1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/pagevec.h> 12 #include <linux/highmem.h> 13 #include <linux/kthread.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/psi.h> 20 #include <linux/slab.h> 21 #include <linux/sched/mm.h> 22 #include <linux/log2.h> 23 #include <crypto/hash.h> 24 #include "misc.h" 25 #include "ctree.h" 26 #include "fs.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "btrfs_inode.h" 30 #include "bio.h" 31 #include "ordered-data.h" 32 #include "compression.h" 33 #include "extent_io.h" 34 #include "extent_map.h" 35 #include "subpage.h" 36 #include "zoned.h" 37 #include "file-item.h" 38 #include "super.h" 39 40 struct bio_set btrfs_compressed_bioset; 41 42 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 43 44 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 45 { 46 switch (type) { 47 case BTRFS_COMPRESS_ZLIB: 48 case BTRFS_COMPRESS_LZO: 49 case BTRFS_COMPRESS_ZSTD: 50 case BTRFS_COMPRESS_NONE: 51 return btrfs_compress_types[type]; 52 default: 53 break; 54 } 55 56 return NULL; 57 } 58 59 static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio) 60 { 61 return container_of(bbio, struct compressed_bio, bbio); 62 } 63 64 static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode, 65 u64 start, blk_opf_t op, 66 btrfs_bio_end_io_t end_io) 67 { 68 struct btrfs_bio *bbio; 69 70 bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op, 71 GFP_NOFS, &btrfs_compressed_bioset)); 72 btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL); 73 bbio->inode = inode; 74 bbio->file_offset = start; 75 return to_compressed_bio(bbio); 76 } 77 78 bool btrfs_compress_is_valid_type(const char *str, size_t len) 79 { 80 int i; 81 82 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 83 size_t comp_len = strlen(btrfs_compress_types[i]); 84 85 if (len < comp_len) 86 continue; 87 88 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 89 return true; 90 } 91 return false; 92 } 93 94 static int compression_compress_pages(int type, struct list_head *ws, 95 struct address_space *mapping, u64 start, struct page **pages, 96 unsigned long *out_pages, unsigned long *total_in, 97 unsigned long *total_out) 98 { 99 switch (type) { 100 case BTRFS_COMPRESS_ZLIB: 101 return zlib_compress_pages(ws, mapping, start, pages, 102 out_pages, total_in, total_out); 103 case BTRFS_COMPRESS_LZO: 104 return lzo_compress_pages(ws, mapping, start, pages, 105 out_pages, total_in, total_out); 106 case BTRFS_COMPRESS_ZSTD: 107 return zstd_compress_pages(ws, mapping, start, pages, 108 out_pages, total_in, total_out); 109 case BTRFS_COMPRESS_NONE: 110 default: 111 /* 112 * This can happen when compression races with remount setting 113 * it to 'no compress', while caller doesn't call 114 * inode_need_compress() to check if we really need to 115 * compress. 116 * 117 * Not a big deal, just need to inform caller that we 118 * haven't allocated any pages yet. 119 */ 120 *out_pages = 0; 121 return -E2BIG; 122 } 123 } 124 125 static int compression_decompress_bio(struct list_head *ws, 126 struct compressed_bio *cb) 127 { 128 switch (cb->compress_type) { 129 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 130 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 131 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 132 case BTRFS_COMPRESS_NONE: 133 default: 134 /* 135 * This can't happen, the type is validated several times 136 * before we get here. 137 */ 138 BUG(); 139 } 140 } 141 142 static int compression_decompress(int type, struct list_head *ws, 143 const u8 *data_in, struct page *dest_page, 144 unsigned long start_byte, size_t srclen, size_t destlen) 145 { 146 switch (type) { 147 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 148 start_byte, srclen, destlen); 149 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 150 start_byte, srclen, destlen); 151 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 152 start_byte, srclen, destlen); 153 case BTRFS_COMPRESS_NONE: 154 default: 155 /* 156 * This can't happen, the type is validated several times 157 * before we get here. 158 */ 159 BUG(); 160 } 161 } 162 163 static void btrfs_free_compressed_pages(struct compressed_bio *cb) 164 { 165 for (unsigned int i = 0; i < cb->nr_pages; i++) 166 put_page(cb->compressed_pages[i]); 167 kfree(cb->compressed_pages); 168 } 169 170 static int btrfs_decompress_bio(struct compressed_bio *cb); 171 172 static void end_compressed_bio_read(struct btrfs_bio *bbio) 173 { 174 struct compressed_bio *cb = to_compressed_bio(bbio); 175 blk_status_t status = bbio->bio.bi_status; 176 177 if (!status) 178 status = errno_to_blk_status(btrfs_decompress_bio(cb)); 179 180 btrfs_free_compressed_pages(cb); 181 btrfs_bio_end_io(cb->orig_bbio, status); 182 bio_put(&bbio->bio); 183 } 184 185 /* 186 * Clear the writeback bits on all of the file 187 * pages for a compressed write 188 */ 189 static noinline void end_compressed_writeback(const struct compressed_bio *cb) 190 { 191 struct inode *inode = &cb->bbio.inode->vfs_inode; 192 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 193 unsigned long index = cb->start >> PAGE_SHIFT; 194 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 195 struct folio_batch fbatch; 196 const int errno = blk_status_to_errno(cb->bbio.bio.bi_status); 197 int i; 198 int ret; 199 200 if (errno) 201 mapping_set_error(inode->i_mapping, errno); 202 203 folio_batch_init(&fbatch); 204 while (index <= end_index) { 205 ret = filemap_get_folios(inode->i_mapping, &index, end_index, 206 &fbatch); 207 208 if (ret == 0) 209 return; 210 211 for (i = 0; i < ret; i++) { 212 struct folio *folio = fbatch.folios[i]; 213 214 if (errno) 215 folio_set_error(folio); 216 btrfs_page_clamp_clear_writeback(fs_info, &folio->page, 217 cb->start, cb->len); 218 } 219 folio_batch_release(&fbatch); 220 } 221 /* the inode may be gone now */ 222 } 223 224 static void btrfs_finish_compressed_write_work(struct work_struct *work) 225 { 226 struct compressed_bio *cb = 227 container_of(work, struct compressed_bio, write_end_work); 228 229 /* 230 * Ok, we're the last bio for this extent, step one is to call back 231 * into the FS and do all the end_io operations. 232 */ 233 btrfs_writepage_endio_finish_ordered(cb->bbio.inode, NULL, 234 cb->start, cb->start + cb->len - 1, 235 cb->bbio.bio.bi_status == BLK_STS_OK); 236 237 if (cb->writeback) 238 end_compressed_writeback(cb); 239 /* Note, our inode could be gone now */ 240 241 btrfs_free_compressed_pages(cb); 242 bio_put(&cb->bbio.bio); 243 } 244 245 /* 246 * Do the cleanup once all the compressed pages hit the disk. This will clear 247 * writeback on the file pages and free the compressed pages. 248 * 249 * This also calls the writeback end hooks for the file pages so that metadata 250 * and checksums can be updated in the file. 251 */ 252 static void end_compressed_bio_write(struct btrfs_bio *bbio) 253 { 254 struct compressed_bio *cb = to_compressed_bio(bbio); 255 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 256 257 queue_work(fs_info->compressed_write_workers, &cb->write_end_work); 258 } 259 260 static void btrfs_add_compressed_bio_pages(struct compressed_bio *cb) 261 { 262 struct bio *bio = &cb->bbio.bio; 263 u32 offset = 0; 264 265 while (offset < cb->compressed_len) { 266 u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE); 267 268 /* Maximum compressed extent is smaller than bio size limit. */ 269 __bio_add_page(bio, cb->compressed_pages[offset >> PAGE_SHIFT], 270 len, 0); 271 offset += len; 272 } 273 } 274 275 /* 276 * worker function to build and submit bios for previously compressed pages. 277 * The corresponding pages in the inode should be marked for writeback 278 * and the compressed pages should have a reference on them for dropping 279 * when the IO is complete. 280 * 281 * This also checksums the file bytes and gets things ready for 282 * the end io hooks. 283 */ 284 void btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 285 unsigned int len, u64 disk_start, 286 unsigned int compressed_len, 287 struct page **compressed_pages, 288 unsigned int nr_pages, 289 blk_opf_t write_flags, 290 bool writeback) 291 { 292 struct btrfs_fs_info *fs_info = inode->root->fs_info; 293 struct compressed_bio *cb; 294 295 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 296 IS_ALIGNED(len, fs_info->sectorsize)); 297 298 write_flags |= REQ_BTRFS_ONE_ORDERED; 299 300 cb = alloc_compressed_bio(inode, start, REQ_OP_WRITE | write_flags, 301 end_compressed_bio_write); 302 cb->start = start; 303 cb->len = len; 304 cb->compressed_pages = compressed_pages; 305 cb->compressed_len = compressed_len; 306 cb->writeback = writeback; 307 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work); 308 cb->nr_pages = nr_pages; 309 cb->bbio.bio.bi_iter.bi_sector = disk_start >> SECTOR_SHIFT; 310 btrfs_add_compressed_bio_pages(cb); 311 312 btrfs_submit_bio(&cb->bbio, 0); 313 } 314 315 /* 316 * Add extra pages in the same compressed file extent so that we don't need to 317 * re-read the same extent again and again. 318 * 319 * NOTE: this won't work well for subpage, as for subpage read, we lock the 320 * full page then submit bio for each compressed/regular extents. 321 * 322 * This means, if we have several sectors in the same page points to the same 323 * on-disk compressed data, we will re-read the same extent many times and 324 * this function can only help for the next page. 325 */ 326 static noinline int add_ra_bio_pages(struct inode *inode, 327 u64 compressed_end, 328 struct compressed_bio *cb, 329 int *memstall, unsigned long *pflags) 330 { 331 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 332 unsigned long end_index; 333 struct bio *orig_bio = &cb->orig_bbio->bio; 334 u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size; 335 u64 isize = i_size_read(inode); 336 int ret; 337 struct page *page; 338 struct extent_map *em; 339 struct address_space *mapping = inode->i_mapping; 340 struct extent_map_tree *em_tree; 341 struct extent_io_tree *tree; 342 int sectors_missed = 0; 343 344 em_tree = &BTRFS_I(inode)->extent_tree; 345 tree = &BTRFS_I(inode)->io_tree; 346 347 if (isize == 0) 348 return 0; 349 350 /* 351 * For current subpage support, we only support 64K page size, 352 * which means maximum compressed extent size (128K) is just 2x page 353 * size. 354 * This makes readahead less effective, so here disable readahead for 355 * subpage for now, until full compressed write is supported. 356 */ 357 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE) 358 return 0; 359 360 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 361 362 while (cur < compressed_end) { 363 u64 page_end; 364 u64 pg_index = cur >> PAGE_SHIFT; 365 u32 add_size; 366 367 if (pg_index > end_index) 368 break; 369 370 page = xa_load(&mapping->i_pages, pg_index); 371 if (page && !xa_is_value(page)) { 372 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >> 373 fs_info->sectorsize_bits; 374 375 /* Beyond threshold, no need to continue */ 376 if (sectors_missed > 4) 377 break; 378 379 /* 380 * Jump to next page start as we already have page for 381 * current offset. 382 */ 383 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 384 continue; 385 } 386 387 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 388 ~__GFP_FS)); 389 if (!page) 390 break; 391 392 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 393 put_page(page); 394 /* There is already a page, skip to page end */ 395 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 396 continue; 397 } 398 399 if (!*memstall && PageWorkingset(page)) { 400 psi_memstall_enter(pflags); 401 *memstall = 1; 402 } 403 404 ret = set_page_extent_mapped(page); 405 if (ret < 0) { 406 unlock_page(page); 407 put_page(page); 408 break; 409 } 410 411 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1; 412 lock_extent(tree, cur, page_end, NULL); 413 read_lock(&em_tree->lock); 414 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur); 415 read_unlock(&em_tree->lock); 416 417 /* 418 * At this point, we have a locked page in the page cache for 419 * these bytes in the file. But, we have to make sure they map 420 * to this compressed extent on disk. 421 */ 422 if (!em || cur < em->start || 423 (cur + fs_info->sectorsize > extent_map_end(em)) || 424 (em->block_start >> 9) != orig_bio->bi_iter.bi_sector) { 425 free_extent_map(em); 426 unlock_extent(tree, cur, page_end, NULL); 427 unlock_page(page); 428 put_page(page); 429 break; 430 } 431 free_extent_map(em); 432 433 if (page->index == end_index) { 434 size_t zero_offset = offset_in_page(isize); 435 436 if (zero_offset) { 437 int zeros; 438 zeros = PAGE_SIZE - zero_offset; 439 memzero_page(page, zero_offset, zeros); 440 } 441 } 442 443 add_size = min(em->start + em->len, page_end + 1) - cur; 444 ret = bio_add_page(orig_bio, page, add_size, offset_in_page(cur)); 445 if (ret != add_size) { 446 unlock_extent(tree, cur, page_end, NULL); 447 unlock_page(page); 448 put_page(page); 449 break; 450 } 451 /* 452 * If it's subpage, we also need to increase its 453 * subpage::readers number, as at endio we will decrease 454 * subpage::readers and to unlock the page. 455 */ 456 if (fs_info->sectorsize < PAGE_SIZE) 457 btrfs_subpage_start_reader(fs_info, page, cur, add_size); 458 put_page(page); 459 cur += add_size; 460 } 461 return 0; 462 } 463 464 /* 465 * for a compressed read, the bio we get passed has all the inode pages 466 * in it. We don't actually do IO on those pages but allocate new ones 467 * to hold the compressed pages on disk. 468 * 469 * bio->bi_iter.bi_sector points to the compressed extent on disk 470 * bio->bi_io_vec points to all of the inode pages 471 * 472 * After the compressed pages are read, we copy the bytes into the 473 * bio we were passed and then call the bio end_io calls 474 */ 475 void btrfs_submit_compressed_read(struct btrfs_bio *bbio, int mirror_num) 476 { 477 struct btrfs_inode *inode = bbio->inode; 478 struct btrfs_fs_info *fs_info = inode->root->fs_info; 479 struct extent_map_tree *em_tree = &inode->extent_tree; 480 struct compressed_bio *cb; 481 unsigned int compressed_len; 482 u64 file_offset = bbio->file_offset; 483 u64 em_len; 484 u64 em_start; 485 struct extent_map *em; 486 unsigned long pflags; 487 int memstall = 0; 488 blk_status_t ret; 489 int ret2; 490 491 /* we need the actual starting offset of this extent in the file */ 492 read_lock(&em_tree->lock); 493 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); 494 read_unlock(&em_tree->lock); 495 if (!em) { 496 ret = BLK_STS_IOERR; 497 goto out; 498 } 499 500 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE); 501 compressed_len = em->block_len; 502 503 cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ, 504 end_compressed_bio_read); 505 506 cb->start = em->orig_start; 507 em_len = em->len; 508 em_start = em->start; 509 510 cb->len = bbio->bio.bi_iter.bi_size; 511 cb->compressed_len = compressed_len; 512 cb->compress_type = em->compress_type; 513 cb->orig_bbio = bbio; 514 515 free_extent_map(em); 516 517 cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 518 cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS); 519 if (!cb->compressed_pages) { 520 ret = BLK_STS_RESOURCE; 521 goto out_free_bio; 522 } 523 524 ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages); 525 if (ret2) { 526 ret = BLK_STS_RESOURCE; 527 goto out_free_compressed_pages; 528 } 529 530 add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall, 531 &pflags); 532 533 /* include any pages we added in add_ra-bio_pages */ 534 cb->len = bbio->bio.bi_iter.bi_size; 535 cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector; 536 btrfs_add_compressed_bio_pages(cb); 537 538 if (memstall) 539 psi_memstall_leave(&pflags); 540 541 btrfs_submit_bio(&cb->bbio, mirror_num); 542 return; 543 544 out_free_compressed_pages: 545 kfree(cb->compressed_pages); 546 out_free_bio: 547 bio_put(&cb->bbio.bio); 548 out: 549 btrfs_bio_end_io(bbio, ret); 550 } 551 552 /* 553 * Heuristic uses systematic sampling to collect data from the input data 554 * range, the logic can be tuned by the following constants: 555 * 556 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 557 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 558 */ 559 #define SAMPLING_READ_SIZE (16) 560 #define SAMPLING_INTERVAL (256) 561 562 /* 563 * For statistical analysis of the input data we consider bytes that form a 564 * Galois Field of 256 objects. Each object has an attribute count, ie. how 565 * many times the object appeared in the sample. 566 */ 567 #define BUCKET_SIZE (256) 568 569 /* 570 * The size of the sample is based on a statistical sampling rule of thumb. 571 * The common way is to perform sampling tests as long as the number of 572 * elements in each cell is at least 5. 573 * 574 * Instead of 5, we choose 32 to obtain more accurate results. 575 * If the data contain the maximum number of symbols, which is 256, we obtain a 576 * sample size bound by 8192. 577 * 578 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 579 * from up to 512 locations. 580 */ 581 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 582 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 583 584 struct bucket_item { 585 u32 count; 586 }; 587 588 struct heuristic_ws { 589 /* Partial copy of input data */ 590 u8 *sample; 591 u32 sample_size; 592 /* Buckets store counters for each byte value */ 593 struct bucket_item *bucket; 594 /* Sorting buffer */ 595 struct bucket_item *bucket_b; 596 struct list_head list; 597 }; 598 599 static struct workspace_manager heuristic_wsm; 600 601 static void free_heuristic_ws(struct list_head *ws) 602 { 603 struct heuristic_ws *workspace; 604 605 workspace = list_entry(ws, struct heuristic_ws, list); 606 607 kvfree(workspace->sample); 608 kfree(workspace->bucket); 609 kfree(workspace->bucket_b); 610 kfree(workspace); 611 } 612 613 static struct list_head *alloc_heuristic_ws(unsigned int level) 614 { 615 struct heuristic_ws *ws; 616 617 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 618 if (!ws) 619 return ERR_PTR(-ENOMEM); 620 621 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 622 if (!ws->sample) 623 goto fail; 624 625 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 626 if (!ws->bucket) 627 goto fail; 628 629 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 630 if (!ws->bucket_b) 631 goto fail; 632 633 INIT_LIST_HEAD(&ws->list); 634 return &ws->list; 635 fail: 636 free_heuristic_ws(&ws->list); 637 return ERR_PTR(-ENOMEM); 638 } 639 640 const struct btrfs_compress_op btrfs_heuristic_compress = { 641 .workspace_manager = &heuristic_wsm, 642 }; 643 644 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 645 /* The heuristic is represented as compression type 0 */ 646 &btrfs_heuristic_compress, 647 &btrfs_zlib_compress, 648 &btrfs_lzo_compress, 649 &btrfs_zstd_compress, 650 }; 651 652 static struct list_head *alloc_workspace(int type, unsigned int level) 653 { 654 switch (type) { 655 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 656 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 657 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 658 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 659 default: 660 /* 661 * This can't happen, the type is validated several times 662 * before we get here. 663 */ 664 BUG(); 665 } 666 } 667 668 static void free_workspace(int type, struct list_head *ws) 669 { 670 switch (type) { 671 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 672 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 673 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 674 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 675 default: 676 /* 677 * This can't happen, the type is validated several times 678 * before we get here. 679 */ 680 BUG(); 681 } 682 } 683 684 static void btrfs_init_workspace_manager(int type) 685 { 686 struct workspace_manager *wsm; 687 struct list_head *workspace; 688 689 wsm = btrfs_compress_op[type]->workspace_manager; 690 INIT_LIST_HEAD(&wsm->idle_ws); 691 spin_lock_init(&wsm->ws_lock); 692 atomic_set(&wsm->total_ws, 0); 693 init_waitqueue_head(&wsm->ws_wait); 694 695 /* 696 * Preallocate one workspace for each compression type so we can 697 * guarantee forward progress in the worst case 698 */ 699 workspace = alloc_workspace(type, 0); 700 if (IS_ERR(workspace)) { 701 pr_warn( 702 "BTRFS: cannot preallocate compression workspace, will try later\n"); 703 } else { 704 atomic_set(&wsm->total_ws, 1); 705 wsm->free_ws = 1; 706 list_add(workspace, &wsm->idle_ws); 707 } 708 } 709 710 static void btrfs_cleanup_workspace_manager(int type) 711 { 712 struct workspace_manager *wsman; 713 struct list_head *ws; 714 715 wsman = btrfs_compress_op[type]->workspace_manager; 716 while (!list_empty(&wsman->idle_ws)) { 717 ws = wsman->idle_ws.next; 718 list_del(ws); 719 free_workspace(type, ws); 720 atomic_dec(&wsman->total_ws); 721 } 722 } 723 724 /* 725 * This finds an available workspace or allocates a new one. 726 * If it's not possible to allocate a new one, waits until there's one. 727 * Preallocation makes a forward progress guarantees and we do not return 728 * errors. 729 */ 730 struct list_head *btrfs_get_workspace(int type, unsigned int level) 731 { 732 struct workspace_manager *wsm; 733 struct list_head *workspace; 734 int cpus = num_online_cpus(); 735 unsigned nofs_flag; 736 struct list_head *idle_ws; 737 spinlock_t *ws_lock; 738 atomic_t *total_ws; 739 wait_queue_head_t *ws_wait; 740 int *free_ws; 741 742 wsm = btrfs_compress_op[type]->workspace_manager; 743 idle_ws = &wsm->idle_ws; 744 ws_lock = &wsm->ws_lock; 745 total_ws = &wsm->total_ws; 746 ws_wait = &wsm->ws_wait; 747 free_ws = &wsm->free_ws; 748 749 again: 750 spin_lock(ws_lock); 751 if (!list_empty(idle_ws)) { 752 workspace = idle_ws->next; 753 list_del(workspace); 754 (*free_ws)--; 755 spin_unlock(ws_lock); 756 return workspace; 757 758 } 759 if (atomic_read(total_ws) > cpus) { 760 DEFINE_WAIT(wait); 761 762 spin_unlock(ws_lock); 763 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 764 if (atomic_read(total_ws) > cpus && !*free_ws) 765 schedule(); 766 finish_wait(ws_wait, &wait); 767 goto again; 768 } 769 atomic_inc(total_ws); 770 spin_unlock(ws_lock); 771 772 /* 773 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 774 * to turn it off here because we might get called from the restricted 775 * context of btrfs_compress_bio/btrfs_compress_pages 776 */ 777 nofs_flag = memalloc_nofs_save(); 778 workspace = alloc_workspace(type, level); 779 memalloc_nofs_restore(nofs_flag); 780 781 if (IS_ERR(workspace)) { 782 atomic_dec(total_ws); 783 wake_up(ws_wait); 784 785 /* 786 * Do not return the error but go back to waiting. There's a 787 * workspace preallocated for each type and the compression 788 * time is bounded so we get to a workspace eventually. This 789 * makes our caller's life easier. 790 * 791 * To prevent silent and low-probability deadlocks (when the 792 * initial preallocation fails), check if there are any 793 * workspaces at all. 794 */ 795 if (atomic_read(total_ws) == 0) { 796 static DEFINE_RATELIMIT_STATE(_rs, 797 /* once per minute */ 60 * HZ, 798 /* no burst */ 1); 799 800 if (__ratelimit(&_rs)) { 801 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 802 } 803 } 804 goto again; 805 } 806 return workspace; 807 } 808 809 static struct list_head *get_workspace(int type, int level) 810 { 811 switch (type) { 812 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 813 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 814 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 815 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 816 default: 817 /* 818 * This can't happen, the type is validated several times 819 * before we get here. 820 */ 821 BUG(); 822 } 823 } 824 825 /* 826 * put a workspace struct back on the list or free it if we have enough 827 * idle ones sitting around 828 */ 829 void btrfs_put_workspace(int type, struct list_head *ws) 830 { 831 struct workspace_manager *wsm; 832 struct list_head *idle_ws; 833 spinlock_t *ws_lock; 834 atomic_t *total_ws; 835 wait_queue_head_t *ws_wait; 836 int *free_ws; 837 838 wsm = btrfs_compress_op[type]->workspace_manager; 839 idle_ws = &wsm->idle_ws; 840 ws_lock = &wsm->ws_lock; 841 total_ws = &wsm->total_ws; 842 ws_wait = &wsm->ws_wait; 843 free_ws = &wsm->free_ws; 844 845 spin_lock(ws_lock); 846 if (*free_ws <= num_online_cpus()) { 847 list_add(ws, idle_ws); 848 (*free_ws)++; 849 spin_unlock(ws_lock); 850 goto wake; 851 } 852 spin_unlock(ws_lock); 853 854 free_workspace(type, ws); 855 atomic_dec(total_ws); 856 wake: 857 cond_wake_up(ws_wait); 858 } 859 860 static void put_workspace(int type, struct list_head *ws) 861 { 862 switch (type) { 863 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 864 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 865 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 866 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 867 default: 868 /* 869 * This can't happen, the type is validated several times 870 * before we get here. 871 */ 872 BUG(); 873 } 874 } 875 876 /* 877 * Adjust @level according to the limits of the compression algorithm or 878 * fallback to default 879 */ 880 static unsigned int btrfs_compress_set_level(int type, unsigned level) 881 { 882 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 883 884 if (level == 0) 885 level = ops->default_level; 886 else 887 level = min(level, ops->max_level); 888 889 return level; 890 } 891 892 /* 893 * Given an address space and start and length, compress the bytes into @pages 894 * that are allocated on demand. 895 * 896 * @type_level is encoded algorithm and level, where level 0 means whatever 897 * default the algorithm chooses and is opaque here; 898 * - compression algo are 0-3 899 * - the level are bits 4-7 900 * 901 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 902 * and returns number of actually allocated pages 903 * 904 * @total_in is used to return the number of bytes actually read. It 905 * may be smaller than the input length if we had to exit early because we 906 * ran out of room in the pages array or because we cross the 907 * max_out threshold. 908 * 909 * @total_out is an in/out parameter, must be set to the input length and will 910 * be also used to return the total number of compressed bytes 911 */ 912 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 913 u64 start, struct page **pages, 914 unsigned long *out_pages, 915 unsigned long *total_in, 916 unsigned long *total_out) 917 { 918 int type = btrfs_compress_type(type_level); 919 int level = btrfs_compress_level(type_level); 920 struct list_head *workspace; 921 int ret; 922 923 level = btrfs_compress_set_level(type, level); 924 workspace = get_workspace(type, level); 925 ret = compression_compress_pages(type, workspace, mapping, start, pages, 926 out_pages, total_in, total_out); 927 put_workspace(type, workspace); 928 return ret; 929 } 930 931 static int btrfs_decompress_bio(struct compressed_bio *cb) 932 { 933 struct list_head *workspace; 934 int ret; 935 int type = cb->compress_type; 936 937 workspace = get_workspace(type, 0); 938 ret = compression_decompress_bio(workspace, cb); 939 put_workspace(type, workspace); 940 941 if (!ret) 942 zero_fill_bio(&cb->orig_bbio->bio); 943 return ret; 944 } 945 946 /* 947 * a less complex decompression routine. Our compressed data fits in a 948 * single page, and we want to read a single page out of it. 949 * start_byte tells us the offset into the compressed data we're interested in 950 */ 951 int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page, 952 unsigned long start_byte, size_t srclen, size_t destlen) 953 { 954 struct list_head *workspace; 955 int ret; 956 957 workspace = get_workspace(type, 0); 958 ret = compression_decompress(type, workspace, data_in, dest_page, 959 start_byte, srclen, destlen); 960 put_workspace(type, workspace); 961 962 return ret; 963 } 964 965 int __init btrfs_init_compress(void) 966 { 967 if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE, 968 offsetof(struct compressed_bio, bbio.bio), 969 BIOSET_NEED_BVECS)) 970 return -ENOMEM; 971 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 972 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 973 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 974 zstd_init_workspace_manager(); 975 return 0; 976 } 977 978 void __cold btrfs_exit_compress(void) 979 { 980 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 981 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 982 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 983 zstd_cleanup_workspace_manager(); 984 bioset_exit(&btrfs_compressed_bioset); 985 } 986 987 /* 988 * Copy decompressed data from working buffer to pages. 989 * 990 * @buf: The decompressed data buffer 991 * @buf_len: The decompressed data length 992 * @decompressed: Number of bytes that are already decompressed inside the 993 * compressed extent 994 * @cb: The compressed extent descriptor 995 * @orig_bio: The original bio that the caller wants to read for 996 * 997 * An easier to understand graph is like below: 998 * 999 * |<- orig_bio ->| |<- orig_bio->| 1000 * |<------- full decompressed extent ----->| 1001 * |<----------- @cb range ---->| 1002 * | |<-- @buf_len -->| 1003 * |<--- @decompressed --->| 1004 * 1005 * Note that, @cb can be a subpage of the full decompressed extent, but 1006 * @cb->start always has the same as the orig_file_offset value of the full 1007 * decompressed extent. 1008 * 1009 * When reading compressed extent, we have to read the full compressed extent, 1010 * while @orig_bio may only want part of the range. 1011 * Thus this function will ensure only data covered by @orig_bio will be copied 1012 * to. 1013 * 1014 * Return 0 if we have copied all needed contents for @orig_bio. 1015 * Return >0 if we need continue decompress. 1016 */ 1017 int btrfs_decompress_buf2page(const char *buf, u32 buf_len, 1018 struct compressed_bio *cb, u32 decompressed) 1019 { 1020 struct bio *orig_bio = &cb->orig_bbio->bio; 1021 /* Offset inside the full decompressed extent */ 1022 u32 cur_offset; 1023 1024 cur_offset = decompressed; 1025 /* The main loop to do the copy */ 1026 while (cur_offset < decompressed + buf_len) { 1027 struct bio_vec bvec; 1028 size_t copy_len; 1029 u32 copy_start; 1030 /* Offset inside the full decompressed extent */ 1031 u32 bvec_offset; 1032 1033 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); 1034 /* 1035 * cb->start may underflow, but subtracting that value can still 1036 * give us correct offset inside the full decompressed extent. 1037 */ 1038 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start; 1039 1040 /* Haven't reached the bvec range, exit */ 1041 if (decompressed + buf_len <= bvec_offset) 1042 return 1; 1043 1044 copy_start = max(cur_offset, bvec_offset); 1045 copy_len = min(bvec_offset + bvec.bv_len, 1046 decompressed + buf_len) - copy_start; 1047 ASSERT(copy_len); 1048 1049 /* 1050 * Extra range check to ensure we didn't go beyond 1051 * @buf + @buf_len. 1052 */ 1053 ASSERT(copy_start - decompressed < buf_len); 1054 memcpy_to_page(bvec.bv_page, bvec.bv_offset, 1055 buf + copy_start - decompressed, copy_len); 1056 cur_offset += copy_len; 1057 1058 bio_advance(orig_bio, copy_len); 1059 /* Finished the bio */ 1060 if (!orig_bio->bi_iter.bi_size) 1061 return 0; 1062 } 1063 return 1; 1064 } 1065 1066 /* 1067 * Shannon Entropy calculation 1068 * 1069 * Pure byte distribution analysis fails to determine compressibility of data. 1070 * Try calculating entropy to estimate the average minimum number of bits 1071 * needed to encode the sampled data. 1072 * 1073 * For convenience, return the percentage of needed bits, instead of amount of 1074 * bits directly. 1075 * 1076 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1077 * and can be compressible with high probability 1078 * 1079 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1080 * 1081 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1082 */ 1083 #define ENTROPY_LVL_ACEPTABLE (65) 1084 #define ENTROPY_LVL_HIGH (80) 1085 1086 /* 1087 * For increasead precision in shannon_entropy calculation, 1088 * let's do pow(n, M) to save more digits after comma: 1089 * 1090 * - maximum int bit length is 64 1091 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1092 * - 13 * 4 = 52 < 64 -> M = 4 1093 * 1094 * So use pow(n, 4). 1095 */ 1096 static inline u32 ilog2_w(u64 n) 1097 { 1098 return ilog2(n * n * n * n); 1099 } 1100 1101 static u32 shannon_entropy(struct heuristic_ws *ws) 1102 { 1103 const u32 entropy_max = 8 * ilog2_w(2); 1104 u32 entropy_sum = 0; 1105 u32 p, p_base, sz_base; 1106 u32 i; 1107 1108 sz_base = ilog2_w(ws->sample_size); 1109 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1110 p = ws->bucket[i].count; 1111 p_base = ilog2_w(p); 1112 entropy_sum += p * (sz_base - p_base); 1113 } 1114 1115 entropy_sum /= ws->sample_size; 1116 return entropy_sum * 100 / entropy_max; 1117 } 1118 1119 #define RADIX_BASE 4U 1120 #define COUNTERS_SIZE (1U << RADIX_BASE) 1121 1122 static u8 get4bits(u64 num, int shift) { 1123 u8 low4bits; 1124 1125 num >>= shift; 1126 /* Reverse order */ 1127 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1128 return low4bits; 1129 } 1130 1131 /* 1132 * Use 4 bits as radix base 1133 * Use 16 u32 counters for calculating new position in buf array 1134 * 1135 * @array - array that will be sorted 1136 * @array_buf - buffer array to store sorting results 1137 * must be equal in size to @array 1138 * @num - array size 1139 */ 1140 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1141 int num) 1142 { 1143 u64 max_num; 1144 u64 buf_num; 1145 u32 counters[COUNTERS_SIZE]; 1146 u32 new_addr; 1147 u32 addr; 1148 int bitlen; 1149 int shift; 1150 int i; 1151 1152 /* 1153 * Try avoid useless loop iterations for small numbers stored in big 1154 * counters. Example: 48 33 4 ... in 64bit array 1155 */ 1156 max_num = array[0].count; 1157 for (i = 1; i < num; i++) { 1158 buf_num = array[i].count; 1159 if (buf_num > max_num) 1160 max_num = buf_num; 1161 } 1162 1163 buf_num = ilog2(max_num); 1164 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1165 1166 shift = 0; 1167 while (shift < bitlen) { 1168 memset(counters, 0, sizeof(counters)); 1169 1170 for (i = 0; i < num; i++) { 1171 buf_num = array[i].count; 1172 addr = get4bits(buf_num, shift); 1173 counters[addr]++; 1174 } 1175 1176 for (i = 1; i < COUNTERS_SIZE; i++) 1177 counters[i] += counters[i - 1]; 1178 1179 for (i = num - 1; i >= 0; i--) { 1180 buf_num = array[i].count; 1181 addr = get4bits(buf_num, shift); 1182 counters[addr]--; 1183 new_addr = counters[addr]; 1184 array_buf[new_addr] = array[i]; 1185 } 1186 1187 shift += RADIX_BASE; 1188 1189 /* 1190 * Normal radix expects to move data from a temporary array, to 1191 * the main one. But that requires some CPU time. Avoid that 1192 * by doing another sort iteration to original array instead of 1193 * memcpy() 1194 */ 1195 memset(counters, 0, sizeof(counters)); 1196 1197 for (i = 0; i < num; i ++) { 1198 buf_num = array_buf[i].count; 1199 addr = get4bits(buf_num, shift); 1200 counters[addr]++; 1201 } 1202 1203 for (i = 1; i < COUNTERS_SIZE; i++) 1204 counters[i] += counters[i - 1]; 1205 1206 for (i = num - 1; i >= 0; i--) { 1207 buf_num = array_buf[i].count; 1208 addr = get4bits(buf_num, shift); 1209 counters[addr]--; 1210 new_addr = counters[addr]; 1211 array[new_addr] = array_buf[i]; 1212 } 1213 1214 shift += RADIX_BASE; 1215 } 1216 } 1217 1218 /* 1219 * Size of the core byte set - how many bytes cover 90% of the sample 1220 * 1221 * There are several types of structured binary data that use nearly all byte 1222 * values. The distribution can be uniform and counts in all buckets will be 1223 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1224 * 1225 * Other possibility is normal (Gaussian) distribution, where the data could 1226 * be potentially compressible, but we have to take a few more steps to decide 1227 * how much. 1228 * 1229 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1230 * compression algo can easy fix that 1231 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1232 * probability is not compressible 1233 */ 1234 #define BYTE_CORE_SET_LOW (64) 1235 #define BYTE_CORE_SET_HIGH (200) 1236 1237 static int byte_core_set_size(struct heuristic_ws *ws) 1238 { 1239 u32 i; 1240 u32 coreset_sum = 0; 1241 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1242 struct bucket_item *bucket = ws->bucket; 1243 1244 /* Sort in reverse order */ 1245 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1246 1247 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1248 coreset_sum += bucket[i].count; 1249 1250 if (coreset_sum > core_set_threshold) 1251 return i; 1252 1253 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1254 coreset_sum += bucket[i].count; 1255 if (coreset_sum > core_set_threshold) 1256 break; 1257 } 1258 1259 return i; 1260 } 1261 1262 /* 1263 * Count byte values in buckets. 1264 * This heuristic can detect textual data (configs, xml, json, html, etc). 1265 * Because in most text-like data byte set is restricted to limited number of 1266 * possible characters, and that restriction in most cases makes data easy to 1267 * compress. 1268 * 1269 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1270 * less - compressible 1271 * more - need additional analysis 1272 */ 1273 #define BYTE_SET_THRESHOLD (64) 1274 1275 static u32 byte_set_size(const struct heuristic_ws *ws) 1276 { 1277 u32 i; 1278 u32 byte_set_size = 0; 1279 1280 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1281 if (ws->bucket[i].count > 0) 1282 byte_set_size++; 1283 } 1284 1285 /* 1286 * Continue collecting count of byte values in buckets. If the byte 1287 * set size is bigger then the threshold, it's pointless to continue, 1288 * the detection technique would fail for this type of data. 1289 */ 1290 for (; i < BUCKET_SIZE; i++) { 1291 if (ws->bucket[i].count > 0) { 1292 byte_set_size++; 1293 if (byte_set_size > BYTE_SET_THRESHOLD) 1294 return byte_set_size; 1295 } 1296 } 1297 1298 return byte_set_size; 1299 } 1300 1301 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1302 { 1303 const u32 half_of_sample = ws->sample_size / 2; 1304 const u8 *data = ws->sample; 1305 1306 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1307 } 1308 1309 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1310 struct heuristic_ws *ws) 1311 { 1312 struct page *page; 1313 u64 index, index_end; 1314 u32 i, curr_sample_pos; 1315 u8 *in_data; 1316 1317 /* 1318 * Compression handles the input data by chunks of 128KiB 1319 * (defined by BTRFS_MAX_UNCOMPRESSED) 1320 * 1321 * We do the same for the heuristic and loop over the whole range. 1322 * 1323 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1324 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1325 */ 1326 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1327 end = start + BTRFS_MAX_UNCOMPRESSED; 1328 1329 index = start >> PAGE_SHIFT; 1330 index_end = end >> PAGE_SHIFT; 1331 1332 /* Don't miss unaligned end */ 1333 if (!PAGE_ALIGNED(end)) 1334 index_end++; 1335 1336 curr_sample_pos = 0; 1337 while (index < index_end) { 1338 page = find_get_page(inode->i_mapping, index); 1339 in_data = kmap_local_page(page); 1340 /* Handle case where the start is not aligned to PAGE_SIZE */ 1341 i = start % PAGE_SIZE; 1342 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1343 /* Don't sample any garbage from the last page */ 1344 if (start > end - SAMPLING_READ_SIZE) 1345 break; 1346 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1347 SAMPLING_READ_SIZE); 1348 i += SAMPLING_INTERVAL; 1349 start += SAMPLING_INTERVAL; 1350 curr_sample_pos += SAMPLING_READ_SIZE; 1351 } 1352 kunmap_local(in_data); 1353 put_page(page); 1354 1355 index++; 1356 } 1357 1358 ws->sample_size = curr_sample_pos; 1359 } 1360 1361 /* 1362 * Compression heuristic. 1363 * 1364 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1365 * quickly (compared to direct compression) detect data characteristics 1366 * (compressible/incompressible) to avoid wasting CPU time on incompressible 1367 * data. 1368 * 1369 * The following types of analysis can be performed: 1370 * - detect mostly zero data 1371 * - detect data with low "byte set" size (text, etc) 1372 * - detect data with low/high "core byte" set 1373 * 1374 * Return non-zero if the compression should be done, 0 otherwise. 1375 */ 1376 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1377 { 1378 struct list_head *ws_list = get_workspace(0, 0); 1379 struct heuristic_ws *ws; 1380 u32 i; 1381 u8 byte; 1382 int ret = 0; 1383 1384 ws = list_entry(ws_list, struct heuristic_ws, list); 1385 1386 heuristic_collect_sample(inode, start, end, ws); 1387 1388 if (sample_repeated_patterns(ws)) { 1389 ret = 1; 1390 goto out; 1391 } 1392 1393 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1394 1395 for (i = 0; i < ws->sample_size; i++) { 1396 byte = ws->sample[i]; 1397 ws->bucket[byte].count++; 1398 } 1399 1400 i = byte_set_size(ws); 1401 if (i < BYTE_SET_THRESHOLD) { 1402 ret = 2; 1403 goto out; 1404 } 1405 1406 i = byte_core_set_size(ws); 1407 if (i <= BYTE_CORE_SET_LOW) { 1408 ret = 3; 1409 goto out; 1410 } 1411 1412 if (i >= BYTE_CORE_SET_HIGH) { 1413 ret = 0; 1414 goto out; 1415 } 1416 1417 i = shannon_entropy(ws); 1418 if (i <= ENTROPY_LVL_ACEPTABLE) { 1419 ret = 4; 1420 goto out; 1421 } 1422 1423 /* 1424 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1425 * needed to give green light to compression. 1426 * 1427 * For now just assume that compression at that level is not worth the 1428 * resources because: 1429 * 1430 * 1. it is possible to defrag the data later 1431 * 1432 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1433 * values, every bucket has counter at level ~54. The heuristic would 1434 * be confused. This can happen when data have some internal repeated 1435 * patterns like "abbacbbc...". This can be detected by analyzing 1436 * pairs of bytes, which is too costly. 1437 */ 1438 if (i < ENTROPY_LVL_HIGH) { 1439 ret = 5; 1440 goto out; 1441 } else { 1442 ret = 0; 1443 goto out; 1444 } 1445 1446 out: 1447 put_workspace(0, ws_list); 1448 return ret; 1449 } 1450 1451 /* 1452 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1453 * level, unrecognized string will set the default level 1454 */ 1455 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1456 { 1457 unsigned int level = 0; 1458 int ret; 1459 1460 if (!type) 1461 return 0; 1462 1463 if (str[0] == ':') { 1464 ret = kstrtouint(str + 1, 10, &level); 1465 if (ret) 1466 level = 0; 1467 } 1468 1469 level = btrfs_compress_set_level(type, level); 1470 1471 return level; 1472 } 1473