xref: /linux/fs/btrfs/compression.c (revision 905e46acd3272d04566fec49afbd7ad9e2ed9ae3)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
44 
45 struct compressed_bio {
46 	/* number of bios pending for this compressed extent */
47 	refcount_t pending_bios;
48 
49 	/* the pages with the compressed data on them */
50 	struct page **compressed_pages;
51 
52 	/* inode that owns this data */
53 	struct inode *inode;
54 
55 	/* starting offset in the inode for our pages */
56 	u64 start;
57 
58 	/* number of bytes in the inode we're working on */
59 	unsigned long len;
60 
61 	/* number of bytes on disk */
62 	unsigned long compressed_len;
63 
64 	/* the compression algorithm for this bio */
65 	int compress_type;
66 
67 	/* number of compressed pages in the array */
68 	unsigned long nr_pages;
69 
70 	/* IO errors */
71 	int errors;
72 	int mirror_num;
73 
74 	/* for reads, this is the bio we are copying the data into */
75 	struct bio *orig_bio;
76 
77 	/*
78 	 * the start of a variable length array of checksums only
79 	 * used by reads
80 	 */
81 	u32 sums;
82 };
83 
84 static int btrfs_decompress_bio(int type, struct page **pages_in,
85 				   u64 disk_start, struct bio *orig_bio,
86 				   size_t srclen);
87 
88 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
89 				      unsigned long disk_size)
90 {
91 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
92 
93 	return sizeof(struct compressed_bio) +
94 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
95 }
96 
97 static struct bio *compressed_bio_alloc(struct block_device *bdev,
98 					u64 first_byte, gfp_t gfp_flags)
99 {
100 	return btrfs_bio_alloc(bdev, first_byte >> 9, BIO_MAX_PAGES, gfp_flags);
101 }
102 
103 static int check_compressed_csum(struct btrfs_inode *inode,
104 				 struct compressed_bio *cb,
105 				 u64 disk_start)
106 {
107 	int ret;
108 	struct page *page;
109 	unsigned long i;
110 	char *kaddr;
111 	u32 csum;
112 	u32 *cb_sum = &cb->sums;
113 
114 	if (inode->flags & BTRFS_INODE_NODATASUM)
115 		return 0;
116 
117 	for (i = 0; i < cb->nr_pages; i++) {
118 		page = cb->compressed_pages[i];
119 		csum = ~(u32)0;
120 
121 		kaddr = kmap_atomic(page);
122 		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
123 		btrfs_csum_final(csum, (u8 *)&csum);
124 		kunmap_atomic(kaddr);
125 
126 		if (csum != *cb_sum) {
127 			btrfs_print_data_csum_error(inode, disk_start, csum,
128 					*cb_sum, cb->mirror_num);
129 			ret = -EIO;
130 			goto fail;
131 		}
132 		cb_sum++;
133 
134 	}
135 	ret = 0;
136 fail:
137 	return ret;
138 }
139 
140 /* when we finish reading compressed pages from the disk, we
141  * decompress them and then run the bio end_io routines on the
142  * decompressed pages (in the inode address space).
143  *
144  * This allows the checksumming and other IO error handling routines
145  * to work normally
146  *
147  * The compressed pages are freed here, and it must be run
148  * in process context
149  */
150 static void end_compressed_bio_read(struct bio *bio)
151 {
152 	struct compressed_bio *cb = bio->bi_private;
153 	struct inode *inode;
154 	struct page *page;
155 	unsigned long index;
156 	int ret;
157 
158 	if (bio->bi_error)
159 		cb->errors = 1;
160 
161 	/* if there are more bios still pending for this compressed
162 	 * extent, just exit
163 	 */
164 	if (!refcount_dec_and_test(&cb->pending_bios))
165 		goto out;
166 
167 	inode = cb->inode;
168 	ret = check_compressed_csum(BTRFS_I(inode), cb,
169 				    (u64)bio->bi_iter.bi_sector << 9);
170 	if (ret)
171 		goto csum_failed;
172 
173 	/* ok, we're the last bio for this extent, lets start
174 	 * the decompression.
175 	 */
176 	ret = btrfs_decompress_bio(cb->compress_type,
177 				      cb->compressed_pages,
178 				      cb->start,
179 				      cb->orig_bio,
180 				      cb->compressed_len);
181 csum_failed:
182 	if (ret)
183 		cb->errors = 1;
184 
185 	/* release the compressed pages */
186 	index = 0;
187 	for (index = 0; index < cb->nr_pages; index++) {
188 		page = cb->compressed_pages[index];
189 		page->mapping = NULL;
190 		put_page(page);
191 	}
192 
193 	/* do io completion on the original bio */
194 	if (cb->errors) {
195 		bio_io_error(cb->orig_bio);
196 	} else {
197 		int i;
198 		struct bio_vec *bvec;
199 
200 		/*
201 		 * we have verified the checksum already, set page
202 		 * checked so the end_io handlers know about it
203 		 */
204 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
205 			SetPageChecked(bvec->bv_page);
206 
207 		bio_endio(cb->orig_bio);
208 	}
209 
210 	/* finally free the cb struct */
211 	kfree(cb->compressed_pages);
212 	kfree(cb);
213 out:
214 	bio_put(bio);
215 }
216 
217 /*
218  * Clear the writeback bits on all of the file
219  * pages for a compressed write
220  */
221 static noinline void end_compressed_writeback(struct inode *inode,
222 					      const struct compressed_bio *cb)
223 {
224 	unsigned long index = cb->start >> PAGE_SHIFT;
225 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
226 	struct page *pages[16];
227 	unsigned long nr_pages = end_index - index + 1;
228 	int i;
229 	int ret;
230 
231 	if (cb->errors)
232 		mapping_set_error(inode->i_mapping, -EIO);
233 
234 	while (nr_pages > 0) {
235 		ret = find_get_pages_contig(inode->i_mapping, index,
236 				     min_t(unsigned long,
237 				     nr_pages, ARRAY_SIZE(pages)), pages);
238 		if (ret == 0) {
239 			nr_pages -= 1;
240 			index += 1;
241 			continue;
242 		}
243 		for (i = 0; i < ret; i++) {
244 			if (cb->errors)
245 				SetPageError(pages[i]);
246 			end_page_writeback(pages[i]);
247 			put_page(pages[i]);
248 		}
249 		nr_pages -= ret;
250 		index += ret;
251 	}
252 	/* the inode may be gone now */
253 }
254 
255 /*
256  * do the cleanup once all the compressed pages hit the disk.
257  * This will clear writeback on the file pages and free the compressed
258  * pages.
259  *
260  * This also calls the writeback end hooks for the file pages so that
261  * metadata and checksums can be updated in the file.
262  */
263 static void end_compressed_bio_write(struct bio *bio)
264 {
265 	struct extent_io_tree *tree;
266 	struct compressed_bio *cb = bio->bi_private;
267 	struct inode *inode;
268 	struct page *page;
269 	unsigned long index;
270 
271 	if (bio->bi_error)
272 		cb->errors = 1;
273 
274 	/* if there are more bios still pending for this compressed
275 	 * extent, just exit
276 	 */
277 	if (!refcount_dec_and_test(&cb->pending_bios))
278 		goto out;
279 
280 	/* ok, we're the last bio for this extent, step one is to
281 	 * call back into the FS and do all the end_io operations
282 	 */
283 	inode = cb->inode;
284 	tree = &BTRFS_I(inode)->io_tree;
285 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
286 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
287 					 cb->start,
288 					 cb->start + cb->len - 1,
289 					 NULL,
290 					 bio->bi_error ? 0 : 1);
291 	cb->compressed_pages[0]->mapping = NULL;
292 
293 	end_compressed_writeback(inode, cb);
294 	/* note, our inode could be gone now */
295 
296 	/*
297 	 * release the compressed pages, these came from alloc_page and
298 	 * are not attached to the inode at all
299 	 */
300 	index = 0;
301 	for (index = 0; index < cb->nr_pages; index++) {
302 		page = cb->compressed_pages[index];
303 		page->mapping = NULL;
304 		put_page(page);
305 	}
306 
307 	/* finally free the cb struct */
308 	kfree(cb->compressed_pages);
309 	kfree(cb);
310 out:
311 	bio_put(bio);
312 }
313 
314 /*
315  * worker function to build and submit bios for previously compressed pages.
316  * The corresponding pages in the inode should be marked for writeback
317  * and the compressed pages should have a reference on them for dropping
318  * when the IO is complete.
319  *
320  * This also checksums the file bytes and gets things ready for
321  * the end io hooks.
322  */
323 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
324 				 unsigned long len, u64 disk_start,
325 				 unsigned long compressed_len,
326 				 struct page **compressed_pages,
327 				 unsigned long nr_pages)
328 {
329 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
330 	struct bio *bio = NULL;
331 	struct compressed_bio *cb;
332 	unsigned long bytes_left;
333 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
334 	int pg_index = 0;
335 	struct page *page;
336 	u64 first_byte = disk_start;
337 	struct block_device *bdev;
338 	int ret;
339 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
340 
341 	WARN_ON(start & ((u64)PAGE_SIZE - 1));
342 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
343 	if (!cb)
344 		return -ENOMEM;
345 	refcount_set(&cb->pending_bios, 0);
346 	cb->errors = 0;
347 	cb->inode = inode;
348 	cb->start = start;
349 	cb->len = len;
350 	cb->mirror_num = 0;
351 	cb->compressed_pages = compressed_pages;
352 	cb->compressed_len = compressed_len;
353 	cb->orig_bio = NULL;
354 	cb->nr_pages = nr_pages;
355 
356 	bdev = fs_info->fs_devices->latest_bdev;
357 
358 	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
359 	if (!bio) {
360 		kfree(cb);
361 		return -ENOMEM;
362 	}
363 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
364 	bio->bi_private = cb;
365 	bio->bi_end_io = end_compressed_bio_write;
366 	refcount_set(&cb->pending_bios, 1);
367 
368 	/* create and submit bios for the compressed pages */
369 	bytes_left = compressed_len;
370 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
371 		page = compressed_pages[pg_index];
372 		page->mapping = inode->i_mapping;
373 		if (bio->bi_iter.bi_size)
374 			ret = io_tree->ops->merge_bio_hook(page, 0,
375 							   PAGE_SIZE,
376 							   bio, 0);
377 		else
378 			ret = 0;
379 
380 		page->mapping = NULL;
381 		if (ret || bio_add_page(bio, page, PAGE_SIZE, 0) <
382 		    PAGE_SIZE) {
383 			bio_get(bio);
384 
385 			/*
386 			 * inc the count before we submit the bio so
387 			 * we know the end IO handler won't happen before
388 			 * we inc the count.  Otherwise, the cb might get
389 			 * freed before we're done setting it up
390 			 */
391 			refcount_inc(&cb->pending_bios);
392 			ret = btrfs_bio_wq_end_io(fs_info, bio,
393 						  BTRFS_WQ_ENDIO_DATA);
394 			BUG_ON(ret); /* -ENOMEM */
395 
396 			if (!skip_sum) {
397 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
398 				BUG_ON(ret); /* -ENOMEM */
399 			}
400 
401 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
402 			if (ret) {
403 				bio->bi_error = ret;
404 				bio_endio(bio);
405 			}
406 
407 			bio_put(bio);
408 
409 			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
410 			BUG_ON(!bio);
411 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
412 			bio->bi_private = cb;
413 			bio->bi_end_io = end_compressed_bio_write;
414 			bio_add_page(bio, page, PAGE_SIZE, 0);
415 		}
416 		if (bytes_left < PAGE_SIZE) {
417 			btrfs_info(fs_info,
418 					"bytes left %lu compress len %lu nr %lu",
419 			       bytes_left, cb->compressed_len, cb->nr_pages);
420 		}
421 		bytes_left -= PAGE_SIZE;
422 		first_byte += PAGE_SIZE;
423 		cond_resched();
424 	}
425 	bio_get(bio);
426 
427 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
428 	BUG_ON(ret); /* -ENOMEM */
429 
430 	if (!skip_sum) {
431 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
432 		BUG_ON(ret); /* -ENOMEM */
433 	}
434 
435 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
436 	if (ret) {
437 		bio->bi_error = ret;
438 		bio_endio(bio);
439 	}
440 
441 	bio_put(bio);
442 	return 0;
443 }
444 
445 static u64 bio_end_offset(struct bio *bio)
446 {
447 	struct bio_vec *last = &bio->bi_io_vec[bio->bi_vcnt - 1];
448 
449 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
450 }
451 
452 static noinline int add_ra_bio_pages(struct inode *inode,
453 				     u64 compressed_end,
454 				     struct compressed_bio *cb)
455 {
456 	unsigned long end_index;
457 	unsigned long pg_index;
458 	u64 last_offset;
459 	u64 isize = i_size_read(inode);
460 	int ret;
461 	struct page *page;
462 	unsigned long nr_pages = 0;
463 	struct extent_map *em;
464 	struct address_space *mapping = inode->i_mapping;
465 	struct extent_map_tree *em_tree;
466 	struct extent_io_tree *tree;
467 	u64 end;
468 	int misses = 0;
469 
470 	last_offset = bio_end_offset(cb->orig_bio);
471 	em_tree = &BTRFS_I(inode)->extent_tree;
472 	tree = &BTRFS_I(inode)->io_tree;
473 
474 	if (isize == 0)
475 		return 0;
476 
477 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
478 
479 	while (last_offset < compressed_end) {
480 		pg_index = last_offset >> PAGE_SHIFT;
481 
482 		if (pg_index > end_index)
483 			break;
484 
485 		rcu_read_lock();
486 		page = radix_tree_lookup(&mapping->page_tree, pg_index);
487 		rcu_read_unlock();
488 		if (page && !radix_tree_exceptional_entry(page)) {
489 			misses++;
490 			if (misses > 4)
491 				break;
492 			goto next;
493 		}
494 
495 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
496 								 ~__GFP_FS));
497 		if (!page)
498 			break;
499 
500 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
501 			put_page(page);
502 			goto next;
503 		}
504 
505 		end = last_offset + PAGE_SIZE - 1;
506 		/*
507 		 * at this point, we have a locked page in the page cache
508 		 * for these bytes in the file.  But, we have to make
509 		 * sure they map to this compressed extent on disk.
510 		 */
511 		set_page_extent_mapped(page);
512 		lock_extent(tree, last_offset, end);
513 		read_lock(&em_tree->lock);
514 		em = lookup_extent_mapping(em_tree, last_offset,
515 					   PAGE_SIZE);
516 		read_unlock(&em_tree->lock);
517 
518 		if (!em || last_offset < em->start ||
519 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
520 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
521 			free_extent_map(em);
522 			unlock_extent(tree, last_offset, end);
523 			unlock_page(page);
524 			put_page(page);
525 			break;
526 		}
527 		free_extent_map(em);
528 
529 		if (page->index == end_index) {
530 			char *userpage;
531 			size_t zero_offset = isize & (PAGE_SIZE - 1);
532 
533 			if (zero_offset) {
534 				int zeros;
535 				zeros = PAGE_SIZE - zero_offset;
536 				userpage = kmap_atomic(page);
537 				memset(userpage + zero_offset, 0, zeros);
538 				flush_dcache_page(page);
539 				kunmap_atomic(userpage);
540 			}
541 		}
542 
543 		ret = bio_add_page(cb->orig_bio, page,
544 				   PAGE_SIZE, 0);
545 
546 		if (ret == PAGE_SIZE) {
547 			nr_pages++;
548 			put_page(page);
549 		} else {
550 			unlock_extent(tree, last_offset, end);
551 			unlock_page(page);
552 			put_page(page);
553 			break;
554 		}
555 next:
556 		last_offset += PAGE_SIZE;
557 	}
558 	return 0;
559 }
560 
561 /*
562  * for a compressed read, the bio we get passed has all the inode pages
563  * in it.  We don't actually do IO on those pages but allocate new ones
564  * to hold the compressed pages on disk.
565  *
566  * bio->bi_iter.bi_sector points to the compressed extent on disk
567  * bio->bi_io_vec points to all of the inode pages
568  *
569  * After the compressed pages are read, we copy the bytes into the
570  * bio we were passed and then call the bio end_io calls
571  */
572 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
573 				 int mirror_num, unsigned long bio_flags)
574 {
575 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
576 	struct extent_io_tree *tree;
577 	struct extent_map_tree *em_tree;
578 	struct compressed_bio *cb;
579 	unsigned long compressed_len;
580 	unsigned long nr_pages;
581 	unsigned long pg_index;
582 	struct page *page;
583 	struct block_device *bdev;
584 	struct bio *comp_bio;
585 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
586 	u64 em_len;
587 	u64 em_start;
588 	struct extent_map *em;
589 	int ret = -ENOMEM;
590 	int faili = 0;
591 	u32 *sums;
592 
593 	tree = &BTRFS_I(inode)->io_tree;
594 	em_tree = &BTRFS_I(inode)->extent_tree;
595 
596 	/* we need the actual starting offset of this extent in the file */
597 	read_lock(&em_tree->lock);
598 	em = lookup_extent_mapping(em_tree,
599 				   page_offset(bio->bi_io_vec->bv_page),
600 				   PAGE_SIZE);
601 	read_unlock(&em_tree->lock);
602 	if (!em)
603 		return -EIO;
604 
605 	compressed_len = em->block_len;
606 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
607 	if (!cb)
608 		goto out;
609 
610 	refcount_set(&cb->pending_bios, 0);
611 	cb->errors = 0;
612 	cb->inode = inode;
613 	cb->mirror_num = mirror_num;
614 	sums = &cb->sums;
615 
616 	cb->start = em->orig_start;
617 	em_len = em->len;
618 	em_start = em->start;
619 
620 	free_extent_map(em);
621 	em = NULL;
622 
623 	cb->len = bio->bi_iter.bi_size;
624 	cb->compressed_len = compressed_len;
625 	cb->compress_type = extent_compress_type(bio_flags);
626 	cb->orig_bio = bio;
627 
628 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
629 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
630 				       GFP_NOFS);
631 	if (!cb->compressed_pages)
632 		goto fail1;
633 
634 	bdev = fs_info->fs_devices->latest_bdev;
635 
636 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
637 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
638 							      __GFP_HIGHMEM);
639 		if (!cb->compressed_pages[pg_index]) {
640 			faili = pg_index - 1;
641 			ret = -ENOMEM;
642 			goto fail2;
643 		}
644 	}
645 	faili = nr_pages - 1;
646 	cb->nr_pages = nr_pages;
647 
648 	add_ra_bio_pages(inode, em_start + em_len, cb);
649 
650 	/* include any pages we added in add_ra-bio_pages */
651 	cb->len = bio->bi_iter.bi_size;
652 
653 	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
654 	if (!comp_bio)
655 		goto fail2;
656 	bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
657 	comp_bio->bi_private = cb;
658 	comp_bio->bi_end_io = end_compressed_bio_read;
659 	refcount_set(&cb->pending_bios, 1);
660 
661 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
662 		page = cb->compressed_pages[pg_index];
663 		page->mapping = inode->i_mapping;
664 		page->index = em_start >> PAGE_SHIFT;
665 
666 		if (comp_bio->bi_iter.bi_size)
667 			ret = tree->ops->merge_bio_hook(page, 0,
668 							PAGE_SIZE,
669 							comp_bio, 0);
670 		else
671 			ret = 0;
672 
673 		page->mapping = NULL;
674 		if (ret || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
675 		    PAGE_SIZE) {
676 			bio_get(comp_bio);
677 
678 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
679 						  BTRFS_WQ_ENDIO_DATA);
680 			BUG_ON(ret); /* -ENOMEM */
681 
682 			/*
683 			 * inc the count before we submit the bio so
684 			 * we know the end IO handler won't happen before
685 			 * we inc the count.  Otherwise, the cb might get
686 			 * freed before we're done setting it up
687 			 */
688 			refcount_inc(&cb->pending_bios);
689 
690 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
691 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
692 							    sums);
693 				BUG_ON(ret); /* -ENOMEM */
694 			}
695 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
696 					     fs_info->sectorsize);
697 
698 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
699 			if (ret) {
700 				comp_bio->bi_error = ret;
701 				bio_endio(comp_bio);
702 			}
703 
704 			bio_put(comp_bio);
705 
706 			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
707 							GFP_NOFS);
708 			BUG_ON(!comp_bio);
709 			bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
710 			comp_bio->bi_private = cb;
711 			comp_bio->bi_end_io = end_compressed_bio_read;
712 
713 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
714 		}
715 		cur_disk_byte += PAGE_SIZE;
716 	}
717 	bio_get(comp_bio);
718 
719 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
720 	BUG_ON(ret); /* -ENOMEM */
721 
722 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
723 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
724 		BUG_ON(ret); /* -ENOMEM */
725 	}
726 
727 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
728 	if (ret) {
729 		comp_bio->bi_error = ret;
730 		bio_endio(comp_bio);
731 	}
732 
733 	bio_put(comp_bio);
734 	return 0;
735 
736 fail2:
737 	while (faili >= 0) {
738 		__free_page(cb->compressed_pages[faili]);
739 		faili--;
740 	}
741 
742 	kfree(cb->compressed_pages);
743 fail1:
744 	kfree(cb);
745 out:
746 	free_extent_map(em);
747 	return ret;
748 }
749 
750 static struct {
751 	struct list_head idle_ws;
752 	spinlock_t ws_lock;
753 	/* Number of free workspaces */
754 	int free_ws;
755 	/* Total number of allocated workspaces */
756 	atomic_t total_ws;
757 	/* Waiters for a free workspace */
758 	wait_queue_head_t ws_wait;
759 } btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
760 
761 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
762 	&btrfs_zlib_compress,
763 	&btrfs_lzo_compress,
764 };
765 
766 void __init btrfs_init_compress(void)
767 {
768 	int i;
769 
770 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
771 		struct list_head *workspace;
772 
773 		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
774 		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
775 		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
776 		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
777 
778 		/*
779 		 * Preallocate one workspace for each compression type so
780 		 * we can guarantee forward progress in the worst case
781 		 */
782 		workspace = btrfs_compress_op[i]->alloc_workspace();
783 		if (IS_ERR(workspace)) {
784 			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
785 		} else {
786 			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
787 			btrfs_comp_ws[i].free_ws = 1;
788 			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
789 		}
790 	}
791 }
792 
793 /*
794  * This finds an available workspace or allocates a new one.
795  * If it's not possible to allocate a new one, waits until there's one.
796  * Preallocation makes a forward progress guarantees and we do not return
797  * errors.
798  */
799 static struct list_head *find_workspace(int type)
800 {
801 	struct list_head *workspace;
802 	int cpus = num_online_cpus();
803 	int idx = type - 1;
804 
805 	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
806 	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
807 	atomic_t *total_ws		= &btrfs_comp_ws[idx].total_ws;
808 	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
809 	int *free_ws			= &btrfs_comp_ws[idx].free_ws;
810 again:
811 	spin_lock(ws_lock);
812 	if (!list_empty(idle_ws)) {
813 		workspace = idle_ws->next;
814 		list_del(workspace);
815 		(*free_ws)--;
816 		spin_unlock(ws_lock);
817 		return workspace;
818 
819 	}
820 	if (atomic_read(total_ws) > cpus) {
821 		DEFINE_WAIT(wait);
822 
823 		spin_unlock(ws_lock);
824 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
825 		if (atomic_read(total_ws) > cpus && !*free_ws)
826 			schedule();
827 		finish_wait(ws_wait, &wait);
828 		goto again;
829 	}
830 	atomic_inc(total_ws);
831 	spin_unlock(ws_lock);
832 
833 	workspace = btrfs_compress_op[idx]->alloc_workspace();
834 	if (IS_ERR(workspace)) {
835 		atomic_dec(total_ws);
836 		wake_up(ws_wait);
837 
838 		/*
839 		 * Do not return the error but go back to waiting. There's a
840 		 * workspace preallocated for each type and the compression
841 		 * time is bounded so we get to a workspace eventually. This
842 		 * makes our caller's life easier.
843 		 *
844 		 * To prevent silent and low-probability deadlocks (when the
845 		 * initial preallocation fails), check if there are any
846 		 * workspaces at all.
847 		 */
848 		if (atomic_read(total_ws) == 0) {
849 			static DEFINE_RATELIMIT_STATE(_rs,
850 					/* once per minute */ 60 * HZ,
851 					/* no burst */ 1);
852 
853 			if (__ratelimit(&_rs)) {
854 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
855 			}
856 		}
857 		goto again;
858 	}
859 	return workspace;
860 }
861 
862 /*
863  * put a workspace struct back on the list or free it if we have enough
864  * idle ones sitting around
865  */
866 static void free_workspace(int type, struct list_head *workspace)
867 {
868 	int idx = type - 1;
869 	struct list_head *idle_ws	= &btrfs_comp_ws[idx].idle_ws;
870 	spinlock_t *ws_lock		= &btrfs_comp_ws[idx].ws_lock;
871 	atomic_t *total_ws		= &btrfs_comp_ws[idx].total_ws;
872 	wait_queue_head_t *ws_wait	= &btrfs_comp_ws[idx].ws_wait;
873 	int *free_ws			= &btrfs_comp_ws[idx].free_ws;
874 
875 	spin_lock(ws_lock);
876 	if (*free_ws < num_online_cpus()) {
877 		list_add(workspace, idle_ws);
878 		(*free_ws)++;
879 		spin_unlock(ws_lock);
880 		goto wake;
881 	}
882 	spin_unlock(ws_lock);
883 
884 	btrfs_compress_op[idx]->free_workspace(workspace);
885 	atomic_dec(total_ws);
886 wake:
887 	/*
888 	 * Make sure counter is updated before we wake up waiters.
889 	 */
890 	smp_mb();
891 	if (waitqueue_active(ws_wait))
892 		wake_up(ws_wait);
893 }
894 
895 /*
896  * cleanup function for module exit
897  */
898 static void free_workspaces(void)
899 {
900 	struct list_head *workspace;
901 	int i;
902 
903 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
904 		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
905 			workspace = btrfs_comp_ws[i].idle_ws.next;
906 			list_del(workspace);
907 			btrfs_compress_op[i]->free_workspace(workspace);
908 			atomic_dec(&btrfs_comp_ws[i].total_ws);
909 		}
910 	}
911 }
912 
913 /*
914  * Given an address space and start and length, compress the bytes into @pages
915  * that are allocated on demand.
916  *
917  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
918  * and returns number of actually allocated pages
919  *
920  * @total_in is used to return the number of bytes actually read.  It
921  * may be smaller than the input length if we had to exit early because we
922  * ran out of room in the pages array or because we cross the
923  * max_out threshold.
924  *
925  * @total_out is an in/out parameter, must be set to the input length and will
926  * be also used to return the total number of compressed bytes
927  *
928  * @max_out tells us the max number of bytes that we're allowed to
929  * stuff into pages
930  */
931 int btrfs_compress_pages(int type, struct address_space *mapping,
932 			 u64 start, struct page **pages,
933 			 unsigned long *out_pages,
934 			 unsigned long *total_in,
935 			 unsigned long *total_out)
936 {
937 	struct list_head *workspace;
938 	int ret;
939 
940 	workspace = find_workspace(type);
941 
942 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
943 						      start, pages,
944 						      out_pages,
945 						      total_in, total_out);
946 	free_workspace(type, workspace);
947 	return ret;
948 }
949 
950 /*
951  * pages_in is an array of pages with compressed data.
952  *
953  * disk_start is the starting logical offset of this array in the file
954  *
955  * orig_bio contains the pages from the file that we want to decompress into
956  *
957  * srclen is the number of bytes in pages_in
958  *
959  * The basic idea is that we have a bio that was created by readpages.
960  * The pages in the bio are for the uncompressed data, and they may not
961  * be contiguous.  They all correspond to the range of bytes covered by
962  * the compressed extent.
963  */
964 static int btrfs_decompress_bio(int type, struct page **pages_in,
965 				   u64 disk_start, struct bio *orig_bio,
966 				   size_t srclen)
967 {
968 	struct list_head *workspace;
969 	int ret;
970 
971 	workspace = find_workspace(type);
972 
973 	ret = btrfs_compress_op[type-1]->decompress_bio(workspace, pages_in,
974 							 disk_start, orig_bio,
975 							 srclen);
976 	free_workspace(type, workspace);
977 	return ret;
978 }
979 
980 /*
981  * a less complex decompression routine.  Our compressed data fits in a
982  * single page, and we want to read a single page out of it.
983  * start_byte tells us the offset into the compressed data we're interested in
984  */
985 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
986 		     unsigned long start_byte, size_t srclen, size_t destlen)
987 {
988 	struct list_head *workspace;
989 	int ret;
990 
991 	workspace = find_workspace(type);
992 
993 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
994 						  dest_page, start_byte,
995 						  srclen, destlen);
996 
997 	free_workspace(type, workspace);
998 	return ret;
999 }
1000 
1001 void btrfs_exit_compress(void)
1002 {
1003 	free_workspaces();
1004 }
1005 
1006 /*
1007  * Copy uncompressed data from working buffer to pages.
1008  *
1009  * buf_start is the byte offset we're of the start of our workspace buffer.
1010  *
1011  * total_out is the last byte of the buffer
1012  */
1013 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1014 			      unsigned long total_out, u64 disk_start,
1015 			      struct bio *bio)
1016 {
1017 	unsigned long buf_offset;
1018 	unsigned long current_buf_start;
1019 	unsigned long start_byte;
1020 	unsigned long prev_start_byte;
1021 	unsigned long working_bytes = total_out - buf_start;
1022 	unsigned long bytes;
1023 	char *kaddr;
1024 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1025 
1026 	/*
1027 	 * start byte is the first byte of the page we're currently
1028 	 * copying into relative to the start of the compressed data.
1029 	 */
1030 	start_byte = page_offset(bvec.bv_page) - disk_start;
1031 
1032 	/* we haven't yet hit data corresponding to this page */
1033 	if (total_out <= start_byte)
1034 		return 1;
1035 
1036 	/*
1037 	 * the start of the data we care about is offset into
1038 	 * the middle of our working buffer
1039 	 */
1040 	if (total_out > start_byte && buf_start < start_byte) {
1041 		buf_offset = start_byte - buf_start;
1042 		working_bytes -= buf_offset;
1043 	} else {
1044 		buf_offset = 0;
1045 	}
1046 	current_buf_start = buf_start;
1047 
1048 	/* copy bytes from the working buffer into the pages */
1049 	while (working_bytes > 0) {
1050 		bytes = min_t(unsigned long, bvec.bv_len,
1051 				PAGE_SIZE - buf_offset);
1052 		bytes = min(bytes, working_bytes);
1053 
1054 		kaddr = kmap_atomic(bvec.bv_page);
1055 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1056 		kunmap_atomic(kaddr);
1057 		flush_dcache_page(bvec.bv_page);
1058 
1059 		buf_offset += bytes;
1060 		working_bytes -= bytes;
1061 		current_buf_start += bytes;
1062 
1063 		/* check if we need to pick another page */
1064 		bio_advance(bio, bytes);
1065 		if (!bio->bi_iter.bi_size)
1066 			return 0;
1067 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1068 		prev_start_byte = start_byte;
1069 		start_byte = page_offset(bvec.bv_page) - disk_start;
1070 
1071 		/*
1072 		 * We need to make sure we're only adjusting
1073 		 * our offset into compression working buffer when
1074 		 * we're switching pages.  Otherwise we can incorrectly
1075 		 * keep copying when we were actually done.
1076 		 */
1077 		if (start_byte != prev_start_byte) {
1078 			/*
1079 			 * make sure our new page is covered by this
1080 			 * working buffer
1081 			 */
1082 			if (total_out <= start_byte)
1083 				return 1;
1084 
1085 			/*
1086 			 * the next page in the biovec might not be adjacent
1087 			 * to the last page, but it might still be found
1088 			 * inside this working buffer. bump our offset pointer
1089 			 */
1090 			if (total_out > start_byte &&
1091 			    current_buf_start < start_byte) {
1092 				buf_offset = start_byte - buf_start;
1093 				working_bytes = total_out - start_byte;
1094 				current_buf_start = buf_start + buf_offset;
1095 			}
1096 		}
1097 	}
1098 
1099 	return 1;
1100 }
1101