xref: /linux/fs/btrfs/compression.c (revision a06835227280436c1aae021a3f43d3abfcba3835)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/pagevec.h>
12 #include <linux/highmem.h>
13 #include <linux/kthread.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/psi.h>
20 #include <linux/slab.h>
21 #include <linux/sched/mm.h>
22 #include <linux/log2.h>
23 #include <crypto/hash.h>
24 #include "misc.h"
25 #include "ctree.h"
26 #include "fs.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "btrfs_inode.h"
30 #include "bio.h"
31 #include "ordered-data.h"
32 #include "compression.h"
33 #include "extent_io.h"
34 #include "extent_map.h"
35 #include "subpage.h"
36 #include "zoned.h"
37 #include "file-item.h"
38 #include "super.h"
39 
40 static struct bio_set btrfs_compressed_bioset;
41 
42 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
43 
44 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
45 {
46 	switch (type) {
47 	case BTRFS_COMPRESS_ZLIB:
48 	case BTRFS_COMPRESS_LZO:
49 	case BTRFS_COMPRESS_ZSTD:
50 	case BTRFS_COMPRESS_NONE:
51 		return btrfs_compress_types[type];
52 	default:
53 		break;
54 	}
55 
56 	return NULL;
57 }
58 
59 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
60 {
61 	return container_of(bbio, struct compressed_bio, bbio);
62 }
63 
64 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
65 						   u64 start, blk_opf_t op,
66 						   btrfs_bio_end_io_t end_io)
67 {
68 	struct btrfs_bio *bbio;
69 
70 	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
71 					  GFP_NOFS, &btrfs_compressed_bioset));
72 	btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL);
73 	bbio->inode = inode;
74 	bbio->file_offset = start;
75 	return to_compressed_bio(bbio);
76 }
77 
78 bool btrfs_compress_is_valid_type(const char *str, size_t len)
79 {
80 	int i;
81 
82 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
83 		size_t comp_len = strlen(btrfs_compress_types[i]);
84 
85 		if (len < comp_len)
86 			continue;
87 
88 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
89 			return true;
90 	}
91 	return false;
92 }
93 
94 static int compression_compress_pages(int type, struct list_head *ws,
95                struct address_space *mapping, u64 start, struct page **pages,
96                unsigned long *out_pages, unsigned long *total_in,
97                unsigned long *total_out)
98 {
99 	switch (type) {
100 	case BTRFS_COMPRESS_ZLIB:
101 		return zlib_compress_pages(ws, mapping, start, pages,
102 				out_pages, total_in, total_out);
103 	case BTRFS_COMPRESS_LZO:
104 		return lzo_compress_pages(ws, mapping, start, pages,
105 				out_pages, total_in, total_out);
106 	case BTRFS_COMPRESS_ZSTD:
107 		return zstd_compress_pages(ws, mapping, start, pages,
108 				out_pages, total_in, total_out);
109 	case BTRFS_COMPRESS_NONE:
110 	default:
111 		/*
112 		 * This can happen when compression races with remount setting
113 		 * it to 'no compress', while caller doesn't call
114 		 * inode_need_compress() to check if we really need to
115 		 * compress.
116 		 *
117 		 * Not a big deal, just need to inform caller that we
118 		 * haven't allocated any pages yet.
119 		 */
120 		*out_pages = 0;
121 		return -E2BIG;
122 	}
123 }
124 
125 static int compression_decompress_bio(struct list_head *ws,
126 				      struct compressed_bio *cb)
127 {
128 	switch (cb->compress_type) {
129 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
130 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
131 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
132 	case BTRFS_COMPRESS_NONE:
133 	default:
134 		/*
135 		 * This can't happen, the type is validated several times
136 		 * before we get here.
137 		 */
138 		BUG();
139 	}
140 }
141 
142 static int compression_decompress(int type, struct list_head *ws,
143                const u8 *data_in, struct page *dest_page,
144                unsigned long start_byte, size_t srclen, size_t destlen)
145 {
146 	switch (type) {
147 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
148 						start_byte, srclen, destlen);
149 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
150 						start_byte, srclen, destlen);
151 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
152 						start_byte, srclen, destlen);
153 	case BTRFS_COMPRESS_NONE:
154 	default:
155 		/*
156 		 * This can't happen, the type is validated several times
157 		 * before we get here.
158 		 */
159 		BUG();
160 	}
161 }
162 
163 static void btrfs_free_compressed_pages(struct compressed_bio *cb)
164 {
165 	for (unsigned int i = 0; i < cb->nr_pages; i++)
166 		put_page(cb->compressed_pages[i]);
167 	kfree(cb->compressed_pages);
168 }
169 
170 static int btrfs_decompress_bio(struct compressed_bio *cb);
171 
172 static void end_compressed_bio_read(struct btrfs_bio *bbio)
173 {
174 	struct compressed_bio *cb = to_compressed_bio(bbio);
175 	blk_status_t status = bbio->bio.bi_status;
176 
177 	if (!status)
178 		status = errno_to_blk_status(btrfs_decompress_bio(cb));
179 
180 	btrfs_free_compressed_pages(cb);
181 	btrfs_bio_end_io(cb->orig_bbio, status);
182 	bio_put(&bbio->bio);
183 }
184 
185 /*
186  * Clear the writeback bits on all of the file
187  * pages for a compressed write
188  */
189 static noinline void end_compressed_writeback(const struct compressed_bio *cb)
190 {
191 	struct inode *inode = &cb->bbio.inode->vfs_inode;
192 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
193 	unsigned long index = cb->start >> PAGE_SHIFT;
194 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
195 	struct folio_batch fbatch;
196 	const int errno = blk_status_to_errno(cb->bbio.bio.bi_status);
197 	int i;
198 	int ret;
199 
200 	if (errno)
201 		mapping_set_error(inode->i_mapping, errno);
202 
203 	folio_batch_init(&fbatch);
204 	while (index <= end_index) {
205 		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
206 				&fbatch);
207 
208 		if (ret == 0)
209 			return;
210 
211 		for (i = 0; i < ret; i++) {
212 			struct folio *folio = fbatch.folios[i];
213 
214 			btrfs_page_clamp_clear_writeback(fs_info, &folio->page,
215 							 cb->start, cb->len);
216 		}
217 		folio_batch_release(&fbatch);
218 	}
219 	/* the inode may be gone now */
220 }
221 
222 static void btrfs_finish_compressed_write_work(struct work_struct *work)
223 {
224 	struct compressed_bio *cb =
225 		container_of(work, struct compressed_bio, write_end_work);
226 
227 	btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len,
228 				    cb->bbio.bio.bi_status == BLK_STS_OK);
229 
230 	if (cb->writeback)
231 		end_compressed_writeback(cb);
232 	/* Note, our inode could be gone now */
233 
234 	btrfs_free_compressed_pages(cb);
235 	bio_put(&cb->bbio.bio);
236 }
237 
238 /*
239  * Do the cleanup once all the compressed pages hit the disk.  This will clear
240  * writeback on the file pages and free the compressed pages.
241  *
242  * This also calls the writeback end hooks for the file pages so that metadata
243  * and checksums can be updated in the file.
244  */
245 static void end_compressed_bio_write(struct btrfs_bio *bbio)
246 {
247 	struct compressed_bio *cb = to_compressed_bio(bbio);
248 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
249 
250 	queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
251 }
252 
253 static void btrfs_add_compressed_bio_pages(struct compressed_bio *cb)
254 {
255 	struct bio *bio = &cb->bbio.bio;
256 	u32 offset = 0;
257 
258 	while (offset < cb->compressed_len) {
259 		u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE);
260 
261 		/* Maximum compressed extent is smaller than bio size limit. */
262 		__bio_add_page(bio, cb->compressed_pages[offset >> PAGE_SHIFT],
263 			       len, 0);
264 		offset += len;
265 	}
266 }
267 
268 /*
269  * worker function to build and submit bios for previously compressed pages.
270  * The corresponding pages in the inode should be marked for writeback
271  * and the compressed pages should have a reference on them for dropping
272  * when the IO is complete.
273  *
274  * This also checksums the file bytes and gets things ready for
275  * the end io hooks.
276  */
277 void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered,
278 				   struct page **compressed_pages,
279 				   unsigned int nr_pages,
280 				   blk_opf_t write_flags,
281 				   bool writeback)
282 {
283 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
284 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
285 	struct compressed_bio *cb;
286 
287 	ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize));
288 	ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize));
289 
290 	cb = alloc_compressed_bio(inode, ordered->file_offset,
291 				  REQ_OP_WRITE | write_flags,
292 				  end_compressed_bio_write);
293 	cb->start = ordered->file_offset;
294 	cb->len = ordered->num_bytes;
295 	cb->compressed_pages = compressed_pages;
296 	cb->compressed_len = ordered->disk_num_bytes;
297 	cb->writeback = writeback;
298 	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
299 	cb->nr_pages = nr_pages;
300 	cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT;
301 	cb->bbio.ordered = ordered;
302 	btrfs_add_compressed_bio_pages(cb);
303 
304 	btrfs_submit_bio(&cb->bbio, 0);
305 }
306 
307 /*
308  * Add extra pages in the same compressed file extent so that we don't need to
309  * re-read the same extent again and again.
310  *
311  * NOTE: this won't work well for subpage, as for subpage read, we lock the
312  * full page then submit bio for each compressed/regular extents.
313  *
314  * This means, if we have several sectors in the same page points to the same
315  * on-disk compressed data, we will re-read the same extent many times and
316  * this function can only help for the next page.
317  */
318 static noinline int add_ra_bio_pages(struct inode *inode,
319 				     u64 compressed_end,
320 				     struct compressed_bio *cb,
321 				     int *memstall, unsigned long *pflags)
322 {
323 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
324 	unsigned long end_index;
325 	struct bio *orig_bio = &cb->orig_bbio->bio;
326 	u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
327 	u64 isize = i_size_read(inode);
328 	int ret;
329 	struct page *page;
330 	struct extent_map *em;
331 	struct address_space *mapping = inode->i_mapping;
332 	struct extent_map_tree *em_tree;
333 	struct extent_io_tree *tree;
334 	int sectors_missed = 0;
335 
336 	em_tree = &BTRFS_I(inode)->extent_tree;
337 	tree = &BTRFS_I(inode)->io_tree;
338 
339 	if (isize == 0)
340 		return 0;
341 
342 	/*
343 	 * For current subpage support, we only support 64K page size,
344 	 * which means maximum compressed extent size (128K) is just 2x page
345 	 * size.
346 	 * This makes readahead less effective, so here disable readahead for
347 	 * subpage for now, until full compressed write is supported.
348 	 */
349 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
350 		return 0;
351 
352 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
353 
354 	while (cur < compressed_end) {
355 		u64 page_end;
356 		u64 pg_index = cur >> PAGE_SHIFT;
357 		u32 add_size;
358 
359 		if (pg_index > end_index)
360 			break;
361 
362 		page = xa_load(&mapping->i_pages, pg_index);
363 		if (page && !xa_is_value(page)) {
364 			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
365 					  fs_info->sectorsize_bits;
366 
367 			/* Beyond threshold, no need to continue */
368 			if (sectors_missed > 4)
369 				break;
370 
371 			/*
372 			 * Jump to next page start as we already have page for
373 			 * current offset.
374 			 */
375 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
376 			continue;
377 		}
378 
379 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
380 								 ~__GFP_FS));
381 		if (!page)
382 			break;
383 
384 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
385 			put_page(page);
386 			/* There is already a page, skip to page end */
387 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
388 			continue;
389 		}
390 
391 		if (!*memstall && PageWorkingset(page)) {
392 			psi_memstall_enter(pflags);
393 			*memstall = 1;
394 		}
395 
396 		ret = set_page_extent_mapped(page);
397 		if (ret < 0) {
398 			unlock_page(page);
399 			put_page(page);
400 			break;
401 		}
402 
403 		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
404 		lock_extent(tree, cur, page_end, NULL);
405 		read_lock(&em_tree->lock);
406 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
407 		read_unlock(&em_tree->lock);
408 
409 		/*
410 		 * At this point, we have a locked page in the page cache for
411 		 * these bytes in the file.  But, we have to make sure they map
412 		 * to this compressed extent on disk.
413 		 */
414 		if (!em || cur < em->start ||
415 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
416 		    (em->block_start >> SECTOR_SHIFT) != orig_bio->bi_iter.bi_sector) {
417 			free_extent_map(em);
418 			unlock_extent(tree, cur, page_end, NULL);
419 			unlock_page(page);
420 			put_page(page);
421 			break;
422 		}
423 		free_extent_map(em);
424 
425 		if (page->index == end_index) {
426 			size_t zero_offset = offset_in_page(isize);
427 
428 			if (zero_offset) {
429 				int zeros;
430 				zeros = PAGE_SIZE - zero_offset;
431 				memzero_page(page, zero_offset, zeros);
432 			}
433 		}
434 
435 		add_size = min(em->start + em->len, page_end + 1) - cur;
436 		ret = bio_add_page(orig_bio, page, add_size, offset_in_page(cur));
437 		if (ret != add_size) {
438 			unlock_extent(tree, cur, page_end, NULL);
439 			unlock_page(page);
440 			put_page(page);
441 			break;
442 		}
443 		/*
444 		 * If it's subpage, we also need to increase its
445 		 * subpage::readers number, as at endio we will decrease
446 		 * subpage::readers and to unlock the page.
447 		 */
448 		if (fs_info->sectorsize < PAGE_SIZE)
449 			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
450 		put_page(page);
451 		cur += add_size;
452 	}
453 	return 0;
454 }
455 
456 /*
457  * for a compressed read, the bio we get passed has all the inode pages
458  * in it.  We don't actually do IO on those pages but allocate new ones
459  * to hold the compressed pages on disk.
460  *
461  * bio->bi_iter.bi_sector points to the compressed extent on disk
462  * bio->bi_io_vec points to all of the inode pages
463  *
464  * After the compressed pages are read, we copy the bytes into the
465  * bio we were passed and then call the bio end_io calls
466  */
467 void btrfs_submit_compressed_read(struct btrfs_bio *bbio)
468 {
469 	struct btrfs_inode *inode = bbio->inode;
470 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
471 	struct extent_map_tree *em_tree = &inode->extent_tree;
472 	struct compressed_bio *cb;
473 	unsigned int compressed_len;
474 	u64 file_offset = bbio->file_offset;
475 	u64 em_len;
476 	u64 em_start;
477 	struct extent_map *em;
478 	unsigned long pflags;
479 	int memstall = 0;
480 	blk_status_t ret;
481 	int ret2;
482 
483 	/* we need the actual starting offset of this extent in the file */
484 	read_lock(&em_tree->lock);
485 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
486 	read_unlock(&em_tree->lock);
487 	if (!em) {
488 		ret = BLK_STS_IOERR;
489 		goto out;
490 	}
491 
492 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
493 	compressed_len = em->block_len;
494 
495 	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
496 				  end_compressed_bio_read);
497 
498 	cb->start = em->orig_start;
499 	em_len = em->len;
500 	em_start = em->start;
501 
502 	cb->len = bbio->bio.bi_iter.bi_size;
503 	cb->compressed_len = compressed_len;
504 	cb->compress_type = em->compress_type;
505 	cb->orig_bbio = bbio;
506 
507 	free_extent_map(em);
508 
509 	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
510 	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
511 	if (!cb->compressed_pages) {
512 		ret = BLK_STS_RESOURCE;
513 		goto out_free_bio;
514 	}
515 
516 	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
517 	if (ret2) {
518 		ret = BLK_STS_RESOURCE;
519 		goto out_free_compressed_pages;
520 	}
521 
522 	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
523 			 &pflags);
524 
525 	/* include any pages we added in add_ra-bio_pages */
526 	cb->len = bbio->bio.bi_iter.bi_size;
527 	cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
528 	btrfs_add_compressed_bio_pages(cb);
529 
530 	if (memstall)
531 		psi_memstall_leave(&pflags);
532 
533 	btrfs_submit_bio(&cb->bbio, 0);
534 	return;
535 
536 out_free_compressed_pages:
537 	kfree(cb->compressed_pages);
538 out_free_bio:
539 	bio_put(&cb->bbio.bio);
540 out:
541 	btrfs_bio_end_io(bbio, ret);
542 }
543 
544 /*
545  * Heuristic uses systematic sampling to collect data from the input data
546  * range, the logic can be tuned by the following constants:
547  *
548  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
549  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
550  */
551 #define SAMPLING_READ_SIZE	(16)
552 #define SAMPLING_INTERVAL	(256)
553 
554 /*
555  * For statistical analysis of the input data we consider bytes that form a
556  * Galois Field of 256 objects. Each object has an attribute count, ie. how
557  * many times the object appeared in the sample.
558  */
559 #define BUCKET_SIZE		(256)
560 
561 /*
562  * The size of the sample is based on a statistical sampling rule of thumb.
563  * The common way is to perform sampling tests as long as the number of
564  * elements in each cell is at least 5.
565  *
566  * Instead of 5, we choose 32 to obtain more accurate results.
567  * If the data contain the maximum number of symbols, which is 256, we obtain a
568  * sample size bound by 8192.
569  *
570  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
571  * from up to 512 locations.
572  */
573 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
574 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
575 
576 struct bucket_item {
577 	u32 count;
578 };
579 
580 struct heuristic_ws {
581 	/* Partial copy of input data */
582 	u8 *sample;
583 	u32 sample_size;
584 	/* Buckets store counters for each byte value */
585 	struct bucket_item *bucket;
586 	/* Sorting buffer */
587 	struct bucket_item *bucket_b;
588 	struct list_head list;
589 };
590 
591 static struct workspace_manager heuristic_wsm;
592 
593 static void free_heuristic_ws(struct list_head *ws)
594 {
595 	struct heuristic_ws *workspace;
596 
597 	workspace = list_entry(ws, struct heuristic_ws, list);
598 
599 	kvfree(workspace->sample);
600 	kfree(workspace->bucket);
601 	kfree(workspace->bucket_b);
602 	kfree(workspace);
603 }
604 
605 static struct list_head *alloc_heuristic_ws(unsigned int level)
606 {
607 	struct heuristic_ws *ws;
608 
609 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
610 	if (!ws)
611 		return ERR_PTR(-ENOMEM);
612 
613 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
614 	if (!ws->sample)
615 		goto fail;
616 
617 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
618 	if (!ws->bucket)
619 		goto fail;
620 
621 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
622 	if (!ws->bucket_b)
623 		goto fail;
624 
625 	INIT_LIST_HEAD(&ws->list);
626 	return &ws->list;
627 fail:
628 	free_heuristic_ws(&ws->list);
629 	return ERR_PTR(-ENOMEM);
630 }
631 
632 const struct btrfs_compress_op btrfs_heuristic_compress = {
633 	.workspace_manager = &heuristic_wsm,
634 };
635 
636 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
637 	/* The heuristic is represented as compression type 0 */
638 	&btrfs_heuristic_compress,
639 	&btrfs_zlib_compress,
640 	&btrfs_lzo_compress,
641 	&btrfs_zstd_compress,
642 };
643 
644 static struct list_head *alloc_workspace(int type, unsigned int level)
645 {
646 	switch (type) {
647 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
648 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
649 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
650 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
651 	default:
652 		/*
653 		 * This can't happen, the type is validated several times
654 		 * before we get here.
655 		 */
656 		BUG();
657 	}
658 }
659 
660 static void free_workspace(int type, struct list_head *ws)
661 {
662 	switch (type) {
663 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
664 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
665 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
666 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
667 	default:
668 		/*
669 		 * This can't happen, the type is validated several times
670 		 * before we get here.
671 		 */
672 		BUG();
673 	}
674 }
675 
676 static void btrfs_init_workspace_manager(int type)
677 {
678 	struct workspace_manager *wsm;
679 	struct list_head *workspace;
680 
681 	wsm = btrfs_compress_op[type]->workspace_manager;
682 	INIT_LIST_HEAD(&wsm->idle_ws);
683 	spin_lock_init(&wsm->ws_lock);
684 	atomic_set(&wsm->total_ws, 0);
685 	init_waitqueue_head(&wsm->ws_wait);
686 
687 	/*
688 	 * Preallocate one workspace for each compression type so we can
689 	 * guarantee forward progress in the worst case
690 	 */
691 	workspace = alloc_workspace(type, 0);
692 	if (IS_ERR(workspace)) {
693 		pr_warn(
694 	"BTRFS: cannot preallocate compression workspace, will try later\n");
695 	} else {
696 		atomic_set(&wsm->total_ws, 1);
697 		wsm->free_ws = 1;
698 		list_add(workspace, &wsm->idle_ws);
699 	}
700 }
701 
702 static void btrfs_cleanup_workspace_manager(int type)
703 {
704 	struct workspace_manager *wsman;
705 	struct list_head *ws;
706 
707 	wsman = btrfs_compress_op[type]->workspace_manager;
708 	while (!list_empty(&wsman->idle_ws)) {
709 		ws = wsman->idle_ws.next;
710 		list_del(ws);
711 		free_workspace(type, ws);
712 		atomic_dec(&wsman->total_ws);
713 	}
714 }
715 
716 /*
717  * This finds an available workspace or allocates a new one.
718  * If it's not possible to allocate a new one, waits until there's one.
719  * Preallocation makes a forward progress guarantees and we do not return
720  * errors.
721  */
722 struct list_head *btrfs_get_workspace(int type, unsigned int level)
723 {
724 	struct workspace_manager *wsm;
725 	struct list_head *workspace;
726 	int cpus = num_online_cpus();
727 	unsigned nofs_flag;
728 	struct list_head *idle_ws;
729 	spinlock_t *ws_lock;
730 	atomic_t *total_ws;
731 	wait_queue_head_t *ws_wait;
732 	int *free_ws;
733 
734 	wsm = btrfs_compress_op[type]->workspace_manager;
735 	idle_ws	 = &wsm->idle_ws;
736 	ws_lock	 = &wsm->ws_lock;
737 	total_ws = &wsm->total_ws;
738 	ws_wait	 = &wsm->ws_wait;
739 	free_ws	 = &wsm->free_ws;
740 
741 again:
742 	spin_lock(ws_lock);
743 	if (!list_empty(idle_ws)) {
744 		workspace = idle_ws->next;
745 		list_del(workspace);
746 		(*free_ws)--;
747 		spin_unlock(ws_lock);
748 		return workspace;
749 
750 	}
751 	if (atomic_read(total_ws) > cpus) {
752 		DEFINE_WAIT(wait);
753 
754 		spin_unlock(ws_lock);
755 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
756 		if (atomic_read(total_ws) > cpus && !*free_ws)
757 			schedule();
758 		finish_wait(ws_wait, &wait);
759 		goto again;
760 	}
761 	atomic_inc(total_ws);
762 	spin_unlock(ws_lock);
763 
764 	/*
765 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
766 	 * to turn it off here because we might get called from the restricted
767 	 * context of btrfs_compress_bio/btrfs_compress_pages
768 	 */
769 	nofs_flag = memalloc_nofs_save();
770 	workspace = alloc_workspace(type, level);
771 	memalloc_nofs_restore(nofs_flag);
772 
773 	if (IS_ERR(workspace)) {
774 		atomic_dec(total_ws);
775 		wake_up(ws_wait);
776 
777 		/*
778 		 * Do not return the error but go back to waiting. There's a
779 		 * workspace preallocated for each type and the compression
780 		 * time is bounded so we get to a workspace eventually. This
781 		 * makes our caller's life easier.
782 		 *
783 		 * To prevent silent and low-probability deadlocks (when the
784 		 * initial preallocation fails), check if there are any
785 		 * workspaces at all.
786 		 */
787 		if (atomic_read(total_ws) == 0) {
788 			static DEFINE_RATELIMIT_STATE(_rs,
789 					/* once per minute */ 60 * HZ,
790 					/* no burst */ 1);
791 
792 			if (__ratelimit(&_rs)) {
793 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
794 			}
795 		}
796 		goto again;
797 	}
798 	return workspace;
799 }
800 
801 static struct list_head *get_workspace(int type, int level)
802 {
803 	switch (type) {
804 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
805 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
806 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
807 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
808 	default:
809 		/*
810 		 * This can't happen, the type is validated several times
811 		 * before we get here.
812 		 */
813 		BUG();
814 	}
815 }
816 
817 /*
818  * put a workspace struct back on the list or free it if we have enough
819  * idle ones sitting around
820  */
821 void btrfs_put_workspace(int type, struct list_head *ws)
822 {
823 	struct workspace_manager *wsm;
824 	struct list_head *idle_ws;
825 	spinlock_t *ws_lock;
826 	atomic_t *total_ws;
827 	wait_queue_head_t *ws_wait;
828 	int *free_ws;
829 
830 	wsm = btrfs_compress_op[type]->workspace_manager;
831 	idle_ws	 = &wsm->idle_ws;
832 	ws_lock	 = &wsm->ws_lock;
833 	total_ws = &wsm->total_ws;
834 	ws_wait	 = &wsm->ws_wait;
835 	free_ws	 = &wsm->free_ws;
836 
837 	spin_lock(ws_lock);
838 	if (*free_ws <= num_online_cpus()) {
839 		list_add(ws, idle_ws);
840 		(*free_ws)++;
841 		spin_unlock(ws_lock);
842 		goto wake;
843 	}
844 	spin_unlock(ws_lock);
845 
846 	free_workspace(type, ws);
847 	atomic_dec(total_ws);
848 wake:
849 	cond_wake_up(ws_wait);
850 }
851 
852 static void put_workspace(int type, struct list_head *ws)
853 {
854 	switch (type) {
855 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
856 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
857 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
858 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
859 	default:
860 		/*
861 		 * This can't happen, the type is validated several times
862 		 * before we get here.
863 		 */
864 		BUG();
865 	}
866 }
867 
868 /*
869  * Adjust @level according to the limits of the compression algorithm or
870  * fallback to default
871  */
872 static unsigned int btrfs_compress_set_level(int type, unsigned level)
873 {
874 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
875 
876 	if (level == 0)
877 		level = ops->default_level;
878 	else
879 		level = min(level, ops->max_level);
880 
881 	return level;
882 }
883 
884 /*
885  * Given an address space and start and length, compress the bytes into @pages
886  * that are allocated on demand.
887  *
888  * @type_level is encoded algorithm and level, where level 0 means whatever
889  * default the algorithm chooses and is opaque here;
890  * - compression algo are 0-3
891  * - the level are bits 4-7
892  *
893  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
894  * and returns number of actually allocated pages
895  *
896  * @total_in is used to return the number of bytes actually read.  It
897  * may be smaller than the input length if we had to exit early because we
898  * ran out of room in the pages array or because we cross the
899  * max_out threshold.
900  *
901  * @total_out is an in/out parameter, must be set to the input length and will
902  * be also used to return the total number of compressed bytes
903  */
904 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
905 			 u64 start, struct page **pages,
906 			 unsigned long *out_pages,
907 			 unsigned long *total_in,
908 			 unsigned long *total_out)
909 {
910 	int type = btrfs_compress_type(type_level);
911 	int level = btrfs_compress_level(type_level);
912 	struct list_head *workspace;
913 	int ret;
914 
915 	level = btrfs_compress_set_level(type, level);
916 	workspace = get_workspace(type, level);
917 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
918 					 out_pages, total_in, total_out);
919 	put_workspace(type, workspace);
920 	return ret;
921 }
922 
923 static int btrfs_decompress_bio(struct compressed_bio *cb)
924 {
925 	struct list_head *workspace;
926 	int ret;
927 	int type = cb->compress_type;
928 
929 	workspace = get_workspace(type, 0);
930 	ret = compression_decompress_bio(workspace, cb);
931 	put_workspace(type, workspace);
932 
933 	if (!ret)
934 		zero_fill_bio(&cb->orig_bbio->bio);
935 	return ret;
936 }
937 
938 /*
939  * a less complex decompression routine.  Our compressed data fits in a
940  * single page, and we want to read a single page out of it.
941  * start_byte tells us the offset into the compressed data we're interested in
942  */
943 int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
944 		     unsigned long start_byte, size_t srclen, size_t destlen)
945 {
946 	struct list_head *workspace;
947 	int ret;
948 
949 	workspace = get_workspace(type, 0);
950 	ret = compression_decompress(type, workspace, data_in, dest_page,
951 				     start_byte, srclen, destlen);
952 	put_workspace(type, workspace);
953 
954 	return ret;
955 }
956 
957 int __init btrfs_init_compress(void)
958 {
959 	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
960 			offsetof(struct compressed_bio, bbio.bio),
961 			BIOSET_NEED_BVECS))
962 		return -ENOMEM;
963 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
964 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
965 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
966 	zstd_init_workspace_manager();
967 	return 0;
968 }
969 
970 void __cold btrfs_exit_compress(void)
971 {
972 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
973 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
974 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
975 	zstd_cleanup_workspace_manager();
976 	bioset_exit(&btrfs_compressed_bioset);
977 }
978 
979 /*
980  * Copy decompressed data from working buffer to pages.
981  *
982  * @buf:		The decompressed data buffer
983  * @buf_len:		The decompressed data length
984  * @decompressed:	Number of bytes that are already decompressed inside the
985  * 			compressed extent
986  * @cb:			The compressed extent descriptor
987  * @orig_bio:		The original bio that the caller wants to read for
988  *
989  * An easier to understand graph is like below:
990  *
991  * 		|<- orig_bio ->|     |<- orig_bio->|
992  * 	|<-------      full decompressed extent      ----->|
993  * 	|<-----------    @cb range   ---->|
994  * 	|			|<-- @buf_len -->|
995  * 	|<--- @decompressed --->|
996  *
997  * Note that, @cb can be a subpage of the full decompressed extent, but
998  * @cb->start always has the same as the orig_file_offset value of the full
999  * decompressed extent.
1000  *
1001  * When reading compressed extent, we have to read the full compressed extent,
1002  * while @orig_bio may only want part of the range.
1003  * Thus this function will ensure only data covered by @orig_bio will be copied
1004  * to.
1005  *
1006  * Return 0 if we have copied all needed contents for @orig_bio.
1007  * Return >0 if we need continue decompress.
1008  */
1009 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1010 			      struct compressed_bio *cb, u32 decompressed)
1011 {
1012 	struct bio *orig_bio = &cb->orig_bbio->bio;
1013 	/* Offset inside the full decompressed extent */
1014 	u32 cur_offset;
1015 
1016 	cur_offset = decompressed;
1017 	/* The main loop to do the copy */
1018 	while (cur_offset < decompressed + buf_len) {
1019 		struct bio_vec bvec;
1020 		size_t copy_len;
1021 		u32 copy_start;
1022 		/* Offset inside the full decompressed extent */
1023 		u32 bvec_offset;
1024 
1025 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1026 		/*
1027 		 * cb->start may underflow, but subtracting that value can still
1028 		 * give us correct offset inside the full decompressed extent.
1029 		 */
1030 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1031 
1032 		/* Haven't reached the bvec range, exit */
1033 		if (decompressed + buf_len <= bvec_offset)
1034 			return 1;
1035 
1036 		copy_start = max(cur_offset, bvec_offset);
1037 		copy_len = min(bvec_offset + bvec.bv_len,
1038 			       decompressed + buf_len) - copy_start;
1039 		ASSERT(copy_len);
1040 
1041 		/*
1042 		 * Extra range check to ensure we didn't go beyond
1043 		 * @buf + @buf_len.
1044 		 */
1045 		ASSERT(copy_start - decompressed < buf_len);
1046 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1047 			       buf + copy_start - decompressed, copy_len);
1048 		cur_offset += copy_len;
1049 
1050 		bio_advance(orig_bio, copy_len);
1051 		/* Finished the bio */
1052 		if (!orig_bio->bi_iter.bi_size)
1053 			return 0;
1054 	}
1055 	return 1;
1056 }
1057 
1058 /*
1059  * Shannon Entropy calculation
1060  *
1061  * Pure byte distribution analysis fails to determine compressibility of data.
1062  * Try calculating entropy to estimate the average minimum number of bits
1063  * needed to encode the sampled data.
1064  *
1065  * For convenience, return the percentage of needed bits, instead of amount of
1066  * bits directly.
1067  *
1068  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1069  *			    and can be compressible with high probability
1070  *
1071  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1072  *
1073  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1074  */
1075 #define ENTROPY_LVL_ACEPTABLE		(65)
1076 #define ENTROPY_LVL_HIGH		(80)
1077 
1078 /*
1079  * For increasead precision in shannon_entropy calculation,
1080  * let's do pow(n, M) to save more digits after comma:
1081  *
1082  * - maximum int bit length is 64
1083  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1084  * - 13 * 4 = 52 < 64		-> M = 4
1085  *
1086  * So use pow(n, 4).
1087  */
1088 static inline u32 ilog2_w(u64 n)
1089 {
1090 	return ilog2(n * n * n * n);
1091 }
1092 
1093 static u32 shannon_entropy(struct heuristic_ws *ws)
1094 {
1095 	const u32 entropy_max = 8 * ilog2_w(2);
1096 	u32 entropy_sum = 0;
1097 	u32 p, p_base, sz_base;
1098 	u32 i;
1099 
1100 	sz_base = ilog2_w(ws->sample_size);
1101 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1102 		p = ws->bucket[i].count;
1103 		p_base = ilog2_w(p);
1104 		entropy_sum += p * (sz_base - p_base);
1105 	}
1106 
1107 	entropy_sum /= ws->sample_size;
1108 	return entropy_sum * 100 / entropy_max;
1109 }
1110 
1111 #define RADIX_BASE		4U
1112 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1113 
1114 static u8 get4bits(u64 num, int shift) {
1115 	u8 low4bits;
1116 
1117 	num >>= shift;
1118 	/* Reverse order */
1119 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1120 	return low4bits;
1121 }
1122 
1123 /*
1124  * Use 4 bits as radix base
1125  * Use 16 u32 counters for calculating new position in buf array
1126  *
1127  * @array     - array that will be sorted
1128  * @array_buf - buffer array to store sorting results
1129  *              must be equal in size to @array
1130  * @num       - array size
1131  */
1132 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1133 		       int num)
1134 {
1135 	u64 max_num;
1136 	u64 buf_num;
1137 	u32 counters[COUNTERS_SIZE];
1138 	u32 new_addr;
1139 	u32 addr;
1140 	int bitlen;
1141 	int shift;
1142 	int i;
1143 
1144 	/*
1145 	 * Try avoid useless loop iterations for small numbers stored in big
1146 	 * counters.  Example: 48 33 4 ... in 64bit array
1147 	 */
1148 	max_num = array[0].count;
1149 	for (i = 1; i < num; i++) {
1150 		buf_num = array[i].count;
1151 		if (buf_num > max_num)
1152 			max_num = buf_num;
1153 	}
1154 
1155 	buf_num = ilog2(max_num);
1156 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1157 
1158 	shift = 0;
1159 	while (shift < bitlen) {
1160 		memset(counters, 0, sizeof(counters));
1161 
1162 		for (i = 0; i < num; i++) {
1163 			buf_num = array[i].count;
1164 			addr = get4bits(buf_num, shift);
1165 			counters[addr]++;
1166 		}
1167 
1168 		for (i = 1; i < COUNTERS_SIZE; i++)
1169 			counters[i] += counters[i - 1];
1170 
1171 		for (i = num - 1; i >= 0; i--) {
1172 			buf_num = array[i].count;
1173 			addr = get4bits(buf_num, shift);
1174 			counters[addr]--;
1175 			new_addr = counters[addr];
1176 			array_buf[new_addr] = array[i];
1177 		}
1178 
1179 		shift += RADIX_BASE;
1180 
1181 		/*
1182 		 * Normal radix expects to move data from a temporary array, to
1183 		 * the main one.  But that requires some CPU time. Avoid that
1184 		 * by doing another sort iteration to original array instead of
1185 		 * memcpy()
1186 		 */
1187 		memset(counters, 0, sizeof(counters));
1188 
1189 		for (i = 0; i < num; i ++) {
1190 			buf_num = array_buf[i].count;
1191 			addr = get4bits(buf_num, shift);
1192 			counters[addr]++;
1193 		}
1194 
1195 		for (i = 1; i < COUNTERS_SIZE; i++)
1196 			counters[i] += counters[i - 1];
1197 
1198 		for (i = num - 1; i >= 0; i--) {
1199 			buf_num = array_buf[i].count;
1200 			addr = get4bits(buf_num, shift);
1201 			counters[addr]--;
1202 			new_addr = counters[addr];
1203 			array[new_addr] = array_buf[i];
1204 		}
1205 
1206 		shift += RADIX_BASE;
1207 	}
1208 }
1209 
1210 /*
1211  * Size of the core byte set - how many bytes cover 90% of the sample
1212  *
1213  * There are several types of structured binary data that use nearly all byte
1214  * values. The distribution can be uniform and counts in all buckets will be
1215  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1216  *
1217  * Other possibility is normal (Gaussian) distribution, where the data could
1218  * be potentially compressible, but we have to take a few more steps to decide
1219  * how much.
1220  *
1221  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1222  *                       compression algo can easy fix that
1223  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1224  *                       probability is not compressible
1225  */
1226 #define BYTE_CORE_SET_LOW		(64)
1227 #define BYTE_CORE_SET_HIGH		(200)
1228 
1229 static int byte_core_set_size(struct heuristic_ws *ws)
1230 {
1231 	u32 i;
1232 	u32 coreset_sum = 0;
1233 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1234 	struct bucket_item *bucket = ws->bucket;
1235 
1236 	/* Sort in reverse order */
1237 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1238 
1239 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1240 		coreset_sum += bucket[i].count;
1241 
1242 	if (coreset_sum > core_set_threshold)
1243 		return i;
1244 
1245 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1246 		coreset_sum += bucket[i].count;
1247 		if (coreset_sum > core_set_threshold)
1248 			break;
1249 	}
1250 
1251 	return i;
1252 }
1253 
1254 /*
1255  * Count byte values in buckets.
1256  * This heuristic can detect textual data (configs, xml, json, html, etc).
1257  * Because in most text-like data byte set is restricted to limited number of
1258  * possible characters, and that restriction in most cases makes data easy to
1259  * compress.
1260  *
1261  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1262  *	less - compressible
1263  *	more - need additional analysis
1264  */
1265 #define BYTE_SET_THRESHOLD		(64)
1266 
1267 static u32 byte_set_size(const struct heuristic_ws *ws)
1268 {
1269 	u32 i;
1270 	u32 byte_set_size = 0;
1271 
1272 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1273 		if (ws->bucket[i].count > 0)
1274 			byte_set_size++;
1275 	}
1276 
1277 	/*
1278 	 * Continue collecting count of byte values in buckets.  If the byte
1279 	 * set size is bigger then the threshold, it's pointless to continue,
1280 	 * the detection technique would fail for this type of data.
1281 	 */
1282 	for (; i < BUCKET_SIZE; i++) {
1283 		if (ws->bucket[i].count > 0) {
1284 			byte_set_size++;
1285 			if (byte_set_size > BYTE_SET_THRESHOLD)
1286 				return byte_set_size;
1287 		}
1288 	}
1289 
1290 	return byte_set_size;
1291 }
1292 
1293 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1294 {
1295 	const u32 half_of_sample = ws->sample_size / 2;
1296 	const u8 *data = ws->sample;
1297 
1298 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1299 }
1300 
1301 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1302 				     struct heuristic_ws *ws)
1303 {
1304 	struct page *page;
1305 	u64 index, index_end;
1306 	u32 i, curr_sample_pos;
1307 	u8 *in_data;
1308 
1309 	/*
1310 	 * Compression handles the input data by chunks of 128KiB
1311 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1312 	 *
1313 	 * We do the same for the heuristic and loop over the whole range.
1314 	 *
1315 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1316 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1317 	 */
1318 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1319 		end = start + BTRFS_MAX_UNCOMPRESSED;
1320 
1321 	index = start >> PAGE_SHIFT;
1322 	index_end = end >> PAGE_SHIFT;
1323 
1324 	/* Don't miss unaligned end */
1325 	if (!PAGE_ALIGNED(end))
1326 		index_end++;
1327 
1328 	curr_sample_pos = 0;
1329 	while (index < index_end) {
1330 		page = find_get_page(inode->i_mapping, index);
1331 		in_data = kmap_local_page(page);
1332 		/* Handle case where the start is not aligned to PAGE_SIZE */
1333 		i = start % PAGE_SIZE;
1334 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1335 			/* Don't sample any garbage from the last page */
1336 			if (start > end - SAMPLING_READ_SIZE)
1337 				break;
1338 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1339 					SAMPLING_READ_SIZE);
1340 			i += SAMPLING_INTERVAL;
1341 			start += SAMPLING_INTERVAL;
1342 			curr_sample_pos += SAMPLING_READ_SIZE;
1343 		}
1344 		kunmap_local(in_data);
1345 		put_page(page);
1346 
1347 		index++;
1348 	}
1349 
1350 	ws->sample_size = curr_sample_pos;
1351 }
1352 
1353 /*
1354  * Compression heuristic.
1355  *
1356  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1357  * quickly (compared to direct compression) detect data characteristics
1358  * (compressible/incompressible) to avoid wasting CPU time on incompressible
1359  * data.
1360  *
1361  * The following types of analysis can be performed:
1362  * - detect mostly zero data
1363  * - detect data with low "byte set" size (text, etc)
1364  * - detect data with low/high "core byte" set
1365  *
1366  * Return non-zero if the compression should be done, 0 otherwise.
1367  */
1368 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1369 {
1370 	struct list_head *ws_list = get_workspace(0, 0);
1371 	struct heuristic_ws *ws;
1372 	u32 i;
1373 	u8 byte;
1374 	int ret = 0;
1375 
1376 	ws = list_entry(ws_list, struct heuristic_ws, list);
1377 
1378 	heuristic_collect_sample(inode, start, end, ws);
1379 
1380 	if (sample_repeated_patterns(ws)) {
1381 		ret = 1;
1382 		goto out;
1383 	}
1384 
1385 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1386 
1387 	for (i = 0; i < ws->sample_size; i++) {
1388 		byte = ws->sample[i];
1389 		ws->bucket[byte].count++;
1390 	}
1391 
1392 	i = byte_set_size(ws);
1393 	if (i < BYTE_SET_THRESHOLD) {
1394 		ret = 2;
1395 		goto out;
1396 	}
1397 
1398 	i = byte_core_set_size(ws);
1399 	if (i <= BYTE_CORE_SET_LOW) {
1400 		ret = 3;
1401 		goto out;
1402 	}
1403 
1404 	if (i >= BYTE_CORE_SET_HIGH) {
1405 		ret = 0;
1406 		goto out;
1407 	}
1408 
1409 	i = shannon_entropy(ws);
1410 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1411 		ret = 4;
1412 		goto out;
1413 	}
1414 
1415 	/*
1416 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1417 	 * needed to give green light to compression.
1418 	 *
1419 	 * For now just assume that compression at that level is not worth the
1420 	 * resources because:
1421 	 *
1422 	 * 1. it is possible to defrag the data later
1423 	 *
1424 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1425 	 * values, every bucket has counter at level ~54. The heuristic would
1426 	 * be confused. This can happen when data have some internal repeated
1427 	 * patterns like "abbacbbc...". This can be detected by analyzing
1428 	 * pairs of bytes, which is too costly.
1429 	 */
1430 	if (i < ENTROPY_LVL_HIGH) {
1431 		ret = 5;
1432 		goto out;
1433 	} else {
1434 		ret = 0;
1435 		goto out;
1436 	}
1437 
1438 out:
1439 	put_workspace(0, ws_list);
1440 	return ret;
1441 }
1442 
1443 /*
1444  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1445  * level, unrecognized string will set the default level
1446  */
1447 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1448 {
1449 	unsigned int level = 0;
1450 	int ret;
1451 
1452 	if (!type)
1453 		return 0;
1454 
1455 	if (str[0] == ':') {
1456 		ret = kstrtouint(str + 1, 10, &level);
1457 		if (ret)
1458 			level = 0;
1459 	}
1460 
1461 	level = btrfs_compress_set_level(type, level);
1462 
1463 	return level;
1464 }
1465