ws_list, true);
1591 	return ret;
1592 }
1593 
1594 unsigned int btrfs_compress_str2level(const char *str)
1595 {
1596 	if (strncmp(str, "zlib", 4) != 0)
1597 		return 0;
1598 
1599 	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1600 	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1601 		return str[5] - '0';
1602 
1603 	return BTRFS_ZLIB_DEFAULT_LEVEL;
1604 }
1605