1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/pagevec.h> 12 #include <linux/highmem.h> 13 #include <linux/kthread.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/psi.h> 20 #include <linux/slab.h> 21 #include <linux/sched/mm.h> 22 #include <linux/log2.h> 23 #include <linux/shrinker.h> 24 #include <crypto/hash.h> 25 #include "misc.h" 26 #include "ctree.h" 27 #include "fs.h" 28 #include "btrfs_inode.h" 29 #include "bio.h" 30 #include "ordered-data.h" 31 #include "compression.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "subpage.h" 35 #include "messages.h" 36 #include "super.h" 37 38 static struct bio_set btrfs_compressed_bioset; 39 40 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 41 42 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 43 { 44 switch (type) { 45 case BTRFS_COMPRESS_ZLIB: 46 case BTRFS_COMPRESS_LZO: 47 case BTRFS_COMPRESS_ZSTD: 48 case BTRFS_COMPRESS_NONE: 49 return btrfs_compress_types[type]; 50 default: 51 break; 52 } 53 54 return NULL; 55 } 56 57 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio) 58 { 59 return container_of(bbio, struct compressed_bio, bbio); 60 } 61 62 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode, 63 u64 start, blk_opf_t op, 64 btrfs_bio_end_io_t end_io) 65 { 66 struct btrfs_bio *bbio; 67 68 bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op, 69 GFP_NOFS, &btrfs_compressed_bioset)); 70 btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL); 71 bbio->inode = inode; 72 bbio->file_offset = start; 73 return to_compressed_bio(bbio); 74 } 75 76 bool btrfs_compress_is_valid_type(const char *str, size_t len) 77 { 78 int i; 79 80 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 81 size_t comp_len = strlen(btrfs_compress_types[i]); 82 83 if (len < comp_len) 84 continue; 85 86 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 87 return true; 88 } 89 return false; 90 } 91 92 static int compression_compress_pages(int type, struct list_head *ws, 93 struct address_space *mapping, u64 start, 94 struct folio **folios, unsigned long *out_folios, 95 unsigned long *total_in, unsigned long *total_out) 96 { 97 switch (type) { 98 case BTRFS_COMPRESS_ZLIB: 99 return zlib_compress_folios(ws, mapping, start, folios, 100 out_folios, total_in, total_out); 101 case BTRFS_COMPRESS_LZO: 102 return lzo_compress_folios(ws, mapping, start, folios, 103 out_folios, total_in, total_out); 104 case BTRFS_COMPRESS_ZSTD: 105 return zstd_compress_folios(ws, mapping, start, folios, 106 out_folios, total_in, total_out); 107 case BTRFS_COMPRESS_NONE: 108 default: 109 /* 110 * This can happen when compression races with remount setting 111 * it to 'no compress', while caller doesn't call 112 * inode_need_compress() to check if we really need to 113 * compress. 114 * 115 * Not a big deal, just need to inform caller that we 116 * haven't allocated any pages yet. 117 */ 118 *out_folios = 0; 119 return -E2BIG; 120 } 121 } 122 123 static int compression_decompress_bio(struct list_head *ws, 124 struct compressed_bio *cb) 125 { 126 switch (cb->compress_type) { 127 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 128 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 129 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 130 case BTRFS_COMPRESS_NONE: 131 default: 132 /* 133 * This can't happen, the type is validated several times 134 * before we get here. 135 */ 136 BUG(); 137 } 138 } 139 140 static int compression_decompress(int type, struct list_head *ws, 141 const u8 *data_in, struct folio *dest_folio, 142 unsigned long dest_pgoff, size_t srclen, size_t destlen) 143 { 144 switch (type) { 145 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_folio, 146 dest_pgoff, srclen, destlen); 147 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_folio, 148 dest_pgoff, srclen, destlen); 149 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_folio, 150 dest_pgoff, srclen, destlen); 151 case BTRFS_COMPRESS_NONE: 152 default: 153 /* 154 * This can't happen, the type is validated several times 155 * before we get here. 156 */ 157 BUG(); 158 } 159 } 160 161 static void btrfs_free_compressed_folios(struct compressed_bio *cb) 162 { 163 for (unsigned int i = 0; i < cb->nr_folios; i++) 164 btrfs_free_compr_folio(cb->compressed_folios[i]); 165 kfree(cb->compressed_folios); 166 } 167 168 static int btrfs_decompress_bio(struct compressed_bio *cb); 169 170 /* 171 * Global cache of last unused pages for compression/decompression. 172 */ 173 static struct btrfs_compr_pool { 174 struct shrinker *shrinker; 175 spinlock_t lock; 176 struct list_head list; 177 int count; 178 int thresh; 179 } compr_pool; 180 181 static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc) 182 { 183 int ret; 184 185 /* 186 * We must not read the values more than once if 'ret' gets expanded in 187 * the return statement so we don't accidentally return a negative 188 * number, even if the first condition finds it positive. 189 */ 190 ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh); 191 192 return ret > 0 ? ret : 0; 193 } 194 195 static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc) 196 { 197 struct list_head remove; 198 struct list_head *tmp, *next; 199 int freed; 200 201 if (compr_pool.count == 0) 202 return SHRINK_STOP; 203 204 INIT_LIST_HEAD(&remove); 205 206 /* For now, just simply drain the whole list. */ 207 spin_lock(&compr_pool.lock); 208 list_splice_init(&compr_pool.list, &remove); 209 freed = compr_pool.count; 210 compr_pool.count = 0; 211 spin_unlock(&compr_pool.lock); 212 213 list_for_each_safe(tmp, next, &remove) { 214 struct page *page = list_entry(tmp, struct page, lru); 215 216 ASSERT(page_ref_count(page) == 1); 217 put_page(page); 218 } 219 220 return freed; 221 } 222 223 /* 224 * Common wrappers for page allocation from compression wrappers 225 */ 226 struct folio *btrfs_alloc_compr_folio(void) 227 { 228 struct folio *folio = NULL; 229 230 spin_lock(&compr_pool.lock); 231 if (compr_pool.count > 0) { 232 folio = list_first_entry(&compr_pool.list, struct folio, lru); 233 list_del_init(&folio->lru); 234 compr_pool.count--; 235 } 236 spin_unlock(&compr_pool.lock); 237 238 if (folio) 239 return folio; 240 241 return folio_alloc(GFP_NOFS, 0); 242 } 243 244 void btrfs_free_compr_folio(struct folio *folio) 245 { 246 bool do_free = false; 247 248 spin_lock(&compr_pool.lock); 249 if (compr_pool.count > compr_pool.thresh) { 250 do_free = true; 251 } else { 252 list_add(&folio->lru, &compr_pool.list); 253 compr_pool.count++; 254 } 255 spin_unlock(&compr_pool.lock); 256 257 if (!do_free) 258 return; 259 260 ASSERT(folio_ref_count(folio) == 1); 261 folio_put(folio); 262 } 263 264 static void end_bbio_compressed_read(struct btrfs_bio *bbio) 265 { 266 struct compressed_bio *cb = to_compressed_bio(bbio); 267 blk_status_t status = bbio->bio.bi_status; 268 269 if (!status) 270 status = errno_to_blk_status(btrfs_decompress_bio(cb)); 271 272 btrfs_free_compressed_folios(cb); 273 btrfs_bio_end_io(cb->orig_bbio, status); 274 bio_put(&bbio->bio); 275 } 276 277 /* 278 * Clear the writeback bits on all of the file 279 * pages for a compressed write 280 */ 281 static noinline void end_compressed_writeback(const struct compressed_bio *cb) 282 { 283 struct inode *inode = &cb->bbio.inode->vfs_inode; 284 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 285 unsigned long index = cb->start >> PAGE_SHIFT; 286 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 287 struct folio_batch fbatch; 288 const int error = blk_status_to_errno(cb->bbio.bio.bi_status); 289 int i; 290 int ret; 291 292 if (error) 293 mapping_set_error(inode->i_mapping, error); 294 295 folio_batch_init(&fbatch); 296 while (index <= end_index) { 297 ret = filemap_get_folios(inode->i_mapping, &index, end_index, 298 &fbatch); 299 300 if (ret == 0) 301 return; 302 303 for (i = 0; i < ret; i++) { 304 struct folio *folio = fbatch.folios[i]; 305 306 btrfs_folio_clamp_clear_writeback(fs_info, folio, 307 cb->start, cb->len); 308 } 309 folio_batch_release(&fbatch); 310 } 311 /* the inode may be gone now */ 312 } 313 314 static void btrfs_finish_compressed_write_work(struct work_struct *work) 315 { 316 struct compressed_bio *cb = 317 container_of(work, struct compressed_bio, write_end_work); 318 319 btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len, 320 cb->bbio.bio.bi_status == BLK_STS_OK); 321 322 if (cb->writeback) 323 end_compressed_writeback(cb); 324 /* Note, our inode could be gone now */ 325 326 btrfs_free_compressed_folios(cb); 327 bio_put(&cb->bbio.bio); 328 } 329 330 /* 331 * Do the cleanup once all the compressed pages hit the disk. This will clear 332 * writeback on the file pages and free the compressed pages. 333 * 334 * This also calls the writeback end hooks for the file pages so that metadata 335 * and checksums can be updated in the file. 336 */ 337 static void end_bbio_compressed_write(struct btrfs_bio *bbio) 338 { 339 struct compressed_bio *cb = to_compressed_bio(bbio); 340 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 341 342 queue_work(fs_info->compressed_write_workers, &cb->write_end_work); 343 } 344 345 static void btrfs_add_compressed_bio_folios(struct compressed_bio *cb) 346 { 347 struct bio *bio = &cb->bbio.bio; 348 u32 offset = 0; 349 350 while (offset < cb->compressed_len) { 351 int ret; 352 u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE); 353 354 /* Maximum compressed extent is smaller than bio size limit. */ 355 ret = bio_add_folio(bio, cb->compressed_folios[offset >> PAGE_SHIFT], 356 len, 0); 357 ASSERT(ret); 358 offset += len; 359 } 360 } 361 362 /* 363 * worker function to build and submit bios for previously compressed pages. 364 * The corresponding pages in the inode should be marked for writeback 365 * and the compressed pages should have a reference on them for dropping 366 * when the IO is complete. 367 * 368 * This also checksums the file bytes and gets things ready for 369 * the end io hooks. 370 */ 371 void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered, 372 struct folio **compressed_folios, 373 unsigned int nr_folios, 374 blk_opf_t write_flags, 375 bool writeback) 376 { 377 struct btrfs_inode *inode = ordered->inode; 378 struct btrfs_fs_info *fs_info = inode->root->fs_info; 379 struct compressed_bio *cb; 380 381 ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize)); 382 ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize)); 383 384 cb = alloc_compressed_bio(inode, ordered->file_offset, 385 REQ_OP_WRITE | write_flags, 386 end_bbio_compressed_write); 387 cb->start = ordered->file_offset; 388 cb->len = ordered->num_bytes; 389 cb->compressed_folios = compressed_folios; 390 cb->compressed_len = ordered->disk_num_bytes; 391 cb->writeback = writeback; 392 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work); 393 cb->nr_folios = nr_folios; 394 cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT; 395 cb->bbio.ordered = ordered; 396 btrfs_add_compressed_bio_folios(cb); 397 398 btrfs_submit_bbio(&cb->bbio, 0); 399 } 400 401 /* 402 * Add extra pages in the same compressed file extent so that we don't need to 403 * re-read the same extent again and again. 404 * 405 * NOTE: this won't work well for subpage, as for subpage read, we lock the 406 * full page then submit bio for each compressed/regular extents. 407 * 408 * This means, if we have several sectors in the same page points to the same 409 * on-disk compressed data, we will re-read the same extent many times and 410 * this function can only help for the next page. 411 */ 412 static noinline int add_ra_bio_pages(struct inode *inode, 413 u64 compressed_end, 414 struct compressed_bio *cb, 415 int *memstall, unsigned long *pflags) 416 { 417 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 418 unsigned long end_index; 419 struct bio *orig_bio = &cb->orig_bbio->bio; 420 u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size; 421 u64 isize = i_size_read(inode); 422 int ret; 423 struct folio *folio; 424 struct extent_map *em; 425 struct address_space *mapping = inode->i_mapping; 426 struct extent_map_tree *em_tree; 427 struct extent_io_tree *tree; 428 int sectors_missed = 0; 429 430 em_tree = &BTRFS_I(inode)->extent_tree; 431 tree = &BTRFS_I(inode)->io_tree; 432 433 if (isize == 0) 434 return 0; 435 436 /* 437 * For current subpage support, we only support 64K page size, 438 * which means maximum compressed extent size (128K) is just 2x page 439 * size. 440 * This makes readahead less effective, so here disable readahead for 441 * subpage for now, until full compressed write is supported. 442 */ 443 if (fs_info->sectorsize < PAGE_SIZE) 444 return 0; 445 446 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 447 448 while (cur < compressed_end) { 449 u64 page_end; 450 u64 pg_index = cur >> PAGE_SHIFT; 451 u32 add_size; 452 453 if (pg_index > end_index) 454 break; 455 456 folio = __filemap_get_folio(mapping, pg_index, 0, 0); 457 if (!IS_ERR(folio)) { 458 u64 folio_sz = folio_size(folio); 459 u64 offset = offset_in_folio(folio, cur); 460 461 folio_put(folio); 462 sectors_missed += (folio_sz - offset) >> 463 fs_info->sectorsize_bits; 464 465 /* Beyond threshold, no need to continue */ 466 if (sectors_missed > 4) 467 break; 468 469 /* 470 * Jump to next page start as we already have page for 471 * current offset. 472 */ 473 cur += (folio_sz - offset); 474 continue; 475 } 476 477 folio = filemap_alloc_folio(mapping_gfp_constraint(mapping, 478 ~__GFP_FS), 0); 479 if (!folio) 480 break; 481 482 if (filemap_add_folio(mapping, folio, pg_index, GFP_NOFS)) { 483 /* There is already a page, skip to page end */ 484 cur += folio_size(folio); 485 folio_put(folio); 486 continue; 487 } 488 489 if (!*memstall && folio_test_workingset(folio)) { 490 psi_memstall_enter(pflags); 491 *memstall = 1; 492 } 493 494 ret = set_folio_extent_mapped(folio); 495 if (ret < 0) { 496 folio_unlock(folio); 497 folio_put(folio); 498 break; 499 } 500 501 page_end = (pg_index << PAGE_SHIFT) + folio_size(folio) - 1; 502 lock_extent(tree, cur, page_end, NULL); 503 read_lock(&em_tree->lock); 504 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur); 505 read_unlock(&em_tree->lock); 506 507 /* 508 * At this point, we have a locked page in the page cache for 509 * these bytes in the file. But, we have to make sure they map 510 * to this compressed extent on disk. 511 */ 512 if (!em || cur < em->start || 513 (cur + fs_info->sectorsize > extent_map_end(em)) || 514 (extent_map_block_start(em) >> SECTOR_SHIFT) != 515 orig_bio->bi_iter.bi_sector) { 516 free_extent_map(em); 517 unlock_extent(tree, cur, page_end, NULL); 518 folio_unlock(folio); 519 folio_put(folio); 520 break; 521 } 522 add_size = min(em->start + em->len, page_end + 1) - cur; 523 free_extent_map(em); 524 unlock_extent(tree, cur, page_end, NULL); 525 526 if (folio->index == end_index) { 527 size_t zero_offset = offset_in_folio(folio, isize); 528 529 if (zero_offset) { 530 int zeros; 531 zeros = folio_size(folio) - zero_offset; 532 folio_zero_range(folio, zero_offset, zeros); 533 } 534 } 535 536 if (!bio_add_folio(orig_bio, folio, add_size, 537 offset_in_folio(folio, cur))) { 538 folio_unlock(folio); 539 folio_put(folio); 540 break; 541 } 542 /* 543 * If it's subpage, we also need to increase its 544 * subpage::readers number, as at endio we will decrease 545 * subpage::readers and to unlock the page. 546 */ 547 if (fs_info->sectorsize < PAGE_SIZE) 548 btrfs_subpage_start_reader(fs_info, folio, cur, 549 add_size); 550 folio_put(folio); 551 cur += add_size; 552 } 553 return 0; 554 } 555 556 /* 557 * for a compressed read, the bio we get passed has all the inode pages 558 * in it. We don't actually do IO on those pages but allocate new ones 559 * to hold the compressed pages on disk. 560 * 561 * bio->bi_iter.bi_sector points to the compressed extent on disk 562 * bio->bi_io_vec points to all of the inode pages 563 * 564 * After the compressed pages are read, we copy the bytes into the 565 * bio we were passed and then call the bio end_io calls 566 */ 567 void btrfs_submit_compressed_read(struct btrfs_bio *bbio) 568 { 569 struct btrfs_inode *inode = bbio->inode; 570 struct btrfs_fs_info *fs_info = inode->root->fs_info; 571 struct extent_map_tree *em_tree = &inode->extent_tree; 572 struct compressed_bio *cb; 573 unsigned int compressed_len; 574 u64 file_offset = bbio->file_offset; 575 u64 em_len; 576 u64 em_start; 577 struct extent_map *em; 578 unsigned long pflags; 579 int memstall = 0; 580 blk_status_t ret; 581 int ret2; 582 583 /* we need the actual starting offset of this extent in the file */ 584 read_lock(&em_tree->lock); 585 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); 586 read_unlock(&em_tree->lock); 587 if (!em) { 588 ret = BLK_STS_IOERR; 589 goto out; 590 } 591 592 ASSERT(extent_map_is_compressed(em)); 593 compressed_len = em->disk_num_bytes; 594 595 cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ, 596 end_bbio_compressed_read); 597 598 cb->start = em->start - em->offset; 599 em_len = em->len; 600 em_start = em->start; 601 602 cb->len = bbio->bio.bi_iter.bi_size; 603 cb->compressed_len = compressed_len; 604 cb->compress_type = extent_map_compression(em); 605 cb->orig_bbio = bbio; 606 607 free_extent_map(em); 608 609 cb->nr_folios = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 610 cb->compressed_folios = kcalloc(cb->nr_folios, sizeof(struct page *), GFP_NOFS); 611 if (!cb->compressed_folios) { 612 ret = BLK_STS_RESOURCE; 613 goto out_free_bio; 614 } 615 616 ret2 = btrfs_alloc_folio_array(cb->nr_folios, cb->compressed_folios); 617 if (ret2) { 618 ret = BLK_STS_RESOURCE; 619 goto out_free_compressed_pages; 620 } 621 622 add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall, 623 &pflags); 624 625 /* include any pages we added in add_ra-bio_pages */ 626 cb->len = bbio->bio.bi_iter.bi_size; 627 cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector; 628 btrfs_add_compressed_bio_folios(cb); 629 630 if (memstall) 631 psi_memstall_leave(&pflags); 632 633 btrfs_submit_bbio(&cb->bbio, 0); 634 return; 635 636 out_free_compressed_pages: 637 kfree(cb->compressed_folios); 638 out_free_bio: 639 bio_put(&cb->bbio.bio); 640 out: 641 btrfs_bio_end_io(bbio, ret); 642 } 643 644 /* 645 * Heuristic uses systematic sampling to collect data from the input data 646 * range, the logic can be tuned by the following constants: 647 * 648 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 649 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 650 */ 651 #define SAMPLING_READ_SIZE (16) 652 #define SAMPLING_INTERVAL (256) 653 654 /* 655 * For statistical analysis of the input data we consider bytes that form a 656 * Galois Field of 256 objects. Each object has an attribute count, ie. how 657 * many times the object appeared in the sample. 658 */ 659 #define BUCKET_SIZE (256) 660 661 /* 662 * The size of the sample is based on a statistical sampling rule of thumb. 663 * The common way is to perform sampling tests as long as the number of 664 * elements in each cell is at least 5. 665 * 666 * Instead of 5, we choose 32 to obtain more accurate results. 667 * If the data contain the maximum number of symbols, which is 256, we obtain a 668 * sample size bound by 8192. 669 * 670 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 671 * from up to 512 locations. 672 */ 673 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 674 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 675 676 struct bucket_item { 677 u32 count; 678 }; 679 680 struct heuristic_ws { 681 /* Partial copy of input data */ 682 u8 *sample; 683 u32 sample_size; 684 /* Buckets store counters for each byte value */ 685 struct bucket_item *bucket; 686 /* Sorting buffer */ 687 struct bucket_item *bucket_b; 688 struct list_head list; 689 }; 690 691 static struct workspace_manager heuristic_wsm; 692 693 static void free_heuristic_ws(struct list_head *ws) 694 { 695 struct heuristic_ws *workspace; 696 697 workspace = list_entry(ws, struct heuristic_ws, list); 698 699 kvfree(workspace->sample); 700 kfree(workspace->bucket); 701 kfree(workspace->bucket_b); 702 kfree(workspace); 703 } 704 705 static struct list_head *alloc_heuristic_ws(unsigned int level) 706 { 707 struct heuristic_ws *ws; 708 709 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 710 if (!ws) 711 return ERR_PTR(-ENOMEM); 712 713 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 714 if (!ws->sample) 715 goto fail; 716 717 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 718 if (!ws->bucket) 719 goto fail; 720 721 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 722 if (!ws->bucket_b) 723 goto fail; 724 725 INIT_LIST_HEAD(&ws->list); 726 return &ws->list; 727 fail: 728 free_heuristic_ws(&ws->list); 729 return ERR_PTR(-ENOMEM); 730 } 731 732 const struct btrfs_compress_op btrfs_heuristic_compress = { 733 .workspace_manager = &heuristic_wsm, 734 }; 735 736 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 737 /* The heuristic is represented as compression type 0 */ 738 &btrfs_heuristic_compress, 739 &btrfs_zlib_compress, 740 &btrfs_lzo_compress, 741 &btrfs_zstd_compress, 742 }; 743 744 static struct list_head *alloc_workspace(int type, unsigned int level) 745 { 746 switch (type) { 747 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 748 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 749 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 750 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 751 default: 752 /* 753 * This can't happen, the type is validated several times 754 * before we get here. 755 */ 756 BUG(); 757 } 758 } 759 760 static void free_workspace(int type, struct list_head *ws) 761 { 762 switch (type) { 763 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 764 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 765 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 766 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 767 default: 768 /* 769 * This can't happen, the type is validated several times 770 * before we get here. 771 */ 772 BUG(); 773 } 774 } 775 776 static void btrfs_init_workspace_manager(int type) 777 { 778 struct workspace_manager *wsm; 779 struct list_head *workspace; 780 781 wsm = btrfs_compress_op[type]->workspace_manager; 782 INIT_LIST_HEAD(&wsm->idle_ws); 783 spin_lock_init(&wsm->ws_lock); 784 atomic_set(&wsm->total_ws, 0); 785 init_waitqueue_head(&wsm->ws_wait); 786 787 /* 788 * Preallocate one workspace for each compression type so we can 789 * guarantee forward progress in the worst case 790 */ 791 workspace = alloc_workspace(type, 0); 792 if (IS_ERR(workspace)) { 793 pr_warn( 794 "BTRFS: cannot preallocate compression workspace, will try later\n"); 795 } else { 796 atomic_set(&wsm->total_ws, 1); 797 wsm->free_ws = 1; 798 list_add(workspace, &wsm->idle_ws); 799 } 800 } 801 802 static void btrfs_cleanup_workspace_manager(int type) 803 { 804 struct workspace_manager *wsman; 805 struct list_head *ws; 806 807 wsman = btrfs_compress_op[type]->workspace_manager; 808 while (!list_empty(&wsman->idle_ws)) { 809 ws = wsman->idle_ws.next; 810 list_del(ws); 811 free_workspace(type, ws); 812 atomic_dec(&wsman->total_ws); 813 } 814 } 815 816 /* 817 * This finds an available workspace or allocates a new one. 818 * If it's not possible to allocate a new one, waits until there's one. 819 * Preallocation makes a forward progress guarantees and we do not return 820 * errors. 821 */ 822 struct list_head *btrfs_get_workspace(int type, unsigned int level) 823 { 824 struct workspace_manager *wsm; 825 struct list_head *workspace; 826 int cpus = num_online_cpus(); 827 unsigned nofs_flag; 828 struct list_head *idle_ws; 829 spinlock_t *ws_lock; 830 atomic_t *total_ws; 831 wait_queue_head_t *ws_wait; 832 int *free_ws; 833 834 wsm = btrfs_compress_op[type]->workspace_manager; 835 idle_ws = &wsm->idle_ws; 836 ws_lock = &wsm->ws_lock; 837 total_ws = &wsm->total_ws; 838 ws_wait = &wsm->ws_wait; 839 free_ws = &wsm->free_ws; 840 841 again: 842 spin_lock(ws_lock); 843 if (!list_empty(idle_ws)) { 844 workspace = idle_ws->next; 845 list_del(workspace); 846 (*free_ws)--; 847 spin_unlock(ws_lock); 848 return workspace; 849 850 } 851 if (atomic_read(total_ws) > cpus) { 852 DEFINE_WAIT(wait); 853 854 spin_unlock(ws_lock); 855 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 856 if (atomic_read(total_ws) > cpus && !*free_ws) 857 schedule(); 858 finish_wait(ws_wait, &wait); 859 goto again; 860 } 861 atomic_inc(total_ws); 862 spin_unlock(ws_lock); 863 864 /* 865 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 866 * to turn it off here because we might get called from the restricted 867 * context of btrfs_compress_bio/btrfs_compress_pages 868 */ 869 nofs_flag = memalloc_nofs_save(); 870 workspace = alloc_workspace(type, level); 871 memalloc_nofs_restore(nofs_flag); 872 873 if (IS_ERR(workspace)) { 874 atomic_dec(total_ws); 875 wake_up(ws_wait); 876 877 /* 878 * Do not return the error but go back to waiting. There's a 879 * workspace preallocated for each type and the compression 880 * time is bounded so we get to a workspace eventually. This 881 * makes our caller's life easier. 882 * 883 * To prevent silent and low-probability deadlocks (when the 884 * initial preallocation fails), check if there are any 885 * workspaces at all. 886 */ 887 if (atomic_read(total_ws) == 0) { 888 static DEFINE_RATELIMIT_STATE(_rs, 889 /* once per minute */ 60 * HZ, 890 /* no burst */ 1); 891 892 if (__ratelimit(&_rs)) { 893 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 894 } 895 } 896 goto again; 897 } 898 return workspace; 899 } 900 901 static struct list_head *get_workspace(int type, int level) 902 { 903 switch (type) { 904 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 905 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 906 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 907 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 908 default: 909 /* 910 * This can't happen, the type is validated several times 911 * before we get here. 912 */ 913 BUG(); 914 } 915 } 916 917 /* 918 * put a workspace struct back on the list or free it if we have enough 919 * idle ones sitting around 920 */ 921 void btrfs_put_workspace(int type, struct list_head *ws) 922 { 923 struct workspace_manager *wsm; 924 struct list_head *idle_ws; 925 spinlock_t *ws_lock; 926 atomic_t *total_ws; 927 wait_queue_head_t *ws_wait; 928 int *free_ws; 929 930 wsm = btrfs_compress_op[type]->workspace_manager; 931 idle_ws = &wsm->idle_ws; 932 ws_lock = &wsm->ws_lock; 933 total_ws = &wsm->total_ws; 934 ws_wait = &wsm->ws_wait; 935 free_ws = &wsm->free_ws; 936 937 spin_lock(ws_lock); 938 if (*free_ws <= num_online_cpus()) { 939 list_add(ws, idle_ws); 940 (*free_ws)++; 941 spin_unlock(ws_lock); 942 goto wake; 943 } 944 spin_unlock(ws_lock); 945 946 free_workspace(type, ws); 947 atomic_dec(total_ws); 948 wake: 949 cond_wake_up(ws_wait); 950 } 951 952 static void put_workspace(int type, struct list_head *ws) 953 { 954 switch (type) { 955 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 956 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 957 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 958 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 959 default: 960 /* 961 * This can't happen, the type is validated several times 962 * before we get here. 963 */ 964 BUG(); 965 } 966 } 967 968 /* 969 * Adjust @level according to the limits of the compression algorithm or 970 * fallback to default 971 */ 972 static unsigned int btrfs_compress_set_level(int type, unsigned level) 973 { 974 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 975 976 if (level == 0) 977 level = ops->default_level; 978 else 979 level = min(level, ops->max_level); 980 981 return level; 982 } 983 984 /* Wrapper around find_get_page(), with extra error message. */ 985 int btrfs_compress_filemap_get_folio(struct address_space *mapping, u64 start, 986 struct folio **in_folio_ret) 987 { 988 struct folio *in_folio; 989 990 /* 991 * The compressed write path should have the folio locked already, thus 992 * we only need to grab one reference. 993 */ 994 in_folio = filemap_get_folio(mapping, start >> PAGE_SHIFT); 995 if (IS_ERR(in_folio)) { 996 struct btrfs_inode *inode = BTRFS_I(mapping->host); 997 998 btrfs_crit(inode->root->fs_info, 999 "failed to get page cache, root %lld ino %llu file offset %llu", 1000 btrfs_root_id(inode->root), btrfs_ino(inode), start); 1001 return -ENOENT; 1002 } 1003 *in_folio_ret = in_folio; 1004 return 0; 1005 } 1006 1007 /* 1008 * Given an address space and start and length, compress the bytes into @pages 1009 * that are allocated on demand. 1010 * 1011 * @type_level is encoded algorithm and level, where level 0 means whatever 1012 * default the algorithm chooses and is opaque here; 1013 * - compression algo are 0-3 1014 * - the level are bits 4-7 1015 * 1016 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1017 * and returns number of actually allocated pages 1018 * 1019 * @total_in is used to return the number of bytes actually read. It 1020 * may be smaller than the input length if we had to exit early because we 1021 * ran out of room in the pages array or because we cross the 1022 * max_out threshold. 1023 * 1024 * @total_out is an in/out parameter, must be set to the input length and will 1025 * be also used to return the total number of compressed bytes 1026 */ 1027 int btrfs_compress_folios(unsigned int type_level, struct address_space *mapping, 1028 u64 start, struct folio **folios, unsigned long *out_folios, 1029 unsigned long *total_in, unsigned long *total_out) 1030 { 1031 int type = btrfs_compress_type(type_level); 1032 int level = btrfs_compress_level(type_level); 1033 struct list_head *workspace; 1034 int ret; 1035 1036 level = btrfs_compress_set_level(type, level); 1037 workspace = get_workspace(type, level); 1038 ret = compression_compress_pages(type, workspace, mapping, start, folios, 1039 out_folios, total_in, total_out); 1040 put_workspace(type, workspace); 1041 return ret; 1042 } 1043 1044 static int btrfs_decompress_bio(struct compressed_bio *cb) 1045 { 1046 struct list_head *workspace; 1047 int ret; 1048 int type = cb->compress_type; 1049 1050 workspace = get_workspace(type, 0); 1051 ret = compression_decompress_bio(workspace, cb); 1052 put_workspace(type, workspace); 1053 1054 if (!ret) 1055 zero_fill_bio(&cb->orig_bbio->bio); 1056 return ret; 1057 } 1058 1059 /* 1060 * a less complex decompression routine. Our compressed data fits in a 1061 * single page, and we want to read a single page out of it. 1062 * start_byte tells us the offset into the compressed data we're interested in 1063 */ 1064 int btrfs_decompress(int type, const u8 *data_in, struct folio *dest_folio, 1065 unsigned long dest_pgoff, size_t srclen, size_t destlen) 1066 { 1067 struct btrfs_fs_info *fs_info = folio_to_fs_info(dest_folio); 1068 struct list_head *workspace; 1069 const u32 sectorsize = fs_info->sectorsize; 1070 int ret; 1071 1072 /* 1073 * The full destination page range should not exceed the page size. 1074 * And the @destlen should not exceed sectorsize, as this is only called for 1075 * inline file extents, which should not exceed sectorsize. 1076 */ 1077 ASSERT(dest_pgoff + destlen <= PAGE_SIZE && destlen <= sectorsize); 1078 1079 workspace = get_workspace(type, 0); 1080 ret = compression_decompress(type, workspace, data_in, dest_folio, 1081 dest_pgoff, srclen, destlen); 1082 put_workspace(type, workspace); 1083 1084 return ret; 1085 } 1086 1087 int __init btrfs_init_compress(void) 1088 { 1089 if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE, 1090 offsetof(struct compressed_bio, bbio.bio), 1091 BIOSET_NEED_BVECS)) 1092 return -ENOMEM; 1093 1094 compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages"); 1095 if (!compr_pool.shrinker) 1096 return -ENOMEM; 1097 1098 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1099 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1100 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1101 zstd_init_workspace_manager(); 1102 1103 spin_lock_init(&compr_pool.lock); 1104 INIT_LIST_HEAD(&compr_pool.list); 1105 compr_pool.count = 0; 1106 /* 128K / 4K = 32, for 8 threads is 256 pages. */ 1107 compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8; 1108 compr_pool.shrinker->count_objects = btrfs_compr_pool_count; 1109 compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan; 1110 compr_pool.shrinker->batch = 32; 1111 compr_pool.shrinker->seeks = DEFAULT_SEEKS; 1112 shrinker_register(compr_pool.shrinker); 1113 1114 return 0; 1115 } 1116 1117 void __cold btrfs_exit_compress(void) 1118 { 1119 /* For now scan drains all pages and does not touch the parameters. */ 1120 btrfs_compr_pool_scan(NULL, NULL); 1121 shrinker_free(compr_pool.shrinker); 1122 1123 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1124 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1125 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1126 zstd_cleanup_workspace_manager(); 1127 bioset_exit(&btrfs_compressed_bioset); 1128 } 1129 1130 /* 1131 * Copy decompressed data from working buffer to pages. 1132 * 1133 * @buf: The decompressed data buffer 1134 * @buf_len: The decompressed data length 1135 * @decompressed: Number of bytes that are already decompressed inside the 1136 * compressed extent 1137 * @cb: The compressed extent descriptor 1138 * @orig_bio: The original bio that the caller wants to read for 1139 * 1140 * An easier to understand graph is like below: 1141 * 1142 * |<- orig_bio ->| |<- orig_bio->| 1143 * |<------- full decompressed extent ----->| 1144 * |<----------- @cb range ---->| 1145 * | |<-- @buf_len -->| 1146 * |<--- @decompressed --->| 1147 * 1148 * Note that, @cb can be a subpage of the full decompressed extent, but 1149 * @cb->start always has the same as the orig_file_offset value of the full 1150 * decompressed extent. 1151 * 1152 * When reading compressed extent, we have to read the full compressed extent, 1153 * while @orig_bio may only want part of the range. 1154 * Thus this function will ensure only data covered by @orig_bio will be copied 1155 * to. 1156 * 1157 * Return 0 if we have copied all needed contents for @orig_bio. 1158 * Return >0 if we need continue decompress. 1159 */ 1160 int btrfs_decompress_buf2page(const char *buf, u32 buf_len, 1161 struct compressed_bio *cb, u32 decompressed) 1162 { 1163 struct bio *orig_bio = &cb->orig_bbio->bio; 1164 /* Offset inside the full decompressed extent */ 1165 u32 cur_offset; 1166 1167 cur_offset = decompressed; 1168 /* The main loop to do the copy */ 1169 while (cur_offset < decompressed + buf_len) { 1170 struct bio_vec bvec; 1171 size_t copy_len; 1172 u32 copy_start; 1173 /* Offset inside the full decompressed extent */ 1174 u32 bvec_offset; 1175 1176 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); 1177 /* 1178 * cb->start may underflow, but subtracting that value can still 1179 * give us correct offset inside the full decompressed extent. 1180 */ 1181 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start; 1182 1183 /* Haven't reached the bvec range, exit */ 1184 if (decompressed + buf_len <= bvec_offset) 1185 return 1; 1186 1187 copy_start = max(cur_offset, bvec_offset); 1188 copy_len = min(bvec_offset + bvec.bv_len, 1189 decompressed + buf_len) - copy_start; 1190 ASSERT(copy_len); 1191 1192 /* 1193 * Extra range check to ensure we didn't go beyond 1194 * @buf + @buf_len. 1195 */ 1196 ASSERT(copy_start - decompressed < buf_len); 1197 memcpy_to_page(bvec.bv_page, bvec.bv_offset, 1198 buf + copy_start - decompressed, copy_len); 1199 cur_offset += copy_len; 1200 1201 bio_advance(orig_bio, copy_len); 1202 /* Finished the bio */ 1203 if (!orig_bio->bi_iter.bi_size) 1204 return 0; 1205 } 1206 return 1; 1207 } 1208 1209 /* 1210 * Shannon Entropy calculation 1211 * 1212 * Pure byte distribution analysis fails to determine compressibility of data. 1213 * Try calculating entropy to estimate the average minimum number of bits 1214 * needed to encode the sampled data. 1215 * 1216 * For convenience, return the percentage of needed bits, instead of amount of 1217 * bits directly. 1218 * 1219 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1220 * and can be compressible with high probability 1221 * 1222 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1223 * 1224 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1225 */ 1226 #define ENTROPY_LVL_ACEPTABLE (65) 1227 #define ENTROPY_LVL_HIGH (80) 1228 1229 /* 1230 * For increasead precision in shannon_entropy calculation, 1231 * let's do pow(n, M) to save more digits after comma: 1232 * 1233 * - maximum int bit length is 64 1234 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1235 * - 13 * 4 = 52 < 64 -> M = 4 1236 * 1237 * So use pow(n, 4). 1238 */ 1239 static inline u32 ilog2_w(u64 n) 1240 { 1241 return ilog2(n * n * n * n); 1242 } 1243 1244 static u32 shannon_entropy(struct heuristic_ws *ws) 1245 { 1246 const u32 entropy_max = 8 * ilog2_w(2); 1247 u32 entropy_sum = 0; 1248 u32 p, p_base, sz_base; 1249 u32 i; 1250 1251 sz_base = ilog2_w(ws->sample_size); 1252 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1253 p = ws->bucket[i].count; 1254 p_base = ilog2_w(p); 1255 entropy_sum += p * (sz_base - p_base); 1256 } 1257 1258 entropy_sum /= ws->sample_size; 1259 return entropy_sum * 100 / entropy_max; 1260 } 1261 1262 #define RADIX_BASE 4U 1263 #define COUNTERS_SIZE (1U << RADIX_BASE) 1264 1265 static u8 get4bits(u64 num, int shift) { 1266 u8 low4bits; 1267 1268 num >>= shift; 1269 /* Reverse order */ 1270 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1271 return low4bits; 1272 } 1273 1274 /* 1275 * Use 4 bits as radix base 1276 * Use 16 u32 counters for calculating new position in buf array 1277 * 1278 * @array - array that will be sorted 1279 * @array_buf - buffer array to store sorting results 1280 * must be equal in size to @array 1281 * @num - array size 1282 */ 1283 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1284 int num) 1285 { 1286 u64 max_num; 1287 u64 buf_num; 1288 u32 counters[COUNTERS_SIZE]; 1289 u32 new_addr; 1290 u32 addr; 1291 int bitlen; 1292 int shift; 1293 int i; 1294 1295 /* 1296 * Try avoid useless loop iterations for small numbers stored in big 1297 * counters. Example: 48 33 4 ... in 64bit array 1298 */ 1299 max_num = array[0].count; 1300 for (i = 1; i < num; i++) { 1301 buf_num = array[i].count; 1302 if (buf_num > max_num) 1303 max_num = buf_num; 1304 } 1305 1306 buf_num = ilog2(max_num); 1307 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1308 1309 shift = 0; 1310 while (shift < bitlen) { 1311 memset(counters, 0, sizeof(counters)); 1312 1313 for (i = 0; i < num; i++) { 1314 buf_num = array[i].count; 1315 addr = get4bits(buf_num, shift); 1316 counters[addr]++; 1317 } 1318 1319 for (i = 1; i < COUNTERS_SIZE; i++) 1320 counters[i] += counters[i - 1]; 1321 1322 for (i = num - 1; i >= 0; i--) { 1323 buf_num = array[i].count; 1324 addr = get4bits(buf_num, shift); 1325 counters[addr]--; 1326 new_addr = counters[addr]; 1327 array_buf[new_addr] = array[i]; 1328 } 1329 1330 shift += RADIX_BASE; 1331 1332 /* 1333 * Normal radix expects to move data from a temporary array, to 1334 * the main one. But that requires some CPU time. Avoid that 1335 * by doing another sort iteration to original array instead of 1336 * memcpy() 1337 */ 1338 memset(counters, 0, sizeof(counters)); 1339 1340 for (i = 0; i < num; i ++) { 1341 buf_num = array_buf[i].count; 1342 addr = get4bits(buf_num, shift); 1343 counters[addr]++; 1344 } 1345 1346 for (i = 1; i < COUNTERS_SIZE; i++) 1347 counters[i] += counters[i - 1]; 1348 1349 for (i = num - 1; i >= 0; i--) { 1350 buf_num = array_buf[i].count; 1351 addr = get4bits(buf_num, shift); 1352 counters[addr]--; 1353 new_addr = counters[addr]; 1354 array[new_addr] = array_buf[i]; 1355 } 1356 1357 shift += RADIX_BASE; 1358 } 1359 } 1360 1361 /* 1362 * Size of the core byte set - how many bytes cover 90% of the sample 1363 * 1364 * There are several types of structured binary data that use nearly all byte 1365 * values. The distribution can be uniform and counts in all buckets will be 1366 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1367 * 1368 * Other possibility is normal (Gaussian) distribution, where the data could 1369 * be potentially compressible, but we have to take a few more steps to decide 1370 * how much. 1371 * 1372 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1373 * compression algo can easy fix that 1374 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1375 * probability is not compressible 1376 */ 1377 #define BYTE_CORE_SET_LOW (64) 1378 #define BYTE_CORE_SET_HIGH (200) 1379 1380 static int byte_core_set_size(struct heuristic_ws *ws) 1381 { 1382 u32 i; 1383 u32 coreset_sum = 0; 1384 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1385 struct bucket_item *bucket = ws->bucket; 1386 1387 /* Sort in reverse order */ 1388 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1389 1390 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1391 coreset_sum += bucket[i].count; 1392 1393 if (coreset_sum > core_set_threshold) 1394 return i; 1395 1396 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1397 coreset_sum += bucket[i].count; 1398 if (coreset_sum > core_set_threshold) 1399 break; 1400 } 1401 1402 return i; 1403 } 1404 1405 /* 1406 * Count byte values in buckets. 1407 * This heuristic can detect textual data (configs, xml, json, html, etc). 1408 * Because in most text-like data byte set is restricted to limited number of 1409 * possible characters, and that restriction in most cases makes data easy to 1410 * compress. 1411 * 1412 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1413 * less - compressible 1414 * more - need additional analysis 1415 */ 1416 #define BYTE_SET_THRESHOLD (64) 1417 1418 static u32 byte_set_size(const struct heuristic_ws *ws) 1419 { 1420 u32 i; 1421 u32 byte_set_size = 0; 1422 1423 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1424 if (ws->bucket[i].count > 0) 1425 byte_set_size++; 1426 } 1427 1428 /* 1429 * Continue collecting count of byte values in buckets. If the byte 1430 * set size is bigger then the threshold, it's pointless to continue, 1431 * the detection technique would fail for this type of data. 1432 */ 1433 for (; i < BUCKET_SIZE; i++) { 1434 if (ws->bucket[i].count > 0) { 1435 byte_set_size++; 1436 if (byte_set_size > BYTE_SET_THRESHOLD) 1437 return byte_set_size; 1438 } 1439 } 1440 1441 return byte_set_size; 1442 } 1443 1444 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1445 { 1446 const u32 half_of_sample = ws->sample_size / 2; 1447 const u8 *data = ws->sample; 1448 1449 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1450 } 1451 1452 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1453 struct heuristic_ws *ws) 1454 { 1455 struct page *page; 1456 u64 index, index_end; 1457 u32 i, curr_sample_pos; 1458 u8 *in_data; 1459 1460 /* 1461 * Compression handles the input data by chunks of 128KiB 1462 * (defined by BTRFS_MAX_UNCOMPRESSED) 1463 * 1464 * We do the same for the heuristic and loop over the whole range. 1465 * 1466 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1467 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1468 */ 1469 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1470 end = start + BTRFS_MAX_UNCOMPRESSED; 1471 1472 index = start >> PAGE_SHIFT; 1473 index_end = end >> PAGE_SHIFT; 1474 1475 /* Don't miss unaligned end */ 1476 if (!PAGE_ALIGNED(end)) 1477 index_end++; 1478 1479 curr_sample_pos = 0; 1480 while (index < index_end) { 1481 page = find_get_page(inode->i_mapping, index); 1482 in_data = kmap_local_page(page); 1483 /* Handle case where the start is not aligned to PAGE_SIZE */ 1484 i = start % PAGE_SIZE; 1485 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1486 /* Don't sample any garbage from the last page */ 1487 if (start > end - SAMPLING_READ_SIZE) 1488 break; 1489 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1490 SAMPLING_READ_SIZE); 1491 i += SAMPLING_INTERVAL; 1492 start += SAMPLING_INTERVAL; 1493 curr_sample_pos += SAMPLING_READ_SIZE; 1494 } 1495 kunmap_local(in_data); 1496 put_page(page); 1497 1498 index++; 1499 } 1500 1501 ws->sample_size = curr_sample_pos; 1502 } 1503 1504 /* 1505 * Compression heuristic. 1506 * 1507 * The following types of analysis can be performed: 1508 * - detect mostly zero data 1509 * - detect data with low "byte set" size (text, etc) 1510 * - detect data with low/high "core byte" set 1511 * 1512 * Return non-zero if the compression should be done, 0 otherwise. 1513 */ 1514 int btrfs_compress_heuristic(struct btrfs_inode *inode, u64 start, u64 end) 1515 { 1516 struct list_head *ws_list = get_workspace(0, 0); 1517 struct heuristic_ws *ws; 1518 u32 i; 1519 u8 byte; 1520 int ret = 0; 1521 1522 ws = list_entry(ws_list, struct heuristic_ws, list); 1523 1524 heuristic_collect_sample(&inode->vfs_inode, start, end, ws); 1525 1526 if (sample_repeated_patterns(ws)) { 1527 ret = 1; 1528 goto out; 1529 } 1530 1531 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1532 1533 for (i = 0; i < ws->sample_size; i++) { 1534 byte = ws->sample[i]; 1535 ws->bucket[byte].count++; 1536 } 1537 1538 i = byte_set_size(ws); 1539 if (i < BYTE_SET_THRESHOLD) { 1540 ret = 2; 1541 goto out; 1542 } 1543 1544 i = byte_core_set_size(ws); 1545 if (i <= BYTE_CORE_SET_LOW) { 1546 ret = 3; 1547 goto out; 1548 } 1549 1550 if (i >= BYTE_CORE_SET_HIGH) { 1551 ret = 0; 1552 goto out; 1553 } 1554 1555 i = shannon_entropy(ws); 1556 if (i <= ENTROPY_LVL_ACEPTABLE) { 1557 ret = 4; 1558 goto out; 1559 } 1560 1561 /* 1562 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1563 * needed to give green light to compression. 1564 * 1565 * For now just assume that compression at that level is not worth the 1566 * resources because: 1567 * 1568 * 1. it is possible to defrag the data later 1569 * 1570 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1571 * values, every bucket has counter at level ~54. The heuristic would 1572 * be confused. This can happen when data have some internal repeated 1573 * patterns like "abbacbbc...". This can be detected by analyzing 1574 * pairs of bytes, which is too costly. 1575 */ 1576 if (i < ENTROPY_LVL_HIGH) { 1577 ret = 5; 1578 goto out; 1579 } else { 1580 ret = 0; 1581 goto out; 1582 } 1583 1584 out: 1585 put_workspace(0, ws_list); 1586 return ret; 1587 } 1588 1589 /* 1590 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1591 * level, unrecognized string will set the default level 1592 */ 1593 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1594 { 1595 unsigned int level = 0; 1596 int ret; 1597 1598 if (!type) 1599 return 0; 1600 1601 if (str[0] == ':') { 1602 ret = kstrtouint(str + 1, 10, &level); 1603 if (ret) 1604 level = 0; 1605 } 1606 1607 level = btrfs_compress_set_level(type, level); 1608 1609 return level; 1610 } 1611