1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/kthread.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sched/mm.h> 20 #include <linux/log2.h> 21 #include <crypto/hash.h> 22 #include "misc.h" 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "volumes.h" 28 #include "ordered-data.h" 29 #include "compression.h" 30 #include "extent_io.h" 31 #include "extent_map.h" 32 #include "subpage.h" 33 #include "zoned.h" 34 35 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 36 37 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 38 { 39 switch (type) { 40 case BTRFS_COMPRESS_ZLIB: 41 case BTRFS_COMPRESS_LZO: 42 case BTRFS_COMPRESS_ZSTD: 43 case BTRFS_COMPRESS_NONE: 44 return btrfs_compress_types[type]; 45 default: 46 break; 47 } 48 49 return NULL; 50 } 51 52 bool btrfs_compress_is_valid_type(const char *str, size_t len) 53 { 54 int i; 55 56 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 57 size_t comp_len = strlen(btrfs_compress_types[i]); 58 59 if (len < comp_len) 60 continue; 61 62 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 63 return true; 64 } 65 return false; 66 } 67 68 static int compression_compress_pages(int type, struct list_head *ws, 69 struct address_space *mapping, u64 start, struct page **pages, 70 unsigned long *out_pages, unsigned long *total_in, 71 unsigned long *total_out) 72 { 73 switch (type) { 74 case BTRFS_COMPRESS_ZLIB: 75 return zlib_compress_pages(ws, mapping, start, pages, 76 out_pages, total_in, total_out); 77 case BTRFS_COMPRESS_LZO: 78 return lzo_compress_pages(ws, mapping, start, pages, 79 out_pages, total_in, total_out); 80 case BTRFS_COMPRESS_ZSTD: 81 return zstd_compress_pages(ws, mapping, start, pages, 82 out_pages, total_in, total_out); 83 case BTRFS_COMPRESS_NONE: 84 default: 85 /* 86 * This can happen when compression races with remount setting 87 * it to 'no compress', while caller doesn't call 88 * inode_need_compress() to check if we really need to 89 * compress. 90 * 91 * Not a big deal, just need to inform caller that we 92 * haven't allocated any pages yet. 93 */ 94 *out_pages = 0; 95 return -E2BIG; 96 } 97 } 98 99 static int compression_decompress_bio(struct list_head *ws, 100 struct compressed_bio *cb) 101 { 102 switch (cb->compress_type) { 103 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 104 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 105 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 106 case BTRFS_COMPRESS_NONE: 107 default: 108 /* 109 * This can't happen, the type is validated several times 110 * before we get here. 111 */ 112 BUG(); 113 } 114 } 115 116 static int compression_decompress(int type, struct list_head *ws, 117 unsigned char *data_in, struct page *dest_page, 118 unsigned long start_byte, size_t srclen, size_t destlen) 119 { 120 switch (type) { 121 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 122 start_byte, srclen, destlen); 123 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 124 start_byte, srclen, destlen); 125 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 126 start_byte, srclen, destlen); 127 case BTRFS_COMPRESS_NONE: 128 default: 129 /* 130 * This can't happen, the type is validated several times 131 * before we get here. 132 */ 133 BUG(); 134 } 135 } 136 137 static int btrfs_decompress_bio(struct compressed_bio *cb); 138 139 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 140 unsigned long disk_size) 141 { 142 return sizeof(struct compressed_bio) + 143 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size; 144 } 145 146 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio, 147 u64 disk_start) 148 { 149 struct btrfs_fs_info *fs_info = inode->root->fs_info; 150 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 151 const u32 csum_size = fs_info->csum_size; 152 const u32 sectorsize = fs_info->sectorsize; 153 struct page *page; 154 unsigned int i; 155 char *kaddr; 156 u8 csum[BTRFS_CSUM_SIZE]; 157 struct compressed_bio *cb = bio->bi_private; 158 u8 *cb_sum = cb->sums; 159 160 if ((inode->flags & BTRFS_INODE_NODATASUM) || 161 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) 162 return 0; 163 164 shash->tfm = fs_info->csum_shash; 165 166 for (i = 0; i < cb->nr_pages; i++) { 167 u32 pg_offset; 168 u32 bytes_left = PAGE_SIZE; 169 page = cb->compressed_pages[i]; 170 171 /* Determine the remaining bytes inside the page first */ 172 if (i == cb->nr_pages - 1) 173 bytes_left = cb->compressed_len - i * PAGE_SIZE; 174 175 /* Hash through the page sector by sector */ 176 for (pg_offset = 0; pg_offset < bytes_left; 177 pg_offset += sectorsize) { 178 kaddr = kmap_atomic(page); 179 crypto_shash_digest(shash, kaddr + pg_offset, 180 sectorsize, csum); 181 kunmap_atomic(kaddr); 182 183 if (memcmp(&csum, cb_sum, csum_size) != 0) { 184 btrfs_print_data_csum_error(inode, disk_start, 185 csum, cb_sum, cb->mirror_num); 186 if (btrfs_bio(bio)->device) 187 btrfs_dev_stat_inc_and_print( 188 btrfs_bio(bio)->device, 189 BTRFS_DEV_STAT_CORRUPTION_ERRS); 190 return -EIO; 191 } 192 cb_sum += csum_size; 193 disk_start += sectorsize; 194 } 195 } 196 return 0; 197 } 198 199 /* 200 * Reduce bio and io accounting for a compressed_bio with its corresponding bio. 201 * 202 * Return true if there is no pending bio nor io. 203 * Return false otherwise. 204 */ 205 static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio) 206 { 207 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb); 208 unsigned int bi_size = 0; 209 bool last_io = false; 210 struct bio_vec *bvec; 211 struct bvec_iter_all iter_all; 212 213 /* 214 * At endio time, bi_iter.bi_size doesn't represent the real bio size. 215 * Thus here we have to iterate through all segments to grab correct 216 * bio size. 217 */ 218 bio_for_each_segment_all(bvec, bio, iter_all) 219 bi_size += bvec->bv_len; 220 221 if (bio->bi_status) 222 cb->errors = 1; 223 224 ASSERT(bi_size && bi_size <= cb->compressed_len); 225 last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits, 226 &cb->pending_sectors); 227 /* 228 * Here we must wake up the possible error handler after all other 229 * operations on @cb finished, or we can race with 230 * finish_compressed_bio_*() which may free @cb. 231 */ 232 wake_up_var(cb); 233 234 return last_io; 235 } 236 237 static void finish_compressed_bio_read(struct compressed_bio *cb, struct bio *bio) 238 { 239 unsigned int index; 240 struct page *page; 241 242 /* Release the compressed pages */ 243 for (index = 0; index < cb->nr_pages; index++) { 244 page = cb->compressed_pages[index]; 245 page->mapping = NULL; 246 put_page(page); 247 } 248 249 /* Do io completion on the original bio */ 250 if (cb->errors) { 251 bio_io_error(cb->orig_bio); 252 } else { 253 struct bio_vec *bvec; 254 struct bvec_iter_all iter_all; 255 256 ASSERT(bio); 257 ASSERT(!bio->bi_status); 258 /* 259 * We have verified the checksum already, set page checked so 260 * the end_io handlers know about it 261 */ 262 ASSERT(!bio_flagged(bio, BIO_CLONED)); 263 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) { 264 u64 bvec_start = page_offset(bvec->bv_page) + 265 bvec->bv_offset; 266 267 btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb), 268 bvec->bv_page, bvec_start, 269 bvec->bv_len); 270 } 271 272 bio_endio(cb->orig_bio); 273 } 274 275 /* Finally free the cb struct */ 276 kfree(cb->compressed_pages); 277 kfree(cb); 278 } 279 280 /* when we finish reading compressed pages from the disk, we 281 * decompress them and then run the bio end_io routines on the 282 * decompressed pages (in the inode address space). 283 * 284 * This allows the checksumming and other IO error handling routines 285 * to work normally 286 * 287 * The compressed pages are freed here, and it must be run 288 * in process context 289 */ 290 static void end_compressed_bio_read(struct bio *bio) 291 { 292 struct compressed_bio *cb = bio->bi_private; 293 struct inode *inode; 294 unsigned int mirror = btrfs_bio(bio)->mirror_num; 295 int ret = 0; 296 297 if (!dec_and_test_compressed_bio(cb, bio)) 298 goto out; 299 300 /* 301 * Record the correct mirror_num in cb->orig_bio so that 302 * read-repair can work properly. 303 */ 304 btrfs_bio(cb->orig_bio)->mirror_num = mirror; 305 cb->mirror_num = mirror; 306 307 /* 308 * Some IO in this cb have failed, just skip checksum as there 309 * is no way it could be correct. 310 */ 311 if (cb->errors == 1) 312 goto csum_failed; 313 314 inode = cb->inode; 315 ret = check_compressed_csum(BTRFS_I(inode), bio, 316 bio->bi_iter.bi_sector << 9); 317 if (ret) 318 goto csum_failed; 319 320 /* ok, we're the last bio for this extent, lets start 321 * the decompression. 322 */ 323 ret = btrfs_decompress_bio(cb); 324 325 csum_failed: 326 if (ret) 327 cb->errors = 1; 328 finish_compressed_bio_read(cb, bio); 329 out: 330 bio_put(bio); 331 } 332 333 /* 334 * Clear the writeback bits on all of the file 335 * pages for a compressed write 336 */ 337 static noinline void end_compressed_writeback(struct inode *inode, 338 const struct compressed_bio *cb) 339 { 340 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 341 unsigned long index = cb->start >> PAGE_SHIFT; 342 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 343 struct page *pages[16]; 344 unsigned long nr_pages = end_index - index + 1; 345 int i; 346 int ret; 347 348 if (cb->errors) 349 mapping_set_error(inode->i_mapping, -EIO); 350 351 while (nr_pages > 0) { 352 ret = find_get_pages_contig(inode->i_mapping, index, 353 min_t(unsigned long, 354 nr_pages, ARRAY_SIZE(pages)), pages); 355 if (ret == 0) { 356 nr_pages -= 1; 357 index += 1; 358 continue; 359 } 360 for (i = 0; i < ret; i++) { 361 if (cb->errors) 362 SetPageError(pages[i]); 363 btrfs_page_clamp_clear_writeback(fs_info, pages[i], 364 cb->start, cb->len); 365 put_page(pages[i]); 366 } 367 nr_pages -= ret; 368 index += ret; 369 } 370 /* the inode may be gone now */ 371 } 372 373 static void finish_compressed_bio_write(struct compressed_bio *cb) 374 { 375 struct inode *inode = cb->inode; 376 unsigned int index; 377 378 /* 379 * Ok, we're the last bio for this extent, step one is to call back 380 * into the FS and do all the end_io operations. 381 */ 382 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL, 383 cb->start, cb->start + cb->len - 1, 384 !cb->errors); 385 386 end_compressed_writeback(inode, cb); 387 /* Note, our inode could be gone now */ 388 389 /* 390 * Release the compressed pages, these came from alloc_page and 391 * are not attached to the inode at all 392 */ 393 for (index = 0; index < cb->nr_pages; index++) { 394 struct page *page = cb->compressed_pages[index]; 395 396 page->mapping = NULL; 397 put_page(page); 398 } 399 400 /* Finally free the cb struct */ 401 kfree(cb->compressed_pages); 402 kfree(cb); 403 } 404 405 /* 406 * Do the cleanup once all the compressed pages hit the disk. This will clear 407 * writeback on the file pages and free the compressed pages. 408 * 409 * This also calls the writeback end hooks for the file pages so that metadata 410 * and checksums can be updated in the file. 411 */ 412 static void end_compressed_bio_write(struct bio *bio) 413 { 414 struct compressed_bio *cb = bio->bi_private; 415 416 if (!dec_and_test_compressed_bio(cb, bio)) 417 goto out; 418 419 btrfs_record_physical_zoned(cb->inode, cb->start, bio); 420 421 finish_compressed_bio_write(cb); 422 out: 423 bio_put(bio); 424 } 425 426 static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info, 427 struct compressed_bio *cb, 428 struct bio *bio, int mirror_num) 429 { 430 blk_status_t ret; 431 432 ASSERT(bio->bi_iter.bi_size); 433 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 434 if (ret) 435 return ret; 436 ret = btrfs_map_bio(fs_info, bio, mirror_num); 437 return ret; 438 } 439 440 /* 441 * Allocate a compressed_bio, which will be used to read/write on-disk 442 * (aka, compressed) * data. 443 * 444 * @cb: The compressed_bio structure, which records all the needed 445 * information to bind the compressed data to the uncompressed 446 * page cache. 447 * @disk_byten: The logical bytenr where the compressed data will be read 448 * from or written to. 449 * @endio_func: The endio function to call after the IO for compressed data 450 * is finished. 451 * @next_stripe_start: Return value of logical bytenr of where next stripe starts. 452 * Let the caller know to only fill the bio up to the stripe 453 * boundary. 454 */ 455 456 457 static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr, 458 unsigned int opf, bio_end_io_t endio_func, 459 u64 *next_stripe_start) 460 { 461 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb); 462 struct btrfs_io_geometry geom; 463 struct extent_map *em; 464 struct bio *bio; 465 int ret; 466 467 bio = btrfs_bio_alloc(BIO_MAX_VECS); 468 469 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 470 bio->bi_opf = opf; 471 bio->bi_private = cb; 472 bio->bi_end_io = endio_func; 473 474 em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize); 475 if (IS_ERR(em)) { 476 bio_put(bio); 477 return ERR_CAST(em); 478 } 479 480 if (bio_op(bio) == REQ_OP_ZONE_APPEND) 481 bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev); 482 483 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom); 484 free_extent_map(em); 485 if (ret < 0) { 486 bio_put(bio); 487 return ERR_PTR(ret); 488 } 489 *next_stripe_start = disk_bytenr + geom.len; 490 491 return bio; 492 } 493 494 /* 495 * worker function to build and submit bios for previously compressed pages. 496 * The corresponding pages in the inode should be marked for writeback 497 * and the compressed pages should have a reference on them for dropping 498 * when the IO is complete. 499 * 500 * This also checksums the file bytes and gets things ready for 501 * the end io hooks. 502 */ 503 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 504 unsigned int len, u64 disk_start, 505 unsigned int compressed_len, 506 struct page **compressed_pages, 507 unsigned int nr_pages, 508 unsigned int write_flags, 509 struct cgroup_subsys_state *blkcg_css) 510 { 511 struct btrfs_fs_info *fs_info = inode->root->fs_info; 512 struct bio *bio = NULL; 513 struct compressed_bio *cb; 514 u64 cur_disk_bytenr = disk_start; 515 u64 next_stripe_start; 516 blk_status_t ret; 517 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; 518 const bool use_append = btrfs_use_zone_append(inode, disk_start); 519 const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE; 520 521 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 522 IS_ALIGNED(len, fs_info->sectorsize)); 523 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 524 if (!cb) 525 return BLK_STS_RESOURCE; 526 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits); 527 cb->errors = 0; 528 cb->inode = &inode->vfs_inode; 529 cb->start = start; 530 cb->len = len; 531 cb->mirror_num = 0; 532 cb->compressed_pages = compressed_pages; 533 cb->compressed_len = compressed_len; 534 cb->orig_bio = NULL; 535 cb->nr_pages = nr_pages; 536 537 while (cur_disk_bytenr < disk_start + compressed_len) { 538 u64 offset = cur_disk_bytenr - disk_start; 539 unsigned int index = offset >> PAGE_SHIFT; 540 unsigned int real_size; 541 unsigned int added; 542 struct page *page = compressed_pages[index]; 543 bool submit = false; 544 545 /* Allocate new bio if submitted or not yet allocated */ 546 if (!bio) { 547 bio = alloc_compressed_bio(cb, cur_disk_bytenr, 548 bio_op | write_flags, end_compressed_bio_write, 549 &next_stripe_start); 550 if (IS_ERR(bio)) { 551 ret = errno_to_blk_status(PTR_ERR(bio)); 552 bio = NULL; 553 goto finish_cb; 554 } 555 } 556 /* 557 * We should never reach next_stripe_start start as we will 558 * submit comp_bio when reach the boundary immediately. 559 */ 560 ASSERT(cur_disk_bytenr != next_stripe_start); 561 562 /* 563 * We have various limits on the real read size: 564 * - stripe boundary 565 * - page boundary 566 * - compressed length boundary 567 */ 568 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr); 569 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset)); 570 real_size = min_t(u64, real_size, compressed_len - offset); 571 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize)); 572 573 if (use_append) 574 added = bio_add_zone_append_page(bio, page, real_size, 575 offset_in_page(offset)); 576 else 577 added = bio_add_page(bio, page, real_size, 578 offset_in_page(offset)); 579 /* Reached zoned boundary */ 580 if (added == 0) 581 submit = true; 582 583 cur_disk_bytenr += added; 584 /* Reached stripe boundary */ 585 if (cur_disk_bytenr == next_stripe_start) 586 submit = true; 587 588 /* Finished the range */ 589 if (cur_disk_bytenr == disk_start + compressed_len) 590 submit = true; 591 592 if (submit) { 593 if (!skip_sum) { 594 ret = btrfs_csum_one_bio(inode, bio, start, 1); 595 if (ret) 596 goto finish_cb; 597 } 598 599 ret = submit_compressed_bio(fs_info, cb, bio, 0); 600 if (ret) 601 goto finish_cb; 602 bio = NULL; 603 } 604 cond_resched(); 605 } 606 if (blkcg_css) 607 kthread_associate_blkcg(NULL); 608 609 return 0; 610 611 finish_cb: 612 if (bio) { 613 bio->bi_status = ret; 614 bio_endio(bio); 615 } 616 /* Last byte of @cb is submitted, endio will free @cb */ 617 if (cur_disk_bytenr == disk_start + compressed_len) 618 return ret; 619 620 wait_var_event(cb, refcount_read(&cb->pending_sectors) == 621 (disk_start + compressed_len - cur_disk_bytenr) >> 622 fs_info->sectorsize_bits); 623 /* 624 * Even with previous bio ended, we should still have io not yet 625 * submitted, thus need to finish manually. 626 */ 627 ASSERT(refcount_read(&cb->pending_sectors)); 628 /* Now we are the only one referring @cb, can finish it safely. */ 629 finish_compressed_bio_write(cb); 630 return ret; 631 } 632 633 static u64 bio_end_offset(struct bio *bio) 634 { 635 struct bio_vec *last = bio_last_bvec_all(bio); 636 637 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 638 } 639 640 /* 641 * Add extra pages in the same compressed file extent so that we don't need to 642 * re-read the same extent again and again. 643 * 644 * NOTE: this won't work well for subpage, as for subpage read, we lock the 645 * full page then submit bio for each compressed/regular extents. 646 * 647 * This means, if we have several sectors in the same page points to the same 648 * on-disk compressed data, we will re-read the same extent many times and 649 * this function can only help for the next page. 650 */ 651 static noinline int add_ra_bio_pages(struct inode *inode, 652 u64 compressed_end, 653 struct compressed_bio *cb) 654 { 655 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 656 unsigned long end_index; 657 u64 cur = bio_end_offset(cb->orig_bio); 658 u64 isize = i_size_read(inode); 659 int ret; 660 struct page *page; 661 struct extent_map *em; 662 struct address_space *mapping = inode->i_mapping; 663 struct extent_map_tree *em_tree; 664 struct extent_io_tree *tree; 665 int sectors_missed = 0; 666 667 em_tree = &BTRFS_I(inode)->extent_tree; 668 tree = &BTRFS_I(inode)->io_tree; 669 670 if (isize == 0) 671 return 0; 672 673 /* 674 * For current subpage support, we only support 64K page size, 675 * which means maximum compressed extent size (128K) is just 2x page 676 * size. 677 * This makes readahead less effective, so here disable readahead for 678 * subpage for now, until full compressed write is supported. 679 */ 680 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE) 681 return 0; 682 683 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 684 685 while (cur < compressed_end) { 686 u64 page_end; 687 u64 pg_index = cur >> PAGE_SHIFT; 688 u32 add_size; 689 690 if (pg_index > end_index) 691 break; 692 693 page = xa_load(&mapping->i_pages, pg_index); 694 if (page && !xa_is_value(page)) { 695 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >> 696 fs_info->sectorsize_bits; 697 698 /* Beyond threshold, no need to continue */ 699 if (sectors_missed > 4) 700 break; 701 702 /* 703 * Jump to next page start as we already have page for 704 * current offset. 705 */ 706 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 707 continue; 708 } 709 710 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 711 ~__GFP_FS)); 712 if (!page) 713 break; 714 715 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 716 put_page(page); 717 /* There is already a page, skip to page end */ 718 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE; 719 continue; 720 } 721 722 ret = set_page_extent_mapped(page); 723 if (ret < 0) { 724 unlock_page(page); 725 put_page(page); 726 break; 727 } 728 729 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1; 730 lock_extent(tree, cur, page_end); 731 read_lock(&em_tree->lock); 732 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur); 733 read_unlock(&em_tree->lock); 734 735 /* 736 * At this point, we have a locked page in the page cache for 737 * these bytes in the file. But, we have to make sure they map 738 * to this compressed extent on disk. 739 */ 740 if (!em || cur < em->start || 741 (cur + fs_info->sectorsize > extent_map_end(em)) || 742 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 743 free_extent_map(em); 744 unlock_extent(tree, cur, page_end); 745 unlock_page(page); 746 put_page(page); 747 break; 748 } 749 free_extent_map(em); 750 751 if (page->index == end_index) { 752 size_t zero_offset = offset_in_page(isize); 753 754 if (zero_offset) { 755 int zeros; 756 zeros = PAGE_SIZE - zero_offset; 757 memzero_page(page, zero_offset, zeros); 758 flush_dcache_page(page); 759 } 760 } 761 762 add_size = min(em->start + em->len, page_end + 1) - cur; 763 ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur)); 764 if (ret != add_size) { 765 unlock_extent(tree, cur, page_end); 766 unlock_page(page); 767 put_page(page); 768 break; 769 } 770 /* 771 * If it's subpage, we also need to increase its 772 * subpage::readers number, as at endio we will decrease 773 * subpage::readers and to unlock the page. 774 */ 775 if (fs_info->sectorsize < PAGE_SIZE) 776 btrfs_subpage_start_reader(fs_info, page, cur, add_size); 777 put_page(page); 778 cur += add_size; 779 } 780 return 0; 781 } 782 783 /* 784 * for a compressed read, the bio we get passed has all the inode pages 785 * in it. We don't actually do IO on those pages but allocate new ones 786 * to hold the compressed pages on disk. 787 * 788 * bio->bi_iter.bi_sector points to the compressed extent on disk 789 * bio->bi_io_vec points to all of the inode pages 790 * 791 * After the compressed pages are read, we copy the bytes into the 792 * bio we were passed and then call the bio end_io calls 793 */ 794 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 795 int mirror_num, unsigned long bio_flags) 796 { 797 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 798 struct extent_map_tree *em_tree; 799 struct compressed_bio *cb; 800 unsigned int compressed_len; 801 unsigned int nr_pages; 802 unsigned int pg_index; 803 struct bio *comp_bio = NULL; 804 const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT; 805 u64 cur_disk_byte = disk_bytenr; 806 u64 next_stripe_start; 807 u64 file_offset; 808 u64 em_len; 809 u64 em_start; 810 struct extent_map *em; 811 blk_status_t ret = BLK_STS_RESOURCE; 812 int faili = 0; 813 u8 *sums; 814 815 em_tree = &BTRFS_I(inode)->extent_tree; 816 817 file_offset = bio_first_bvec_all(bio)->bv_offset + 818 page_offset(bio_first_page_all(bio)); 819 820 /* we need the actual starting offset of this extent in the file */ 821 read_lock(&em_tree->lock); 822 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize); 823 read_unlock(&em_tree->lock); 824 if (!em) 825 return BLK_STS_IOERR; 826 827 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE); 828 compressed_len = em->block_len; 829 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 830 if (!cb) 831 goto out; 832 833 refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits); 834 cb->errors = 0; 835 cb->inode = inode; 836 cb->mirror_num = mirror_num; 837 sums = cb->sums; 838 839 cb->start = em->orig_start; 840 em_len = em->len; 841 em_start = em->start; 842 843 free_extent_map(em); 844 em = NULL; 845 846 cb->len = bio->bi_iter.bi_size; 847 cb->compressed_len = compressed_len; 848 cb->compress_type = extent_compress_type(bio_flags); 849 cb->orig_bio = bio; 850 851 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 852 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 853 GFP_NOFS); 854 if (!cb->compressed_pages) 855 goto fail1; 856 857 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 858 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS); 859 if (!cb->compressed_pages[pg_index]) { 860 faili = pg_index - 1; 861 ret = BLK_STS_RESOURCE; 862 goto fail2; 863 } 864 } 865 faili = nr_pages - 1; 866 cb->nr_pages = nr_pages; 867 868 add_ra_bio_pages(inode, em_start + em_len, cb); 869 870 /* include any pages we added in add_ra-bio_pages */ 871 cb->len = bio->bi_iter.bi_size; 872 873 while (cur_disk_byte < disk_bytenr + compressed_len) { 874 u64 offset = cur_disk_byte - disk_bytenr; 875 unsigned int index = offset >> PAGE_SHIFT; 876 unsigned int real_size; 877 unsigned int added; 878 struct page *page = cb->compressed_pages[index]; 879 bool submit = false; 880 881 /* Allocate new bio if submitted or not yet allocated */ 882 if (!comp_bio) { 883 comp_bio = alloc_compressed_bio(cb, cur_disk_byte, 884 REQ_OP_READ, end_compressed_bio_read, 885 &next_stripe_start); 886 if (IS_ERR(comp_bio)) { 887 ret = errno_to_blk_status(PTR_ERR(comp_bio)); 888 comp_bio = NULL; 889 goto finish_cb; 890 } 891 } 892 /* 893 * We should never reach next_stripe_start start as we will 894 * submit comp_bio when reach the boundary immediately. 895 */ 896 ASSERT(cur_disk_byte != next_stripe_start); 897 /* 898 * We have various limit on the real read size: 899 * - stripe boundary 900 * - page boundary 901 * - compressed length boundary 902 */ 903 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte); 904 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset)); 905 real_size = min_t(u64, real_size, compressed_len - offset); 906 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize)); 907 908 added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset)); 909 /* 910 * Maximum compressed extent is smaller than bio size limit, 911 * thus bio_add_page() should always success. 912 */ 913 ASSERT(added == real_size); 914 cur_disk_byte += added; 915 916 /* Reached stripe boundary, need to submit */ 917 if (cur_disk_byte == next_stripe_start) 918 submit = true; 919 920 /* Has finished the range, need to submit */ 921 if (cur_disk_byte == disk_bytenr + compressed_len) 922 submit = true; 923 924 if (submit) { 925 unsigned int nr_sectors; 926 927 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 928 if (ret) 929 goto finish_cb; 930 931 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 932 fs_info->sectorsize); 933 sums += fs_info->csum_size * nr_sectors; 934 935 ret = submit_compressed_bio(fs_info, cb, comp_bio, mirror_num); 936 if (ret) 937 goto finish_cb; 938 comp_bio = NULL; 939 } 940 } 941 return 0; 942 943 fail2: 944 while (faili >= 0) { 945 __free_page(cb->compressed_pages[faili]); 946 faili--; 947 } 948 949 kfree(cb->compressed_pages); 950 fail1: 951 kfree(cb); 952 out: 953 free_extent_map(em); 954 return ret; 955 finish_cb: 956 if (comp_bio) { 957 comp_bio->bi_status = ret; 958 bio_endio(comp_bio); 959 } 960 /* All bytes of @cb is submitted, endio will free @cb */ 961 if (cur_disk_byte == disk_bytenr + compressed_len) 962 return ret; 963 964 wait_var_event(cb, refcount_read(&cb->pending_sectors) == 965 (disk_bytenr + compressed_len - cur_disk_byte) >> 966 fs_info->sectorsize_bits); 967 /* 968 * Even with previous bio ended, we should still have io not yet 969 * submitted, thus need to finish @cb manually. 970 */ 971 ASSERT(refcount_read(&cb->pending_sectors)); 972 /* Now we are the only one referring @cb, can finish it safely. */ 973 finish_compressed_bio_read(cb, NULL); 974 return ret; 975 } 976 977 /* 978 * Heuristic uses systematic sampling to collect data from the input data 979 * range, the logic can be tuned by the following constants: 980 * 981 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 982 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 983 */ 984 #define SAMPLING_READ_SIZE (16) 985 #define SAMPLING_INTERVAL (256) 986 987 /* 988 * For statistical analysis of the input data we consider bytes that form a 989 * Galois Field of 256 objects. Each object has an attribute count, ie. how 990 * many times the object appeared in the sample. 991 */ 992 #define BUCKET_SIZE (256) 993 994 /* 995 * The size of the sample is based on a statistical sampling rule of thumb. 996 * The common way is to perform sampling tests as long as the number of 997 * elements in each cell is at least 5. 998 * 999 * Instead of 5, we choose 32 to obtain more accurate results. 1000 * If the data contain the maximum number of symbols, which is 256, we obtain a 1001 * sample size bound by 8192. 1002 * 1003 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 1004 * from up to 512 locations. 1005 */ 1006 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 1007 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 1008 1009 struct bucket_item { 1010 u32 count; 1011 }; 1012 1013 struct heuristic_ws { 1014 /* Partial copy of input data */ 1015 u8 *sample; 1016 u32 sample_size; 1017 /* Buckets store counters for each byte value */ 1018 struct bucket_item *bucket; 1019 /* Sorting buffer */ 1020 struct bucket_item *bucket_b; 1021 struct list_head list; 1022 }; 1023 1024 static struct workspace_manager heuristic_wsm; 1025 1026 static void free_heuristic_ws(struct list_head *ws) 1027 { 1028 struct heuristic_ws *workspace; 1029 1030 workspace = list_entry(ws, struct heuristic_ws, list); 1031 1032 kvfree(workspace->sample); 1033 kfree(workspace->bucket); 1034 kfree(workspace->bucket_b); 1035 kfree(workspace); 1036 } 1037 1038 static struct list_head *alloc_heuristic_ws(unsigned int level) 1039 { 1040 struct heuristic_ws *ws; 1041 1042 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 1043 if (!ws) 1044 return ERR_PTR(-ENOMEM); 1045 1046 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 1047 if (!ws->sample) 1048 goto fail; 1049 1050 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 1051 if (!ws->bucket) 1052 goto fail; 1053 1054 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 1055 if (!ws->bucket_b) 1056 goto fail; 1057 1058 INIT_LIST_HEAD(&ws->list); 1059 return &ws->list; 1060 fail: 1061 free_heuristic_ws(&ws->list); 1062 return ERR_PTR(-ENOMEM); 1063 } 1064 1065 const struct btrfs_compress_op btrfs_heuristic_compress = { 1066 .workspace_manager = &heuristic_wsm, 1067 }; 1068 1069 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 1070 /* The heuristic is represented as compression type 0 */ 1071 &btrfs_heuristic_compress, 1072 &btrfs_zlib_compress, 1073 &btrfs_lzo_compress, 1074 &btrfs_zstd_compress, 1075 }; 1076 1077 static struct list_head *alloc_workspace(int type, unsigned int level) 1078 { 1079 switch (type) { 1080 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 1081 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 1082 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 1083 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 1084 default: 1085 /* 1086 * This can't happen, the type is validated several times 1087 * before we get here. 1088 */ 1089 BUG(); 1090 } 1091 } 1092 1093 static void free_workspace(int type, struct list_head *ws) 1094 { 1095 switch (type) { 1096 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 1097 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 1098 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 1099 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 1100 default: 1101 /* 1102 * This can't happen, the type is validated several times 1103 * before we get here. 1104 */ 1105 BUG(); 1106 } 1107 } 1108 1109 static void btrfs_init_workspace_manager(int type) 1110 { 1111 struct workspace_manager *wsm; 1112 struct list_head *workspace; 1113 1114 wsm = btrfs_compress_op[type]->workspace_manager; 1115 INIT_LIST_HEAD(&wsm->idle_ws); 1116 spin_lock_init(&wsm->ws_lock); 1117 atomic_set(&wsm->total_ws, 0); 1118 init_waitqueue_head(&wsm->ws_wait); 1119 1120 /* 1121 * Preallocate one workspace for each compression type so we can 1122 * guarantee forward progress in the worst case 1123 */ 1124 workspace = alloc_workspace(type, 0); 1125 if (IS_ERR(workspace)) { 1126 pr_warn( 1127 "BTRFS: cannot preallocate compression workspace, will try later\n"); 1128 } else { 1129 atomic_set(&wsm->total_ws, 1); 1130 wsm->free_ws = 1; 1131 list_add(workspace, &wsm->idle_ws); 1132 } 1133 } 1134 1135 static void btrfs_cleanup_workspace_manager(int type) 1136 { 1137 struct workspace_manager *wsman; 1138 struct list_head *ws; 1139 1140 wsman = btrfs_compress_op[type]->workspace_manager; 1141 while (!list_empty(&wsman->idle_ws)) { 1142 ws = wsman->idle_ws.next; 1143 list_del(ws); 1144 free_workspace(type, ws); 1145 atomic_dec(&wsman->total_ws); 1146 } 1147 } 1148 1149 /* 1150 * This finds an available workspace or allocates a new one. 1151 * If it's not possible to allocate a new one, waits until there's one. 1152 * Preallocation makes a forward progress guarantees and we do not return 1153 * errors. 1154 */ 1155 struct list_head *btrfs_get_workspace(int type, unsigned int level) 1156 { 1157 struct workspace_manager *wsm; 1158 struct list_head *workspace; 1159 int cpus = num_online_cpus(); 1160 unsigned nofs_flag; 1161 struct list_head *idle_ws; 1162 spinlock_t *ws_lock; 1163 atomic_t *total_ws; 1164 wait_queue_head_t *ws_wait; 1165 int *free_ws; 1166 1167 wsm = btrfs_compress_op[type]->workspace_manager; 1168 idle_ws = &wsm->idle_ws; 1169 ws_lock = &wsm->ws_lock; 1170 total_ws = &wsm->total_ws; 1171 ws_wait = &wsm->ws_wait; 1172 free_ws = &wsm->free_ws; 1173 1174 again: 1175 spin_lock(ws_lock); 1176 if (!list_empty(idle_ws)) { 1177 workspace = idle_ws->next; 1178 list_del(workspace); 1179 (*free_ws)--; 1180 spin_unlock(ws_lock); 1181 return workspace; 1182 1183 } 1184 if (atomic_read(total_ws) > cpus) { 1185 DEFINE_WAIT(wait); 1186 1187 spin_unlock(ws_lock); 1188 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 1189 if (atomic_read(total_ws) > cpus && !*free_ws) 1190 schedule(); 1191 finish_wait(ws_wait, &wait); 1192 goto again; 1193 } 1194 atomic_inc(total_ws); 1195 spin_unlock(ws_lock); 1196 1197 /* 1198 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1199 * to turn it off here because we might get called from the restricted 1200 * context of btrfs_compress_bio/btrfs_compress_pages 1201 */ 1202 nofs_flag = memalloc_nofs_save(); 1203 workspace = alloc_workspace(type, level); 1204 memalloc_nofs_restore(nofs_flag); 1205 1206 if (IS_ERR(workspace)) { 1207 atomic_dec(total_ws); 1208 wake_up(ws_wait); 1209 1210 /* 1211 * Do not return the error but go back to waiting. There's a 1212 * workspace preallocated for each type and the compression 1213 * time is bounded so we get to a workspace eventually. This 1214 * makes our caller's life easier. 1215 * 1216 * To prevent silent and low-probability deadlocks (when the 1217 * initial preallocation fails), check if there are any 1218 * workspaces at all. 1219 */ 1220 if (atomic_read(total_ws) == 0) { 1221 static DEFINE_RATELIMIT_STATE(_rs, 1222 /* once per minute */ 60 * HZ, 1223 /* no burst */ 1); 1224 1225 if (__ratelimit(&_rs)) { 1226 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1227 } 1228 } 1229 goto again; 1230 } 1231 return workspace; 1232 } 1233 1234 static struct list_head *get_workspace(int type, int level) 1235 { 1236 switch (type) { 1237 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1238 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1239 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1240 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1241 default: 1242 /* 1243 * This can't happen, the type is validated several times 1244 * before we get here. 1245 */ 1246 BUG(); 1247 } 1248 } 1249 1250 /* 1251 * put a workspace struct back on the list or free it if we have enough 1252 * idle ones sitting around 1253 */ 1254 void btrfs_put_workspace(int type, struct list_head *ws) 1255 { 1256 struct workspace_manager *wsm; 1257 struct list_head *idle_ws; 1258 spinlock_t *ws_lock; 1259 atomic_t *total_ws; 1260 wait_queue_head_t *ws_wait; 1261 int *free_ws; 1262 1263 wsm = btrfs_compress_op[type]->workspace_manager; 1264 idle_ws = &wsm->idle_ws; 1265 ws_lock = &wsm->ws_lock; 1266 total_ws = &wsm->total_ws; 1267 ws_wait = &wsm->ws_wait; 1268 free_ws = &wsm->free_ws; 1269 1270 spin_lock(ws_lock); 1271 if (*free_ws <= num_online_cpus()) { 1272 list_add(ws, idle_ws); 1273 (*free_ws)++; 1274 spin_unlock(ws_lock); 1275 goto wake; 1276 } 1277 spin_unlock(ws_lock); 1278 1279 free_workspace(type, ws); 1280 atomic_dec(total_ws); 1281 wake: 1282 cond_wake_up(ws_wait); 1283 } 1284 1285 static void put_workspace(int type, struct list_head *ws) 1286 { 1287 switch (type) { 1288 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1289 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1290 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1291 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1292 default: 1293 /* 1294 * This can't happen, the type is validated several times 1295 * before we get here. 1296 */ 1297 BUG(); 1298 } 1299 } 1300 1301 /* 1302 * Adjust @level according to the limits of the compression algorithm or 1303 * fallback to default 1304 */ 1305 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1306 { 1307 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1308 1309 if (level == 0) 1310 level = ops->default_level; 1311 else 1312 level = min(level, ops->max_level); 1313 1314 return level; 1315 } 1316 1317 /* 1318 * Given an address space and start and length, compress the bytes into @pages 1319 * that are allocated on demand. 1320 * 1321 * @type_level is encoded algorithm and level, where level 0 means whatever 1322 * default the algorithm chooses and is opaque here; 1323 * - compression algo are 0-3 1324 * - the level are bits 4-7 1325 * 1326 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1327 * and returns number of actually allocated pages 1328 * 1329 * @total_in is used to return the number of bytes actually read. It 1330 * may be smaller than the input length if we had to exit early because we 1331 * ran out of room in the pages array or because we cross the 1332 * max_out threshold. 1333 * 1334 * @total_out is an in/out parameter, must be set to the input length and will 1335 * be also used to return the total number of compressed bytes 1336 */ 1337 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1338 u64 start, struct page **pages, 1339 unsigned long *out_pages, 1340 unsigned long *total_in, 1341 unsigned long *total_out) 1342 { 1343 int type = btrfs_compress_type(type_level); 1344 int level = btrfs_compress_level(type_level); 1345 struct list_head *workspace; 1346 int ret; 1347 1348 level = btrfs_compress_set_level(type, level); 1349 workspace = get_workspace(type, level); 1350 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1351 out_pages, total_in, total_out); 1352 put_workspace(type, workspace); 1353 return ret; 1354 } 1355 1356 static int btrfs_decompress_bio(struct compressed_bio *cb) 1357 { 1358 struct list_head *workspace; 1359 int ret; 1360 int type = cb->compress_type; 1361 1362 workspace = get_workspace(type, 0); 1363 ret = compression_decompress_bio(workspace, cb); 1364 put_workspace(type, workspace); 1365 1366 return ret; 1367 } 1368 1369 /* 1370 * a less complex decompression routine. Our compressed data fits in a 1371 * single page, and we want to read a single page out of it. 1372 * start_byte tells us the offset into the compressed data we're interested in 1373 */ 1374 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1375 unsigned long start_byte, size_t srclen, size_t destlen) 1376 { 1377 struct list_head *workspace; 1378 int ret; 1379 1380 workspace = get_workspace(type, 0); 1381 ret = compression_decompress(type, workspace, data_in, dest_page, 1382 start_byte, srclen, destlen); 1383 put_workspace(type, workspace); 1384 1385 return ret; 1386 } 1387 1388 void __init btrfs_init_compress(void) 1389 { 1390 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1391 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1392 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1393 zstd_init_workspace_manager(); 1394 } 1395 1396 void __cold btrfs_exit_compress(void) 1397 { 1398 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1399 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1400 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1401 zstd_cleanup_workspace_manager(); 1402 } 1403 1404 /* 1405 * Copy decompressed data from working buffer to pages. 1406 * 1407 * @buf: The decompressed data buffer 1408 * @buf_len: The decompressed data length 1409 * @decompressed: Number of bytes that are already decompressed inside the 1410 * compressed extent 1411 * @cb: The compressed extent descriptor 1412 * @orig_bio: The original bio that the caller wants to read for 1413 * 1414 * An easier to understand graph is like below: 1415 * 1416 * |<- orig_bio ->| |<- orig_bio->| 1417 * |<------- full decompressed extent ----->| 1418 * |<----------- @cb range ---->| 1419 * | |<-- @buf_len -->| 1420 * |<--- @decompressed --->| 1421 * 1422 * Note that, @cb can be a subpage of the full decompressed extent, but 1423 * @cb->start always has the same as the orig_file_offset value of the full 1424 * decompressed extent. 1425 * 1426 * When reading compressed extent, we have to read the full compressed extent, 1427 * while @orig_bio may only want part of the range. 1428 * Thus this function will ensure only data covered by @orig_bio will be copied 1429 * to. 1430 * 1431 * Return 0 if we have copied all needed contents for @orig_bio. 1432 * Return >0 if we need continue decompress. 1433 */ 1434 int btrfs_decompress_buf2page(const char *buf, u32 buf_len, 1435 struct compressed_bio *cb, u32 decompressed) 1436 { 1437 struct bio *orig_bio = cb->orig_bio; 1438 /* Offset inside the full decompressed extent */ 1439 u32 cur_offset; 1440 1441 cur_offset = decompressed; 1442 /* The main loop to do the copy */ 1443 while (cur_offset < decompressed + buf_len) { 1444 struct bio_vec bvec; 1445 size_t copy_len; 1446 u32 copy_start; 1447 /* Offset inside the full decompressed extent */ 1448 u32 bvec_offset; 1449 1450 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter); 1451 /* 1452 * cb->start may underflow, but subtracting that value can still 1453 * give us correct offset inside the full decompressed extent. 1454 */ 1455 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start; 1456 1457 /* Haven't reached the bvec range, exit */ 1458 if (decompressed + buf_len <= bvec_offset) 1459 return 1; 1460 1461 copy_start = max(cur_offset, bvec_offset); 1462 copy_len = min(bvec_offset + bvec.bv_len, 1463 decompressed + buf_len) - copy_start; 1464 ASSERT(copy_len); 1465 1466 /* 1467 * Extra range check to ensure we didn't go beyond 1468 * @buf + @buf_len. 1469 */ 1470 ASSERT(copy_start - decompressed < buf_len); 1471 memcpy_to_page(bvec.bv_page, bvec.bv_offset, 1472 buf + copy_start - decompressed, copy_len); 1473 flush_dcache_page(bvec.bv_page); 1474 cur_offset += copy_len; 1475 1476 bio_advance(orig_bio, copy_len); 1477 /* Finished the bio */ 1478 if (!orig_bio->bi_iter.bi_size) 1479 return 0; 1480 } 1481 return 1; 1482 } 1483 1484 /* 1485 * Shannon Entropy calculation 1486 * 1487 * Pure byte distribution analysis fails to determine compressibility of data. 1488 * Try calculating entropy to estimate the average minimum number of bits 1489 * needed to encode the sampled data. 1490 * 1491 * For convenience, return the percentage of needed bits, instead of amount of 1492 * bits directly. 1493 * 1494 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1495 * and can be compressible with high probability 1496 * 1497 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1498 * 1499 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1500 */ 1501 #define ENTROPY_LVL_ACEPTABLE (65) 1502 #define ENTROPY_LVL_HIGH (80) 1503 1504 /* 1505 * For increasead precision in shannon_entropy calculation, 1506 * let's do pow(n, M) to save more digits after comma: 1507 * 1508 * - maximum int bit length is 64 1509 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1510 * - 13 * 4 = 52 < 64 -> M = 4 1511 * 1512 * So use pow(n, 4). 1513 */ 1514 static inline u32 ilog2_w(u64 n) 1515 { 1516 return ilog2(n * n * n * n); 1517 } 1518 1519 static u32 shannon_entropy(struct heuristic_ws *ws) 1520 { 1521 const u32 entropy_max = 8 * ilog2_w(2); 1522 u32 entropy_sum = 0; 1523 u32 p, p_base, sz_base; 1524 u32 i; 1525 1526 sz_base = ilog2_w(ws->sample_size); 1527 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1528 p = ws->bucket[i].count; 1529 p_base = ilog2_w(p); 1530 entropy_sum += p * (sz_base - p_base); 1531 } 1532 1533 entropy_sum /= ws->sample_size; 1534 return entropy_sum * 100 / entropy_max; 1535 } 1536 1537 #define RADIX_BASE 4U 1538 #define COUNTERS_SIZE (1U << RADIX_BASE) 1539 1540 static u8 get4bits(u64 num, int shift) { 1541 u8 low4bits; 1542 1543 num >>= shift; 1544 /* Reverse order */ 1545 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1546 return low4bits; 1547 } 1548 1549 /* 1550 * Use 4 bits as radix base 1551 * Use 16 u32 counters for calculating new position in buf array 1552 * 1553 * @array - array that will be sorted 1554 * @array_buf - buffer array to store sorting results 1555 * must be equal in size to @array 1556 * @num - array size 1557 */ 1558 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1559 int num) 1560 { 1561 u64 max_num; 1562 u64 buf_num; 1563 u32 counters[COUNTERS_SIZE]; 1564 u32 new_addr; 1565 u32 addr; 1566 int bitlen; 1567 int shift; 1568 int i; 1569 1570 /* 1571 * Try avoid useless loop iterations for small numbers stored in big 1572 * counters. Example: 48 33 4 ... in 64bit array 1573 */ 1574 max_num = array[0].count; 1575 for (i = 1; i < num; i++) { 1576 buf_num = array[i].count; 1577 if (buf_num > max_num) 1578 max_num = buf_num; 1579 } 1580 1581 buf_num = ilog2(max_num); 1582 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1583 1584 shift = 0; 1585 while (shift < bitlen) { 1586 memset(counters, 0, sizeof(counters)); 1587 1588 for (i = 0; i < num; i++) { 1589 buf_num = array[i].count; 1590 addr = get4bits(buf_num, shift); 1591 counters[addr]++; 1592 } 1593 1594 for (i = 1; i < COUNTERS_SIZE; i++) 1595 counters[i] += counters[i - 1]; 1596 1597 for (i = num - 1; i >= 0; i--) { 1598 buf_num = array[i].count; 1599 addr = get4bits(buf_num, shift); 1600 counters[addr]--; 1601 new_addr = counters[addr]; 1602 array_buf[new_addr] = array[i]; 1603 } 1604 1605 shift += RADIX_BASE; 1606 1607 /* 1608 * Normal radix expects to move data from a temporary array, to 1609 * the main one. But that requires some CPU time. Avoid that 1610 * by doing another sort iteration to original array instead of 1611 * memcpy() 1612 */ 1613 memset(counters, 0, sizeof(counters)); 1614 1615 for (i = 0; i < num; i ++) { 1616 buf_num = array_buf[i].count; 1617 addr = get4bits(buf_num, shift); 1618 counters[addr]++; 1619 } 1620 1621 for (i = 1; i < COUNTERS_SIZE; i++) 1622 counters[i] += counters[i - 1]; 1623 1624 for (i = num - 1; i >= 0; i--) { 1625 buf_num = array_buf[i].count; 1626 addr = get4bits(buf_num, shift); 1627 counters[addr]--; 1628 new_addr = counters[addr]; 1629 array[new_addr] = array_buf[i]; 1630 } 1631 1632 shift += RADIX_BASE; 1633 } 1634 } 1635 1636 /* 1637 * Size of the core byte set - how many bytes cover 90% of the sample 1638 * 1639 * There are several types of structured binary data that use nearly all byte 1640 * values. The distribution can be uniform and counts in all buckets will be 1641 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1642 * 1643 * Other possibility is normal (Gaussian) distribution, where the data could 1644 * be potentially compressible, but we have to take a few more steps to decide 1645 * how much. 1646 * 1647 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1648 * compression algo can easy fix that 1649 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1650 * probability is not compressible 1651 */ 1652 #define BYTE_CORE_SET_LOW (64) 1653 #define BYTE_CORE_SET_HIGH (200) 1654 1655 static int byte_core_set_size(struct heuristic_ws *ws) 1656 { 1657 u32 i; 1658 u32 coreset_sum = 0; 1659 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1660 struct bucket_item *bucket = ws->bucket; 1661 1662 /* Sort in reverse order */ 1663 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1664 1665 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1666 coreset_sum += bucket[i].count; 1667 1668 if (coreset_sum > core_set_threshold) 1669 return i; 1670 1671 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1672 coreset_sum += bucket[i].count; 1673 if (coreset_sum > core_set_threshold) 1674 break; 1675 } 1676 1677 return i; 1678 } 1679 1680 /* 1681 * Count byte values in buckets. 1682 * This heuristic can detect textual data (configs, xml, json, html, etc). 1683 * Because in most text-like data byte set is restricted to limited number of 1684 * possible characters, and that restriction in most cases makes data easy to 1685 * compress. 1686 * 1687 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1688 * less - compressible 1689 * more - need additional analysis 1690 */ 1691 #define BYTE_SET_THRESHOLD (64) 1692 1693 static u32 byte_set_size(const struct heuristic_ws *ws) 1694 { 1695 u32 i; 1696 u32 byte_set_size = 0; 1697 1698 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1699 if (ws->bucket[i].count > 0) 1700 byte_set_size++; 1701 } 1702 1703 /* 1704 * Continue collecting count of byte values in buckets. If the byte 1705 * set size is bigger then the threshold, it's pointless to continue, 1706 * the detection technique would fail for this type of data. 1707 */ 1708 for (; i < BUCKET_SIZE; i++) { 1709 if (ws->bucket[i].count > 0) { 1710 byte_set_size++; 1711 if (byte_set_size > BYTE_SET_THRESHOLD) 1712 return byte_set_size; 1713 } 1714 } 1715 1716 return byte_set_size; 1717 } 1718 1719 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1720 { 1721 const u32 half_of_sample = ws->sample_size / 2; 1722 const u8 *data = ws->sample; 1723 1724 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1725 } 1726 1727 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1728 struct heuristic_ws *ws) 1729 { 1730 struct page *page; 1731 u64 index, index_end; 1732 u32 i, curr_sample_pos; 1733 u8 *in_data; 1734 1735 /* 1736 * Compression handles the input data by chunks of 128KiB 1737 * (defined by BTRFS_MAX_UNCOMPRESSED) 1738 * 1739 * We do the same for the heuristic and loop over the whole range. 1740 * 1741 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1742 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1743 */ 1744 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1745 end = start + BTRFS_MAX_UNCOMPRESSED; 1746 1747 index = start >> PAGE_SHIFT; 1748 index_end = end >> PAGE_SHIFT; 1749 1750 /* Don't miss unaligned end */ 1751 if (!IS_ALIGNED(end, PAGE_SIZE)) 1752 index_end++; 1753 1754 curr_sample_pos = 0; 1755 while (index < index_end) { 1756 page = find_get_page(inode->i_mapping, index); 1757 in_data = kmap_local_page(page); 1758 /* Handle case where the start is not aligned to PAGE_SIZE */ 1759 i = start % PAGE_SIZE; 1760 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1761 /* Don't sample any garbage from the last page */ 1762 if (start > end - SAMPLING_READ_SIZE) 1763 break; 1764 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1765 SAMPLING_READ_SIZE); 1766 i += SAMPLING_INTERVAL; 1767 start += SAMPLING_INTERVAL; 1768 curr_sample_pos += SAMPLING_READ_SIZE; 1769 } 1770 kunmap_local(in_data); 1771 put_page(page); 1772 1773 index++; 1774 } 1775 1776 ws->sample_size = curr_sample_pos; 1777 } 1778 1779 /* 1780 * Compression heuristic. 1781 * 1782 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1783 * quickly (compared to direct compression) detect data characteristics 1784 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1785 * data. 1786 * 1787 * The following types of analysis can be performed: 1788 * - detect mostly zero data 1789 * - detect data with low "byte set" size (text, etc) 1790 * - detect data with low/high "core byte" set 1791 * 1792 * Return non-zero if the compression should be done, 0 otherwise. 1793 */ 1794 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1795 { 1796 struct list_head *ws_list = get_workspace(0, 0); 1797 struct heuristic_ws *ws; 1798 u32 i; 1799 u8 byte; 1800 int ret = 0; 1801 1802 ws = list_entry(ws_list, struct heuristic_ws, list); 1803 1804 heuristic_collect_sample(inode, start, end, ws); 1805 1806 if (sample_repeated_patterns(ws)) { 1807 ret = 1; 1808 goto out; 1809 } 1810 1811 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1812 1813 for (i = 0; i < ws->sample_size; i++) { 1814 byte = ws->sample[i]; 1815 ws->bucket[byte].count++; 1816 } 1817 1818 i = byte_set_size(ws); 1819 if (i < BYTE_SET_THRESHOLD) { 1820 ret = 2; 1821 goto out; 1822 } 1823 1824 i = byte_core_set_size(ws); 1825 if (i <= BYTE_CORE_SET_LOW) { 1826 ret = 3; 1827 goto out; 1828 } 1829 1830 if (i >= BYTE_CORE_SET_HIGH) { 1831 ret = 0; 1832 goto out; 1833 } 1834 1835 i = shannon_entropy(ws); 1836 if (i <= ENTROPY_LVL_ACEPTABLE) { 1837 ret = 4; 1838 goto out; 1839 } 1840 1841 /* 1842 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1843 * needed to give green light to compression. 1844 * 1845 * For now just assume that compression at that level is not worth the 1846 * resources because: 1847 * 1848 * 1. it is possible to defrag the data later 1849 * 1850 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1851 * values, every bucket has counter at level ~54. The heuristic would 1852 * be confused. This can happen when data have some internal repeated 1853 * patterns like "abbacbbc...". This can be detected by analyzing 1854 * pairs of bytes, which is too costly. 1855 */ 1856 if (i < ENTROPY_LVL_HIGH) { 1857 ret = 5; 1858 goto out; 1859 } else { 1860 ret = 0; 1861 goto out; 1862 } 1863 1864 out: 1865 put_workspace(0, ws_list); 1866 return ret; 1867 } 1868 1869 /* 1870 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1871 * level, unrecognized string will set the default level 1872 */ 1873 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1874 { 1875 unsigned int level = 0; 1876 int ret; 1877 1878 if (!type) 1879 return 0; 1880 1881 if (str[0] == ':') { 1882 ret = kstrtouint(str + 1, 10, &level); 1883 if (ret) 1884 level = 0; 1885 } 1886 1887 level = btrfs_compress_set_level(type, level); 1888 1889 return level; 1890 } 1891