xref: /linux/fs/btrfs/compression.c (revision 83439a0f1ce6a592f95e41338320b5f01b98a356)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/kthread.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/psi.h>
19 #include <linux/slab.h>
20 #include <linux/sched/mm.h>
21 #include <linux/log2.h>
22 #include <crypto/hash.h>
23 #include "misc.h"
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "btrfs_inode.h"
28 #include "volumes.h"
29 #include "ordered-data.h"
30 #include "compression.h"
31 #include "extent_io.h"
32 #include "extent_map.h"
33 #include "subpage.h"
34 #include "zoned.h"
35 
36 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
37 
38 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
39 {
40 	switch (type) {
41 	case BTRFS_COMPRESS_ZLIB:
42 	case BTRFS_COMPRESS_LZO:
43 	case BTRFS_COMPRESS_ZSTD:
44 	case BTRFS_COMPRESS_NONE:
45 		return btrfs_compress_types[type];
46 	default:
47 		break;
48 	}
49 
50 	return NULL;
51 }
52 
53 bool btrfs_compress_is_valid_type(const char *str, size_t len)
54 {
55 	int i;
56 
57 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
58 		size_t comp_len = strlen(btrfs_compress_types[i]);
59 
60 		if (len < comp_len)
61 			continue;
62 
63 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
64 			return true;
65 	}
66 	return false;
67 }
68 
69 static int compression_compress_pages(int type, struct list_head *ws,
70                struct address_space *mapping, u64 start, struct page **pages,
71                unsigned long *out_pages, unsigned long *total_in,
72                unsigned long *total_out)
73 {
74 	switch (type) {
75 	case BTRFS_COMPRESS_ZLIB:
76 		return zlib_compress_pages(ws, mapping, start, pages,
77 				out_pages, total_in, total_out);
78 	case BTRFS_COMPRESS_LZO:
79 		return lzo_compress_pages(ws, mapping, start, pages,
80 				out_pages, total_in, total_out);
81 	case BTRFS_COMPRESS_ZSTD:
82 		return zstd_compress_pages(ws, mapping, start, pages,
83 				out_pages, total_in, total_out);
84 	case BTRFS_COMPRESS_NONE:
85 	default:
86 		/*
87 		 * This can happen when compression races with remount setting
88 		 * it to 'no compress', while caller doesn't call
89 		 * inode_need_compress() to check if we really need to
90 		 * compress.
91 		 *
92 		 * Not a big deal, just need to inform caller that we
93 		 * haven't allocated any pages yet.
94 		 */
95 		*out_pages = 0;
96 		return -E2BIG;
97 	}
98 }
99 
100 static int compression_decompress_bio(struct list_head *ws,
101 				      struct compressed_bio *cb)
102 {
103 	switch (cb->compress_type) {
104 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
105 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
106 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
107 	case BTRFS_COMPRESS_NONE:
108 	default:
109 		/*
110 		 * This can't happen, the type is validated several times
111 		 * before we get here.
112 		 */
113 		BUG();
114 	}
115 }
116 
117 static int compression_decompress(int type, struct list_head *ws,
118                unsigned char *data_in, struct page *dest_page,
119                unsigned long start_byte, size_t srclen, size_t destlen)
120 {
121 	switch (type) {
122 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
123 						start_byte, srclen, destlen);
124 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
125 						start_byte, srclen, destlen);
126 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
127 						start_byte, srclen, destlen);
128 	case BTRFS_COMPRESS_NONE:
129 	default:
130 		/*
131 		 * This can't happen, the type is validated several times
132 		 * before we get here.
133 		 */
134 		BUG();
135 	}
136 }
137 
138 static int btrfs_decompress_bio(struct compressed_bio *cb);
139 
140 static void finish_compressed_bio_read(struct compressed_bio *cb)
141 {
142 	unsigned int index;
143 	struct page *page;
144 
145 	if (cb->status == BLK_STS_OK)
146 		cb->status = errno_to_blk_status(btrfs_decompress_bio(cb));
147 
148 	/* Release the compressed pages */
149 	for (index = 0; index < cb->nr_pages; index++) {
150 		page = cb->compressed_pages[index];
151 		page->mapping = NULL;
152 		put_page(page);
153 	}
154 
155 	/* Do io completion on the original bio */
156 	btrfs_bio_end_io(btrfs_bio(cb->orig_bio), cb->status);
157 
158 	/* Finally free the cb struct */
159 	kfree(cb->compressed_pages);
160 	kfree(cb);
161 }
162 
163 /*
164  * Verify the checksums and kick off repair if needed on the uncompressed data
165  * before decompressing it into the original bio and freeing the uncompressed
166  * pages.
167  */
168 static void end_compressed_bio_read(struct btrfs_bio *bbio)
169 {
170 	struct compressed_bio *cb = bbio->private;
171 	struct inode *inode = cb->inode;
172 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
173 	struct btrfs_inode *bi = BTRFS_I(inode);
174 	bool csum = !(bi->flags & BTRFS_INODE_NODATASUM) &&
175 		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
176 	blk_status_t status = bbio->bio.bi_status;
177 	struct bvec_iter iter;
178 	struct bio_vec bv;
179 	u32 offset;
180 
181 	btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) {
182 		u64 start = bbio->file_offset + offset;
183 
184 		if (!status &&
185 		    (!csum || !btrfs_check_data_csum(inode, bbio, offset,
186 						     bv.bv_page, bv.bv_offset))) {
187 			btrfs_clean_io_failure(bi, start, bv.bv_page,
188 					       bv.bv_offset);
189 		} else {
190 			int ret;
191 
192 			refcount_inc(&cb->pending_ios);
193 			ret = btrfs_repair_one_sector(inode, bbio, offset,
194 						      bv.bv_page, bv.bv_offset,
195 						      btrfs_submit_data_read_bio);
196 			if (ret) {
197 				refcount_dec(&cb->pending_ios);
198 				status = errno_to_blk_status(ret);
199 			}
200 		}
201 	}
202 
203 	if (status)
204 		cb->status = status;
205 
206 	if (refcount_dec_and_test(&cb->pending_ios))
207 		finish_compressed_bio_read(cb);
208 	btrfs_bio_free_csum(bbio);
209 	bio_put(&bbio->bio);
210 }
211 
212 /*
213  * Clear the writeback bits on all of the file
214  * pages for a compressed write
215  */
216 static noinline void end_compressed_writeback(struct inode *inode,
217 					      const struct compressed_bio *cb)
218 {
219 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
220 	unsigned long index = cb->start >> PAGE_SHIFT;
221 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
222 	struct page *pages[16];
223 	unsigned long nr_pages = end_index - index + 1;
224 	const int errno = blk_status_to_errno(cb->status);
225 	int i;
226 	int ret;
227 
228 	if (errno)
229 		mapping_set_error(inode->i_mapping, errno);
230 
231 	while (nr_pages > 0) {
232 		ret = find_get_pages_contig(inode->i_mapping, index,
233 				     min_t(unsigned long,
234 				     nr_pages, ARRAY_SIZE(pages)), pages);
235 		if (ret == 0) {
236 			nr_pages -= 1;
237 			index += 1;
238 			continue;
239 		}
240 		for (i = 0; i < ret; i++) {
241 			if (errno)
242 				SetPageError(pages[i]);
243 			btrfs_page_clamp_clear_writeback(fs_info, pages[i],
244 							 cb->start, cb->len);
245 			put_page(pages[i]);
246 		}
247 		nr_pages -= ret;
248 		index += ret;
249 	}
250 	/* the inode may be gone now */
251 }
252 
253 static void finish_compressed_bio_write(struct compressed_bio *cb)
254 {
255 	struct inode *inode = cb->inode;
256 	unsigned int index;
257 
258 	/*
259 	 * Ok, we're the last bio for this extent, step one is to call back
260 	 * into the FS and do all the end_io operations.
261 	 */
262 	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
263 			cb->start, cb->start + cb->len - 1,
264 			cb->status == BLK_STS_OK);
265 
266 	if (cb->writeback)
267 		end_compressed_writeback(inode, cb);
268 	/* Note, our inode could be gone now */
269 
270 	/*
271 	 * Release the compressed pages, these came from alloc_page and
272 	 * are not attached to the inode at all
273 	 */
274 	for (index = 0; index < cb->nr_pages; index++) {
275 		struct page *page = cb->compressed_pages[index];
276 
277 		page->mapping = NULL;
278 		put_page(page);
279 	}
280 
281 	/* Finally free the cb struct */
282 	kfree(cb->compressed_pages);
283 	kfree(cb);
284 }
285 
286 static void btrfs_finish_compressed_write_work(struct work_struct *work)
287 {
288 	struct compressed_bio *cb =
289 		container_of(work, struct compressed_bio, write_end_work);
290 
291 	finish_compressed_bio_write(cb);
292 }
293 
294 /*
295  * Do the cleanup once all the compressed pages hit the disk.  This will clear
296  * writeback on the file pages and free the compressed pages.
297  *
298  * This also calls the writeback end hooks for the file pages so that metadata
299  * and checksums can be updated in the file.
300  */
301 static void end_compressed_bio_write(struct btrfs_bio *bbio)
302 {
303 	struct compressed_bio *cb = bbio->private;
304 
305 	if (bbio->bio.bi_status)
306 		cb->status = bbio->bio.bi_status;
307 
308 	if (refcount_dec_and_test(&cb->pending_ios)) {
309 		struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
310 
311 		btrfs_record_physical_zoned(cb->inode, cb->start, &bbio->bio);
312 		queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
313 	}
314 	bio_put(&bbio->bio);
315 }
316 
317 /*
318  * Allocate a compressed_bio, which will be used to read/write on-disk
319  * (aka, compressed) * data.
320  *
321  * @cb:                 The compressed_bio structure, which records all the needed
322  *                      information to bind the compressed data to the uncompressed
323  *                      page cache.
324  * @disk_byten:         The logical bytenr where the compressed data will be read
325  *                      from or written to.
326  * @endio_func:         The endio function to call after the IO for compressed data
327  *                      is finished.
328  * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
329  *                      Let the caller know to only fill the bio up to the stripe
330  *                      boundary.
331  */
332 
333 
334 static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
335 					blk_opf_t opf,
336 					btrfs_bio_end_io_t endio_func,
337 					u64 *next_stripe_start)
338 {
339 	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
340 	struct btrfs_io_geometry geom;
341 	struct extent_map *em;
342 	struct bio *bio;
343 	int ret;
344 
345 	bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, endio_func, cb);
346 	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
347 
348 	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
349 	if (IS_ERR(em)) {
350 		bio_put(bio);
351 		return ERR_CAST(em);
352 	}
353 
354 	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
355 		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
356 
357 	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
358 	free_extent_map(em);
359 	if (ret < 0) {
360 		bio_put(bio);
361 		return ERR_PTR(ret);
362 	}
363 	*next_stripe_start = disk_bytenr + geom.len;
364 	refcount_inc(&cb->pending_ios);
365 	return bio;
366 }
367 
368 /*
369  * worker function to build and submit bios for previously compressed pages.
370  * The corresponding pages in the inode should be marked for writeback
371  * and the compressed pages should have a reference on them for dropping
372  * when the IO is complete.
373  *
374  * This also checksums the file bytes and gets things ready for
375  * the end io hooks.
376  */
377 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
378 				 unsigned int len, u64 disk_start,
379 				 unsigned int compressed_len,
380 				 struct page **compressed_pages,
381 				 unsigned int nr_pages,
382 				 blk_opf_t write_flags,
383 				 struct cgroup_subsys_state *blkcg_css,
384 				 bool writeback)
385 {
386 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
387 	struct bio *bio = NULL;
388 	struct compressed_bio *cb;
389 	u64 cur_disk_bytenr = disk_start;
390 	u64 next_stripe_start;
391 	blk_status_t ret = BLK_STS_OK;
392 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
393 	const bool use_append = btrfs_use_zone_append(inode, disk_start);
394 	const enum req_op bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
395 
396 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
397 	       IS_ALIGNED(len, fs_info->sectorsize));
398 	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
399 	if (!cb)
400 		return BLK_STS_RESOURCE;
401 	refcount_set(&cb->pending_ios, 1);
402 	cb->status = BLK_STS_OK;
403 	cb->inode = &inode->vfs_inode;
404 	cb->start = start;
405 	cb->len = len;
406 	cb->compressed_pages = compressed_pages;
407 	cb->compressed_len = compressed_len;
408 	cb->writeback = writeback;
409 	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
410 	cb->nr_pages = nr_pages;
411 
412 	if (blkcg_css)
413 		kthread_associate_blkcg(blkcg_css);
414 
415 	while (cur_disk_bytenr < disk_start + compressed_len) {
416 		u64 offset = cur_disk_bytenr - disk_start;
417 		unsigned int index = offset >> PAGE_SHIFT;
418 		unsigned int real_size;
419 		unsigned int added;
420 		struct page *page = compressed_pages[index];
421 		bool submit = false;
422 
423 		/* Allocate new bio if submitted or not yet allocated */
424 		if (!bio) {
425 			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
426 				bio_op | write_flags, end_compressed_bio_write,
427 				&next_stripe_start);
428 			if (IS_ERR(bio)) {
429 				ret = errno_to_blk_status(PTR_ERR(bio));
430 				break;
431 			}
432 			if (blkcg_css)
433 				bio->bi_opf |= REQ_CGROUP_PUNT;
434 		}
435 		/*
436 		 * We should never reach next_stripe_start start as we will
437 		 * submit comp_bio when reach the boundary immediately.
438 		 */
439 		ASSERT(cur_disk_bytenr != next_stripe_start);
440 
441 		/*
442 		 * We have various limits on the real read size:
443 		 * - stripe boundary
444 		 * - page boundary
445 		 * - compressed length boundary
446 		 */
447 		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
448 		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
449 		real_size = min_t(u64, real_size, compressed_len - offset);
450 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
451 
452 		if (use_append)
453 			added = bio_add_zone_append_page(bio, page, real_size,
454 					offset_in_page(offset));
455 		else
456 			added = bio_add_page(bio, page, real_size,
457 					offset_in_page(offset));
458 		/* Reached zoned boundary */
459 		if (added == 0)
460 			submit = true;
461 
462 		cur_disk_bytenr += added;
463 		/* Reached stripe boundary */
464 		if (cur_disk_bytenr == next_stripe_start)
465 			submit = true;
466 
467 		/* Finished the range */
468 		if (cur_disk_bytenr == disk_start + compressed_len)
469 			submit = true;
470 
471 		if (submit) {
472 			if (!skip_sum) {
473 				ret = btrfs_csum_one_bio(inode, bio, start, true);
474 				if (ret) {
475 					btrfs_bio_end_io(btrfs_bio(bio), ret);
476 					break;
477 				}
478 			}
479 
480 			ASSERT(bio->bi_iter.bi_size);
481 			btrfs_submit_bio(fs_info, bio, 0);
482 			bio = NULL;
483 		}
484 		cond_resched();
485 	}
486 
487 	if (blkcg_css)
488 		kthread_associate_blkcg(NULL);
489 
490 	if (refcount_dec_and_test(&cb->pending_ios))
491 		finish_compressed_bio_write(cb);
492 	return ret;
493 }
494 
495 static u64 bio_end_offset(struct bio *bio)
496 {
497 	struct bio_vec *last = bio_last_bvec_all(bio);
498 
499 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
500 }
501 
502 /*
503  * Add extra pages in the same compressed file extent so that we don't need to
504  * re-read the same extent again and again.
505  *
506  * NOTE: this won't work well for subpage, as for subpage read, we lock the
507  * full page then submit bio for each compressed/regular extents.
508  *
509  * This means, if we have several sectors in the same page points to the same
510  * on-disk compressed data, we will re-read the same extent many times and
511  * this function can only help for the next page.
512  */
513 static noinline int add_ra_bio_pages(struct inode *inode,
514 				     u64 compressed_end,
515 				     struct compressed_bio *cb,
516 				     unsigned long *pflags)
517 {
518 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
519 	unsigned long end_index;
520 	u64 cur = bio_end_offset(cb->orig_bio);
521 	u64 isize = i_size_read(inode);
522 	int ret;
523 	struct page *page;
524 	struct extent_map *em;
525 	struct address_space *mapping = inode->i_mapping;
526 	struct extent_map_tree *em_tree;
527 	struct extent_io_tree *tree;
528 	int sectors_missed = 0;
529 
530 	em_tree = &BTRFS_I(inode)->extent_tree;
531 	tree = &BTRFS_I(inode)->io_tree;
532 
533 	if (isize == 0)
534 		return 0;
535 
536 	/*
537 	 * For current subpage support, we only support 64K page size,
538 	 * which means maximum compressed extent size (128K) is just 2x page
539 	 * size.
540 	 * This makes readahead less effective, so here disable readahead for
541 	 * subpage for now, until full compressed write is supported.
542 	 */
543 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
544 		return 0;
545 
546 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
547 
548 	while (cur < compressed_end) {
549 		u64 page_end;
550 		u64 pg_index = cur >> PAGE_SHIFT;
551 		u32 add_size;
552 
553 		if (pg_index > end_index)
554 			break;
555 
556 		page = xa_load(&mapping->i_pages, pg_index);
557 		if (page && !xa_is_value(page)) {
558 			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
559 					  fs_info->sectorsize_bits;
560 
561 			/* Beyond threshold, no need to continue */
562 			if (sectors_missed > 4)
563 				break;
564 
565 			/*
566 			 * Jump to next page start as we already have page for
567 			 * current offset.
568 			 */
569 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
570 			continue;
571 		}
572 
573 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
574 								 ~__GFP_FS));
575 		if (!page)
576 			break;
577 
578 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
579 			put_page(page);
580 			/* There is already a page, skip to page end */
581 			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
582 			continue;
583 		}
584 
585 		if (PageWorkingset(page))
586 			psi_memstall_enter(pflags);
587 
588 		ret = set_page_extent_mapped(page);
589 		if (ret < 0) {
590 			unlock_page(page);
591 			put_page(page);
592 			break;
593 		}
594 
595 		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
596 		lock_extent(tree, cur, page_end, NULL);
597 		read_lock(&em_tree->lock);
598 		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
599 		read_unlock(&em_tree->lock);
600 
601 		/*
602 		 * At this point, we have a locked page in the page cache for
603 		 * these bytes in the file.  But, we have to make sure they map
604 		 * to this compressed extent on disk.
605 		 */
606 		if (!em || cur < em->start ||
607 		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
608 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
609 			free_extent_map(em);
610 			unlock_extent(tree, cur, page_end, NULL);
611 			unlock_page(page);
612 			put_page(page);
613 			break;
614 		}
615 		free_extent_map(em);
616 
617 		if (page->index == end_index) {
618 			size_t zero_offset = offset_in_page(isize);
619 
620 			if (zero_offset) {
621 				int zeros;
622 				zeros = PAGE_SIZE - zero_offset;
623 				memzero_page(page, zero_offset, zeros);
624 			}
625 		}
626 
627 		add_size = min(em->start + em->len, page_end + 1) - cur;
628 		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
629 		if (ret != add_size) {
630 			unlock_extent(tree, cur, page_end, NULL);
631 			unlock_page(page);
632 			put_page(page);
633 			break;
634 		}
635 		/*
636 		 * If it's subpage, we also need to increase its
637 		 * subpage::readers number, as at endio we will decrease
638 		 * subpage::readers and to unlock the page.
639 		 */
640 		if (fs_info->sectorsize < PAGE_SIZE)
641 			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
642 		put_page(page);
643 		cur += add_size;
644 	}
645 	return 0;
646 }
647 
648 /*
649  * for a compressed read, the bio we get passed has all the inode pages
650  * in it.  We don't actually do IO on those pages but allocate new ones
651  * to hold the compressed pages on disk.
652  *
653  * bio->bi_iter.bi_sector points to the compressed extent on disk
654  * bio->bi_io_vec points to all of the inode pages
655  *
656  * After the compressed pages are read, we copy the bytes into the
657  * bio we were passed and then call the bio end_io calls
658  */
659 void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
660 				  int mirror_num)
661 {
662 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
663 	struct extent_map_tree *em_tree;
664 	struct compressed_bio *cb;
665 	unsigned int compressed_len;
666 	struct bio *comp_bio = NULL;
667 	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
668 	u64 cur_disk_byte = disk_bytenr;
669 	u64 next_stripe_start;
670 	u64 file_offset;
671 	u64 em_len;
672 	u64 em_start;
673 	struct extent_map *em;
674 	/* Initialize to 1 to make skip psi_memstall_leave unless needed */
675 	unsigned long pflags = 1;
676 	blk_status_t ret;
677 	int ret2;
678 	int i;
679 
680 	em_tree = &BTRFS_I(inode)->extent_tree;
681 
682 	file_offset = bio_first_bvec_all(bio)->bv_offset +
683 		      page_offset(bio_first_page_all(bio));
684 
685 	/* we need the actual starting offset of this extent in the file */
686 	read_lock(&em_tree->lock);
687 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
688 	read_unlock(&em_tree->lock);
689 	if (!em) {
690 		ret = BLK_STS_IOERR;
691 		goto out;
692 	}
693 
694 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
695 	compressed_len = em->block_len;
696 	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
697 	if (!cb) {
698 		ret = BLK_STS_RESOURCE;
699 		goto out;
700 	}
701 
702 	refcount_set(&cb->pending_ios, 1);
703 	cb->status = BLK_STS_OK;
704 	cb->inode = inode;
705 
706 	cb->start = em->orig_start;
707 	em_len = em->len;
708 	em_start = em->start;
709 
710 	cb->len = bio->bi_iter.bi_size;
711 	cb->compressed_len = compressed_len;
712 	cb->compress_type = em->compress_type;
713 	cb->orig_bio = bio;
714 
715 	free_extent_map(em);
716 	em = NULL;
717 
718 	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
719 	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
720 	if (!cb->compressed_pages) {
721 		ret = BLK_STS_RESOURCE;
722 		goto fail;
723 	}
724 
725 	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
726 	if (ret2) {
727 		ret = BLK_STS_RESOURCE;
728 		goto fail;
729 	}
730 
731 	add_ra_bio_pages(inode, em_start + em_len, cb, &pflags);
732 
733 	/* include any pages we added in add_ra-bio_pages */
734 	cb->len = bio->bi_iter.bi_size;
735 
736 	while (cur_disk_byte < disk_bytenr + compressed_len) {
737 		u64 offset = cur_disk_byte - disk_bytenr;
738 		unsigned int index = offset >> PAGE_SHIFT;
739 		unsigned int real_size;
740 		unsigned int added;
741 		struct page *page = cb->compressed_pages[index];
742 		bool submit = false;
743 
744 		/* Allocate new bio if submitted or not yet allocated */
745 		if (!comp_bio) {
746 			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
747 					REQ_OP_READ, end_compressed_bio_read,
748 					&next_stripe_start);
749 			if (IS_ERR(comp_bio)) {
750 				cb->status = errno_to_blk_status(PTR_ERR(comp_bio));
751 				break;
752 			}
753 		}
754 		/*
755 		 * We should never reach next_stripe_start start as we will
756 		 * submit comp_bio when reach the boundary immediately.
757 		 */
758 		ASSERT(cur_disk_byte != next_stripe_start);
759 		/*
760 		 * We have various limit on the real read size:
761 		 * - stripe boundary
762 		 * - page boundary
763 		 * - compressed length boundary
764 		 */
765 		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
766 		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
767 		real_size = min_t(u64, real_size, compressed_len - offset);
768 		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
769 
770 		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
771 		/*
772 		 * Maximum compressed extent is smaller than bio size limit,
773 		 * thus bio_add_page() should always success.
774 		 */
775 		ASSERT(added == real_size);
776 		cur_disk_byte += added;
777 
778 		/* Reached stripe boundary, need to submit */
779 		if (cur_disk_byte == next_stripe_start)
780 			submit = true;
781 
782 		/* Has finished the range, need to submit */
783 		if (cur_disk_byte == disk_bytenr + compressed_len)
784 			submit = true;
785 
786 		if (submit) {
787 			/* Save the original iter for read repair */
788 			if (bio_op(comp_bio) == REQ_OP_READ)
789 				btrfs_bio(comp_bio)->iter = comp_bio->bi_iter;
790 
791 			/*
792 			 * Save the initial offset of this chunk, as there
793 			 * is no direct correlation between compressed pages and
794 			 * the original file offset.  The field is only used for
795 			 * priting error messages.
796 			 */
797 			btrfs_bio(comp_bio)->file_offset = file_offset;
798 
799 			ret = btrfs_lookup_bio_sums(inode, comp_bio, NULL);
800 			if (ret) {
801 				btrfs_bio_end_io(btrfs_bio(comp_bio), ret);
802 				break;
803 			}
804 
805 			ASSERT(comp_bio->bi_iter.bi_size);
806 			btrfs_submit_bio(fs_info, comp_bio, mirror_num);
807 			comp_bio = NULL;
808 		}
809 	}
810 
811 	if (!pflags)
812 		psi_memstall_leave(&pflags);
813 
814 	if (refcount_dec_and_test(&cb->pending_ios))
815 		finish_compressed_bio_read(cb);
816 	return;
817 
818 fail:
819 	if (cb->compressed_pages) {
820 		for (i = 0; i < cb->nr_pages; i++) {
821 			if (cb->compressed_pages[i])
822 				__free_page(cb->compressed_pages[i]);
823 		}
824 	}
825 
826 	kfree(cb->compressed_pages);
827 	kfree(cb);
828 out:
829 	free_extent_map(em);
830 	btrfs_bio_end_io(btrfs_bio(bio), ret);
831 	return;
832 }
833 
834 /*
835  * Heuristic uses systematic sampling to collect data from the input data
836  * range, the logic can be tuned by the following constants:
837  *
838  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
839  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
840  */
841 #define SAMPLING_READ_SIZE	(16)
842 #define SAMPLING_INTERVAL	(256)
843 
844 /*
845  * For statistical analysis of the input data we consider bytes that form a
846  * Galois Field of 256 objects. Each object has an attribute count, ie. how
847  * many times the object appeared in the sample.
848  */
849 #define BUCKET_SIZE		(256)
850 
851 /*
852  * The size of the sample is based on a statistical sampling rule of thumb.
853  * The common way is to perform sampling tests as long as the number of
854  * elements in each cell is at least 5.
855  *
856  * Instead of 5, we choose 32 to obtain more accurate results.
857  * If the data contain the maximum number of symbols, which is 256, we obtain a
858  * sample size bound by 8192.
859  *
860  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
861  * from up to 512 locations.
862  */
863 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
864 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
865 
866 struct bucket_item {
867 	u32 count;
868 };
869 
870 struct heuristic_ws {
871 	/* Partial copy of input data */
872 	u8 *sample;
873 	u32 sample_size;
874 	/* Buckets store counters for each byte value */
875 	struct bucket_item *bucket;
876 	/* Sorting buffer */
877 	struct bucket_item *bucket_b;
878 	struct list_head list;
879 };
880 
881 static struct workspace_manager heuristic_wsm;
882 
883 static void free_heuristic_ws(struct list_head *ws)
884 {
885 	struct heuristic_ws *workspace;
886 
887 	workspace = list_entry(ws, struct heuristic_ws, list);
888 
889 	kvfree(workspace->sample);
890 	kfree(workspace->bucket);
891 	kfree(workspace->bucket_b);
892 	kfree(workspace);
893 }
894 
895 static struct list_head *alloc_heuristic_ws(unsigned int level)
896 {
897 	struct heuristic_ws *ws;
898 
899 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
900 	if (!ws)
901 		return ERR_PTR(-ENOMEM);
902 
903 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
904 	if (!ws->sample)
905 		goto fail;
906 
907 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
908 	if (!ws->bucket)
909 		goto fail;
910 
911 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
912 	if (!ws->bucket_b)
913 		goto fail;
914 
915 	INIT_LIST_HEAD(&ws->list);
916 	return &ws->list;
917 fail:
918 	free_heuristic_ws(&ws->list);
919 	return ERR_PTR(-ENOMEM);
920 }
921 
922 const struct btrfs_compress_op btrfs_heuristic_compress = {
923 	.workspace_manager = &heuristic_wsm,
924 };
925 
926 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
927 	/* The heuristic is represented as compression type 0 */
928 	&btrfs_heuristic_compress,
929 	&btrfs_zlib_compress,
930 	&btrfs_lzo_compress,
931 	&btrfs_zstd_compress,
932 };
933 
934 static struct list_head *alloc_workspace(int type, unsigned int level)
935 {
936 	switch (type) {
937 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
938 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
939 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
940 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
941 	default:
942 		/*
943 		 * This can't happen, the type is validated several times
944 		 * before we get here.
945 		 */
946 		BUG();
947 	}
948 }
949 
950 static void free_workspace(int type, struct list_head *ws)
951 {
952 	switch (type) {
953 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
954 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
955 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
956 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
957 	default:
958 		/*
959 		 * This can't happen, the type is validated several times
960 		 * before we get here.
961 		 */
962 		BUG();
963 	}
964 }
965 
966 static void btrfs_init_workspace_manager(int type)
967 {
968 	struct workspace_manager *wsm;
969 	struct list_head *workspace;
970 
971 	wsm = btrfs_compress_op[type]->workspace_manager;
972 	INIT_LIST_HEAD(&wsm->idle_ws);
973 	spin_lock_init(&wsm->ws_lock);
974 	atomic_set(&wsm->total_ws, 0);
975 	init_waitqueue_head(&wsm->ws_wait);
976 
977 	/*
978 	 * Preallocate one workspace for each compression type so we can
979 	 * guarantee forward progress in the worst case
980 	 */
981 	workspace = alloc_workspace(type, 0);
982 	if (IS_ERR(workspace)) {
983 		pr_warn(
984 	"BTRFS: cannot preallocate compression workspace, will try later\n");
985 	} else {
986 		atomic_set(&wsm->total_ws, 1);
987 		wsm->free_ws = 1;
988 		list_add(workspace, &wsm->idle_ws);
989 	}
990 }
991 
992 static void btrfs_cleanup_workspace_manager(int type)
993 {
994 	struct workspace_manager *wsman;
995 	struct list_head *ws;
996 
997 	wsman = btrfs_compress_op[type]->workspace_manager;
998 	while (!list_empty(&wsman->idle_ws)) {
999 		ws = wsman->idle_ws.next;
1000 		list_del(ws);
1001 		free_workspace(type, ws);
1002 		atomic_dec(&wsman->total_ws);
1003 	}
1004 }
1005 
1006 /*
1007  * This finds an available workspace or allocates a new one.
1008  * If it's not possible to allocate a new one, waits until there's one.
1009  * Preallocation makes a forward progress guarantees and we do not return
1010  * errors.
1011  */
1012 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1013 {
1014 	struct workspace_manager *wsm;
1015 	struct list_head *workspace;
1016 	int cpus = num_online_cpus();
1017 	unsigned nofs_flag;
1018 	struct list_head *idle_ws;
1019 	spinlock_t *ws_lock;
1020 	atomic_t *total_ws;
1021 	wait_queue_head_t *ws_wait;
1022 	int *free_ws;
1023 
1024 	wsm = btrfs_compress_op[type]->workspace_manager;
1025 	idle_ws	 = &wsm->idle_ws;
1026 	ws_lock	 = &wsm->ws_lock;
1027 	total_ws = &wsm->total_ws;
1028 	ws_wait	 = &wsm->ws_wait;
1029 	free_ws	 = &wsm->free_ws;
1030 
1031 again:
1032 	spin_lock(ws_lock);
1033 	if (!list_empty(idle_ws)) {
1034 		workspace = idle_ws->next;
1035 		list_del(workspace);
1036 		(*free_ws)--;
1037 		spin_unlock(ws_lock);
1038 		return workspace;
1039 
1040 	}
1041 	if (atomic_read(total_ws) > cpus) {
1042 		DEFINE_WAIT(wait);
1043 
1044 		spin_unlock(ws_lock);
1045 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1046 		if (atomic_read(total_ws) > cpus && !*free_ws)
1047 			schedule();
1048 		finish_wait(ws_wait, &wait);
1049 		goto again;
1050 	}
1051 	atomic_inc(total_ws);
1052 	spin_unlock(ws_lock);
1053 
1054 	/*
1055 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1056 	 * to turn it off here because we might get called from the restricted
1057 	 * context of btrfs_compress_bio/btrfs_compress_pages
1058 	 */
1059 	nofs_flag = memalloc_nofs_save();
1060 	workspace = alloc_workspace(type, level);
1061 	memalloc_nofs_restore(nofs_flag);
1062 
1063 	if (IS_ERR(workspace)) {
1064 		atomic_dec(total_ws);
1065 		wake_up(ws_wait);
1066 
1067 		/*
1068 		 * Do not return the error but go back to waiting. There's a
1069 		 * workspace preallocated for each type and the compression
1070 		 * time is bounded so we get to a workspace eventually. This
1071 		 * makes our caller's life easier.
1072 		 *
1073 		 * To prevent silent and low-probability deadlocks (when the
1074 		 * initial preallocation fails), check if there are any
1075 		 * workspaces at all.
1076 		 */
1077 		if (atomic_read(total_ws) == 0) {
1078 			static DEFINE_RATELIMIT_STATE(_rs,
1079 					/* once per minute */ 60 * HZ,
1080 					/* no burst */ 1);
1081 
1082 			if (__ratelimit(&_rs)) {
1083 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1084 			}
1085 		}
1086 		goto again;
1087 	}
1088 	return workspace;
1089 }
1090 
1091 static struct list_head *get_workspace(int type, int level)
1092 {
1093 	switch (type) {
1094 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1095 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1096 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1097 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1098 	default:
1099 		/*
1100 		 * This can't happen, the type is validated several times
1101 		 * before we get here.
1102 		 */
1103 		BUG();
1104 	}
1105 }
1106 
1107 /*
1108  * put a workspace struct back on the list or free it if we have enough
1109  * idle ones sitting around
1110  */
1111 void btrfs_put_workspace(int type, struct list_head *ws)
1112 {
1113 	struct workspace_manager *wsm;
1114 	struct list_head *idle_ws;
1115 	spinlock_t *ws_lock;
1116 	atomic_t *total_ws;
1117 	wait_queue_head_t *ws_wait;
1118 	int *free_ws;
1119 
1120 	wsm = btrfs_compress_op[type]->workspace_manager;
1121 	idle_ws	 = &wsm->idle_ws;
1122 	ws_lock	 = &wsm->ws_lock;
1123 	total_ws = &wsm->total_ws;
1124 	ws_wait	 = &wsm->ws_wait;
1125 	free_ws	 = &wsm->free_ws;
1126 
1127 	spin_lock(ws_lock);
1128 	if (*free_ws <= num_online_cpus()) {
1129 		list_add(ws, idle_ws);
1130 		(*free_ws)++;
1131 		spin_unlock(ws_lock);
1132 		goto wake;
1133 	}
1134 	spin_unlock(ws_lock);
1135 
1136 	free_workspace(type, ws);
1137 	atomic_dec(total_ws);
1138 wake:
1139 	cond_wake_up(ws_wait);
1140 }
1141 
1142 static void put_workspace(int type, struct list_head *ws)
1143 {
1144 	switch (type) {
1145 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1146 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1147 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1148 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1149 	default:
1150 		/*
1151 		 * This can't happen, the type is validated several times
1152 		 * before we get here.
1153 		 */
1154 		BUG();
1155 	}
1156 }
1157 
1158 /*
1159  * Adjust @level according to the limits of the compression algorithm or
1160  * fallback to default
1161  */
1162 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1163 {
1164 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1165 
1166 	if (level == 0)
1167 		level = ops->default_level;
1168 	else
1169 		level = min(level, ops->max_level);
1170 
1171 	return level;
1172 }
1173 
1174 /*
1175  * Given an address space and start and length, compress the bytes into @pages
1176  * that are allocated on demand.
1177  *
1178  * @type_level is encoded algorithm and level, where level 0 means whatever
1179  * default the algorithm chooses and is opaque here;
1180  * - compression algo are 0-3
1181  * - the level are bits 4-7
1182  *
1183  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1184  * and returns number of actually allocated pages
1185  *
1186  * @total_in is used to return the number of bytes actually read.  It
1187  * may be smaller than the input length if we had to exit early because we
1188  * ran out of room in the pages array or because we cross the
1189  * max_out threshold.
1190  *
1191  * @total_out is an in/out parameter, must be set to the input length and will
1192  * be also used to return the total number of compressed bytes
1193  */
1194 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1195 			 u64 start, struct page **pages,
1196 			 unsigned long *out_pages,
1197 			 unsigned long *total_in,
1198 			 unsigned long *total_out)
1199 {
1200 	int type = btrfs_compress_type(type_level);
1201 	int level = btrfs_compress_level(type_level);
1202 	struct list_head *workspace;
1203 	int ret;
1204 
1205 	level = btrfs_compress_set_level(type, level);
1206 	workspace = get_workspace(type, level);
1207 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1208 					 out_pages, total_in, total_out);
1209 	put_workspace(type, workspace);
1210 	return ret;
1211 }
1212 
1213 static int btrfs_decompress_bio(struct compressed_bio *cb)
1214 {
1215 	struct list_head *workspace;
1216 	int ret;
1217 	int type = cb->compress_type;
1218 
1219 	workspace = get_workspace(type, 0);
1220 	ret = compression_decompress_bio(workspace, cb);
1221 	put_workspace(type, workspace);
1222 
1223 	return ret;
1224 }
1225 
1226 /*
1227  * a less complex decompression routine.  Our compressed data fits in a
1228  * single page, and we want to read a single page out of it.
1229  * start_byte tells us the offset into the compressed data we're interested in
1230  */
1231 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1232 		     unsigned long start_byte, size_t srclen, size_t destlen)
1233 {
1234 	struct list_head *workspace;
1235 	int ret;
1236 
1237 	workspace = get_workspace(type, 0);
1238 	ret = compression_decompress(type, workspace, data_in, dest_page,
1239 				     start_byte, srclen, destlen);
1240 	put_workspace(type, workspace);
1241 
1242 	return ret;
1243 }
1244 
1245 void __init btrfs_init_compress(void)
1246 {
1247 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1248 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1249 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1250 	zstd_init_workspace_manager();
1251 }
1252 
1253 void __cold btrfs_exit_compress(void)
1254 {
1255 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1256 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1257 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1258 	zstd_cleanup_workspace_manager();
1259 }
1260 
1261 /*
1262  * Copy decompressed data from working buffer to pages.
1263  *
1264  * @buf:		The decompressed data buffer
1265  * @buf_len:		The decompressed data length
1266  * @decompressed:	Number of bytes that are already decompressed inside the
1267  * 			compressed extent
1268  * @cb:			The compressed extent descriptor
1269  * @orig_bio:		The original bio that the caller wants to read for
1270  *
1271  * An easier to understand graph is like below:
1272  *
1273  * 		|<- orig_bio ->|     |<- orig_bio->|
1274  * 	|<-------      full decompressed extent      ----->|
1275  * 	|<-----------    @cb range   ---->|
1276  * 	|			|<-- @buf_len -->|
1277  * 	|<--- @decompressed --->|
1278  *
1279  * Note that, @cb can be a subpage of the full decompressed extent, but
1280  * @cb->start always has the same as the orig_file_offset value of the full
1281  * decompressed extent.
1282  *
1283  * When reading compressed extent, we have to read the full compressed extent,
1284  * while @orig_bio may only want part of the range.
1285  * Thus this function will ensure only data covered by @orig_bio will be copied
1286  * to.
1287  *
1288  * Return 0 if we have copied all needed contents for @orig_bio.
1289  * Return >0 if we need continue decompress.
1290  */
1291 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1292 			      struct compressed_bio *cb, u32 decompressed)
1293 {
1294 	struct bio *orig_bio = cb->orig_bio;
1295 	/* Offset inside the full decompressed extent */
1296 	u32 cur_offset;
1297 
1298 	cur_offset = decompressed;
1299 	/* The main loop to do the copy */
1300 	while (cur_offset < decompressed + buf_len) {
1301 		struct bio_vec bvec;
1302 		size_t copy_len;
1303 		u32 copy_start;
1304 		/* Offset inside the full decompressed extent */
1305 		u32 bvec_offset;
1306 
1307 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1308 		/*
1309 		 * cb->start may underflow, but subtracting that value can still
1310 		 * give us correct offset inside the full decompressed extent.
1311 		 */
1312 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1313 
1314 		/* Haven't reached the bvec range, exit */
1315 		if (decompressed + buf_len <= bvec_offset)
1316 			return 1;
1317 
1318 		copy_start = max(cur_offset, bvec_offset);
1319 		copy_len = min(bvec_offset + bvec.bv_len,
1320 			       decompressed + buf_len) - copy_start;
1321 		ASSERT(copy_len);
1322 
1323 		/*
1324 		 * Extra range check to ensure we didn't go beyond
1325 		 * @buf + @buf_len.
1326 		 */
1327 		ASSERT(copy_start - decompressed < buf_len);
1328 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1329 			       buf + copy_start - decompressed, copy_len);
1330 		cur_offset += copy_len;
1331 
1332 		bio_advance(orig_bio, copy_len);
1333 		/* Finished the bio */
1334 		if (!orig_bio->bi_iter.bi_size)
1335 			return 0;
1336 	}
1337 	return 1;
1338 }
1339 
1340 /*
1341  * Shannon Entropy calculation
1342  *
1343  * Pure byte distribution analysis fails to determine compressibility of data.
1344  * Try calculating entropy to estimate the average minimum number of bits
1345  * needed to encode the sampled data.
1346  *
1347  * For convenience, return the percentage of needed bits, instead of amount of
1348  * bits directly.
1349  *
1350  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1351  *			    and can be compressible with high probability
1352  *
1353  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1354  *
1355  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1356  */
1357 #define ENTROPY_LVL_ACEPTABLE		(65)
1358 #define ENTROPY_LVL_HIGH		(80)
1359 
1360 /*
1361  * For increasead precision in shannon_entropy calculation,
1362  * let's do pow(n, M) to save more digits after comma:
1363  *
1364  * - maximum int bit length is 64
1365  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1366  * - 13 * 4 = 52 < 64		-> M = 4
1367  *
1368  * So use pow(n, 4).
1369  */
1370 static inline u32 ilog2_w(u64 n)
1371 {
1372 	return ilog2(n * n * n * n);
1373 }
1374 
1375 static u32 shannon_entropy(struct heuristic_ws *ws)
1376 {
1377 	const u32 entropy_max = 8 * ilog2_w(2);
1378 	u32 entropy_sum = 0;
1379 	u32 p, p_base, sz_base;
1380 	u32 i;
1381 
1382 	sz_base = ilog2_w(ws->sample_size);
1383 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1384 		p = ws->bucket[i].count;
1385 		p_base = ilog2_w(p);
1386 		entropy_sum += p * (sz_base - p_base);
1387 	}
1388 
1389 	entropy_sum /= ws->sample_size;
1390 	return entropy_sum * 100 / entropy_max;
1391 }
1392 
1393 #define RADIX_BASE		4U
1394 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1395 
1396 static u8 get4bits(u64 num, int shift) {
1397 	u8 low4bits;
1398 
1399 	num >>= shift;
1400 	/* Reverse order */
1401 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1402 	return low4bits;
1403 }
1404 
1405 /*
1406  * Use 4 bits as radix base
1407  * Use 16 u32 counters for calculating new position in buf array
1408  *
1409  * @array     - array that will be sorted
1410  * @array_buf - buffer array to store sorting results
1411  *              must be equal in size to @array
1412  * @num       - array size
1413  */
1414 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1415 		       int num)
1416 {
1417 	u64 max_num;
1418 	u64 buf_num;
1419 	u32 counters[COUNTERS_SIZE];
1420 	u32 new_addr;
1421 	u32 addr;
1422 	int bitlen;
1423 	int shift;
1424 	int i;
1425 
1426 	/*
1427 	 * Try avoid useless loop iterations for small numbers stored in big
1428 	 * counters.  Example: 48 33 4 ... in 64bit array
1429 	 */
1430 	max_num = array[0].count;
1431 	for (i = 1; i < num; i++) {
1432 		buf_num = array[i].count;
1433 		if (buf_num > max_num)
1434 			max_num = buf_num;
1435 	}
1436 
1437 	buf_num = ilog2(max_num);
1438 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1439 
1440 	shift = 0;
1441 	while (shift < bitlen) {
1442 		memset(counters, 0, sizeof(counters));
1443 
1444 		for (i = 0; i < num; i++) {
1445 			buf_num = array[i].count;
1446 			addr = get4bits(buf_num, shift);
1447 			counters[addr]++;
1448 		}
1449 
1450 		for (i = 1; i < COUNTERS_SIZE; i++)
1451 			counters[i] += counters[i - 1];
1452 
1453 		for (i = num - 1; i >= 0; i--) {
1454 			buf_num = array[i].count;
1455 			addr = get4bits(buf_num, shift);
1456 			counters[addr]--;
1457 			new_addr = counters[addr];
1458 			array_buf[new_addr] = array[i];
1459 		}
1460 
1461 		shift += RADIX_BASE;
1462 
1463 		/*
1464 		 * Normal radix expects to move data from a temporary array, to
1465 		 * the main one.  But that requires some CPU time. Avoid that
1466 		 * by doing another sort iteration to original array instead of
1467 		 * memcpy()
1468 		 */
1469 		memset(counters, 0, sizeof(counters));
1470 
1471 		for (i = 0; i < num; i ++) {
1472 			buf_num = array_buf[i].count;
1473 			addr = get4bits(buf_num, shift);
1474 			counters[addr]++;
1475 		}
1476 
1477 		for (i = 1; i < COUNTERS_SIZE; i++)
1478 			counters[i] += counters[i - 1];
1479 
1480 		for (i = num - 1; i >= 0; i--) {
1481 			buf_num = array_buf[i].count;
1482 			addr = get4bits(buf_num, shift);
1483 			counters[addr]--;
1484 			new_addr = counters[addr];
1485 			array[new_addr] = array_buf[i];
1486 		}
1487 
1488 		shift += RADIX_BASE;
1489 	}
1490 }
1491 
1492 /*
1493  * Size of the core byte set - how many bytes cover 90% of the sample
1494  *
1495  * There are several types of structured binary data that use nearly all byte
1496  * values. The distribution can be uniform and counts in all buckets will be
1497  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1498  *
1499  * Other possibility is normal (Gaussian) distribution, where the data could
1500  * be potentially compressible, but we have to take a few more steps to decide
1501  * how much.
1502  *
1503  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1504  *                       compression algo can easy fix that
1505  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1506  *                       probability is not compressible
1507  */
1508 #define BYTE_CORE_SET_LOW		(64)
1509 #define BYTE_CORE_SET_HIGH		(200)
1510 
1511 static int byte_core_set_size(struct heuristic_ws *ws)
1512 {
1513 	u32 i;
1514 	u32 coreset_sum = 0;
1515 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1516 	struct bucket_item *bucket = ws->bucket;
1517 
1518 	/* Sort in reverse order */
1519 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1520 
1521 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1522 		coreset_sum += bucket[i].count;
1523 
1524 	if (coreset_sum > core_set_threshold)
1525 		return i;
1526 
1527 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1528 		coreset_sum += bucket[i].count;
1529 		if (coreset_sum > core_set_threshold)
1530 			break;
1531 	}
1532 
1533 	return i;
1534 }
1535 
1536 /*
1537  * Count byte values in buckets.
1538  * This heuristic can detect textual data (configs, xml, json, html, etc).
1539  * Because in most text-like data byte set is restricted to limited number of
1540  * possible characters, and that restriction in most cases makes data easy to
1541  * compress.
1542  *
1543  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1544  *	less - compressible
1545  *	more - need additional analysis
1546  */
1547 #define BYTE_SET_THRESHOLD		(64)
1548 
1549 static u32 byte_set_size(const struct heuristic_ws *ws)
1550 {
1551 	u32 i;
1552 	u32 byte_set_size = 0;
1553 
1554 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1555 		if (ws->bucket[i].count > 0)
1556 			byte_set_size++;
1557 	}
1558 
1559 	/*
1560 	 * Continue collecting count of byte values in buckets.  If the byte
1561 	 * set size is bigger then the threshold, it's pointless to continue,
1562 	 * the detection technique would fail for this type of data.
1563 	 */
1564 	for (; i < BUCKET_SIZE; i++) {
1565 		if (ws->bucket[i].count > 0) {
1566 			byte_set_size++;
1567 			if (byte_set_size > BYTE_SET_THRESHOLD)
1568 				return byte_set_size;
1569 		}
1570 	}
1571 
1572 	return byte_set_size;
1573 }
1574 
1575 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1576 {
1577 	const u32 half_of_sample = ws->sample_size / 2;
1578 	const u8 *data = ws->sample;
1579 
1580 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1581 }
1582 
1583 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1584 				     struct heuristic_ws *ws)
1585 {
1586 	struct page *page;
1587 	u64 index, index_end;
1588 	u32 i, curr_sample_pos;
1589 	u8 *in_data;
1590 
1591 	/*
1592 	 * Compression handles the input data by chunks of 128KiB
1593 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1594 	 *
1595 	 * We do the same for the heuristic and loop over the whole range.
1596 	 *
1597 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1598 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1599 	 */
1600 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1601 		end = start + BTRFS_MAX_UNCOMPRESSED;
1602 
1603 	index = start >> PAGE_SHIFT;
1604 	index_end = end >> PAGE_SHIFT;
1605 
1606 	/* Don't miss unaligned end */
1607 	if (!IS_ALIGNED(end, PAGE_SIZE))
1608 		index_end++;
1609 
1610 	curr_sample_pos = 0;
1611 	while (index < index_end) {
1612 		page = find_get_page(inode->i_mapping, index);
1613 		in_data = kmap_local_page(page);
1614 		/* Handle case where the start is not aligned to PAGE_SIZE */
1615 		i = start % PAGE_SIZE;
1616 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1617 			/* Don't sample any garbage from the last page */
1618 			if (start > end - SAMPLING_READ_SIZE)
1619 				break;
1620 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1621 					SAMPLING_READ_SIZE);
1622 			i += SAMPLING_INTERVAL;
1623 			start += SAMPLING_INTERVAL;
1624 			curr_sample_pos += SAMPLING_READ_SIZE;
1625 		}
1626 		kunmap_local(in_data);
1627 		put_page(page);
1628 
1629 		index++;
1630 	}
1631 
1632 	ws->sample_size = curr_sample_pos;
1633 }
1634 
1635 /*
1636  * Compression heuristic.
1637  *
1638  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1639  * quickly (compared to direct compression) detect data characteristics
1640  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1641  * data.
1642  *
1643  * The following types of analysis can be performed:
1644  * - detect mostly zero data
1645  * - detect data with low "byte set" size (text, etc)
1646  * - detect data with low/high "core byte" set
1647  *
1648  * Return non-zero if the compression should be done, 0 otherwise.
1649  */
1650 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1651 {
1652 	struct list_head *ws_list = get_workspace(0, 0);
1653 	struct heuristic_ws *ws;
1654 	u32 i;
1655 	u8 byte;
1656 	int ret = 0;
1657 
1658 	ws = list_entry(ws_list, struct heuristic_ws, list);
1659 
1660 	heuristic_collect_sample(inode, start, end, ws);
1661 
1662 	if (sample_repeated_patterns(ws)) {
1663 		ret = 1;
1664 		goto out;
1665 	}
1666 
1667 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1668 
1669 	for (i = 0; i < ws->sample_size; i++) {
1670 		byte = ws->sample[i];
1671 		ws->bucket[byte].count++;
1672 	}
1673 
1674 	i = byte_set_size(ws);
1675 	if (i < BYTE_SET_THRESHOLD) {
1676 		ret = 2;
1677 		goto out;
1678 	}
1679 
1680 	i = byte_core_set_size(ws);
1681 	if (i <= BYTE_CORE_SET_LOW) {
1682 		ret = 3;
1683 		goto out;
1684 	}
1685 
1686 	if (i >= BYTE_CORE_SET_HIGH) {
1687 		ret = 0;
1688 		goto out;
1689 	}
1690 
1691 	i = shannon_entropy(ws);
1692 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1693 		ret = 4;
1694 		goto out;
1695 	}
1696 
1697 	/*
1698 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1699 	 * needed to give green light to compression.
1700 	 *
1701 	 * For now just assume that compression at that level is not worth the
1702 	 * resources because:
1703 	 *
1704 	 * 1. it is possible to defrag the data later
1705 	 *
1706 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1707 	 * values, every bucket has counter at level ~54. The heuristic would
1708 	 * be confused. This can happen when data have some internal repeated
1709 	 * patterns like "abbacbbc...". This can be detected by analyzing
1710 	 * pairs of bytes, which is too costly.
1711 	 */
1712 	if (i < ENTROPY_LVL_HIGH) {
1713 		ret = 5;
1714 		goto out;
1715 	} else {
1716 		ret = 0;
1717 		goto out;
1718 	}
1719 
1720 out:
1721 	put_workspace(0, ws_list);
1722 	return ret;
1723 }
1724 
1725 /*
1726  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1727  * level, unrecognized string will set the default level
1728  */
1729 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1730 {
1731 	unsigned int level = 0;
1732 	int ret;
1733 
1734 	if (!type)
1735 		return 0;
1736 
1737 	if (str[0] == ':') {
1738 		ret = kstrtouint(str + 1, 10, &level);
1739 		if (ret)
1740 			level = 0;
1741 	}
1742 
1743 	level = btrfs_compress_set_level(type, level);
1744 
1745 	return level;
1746 }
1747